1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2013 Renesas Solutions Corp.
6  *  Copyright (C) 2013 Cogent Embedded, Inc.
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms and conditions of the GNU General Public License,
10  *  version 2, as published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  *  more details.
16  *  You should have received a copy of the GNU General Public License along with
17  *  this program; if not, write to the Free Software Foundation, Inc.,
18  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  *  The full GNU General Public License is included in this distribution in
21  *  the file called "COPYING".
22  */
23 
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/spinlock.h>
28 #include <linux/interrupt.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/etherdevice.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/mdio-bitbang.h>
34 #include <linux/netdevice.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 
45 #include "sh_eth.h"
46 
47 #define SH_ETH_DEF_MSG_ENABLE \
48 		(NETIF_MSG_LINK	| \
49 		NETIF_MSG_TIMER	| \
50 		NETIF_MSG_RX_ERR| \
51 		NETIF_MSG_TX_ERR)
52 
53 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
54 	[EDSR]		= 0x0000,
55 	[EDMR]		= 0x0400,
56 	[EDTRR]		= 0x0408,
57 	[EDRRR]		= 0x0410,
58 	[EESR]		= 0x0428,
59 	[EESIPR]	= 0x0430,
60 	[TDLAR]		= 0x0010,
61 	[TDFAR]		= 0x0014,
62 	[TDFXR]		= 0x0018,
63 	[TDFFR]		= 0x001c,
64 	[RDLAR]		= 0x0030,
65 	[RDFAR]		= 0x0034,
66 	[RDFXR]		= 0x0038,
67 	[RDFFR]		= 0x003c,
68 	[TRSCER]	= 0x0438,
69 	[RMFCR]		= 0x0440,
70 	[TFTR]		= 0x0448,
71 	[FDR]		= 0x0450,
72 	[RMCR]		= 0x0458,
73 	[RPADIR]	= 0x0460,
74 	[FCFTR]		= 0x0468,
75 	[CSMR]		= 0x04E4,
76 
77 	[ECMR]		= 0x0500,
78 	[ECSR]		= 0x0510,
79 	[ECSIPR]	= 0x0518,
80 	[PIR]		= 0x0520,
81 	[PSR]		= 0x0528,
82 	[PIPR]		= 0x052c,
83 	[RFLR]		= 0x0508,
84 	[APR]		= 0x0554,
85 	[MPR]		= 0x0558,
86 	[PFTCR]		= 0x055c,
87 	[PFRCR]		= 0x0560,
88 	[TPAUSER]	= 0x0564,
89 	[GECMR]		= 0x05b0,
90 	[BCULR]		= 0x05b4,
91 	[MAHR]		= 0x05c0,
92 	[MALR]		= 0x05c8,
93 	[TROCR]		= 0x0700,
94 	[CDCR]		= 0x0708,
95 	[LCCR]		= 0x0710,
96 	[CEFCR]		= 0x0740,
97 	[FRECR]		= 0x0748,
98 	[TSFRCR]	= 0x0750,
99 	[TLFRCR]	= 0x0758,
100 	[RFCR]		= 0x0760,
101 	[CERCR]		= 0x0768,
102 	[CEECR]		= 0x0770,
103 	[MAFCR]		= 0x0778,
104 	[RMII_MII]	= 0x0790,
105 
106 	[ARSTR]		= 0x0000,
107 	[TSU_CTRST]	= 0x0004,
108 	[TSU_FWEN0]	= 0x0010,
109 	[TSU_FWEN1]	= 0x0014,
110 	[TSU_FCM]	= 0x0018,
111 	[TSU_BSYSL0]	= 0x0020,
112 	[TSU_BSYSL1]	= 0x0024,
113 	[TSU_PRISL0]	= 0x0028,
114 	[TSU_PRISL1]	= 0x002c,
115 	[TSU_FWSL0]	= 0x0030,
116 	[TSU_FWSL1]	= 0x0034,
117 	[TSU_FWSLC]	= 0x0038,
118 	[TSU_QTAG0]	= 0x0040,
119 	[TSU_QTAG1]	= 0x0044,
120 	[TSU_FWSR]	= 0x0050,
121 	[TSU_FWINMK]	= 0x0054,
122 	[TSU_ADQT0]	= 0x0048,
123 	[TSU_ADQT1]	= 0x004c,
124 	[TSU_VTAG0]	= 0x0058,
125 	[TSU_VTAG1]	= 0x005c,
126 	[TSU_ADSBSY]	= 0x0060,
127 	[TSU_TEN]	= 0x0064,
128 	[TSU_POST1]	= 0x0070,
129 	[TSU_POST2]	= 0x0074,
130 	[TSU_POST3]	= 0x0078,
131 	[TSU_POST4]	= 0x007c,
132 	[TSU_ADRH0]	= 0x0100,
133 	[TSU_ADRL0]	= 0x0104,
134 	[TSU_ADRH31]	= 0x01f8,
135 	[TSU_ADRL31]	= 0x01fc,
136 
137 	[TXNLCR0]	= 0x0080,
138 	[TXALCR0]	= 0x0084,
139 	[RXNLCR0]	= 0x0088,
140 	[RXALCR0]	= 0x008c,
141 	[FWNLCR0]	= 0x0090,
142 	[FWALCR0]	= 0x0094,
143 	[TXNLCR1]	= 0x00a0,
144 	[TXALCR1]	= 0x00a0,
145 	[RXNLCR1]	= 0x00a8,
146 	[RXALCR1]	= 0x00ac,
147 	[FWNLCR1]	= 0x00b0,
148 	[FWALCR1]	= 0x00b4,
149 };
150 
151 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
152 	[ECMR]		= 0x0300,
153 	[RFLR]		= 0x0308,
154 	[ECSR]		= 0x0310,
155 	[ECSIPR]	= 0x0318,
156 	[PIR]		= 0x0320,
157 	[PSR]		= 0x0328,
158 	[RDMLR]		= 0x0340,
159 	[IPGR]		= 0x0350,
160 	[APR]		= 0x0354,
161 	[MPR]		= 0x0358,
162 	[RFCF]		= 0x0360,
163 	[TPAUSER]	= 0x0364,
164 	[TPAUSECR]	= 0x0368,
165 	[MAHR]		= 0x03c0,
166 	[MALR]		= 0x03c8,
167 	[TROCR]		= 0x03d0,
168 	[CDCR]		= 0x03d4,
169 	[LCCR]		= 0x03d8,
170 	[CNDCR]		= 0x03dc,
171 	[CEFCR]		= 0x03e4,
172 	[FRECR]		= 0x03e8,
173 	[TSFRCR]	= 0x03ec,
174 	[TLFRCR]	= 0x03f0,
175 	[RFCR]		= 0x03f4,
176 	[MAFCR]		= 0x03f8,
177 
178 	[EDMR]		= 0x0200,
179 	[EDTRR]		= 0x0208,
180 	[EDRRR]		= 0x0210,
181 	[TDLAR]		= 0x0218,
182 	[RDLAR]		= 0x0220,
183 	[EESR]		= 0x0228,
184 	[EESIPR]	= 0x0230,
185 	[TRSCER]	= 0x0238,
186 	[RMFCR]		= 0x0240,
187 	[TFTR]		= 0x0248,
188 	[FDR]		= 0x0250,
189 	[RMCR]		= 0x0258,
190 	[TFUCR]		= 0x0264,
191 	[RFOCR]		= 0x0268,
192 	[RMIIMODE]      = 0x026c,
193 	[FCFTR]		= 0x0270,
194 	[TRIMD]		= 0x027c,
195 };
196 
197 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
198 	[ECMR]		= 0x0100,
199 	[RFLR]		= 0x0108,
200 	[ECSR]		= 0x0110,
201 	[ECSIPR]	= 0x0118,
202 	[PIR]		= 0x0120,
203 	[PSR]		= 0x0128,
204 	[RDMLR]		= 0x0140,
205 	[IPGR]		= 0x0150,
206 	[APR]		= 0x0154,
207 	[MPR]		= 0x0158,
208 	[TPAUSER]	= 0x0164,
209 	[RFCF]		= 0x0160,
210 	[TPAUSECR]	= 0x0168,
211 	[BCFRR]		= 0x016c,
212 	[MAHR]		= 0x01c0,
213 	[MALR]		= 0x01c8,
214 	[TROCR]		= 0x01d0,
215 	[CDCR]		= 0x01d4,
216 	[LCCR]		= 0x01d8,
217 	[CNDCR]		= 0x01dc,
218 	[CEFCR]		= 0x01e4,
219 	[FRECR]		= 0x01e8,
220 	[TSFRCR]	= 0x01ec,
221 	[TLFRCR]	= 0x01f0,
222 	[RFCR]		= 0x01f4,
223 	[MAFCR]		= 0x01f8,
224 	[RTRATE]	= 0x01fc,
225 
226 	[EDMR]		= 0x0000,
227 	[EDTRR]		= 0x0008,
228 	[EDRRR]		= 0x0010,
229 	[TDLAR]		= 0x0018,
230 	[RDLAR]		= 0x0020,
231 	[EESR]		= 0x0028,
232 	[EESIPR]	= 0x0030,
233 	[TRSCER]	= 0x0038,
234 	[RMFCR]		= 0x0040,
235 	[TFTR]		= 0x0048,
236 	[FDR]		= 0x0050,
237 	[RMCR]		= 0x0058,
238 	[TFUCR]		= 0x0064,
239 	[RFOCR]		= 0x0068,
240 	[FCFTR]		= 0x0070,
241 	[RPADIR]	= 0x0078,
242 	[TRIMD]		= 0x007c,
243 	[RBWAR]		= 0x00c8,
244 	[RDFAR]		= 0x00cc,
245 	[TBRAR]		= 0x00d4,
246 	[TDFAR]		= 0x00d8,
247 };
248 
249 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
250 	[ECMR]		= 0x0160,
251 	[ECSR]		= 0x0164,
252 	[ECSIPR]	= 0x0168,
253 	[PIR]		= 0x016c,
254 	[MAHR]		= 0x0170,
255 	[MALR]		= 0x0174,
256 	[RFLR]		= 0x0178,
257 	[PSR]		= 0x017c,
258 	[TROCR]		= 0x0180,
259 	[CDCR]		= 0x0184,
260 	[LCCR]		= 0x0188,
261 	[CNDCR]		= 0x018c,
262 	[CEFCR]		= 0x0194,
263 	[FRECR]		= 0x0198,
264 	[TSFRCR]	= 0x019c,
265 	[TLFRCR]	= 0x01a0,
266 	[RFCR]		= 0x01a4,
267 	[MAFCR]		= 0x01a8,
268 	[IPGR]		= 0x01b4,
269 	[APR]		= 0x01b8,
270 	[MPR]		= 0x01bc,
271 	[TPAUSER]	= 0x01c4,
272 	[BCFR]		= 0x01cc,
273 
274 	[ARSTR]		= 0x0000,
275 	[TSU_CTRST]	= 0x0004,
276 	[TSU_FWEN0]	= 0x0010,
277 	[TSU_FWEN1]	= 0x0014,
278 	[TSU_FCM]	= 0x0018,
279 	[TSU_BSYSL0]	= 0x0020,
280 	[TSU_BSYSL1]	= 0x0024,
281 	[TSU_PRISL0]	= 0x0028,
282 	[TSU_PRISL1]	= 0x002c,
283 	[TSU_FWSL0]	= 0x0030,
284 	[TSU_FWSL1]	= 0x0034,
285 	[TSU_FWSLC]	= 0x0038,
286 	[TSU_QTAGM0]	= 0x0040,
287 	[TSU_QTAGM1]	= 0x0044,
288 	[TSU_ADQT0]	= 0x0048,
289 	[TSU_ADQT1]	= 0x004c,
290 	[TSU_FWSR]	= 0x0050,
291 	[TSU_FWINMK]	= 0x0054,
292 	[TSU_ADSBSY]	= 0x0060,
293 	[TSU_TEN]	= 0x0064,
294 	[TSU_POST1]	= 0x0070,
295 	[TSU_POST2]	= 0x0074,
296 	[TSU_POST3]	= 0x0078,
297 	[TSU_POST4]	= 0x007c,
298 
299 	[TXNLCR0]	= 0x0080,
300 	[TXALCR0]	= 0x0084,
301 	[RXNLCR0]	= 0x0088,
302 	[RXALCR0]	= 0x008c,
303 	[FWNLCR0]	= 0x0090,
304 	[FWALCR0]	= 0x0094,
305 	[TXNLCR1]	= 0x00a0,
306 	[TXALCR1]	= 0x00a0,
307 	[RXNLCR1]	= 0x00a8,
308 	[RXALCR1]	= 0x00ac,
309 	[FWNLCR1]	= 0x00b0,
310 	[FWALCR1]	= 0x00b4,
311 
312 	[TSU_ADRH0]	= 0x0100,
313 	[TSU_ADRL0]	= 0x0104,
314 	[TSU_ADRL31]	= 0x01fc,
315 };
316 
317 static int sh_eth_is_gether(struct sh_eth_private *mdp)
318 {
319 	if (mdp->reg_offset == sh_eth_offset_gigabit)
320 		return 1;
321 	else
322 		return 0;
323 }
324 
325 static void sh_eth_select_mii(struct net_device *ndev)
326 {
327 	u32 value = 0x0;
328 	struct sh_eth_private *mdp = netdev_priv(ndev);
329 
330 	switch (mdp->phy_interface) {
331 	case PHY_INTERFACE_MODE_GMII:
332 		value = 0x2;
333 		break;
334 	case PHY_INTERFACE_MODE_MII:
335 		value = 0x1;
336 		break;
337 	case PHY_INTERFACE_MODE_RMII:
338 		value = 0x0;
339 		break;
340 	default:
341 		pr_warn("PHY interface mode was not setup. Set to MII.\n");
342 		value = 0x1;
343 		break;
344 	}
345 
346 	sh_eth_write(ndev, value, RMII_MII);
347 }
348 
349 static void sh_eth_set_duplex(struct net_device *ndev)
350 {
351 	struct sh_eth_private *mdp = netdev_priv(ndev);
352 
353 	if (mdp->duplex) /* Full */
354 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
355 	else		/* Half */
356 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
357 }
358 
359 /* There is CPU dependent code */
360 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
361 {
362 	struct sh_eth_private *mdp = netdev_priv(ndev);
363 
364 	switch (mdp->speed) {
365 	case 10: /* 10BASE */
366 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
367 		break;
368 	case 100:/* 100BASE */
369 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
370 		break;
371 	default:
372 		break;
373 	}
374 }
375 
376 /* R8A7778/9 */
377 static struct sh_eth_cpu_data r8a777x_data = {
378 	.set_duplex	= sh_eth_set_duplex,
379 	.set_rate	= sh_eth_set_rate_r8a777x,
380 
381 	.register_type	= SH_ETH_REG_FAST_RCAR,
382 
383 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
384 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
385 	.eesipr_value	= 0x01ff009f,
386 
387 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
388 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
389 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
390 			  EESR_ECI,
391 
392 	.apr		= 1,
393 	.mpr		= 1,
394 	.tpauser	= 1,
395 	.hw_swap	= 1,
396 };
397 
398 /* R8A7790 */
399 static struct sh_eth_cpu_data r8a7790_data = {
400 	.set_duplex	= sh_eth_set_duplex,
401 	.set_rate	= sh_eth_set_rate_r8a777x,
402 
403 	.register_type	= SH_ETH_REG_FAST_RCAR,
404 
405 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
406 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
407 	.eesipr_value	= 0x01ff009f,
408 
409 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
410 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
411 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
412 			  EESR_ECI,
413 
414 	.apr		= 1,
415 	.mpr		= 1,
416 	.tpauser	= 1,
417 	.hw_swap	= 1,
418 	.rmiimode	= 1,
419 	.shift_rd0	= 1,
420 };
421 
422 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
423 {
424 	struct sh_eth_private *mdp = netdev_priv(ndev);
425 
426 	switch (mdp->speed) {
427 	case 10: /* 10BASE */
428 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
429 		break;
430 	case 100:/* 100BASE */
431 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
432 		break;
433 	default:
434 		break;
435 	}
436 }
437 
438 /* SH7724 */
439 static struct sh_eth_cpu_data sh7724_data = {
440 	.set_duplex	= sh_eth_set_duplex,
441 	.set_rate	= sh_eth_set_rate_sh7724,
442 
443 	.register_type	= SH_ETH_REG_FAST_SH4,
444 
445 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
446 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
447 	.eesipr_value	= 0x01ff009f,
448 
449 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
450 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
451 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
452 			  EESR_ECI,
453 
454 	.apr		= 1,
455 	.mpr		= 1,
456 	.tpauser	= 1,
457 	.hw_swap	= 1,
458 	.rpadir		= 1,
459 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
460 };
461 
462 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
463 {
464 	struct sh_eth_private *mdp = netdev_priv(ndev);
465 
466 	switch (mdp->speed) {
467 	case 10: /* 10BASE */
468 		sh_eth_write(ndev, 0, RTRATE);
469 		break;
470 	case 100:/* 100BASE */
471 		sh_eth_write(ndev, 1, RTRATE);
472 		break;
473 	default:
474 		break;
475 	}
476 }
477 
478 /* SH7757 */
479 static struct sh_eth_cpu_data sh7757_data = {
480 	.set_duplex	= sh_eth_set_duplex,
481 	.set_rate	= sh_eth_set_rate_sh7757,
482 
483 	.register_type	= SH_ETH_REG_FAST_SH4,
484 
485 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
486 	.rmcr_value	= 0x00000001,
487 
488 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
489 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
490 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
491 			  EESR_ECI,
492 
493 	.irq_flags	= IRQF_SHARED,
494 	.apr		= 1,
495 	.mpr		= 1,
496 	.tpauser	= 1,
497 	.hw_swap	= 1,
498 	.no_ade		= 1,
499 	.rpadir		= 1,
500 	.rpadir_value   = 2 << 16,
501 };
502 
503 #define SH_GIGA_ETH_BASE	0xfee00000UL
504 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
505 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
506 static void sh_eth_chip_reset_giga(struct net_device *ndev)
507 {
508 	int i;
509 	unsigned long mahr[2], malr[2];
510 
511 	/* save MAHR and MALR */
512 	for (i = 0; i < 2; i++) {
513 		malr[i] = ioread32((void *)GIGA_MALR(i));
514 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
515 	}
516 
517 	/* reset device */
518 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
519 	mdelay(1);
520 
521 	/* restore MAHR and MALR */
522 	for (i = 0; i < 2; i++) {
523 		iowrite32(malr[i], (void *)GIGA_MALR(i));
524 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
525 	}
526 }
527 
528 static void sh_eth_set_rate_giga(struct net_device *ndev)
529 {
530 	struct sh_eth_private *mdp = netdev_priv(ndev);
531 
532 	switch (mdp->speed) {
533 	case 10: /* 10BASE */
534 		sh_eth_write(ndev, 0x00000000, GECMR);
535 		break;
536 	case 100:/* 100BASE */
537 		sh_eth_write(ndev, 0x00000010, GECMR);
538 		break;
539 	case 1000: /* 1000BASE */
540 		sh_eth_write(ndev, 0x00000020, GECMR);
541 		break;
542 	default:
543 		break;
544 	}
545 }
546 
547 /* SH7757(GETHERC) */
548 static struct sh_eth_cpu_data sh7757_data_giga = {
549 	.chip_reset	= sh_eth_chip_reset_giga,
550 	.set_duplex	= sh_eth_set_duplex,
551 	.set_rate	= sh_eth_set_rate_giga,
552 
553 	.register_type	= SH_ETH_REG_GIGABIT,
554 
555 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
556 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
557 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
558 
559 	.tx_check	= EESR_TC1 | EESR_FTC,
560 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
561 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
562 			  EESR_TDE | EESR_ECI,
563 	.fdr_value	= 0x0000072f,
564 	.rmcr_value	= 0x00000001,
565 
566 	.irq_flags	= IRQF_SHARED,
567 	.apr		= 1,
568 	.mpr		= 1,
569 	.tpauser	= 1,
570 	.bculr		= 1,
571 	.hw_swap	= 1,
572 	.rpadir		= 1,
573 	.rpadir_value   = 2 << 16,
574 	.no_trimd	= 1,
575 	.no_ade		= 1,
576 	.tsu		= 1,
577 };
578 
579 static void sh_eth_chip_reset(struct net_device *ndev)
580 {
581 	struct sh_eth_private *mdp = netdev_priv(ndev);
582 
583 	/* reset device */
584 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
585 	mdelay(1);
586 }
587 
588 static void sh_eth_set_rate_gether(struct net_device *ndev)
589 {
590 	struct sh_eth_private *mdp = netdev_priv(ndev);
591 
592 	switch (mdp->speed) {
593 	case 10: /* 10BASE */
594 		sh_eth_write(ndev, GECMR_10, GECMR);
595 		break;
596 	case 100:/* 100BASE */
597 		sh_eth_write(ndev, GECMR_100, GECMR);
598 		break;
599 	case 1000: /* 1000BASE */
600 		sh_eth_write(ndev, GECMR_1000, GECMR);
601 		break;
602 	default:
603 		break;
604 	}
605 }
606 
607 /* SH7734 */
608 static struct sh_eth_cpu_data sh7734_data = {
609 	.chip_reset	= sh_eth_chip_reset,
610 	.set_duplex	= sh_eth_set_duplex,
611 	.set_rate	= sh_eth_set_rate_gether,
612 
613 	.register_type	= SH_ETH_REG_GIGABIT,
614 
615 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
616 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
617 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
618 
619 	.tx_check	= EESR_TC1 | EESR_FTC,
620 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
621 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
622 			  EESR_TDE | EESR_ECI,
623 
624 	.apr		= 1,
625 	.mpr		= 1,
626 	.tpauser	= 1,
627 	.bculr		= 1,
628 	.hw_swap	= 1,
629 	.no_trimd	= 1,
630 	.no_ade		= 1,
631 	.tsu		= 1,
632 	.hw_crc		= 1,
633 	.select_mii	= 1,
634 };
635 
636 /* SH7763 */
637 static struct sh_eth_cpu_data sh7763_data = {
638 	.chip_reset	= sh_eth_chip_reset,
639 	.set_duplex	= sh_eth_set_duplex,
640 	.set_rate	= sh_eth_set_rate_gether,
641 
642 	.register_type	= SH_ETH_REG_GIGABIT,
643 
644 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
645 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
646 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
647 
648 	.tx_check	= EESR_TC1 | EESR_FTC,
649 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
650 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
651 			  EESR_ECI,
652 
653 	.apr		= 1,
654 	.mpr		= 1,
655 	.tpauser	= 1,
656 	.bculr		= 1,
657 	.hw_swap	= 1,
658 	.no_trimd	= 1,
659 	.no_ade		= 1,
660 	.tsu		= 1,
661 	.irq_flags	= IRQF_SHARED,
662 };
663 
664 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
665 {
666 	struct sh_eth_private *mdp = netdev_priv(ndev);
667 
668 	/* reset device */
669 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
670 	mdelay(1);
671 
672 	sh_eth_select_mii(ndev);
673 }
674 
675 /* R8A7740 */
676 static struct sh_eth_cpu_data r8a7740_data = {
677 	.chip_reset	= sh_eth_chip_reset_r8a7740,
678 	.set_duplex	= sh_eth_set_duplex,
679 	.set_rate	= sh_eth_set_rate_gether,
680 
681 	.register_type	= SH_ETH_REG_GIGABIT,
682 
683 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
684 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
685 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
686 
687 	.tx_check	= EESR_TC1 | EESR_FTC,
688 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
689 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
690 			  EESR_TDE | EESR_ECI,
691 
692 	.apr		= 1,
693 	.mpr		= 1,
694 	.tpauser	= 1,
695 	.bculr		= 1,
696 	.hw_swap	= 1,
697 	.no_trimd	= 1,
698 	.no_ade		= 1,
699 	.tsu		= 1,
700 	.select_mii	= 1,
701 	.shift_rd0	= 1,
702 };
703 
704 static struct sh_eth_cpu_data sh7619_data = {
705 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
706 
707 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
708 
709 	.apr		= 1,
710 	.mpr		= 1,
711 	.tpauser	= 1,
712 	.hw_swap	= 1,
713 };
714 
715 static struct sh_eth_cpu_data sh771x_data = {
716 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
717 
718 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
719 	.tsu		= 1,
720 };
721 
722 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
723 {
724 	if (!cd->ecsr_value)
725 		cd->ecsr_value = DEFAULT_ECSR_INIT;
726 
727 	if (!cd->ecsipr_value)
728 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
729 
730 	if (!cd->fcftr_value)
731 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
732 				  DEFAULT_FIFO_F_D_RFD;
733 
734 	if (!cd->fdr_value)
735 		cd->fdr_value = DEFAULT_FDR_INIT;
736 
737 	if (!cd->rmcr_value)
738 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
739 
740 	if (!cd->tx_check)
741 		cd->tx_check = DEFAULT_TX_CHECK;
742 
743 	if (!cd->eesr_err_check)
744 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
745 }
746 
747 static int sh_eth_check_reset(struct net_device *ndev)
748 {
749 	int ret = 0;
750 	int cnt = 100;
751 
752 	while (cnt > 0) {
753 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
754 			break;
755 		mdelay(1);
756 		cnt--;
757 	}
758 	if (cnt <= 0) {
759 		pr_err("Device reset failed\n");
760 		ret = -ETIMEDOUT;
761 	}
762 	return ret;
763 }
764 
765 static int sh_eth_reset(struct net_device *ndev)
766 {
767 	struct sh_eth_private *mdp = netdev_priv(ndev);
768 	int ret = 0;
769 
770 	if (sh_eth_is_gether(mdp)) {
771 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
772 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
773 			     EDMR);
774 
775 		ret = sh_eth_check_reset(ndev);
776 		if (ret)
777 			goto out;
778 
779 		/* Table Init */
780 		sh_eth_write(ndev, 0x0, TDLAR);
781 		sh_eth_write(ndev, 0x0, TDFAR);
782 		sh_eth_write(ndev, 0x0, TDFXR);
783 		sh_eth_write(ndev, 0x0, TDFFR);
784 		sh_eth_write(ndev, 0x0, RDLAR);
785 		sh_eth_write(ndev, 0x0, RDFAR);
786 		sh_eth_write(ndev, 0x0, RDFXR);
787 		sh_eth_write(ndev, 0x0, RDFFR);
788 
789 		/* Reset HW CRC register */
790 		if (mdp->cd->hw_crc)
791 			sh_eth_write(ndev, 0x0, CSMR);
792 
793 		/* Select MII mode */
794 		if (mdp->cd->select_mii)
795 			sh_eth_select_mii(ndev);
796 	} else {
797 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
798 			     EDMR);
799 		mdelay(3);
800 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
801 			     EDMR);
802 	}
803 
804 out:
805 	return ret;
806 }
807 
808 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
809 static void sh_eth_set_receive_align(struct sk_buff *skb)
810 {
811 	int reserve;
812 
813 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
814 	if (reserve)
815 		skb_reserve(skb, reserve);
816 }
817 #else
818 static void sh_eth_set_receive_align(struct sk_buff *skb)
819 {
820 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
821 }
822 #endif
823 
824 
825 /* CPU <-> EDMAC endian convert */
826 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
827 {
828 	switch (mdp->edmac_endian) {
829 	case EDMAC_LITTLE_ENDIAN:
830 		return cpu_to_le32(x);
831 	case EDMAC_BIG_ENDIAN:
832 		return cpu_to_be32(x);
833 	}
834 	return x;
835 }
836 
837 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
838 {
839 	switch (mdp->edmac_endian) {
840 	case EDMAC_LITTLE_ENDIAN:
841 		return le32_to_cpu(x);
842 	case EDMAC_BIG_ENDIAN:
843 		return be32_to_cpu(x);
844 	}
845 	return x;
846 }
847 
848 /*
849  * Program the hardware MAC address from dev->dev_addr.
850  */
851 static void update_mac_address(struct net_device *ndev)
852 {
853 	sh_eth_write(ndev,
854 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
855 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
856 	sh_eth_write(ndev,
857 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
858 }
859 
860 /*
861  * Get MAC address from SuperH MAC address register
862  *
863  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
864  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
865  * When you want use this device, you must set MAC address in bootloader.
866  *
867  */
868 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
869 {
870 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
871 		memcpy(ndev->dev_addr, mac, 6);
872 	} else {
873 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
874 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
875 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
876 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
877 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
878 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
879 	}
880 }
881 
882 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
883 {
884 	if (sh_eth_is_gether(mdp))
885 		return EDTRR_TRNS_GETHER;
886 	else
887 		return EDTRR_TRNS_ETHER;
888 }
889 
890 struct bb_info {
891 	void (*set_gate)(void *addr);
892 	struct mdiobb_ctrl ctrl;
893 	void *addr;
894 	u32 mmd_msk;/* MMD */
895 	u32 mdo_msk;
896 	u32 mdi_msk;
897 	u32 mdc_msk;
898 };
899 
900 /* PHY bit set */
901 static void bb_set(void *addr, u32 msk)
902 {
903 	iowrite32(ioread32(addr) | msk, addr);
904 }
905 
906 /* PHY bit clear */
907 static void bb_clr(void *addr, u32 msk)
908 {
909 	iowrite32((ioread32(addr) & ~msk), addr);
910 }
911 
912 /* PHY bit read */
913 static int bb_read(void *addr, u32 msk)
914 {
915 	return (ioread32(addr) & msk) != 0;
916 }
917 
918 /* Data I/O pin control */
919 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
920 {
921 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
922 
923 	if (bitbang->set_gate)
924 		bitbang->set_gate(bitbang->addr);
925 
926 	if (bit)
927 		bb_set(bitbang->addr, bitbang->mmd_msk);
928 	else
929 		bb_clr(bitbang->addr, bitbang->mmd_msk);
930 }
931 
932 /* Set bit data*/
933 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
934 {
935 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
936 
937 	if (bitbang->set_gate)
938 		bitbang->set_gate(bitbang->addr);
939 
940 	if (bit)
941 		bb_set(bitbang->addr, bitbang->mdo_msk);
942 	else
943 		bb_clr(bitbang->addr, bitbang->mdo_msk);
944 }
945 
946 /* Get bit data*/
947 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
948 {
949 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
950 
951 	if (bitbang->set_gate)
952 		bitbang->set_gate(bitbang->addr);
953 
954 	return bb_read(bitbang->addr, bitbang->mdi_msk);
955 }
956 
957 /* MDC pin control */
958 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
959 {
960 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
961 
962 	if (bitbang->set_gate)
963 		bitbang->set_gate(bitbang->addr);
964 
965 	if (bit)
966 		bb_set(bitbang->addr, bitbang->mdc_msk);
967 	else
968 		bb_clr(bitbang->addr, bitbang->mdc_msk);
969 }
970 
971 /* mdio bus control struct */
972 static struct mdiobb_ops bb_ops = {
973 	.owner = THIS_MODULE,
974 	.set_mdc = sh_mdc_ctrl,
975 	.set_mdio_dir = sh_mmd_ctrl,
976 	.set_mdio_data = sh_set_mdio,
977 	.get_mdio_data = sh_get_mdio,
978 };
979 
980 /* free skb and descriptor buffer */
981 static void sh_eth_ring_free(struct net_device *ndev)
982 {
983 	struct sh_eth_private *mdp = netdev_priv(ndev);
984 	int i;
985 
986 	/* Free Rx skb ringbuffer */
987 	if (mdp->rx_skbuff) {
988 		for (i = 0; i < mdp->num_rx_ring; i++) {
989 			if (mdp->rx_skbuff[i])
990 				dev_kfree_skb(mdp->rx_skbuff[i]);
991 		}
992 	}
993 	kfree(mdp->rx_skbuff);
994 	mdp->rx_skbuff = NULL;
995 
996 	/* Free Tx skb ringbuffer */
997 	if (mdp->tx_skbuff) {
998 		for (i = 0; i < mdp->num_tx_ring; i++) {
999 			if (mdp->tx_skbuff[i])
1000 				dev_kfree_skb(mdp->tx_skbuff[i]);
1001 		}
1002 	}
1003 	kfree(mdp->tx_skbuff);
1004 	mdp->tx_skbuff = NULL;
1005 }
1006 
1007 /* format skb and descriptor buffer */
1008 static void sh_eth_ring_format(struct net_device *ndev)
1009 {
1010 	struct sh_eth_private *mdp = netdev_priv(ndev);
1011 	int i;
1012 	struct sk_buff *skb;
1013 	struct sh_eth_rxdesc *rxdesc = NULL;
1014 	struct sh_eth_txdesc *txdesc = NULL;
1015 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1016 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1017 
1018 	mdp->cur_rx = mdp->cur_tx = 0;
1019 	mdp->dirty_rx = mdp->dirty_tx = 0;
1020 
1021 	memset(mdp->rx_ring, 0, rx_ringsize);
1022 
1023 	/* build Rx ring buffer */
1024 	for (i = 0; i < mdp->num_rx_ring; i++) {
1025 		/* skb */
1026 		mdp->rx_skbuff[i] = NULL;
1027 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1028 		mdp->rx_skbuff[i] = skb;
1029 		if (skb == NULL)
1030 			break;
1031 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1032 				DMA_FROM_DEVICE);
1033 		sh_eth_set_receive_align(skb);
1034 
1035 		/* RX descriptor */
1036 		rxdesc = &mdp->rx_ring[i];
1037 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1038 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1039 
1040 		/* The size of the buffer is 16 byte boundary. */
1041 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1042 		/* Rx descriptor address set */
1043 		if (i == 0) {
1044 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1045 			if (sh_eth_is_gether(mdp))
1046 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1047 		}
1048 	}
1049 
1050 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1051 
1052 	/* Mark the last entry as wrapping the ring. */
1053 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1054 
1055 	memset(mdp->tx_ring, 0, tx_ringsize);
1056 
1057 	/* build Tx ring buffer */
1058 	for (i = 0; i < mdp->num_tx_ring; i++) {
1059 		mdp->tx_skbuff[i] = NULL;
1060 		txdesc = &mdp->tx_ring[i];
1061 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1062 		txdesc->buffer_length = 0;
1063 		if (i == 0) {
1064 			/* Tx descriptor address set */
1065 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1066 			if (sh_eth_is_gether(mdp))
1067 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1068 		}
1069 	}
1070 
1071 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1072 }
1073 
1074 /* Get skb and descriptor buffer */
1075 static int sh_eth_ring_init(struct net_device *ndev)
1076 {
1077 	struct sh_eth_private *mdp = netdev_priv(ndev);
1078 	int rx_ringsize, tx_ringsize, ret = 0;
1079 
1080 	/*
1081 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1082 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1083 	 * the first 2 bytes, and +16 gets room for the status word from the
1084 	 * card.
1085 	 */
1086 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1087 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1088 	if (mdp->cd->rpadir)
1089 		mdp->rx_buf_sz += NET_IP_ALIGN;
1090 
1091 	/* Allocate RX and TX skb rings */
1092 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1093 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1094 	if (!mdp->rx_skbuff) {
1095 		ret = -ENOMEM;
1096 		return ret;
1097 	}
1098 
1099 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1100 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1101 	if (!mdp->tx_skbuff) {
1102 		ret = -ENOMEM;
1103 		goto skb_ring_free;
1104 	}
1105 
1106 	/* Allocate all Rx descriptors. */
1107 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1108 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1109 					  GFP_KERNEL);
1110 	if (!mdp->rx_ring) {
1111 		ret = -ENOMEM;
1112 		goto desc_ring_free;
1113 	}
1114 
1115 	mdp->dirty_rx = 0;
1116 
1117 	/* Allocate all Tx descriptors. */
1118 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1119 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1120 					  GFP_KERNEL);
1121 	if (!mdp->tx_ring) {
1122 		ret = -ENOMEM;
1123 		goto desc_ring_free;
1124 	}
1125 	return ret;
1126 
1127 desc_ring_free:
1128 	/* free DMA buffer */
1129 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1130 
1131 skb_ring_free:
1132 	/* Free Rx and Tx skb ring buffer */
1133 	sh_eth_ring_free(ndev);
1134 	mdp->tx_ring = NULL;
1135 	mdp->rx_ring = NULL;
1136 
1137 	return ret;
1138 }
1139 
1140 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1141 {
1142 	int ringsize;
1143 
1144 	if (mdp->rx_ring) {
1145 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1146 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1147 				  mdp->rx_desc_dma);
1148 		mdp->rx_ring = NULL;
1149 	}
1150 
1151 	if (mdp->tx_ring) {
1152 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1153 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1154 				  mdp->tx_desc_dma);
1155 		mdp->tx_ring = NULL;
1156 	}
1157 }
1158 
1159 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1160 {
1161 	int ret = 0;
1162 	struct sh_eth_private *mdp = netdev_priv(ndev);
1163 	u32 val;
1164 
1165 	/* Soft Reset */
1166 	ret = sh_eth_reset(ndev);
1167 	if (ret)
1168 		goto out;
1169 
1170 	if (mdp->cd->rmiimode)
1171 		sh_eth_write(ndev, 0x1, RMIIMODE);
1172 
1173 	/* Descriptor format */
1174 	sh_eth_ring_format(ndev);
1175 	if (mdp->cd->rpadir)
1176 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1177 
1178 	/* all sh_eth int mask */
1179 	sh_eth_write(ndev, 0, EESIPR);
1180 
1181 #if defined(__LITTLE_ENDIAN)
1182 	if (mdp->cd->hw_swap)
1183 		sh_eth_write(ndev, EDMR_EL, EDMR);
1184 	else
1185 #endif
1186 		sh_eth_write(ndev, 0, EDMR);
1187 
1188 	/* FIFO size set */
1189 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1190 	sh_eth_write(ndev, 0, TFTR);
1191 
1192 	/* Frame recv control */
1193 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1194 
1195 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1196 
1197 	if (mdp->cd->bculr)
1198 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1199 
1200 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1201 
1202 	if (!mdp->cd->no_trimd)
1203 		sh_eth_write(ndev, 0, TRIMD);
1204 
1205 	/* Recv frame limit set register */
1206 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1207 		     RFLR);
1208 
1209 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1210 	if (start)
1211 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1212 
1213 	/* PAUSE Prohibition */
1214 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1215 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1216 
1217 	sh_eth_write(ndev, val, ECMR);
1218 
1219 	if (mdp->cd->set_rate)
1220 		mdp->cd->set_rate(ndev);
1221 
1222 	/* E-MAC Status Register clear */
1223 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1224 
1225 	/* E-MAC Interrupt Enable register */
1226 	if (start)
1227 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1228 
1229 	/* Set MAC address */
1230 	update_mac_address(ndev);
1231 
1232 	/* mask reset */
1233 	if (mdp->cd->apr)
1234 		sh_eth_write(ndev, APR_AP, APR);
1235 	if (mdp->cd->mpr)
1236 		sh_eth_write(ndev, MPR_MP, MPR);
1237 	if (mdp->cd->tpauser)
1238 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1239 
1240 	if (start) {
1241 		/* Setting the Rx mode will start the Rx process. */
1242 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1243 
1244 		netif_start_queue(ndev);
1245 	}
1246 
1247 out:
1248 	return ret;
1249 }
1250 
1251 /* free Tx skb function */
1252 static int sh_eth_txfree(struct net_device *ndev)
1253 {
1254 	struct sh_eth_private *mdp = netdev_priv(ndev);
1255 	struct sh_eth_txdesc *txdesc;
1256 	int freeNum = 0;
1257 	int entry = 0;
1258 
1259 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1260 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1261 		txdesc = &mdp->tx_ring[entry];
1262 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1263 			break;
1264 		/* Free the original skb. */
1265 		if (mdp->tx_skbuff[entry]) {
1266 			dma_unmap_single(&ndev->dev, txdesc->addr,
1267 					 txdesc->buffer_length, DMA_TO_DEVICE);
1268 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1269 			mdp->tx_skbuff[entry] = NULL;
1270 			freeNum++;
1271 		}
1272 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1273 		if (entry >= mdp->num_tx_ring - 1)
1274 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1275 
1276 		ndev->stats.tx_packets++;
1277 		ndev->stats.tx_bytes += txdesc->buffer_length;
1278 	}
1279 	return freeNum;
1280 }
1281 
1282 /* Packet receive function */
1283 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1284 {
1285 	struct sh_eth_private *mdp = netdev_priv(ndev);
1286 	struct sh_eth_rxdesc *rxdesc;
1287 
1288 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1289 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1290 	struct sk_buff *skb;
1291 	int exceeded = 0;
1292 	u16 pkt_len = 0;
1293 	u32 desc_status;
1294 
1295 	rxdesc = &mdp->rx_ring[entry];
1296 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1297 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1298 		pkt_len = rxdesc->frame_length;
1299 
1300 		if (--boguscnt < 0)
1301 			break;
1302 
1303 		if (*quota <= 0) {
1304 			exceeded = 1;
1305 			break;
1306 		}
1307 		(*quota)--;
1308 
1309 		if (!(desc_status & RDFEND))
1310 			ndev->stats.rx_length_errors++;
1311 
1312 		/*
1313 		 * In case of almost all GETHER/ETHERs, the Receive Frame State
1314 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1315 		 * bit 0. However, in case of the R8A7740's GETHER, the RFS
1316 		 * bits are from bit 25 to bit 16. So, the driver needs right
1317 		 * shifting by 16.
1318 		 */
1319 		if (mdp->cd->shift_rd0)
1320 			desc_status >>= 16;
1321 
1322 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1323 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1324 			ndev->stats.rx_errors++;
1325 			if (desc_status & RD_RFS1)
1326 				ndev->stats.rx_crc_errors++;
1327 			if (desc_status & RD_RFS2)
1328 				ndev->stats.rx_frame_errors++;
1329 			if (desc_status & RD_RFS3)
1330 				ndev->stats.rx_length_errors++;
1331 			if (desc_status & RD_RFS4)
1332 				ndev->stats.rx_length_errors++;
1333 			if (desc_status & RD_RFS6)
1334 				ndev->stats.rx_missed_errors++;
1335 			if (desc_status & RD_RFS10)
1336 				ndev->stats.rx_over_errors++;
1337 		} else {
1338 			if (!mdp->cd->hw_swap)
1339 				sh_eth_soft_swap(
1340 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1341 					pkt_len + 2);
1342 			skb = mdp->rx_skbuff[entry];
1343 			mdp->rx_skbuff[entry] = NULL;
1344 			if (mdp->cd->rpadir)
1345 				skb_reserve(skb, NET_IP_ALIGN);
1346 			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1347 						mdp->rx_buf_sz,
1348 						DMA_FROM_DEVICE);
1349 			skb_put(skb, pkt_len);
1350 			skb->protocol = eth_type_trans(skb, ndev);
1351 			netif_receive_skb(skb);
1352 			ndev->stats.rx_packets++;
1353 			ndev->stats.rx_bytes += pkt_len;
1354 		}
1355 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1356 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1357 		rxdesc = &mdp->rx_ring[entry];
1358 	}
1359 
1360 	/* Refill the Rx ring buffers. */
1361 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1362 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1363 		rxdesc = &mdp->rx_ring[entry];
1364 		/* The size of the buffer is 16 byte boundary. */
1365 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1366 
1367 		if (mdp->rx_skbuff[entry] == NULL) {
1368 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1369 			mdp->rx_skbuff[entry] = skb;
1370 			if (skb == NULL)
1371 				break;	/* Better luck next round. */
1372 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1373 					DMA_FROM_DEVICE);
1374 			sh_eth_set_receive_align(skb);
1375 
1376 			skb_checksum_none_assert(skb);
1377 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1378 		}
1379 		if (entry >= mdp->num_rx_ring - 1)
1380 			rxdesc->status |=
1381 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1382 		else
1383 			rxdesc->status |=
1384 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1385 	}
1386 
1387 	/* Restart Rx engine if stopped. */
1388 	/* If we don't need to check status, don't. -KDU */
1389 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1390 		/* fix the values for the next receiving if RDE is set */
1391 		if (intr_status & EESR_RDE)
1392 			mdp->cur_rx = mdp->dirty_rx =
1393 				(sh_eth_read(ndev, RDFAR) -
1394 				 sh_eth_read(ndev, RDLAR)) >> 4;
1395 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1396 	}
1397 
1398 	return exceeded;
1399 }
1400 
1401 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1402 {
1403 	/* disable tx and rx */
1404 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1405 		~(ECMR_RE | ECMR_TE), ECMR);
1406 }
1407 
1408 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1409 {
1410 	/* enable tx and rx */
1411 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1412 		(ECMR_RE | ECMR_TE), ECMR);
1413 }
1414 
1415 /* error control function */
1416 static void sh_eth_error(struct net_device *ndev, int intr_status)
1417 {
1418 	struct sh_eth_private *mdp = netdev_priv(ndev);
1419 	u32 felic_stat;
1420 	u32 link_stat;
1421 	u32 mask;
1422 
1423 	if (intr_status & EESR_ECI) {
1424 		felic_stat = sh_eth_read(ndev, ECSR);
1425 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1426 		if (felic_stat & ECSR_ICD)
1427 			ndev->stats.tx_carrier_errors++;
1428 		if (felic_stat & ECSR_LCHNG) {
1429 			/* Link Changed */
1430 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1431 				goto ignore_link;
1432 			} else {
1433 				link_stat = (sh_eth_read(ndev, PSR));
1434 				if (mdp->ether_link_active_low)
1435 					link_stat = ~link_stat;
1436 			}
1437 			if (!(link_stat & PHY_ST_LINK))
1438 				sh_eth_rcv_snd_disable(ndev);
1439 			else {
1440 				/* Link Up */
1441 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1442 					  ~DMAC_M_ECI, EESIPR);
1443 				/*clear int */
1444 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1445 					  ECSR);
1446 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1447 					  DMAC_M_ECI, EESIPR);
1448 				/* enable tx and rx */
1449 				sh_eth_rcv_snd_enable(ndev);
1450 			}
1451 		}
1452 	}
1453 
1454 ignore_link:
1455 	if (intr_status & EESR_TWB) {
1456 		/* Unused write back interrupt */
1457 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1458 			ndev->stats.tx_aborted_errors++;
1459 			if (netif_msg_tx_err(mdp))
1460 				dev_err(&ndev->dev, "Transmit Abort\n");
1461 		}
1462 	}
1463 
1464 	if (intr_status & EESR_RABT) {
1465 		/* Receive Abort int */
1466 		if (intr_status & EESR_RFRMER) {
1467 			/* Receive Frame Overflow int */
1468 			ndev->stats.rx_frame_errors++;
1469 			if (netif_msg_rx_err(mdp))
1470 				dev_err(&ndev->dev, "Receive Abort\n");
1471 		}
1472 	}
1473 
1474 	if (intr_status & EESR_TDE) {
1475 		/* Transmit Descriptor Empty int */
1476 		ndev->stats.tx_fifo_errors++;
1477 		if (netif_msg_tx_err(mdp))
1478 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1479 	}
1480 
1481 	if (intr_status & EESR_TFE) {
1482 		/* FIFO under flow */
1483 		ndev->stats.tx_fifo_errors++;
1484 		if (netif_msg_tx_err(mdp))
1485 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1486 	}
1487 
1488 	if (intr_status & EESR_RDE) {
1489 		/* Receive Descriptor Empty int */
1490 		ndev->stats.rx_over_errors++;
1491 
1492 		if (netif_msg_rx_err(mdp))
1493 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1494 	}
1495 
1496 	if (intr_status & EESR_RFE) {
1497 		/* Receive FIFO Overflow int */
1498 		ndev->stats.rx_fifo_errors++;
1499 		if (netif_msg_rx_err(mdp))
1500 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1501 	}
1502 
1503 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1504 		/* Address Error */
1505 		ndev->stats.tx_fifo_errors++;
1506 		if (netif_msg_tx_err(mdp))
1507 			dev_err(&ndev->dev, "Address Error\n");
1508 	}
1509 
1510 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1511 	if (mdp->cd->no_ade)
1512 		mask &= ~EESR_ADE;
1513 	if (intr_status & mask) {
1514 		/* Tx error */
1515 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1516 		/* dmesg */
1517 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1518 				intr_status, mdp->cur_tx);
1519 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1520 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1521 		/* dirty buffer free */
1522 		sh_eth_txfree(ndev);
1523 
1524 		/* SH7712 BUG */
1525 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1526 			/* tx dma start */
1527 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1528 		}
1529 		/* wakeup */
1530 		netif_wake_queue(ndev);
1531 	}
1532 }
1533 
1534 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1535 {
1536 	struct net_device *ndev = netdev;
1537 	struct sh_eth_private *mdp = netdev_priv(ndev);
1538 	struct sh_eth_cpu_data *cd = mdp->cd;
1539 	irqreturn_t ret = IRQ_NONE;
1540 	unsigned long intr_status, intr_enable;
1541 
1542 	spin_lock(&mdp->lock);
1543 
1544 	/* Get interrupt status */
1545 	intr_status = sh_eth_read(ndev, EESR);
1546 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1547 	 * enabled since it's the one that  comes thru regardless of the mask,
1548 	 * and we need to fully handle it in sh_eth_error() in order to quench
1549 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1550 	 */
1551 	intr_enable = sh_eth_read(ndev, EESIPR);
1552 	intr_status &= intr_enable | DMAC_M_ECI;
1553 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1554 		ret = IRQ_HANDLED;
1555 	else
1556 		goto other_irq;
1557 
1558 	if (intr_status & EESR_RX_CHECK) {
1559 		if (napi_schedule_prep(&mdp->napi)) {
1560 			/* Mask Rx interrupts */
1561 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1562 				     EESIPR);
1563 			__napi_schedule(&mdp->napi);
1564 		} else {
1565 			dev_warn(&ndev->dev,
1566 				 "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1567 				 intr_status, intr_enable);
1568 		}
1569 	}
1570 
1571 	/* Tx Check */
1572 	if (intr_status & cd->tx_check) {
1573 		/* Clear Tx interrupts */
1574 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1575 
1576 		sh_eth_txfree(ndev);
1577 		netif_wake_queue(ndev);
1578 	}
1579 
1580 	if (intr_status & cd->eesr_err_check) {
1581 		/* Clear error interrupts */
1582 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1583 
1584 		sh_eth_error(ndev, intr_status);
1585 	}
1586 
1587 other_irq:
1588 	spin_unlock(&mdp->lock);
1589 
1590 	return ret;
1591 }
1592 
1593 static int sh_eth_poll(struct napi_struct *napi, int budget)
1594 {
1595 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1596 						  napi);
1597 	struct net_device *ndev = napi->dev;
1598 	int quota = budget;
1599 	unsigned long intr_status;
1600 
1601 	for (;;) {
1602 		intr_status = sh_eth_read(ndev, EESR);
1603 		if (!(intr_status & EESR_RX_CHECK))
1604 			break;
1605 		/* Clear Rx interrupts */
1606 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1607 
1608 		if (sh_eth_rx(ndev, intr_status, &quota))
1609 			goto out;
1610 	}
1611 
1612 	napi_complete(napi);
1613 
1614 	/* Reenable Rx interrupts */
1615 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1616 out:
1617 	return budget - quota;
1618 }
1619 
1620 /* PHY state control function */
1621 static void sh_eth_adjust_link(struct net_device *ndev)
1622 {
1623 	struct sh_eth_private *mdp = netdev_priv(ndev);
1624 	struct phy_device *phydev = mdp->phydev;
1625 	int new_state = 0;
1626 
1627 	if (phydev->link) {
1628 		if (phydev->duplex != mdp->duplex) {
1629 			new_state = 1;
1630 			mdp->duplex = phydev->duplex;
1631 			if (mdp->cd->set_duplex)
1632 				mdp->cd->set_duplex(ndev);
1633 		}
1634 
1635 		if (phydev->speed != mdp->speed) {
1636 			new_state = 1;
1637 			mdp->speed = phydev->speed;
1638 			if (mdp->cd->set_rate)
1639 				mdp->cd->set_rate(ndev);
1640 		}
1641 		if (!mdp->link) {
1642 			sh_eth_write(ndev,
1643 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1644 			new_state = 1;
1645 			mdp->link = phydev->link;
1646 			if (mdp->cd->no_psr || mdp->no_ether_link)
1647 				sh_eth_rcv_snd_enable(ndev);
1648 		}
1649 	} else if (mdp->link) {
1650 		new_state = 1;
1651 		mdp->link = 0;
1652 		mdp->speed = 0;
1653 		mdp->duplex = -1;
1654 		if (mdp->cd->no_psr || mdp->no_ether_link)
1655 			sh_eth_rcv_snd_disable(ndev);
1656 	}
1657 
1658 	if (new_state && netif_msg_link(mdp))
1659 		phy_print_status(phydev);
1660 }
1661 
1662 /* PHY init function */
1663 static int sh_eth_phy_init(struct net_device *ndev)
1664 {
1665 	struct sh_eth_private *mdp = netdev_priv(ndev);
1666 	char phy_id[MII_BUS_ID_SIZE + 3];
1667 	struct phy_device *phydev = NULL;
1668 
1669 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1670 		mdp->mii_bus->id , mdp->phy_id);
1671 
1672 	mdp->link = 0;
1673 	mdp->speed = 0;
1674 	mdp->duplex = -1;
1675 
1676 	/* Try connect to PHY */
1677 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1678 			     mdp->phy_interface);
1679 	if (IS_ERR(phydev)) {
1680 		dev_err(&ndev->dev, "phy_connect failed\n");
1681 		return PTR_ERR(phydev);
1682 	}
1683 
1684 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1685 		phydev->addr, phydev->drv->name);
1686 
1687 	mdp->phydev = phydev;
1688 
1689 	return 0;
1690 }
1691 
1692 /* PHY control start function */
1693 static int sh_eth_phy_start(struct net_device *ndev)
1694 {
1695 	struct sh_eth_private *mdp = netdev_priv(ndev);
1696 	int ret;
1697 
1698 	ret = sh_eth_phy_init(ndev);
1699 	if (ret)
1700 		return ret;
1701 
1702 	/* reset phy - this also wakes it from PDOWN */
1703 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1704 	phy_start(mdp->phydev);
1705 
1706 	return 0;
1707 }
1708 
1709 static int sh_eth_get_settings(struct net_device *ndev,
1710 			struct ethtool_cmd *ecmd)
1711 {
1712 	struct sh_eth_private *mdp = netdev_priv(ndev);
1713 	unsigned long flags;
1714 	int ret;
1715 
1716 	spin_lock_irqsave(&mdp->lock, flags);
1717 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1718 	spin_unlock_irqrestore(&mdp->lock, flags);
1719 
1720 	return ret;
1721 }
1722 
1723 static int sh_eth_set_settings(struct net_device *ndev,
1724 		struct ethtool_cmd *ecmd)
1725 {
1726 	struct sh_eth_private *mdp = netdev_priv(ndev);
1727 	unsigned long flags;
1728 	int ret;
1729 
1730 	spin_lock_irqsave(&mdp->lock, flags);
1731 
1732 	/* disable tx and rx */
1733 	sh_eth_rcv_snd_disable(ndev);
1734 
1735 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1736 	if (ret)
1737 		goto error_exit;
1738 
1739 	if (ecmd->duplex == DUPLEX_FULL)
1740 		mdp->duplex = 1;
1741 	else
1742 		mdp->duplex = 0;
1743 
1744 	if (mdp->cd->set_duplex)
1745 		mdp->cd->set_duplex(ndev);
1746 
1747 error_exit:
1748 	mdelay(1);
1749 
1750 	/* enable tx and rx */
1751 	sh_eth_rcv_snd_enable(ndev);
1752 
1753 	spin_unlock_irqrestore(&mdp->lock, flags);
1754 
1755 	return ret;
1756 }
1757 
1758 static int sh_eth_nway_reset(struct net_device *ndev)
1759 {
1760 	struct sh_eth_private *mdp = netdev_priv(ndev);
1761 	unsigned long flags;
1762 	int ret;
1763 
1764 	spin_lock_irqsave(&mdp->lock, flags);
1765 	ret = phy_start_aneg(mdp->phydev);
1766 	spin_unlock_irqrestore(&mdp->lock, flags);
1767 
1768 	return ret;
1769 }
1770 
1771 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1772 {
1773 	struct sh_eth_private *mdp = netdev_priv(ndev);
1774 	return mdp->msg_enable;
1775 }
1776 
1777 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1778 {
1779 	struct sh_eth_private *mdp = netdev_priv(ndev);
1780 	mdp->msg_enable = value;
1781 }
1782 
1783 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1784 	"rx_current", "tx_current",
1785 	"rx_dirty", "tx_dirty",
1786 };
1787 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1788 
1789 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1790 {
1791 	switch (sset) {
1792 	case ETH_SS_STATS:
1793 		return SH_ETH_STATS_LEN;
1794 	default:
1795 		return -EOPNOTSUPP;
1796 	}
1797 }
1798 
1799 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1800 			struct ethtool_stats *stats, u64 *data)
1801 {
1802 	struct sh_eth_private *mdp = netdev_priv(ndev);
1803 	int i = 0;
1804 
1805 	/* device-specific stats */
1806 	data[i++] = mdp->cur_rx;
1807 	data[i++] = mdp->cur_tx;
1808 	data[i++] = mdp->dirty_rx;
1809 	data[i++] = mdp->dirty_tx;
1810 }
1811 
1812 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1813 {
1814 	switch (stringset) {
1815 	case ETH_SS_STATS:
1816 		memcpy(data, *sh_eth_gstrings_stats,
1817 					sizeof(sh_eth_gstrings_stats));
1818 		break;
1819 	}
1820 }
1821 
1822 static void sh_eth_get_ringparam(struct net_device *ndev,
1823 				 struct ethtool_ringparam *ring)
1824 {
1825 	struct sh_eth_private *mdp = netdev_priv(ndev);
1826 
1827 	ring->rx_max_pending = RX_RING_MAX;
1828 	ring->tx_max_pending = TX_RING_MAX;
1829 	ring->rx_pending = mdp->num_rx_ring;
1830 	ring->tx_pending = mdp->num_tx_ring;
1831 }
1832 
1833 static int sh_eth_set_ringparam(struct net_device *ndev,
1834 				struct ethtool_ringparam *ring)
1835 {
1836 	struct sh_eth_private *mdp = netdev_priv(ndev);
1837 	int ret;
1838 
1839 	if (ring->tx_pending > TX_RING_MAX ||
1840 	    ring->rx_pending > RX_RING_MAX ||
1841 	    ring->tx_pending < TX_RING_MIN ||
1842 	    ring->rx_pending < RX_RING_MIN)
1843 		return -EINVAL;
1844 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1845 		return -EINVAL;
1846 
1847 	if (netif_running(ndev)) {
1848 		netif_tx_disable(ndev);
1849 		/* Disable interrupts by clearing the interrupt mask. */
1850 		sh_eth_write(ndev, 0x0000, EESIPR);
1851 		/* Stop the chip's Tx and Rx processes. */
1852 		sh_eth_write(ndev, 0, EDTRR);
1853 		sh_eth_write(ndev, 0, EDRRR);
1854 		synchronize_irq(ndev->irq);
1855 	}
1856 
1857 	/* Free all the skbuffs in the Rx queue. */
1858 	sh_eth_ring_free(ndev);
1859 	/* Free DMA buffer */
1860 	sh_eth_free_dma_buffer(mdp);
1861 
1862 	/* Set new parameters */
1863 	mdp->num_rx_ring = ring->rx_pending;
1864 	mdp->num_tx_ring = ring->tx_pending;
1865 
1866 	ret = sh_eth_ring_init(ndev);
1867 	if (ret < 0) {
1868 		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1869 		return ret;
1870 	}
1871 	ret = sh_eth_dev_init(ndev, false);
1872 	if (ret < 0) {
1873 		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1874 		return ret;
1875 	}
1876 
1877 	if (netif_running(ndev)) {
1878 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1879 		/* Setting the Rx mode will start the Rx process. */
1880 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1881 		netif_wake_queue(ndev);
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static const struct ethtool_ops sh_eth_ethtool_ops = {
1888 	.get_settings	= sh_eth_get_settings,
1889 	.set_settings	= sh_eth_set_settings,
1890 	.nway_reset	= sh_eth_nway_reset,
1891 	.get_msglevel	= sh_eth_get_msglevel,
1892 	.set_msglevel	= sh_eth_set_msglevel,
1893 	.get_link	= ethtool_op_get_link,
1894 	.get_strings	= sh_eth_get_strings,
1895 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1896 	.get_sset_count     = sh_eth_get_sset_count,
1897 	.get_ringparam	= sh_eth_get_ringparam,
1898 	.set_ringparam	= sh_eth_set_ringparam,
1899 };
1900 
1901 /* network device open function */
1902 static int sh_eth_open(struct net_device *ndev)
1903 {
1904 	int ret = 0;
1905 	struct sh_eth_private *mdp = netdev_priv(ndev);
1906 
1907 	pm_runtime_get_sync(&mdp->pdev->dev);
1908 
1909 	napi_enable(&mdp->napi);
1910 
1911 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1912 			  mdp->cd->irq_flags, ndev->name, ndev);
1913 	if (ret) {
1914 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1915 		goto out_napi_off;
1916 	}
1917 
1918 	/* Descriptor set */
1919 	ret = sh_eth_ring_init(ndev);
1920 	if (ret)
1921 		goto out_free_irq;
1922 
1923 	/* device init */
1924 	ret = sh_eth_dev_init(ndev, true);
1925 	if (ret)
1926 		goto out_free_irq;
1927 
1928 	/* PHY control start*/
1929 	ret = sh_eth_phy_start(ndev);
1930 	if (ret)
1931 		goto out_free_irq;
1932 
1933 	return ret;
1934 
1935 out_free_irq:
1936 	free_irq(ndev->irq, ndev);
1937 out_napi_off:
1938 	napi_disable(&mdp->napi);
1939 	pm_runtime_put_sync(&mdp->pdev->dev);
1940 	return ret;
1941 }
1942 
1943 /* Timeout function */
1944 static void sh_eth_tx_timeout(struct net_device *ndev)
1945 {
1946 	struct sh_eth_private *mdp = netdev_priv(ndev);
1947 	struct sh_eth_rxdesc *rxdesc;
1948 	int i;
1949 
1950 	netif_stop_queue(ndev);
1951 
1952 	if (netif_msg_timer(mdp))
1953 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1954 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1955 
1956 	/* tx_errors count up */
1957 	ndev->stats.tx_errors++;
1958 
1959 	/* Free all the skbuffs in the Rx queue. */
1960 	for (i = 0; i < mdp->num_rx_ring; i++) {
1961 		rxdesc = &mdp->rx_ring[i];
1962 		rxdesc->status = 0;
1963 		rxdesc->addr = 0xBADF00D0;
1964 		if (mdp->rx_skbuff[i])
1965 			dev_kfree_skb(mdp->rx_skbuff[i]);
1966 		mdp->rx_skbuff[i] = NULL;
1967 	}
1968 	for (i = 0; i < mdp->num_tx_ring; i++) {
1969 		if (mdp->tx_skbuff[i])
1970 			dev_kfree_skb(mdp->tx_skbuff[i]);
1971 		mdp->tx_skbuff[i] = NULL;
1972 	}
1973 
1974 	/* device init */
1975 	sh_eth_dev_init(ndev, true);
1976 }
1977 
1978 /* Packet transmit function */
1979 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1980 {
1981 	struct sh_eth_private *mdp = netdev_priv(ndev);
1982 	struct sh_eth_txdesc *txdesc;
1983 	u32 entry;
1984 	unsigned long flags;
1985 
1986 	spin_lock_irqsave(&mdp->lock, flags);
1987 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1988 		if (!sh_eth_txfree(ndev)) {
1989 			if (netif_msg_tx_queued(mdp))
1990 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1991 			netif_stop_queue(ndev);
1992 			spin_unlock_irqrestore(&mdp->lock, flags);
1993 			return NETDEV_TX_BUSY;
1994 		}
1995 	}
1996 	spin_unlock_irqrestore(&mdp->lock, flags);
1997 
1998 	entry = mdp->cur_tx % mdp->num_tx_ring;
1999 	mdp->tx_skbuff[entry] = skb;
2000 	txdesc = &mdp->tx_ring[entry];
2001 	/* soft swap. */
2002 	if (!mdp->cd->hw_swap)
2003 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2004 				 skb->len + 2);
2005 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2006 				      DMA_TO_DEVICE);
2007 	if (skb->len < ETHERSMALL)
2008 		txdesc->buffer_length = ETHERSMALL;
2009 	else
2010 		txdesc->buffer_length = skb->len;
2011 
2012 	if (entry >= mdp->num_tx_ring - 1)
2013 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2014 	else
2015 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2016 
2017 	mdp->cur_tx++;
2018 
2019 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2020 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2021 
2022 	return NETDEV_TX_OK;
2023 }
2024 
2025 /* device close function */
2026 static int sh_eth_close(struct net_device *ndev)
2027 {
2028 	struct sh_eth_private *mdp = netdev_priv(ndev);
2029 
2030 	netif_stop_queue(ndev);
2031 
2032 	/* Disable interrupts by clearing the interrupt mask. */
2033 	sh_eth_write(ndev, 0x0000, EESIPR);
2034 
2035 	/* Stop the chip's Tx and Rx processes. */
2036 	sh_eth_write(ndev, 0, EDTRR);
2037 	sh_eth_write(ndev, 0, EDRRR);
2038 
2039 	/* PHY Disconnect */
2040 	if (mdp->phydev) {
2041 		phy_stop(mdp->phydev);
2042 		phy_disconnect(mdp->phydev);
2043 	}
2044 
2045 	free_irq(ndev->irq, ndev);
2046 
2047 	napi_disable(&mdp->napi);
2048 
2049 	/* Free all the skbuffs in the Rx queue. */
2050 	sh_eth_ring_free(ndev);
2051 
2052 	/* free DMA buffer */
2053 	sh_eth_free_dma_buffer(mdp);
2054 
2055 	pm_runtime_put_sync(&mdp->pdev->dev);
2056 
2057 	return 0;
2058 }
2059 
2060 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2061 {
2062 	struct sh_eth_private *mdp = netdev_priv(ndev);
2063 
2064 	pm_runtime_get_sync(&mdp->pdev->dev);
2065 
2066 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2067 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2068 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2069 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2070 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2071 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2072 	if (sh_eth_is_gether(mdp)) {
2073 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2074 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2075 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2076 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2077 	} else {
2078 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2079 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2080 	}
2081 	pm_runtime_put_sync(&mdp->pdev->dev);
2082 
2083 	return &ndev->stats;
2084 }
2085 
2086 /* ioctl to device function */
2087 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
2088 				int cmd)
2089 {
2090 	struct sh_eth_private *mdp = netdev_priv(ndev);
2091 	struct phy_device *phydev = mdp->phydev;
2092 
2093 	if (!netif_running(ndev))
2094 		return -EINVAL;
2095 
2096 	if (!phydev)
2097 		return -ENODEV;
2098 
2099 	return phy_mii_ioctl(phydev, rq, cmd);
2100 }
2101 
2102 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2103 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2104 					    int entry)
2105 {
2106 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2107 }
2108 
2109 static u32 sh_eth_tsu_get_post_mask(int entry)
2110 {
2111 	return 0x0f << (28 - ((entry % 8) * 4));
2112 }
2113 
2114 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2115 {
2116 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2117 }
2118 
2119 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2120 					     int entry)
2121 {
2122 	struct sh_eth_private *mdp = netdev_priv(ndev);
2123 	u32 tmp;
2124 	void *reg_offset;
2125 
2126 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2127 	tmp = ioread32(reg_offset);
2128 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2129 }
2130 
2131 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2132 					      int entry)
2133 {
2134 	struct sh_eth_private *mdp = netdev_priv(ndev);
2135 	u32 post_mask, ref_mask, tmp;
2136 	void *reg_offset;
2137 
2138 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2139 	post_mask = sh_eth_tsu_get_post_mask(entry);
2140 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2141 
2142 	tmp = ioread32(reg_offset);
2143 	iowrite32(tmp & ~post_mask, reg_offset);
2144 
2145 	/* If other port enables, the function returns "true" */
2146 	return tmp & ref_mask;
2147 }
2148 
2149 static int sh_eth_tsu_busy(struct net_device *ndev)
2150 {
2151 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2152 	struct sh_eth_private *mdp = netdev_priv(ndev);
2153 
2154 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2155 		udelay(10);
2156 		timeout--;
2157 		if (timeout <= 0) {
2158 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
2159 			return -ETIMEDOUT;
2160 		}
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2167 				  const u8 *addr)
2168 {
2169 	u32 val;
2170 
2171 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2172 	iowrite32(val, reg);
2173 	if (sh_eth_tsu_busy(ndev) < 0)
2174 		return -EBUSY;
2175 
2176 	val = addr[4] << 8 | addr[5];
2177 	iowrite32(val, reg + 4);
2178 	if (sh_eth_tsu_busy(ndev) < 0)
2179 		return -EBUSY;
2180 
2181 	return 0;
2182 }
2183 
2184 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2185 {
2186 	u32 val;
2187 
2188 	val = ioread32(reg);
2189 	addr[0] = (val >> 24) & 0xff;
2190 	addr[1] = (val >> 16) & 0xff;
2191 	addr[2] = (val >> 8) & 0xff;
2192 	addr[3] = val & 0xff;
2193 	val = ioread32(reg + 4);
2194 	addr[4] = (val >> 8) & 0xff;
2195 	addr[5] = val & 0xff;
2196 }
2197 
2198 
2199 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2200 {
2201 	struct sh_eth_private *mdp = netdev_priv(ndev);
2202 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2203 	int i;
2204 	u8 c_addr[ETH_ALEN];
2205 
2206 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2207 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2208 		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
2209 			return i;
2210 	}
2211 
2212 	return -ENOENT;
2213 }
2214 
2215 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2216 {
2217 	u8 blank[ETH_ALEN];
2218 	int entry;
2219 
2220 	memset(blank, 0, sizeof(blank));
2221 	entry = sh_eth_tsu_find_entry(ndev, blank);
2222 	return (entry < 0) ? -ENOMEM : entry;
2223 }
2224 
2225 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2226 					      int entry)
2227 {
2228 	struct sh_eth_private *mdp = netdev_priv(ndev);
2229 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2230 	int ret;
2231 	u8 blank[ETH_ALEN];
2232 
2233 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2234 			 ~(1 << (31 - entry)), TSU_TEN);
2235 
2236 	memset(blank, 0, sizeof(blank));
2237 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2238 	if (ret < 0)
2239 		return ret;
2240 	return 0;
2241 }
2242 
2243 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2244 {
2245 	struct sh_eth_private *mdp = netdev_priv(ndev);
2246 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2247 	int i, ret;
2248 
2249 	if (!mdp->cd->tsu)
2250 		return 0;
2251 
2252 	i = sh_eth_tsu_find_entry(ndev, addr);
2253 	if (i < 0) {
2254 		/* No entry found, create one */
2255 		i = sh_eth_tsu_find_empty(ndev);
2256 		if (i < 0)
2257 			return -ENOMEM;
2258 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2259 		if (ret < 0)
2260 			return ret;
2261 
2262 		/* Enable the entry */
2263 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2264 				 (1 << (31 - i)), TSU_TEN);
2265 	}
2266 
2267 	/* Entry found or created, enable POST */
2268 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2269 
2270 	return 0;
2271 }
2272 
2273 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2274 {
2275 	struct sh_eth_private *mdp = netdev_priv(ndev);
2276 	int i, ret;
2277 
2278 	if (!mdp->cd->tsu)
2279 		return 0;
2280 
2281 	i = sh_eth_tsu_find_entry(ndev, addr);
2282 	if (i) {
2283 		/* Entry found */
2284 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2285 			goto done;
2286 
2287 		/* Disable the entry if both ports was disabled */
2288 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2289 		if (ret < 0)
2290 			return ret;
2291 	}
2292 done:
2293 	return 0;
2294 }
2295 
2296 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2297 {
2298 	struct sh_eth_private *mdp = netdev_priv(ndev);
2299 	int i, ret;
2300 
2301 	if (unlikely(!mdp->cd->tsu))
2302 		return 0;
2303 
2304 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2305 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2306 			continue;
2307 
2308 		/* Disable the entry if both ports was disabled */
2309 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2310 		if (ret < 0)
2311 			return ret;
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2318 {
2319 	struct sh_eth_private *mdp = netdev_priv(ndev);
2320 	u8 addr[ETH_ALEN];
2321 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2322 	int i;
2323 
2324 	if (unlikely(!mdp->cd->tsu))
2325 		return;
2326 
2327 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2328 		sh_eth_tsu_read_entry(reg_offset, addr);
2329 		if (is_multicast_ether_addr(addr))
2330 			sh_eth_tsu_del_entry(ndev, addr);
2331 	}
2332 }
2333 
2334 /* Multicast reception directions set */
2335 static void sh_eth_set_multicast_list(struct net_device *ndev)
2336 {
2337 	struct sh_eth_private *mdp = netdev_priv(ndev);
2338 	u32 ecmr_bits;
2339 	int mcast_all = 0;
2340 	unsigned long flags;
2341 
2342 	spin_lock_irqsave(&mdp->lock, flags);
2343 	/*
2344 	 * Initial condition is MCT = 1, PRM = 0.
2345 	 * Depending on ndev->flags, set PRM or clear MCT
2346 	 */
2347 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2348 
2349 	if (!(ndev->flags & IFF_MULTICAST)) {
2350 		sh_eth_tsu_purge_mcast(ndev);
2351 		mcast_all = 1;
2352 	}
2353 	if (ndev->flags & IFF_ALLMULTI) {
2354 		sh_eth_tsu_purge_mcast(ndev);
2355 		ecmr_bits &= ~ECMR_MCT;
2356 		mcast_all = 1;
2357 	}
2358 
2359 	if (ndev->flags & IFF_PROMISC) {
2360 		sh_eth_tsu_purge_all(ndev);
2361 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2362 	} else if (mdp->cd->tsu) {
2363 		struct netdev_hw_addr *ha;
2364 		netdev_for_each_mc_addr(ha, ndev) {
2365 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2366 				continue;
2367 
2368 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2369 				if (!mcast_all) {
2370 					sh_eth_tsu_purge_mcast(ndev);
2371 					ecmr_bits &= ~ECMR_MCT;
2372 					mcast_all = 1;
2373 				}
2374 			}
2375 		}
2376 	} else {
2377 		/* Normal, unicast/broadcast-only mode. */
2378 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2379 	}
2380 
2381 	/* update the ethernet mode */
2382 	sh_eth_write(ndev, ecmr_bits, ECMR);
2383 
2384 	spin_unlock_irqrestore(&mdp->lock, flags);
2385 }
2386 
2387 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2388 {
2389 	if (!mdp->port)
2390 		return TSU_VTAG0;
2391 	else
2392 		return TSU_VTAG1;
2393 }
2394 
2395 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2396 				  __be16 proto, u16 vid)
2397 {
2398 	struct sh_eth_private *mdp = netdev_priv(ndev);
2399 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2400 
2401 	if (unlikely(!mdp->cd->tsu))
2402 		return -EPERM;
2403 
2404 	/* No filtering if vid = 0 */
2405 	if (!vid)
2406 		return 0;
2407 
2408 	mdp->vlan_num_ids++;
2409 
2410 	/*
2411 	 * The controller has one VLAN tag HW filter. So, if the filter is
2412 	 * already enabled, the driver disables it and the filte
2413 	 */
2414 	if (mdp->vlan_num_ids > 1) {
2415 		/* disable VLAN filter */
2416 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2417 		return 0;
2418 	}
2419 
2420 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2421 			 vtag_reg_index);
2422 
2423 	return 0;
2424 }
2425 
2426 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2427 				   __be16 proto, u16 vid)
2428 {
2429 	struct sh_eth_private *mdp = netdev_priv(ndev);
2430 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2431 
2432 	if (unlikely(!mdp->cd->tsu))
2433 		return -EPERM;
2434 
2435 	/* No filtering if vid = 0 */
2436 	if (!vid)
2437 		return 0;
2438 
2439 	mdp->vlan_num_ids--;
2440 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2441 
2442 	return 0;
2443 }
2444 
2445 /* SuperH's TSU register init function */
2446 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2447 {
2448 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2449 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2450 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2451 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2452 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2453 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2454 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2455 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2456 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2457 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2458 	if (sh_eth_is_gether(mdp)) {
2459 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2460 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2461 	} else {
2462 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2463 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2464 	}
2465 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2466 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2467 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2468 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2469 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2470 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2471 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2472 }
2473 
2474 /* MDIO bus release function */
2475 static int sh_mdio_release(struct net_device *ndev)
2476 {
2477 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2478 
2479 	/* unregister mdio bus */
2480 	mdiobus_unregister(bus);
2481 
2482 	/* remove mdio bus info from net_device */
2483 	dev_set_drvdata(&ndev->dev, NULL);
2484 
2485 	/* free bitbang info */
2486 	free_mdio_bitbang(bus);
2487 
2488 	return 0;
2489 }
2490 
2491 /* MDIO bus init function */
2492 static int sh_mdio_init(struct net_device *ndev, int id,
2493 			struct sh_eth_plat_data *pd)
2494 {
2495 	int ret, i;
2496 	struct bb_info *bitbang;
2497 	struct sh_eth_private *mdp = netdev_priv(ndev);
2498 
2499 	/* create bit control struct for PHY */
2500 	bitbang = devm_kzalloc(&ndev->dev, sizeof(struct bb_info),
2501 			       GFP_KERNEL);
2502 	if (!bitbang) {
2503 		ret = -ENOMEM;
2504 		goto out;
2505 	}
2506 
2507 	/* bitbang init */
2508 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2509 	bitbang->set_gate = pd->set_mdio_gate;
2510 	bitbang->mdi_msk = PIR_MDI;
2511 	bitbang->mdo_msk = PIR_MDO;
2512 	bitbang->mmd_msk = PIR_MMD;
2513 	bitbang->mdc_msk = PIR_MDC;
2514 	bitbang->ctrl.ops = &bb_ops;
2515 
2516 	/* MII controller setting */
2517 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2518 	if (!mdp->mii_bus) {
2519 		ret = -ENOMEM;
2520 		goto out;
2521 	}
2522 
2523 	/* Hook up MII support for ethtool */
2524 	mdp->mii_bus->name = "sh_mii";
2525 	mdp->mii_bus->parent = &ndev->dev;
2526 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2527 		mdp->pdev->name, id);
2528 
2529 	/* PHY IRQ */
2530 	mdp->mii_bus->irq = devm_kzalloc(&ndev->dev,
2531 					 sizeof(int) * PHY_MAX_ADDR,
2532 					 GFP_KERNEL);
2533 	if (!mdp->mii_bus->irq) {
2534 		ret = -ENOMEM;
2535 		goto out_free_bus;
2536 	}
2537 
2538 	for (i = 0; i < PHY_MAX_ADDR; i++)
2539 		mdp->mii_bus->irq[i] = PHY_POLL;
2540 
2541 	/* register mdio bus */
2542 	ret = mdiobus_register(mdp->mii_bus);
2543 	if (ret)
2544 		goto out_free_bus;
2545 
2546 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2547 
2548 	return 0;
2549 
2550 out_free_bus:
2551 	free_mdio_bitbang(mdp->mii_bus);
2552 
2553 out:
2554 	return ret;
2555 }
2556 
2557 static const u16 *sh_eth_get_register_offset(int register_type)
2558 {
2559 	const u16 *reg_offset = NULL;
2560 
2561 	switch (register_type) {
2562 	case SH_ETH_REG_GIGABIT:
2563 		reg_offset = sh_eth_offset_gigabit;
2564 		break;
2565 	case SH_ETH_REG_FAST_RCAR:
2566 		reg_offset = sh_eth_offset_fast_rcar;
2567 		break;
2568 	case SH_ETH_REG_FAST_SH4:
2569 		reg_offset = sh_eth_offset_fast_sh4;
2570 		break;
2571 	case SH_ETH_REG_FAST_SH3_SH2:
2572 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2573 		break;
2574 	default:
2575 		pr_err("Unknown register type (%d)\n", register_type);
2576 		break;
2577 	}
2578 
2579 	return reg_offset;
2580 }
2581 
2582 static const struct net_device_ops sh_eth_netdev_ops = {
2583 	.ndo_open		= sh_eth_open,
2584 	.ndo_stop		= sh_eth_close,
2585 	.ndo_start_xmit		= sh_eth_start_xmit,
2586 	.ndo_get_stats		= sh_eth_get_stats,
2587 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2588 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2589 	.ndo_validate_addr	= eth_validate_addr,
2590 	.ndo_set_mac_address	= eth_mac_addr,
2591 	.ndo_change_mtu		= eth_change_mtu,
2592 };
2593 
2594 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2595 	.ndo_open		= sh_eth_open,
2596 	.ndo_stop		= sh_eth_close,
2597 	.ndo_start_xmit		= sh_eth_start_xmit,
2598 	.ndo_get_stats		= sh_eth_get_stats,
2599 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2600 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2601 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2602 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2603 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2604 	.ndo_validate_addr	= eth_validate_addr,
2605 	.ndo_set_mac_address	= eth_mac_addr,
2606 	.ndo_change_mtu		= eth_change_mtu,
2607 };
2608 
2609 static int sh_eth_drv_probe(struct platform_device *pdev)
2610 {
2611 	int ret, devno = 0;
2612 	struct resource *res;
2613 	struct net_device *ndev = NULL;
2614 	struct sh_eth_private *mdp = NULL;
2615 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2616 	const struct platform_device_id *id = platform_get_device_id(pdev);
2617 
2618 	/* get base addr */
2619 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2620 	if (unlikely(res == NULL)) {
2621 		dev_err(&pdev->dev, "invalid resource\n");
2622 		ret = -EINVAL;
2623 		goto out;
2624 	}
2625 
2626 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2627 	if (!ndev) {
2628 		ret = -ENOMEM;
2629 		goto out;
2630 	}
2631 
2632 	/* The sh Ether-specific entries in the device structure. */
2633 	ndev->base_addr = res->start;
2634 	devno = pdev->id;
2635 	if (devno < 0)
2636 		devno = 0;
2637 
2638 	ndev->dma = -1;
2639 	ret = platform_get_irq(pdev, 0);
2640 	if (ret < 0) {
2641 		ret = -ENODEV;
2642 		goto out_release;
2643 	}
2644 	ndev->irq = ret;
2645 
2646 	SET_NETDEV_DEV(ndev, &pdev->dev);
2647 
2648 	mdp = netdev_priv(ndev);
2649 	mdp->num_tx_ring = TX_RING_SIZE;
2650 	mdp->num_rx_ring = RX_RING_SIZE;
2651 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2652 	if (IS_ERR(mdp->addr)) {
2653 		ret = PTR_ERR(mdp->addr);
2654 		goto out_release;
2655 	}
2656 
2657 	spin_lock_init(&mdp->lock);
2658 	mdp->pdev = pdev;
2659 	pm_runtime_enable(&pdev->dev);
2660 	pm_runtime_resume(&pdev->dev);
2661 
2662 	/* get PHY ID */
2663 	mdp->phy_id = pd->phy;
2664 	mdp->phy_interface = pd->phy_interface;
2665 	/* EDMAC endian */
2666 	mdp->edmac_endian = pd->edmac_endian;
2667 	mdp->no_ether_link = pd->no_ether_link;
2668 	mdp->ether_link_active_low = pd->ether_link_active_low;
2669 
2670 	/* set cpu data */
2671 	mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2672 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2673 	sh_eth_set_default_cpu_data(mdp->cd);
2674 
2675 	/* set function */
2676 	if (mdp->cd->tsu)
2677 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2678 	else
2679 		ndev->netdev_ops = &sh_eth_netdev_ops;
2680 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2681 	ndev->watchdog_timeo = TX_TIMEOUT;
2682 
2683 	/* debug message level */
2684 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2685 
2686 	/* read and set MAC address */
2687 	read_mac_address(ndev, pd->mac_addr);
2688 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2689 		dev_warn(&pdev->dev,
2690 			 "no valid MAC address supplied, using a random one.\n");
2691 		eth_hw_addr_random(ndev);
2692 	}
2693 
2694 	/* ioremap the TSU registers */
2695 	if (mdp->cd->tsu) {
2696 		struct resource *rtsu;
2697 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2698 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2699 		if (IS_ERR(mdp->tsu_addr)) {
2700 			ret = PTR_ERR(mdp->tsu_addr);
2701 			goto out_release;
2702 		}
2703 		mdp->port = devno % 2;
2704 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2705 	}
2706 
2707 	/* initialize first or needed device */
2708 	if (!devno || pd->needs_init) {
2709 		if (mdp->cd->chip_reset)
2710 			mdp->cd->chip_reset(ndev);
2711 
2712 		if (mdp->cd->tsu) {
2713 			/* TSU init (Init only)*/
2714 			sh_eth_tsu_init(mdp);
2715 		}
2716 	}
2717 
2718 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2719 
2720 	/* network device register */
2721 	ret = register_netdev(ndev);
2722 	if (ret)
2723 		goto out_napi_del;
2724 
2725 	/* mdio bus init */
2726 	ret = sh_mdio_init(ndev, pdev->id, pd);
2727 	if (ret)
2728 		goto out_unregister;
2729 
2730 	/* print device information */
2731 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2732 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2733 
2734 	platform_set_drvdata(pdev, ndev);
2735 
2736 	return ret;
2737 
2738 out_unregister:
2739 	unregister_netdev(ndev);
2740 
2741 out_napi_del:
2742 	netif_napi_del(&mdp->napi);
2743 
2744 out_release:
2745 	/* net_dev free */
2746 	if (ndev)
2747 		free_netdev(ndev);
2748 
2749 out:
2750 	return ret;
2751 }
2752 
2753 static int sh_eth_drv_remove(struct platform_device *pdev)
2754 {
2755 	struct net_device *ndev = platform_get_drvdata(pdev);
2756 	struct sh_eth_private *mdp = netdev_priv(ndev);
2757 
2758 	sh_mdio_release(ndev);
2759 	unregister_netdev(ndev);
2760 	netif_napi_del(&mdp->napi);
2761 	pm_runtime_disable(&pdev->dev);
2762 	free_netdev(ndev);
2763 
2764 	return 0;
2765 }
2766 
2767 #ifdef CONFIG_PM
2768 static int sh_eth_runtime_nop(struct device *dev)
2769 {
2770 	/*
2771 	 * Runtime PM callback shared between ->runtime_suspend()
2772 	 * and ->runtime_resume(). Simply returns success.
2773 	 *
2774 	 * This driver re-initializes all registers after
2775 	 * pm_runtime_get_sync() anyway so there is no need
2776 	 * to save and restore registers here.
2777 	 */
2778 	return 0;
2779 }
2780 
2781 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2782 	.runtime_suspend = sh_eth_runtime_nop,
2783 	.runtime_resume = sh_eth_runtime_nop,
2784 };
2785 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2786 #else
2787 #define SH_ETH_PM_OPS NULL
2788 #endif
2789 
2790 static struct platform_device_id sh_eth_id_table[] = {
2791 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2792 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2793 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2794 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2795 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2796 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2797 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2798 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2799 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2800 	{ "r8a7790-ether", (kernel_ulong_t)&r8a7790_data },
2801 	{ }
2802 };
2803 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2804 
2805 static struct platform_driver sh_eth_driver = {
2806 	.probe = sh_eth_drv_probe,
2807 	.remove = sh_eth_drv_remove,
2808 	.id_table = sh_eth_id_table,
2809 	.driver = {
2810 		   .name = CARDNAME,
2811 		   .pm = SH_ETH_PM_OPS,
2812 	},
2813 };
2814 
2815 module_platform_driver(sh_eth_driver);
2816 
2817 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2818 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2819 MODULE_LICENSE("GPL v2");
2820