1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2013 Renesas Solutions Corp.
6  *  Copyright (C) 2013 Cogent Embedded, Inc.
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms and conditions of the GNU General Public License,
10  *  version 2, as published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  *  more details.
16  *  You should have received a copy of the GNU General Public License along with
17  *  this program; if not, write to the Free Software Foundation, Inc.,
18  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  *  The full GNU General Public License is included in this distribution in
21  *  the file called "COPYING".
22  */
23 
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/etherdevice.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/mdio-bitbang.h>
34 #include <linux/netdevice.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 
45 #include "sh_eth.h"
46 
47 #define SH_ETH_DEF_MSG_ENABLE \
48 		(NETIF_MSG_LINK	| \
49 		NETIF_MSG_TIMER	| \
50 		NETIF_MSG_RX_ERR| \
51 		NETIF_MSG_TX_ERR)
52 
53 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54 	[EDSR]		= 0x0000,
55 	[EDMR]		= 0x0400,
56 	[EDTRR]		= 0x0408,
57 	[EDRRR]		= 0x0410,
58 	[EESR]		= 0x0428,
59 	[EESIPR]	= 0x0430,
60 	[TDLAR]		= 0x0010,
61 	[TDFAR]		= 0x0014,
62 	[TDFXR]		= 0x0018,
63 	[TDFFR]		= 0x001c,
64 	[RDLAR]		= 0x0030,
65 	[RDFAR]		= 0x0034,
66 	[RDFXR]		= 0x0038,
67 	[RDFFR]		= 0x003c,
68 	[TRSCER]	= 0x0438,
69 	[RMFCR]		= 0x0440,
70 	[TFTR]		= 0x0448,
71 	[FDR]		= 0x0450,
72 	[RMCR]		= 0x0458,
73 	[RPADIR]	= 0x0460,
74 	[FCFTR]		= 0x0468,
75 	[CSMR]		= 0x04E4,
76 
77 	[ECMR]		= 0x0500,
78 	[ECSR]		= 0x0510,
79 	[ECSIPR]	= 0x0518,
80 	[PIR]		= 0x0520,
81 	[PSR]		= 0x0528,
82 	[PIPR]		= 0x052c,
83 	[RFLR]		= 0x0508,
84 	[APR]		= 0x0554,
85 	[MPR]		= 0x0558,
86 	[PFTCR]		= 0x055c,
87 	[PFRCR]		= 0x0560,
88 	[TPAUSER]	= 0x0564,
89 	[GECMR]		= 0x05b0,
90 	[BCULR]		= 0x05b4,
91 	[MAHR]		= 0x05c0,
92 	[MALR]		= 0x05c8,
93 	[TROCR]		= 0x0700,
94 	[CDCR]		= 0x0708,
95 	[LCCR]		= 0x0710,
96 	[CEFCR]		= 0x0740,
97 	[FRECR]		= 0x0748,
98 	[TSFRCR]	= 0x0750,
99 	[TLFRCR]	= 0x0758,
100 	[RFCR]		= 0x0760,
101 	[CERCR]		= 0x0768,
102 	[CEECR]		= 0x0770,
103 	[MAFCR]		= 0x0778,
104 	[RMII_MII]	= 0x0790,
105 
106 	[ARSTR]		= 0x0000,
107 	[TSU_CTRST]	= 0x0004,
108 	[TSU_FWEN0]	= 0x0010,
109 	[TSU_FWEN1]	= 0x0014,
110 	[TSU_FCM]	= 0x0018,
111 	[TSU_BSYSL0]	= 0x0020,
112 	[TSU_BSYSL1]	= 0x0024,
113 	[TSU_PRISL0]	= 0x0028,
114 	[TSU_PRISL1]	= 0x002c,
115 	[TSU_FWSL0]	= 0x0030,
116 	[TSU_FWSL1]	= 0x0034,
117 	[TSU_FWSLC]	= 0x0038,
118 	[TSU_QTAG0]	= 0x0040,
119 	[TSU_QTAG1]	= 0x0044,
120 	[TSU_FWSR]	= 0x0050,
121 	[TSU_FWINMK]	= 0x0054,
122 	[TSU_ADQT0]	= 0x0048,
123 	[TSU_ADQT1]	= 0x004c,
124 	[TSU_VTAG0]	= 0x0058,
125 	[TSU_VTAG1]	= 0x005c,
126 	[TSU_ADSBSY]	= 0x0060,
127 	[TSU_TEN]	= 0x0064,
128 	[TSU_POST1]	= 0x0070,
129 	[TSU_POST2]	= 0x0074,
130 	[TSU_POST3]	= 0x0078,
131 	[TSU_POST4]	= 0x007c,
132 	[TSU_ADRH0]	= 0x0100,
133 	[TSU_ADRL0]	= 0x0104,
134 	[TSU_ADRH31]	= 0x01f8,
135 	[TSU_ADRL31]	= 0x01fc,
136 
137 	[TXNLCR0]	= 0x0080,
138 	[TXALCR0]	= 0x0084,
139 	[RXNLCR0]	= 0x0088,
140 	[RXALCR0]	= 0x008c,
141 	[FWNLCR0]	= 0x0090,
142 	[FWALCR0]	= 0x0094,
143 	[TXNLCR1]	= 0x00a0,
144 	[TXALCR1]	= 0x00a0,
145 	[RXNLCR1]	= 0x00a8,
146 	[RXALCR1]	= 0x00ac,
147 	[FWNLCR1]	= 0x00b0,
148 	[FWALCR1]	= 0x00b4,
149 };
150 
151 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152 	[ECMR]		= 0x0300,
153 	[RFLR]		= 0x0308,
154 	[ECSR]		= 0x0310,
155 	[ECSIPR]	= 0x0318,
156 	[PIR]		= 0x0320,
157 	[PSR]		= 0x0328,
158 	[RDMLR]		= 0x0340,
159 	[IPGR]		= 0x0350,
160 	[APR]		= 0x0354,
161 	[MPR]		= 0x0358,
162 	[RFCF]		= 0x0360,
163 	[TPAUSER]	= 0x0364,
164 	[TPAUSECR]	= 0x0368,
165 	[MAHR]		= 0x03c0,
166 	[MALR]		= 0x03c8,
167 	[TROCR]		= 0x03d0,
168 	[CDCR]		= 0x03d4,
169 	[LCCR]		= 0x03d8,
170 	[CNDCR]		= 0x03dc,
171 	[CEFCR]		= 0x03e4,
172 	[FRECR]		= 0x03e8,
173 	[TSFRCR]	= 0x03ec,
174 	[TLFRCR]	= 0x03f0,
175 	[RFCR]		= 0x03f4,
176 	[MAFCR]		= 0x03f8,
177 
178 	[EDMR]		= 0x0200,
179 	[EDTRR]		= 0x0208,
180 	[EDRRR]		= 0x0210,
181 	[TDLAR]		= 0x0218,
182 	[RDLAR]		= 0x0220,
183 	[EESR]		= 0x0228,
184 	[EESIPR]	= 0x0230,
185 	[TRSCER]	= 0x0238,
186 	[RMFCR]		= 0x0240,
187 	[TFTR]		= 0x0248,
188 	[FDR]		= 0x0250,
189 	[RMCR]		= 0x0258,
190 	[TFUCR]		= 0x0264,
191 	[RFOCR]		= 0x0268,
192 	[RMIIMODE]      = 0x026c,
193 	[FCFTR]		= 0x0270,
194 	[TRIMD]		= 0x027c,
195 };
196 
197 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
198 	[ECMR]		= 0x0100,
199 	[RFLR]		= 0x0108,
200 	[ECSR]		= 0x0110,
201 	[ECSIPR]	= 0x0118,
202 	[PIR]		= 0x0120,
203 	[PSR]		= 0x0128,
204 	[RDMLR]		= 0x0140,
205 	[IPGR]		= 0x0150,
206 	[APR]		= 0x0154,
207 	[MPR]		= 0x0158,
208 	[TPAUSER]	= 0x0164,
209 	[RFCF]		= 0x0160,
210 	[TPAUSECR]	= 0x0168,
211 	[BCFRR]		= 0x016c,
212 	[MAHR]		= 0x01c0,
213 	[MALR]		= 0x01c8,
214 	[TROCR]		= 0x01d0,
215 	[CDCR]		= 0x01d4,
216 	[LCCR]		= 0x01d8,
217 	[CNDCR]		= 0x01dc,
218 	[CEFCR]		= 0x01e4,
219 	[FRECR]		= 0x01e8,
220 	[TSFRCR]	= 0x01ec,
221 	[TLFRCR]	= 0x01f0,
222 	[RFCR]		= 0x01f4,
223 	[MAFCR]		= 0x01f8,
224 	[RTRATE]	= 0x01fc,
225 
226 	[EDMR]		= 0x0000,
227 	[EDTRR]		= 0x0008,
228 	[EDRRR]		= 0x0010,
229 	[TDLAR]		= 0x0018,
230 	[RDLAR]		= 0x0020,
231 	[EESR]		= 0x0028,
232 	[EESIPR]	= 0x0030,
233 	[TRSCER]	= 0x0038,
234 	[RMFCR]		= 0x0040,
235 	[TFTR]		= 0x0048,
236 	[FDR]		= 0x0050,
237 	[RMCR]		= 0x0058,
238 	[TFUCR]		= 0x0064,
239 	[RFOCR]		= 0x0068,
240 	[FCFTR]		= 0x0070,
241 	[RPADIR]	= 0x0078,
242 	[TRIMD]		= 0x007c,
243 	[RBWAR]		= 0x00c8,
244 	[RDFAR]		= 0x00cc,
245 	[TBRAR]		= 0x00d4,
246 	[TDFAR]		= 0x00d8,
247 };
248 
249 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
250 	[ECMR]		= 0x0160,
251 	[ECSR]		= 0x0164,
252 	[ECSIPR]	= 0x0168,
253 	[PIR]		= 0x016c,
254 	[MAHR]		= 0x0170,
255 	[MALR]		= 0x0174,
256 	[RFLR]		= 0x0178,
257 	[PSR]		= 0x017c,
258 	[TROCR]		= 0x0180,
259 	[CDCR]		= 0x0184,
260 	[LCCR]		= 0x0188,
261 	[CNDCR]		= 0x018c,
262 	[CEFCR]		= 0x0194,
263 	[FRECR]		= 0x0198,
264 	[TSFRCR]	= 0x019c,
265 	[TLFRCR]	= 0x01a0,
266 	[RFCR]		= 0x01a4,
267 	[MAFCR]		= 0x01a8,
268 	[IPGR]		= 0x01b4,
269 	[APR]		= 0x01b8,
270 	[MPR]		= 0x01bc,
271 	[TPAUSER]	= 0x01c4,
272 	[BCFR]		= 0x01cc,
273 
274 	[ARSTR]		= 0x0000,
275 	[TSU_CTRST]	= 0x0004,
276 	[TSU_FWEN0]	= 0x0010,
277 	[TSU_FWEN1]	= 0x0014,
278 	[TSU_FCM]	= 0x0018,
279 	[TSU_BSYSL0]	= 0x0020,
280 	[TSU_BSYSL1]	= 0x0024,
281 	[TSU_PRISL0]	= 0x0028,
282 	[TSU_PRISL1]	= 0x002c,
283 	[TSU_FWSL0]	= 0x0030,
284 	[TSU_FWSL1]	= 0x0034,
285 	[TSU_FWSLC]	= 0x0038,
286 	[TSU_QTAGM0]	= 0x0040,
287 	[TSU_QTAGM1]	= 0x0044,
288 	[TSU_ADQT0]	= 0x0048,
289 	[TSU_ADQT1]	= 0x004c,
290 	[TSU_FWSR]	= 0x0050,
291 	[TSU_FWINMK]	= 0x0054,
292 	[TSU_ADSBSY]	= 0x0060,
293 	[TSU_TEN]	= 0x0064,
294 	[TSU_POST1]	= 0x0070,
295 	[TSU_POST2]	= 0x0074,
296 	[TSU_POST3]	= 0x0078,
297 	[TSU_POST4]	= 0x007c,
298 
299 	[TXNLCR0]	= 0x0080,
300 	[TXALCR0]	= 0x0084,
301 	[RXNLCR0]	= 0x0088,
302 	[RXALCR0]	= 0x008c,
303 	[FWNLCR0]	= 0x0090,
304 	[FWALCR0]	= 0x0094,
305 	[TXNLCR1]	= 0x00a0,
306 	[TXALCR1]	= 0x00a0,
307 	[RXNLCR1]	= 0x00a8,
308 	[RXALCR1]	= 0x00ac,
309 	[FWNLCR1]	= 0x00b0,
310 	[FWALCR1]	= 0x00b4,
311 
312 	[TSU_ADRH0]	= 0x0100,
313 	[TSU_ADRL0]	= 0x0104,
314 	[TSU_ADRL31]	= 0x01fc,
315 };
316 
317 static int sh_eth_is_gether(struct sh_eth_private *mdp)
318 {
319 	if (mdp->reg_offset == sh_eth_offset_gigabit)
320 		return 1;
321 	else
322 		return 0;
323 }
324 
325 static void sh_eth_select_mii(struct net_device *ndev)
326 {
327 	u32 value = 0x0;
328 	struct sh_eth_private *mdp = netdev_priv(ndev);
329 
330 	switch (mdp->phy_interface) {
331 	case PHY_INTERFACE_MODE_GMII:
332 		value = 0x2;
333 		break;
334 	case PHY_INTERFACE_MODE_MII:
335 		value = 0x1;
336 		break;
337 	case PHY_INTERFACE_MODE_RMII:
338 		value = 0x0;
339 		break;
340 	default:
341 		pr_warn("PHY interface mode was not setup. Set to MII.\n");
342 		value = 0x1;
343 		break;
344 	}
345 
346 	sh_eth_write(ndev, value, RMII_MII);
347 }
348 
349 static void sh_eth_set_duplex(struct net_device *ndev)
350 {
351 	struct sh_eth_private *mdp = netdev_priv(ndev);
352 
353 	if (mdp->duplex) /* Full */
354 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
355 	else		/* Half */
356 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
357 }
358 
359 /* There is CPU dependent code */
360 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
361 {
362 	struct sh_eth_private *mdp = netdev_priv(ndev);
363 
364 	switch (mdp->speed) {
365 	case 10: /* 10BASE */
366 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
367 		break;
368 	case 100:/* 100BASE */
369 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
370 		break;
371 	default:
372 		break;
373 	}
374 }
375 
376 /* R8A7778/9 */
377 static struct sh_eth_cpu_data r8a777x_data = {
378 	.set_duplex	= sh_eth_set_duplex,
379 	.set_rate	= sh_eth_set_rate_r8a777x,
380 
381 	.register_type	= SH_ETH_REG_FAST_RCAR,
382 
383 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
384 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
385 	.eesipr_value	= 0x01ff009f,
386 
387 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
388 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
389 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
390 			  EESR_ECI,
391 
392 	.apr		= 1,
393 	.mpr		= 1,
394 	.tpauser	= 1,
395 	.hw_swap	= 1,
396 };
397 
398 /* R8A7790 */
399 static struct sh_eth_cpu_data r8a7790_data = {
400 	.set_duplex	= sh_eth_set_duplex,
401 	.set_rate	= sh_eth_set_rate_r8a777x,
402 
403 	.register_type	= SH_ETH_REG_FAST_RCAR,
404 
405 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
406 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
407 	.eesipr_value	= 0x01ff009f,
408 
409 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
410 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
411 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
412 			  EESR_ECI,
413 
414 	.apr		= 1,
415 	.mpr		= 1,
416 	.tpauser	= 1,
417 	.hw_swap	= 1,
418 	.rmiimode	= 1,
419 	.shift_rd0	= 1,
420 };
421 
422 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
423 {
424 	struct sh_eth_private *mdp = netdev_priv(ndev);
425 
426 	switch (mdp->speed) {
427 	case 10: /* 10BASE */
428 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
429 		break;
430 	case 100:/* 100BASE */
431 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
432 		break;
433 	default:
434 		break;
435 	}
436 }
437 
438 /* SH7724 */
439 static struct sh_eth_cpu_data sh7724_data = {
440 	.set_duplex	= sh_eth_set_duplex,
441 	.set_rate	= sh_eth_set_rate_sh7724,
442 
443 	.register_type	= SH_ETH_REG_FAST_SH4,
444 
445 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
446 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
447 	.eesipr_value	= 0x01ff009f,
448 
449 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
450 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
451 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
452 			  EESR_ECI,
453 
454 	.apr		= 1,
455 	.mpr		= 1,
456 	.tpauser	= 1,
457 	.hw_swap	= 1,
458 	.rpadir		= 1,
459 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
460 };
461 
462 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
463 {
464 	struct sh_eth_private *mdp = netdev_priv(ndev);
465 
466 	switch (mdp->speed) {
467 	case 10: /* 10BASE */
468 		sh_eth_write(ndev, 0, RTRATE);
469 		break;
470 	case 100:/* 100BASE */
471 		sh_eth_write(ndev, 1, RTRATE);
472 		break;
473 	default:
474 		break;
475 	}
476 }
477 
478 /* SH7757 */
479 static struct sh_eth_cpu_data sh7757_data = {
480 	.set_duplex	= sh_eth_set_duplex,
481 	.set_rate	= sh_eth_set_rate_sh7757,
482 
483 	.register_type	= SH_ETH_REG_FAST_SH4,
484 
485 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
486 	.rmcr_value	= RMCR_RNC,
487 
488 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
489 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
490 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
491 			  EESR_ECI,
492 
493 	.irq_flags	= IRQF_SHARED,
494 	.apr		= 1,
495 	.mpr		= 1,
496 	.tpauser	= 1,
497 	.hw_swap	= 1,
498 	.no_ade		= 1,
499 	.rpadir		= 1,
500 	.rpadir_value   = 2 << 16,
501 };
502 
503 #define SH_GIGA_ETH_BASE	0xfee00000UL
504 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
505 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
506 static void sh_eth_chip_reset_giga(struct net_device *ndev)
507 {
508 	int i;
509 	unsigned long mahr[2], malr[2];
510 
511 	/* save MAHR and MALR */
512 	for (i = 0; i < 2; i++) {
513 		malr[i] = ioread32((void *)GIGA_MALR(i));
514 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
515 	}
516 
517 	/* reset device */
518 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
519 	mdelay(1);
520 
521 	/* restore MAHR and MALR */
522 	for (i = 0; i < 2; i++) {
523 		iowrite32(malr[i], (void *)GIGA_MALR(i));
524 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
525 	}
526 }
527 
528 static void sh_eth_set_rate_giga(struct net_device *ndev)
529 {
530 	struct sh_eth_private *mdp = netdev_priv(ndev);
531 
532 	switch (mdp->speed) {
533 	case 10: /* 10BASE */
534 		sh_eth_write(ndev, 0x00000000, GECMR);
535 		break;
536 	case 100:/* 100BASE */
537 		sh_eth_write(ndev, 0x00000010, GECMR);
538 		break;
539 	case 1000: /* 1000BASE */
540 		sh_eth_write(ndev, 0x00000020, GECMR);
541 		break;
542 	default:
543 		break;
544 	}
545 }
546 
547 /* SH7757(GETHERC) */
548 static struct sh_eth_cpu_data sh7757_data_giga = {
549 	.chip_reset	= sh_eth_chip_reset_giga,
550 	.set_duplex	= sh_eth_set_duplex,
551 	.set_rate	= sh_eth_set_rate_giga,
552 
553 	.register_type	= SH_ETH_REG_GIGABIT,
554 
555 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
556 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
557 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
558 
559 	.tx_check	= EESR_TC1 | EESR_FTC,
560 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
561 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
562 			  EESR_TDE | EESR_ECI,
563 	.fdr_value	= 0x0000072f,
564 	.rmcr_value	= RMCR_RNC,
565 
566 	.irq_flags	= IRQF_SHARED,
567 	.apr		= 1,
568 	.mpr		= 1,
569 	.tpauser	= 1,
570 	.bculr		= 1,
571 	.hw_swap	= 1,
572 	.rpadir		= 1,
573 	.rpadir_value   = 2 << 16,
574 	.no_trimd	= 1,
575 	.no_ade		= 1,
576 	.tsu		= 1,
577 };
578 
579 static void sh_eth_chip_reset(struct net_device *ndev)
580 {
581 	struct sh_eth_private *mdp = netdev_priv(ndev);
582 
583 	/* reset device */
584 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
585 	mdelay(1);
586 }
587 
588 static void sh_eth_set_rate_gether(struct net_device *ndev)
589 {
590 	struct sh_eth_private *mdp = netdev_priv(ndev);
591 
592 	switch (mdp->speed) {
593 	case 10: /* 10BASE */
594 		sh_eth_write(ndev, GECMR_10, GECMR);
595 		break;
596 	case 100:/* 100BASE */
597 		sh_eth_write(ndev, GECMR_100, GECMR);
598 		break;
599 	case 1000: /* 1000BASE */
600 		sh_eth_write(ndev, GECMR_1000, GECMR);
601 		break;
602 	default:
603 		break;
604 	}
605 }
606 
607 /* SH7734 */
608 static struct sh_eth_cpu_data sh7734_data = {
609 	.chip_reset	= sh_eth_chip_reset,
610 	.set_duplex	= sh_eth_set_duplex,
611 	.set_rate	= sh_eth_set_rate_gether,
612 
613 	.register_type	= SH_ETH_REG_GIGABIT,
614 
615 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
616 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
617 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
618 
619 	.tx_check	= EESR_TC1 | EESR_FTC,
620 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
621 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
622 			  EESR_TDE | EESR_ECI,
623 
624 	.apr		= 1,
625 	.mpr		= 1,
626 	.tpauser	= 1,
627 	.bculr		= 1,
628 	.hw_swap	= 1,
629 	.no_trimd	= 1,
630 	.no_ade		= 1,
631 	.tsu		= 1,
632 	.hw_crc		= 1,
633 	.select_mii	= 1,
634 };
635 
636 /* SH7763 */
637 static struct sh_eth_cpu_data sh7763_data = {
638 	.chip_reset	= sh_eth_chip_reset,
639 	.set_duplex	= sh_eth_set_duplex,
640 	.set_rate	= sh_eth_set_rate_gether,
641 
642 	.register_type	= SH_ETH_REG_GIGABIT,
643 
644 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
645 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
646 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
647 
648 	.tx_check	= EESR_TC1 | EESR_FTC,
649 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
650 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
651 			  EESR_ECI,
652 
653 	.apr		= 1,
654 	.mpr		= 1,
655 	.tpauser	= 1,
656 	.bculr		= 1,
657 	.hw_swap	= 1,
658 	.no_trimd	= 1,
659 	.no_ade		= 1,
660 	.tsu		= 1,
661 	.irq_flags	= IRQF_SHARED,
662 };
663 
664 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
665 {
666 	struct sh_eth_private *mdp = netdev_priv(ndev);
667 
668 	/* reset device */
669 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
670 	mdelay(1);
671 
672 	sh_eth_select_mii(ndev);
673 }
674 
675 /* R8A7740 */
676 static struct sh_eth_cpu_data r8a7740_data = {
677 	.chip_reset	= sh_eth_chip_reset_r8a7740,
678 	.set_duplex	= sh_eth_set_duplex,
679 	.set_rate	= sh_eth_set_rate_gether,
680 
681 	.register_type	= SH_ETH_REG_GIGABIT,
682 
683 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
684 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
685 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
686 
687 	.tx_check	= EESR_TC1 | EESR_FTC,
688 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
689 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
690 			  EESR_TDE | EESR_ECI,
691 	.fdr_value	= 0x0000070f,
692 	.rmcr_value	= RMCR_RNC,
693 
694 	.apr		= 1,
695 	.mpr		= 1,
696 	.tpauser	= 1,
697 	.bculr		= 1,
698 	.hw_swap	= 1,
699 	.rpadir		= 1,
700 	.rpadir_value   = 2 << 16,
701 	.no_trimd	= 1,
702 	.no_ade		= 1,
703 	.tsu		= 1,
704 	.select_mii	= 1,
705 	.shift_rd0	= 1,
706 };
707 
708 static struct sh_eth_cpu_data sh7619_data = {
709 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
710 
711 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
712 
713 	.apr		= 1,
714 	.mpr		= 1,
715 	.tpauser	= 1,
716 	.hw_swap	= 1,
717 };
718 
719 static struct sh_eth_cpu_data sh771x_data = {
720 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
721 
722 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
723 	.tsu		= 1,
724 };
725 
726 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
727 {
728 	if (!cd->ecsr_value)
729 		cd->ecsr_value = DEFAULT_ECSR_INIT;
730 
731 	if (!cd->ecsipr_value)
732 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
733 
734 	if (!cd->fcftr_value)
735 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
736 				  DEFAULT_FIFO_F_D_RFD;
737 
738 	if (!cd->fdr_value)
739 		cd->fdr_value = DEFAULT_FDR_INIT;
740 
741 	if (!cd->rmcr_value)
742 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
743 
744 	if (!cd->tx_check)
745 		cd->tx_check = DEFAULT_TX_CHECK;
746 
747 	if (!cd->eesr_err_check)
748 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
749 }
750 
751 static int sh_eth_check_reset(struct net_device *ndev)
752 {
753 	int ret = 0;
754 	int cnt = 100;
755 
756 	while (cnt > 0) {
757 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
758 			break;
759 		mdelay(1);
760 		cnt--;
761 	}
762 	if (cnt <= 0) {
763 		pr_err("Device reset failed\n");
764 		ret = -ETIMEDOUT;
765 	}
766 	return ret;
767 }
768 
769 static int sh_eth_reset(struct net_device *ndev)
770 {
771 	struct sh_eth_private *mdp = netdev_priv(ndev);
772 	int ret = 0;
773 
774 	if (sh_eth_is_gether(mdp)) {
775 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
776 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
777 			     EDMR);
778 
779 		ret = sh_eth_check_reset(ndev);
780 		if (ret)
781 			goto out;
782 
783 		/* Table Init */
784 		sh_eth_write(ndev, 0x0, TDLAR);
785 		sh_eth_write(ndev, 0x0, TDFAR);
786 		sh_eth_write(ndev, 0x0, TDFXR);
787 		sh_eth_write(ndev, 0x0, TDFFR);
788 		sh_eth_write(ndev, 0x0, RDLAR);
789 		sh_eth_write(ndev, 0x0, RDFAR);
790 		sh_eth_write(ndev, 0x0, RDFXR);
791 		sh_eth_write(ndev, 0x0, RDFFR);
792 
793 		/* Reset HW CRC register */
794 		if (mdp->cd->hw_crc)
795 			sh_eth_write(ndev, 0x0, CSMR);
796 
797 		/* Select MII mode */
798 		if (mdp->cd->select_mii)
799 			sh_eth_select_mii(ndev);
800 	} else {
801 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
802 			     EDMR);
803 		mdelay(3);
804 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
805 			     EDMR);
806 	}
807 
808 out:
809 	return ret;
810 }
811 
812 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
813 static void sh_eth_set_receive_align(struct sk_buff *skb)
814 {
815 	int reserve;
816 
817 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
818 	if (reserve)
819 		skb_reserve(skb, reserve);
820 }
821 #else
822 static void sh_eth_set_receive_align(struct sk_buff *skb)
823 {
824 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
825 }
826 #endif
827 
828 
829 /* CPU <-> EDMAC endian convert */
830 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
831 {
832 	switch (mdp->edmac_endian) {
833 	case EDMAC_LITTLE_ENDIAN:
834 		return cpu_to_le32(x);
835 	case EDMAC_BIG_ENDIAN:
836 		return cpu_to_be32(x);
837 	}
838 	return x;
839 }
840 
841 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
842 {
843 	switch (mdp->edmac_endian) {
844 	case EDMAC_LITTLE_ENDIAN:
845 		return le32_to_cpu(x);
846 	case EDMAC_BIG_ENDIAN:
847 		return be32_to_cpu(x);
848 	}
849 	return x;
850 }
851 
852 /*
853  * Program the hardware MAC address from dev->dev_addr.
854  */
855 static void update_mac_address(struct net_device *ndev)
856 {
857 	sh_eth_write(ndev,
858 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
859 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
860 	sh_eth_write(ndev,
861 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
862 }
863 
864 /*
865  * Get MAC address from SuperH MAC address register
866  *
867  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
868  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
869  * When you want use this device, you must set MAC address in bootloader.
870  *
871  */
872 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
873 {
874 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
875 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
876 	} else {
877 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
878 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
879 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
880 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
881 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
882 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
883 	}
884 }
885 
886 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
887 {
888 	if (sh_eth_is_gether(mdp))
889 		return EDTRR_TRNS_GETHER;
890 	else
891 		return EDTRR_TRNS_ETHER;
892 }
893 
894 struct bb_info {
895 	void (*set_gate)(void *addr);
896 	struct mdiobb_ctrl ctrl;
897 	void *addr;
898 	u32 mmd_msk;/* MMD */
899 	u32 mdo_msk;
900 	u32 mdi_msk;
901 	u32 mdc_msk;
902 };
903 
904 /* PHY bit set */
905 static void bb_set(void *addr, u32 msk)
906 {
907 	iowrite32(ioread32(addr) | msk, addr);
908 }
909 
910 /* PHY bit clear */
911 static void bb_clr(void *addr, u32 msk)
912 {
913 	iowrite32((ioread32(addr) & ~msk), addr);
914 }
915 
916 /* PHY bit read */
917 static int bb_read(void *addr, u32 msk)
918 {
919 	return (ioread32(addr) & msk) != 0;
920 }
921 
922 /* Data I/O pin control */
923 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
924 {
925 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
926 
927 	if (bitbang->set_gate)
928 		bitbang->set_gate(bitbang->addr);
929 
930 	if (bit)
931 		bb_set(bitbang->addr, bitbang->mmd_msk);
932 	else
933 		bb_clr(bitbang->addr, bitbang->mmd_msk);
934 }
935 
936 /* Set bit data*/
937 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
938 {
939 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
940 
941 	if (bitbang->set_gate)
942 		bitbang->set_gate(bitbang->addr);
943 
944 	if (bit)
945 		bb_set(bitbang->addr, bitbang->mdo_msk);
946 	else
947 		bb_clr(bitbang->addr, bitbang->mdo_msk);
948 }
949 
950 /* Get bit data*/
951 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
952 {
953 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
954 
955 	if (bitbang->set_gate)
956 		bitbang->set_gate(bitbang->addr);
957 
958 	return bb_read(bitbang->addr, bitbang->mdi_msk);
959 }
960 
961 /* MDC pin control */
962 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
963 {
964 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
965 
966 	if (bitbang->set_gate)
967 		bitbang->set_gate(bitbang->addr);
968 
969 	if (bit)
970 		bb_set(bitbang->addr, bitbang->mdc_msk);
971 	else
972 		bb_clr(bitbang->addr, bitbang->mdc_msk);
973 }
974 
975 /* mdio bus control struct */
976 static struct mdiobb_ops bb_ops = {
977 	.owner = THIS_MODULE,
978 	.set_mdc = sh_mdc_ctrl,
979 	.set_mdio_dir = sh_mmd_ctrl,
980 	.set_mdio_data = sh_set_mdio,
981 	.get_mdio_data = sh_get_mdio,
982 };
983 
984 /* free skb and descriptor buffer */
985 static void sh_eth_ring_free(struct net_device *ndev)
986 {
987 	struct sh_eth_private *mdp = netdev_priv(ndev);
988 	int i;
989 
990 	/* Free Rx skb ringbuffer */
991 	if (mdp->rx_skbuff) {
992 		for (i = 0; i < mdp->num_rx_ring; i++) {
993 			if (mdp->rx_skbuff[i])
994 				dev_kfree_skb(mdp->rx_skbuff[i]);
995 		}
996 	}
997 	kfree(mdp->rx_skbuff);
998 	mdp->rx_skbuff = NULL;
999 
1000 	/* Free Tx skb ringbuffer */
1001 	if (mdp->tx_skbuff) {
1002 		for (i = 0; i < mdp->num_tx_ring; i++) {
1003 			if (mdp->tx_skbuff[i])
1004 				dev_kfree_skb(mdp->tx_skbuff[i]);
1005 		}
1006 	}
1007 	kfree(mdp->tx_skbuff);
1008 	mdp->tx_skbuff = NULL;
1009 }
1010 
1011 /* format skb and descriptor buffer */
1012 static void sh_eth_ring_format(struct net_device *ndev)
1013 {
1014 	struct sh_eth_private *mdp = netdev_priv(ndev);
1015 	int i;
1016 	struct sk_buff *skb;
1017 	struct sh_eth_rxdesc *rxdesc = NULL;
1018 	struct sh_eth_txdesc *txdesc = NULL;
1019 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1020 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1021 
1022 	mdp->cur_rx = mdp->cur_tx = 0;
1023 	mdp->dirty_rx = mdp->dirty_tx = 0;
1024 
1025 	memset(mdp->rx_ring, 0, rx_ringsize);
1026 
1027 	/* build Rx ring buffer */
1028 	for (i = 0; i < mdp->num_rx_ring; i++) {
1029 		/* skb */
1030 		mdp->rx_skbuff[i] = NULL;
1031 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1032 		mdp->rx_skbuff[i] = skb;
1033 		if (skb == NULL)
1034 			break;
1035 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1036 				DMA_FROM_DEVICE);
1037 		sh_eth_set_receive_align(skb);
1038 
1039 		/* RX descriptor */
1040 		rxdesc = &mdp->rx_ring[i];
1041 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1042 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1043 
1044 		/* The size of the buffer is 16 byte boundary. */
1045 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1046 		/* Rx descriptor address set */
1047 		if (i == 0) {
1048 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1049 			if (sh_eth_is_gether(mdp))
1050 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1051 		}
1052 	}
1053 
1054 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1055 
1056 	/* Mark the last entry as wrapping the ring. */
1057 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1058 
1059 	memset(mdp->tx_ring, 0, tx_ringsize);
1060 
1061 	/* build Tx ring buffer */
1062 	for (i = 0; i < mdp->num_tx_ring; i++) {
1063 		mdp->tx_skbuff[i] = NULL;
1064 		txdesc = &mdp->tx_ring[i];
1065 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1066 		txdesc->buffer_length = 0;
1067 		if (i == 0) {
1068 			/* Tx descriptor address set */
1069 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1070 			if (sh_eth_is_gether(mdp))
1071 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1072 		}
1073 	}
1074 
1075 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1076 }
1077 
1078 /* Get skb and descriptor buffer */
1079 static int sh_eth_ring_init(struct net_device *ndev)
1080 {
1081 	struct sh_eth_private *mdp = netdev_priv(ndev);
1082 	int rx_ringsize, tx_ringsize, ret = 0;
1083 
1084 	/*
1085 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1086 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1087 	 * the first 2 bytes, and +16 gets room for the status word from the
1088 	 * card.
1089 	 */
1090 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1091 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1092 	if (mdp->cd->rpadir)
1093 		mdp->rx_buf_sz += NET_IP_ALIGN;
1094 
1095 	/* Allocate RX and TX skb rings */
1096 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1097 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1098 	if (!mdp->rx_skbuff) {
1099 		ret = -ENOMEM;
1100 		return ret;
1101 	}
1102 
1103 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1104 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1105 	if (!mdp->tx_skbuff) {
1106 		ret = -ENOMEM;
1107 		goto skb_ring_free;
1108 	}
1109 
1110 	/* Allocate all Rx descriptors. */
1111 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1112 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1113 					  GFP_KERNEL);
1114 	if (!mdp->rx_ring) {
1115 		ret = -ENOMEM;
1116 		goto desc_ring_free;
1117 	}
1118 
1119 	mdp->dirty_rx = 0;
1120 
1121 	/* Allocate all Tx descriptors. */
1122 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1123 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1124 					  GFP_KERNEL);
1125 	if (!mdp->tx_ring) {
1126 		ret = -ENOMEM;
1127 		goto desc_ring_free;
1128 	}
1129 	return ret;
1130 
1131 desc_ring_free:
1132 	/* free DMA buffer */
1133 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1134 
1135 skb_ring_free:
1136 	/* Free Rx and Tx skb ring buffer */
1137 	sh_eth_ring_free(ndev);
1138 	mdp->tx_ring = NULL;
1139 	mdp->rx_ring = NULL;
1140 
1141 	return ret;
1142 }
1143 
1144 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1145 {
1146 	int ringsize;
1147 
1148 	if (mdp->rx_ring) {
1149 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1150 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1151 				  mdp->rx_desc_dma);
1152 		mdp->rx_ring = NULL;
1153 	}
1154 
1155 	if (mdp->tx_ring) {
1156 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1157 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1158 				  mdp->tx_desc_dma);
1159 		mdp->tx_ring = NULL;
1160 	}
1161 }
1162 
1163 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1164 {
1165 	int ret = 0;
1166 	struct sh_eth_private *mdp = netdev_priv(ndev);
1167 	u32 val;
1168 
1169 	/* Soft Reset */
1170 	ret = sh_eth_reset(ndev);
1171 	if (ret)
1172 		goto out;
1173 
1174 	if (mdp->cd->rmiimode)
1175 		sh_eth_write(ndev, 0x1, RMIIMODE);
1176 
1177 	/* Descriptor format */
1178 	sh_eth_ring_format(ndev);
1179 	if (mdp->cd->rpadir)
1180 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1181 
1182 	/* all sh_eth int mask */
1183 	sh_eth_write(ndev, 0, EESIPR);
1184 
1185 #if defined(__LITTLE_ENDIAN)
1186 	if (mdp->cd->hw_swap)
1187 		sh_eth_write(ndev, EDMR_EL, EDMR);
1188 	else
1189 #endif
1190 		sh_eth_write(ndev, 0, EDMR);
1191 
1192 	/* FIFO size set */
1193 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1194 	sh_eth_write(ndev, 0, TFTR);
1195 
1196 	/* Frame recv control */
1197 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1198 
1199 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1200 
1201 	if (mdp->cd->bculr)
1202 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1203 
1204 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1205 
1206 	if (!mdp->cd->no_trimd)
1207 		sh_eth_write(ndev, 0, TRIMD);
1208 
1209 	/* Recv frame limit set register */
1210 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1211 		     RFLR);
1212 
1213 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1214 	if (start)
1215 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1216 
1217 	/* PAUSE Prohibition */
1218 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1219 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1220 
1221 	sh_eth_write(ndev, val, ECMR);
1222 
1223 	if (mdp->cd->set_rate)
1224 		mdp->cd->set_rate(ndev);
1225 
1226 	/* E-MAC Status Register clear */
1227 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1228 
1229 	/* E-MAC Interrupt Enable register */
1230 	if (start)
1231 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1232 
1233 	/* Set MAC address */
1234 	update_mac_address(ndev);
1235 
1236 	/* mask reset */
1237 	if (mdp->cd->apr)
1238 		sh_eth_write(ndev, APR_AP, APR);
1239 	if (mdp->cd->mpr)
1240 		sh_eth_write(ndev, MPR_MP, MPR);
1241 	if (mdp->cd->tpauser)
1242 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1243 
1244 	if (start) {
1245 		/* Setting the Rx mode will start the Rx process. */
1246 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1247 
1248 		netif_start_queue(ndev);
1249 	}
1250 
1251 out:
1252 	return ret;
1253 }
1254 
1255 /* free Tx skb function */
1256 static int sh_eth_txfree(struct net_device *ndev)
1257 {
1258 	struct sh_eth_private *mdp = netdev_priv(ndev);
1259 	struct sh_eth_txdesc *txdesc;
1260 	int freeNum = 0;
1261 	int entry = 0;
1262 
1263 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1264 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1265 		txdesc = &mdp->tx_ring[entry];
1266 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1267 			break;
1268 		/* Free the original skb. */
1269 		if (mdp->tx_skbuff[entry]) {
1270 			dma_unmap_single(&ndev->dev, txdesc->addr,
1271 					 txdesc->buffer_length, DMA_TO_DEVICE);
1272 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1273 			mdp->tx_skbuff[entry] = NULL;
1274 			freeNum++;
1275 		}
1276 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1277 		if (entry >= mdp->num_tx_ring - 1)
1278 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1279 
1280 		ndev->stats.tx_packets++;
1281 		ndev->stats.tx_bytes += txdesc->buffer_length;
1282 	}
1283 	return freeNum;
1284 }
1285 
1286 /* Packet receive function */
1287 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1288 {
1289 	struct sh_eth_private *mdp = netdev_priv(ndev);
1290 	struct sh_eth_rxdesc *rxdesc;
1291 
1292 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1293 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1294 	struct sk_buff *skb;
1295 	int exceeded = 0;
1296 	u16 pkt_len = 0;
1297 	u32 desc_status;
1298 
1299 	rxdesc = &mdp->rx_ring[entry];
1300 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1301 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1302 		pkt_len = rxdesc->frame_length;
1303 
1304 		if (--boguscnt < 0)
1305 			break;
1306 
1307 		if (*quota <= 0) {
1308 			exceeded = 1;
1309 			break;
1310 		}
1311 		(*quota)--;
1312 
1313 		if (!(desc_status & RDFEND))
1314 			ndev->stats.rx_length_errors++;
1315 
1316 		/*
1317 		 * In case of almost all GETHER/ETHERs, the Receive Frame State
1318 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1319 		 * bit 0. However, in case of the R8A7740's GETHER, the RFS
1320 		 * bits are from bit 25 to bit 16. So, the driver needs right
1321 		 * shifting by 16.
1322 		 */
1323 		if (mdp->cd->shift_rd0)
1324 			desc_status >>= 16;
1325 
1326 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1327 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1328 			ndev->stats.rx_errors++;
1329 			if (desc_status & RD_RFS1)
1330 				ndev->stats.rx_crc_errors++;
1331 			if (desc_status & RD_RFS2)
1332 				ndev->stats.rx_frame_errors++;
1333 			if (desc_status & RD_RFS3)
1334 				ndev->stats.rx_length_errors++;
1335 			if (desc_status & RD_RFS4)
1336 				ndev->stats.rx_length_errors++;
1337 			if (desc_status & RD_RFS6)
1338 				ndev->stats.rx_missed_errors++;
1339 			if (desc_status & RD_RFS10)
1340 				ndev->stats.rx_over_errors++;
1341 		} else {
1342 			if (!mdp->cd->hw_swap)
1343 				sh_eth_soft_swap(
1344 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1345 					pkt_len + 2);
1346 			skb = mdp->rx_skbuff[entry];
1347 			mdp->rx_skbuff[entry] = NULL;
1348 			if (mdp->cd->rpadir)
1349 				skb_reserve(skb, NET_IP_ALIGN);
1350 			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1351 						mdp->rx_buf_sz,
1352 						DMA_FROM_DEVICE);
1353 			skb_put(skb, pkt_len);
1354 			skb->protocol = eth_type_trans(skb, ndev);
1355 			netif_receive_skb(skb);
1356 			ndev->stats.rx_packets++;
1357 			ndev->stats.rx_bytes += pkt_len;
1358 		}
1359 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1360 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1361 		rxdesc = &mdp->rx_ring[entry];
1362 	}
1363 
1364 	/* Refill the Rx ring buffers. */
1365 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1366 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1367 		rxdesc = &mdp->rx_ring[entry];
1368 		/* The size of the buffer is 16 byte boundary. */
1369 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1370 
1371 		if (mdp->rx_skbuff[entry] == NULL) {
1372 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1373 			mdp->rx_skbuff[entry] = skb;
1374 			if (skb == NULL)
1375 				break;	/* Better luck next round. */
1376 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1377 					DMA_FROM_DEVICE);
1378 			sh_eth_set_receive_align(skb);
1379 
1380 			skb_checksum_none_assert(skb);
1381 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1382 		}
1383 		if (entry >= mdp->num_rx_ring - 1)
1384 			rxdesc->status |=
1385 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1386 		else
1387 			rxdesc->status |=
1388 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1389 	}
1390 
1391 	/* Restart Rx engine if stopped. */
1392 	/* If we don't need to check status, don't. -KDU */
1393 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1394 		/* fix the values for the next receiving if RDE is set */
1395 		if (intr_status & EESR_RDE)
1396 			mdp->cur_rx = mdp->dirty_rx =
1397 				(sh_eth_read(ndev, RDFAR) -
1398 				 sh_eth_read(ndev, RDLAR)) >> 4;
1399 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1400 	}
1401 
1402 	return exceeded;
1403 }
1404 
1405 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1406 {
1407 	/* disable tx and rx */
1408 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1409 		~(ECMR_RE | ECMR_TE), ECMR);
1410 }
1411 
1412 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1413 {
1414 	/* enable tx and rx */
1415 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1416 		(ECMR_RE | ECMR_TE), ECMR);
1417 }
1418 
1419 /* error control function */
1420 static void sh_eth_error(struct net_device *ndev, int intr_status)
1421 {
1422 	struct sh_eth_private *mdp = netdev_priv(ndev);
1423 	u32 felic_stat;
1424 	u32 link_stat;
1425 	u32 mask;
1426 
1427 	if (intr_status & EESR_ECI) {
1428 		felic_stat = sh_eth_read(ndev, ECSR);
1429 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1430 		if (felic_stat & ECSR_ICD)
1431 			ndev->stats.tx_carrier_errors++;
1432 		if (felic_stat & ECSR_LCHNG) {
1433 			/* Link Changed */
1434 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1435 				goto ignore_link;
1436 			} else {
1437 				link_stat = (sh_eth_read(ndev, PSR));
1438 				if (mdp->ether_link_active_low)
1439 					link_stat = ~link_stat;
1440 			}
1441 			if (!(link_stat & PHY_ST_LINK))
1442 				sh_eth_rcv_snd_disable(ndev);
1443 			else {
1444 				/* Link Up */
1445 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1446 					  ~DMAC_M_ECI, EESIPR);
1447 				/*clear int */
1448 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1449 					  ECSR);
1450 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1451 					  DMAC_M_ECI, EESIPR);
1452 				/* enable tx and rx */
1453 				sh_eth_rcv_snd_enable(ndev);
1454 			}
1455 		}
1456 	}
1457 
1458 ignore_link:
1459 	if (intr_status & EESR_TWB) {
1460 		/* Unused write back interrupt */
1461 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1462 			ndev->stats.tx_aborted_errors++;
1463 			if (netif_msg_tx_err(mdp))
1464 				dev_err(&ndev->dev, "Transmit Abort\n");
1465 		}
1466 	}
1467 
1468 	if (intr_status & EESR_RABT) {
1469 		/* Receive Abort int */
1470 		if (intr_status & EESR_RFRMER) {
1471 			/* Receive Frame Overflow int */
1472 			ndev->stats.rx_frame_errors++;
1473 			if (netif_msg_rx_err(mdp))
1474 				dev_err(&ndev->dev, "Receive Abort\n");
1475 		}
1476 	}
1477 
1478 	if (intr_status & EESR_TDE) {
1479 		/* Transmit Descriptor Empty int */
1480 		ndev->stats.tx_fifo_errors++;
1481 		if (netif_msg_tx_err(mdp))
1482 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1483 	}
1484 
1485 	if (intr_status & EESR_TFE) {
1486 		/* FIFO under flow */
1487 		ndev->stats.tx_fifo_errors++;
1488 		if (netif_msg_tx_err(mdp))
1489 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1490 	}
1491 
1492 	if (intr_status & EESR_RDE) {
1493 		/* Receive Descriptor Empty int */
1494 		ndev->stats.rx_over_errors++;
1495 
1496 		if (netif_msg_rx_err(mdp))
1497 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1498 	}
1499 
1500 	if (intr_status & EESR_RFE) {
1501 		/* Receive FIFO Overflow int */
1502 		ndev->stats.rx_fifo_errors++;
1503 		if (netif_msg_rx_err(mdp))
1504 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1505 	}
1506 
1507 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1508 		/* Address Error */
1509 		ndev->stats.tx_fifo_errors++;
1510 		if (netif_msg_tx_err(mdp))
1511 			dev_err(&ndev->dev, "Address Error\n");
1512 	}
1513 
1514 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1515 	if (mdp->cd->no_ade)
1516 		mask &= ~EESR_ADE;
1517 	if (intr_status & mask) {
1518 		/* Tx error */
1519 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1520 		/* dmesg */
1521 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1522 				intr_status, mdp->cur_tx);
1523 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1524 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1525 		/* dirty buffer free */
1526 		sh_eth_txfree(ndev);
1527 
1528 		/* SH7712 BUG */
1529 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1530 			/* tx dma start */
1531 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1532 		}
1533 		/* wakeup */
1534 		netif_wake_queue(ndev);
1535 	}
1536 }
1537 
1538 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1539 {
1540 	struct net_device *ndev = netdev;
1541 	struct sh_eth_private *mdp = netdev_priv(ndev);
1542 	struct sh_eth_cpu_data *cd = mdp->cd;
1543 	irqreturn_t ret = IRQ_NONE;
1544 	unsigned long intr_status, intr_enable;
1545 
1546 	spin_lock(&mdp->lock);
1547 
1548 	/* Get interrupt status */
1549 	intr_status = sh_eth_read(ndev, EESR);
1550 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1551 	 * enabled since it's the one that  comes thru regardless of the mask,
1552 	 * and we need to fully handle it in sh_eth_error() in order to quench
1553 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1554 	 */
1555 	intr_enable = sh_eth_read(ndev, EESIPR);
1556 	intr_status &= intr_enable | DMAC_M_ECI;
1557 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1558 		ret = IRQ_HANDLED;
1559 	else
1560 		goto other_irq;
1561 
1562 	if (intr_status & EESR_RX_CHECK) {
1563 		if (napi_schedule_prep(&mdp->napi)) {
1564 			/* Mask Rx interrupts */
1565 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1566 				     EESIPR);
1567 			__napi_schedule(&mdp->napi);
1568 		} else {
1569 			dev_warn(&ndev->dev,
1570 				 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1571 				 intr_status, intr_enable);
1572 		}
1573 	}
1574 
1575 	/* Tx Check */
1576 	if (intr_status & cd->tx_check) {
1577 		/* Clear Tx interrupts */
1578 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1579 
1580 		sh_eth_txfree(ndev);
1581 		netif_wake_queue(ndev);
1582 	}
1583 
1584 	if (intr_status & cd->eesr_err_check) {
1585 		/* Clear error interrupts */
1586 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1587 
1588 		sh_eth_error(ndev, intr_status);
1589 	}
1590 
1591 other_irq:
1592 	spin_unlock(&mdp->lock);
1593 
1594 	return ret;
1595 }
1596 
1597 static int sh_eth_poll(struct napi_struct *napi, int budget)
1598 {
1599 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1600 						  napi);
1601 	struct net_device *ndev = napi->dev;
1602 	int quota = budget;
1603 	unsigned long intr_status;
1604 
1605 	for (;;) {
1606 		intr_status = sh_eth_read(ndev, EESR);
1607 		if (!(intr_status & EESR_RX_CHECK))
1608 			break;
1609 		/* Clear Rx interrupts */
1610 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1611 
1612 		if (sh_eth_rx(ndev, intr_status, &quota))
1613 			goto out;
1614 	}
1615 
1616 	napi_complete(napi);
1617 
1618 	/* Reenable Rx interrupts */
1619 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1620 out:
1621 	return budget - quota;
1622 }
1623 
1624 /* PHY state control function */
1625 static void sh_eth_adjust_link(struct net_device *ndev)
1626 {
1627 	struct sh_eth_private *mdp = netdev_priv(ndev);
1628 	struct phy_device *phydev = mdp->phydev;
1629 	int new_state = 0;
1630 
1631 	if (phydev->link) {
1632 		if (phydev->duplex != mdp->duplex) {
1633 			new_state = 1;
1634 			mdp->duplex = phydev->duplex;
1635 			if (mdp->cd->set_duplex)
1636 				mdp->cd->set_duplex(ndev);
1637 		}
1638 
1639 		if (phydev->speed != mdp->speed) {
1640 			new_state = 1;
1641 			mdp->speed = phydev->speed;
1642 			if (mdp->cd->set_rate)
1643 				mdp->cd->set_rate(ndev);
1644 		}
1645 		if (!mdp->link) {
1646 			sh_eth_write(ndev,
1647 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1648 			new_state = 1;
1649 			mdp->link = phydev->link;
1650 			if (mdp->cd->no_psr || mdp->no_ether_link)
1651 				sh_eth_rcv_snd_enable(ndev);
1652 		}
1653 	} else if (mdp->link) {
1654 		new_state = 1;
1655 		mdp->link = 0;
1656 		mdp->speed = 0;
1657 		mdp->duplex = -1;
1658 		if (mdp->cd->no_psr || mdp->no_ether_link)
1659 			sh_eth_rcv_snd_disable(ndev);
1660 	}
1661 
1662 	if (new_state && netif_msg_link(mdp))
1663 		phy_print_status(phydev);
1664 }
1665 
1666 /* PHY init function */
1667 static int sh_eth_phy_init(struct net_device *ndev)
1668 {
1669 	struct sh_eth_private *mdp = netdev_priv(ndev);
1670 	char phy_id[MII_BUS_ID_SIZE + 3];
1671 	struct phy_device *phydev = NULL;
1672 
1673 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1674 		mdp->mii_bus->id , mdp->phy_id);
1675 
1676 	mdp->link = 0;
1677 	mdp->speed = 0;
1678 	mdp->duplex = -1;
1679 
1680 	/* Try connect to PHY */
1681 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1682 			     mdp->phy_interface);
1683 	if (IS_ERR(phydev)) {
1684 		dev_err(&ndev->dev, "phy_connect failed\n");
1685 		return PTR_ERR(phydev);
1686 	}
1687 
1688 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1689 		phydev->addr, phydev->drv->name);
1690 
1691 	mdp->phydev = phydev;
1692 
1693 	return 0;
1694 }
1695 
1696 /* PHY control start function */
1697 static int sh_eth_phy_start(struct net_device *ndev)
1698 {
1699 	struct sh_eth_private *mdp = netdev_priv(ndev);
1700 	int ret;
1701 
1702 	ret = sh_eth_phy_init(ndev);
1703 	if (ret)
1704 		return ret;
1705 
1706 	/* reset phy - this also wakes it from PDOWN */
1707 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1708 	phy_start(mdp->phydev);
1709 
1710 	return 0;
1711 }
1712 
1713 static int sh_eth_get_settings(struct net_device *ndev,
1714 			struct ethtool_cmd *ecmd)
1715 {
1716 	struct sh_eth_private *mdp = netdev_priv(ndev);
1717 	unsigned long flags;
1718 	int ret;
1719 
1720 	spin_lock_irqsave(&mdp->lock, flags);
1721 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1722 	spin_unlock_irqrestore(&mdp->lock, flags);
1723 
1724 	return ret;
1725 }
1726 
1727 static int sh_eth_set_settings(struct net_device *ndev,
1728 		struct ethtool_cmd *ecmd)
1729 {
1730 	struct sh_eth_private *mdp = netdev_priv(ndev);
1731 	unsigned long flags;
1732 	int ret;
1733 
1734 	spin_lock_irqsave(&mdp->lock, flags);
1735 
1736 	/* disable tx and rx */
1737 	sh_eth_rcv_snd_disable(ndev);
1738 
1739 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1740 	if (ret)
1741 		goto error_exit;
1742 
1743 	if (ecmd->duplex == DUPLEX_FULL)
1744 		mdp->duplex = 1;
1745 	else
1746 		mdp->duplex = 0;
1747 
1748 	if (mdp->cd->set_duplex)
1749 		mdp->cd->set_duplex(ndev);
1750 
1751 error_exit:
1752 	mdelay(1);
1753 
1754 	/* enable tx and rx */
1755 	sh_eth_rcv_snd_enable(ndev);
1756 
1757 	spin_unlock_irqrestore(&mdp->lock, flags);
1758 
1759 	return ret;
1760 }
1761 
1762 static int sh_eth_nway_reset(struct net_device *ndev)
1763 {
1764 	struct sh_eth_private *mdp = netdev_priv(ndev);
1765 	unsigned long flags;
1766 	int ret;
1767 
1768 	spin_lock_irqsave(&mdp->lock, flags);
1769 	ret = phy_start_aneg(mdp->phydev);
1770 	spin_unlock_irqrestore(&mdp->lock, flags);
1771 
1772 	return ret;
1773 }
1774 
1775 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1776 {
1777 	struct sh_eth_private *mdp = netdev_priv(ndev);
1778 	return mdp->msg_enable;
1779 }
1780 
1781 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1782 {
1783 	struct sh_eth_private *mdp = netdev_priv(ndev);
1784 	mdp->msg_enable = value;
1785 }
1786 
1787 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1788 	"rx_current", "tx_current",
1789 	"rx_dirty", "tx_dirty",
1790 };
1791 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1792 
1793 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1794 {
1795 	switch (sset) {
1796 	case ETH_SS_STATS:
1797 		return SH_ETH_STATS_LEN;
1798 	default:
1799 		return -EOPNOTSUPP;
1800 	}
1801 }
1802 
1803 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1804 			struct ethtool_stats *stats, u64 *data)
1805 {
1806 	struct sh_eth_private *mdp = netdev_priv(ndev);
1807 	int i = 0;
1808 
1809 	/* device-specific stats */
1810 	data[i++] = mdp->cur_rx;
1811 	data[i++] = mdp->cur_tx;
1812 	data[i++] = mdp->dirty_rx;
1813 	data[i++] = mdp->dirty_tx;
1814 }
1815 
1816 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1817 {
1818 	switch (stringset) {
1819 	case ETH_SS_STATS:
1820 		memcpy(data, *sh_eth_gstrings_stats,
1821 					sizeof(sh_eth_gstrings_stats));
1822 		break;
1823 	}
1824 }
1825 
1826 static void sh_eth_get_ringparam(struct net_device *ndev,
1827 				 struct ethtool_ringparam *ring)
1828 {
1829 	struct sh_eth_private *mdp = netdev_priv(ndev);
1830 
1831 	ring->rx_max_pending = RX_RING_MAX;
1832 	ring->tx_max_pending = TX_RING_MAX;
1833 	ring->rx_pending = mdp->num_rx_ring;
1834 	ring->tx_pending = mdp->num_tx_ring;
1835 }
1836 
1837 static int sh_eth_set_ringparam(struct net_device *ndev,
1838 				struct ethtool_ringparam *ring)
1839 {
1840 	struct sh_eth_private *mdp = netdev_priv(ndev);
1841 	int ret;
1842 
1843 	if (ring->tx_pending > TX_RING_MAX ||
1844 	    ring->rx_pending > RX_RING_MAX ||
1845 	    ring->tx_pending < TX_RING_MIN ||
1846 	    ring->rx_pending < RX_RING_MIN)
1847 		return -EINVAL;
1848 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1849 		return -EINVAL;
1850 
1851 	if (netif_running(ndev)) {
1852 		netif_tx_disable(ndev);
1853 		/* Disable interrupts by clearing the interrupt mask. */
1854 		sh_eth_write(ndev, 0x0000, EESIPR);
1855 		/* Stop the chip's Tx and Rx processes. */
1856 		sh_eth_write(ndev, 0, EDTRR);
1857 		sh_eth_write(ndev, 0, EDRRR);
1858 		synchronize_irq(ndev->irq);
1859 	}
1860 
1861 	/* Free all the skbuffs in the Rx queue. */
1862 	sh_eth_ring_free(ndev);
1863 	/* Free DMA buffer */
1864 	sh_eth_free_dma_buffer(mdp);
1865 
1866 	/* Set new parameters */
1867 	mdp->num_rx_ring = ring->rx_pending;
1868 	mdp->num_tx_ring = ring->tx_pending;
1869 
1870 	ret = sh_eth_ring_init(ndev);
1871 	if (ret < 0) {
1872 		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1873 		return ret;
1874 	}
1875 	ret = sh_eth_dev_init(ndev, false);
1876 	if (ret < 0) {
1877 		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1878 		return ret;
1879 	}
1880 
1881 	if (netif_running(ndev)) {
1882 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1883 		/* Setting the Rx mode will start the Rx process. */
1884 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1885 		netif_wake_queue(ndev);
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static const struct ethtool_ops sh_eth_ethtool_ops = {
1892 	.get_settings	= sh_eth_get_settings,
1893 	.set_settings	= sh_eth_set_settings,
1894 	.nway_reset	= sh_eth_nway_reset,
1895 	.get_msglevel	= sh_eth_get_msglevel,
1896 	.set_msglevel	= sh_eth_set_msglevel,
1897 	.get_link	= ethtool_op_get_link,
1898 	.get_strings	= sh_eth_get_strings,
1899 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1900 	.get_sset_count     = sh_eth_get_sset_count,
1901 	.get_ringparam	= sh_eth_get_ringparam,
1902 	.set_ringparam	= sh_eth_set_ringparam,
1903 };
1904 
1905 /* network device open function */
1906 static int sh_eth_open(struct net_device *ndev)
1907 {
1908 	int ret = 0;
1909 	struct sh_eth_private *mdp = netdev_priv(ndev);
1910 
1911 	pm_runtime_get_sync(&mdp->pdev->dev);
1912 
1913 	napi_enable(&mdp->napi);
1914 
1915 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1916 			  mdp->cd->irq_flags, ndev->name, ndev);
1917 	if (ret) {
1918 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1919 		goto out_napi_off;
1920 	}
1921 
1922 	/* Descriptor set */
1923 	ret = sh_eth_ring_init(ndev);
1924 	if (ret)
1925 		goto out_free_irq;
1926 
1927 	/* device init */
1928 	ret = sh_eth_dev_init(ndev, true);
1929 	if (ret)
1930 		goto out_free_irq;
1931 
1932 	/* PHY control start*/
1933 	ret = sh_eth_phy_start(ndev);
1934 	if (ret)
1935 		goto out_free_irq;
1936 
1937 	return ret;
1938 
1939 out_free_irq:
1940 	free_irq(ndev->irq, ndev);
1941 out_napi_off:
1942 	napi_disable(&mdp->napi);
1943 	pm_runtime_put_sync(&mdp->pdev->dev);
1944 	return ret;
1945 }
1946 
1947 /* Timeout function */
1948 static void sh_eth_tx_timeout(struct net_device *ndev)
1949 {
1950 	struct sh_eth_private *mdp = netdev_priv(ndev);
1951 	struct sh_eth_rxdesc *rxdesc;
1952 	int i;
1953 
1954 	netif_stop_queue(ndev);
1955 
1956 	if (netif_msg_timer(mdp))
1957 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1958 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1959 
1960 	/* tx_errors count up */
1961 	ndev->stats.tx_errors++;
1962 
1963 	/* Free all the skbuffs in the Rx queue. */
1964 	for (i = 0; i < mdp->num_rx_ring; i++) {
1965 		rxdesc = &mdp->rx_ring[i];
1966 		rxdesc->status = 0;
1967 		rxdesc->addr = 0xBADF00D0;
1968 		if (mdp->rx_skbuff[i])
1969 			dev_kfree_skb(mdp->rx_skbuff[i]);
1970 		mdp->rx_skbuff[i] = NULL;
1971 	}
1972 	for (i = 0; i < mdp->num_tx_ring; i++) {
1973 		if (mdp->tx_skbuff[i])
1974 			dev_kfree_skb(mdp->tx_skbuff[i]);
1975 		mdp->tx_skbuff[i] = NULL;
1976 	}
1977 
1978 	/* device init */
1979 	sh_eth_dev_init(ndev, true);
1980 }
1981 
1982 /* Packet transmit function */
1983 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1984 {
1985 	struct sh_eth_private *mdp = netdev_priv(ndev);
1986 	struct sh_eth_txdesc *txdesc;
1987 	u32 entry;
1988 	unsigned long flags;
1989 
1990 	spin_lock_irqsave(&mdp->lock, flags);
1991 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1992 		if (!sh_eth_txfree(ndev)) {
1993 			if (netif_msg_tx_queued(mdp))
1994 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1995 			netif_stop_queue(ndev);
1996 			spin_unlock_irqrestore(&mdp->lock, flags);
1997 			return NETDEV_TX_BUSY;
1998 		}
1999 	}
2000 	spin_unlock_irqrestore(&mdp->lock, flags);
2001 
2002 	entry = mdp->cur_tx % mdp->num_tx_ring;
2003 	mdp->tx_skbuff[entry] = skb;
2004 	txdesc = &mdp->tx_ring[entry];
2005 	/* soft swap. */
2006 	if (!mdp->cd->hw_swap)
2007 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2008 				 skb->len + 2);
2009 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2010 				      DMA_TO_DEVICE);
2011 	if (skb->len < ETHERSMALL)
2012 		txdesc->buffer_length = ETHERSMALL;
2013 	else
2014 		txdesc->buffer_length = skb->len;
2015 
2016 	if (entry >= mdp->num_tx_ring - 1)
2017 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2018 	else
2019 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2020 
2021 	mdp->cur_tx++;
2022 
2023 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2024 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2025 
2026 	return NETDEV_TX_OK;
2027 }
2028 
2029 /* device close function */
2030 static int sh_eth_close(struct net_device *ndev)
2031 {
2032 	struct sh_eth_private *mdp = netdev_priv(ndev);
2033 
2034 	netif_stop_queue(ndev);
2035 
2036 	/* Disable interrupts by clearing the interrupt mask. */
2037 	sh_eth_write(ndev, 0x0000, EESIPR);
2038 
2039 	/* Stop the chip's Tx and Rx processes. */
2040 	sh_eth_write(ndev, 0, EDTRR);
2041 	sh_eth_write(ndev, 0, EDRRR);
2042 
2043 	/* PHY Disconnect */
2044 	if (mdp->phydev) {
2045 		phy_stop(mdp->phydev);
2046 		phy_disconnect(mdp->phydev);
2047 	}
2048 
2049 	free_irq(ndev->irq, ndev);
2050 
2051 	napi_disable(&mdp->napi);
2052 
2053 	/* Free all the skbuffs in the Rx queue. */
2054 	sh_eth_ring_free(ndev);
2055 
2056 	/* free DMA buffer */
2057 	sh_eth_free_dma_buffer(mdp);
2058 
2059 	pm_runtime_put_sync(&mdp->pdev->dev);
2060 
2061 	return 0;
2062 }
2063 
2064 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2065 {
2066 	struct sh_eth_private *mdp = netdev_priv(ndev);
2067 
2068 	pm_runtime_get_sync(&mdp->pdev->dev);
2069 
2070 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2071 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2072 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2073 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2074 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2075 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2076 	if (sh_eth_is_gether(mdp)) {
2077 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2078 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2079 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2080 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2081 	} else {
2082 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2083 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2084 	}
2085 	pm_runtime_put_sync(&mdp->pdev->dev);
2086 
2087 	return &ndev->stats;
2088 }
2089 
2090 /* ioctl to device function */
2091 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2092 				int cmd)
2093 {
2094 	struct sh_eth_private *mdp = netdev_priv(ndev);
2095 	struct phy_device *phydev = mdp->phydev;
2096 
2097 	if (!netif_running(ndev))
2098 		return -EINVAL;
2099 
2100 	if (!phydev)
2101 		return -ENODEV;
2102 
2103 	return phy_mii_ioctl(phydev, rq, cmd);
2104 }
2105 
2106 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2107 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2108 					    int entry)
2109 {
2110 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2111 }
2112 
2113 static u32 sh_eth_tsu_get_post_mask(int entry)
2114 {
2115 	return 0x0f << (28 - ((entry % 8) * 4));
2116 }
2117 
2118 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2119 {
2120 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2121 }
2122 
2123 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2124 					     int entry)
2125 {
2126 	struct sh_eth_private *mdp = netdev_priv(ndev);
2127 	u32 tmp;
2128 	void *reg_offset;
2129 
2130 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2131 	tmp = ioread32(reg_offset);
2132 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2133 }
2134 
2135 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2136 					      int entry)
2137 {
2138 	struct sh_eth_private *mdp = netdev_priv(ndev);
2139 	u32 post_mask, ref_mask, tmp;
2140 	void *reg_offset;
2141 
2142 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2143 	post_mask = sh_eth_tsu_get_post_mask(entry);
2144 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2145 
2146 	tmp = ioread32(reg_offset);
2147 	iowrite32(tmp & ~post_mask, reg_offset);
2148 
2149 	/* If other port enables, the function returns "true" */
2150 	return tmp & ref_mask;
2151 }
2152 
2153 static int sh_eth_tsu_busy(struct net_device *ndev)
2154 {
2155 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2156 	struct sh_eth_private *mdp = netdev_priv(ndev);
2157 
2158 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2159 		udelay(10);
2160 		timeout--;
2161 		if (timeout <= 0) {
2162 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
2163 			return -ETIMEDOUT;
2164 		}
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2171 				  const u8 *addr)
2172 {
2173 	u32 val;
2174 
2175 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2176 	iowrite32(val, reg);
2177 	if (sh_eth_tsu_busy(ndev) < 0)
2178 		return -EBUSY;
2179 
2180 	val = addr[4] << 8 | addr[5];
2181 	iowrite32(val, reg + 4);
2182 	if (sh_eth_tsu_busy(ndev) < 0)
2183 		return -EBUSY;
2184 
2185 	return 0;
2186 }
2187 
2188 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2189 {
2190 	u32 val;
2191 
2192 	val = ioread32(reg);
2193 	addr[0] = (val >> 24) & 0xff;
2194 	addr[1] = (val >> 16) & 0xff;
2195 	addr[2] = (val >> 8) & 0xff;
2196 	addr[3] = val & 0xff;
2197 	val = ioread32(reg + 4);
2198 	addr[4] = (val >> 8) & 0xff;
2199 	addr[5] = val & 0xff;
2200 }
2201 
2202 
2203 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2204 {
2205 	struct sh_eth_private *mdp = netdev_priv(ndev);
2206 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2207 	int i;
2208 	u8 c_addr[ETH_ALEN];
2209 
2210 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2211 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2212 		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2213 			return i;
2214 	}
2215 
2216 	return -ENOENT;
2217 }
2218 
2219 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2220 {
2221 	u8 blank[ETH_ALEN];
2222 	int entry;
2223 
2224 	memset(blank, 0, sizeof(blank));
2225 	entry = sh_eth_tsu_find_entry(ndev, blank);
2226 	return (entry < 0) ? -ENOMEM : entry;
2227 }
2228 
2229 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2230 					      int entry)
2231 {
2232 	struct sh_eth_private *mdp = netdev_priv(ndev);
2233 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2234 	int ret;
2235 	u8 blank[ETH_ALEN];
2236 
2237 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2238 			 ~(1 << (31 - entry)), TSU_TEN);
2239 
2240 	memset(blank, 0, sizeof(blank));
2241 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2242 	if (ret < 0)
2243 		return ret;
2244 	return 0;
2245 }
2246 
2247 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2248 {
2249 	struct sh_eth_private *mdp = netdev_priv(ndev);
2250 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2251 	int i, ret;
2252 
2253 	if (!mdp->cd->tsu)
2254 		return 0;
2255 
2256 	i = sh_eth_tsu_find_entry(ndev, addr);
2257 	if (i < 0) {
2258 		/* No entry found, create one */
2259 		i = sh_eth_tsu_find_empty(ndev);
2260 		if (i < 0)
2261 			return -ENOMEM;
2262 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2263 		if (ret < 0)
2264 			return ret;
2265 
2266 		/* Enable the entry */
2267 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2268 				 (1 << (31 - i)), TSU_TEN);
2269 	}
2270 
2271 	/* Entry found or created, enable POST */
2272 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2273 
2274 	return 0;
2275 }
2276 
2277 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2278 {
2279 	struct sh_eth_private *mdp = netdev_priv(ndev);
2280 	int i, ret;
2281 
2282 	if (!mdp->cd->tsu)
2283 		return 0;
2284 
2285 	i = sh_eth_tsu_find_entry(ndev, addr);
2286 	if (i) {
2287 		/* Entry found */
2288 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2289 			goto done;
2290 
2291 		/* Disable the entry if both ports was disabled */
2292 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2293 		if (ret < 0)
2294 			return ret;
2295 	}
2296 done:
2297 	return 0;
2298 }
2299 
2300 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2301 {
2302 	struct sh_eth_private *mdp = netdev_priv(ndev);
2303 	int i, ret;
2304 
2305 	if (unlikely(!mdp->cd->tsu))
2306 		return 0;
2307 
2308 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2309 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2310 			continue;
2311 
2312 		/* Disable the entry if both ports was disabled */
2313 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2314 		if (ret < 0)
2315 			return ret;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2322 {
2323 	struct sh_eth_private *mdp = netdev_priv(ndev);
2324 	u8 addr[ETH_ALEN];
2325 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2326 	int i;
2327 
2328 	if (unlikely(!mdp->cd->tsu))
2329 		return;
2330 
2331 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2332 		sh_eth_tsu_read_entry(reg_offset, addr);
2333 		if (is_multicast_ether_addr(addr))
2334 			sh_eth_tsu_del_entry(ndev, addr);
2335 	}
2336 }
2337 
2338 /* Multicast reception directions set */
2339 static void sh_eth_set_multicast_list(struct net_device *ndev)
2340 {
2341 	struct sh_eth_private *mdp = netdev_priv(ndev);
2342 	u32 ecmr_bits;
2343 	int mcast_all = 0;
2344 	unsigned long flags;
2345 
2346 	spin_lock_irqsave(&mdp->lock, flags);
2347 	/*
2348 	 * Initial condition is MCT = 1, PRM = 0.
2349 	 * Depending on ndev->flags, set PRM or clear MCT
2350 	 */
2351 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2352 
2353 	if (!(ndev->flags & IFF_MULTICAST)) {
2354 		sh_eth_tsu_purge_mcast(ndev);
2355 		mcast_all = 1;
2356 	}
2357 	if (ndev->flags & IFF_ALLMULTI) {
2358 		sh_eth_tsu_purge_mcast(ndev);
2359 		ecmr_bits &= ~ECMR_MCT;
2360 		mcast_all = 1;
2361 	}
2362 
2363 	if (ndev->flags & IFF_PROMISC) {
2364 		sh_eth_tsu_purge_all(ndev);
2365 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2366 	} else if (mdp->cd->tsu) {
2367 		struct netdev_hw_addr *ha;
2368 		netdev_for_each_mc_addr(ha, ndev) {
2369 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2370 				continue;
2371 
2372 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2373 				if (!mcast_all) {
2374 					sh_eth_tsu_purge_mcast(ndev);
2375 					ecmr_bits &= ~ECMR_MCT;
2376 					mcast_all = 1;
2377 				}
2378 			}
2379 		}
2380 	} else {
2381 		/* Normal, unicast/broadcast-only mode. */
2382 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2383 	}
2384 
2385 	/* update the ethernet mode */
2386 	sh_eth_write(ndev, ecmr_bits, ECMR);
2387 
2388 	spin_unlock_irqrestore(&mdp->lock, flags);
2389 }
2390 
2391 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2392 {
2393 	if (!mdp->port)
2394 		return TSU_VTAG0;
2395 	else
2396 		return TSU_VTAG1;
2397 }
2398 
2399 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2400 				  __be16 proto, u16 vid)
2401 {
2402 	struct sh_eth_private *mdp = netdev_priv(ndev);
2403 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2404 
2405 	if (unlikely(!mdp->cd->tsu))
2406 		return -EPERM;
2407 
2408 	/* No filtering if vid = 0 */
2409 	if (!vid)
2410 		return 0;
2411 
2412 	mdp->vlan_num_ids++;
2413 
2414 	/*
2415 	 * The controller has one VLAN tag HW filter. So, if the filter is
2416 	 * already enabled, the driver disables it and the filte
2417 	 */
2418 	if (mdp->vlan_num_ids > 1) {
2419 		/* disable VLAN filter */
2420 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2421 		return 0;
2422 	}
2423 
2424 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2425 			 vtag_reg_index);
2426 
2427 	return 0;
2428 }
2429 
2430 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2431 				   __be16 proto, u16 vid)
2432 {
2433 	struct sh_eth_private *mdp = netdev_priv(ndev);
2434 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2435 
2436 	if (unlikely(!mdp->cd->tsu))
2437 		return -EPERM;
2438 
2439 	/* No filtering if vid = 0 */
2440 	if (!vid)
2441 		return 0;
2442 
2443 	mdp->vlan_num_ids--;
2444 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2445 
2446 	return 0;
2447 }
2448 
2449 /* SuperH's TSU register init function */
2450 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2451 {
2452 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2453 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2454 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2455 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2456 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2457 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2458 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2459 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2460 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2461 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2462 	if (sh_eth_is_gether(mdp)) {
2463 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2464 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2465 	} else {
2466 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2467 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2468 	}
2469 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2470 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2471 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2472 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2473 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2474 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2475 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2476 }
2477 
2478 /* MDIO bus release function */
2479 static int sh_mdio_release(struct net_device *ndev)
2480 {
2481 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2482 
2483 	/* unregister mdio bus */
2484 	mdiobus_unregister(bus);
2485 
2486 	/* remove mdio bus info from net_device */
2487 	dev_set_drvdata(&ndev->dev, NULL);
2488 
2489 	/* free bitbang info */
2490 	free_mdio_bitbang(bus);
2491 
2492 	return 0;
2493 }
2494 
2495 /* MDIO bus init function */
2496 static int sh_mdio_init(struct net_device *ndev, int id,
2497 			struct sh_eth_plat_data *pd)
2498 {
2499 	int ret, i;
2500 	struct bb_info *bitbang;
2501 	struct sh_eth_private *mdp = netdev_priv(ndev);
2502 
2503 	/* create bit control struct for PHY */
2504 	bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2505 			       GFP_KERNEL);
2506 	if (!bitbang) {
2507 		ret = -ENOMEM;
2508 		goto out;
2509 	}
2510 
2511 	/* bitbang init */
2512 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2513 	bitbang->set_gate = pd->set_mdio_gate;
2514 	bitbang->mdi_msk = PIR_MDI;
2515 	bitbang->mdo_msk = PIR_MDO;
2516 	bitbang->mmd_msk = PIR_MMD;
2517 	bitbang->mdc_msk = PIR_MDC;
2518 	bitbang->ctrl.ops = &bb_ops;
2519 
2520 	/* MII controller setting */
2521 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2522 	if (!mdp->mii_bus) {
2523 		ret = -ENOMEM;
2524 		goto out;
2525 	}
2526 
2527 	/* Hook up MII support for ethtool */
2528 	mdp->mii_bus->name = "sh_mii";
2529 	mdp->mii_bus->parent = &ndev->dev;
2530 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2531 		mdp->pdev->name, id);
2532 
2533 	/* PHY IRQ */
2534 	mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2535 					 sizeof(int) * PHY_MAX_ADDR,
2536 					 GFP_KERNEL);
2537 	if (!mdp->mii_bus->irq) {
2538 		ret = -ENOMEM;
2539 		goto out_free_bus;
2540 	}
2541 
2542 	for (i = 0; i < PHY_MAX_ADDR; i++)
2543 		mdp->mii_bus->irq[i] = PHY_POLL;
2544 
2545 	/* register mdio bus */
2546 	ret = mdiobus_register(mdp->mii_bus);
2547 	if (ret)
2548 		goto out_free_bus;
2549 
2550 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2551 
2552 	return 0;
2553 
2554 out_free_bus:
2555 	free_mdio_bitbang(mdp->mii_bus);
2556 
2557 out:
2558 	return ret;
2559 }
2560 
2561 static const u16 *sh_eth_get_register_offset(int register_type)
2562 {
2563 	const u16 *reg_offset = NULL;
2564 
2565 	switch (register_type) {
2566 	case SH_ETH_REG_GIGABIT:
2567 		reg_offset = sh_eth_offset_gigabit;
2568 		break;
2569 	case SH_ETH_REG_FAST_RCAR:
2570 		reg_offset = sh_eth_offset_fast_rcar;
2571 		break;
2572 	case SH_ETH_REG_FAST_SH4:
2573 		reg_offset = sh_eth_offset_fast_sh4;
2574 		break;
2575 	case SH_ETH_REG_FAST_SH3_SH2:
2576 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2577 		break;
2578 	default:
2579 		pr_err("Unknown register type (%d)\n", register_type);
2580 		break;
2581 	}
2582 
2583 	return reg_offset;
2584 }
2585 
2586 static const struct net_device_ops sh_eth_netdev_ops = {
2587 	.ndo_open		= sh_eth_open,
2588 	.ndo_stop		= sh_eth_close,
2589 	.ndo_start_xmit		= sh_eth_start_xmit,
2590 	.ndo_get_stats		= sh_eth_get_stats,
2591 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2592 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2593 	.ndo_validate_addr	= eth_validate_addr,
2594 	.ndo_set_mac_address	= eth_mac_addr,
2595 	.ndo_change_mtu		= eth_change_mtu,
2596 };
2597 
2598 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2599 	.ndo_open		= sh_eth_open,
2600 	.ndo_stop		= sh_eth_close,
2601 	.ndo_start_xmit		= sh_eth_start_xmit,
2602 	.ndo_get_stats		= sh_eth_get_stats,
2603 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2604 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2605 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2606 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2607 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2608 	.ndo_validate_addr	= eth_validate_addr,
2609 	.ndo_set_mac_address	= eth_mac_addr,
2610 	.ndo_change_mtu		= eth_change_mtu,
2611 };
2612 
2613 static int sh_eth_drv_probe(struct platform_device *pdev)
2614 {
2615 	int ret, devno = 0;
2616 	struct resource *res;
2617 	struct net_device *ndev = NULL;
2618 	struct sh_eth_private *mdp = NULL;
2619 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2620 	const struct platform_device_id *id = platform_get_device_id(pdev);
2621 
2622 	/* get base addr */
2623 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2624 	if (unlikely(res == NULL)) {
2625 		dev_err(&pdev->dev, "invalid resource\n");
2626 		ret = -EINVAL;
2627 		goto out;
2628 	}
2629 
2630 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2631 	if (!ndev) {
2632 		ret = -ENOMEM;
2633 		goto out;
2634 	}
2635 
2636 	/* The sh Ether-specific entries in the device structure. */
2637 	ndev->base_addr = res->start;
2638 	devno = pdev->id;
2639 	if (devno < 0)
2640 		devno = 0;
2641 
2642 	ndev->dma = -1;
2643 	ret = platform_get_irq(pdev, 0);
2644 	if (ret < 0) {
2645 		ret = -ENODEV;
2646 		goto out_release;
2647 	}
2648 	ndev->irq = ret;
2649 
2650 	SET_NETDEV_DEV(ndev, &pdev->dev);
2651 
2652 	mdp = netdev_priv(ndev);
2653 	mdp->num_tx_ring = TX_RING_SIZE;
2654 	mdp->num_rx_ring = RX_RING_SIZE;
2655 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2656 	if (IS_ERR(mdp->addr)) {
2657 		ret = PTR_ERR(mdp->addr);
2658 		goto out_release;
2659 	}
2660 
2661 	spin_lock_init(&mdp->lock);
2662 	mdp->pdev = pdev;
2663 	pm_runtime_enable(&pdev->dev);
2664 	pm_runtime_resume(&pdev->dev);
2665 
2666 	if (!pd) {
2667 		dev_err(&pdev->dev, "no platform data\n");
2668 		ret = -EINVAL;
2669 		goto out_release;
2670 	}
2671 
2672 	/* get PHY ID */
2673 	mdp->phy_id = pd->phy;
2674 	mdp->phy_interface = pd->phy_interface;
2675 	/* EDMAC endian */
2676 	mdp->edmac_endian = pd->edmac_endian;
2677 	mdp->no_ether_link = pd->no_ether_link;
2678 	mdp->ether_link_active_low = pd->ether_link_active_low;
2679 
2680 	/* set cpu data */
2681 	mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2682 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2683 	sh_eth_set_default_cpu_data(mdp->cd);
2684 
2685 	/* set function */
2686 	if (mdp->cd->tsu)
2687 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2688 	else
2689 		ndev->netdev_ops = &sh_eth_netdev_ops;
2690 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2691 	ndev->watchdog_timeo = TX_TIMEOUT;
2692 
2693 	/* debug message level */
2694 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2695 
2696 	/* read and set MAC address */
2697 	read_mac_address(ndev, pd->mac_addr);
2698 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2699 		dev_warn(&pdev->dev,
2700 			 "no valid MAC address supplied, using a random one.\n");
2701 		eth_hw_addr_random(ndev);
2702 	}
2703 
2704 	/* ioremap the TSU registers */
2705 	if (mdp->cd->tsu) {
2706 		struct resource *rtsu;
2707 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2708 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2709 		if (IS_ERR(mdp->tsu_addr)) {
2710 			ret = PTR_ERR(mdp->tsu_addr);
2711 			goto out_release;
2712 		}
2713 		mdp->port = devno % 2;
2714 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2715 	}
2716 
2717 	/* initialize first or needed device */
2718 	if (!devno || pd->needs_init) {
2719 		if (mdp->cd->chip_reset)
2720 			mdp->cd->chip_reset(ndev);
2721 
2722 		if (mdp->cd->tsu) {
2723 			/* TSU init (Init only)*/
2724 			sh_eth_tsu_init(mdp);
2725 		}
2726 	}
2727 
2728 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2729 
2730 	/* network device register */
2731 	ret = register_netdev(ndev);
2732 	if (ret)
2733 		goto out_napi_del;
2734 
2735 	/* mdio bus init */
2736 	ret = sh_mdio_init(ndev, pdev->id, pd);
2737 	if (ret)
2738 		goto out_unregister;
2739 
2740 	/* print device information */
2741 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2742 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2743 
2744 	platform_set_drvdata(pdev, ndev);
2745 
2746 	return ret;
2747 
2748 out_unregister:
2749 	unregister_netdev(ndev);
2750 
2751 out_napi_del:
2752 	netif_napi_del(&mdp->napi);
2753 
2754 out_release:
2755 	/* net_dev free */
2756 	if (ndev)
2757 		free_netdev(ndev);
2758 
2759 out:
2760 	return ret;
2761 }
2762 
2763 static int sh_eth_drv_remove(struct platform_device *pdev)
2764 {
2765 	struct net_device *ndev = platform_get_drvdata(pdev);
2766 	struct sh_eth_private *mdp = netdev_priv(ndev);
2767 
2768 	sh_mdio_release(ndev);
2769 	unregister_netdev(ndev);
2770 	netif_napi_del(&mdp->napi);
2771 	pm_runtime_disable(&pdev->dev);
2772 	free_netdev(ndev);
2773 
2774 	return 0;
2775 }
2776 
2777 #ifdef CONFIG_PM
2778 static int sh_eth_runtime_nop(struct device *dev)
2779 {
2780 	/*
2781 	 * Runtime PM callback shared between ->runtime_suspend()
2782 	 * and ->runtime_resume(). Simply returns success.
2783 	 *
2784 	 * This driver re-initializes all registers after
2785 	 * pm_runtime_get_sync() anyway so there is no need
2786 	 * to save and restore registers here.
2787 	 */
2788 	return 0;
2789 }
2790 
2791 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2792 	.runtime_suspend = sh_eth_runtime_nop,
2793 	.runtime_resume = sh_eth_runtime_nop,
2794 };
2795 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2796 #else
2797 #define SH_ETH_PM_OPS NULL
2798 #endif
2799 
2800 static struct platform_device_id sh_eth_id_table[] = {
2801 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2802 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2803 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2804 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2805 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2806 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2807 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2808 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2809 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2810 	{ "r8a7790-ether", (kernel_ulong_t)&r8a7790_data },
2811 	{ }
2812 };
2813 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2814 
2815 static struct platform_driver sh_eth_driver = {
2816 	.probe = sh_eth_drv_probe,
2817 	.remove = sh_eth_drv_remove,
2818 	.id_table = sh_eth_id_table,
2819 	.driver = {
2820 		   .name = CARDNAME,
2821 		   .pm = SH_ETH_PM_OPS,
2822 	},
2823 };
2824 
2825 module_platform_driver(sh_eth_driver);
2826 
2827 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2828 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2829 MODULE_LICENSE("GPL v2");
2830