xref: /openbmc/linux/drivers/net/ethernet/renesas/sh_eth.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_DEFAULTS			\
56 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
57 
58 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
59 	SH_ETH_OFFSET_DEFAULTS,
60 
61 	[EDSR]		= 0x0000,
62 	[EDMR]		= 0x0400,
63 	[EDTRR]		= 0x0408,
64 	[EDRRR]		= 0x0410,
65 	[EESR]		= 0x0428,
66 	[EESIPR]	= 0x0430,
67 	[TDLAR]		= 0x0010,
68 	[TDFAR]		= 0x0014,
69 	[TDFXR]		= 0x0018,
70 	[TDFFR]		= 0x001c,
71 	[RDLAR]		= 0x0030,
72 	[RDFAR]		= 0x0034,
73 	[RDFXR]		= 0x0038,
74 	[RDFFR]		= 0x003c,
75 	[TRSCER]	= 0x0438,
76 	[RMFCR]		= 0x0440,
77 	[TFTR]		= 0x0448,
78 	[FDR]		= 0x0450,
79 	[RMCR]		= 0x0458,
80 	[RPADIR]	= 0x0460,
81 	[FCFTR]		= 0x0468,
82 	[CSMR]		= 0x04E4,
83 
84 	[ECMR]		= 0x0500,
85 	[ECSR]		= 0x0510,
86 	[ECSIPR]	= 0x0518,
87 	[PIR]		= 0x0520,
88 	[PSR]		= 0x0528,
89 	[PIPR]		= 0x052c,
90 	[RFLR]		= 0x0508,
91 	[APR]		= 0x0554,
92 	[MPR]		= 0x0558,
93 	[PFTCR]		= 0x055c,
94 	[PFRCR]		= 0x0560,
95 	[TPAUSER]	= 0x0564,
96 	[GECMR]		= 0x05b0,
97 	[BCULR]		= 0x05b4,
98 	[MAHR]		= 0x05c0,
99 	[MALR]		= 0x05c8,
100 	[TROCR]		= 0x0700,
101 	[CDCR]		= 0x0708,
102 	[LCCR]		= 0x0710,
103 	[CEFCR]		= 0x0740,
104 	[FRECR]		= 0x0748,
105 	[TSFRCR]	= 0x0750,
106 	[TLFRCR]	= 0x0758,
107 	[RFCR]		= 0x0760,
108 	[CERCR]		= 0x0768,
109 	[CEECR]		= 0x0770,
110 	[MAFCR]		= 0x0778,
111 	[RMII_MII]	= 0x0790,
112 
113 	[ARSTR]		= 0x0000,
114 	[TSU_CTRST]	= 0x0004,
115 	[TSU_FWEN0]	= 0x0010,
116 	[TSU_FWEN1]	= 0x0014,
117 	[TSU_FCM]	= 0x0018,
118 	[TSU_BSYSL0]	= 0x0020,
119 	[TSU_BSYSL1]	= 0x0024,
120 	[TSU_PRISL0]	= 0x0028,
121 	[TSU_PRISL1]	= 0x002c,
122 	[TSU_FWSL0]	= 0x0030,
123 	[TSU_FWSL1]	= 0x0034,
124 	[TSU_FWSLC]	= 0x0038,
125 	[TSU_QTAG0]	= 0x0040,
126 	[TSU_QTAG1]	= 0x0044,
127 	[TSU_FWSR]	= 0x0050,
128 	[TSU_FWINMK]	= 0x0054,
129 	[TSU_ADQT0]	= 0x0048,
130 	[TSU_ADQT1]	= 0x004c,
131 	[TSU_VTAG0]	= 0x0058,
132 	[TSU_VTAG1]	= 0x005c,
133 	[TSU_ADSBSY]	= 0x0060,
134 	[TSU_TEN]	= 0x0064,
135 	[TSU_POST1]	= 0x0070,
136 	[TSU_POST2]	= 0x0074,
137 	[TSU_POST3]	= 0x0078,
138 	[TSU_POST4]	= 0x007c,
139 	[TSU_ADRH0]	= 0x0100,
140 
141 	[TXNLCR0]	= 0x0080,
142 	[TXALCR0]	= 0x0084,
143 	[RXNLCR0]	= 0x0088,
144 	[RXALCR0]	= 0x008c,
145 	[FWNLCR0]	= 0x0090,
146 	[FWALCR0]	= 0x0094,
147 	[TXNLCR1]	= 0x00a0,
148 	[TXALCR1]	= 0x00a0,
149 	[RXNLCR1]	= 0x00a8,
150 	[RXALCR1]	= 0x00ac,
151 	[FWNLCR1]	= 0x00b0,
152 	[FWALCR1]	= 0x00b4,
153 };
154 
155 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
156 	SH_ETH_OFFSET_DEFAULTS,
157 
158 	[EDSR]		= 0x0000,
159 	[EDMR]		= 0x0400,
160 	[EDTRR]		= 0x0408,
161 	[EDRRR]		= 0x0410,
162 	[EESR]		= 0x0428,
163 	[EESIPR]	= 0x0430,
164 	[TDLAR]		= 0x0010,
165 	[TDFAR]		= 0x0014,
166 	[TDFXR]		= 0x0018,
167 	[TDFFR]		= 0x001c,
168 	[RDLAR]		= 0x0030,
169 	[RDFAR]		= 0x0034,
170 	[RDFXR]		= 0x0038,
171 	[RDFFR]		= 0x003c,
172 	[TRSCER]	= 0x0438,
173 	[RMFCR]		= 0x0440,
174 	[TFTR]		= 0x0448,
175 	[FDR]		= 0x0450,
176 	[RMCR]		= 0x0458,
177 	[RPADIR]	= 0x0460,
178 	[FCFTR]		= 0x0468,
179 	[CSMR]		= 0x04E4,
180 
181 	[ECMR]		= 0x0500,
182 	[RFLR]		= 0x0508,
183 	[ECSR]		= 0x0510,
184 	[ECSIPR]	= 0x0518,
185 	[PIR]		= 0x0520,
186 	[APR]		= 0x0554,
187 	[MPR]		= 0x0558,
188 	[PFTCR]		= 0x055c,
189 	[PFRCR]		= 0x0560,
190 	[TPAUSER]	= 0x0564,
191 	[MAHR]		= 0x05c0,
192 	[MALR]		= 0x05c8,
193 	[CEFCR]		= 0x0740,
194 	[FRECR]		= 0x0748,
195 	[TSFRCR]	= 0x0750,
196 	[TLFRCR]	= 0x0758,
197 	[RFCR]		= 0x0760,
198 	[MAFCR]		= 0x0778,
199 
200 	[ARSTR]		= 0x0000,
201 	[TSU_CTRST]	= 0x0004,
202 	[TSU_VTAG0]	= 0x0058,
203 	[TSU_ADSBSY]	= 0x0060,
204 	[TSU_TEN]	= 0x0064,
205 	[TSU_ADRH0]	= 0x0100,
206 
207 	[TXNLCR0]	= 0x0080,
208 	[TXALCR0]	= 0x0084,
209 	[RXNLCR0]	= 0x0088,
210 	[RXALCR0]	= 0x008C,
211 };
212 
213 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
214 	SH_ETH_OFFSET_DEFAULTS,
215 
216 	[ECMR]		= 0x0300,
217 	[RFLR]		= 0x0308,
218 	[ECSR]		= 0x0310,
219 	[ECSIPR]	= 0x0318,
220 	[PIR]		= 0x0320,
221 	[PSR]		= 0x0328,
222 	[RDMLR]		= 0x0340,
223 	[IPGR]		= 0x0350,
224 	[APR]		= 0x0354,
225 	[MPR]		= 0x0358,
226 	[RFCF]		= 0x0360,
227 	[TPAUSER]	= 0x0364,
228 	[TPAUSECR]	= 0x0368,
229 	[MAHR]		= 0x03c0,
230 	[MALR]		= 0x03c8,
231 	[TROCR]		= 0x03d0,
232 	[CDCR]		= 0x03d4,
233 	[LCCR]		= 0x03d8,
234 	[CNDCR]		= 0x03dc,
235 	[CEFCR]		= 0x03e4,
236 	[FRECR]		= 0x03e8,
237 	[TSFRCR]	= 0x03ec,
238 	[TLFRCR]	= 0x03f0,
239 	[RFCR]		= 0x03f4,
240 	[MAFCR]		= 0x03f8,
241 
242 	[EDMR]		= 0x0200,
243 	[EDTRR]		= 0x0208,
244 	[EDRRR]		= 0x0210,
245 	[TDLAR]		= 0x0218,
246 	[RDLAR]		= 0x0220,
247 	[EESR]		= 0x0228,
248 	[EESIPR]	= 0x0230,
249 	[TRSCER]	= 0x0238,
250 	[RMFCR]		= 0x0240,
251 	[TFTR]		= 0x0248,
252 	[FDR]		= 0x0250,
253 	[RMCR]		= 0x0258,
254 	[TFUCR]		= 0x0264,
255 	[RFOCR]		= 0x0268,
256 	[RMIIMODE]      = 0x026c,
257 	[FCFTR]		= 0x0270,
258 	[TRIMD]		= 0x027c,
259 };
260 
261 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
262 	SH_ETH_OFFSET_DEFAULTS,
263 
264 	[ECMR]		= 0x0100,
265 	[RFLR]		= 0x0108,
266 	[ECSR]		= 0x0110,
267 	[ECSIPR]	= 0x0118,
268 	[PIR]		= 0x0120,
269 	[PSR]		= 0x0128,
270 	[RDMLR]		= 0x0140,
271 	[IPGR]		= 0x0150,
272 	[APR]		= 0x0154,
273 	[MPR]		= 0x0158,
274 	[TPAUSER]	= 0x0164,
275 	[RFCF]		= 0x0160,
276 	[TPAUSECR]	= 0x0168,
277 	[BCFRR]		= 0x016c,
278 	[MAHR]		= 0x01c0,
279 	[MALR]		= 0x01c8,
280 	[TROCR]		= 0x01d0,
281 	[CDCR]		= 0x01d4,
282 	[LCCR]		= 0x01d8,
283 	[CNDCR]		= 0x01dc,
284 	[CEFCR]		= 0x01e4,
285 	[FRECR]		= 0x01e8,
286 	[TSFRCR]	= 0x01ec,
287 	[TLFRCR]	= 0x01f0,
288 	[RFCR]		= 0x01f4,
289 	[MAFCR]		= 0x01f8,
290 	[RTRATE]	= 0x01fc,
291 
292 	[EDMR]		= 0x0000,
293 	[EDTRR]		= 0x0008,
294 	[EDRRR]		= 0x0010,
295 	[TDLAR]		= 0x0018,
296 	[RDLAR]		= 0x0020,
297 	[EESR]		= 0x0028,
298 	[EESIPR]	= 0x0030,
299 	[TRSCER]	= 0x0038,
300 	[RMFCR]		= 0x0040,
301 	[TFTR]		= 0x0048,
302 	[FDR]		= 0x0050,
303 	[RMCR]		= 0x0058,
304 	[TFUCR]		= 0x0064,
305 	[RFOCR]		= 0x0068,
306 	[FCFTR]		= 0x0070,
307 	[RPADIR]	= 0x0078,
308 	[TRIMD]		= 0x007c,
309 	[RBWAR]		= 0x00c8,
310 	[RDFAR]		= 0x00cc,
311 	[TBRAR]		= 0x00d4,
312 	[TDFAR]		= 0x00d8,
313 };
314 
315 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
316 	SH_ETH_OFFSET_DEFAULTS,
317 
318 	[EDMR]		= 0x0000,
319 	[EDTRR]		= 0x0004,
320 	[EDRRR]		= 0x0008,
321 	[TDLAR]		= 0x000c,
322 	[RDLAR]		= 0x0010,
323 	[EESR]		= 0x0014,
324 	[EESIPR]	= 0x0018,
325 	[TRSCER]	= 0x001c,
326 	[RMFCR]		= 0x0020,
327 	[TFTR]		= 0x0024,
328 	[FDR]		= 0x0028,
329 	[RMCR]		= 0x002c,
330 	[EDOCR]		= 0x0030,
331 	[FCFTR]		= 0x0034,
332 	[RPADIR]	= 0x0038,
333 	[TRIMD]		= 0x003c,
334 	[RBWAR]		= 0x0040,
335 	[RDFAR]		= 0x0044,
336 	[TBRAR]		= 0x004c,
337 	[TDFAR]		= 0x0050,
338 
339 	[ECMR]		= 0x0160,
340 	[ECSR]		= 0x0164,
341 	[ECSIPR]	= 0x0168,
342 	[PIR]		= 0x016c,
343 	[MAHR]		= 0x0170,
344 	[MALR]		= 0x0174,
345 	[RFLR]		= 0x0178,
346 	[PSR]		= 0x017c,
347 	[TROCR]		= 0x0180,
348 	[CDCR]		= 0x0184,
349 	[LCCR]		= 0x0188,
350 	[CNDCR]		= 0x018c,
351 	[CEFCR]		= 0x0194,
352 	[FRECR]		= 0x0198,
353 	[TSFRCR]	= 0x019c,
354 	[TLFRCR]	= 0x01a0,
355 	[RFCR]		= 0x01a4,
356 	[MAFCR]		= 0x01a8,
357 	[IPGR]		= 0x01b4,
358 	[APR]		= 0x01b8,
359 	[MPR]		= 0x01bc,
360 	[TPAUSER]	= 0x01c4,
361 	[BCFR]		= 0x01cc,
362 
363 	[ARSTR]		= 0x0000,
364 	[TSU_CTRST]	= 0x0004,
365 	[TSU_FWEN0]	= 0x0010,
366 	[TSU_FWEN1]	= 0x0014,
367 	[TSU_FCM]	= 0x0018,
368 	[TSU_BSYSL0]	= 0x0020,
369 	[TSU_BSYSL1]	= 0x0024,
370 	[TSU_PRISL0]	= 0x0028,
371 	[TSU_PRISL1]	= 0x002c,
372 	[TSU_FWSL0]	= 0x0030,
373 	[TSU_FWSL1]	= 0x0034,
374 	[TSU_FWSLC]	= 0x0038,
375 	[TSU_QTAGM0]	= 0x0040,
376 	[TSU_QTAGM1]	= 0x0044,
377 	[TSU_ADQT0]	= 0x0048,
378 	[TSU_ADQT1]	= 0x004c,
379 	[TSU_FWSR]	= 0x0050,
380 	[TSU_FWINMK]	= 0x0054,
381 	[TSU_ADSBSY]	= 0x0060,
382 	[TSU_TEN]	= 0x0064,
383 	[TSU_POST1]	= 0x0070,
384 	[TSU_POST2]	= 0x0074,
385 	[TSU_POST3]	= 0x0078,
386 	[TSU_POST4]	= 0x007c,
387 
388 	[TXNLCR0]	= 0x0080,
389 	[TXALCR0]	= 0x0084,
390 	[RXNLCR0]	= 0x0088,
391 	[RXALCR0]	= 0x008c,
392 	[FWNLCR0]	= 0x0090,
393 	[FWALCR0]	= 0x0094,
394 	[TXNLCR1]	= 0x00a0,
395 	[TXALCR1]	= 0x00a0,
396 	[RXNLCR1]	= 0x00a8,
397 	[RXALCR1]	= 0x00ac,
398 	[FWNLCR1]	= 0x00b0,
399 	[FWALCR1]	= 0x00b4,
400 
401 	[TSU_ADRH0]	= 0x0100,
402 };
403 
404 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
405 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
406 
407 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
408 {
409 	return mdp->reg_offset == sh_eth_offset_gigabit;
410 }
411 
412 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
413 {
414 	return mdp->reg_offset == sh_eth_offset_fast_rz;
415 }
416 
417 static void sh_eth_select_mii(struct net_device *ndev)
418 {
419 	u32 value = 0x0;
420 	struct sh_eth_private *mdp = netdev_priv(ndev);
421 
422 	switch (mdp->phy_interface) {
423 	case PHY_INTERFACE_MODE_GMII:
424 		value = 0x2;
425 		break;
426 	case PHY_INTERFACE_MODE_MII:
427 		value = 0x1;
428 		break;
429 	case PHY_INTERFACE_MODE_RMII:
430 		value = 0x0;
431 		break;
432 	default:
433 		netdev_warn(ndev,
434 			    "PHY interface mode was not setup. Set to MII.\n");
435 		value = 0x1;
436 		break;
437 	}
438 
439 	sh_eth_write(ndev, value, RMII_MII);
440 }
441 
442 static void sh_eth_set_duplex(struct net_device *ndev)
443 {
444 	struct sh_eth_private *mdp = netdev_priv(ndev);
445 
446 	if (mdp->duplex) /* Full */
447 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
448 	else		/* Half */
449 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
450 }
451 
452 /* There is CPU dependent code */
453 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 
457 	switch (mdp->speed) {
458 	case 10: /* 10BASE */
459 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
460 		break;
461 	case 100:/* 100BASE */
462 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
463 		break;
464 	default:
465 		break;
466 	}
467 }
468 
469 /* R8A7778/9 */
470 static struct sh_eth_cpu_data r8a777x_data = {
471 	.set_duplex	= sh_eth_set_duplex,
472 	.set_rate	= sh_eth_set_rate_r8a777x,
473 
474 	.register_type	= SH_ETH_REG_FAST_RCAR,
475 
476 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
477 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
478 	.eesipr_value	= 0x01ff009f,
479 
480 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
481 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
482 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
483 			  EESR_ECI,
484 	.fdr_value	= 0x00000f0f,
485 
486 	.apr		= 1,
487 	.mpr		= 1,
488 	.tpauser	= 1,
489 	.hw_swap	= 1,
490 };
491 
492 /* R8A7790/1 */
493 static struct sh_eth_cpu_data r8a779x_data = {
494 	.set_duplex	= sh_eth_set_duplex,
495 	.set_rate	= sh_eth_set_rate_r8a777x,
496 
497 	.register_type	= SH_ETH_REG_FAST_RCAR,
498 
499 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
500 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
501 	.eesipr_value	= 0x01ff009f,
502 
503 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
504 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
505 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
506 			  EESR_ECI,
507 	.fdr_value	= 0x00000f0f,
508 
509 	.trscer_err_mask = DESC_I_RINT8,
510 
511 	.apr		= 1,
512 	.mpr		= 1,
513 	.tpauser	= 1,
514 	.hw_swap	= 1,
515 	.rmiimode	= 1,
516 };
517 
518 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
519 {
520 	struct sh_eth_private *mdp = netdev_priv(ndev);
521 
522 	switch (mdp->speed) {
523 	case 10: /* 10BASE */
524 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
525 		break;
526 	case 100:/* 100BASE */
527 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
528 		break;
529 	default:
530 		break;
531 	}
532 }
533 
534 /* SH7724 */
535 static struct sh_eth_cpu_data sh7724_data = {
536 	.set_duplex	= sh_eth_set_duplex,
537 	.set_rate	= sh_eth_set_rate_sh7724,
538 
539 	.register_type	= SH_ETH_REG_FAST_SH4,
540 
541 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
542 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
543 	.eesipr_value	= 0x01ff009f,
544 
545 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
546 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
547 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
548 			  EESR_ECI,
549 
550 	.apr		= 1,
551 	.mpr		= 1,
552 	.tpauser	= 1,
553 	.hw_swap	= 1,
554 	.rpadir		= 1,
555 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
556 };
557 
558 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
559 {
560 	struct sh_eth_private *mdp = netdev_priv(ndev);
561 
562 	switch (mdp->speed) {
563 	case 10: /* 10BASE */
564 		sh_eth_write(ndev, 0, RTRATE);
565 		break;
566 	case 100:/* 100BASE */
567 		sh_eth_write(ndev, 1, RTRATE);
568 		break;
569 	default:
570 		break;
571 	}
572 }
573 
574 /* SH7757 */
575 static struct sh_eth_cpu_data sh7757_data = {
576 	.set_duplex	= sh_eth_set_duplex,
577 	.set_rate	= sh_eth_set_rate_sh7757,
578 
579 	.register_type	= SH_ETH_REG_FAST_SH4,
580 
581 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
582 
583 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
584 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
585 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
586 			  EESR_ECI,
587 
588 	.irq_flags	= IRQF_SHARED,
589 	.apr		= 1,
590 	.mpr		= 1,
591 	.tpauser	= 1,
592 	.hw_swap	= 1,
593 	.no_ade		= 1,
594 	.rpadir		= 1,
595 	.rpadir_value   = 2 << 16,
596 	.rtrate		= 1,
597 };
598 
599 #define SH_GIGA_ETH_BASE	0xfee00000UL
600 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
601 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
602 static void sh_eth_chip_reset_giga(struct net_device *ndev)
603 {
604 	int i;
605 	u32 mahr[2], malr[2];
606 
607 	/* save MAHR and MALR */
608 	for (i = 0; i < 2; i++) {
609 		malr[i] = ioread32((void *)GIGA_MALR(i));
610 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
611 	}
612 
613 	/* reset device */
614 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
615 	mdelay(1);
616 
617 	/* restore MAHR and MALR */
618 	for (i = 0; i < 2; i++) {
619 		iowrite32(malr[i], (void *)GIGA_MALR(i));
620 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
621 	}
622 }
623 
624 static void sh_eth_set_rate_giga(struct net_device *ndev)
625 {
626 	struct sh_eth_private *mdp = netdev_priv(ndev);
627 
628 	switch (mdp->speed) {
629 	case 10: /* 10BASE */
630 		sh_eth_write(ndev, 0x00000000, GECMR);
631 		break;
632 	case 100:/* 100BASE */
633 		sh_eth_write(ndev, 0x00000010, GECMR);
634 		break;
635 	case 1000: /* 1000BASE */
636 		sh_eth_write(ndev, 0x00000020, GECMR);
637 		break;
638 	default:
639 		break;
640 	}
641 }
642 
643 /* SH7757(GETHERC) */
644 static struct sh_eth_cpu_data sh7757_data_giga = {
645 	.chip_reset	= sh_eth_chip_reset_giga,
646 	.set_duplex	= sh_eth_set_duplex,
647 	.set_rate	= sh_eth_set_rate_giga,
648 
649 	.register_type	= SH_ETH_REG_GIGABIT,
650 
651 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
652 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
653 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
654 
655 	.tx_check	= EESR_TC1 | EESR_FTC,
656 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
657 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
658 			  EESR_TDE | EESR_ECI,
659 	.fdr_value	= 0x0000072f,
660 
661 	.irq_flags	= IRQF_SHARED,
662 	.apr		= 1,
663 	.mpr		= 1,
664 	.tpauser	= 1,
665 	.bculr		= 1,
666 	.hw_swap	= 1,
667 	.rpadir		= 1,
668 	.rpadir_value   = 2 << 16,
669 	.no_trimd	= 1,
670 	.no_ade		= 1,
671 	.tsu		= 1,
672 };
673 
674 static void sh_eth_chip_reset(struct net_device *ndev)
675 {
676 	struct sh_eth_private *mdp = netdev_priv(ndev);
677 
678 	/* reset device */
679 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
680 	mdelay(1);
681 }
682 
683 static void sh_eth_set_rate_gether(struct net_device *ndev)
684 {
685 	struct sh_eth_private *mdp = netdev_priv(ndev);
686 
687 	switch (mdp->speed) {
688 	case 10: /* 10BASE */
689 		sh_eth_write(ndev, GECMR_10, GECMR);
690 		break;
691 	case 100:/* 100BASE */
692 		sh_eth_write(ndev, GECMR_100, GECMR);
693 		break;
694 	case 1000: /* 1000BASE */
695 		sh_eth_write(ndev, GECMR_1000, GECMR);
696 		break;
697 	default:
698 		break;
699 	}
700 }
701 
702 /* SH7734 */
703 static struct sh_eth_cpu_data sh7734_data = {
704 	.chip_reset	= sh_eth_chip_reset,
705 	.set_duplex	= sh_eth_set_duplex,
706 	.set_rate	= sh_eth_set_rate_gether,
707 
708 	.register_type	= SH_ETH_REG_GIGABIT,
709 
710 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
711 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
712 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
713 
714 	.tx_check	= EESR_TC1 | EESR_FTC,
715 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
716 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
717 			  EESR_TDE | EESR_ECI,
718 
719 	.apr		= 1,
720 	.mpr		= 1,
721 	.tpauser	= 1,
722 	.bculr		= 1,
723 	.hw_swap	= 1,
724 	.no_trimd	= 1,
725 	.no_ade		= 1,
726 	.tsu		= 1,
727 	.hw_crc		= 1,
728 	.select_mii	= 1,
729 };
730 
731 /* SH7763 */
732 static struct sh_eth_cpu_data sh7763_data = {
733 	.chip_reset	= sh_eth_chip_reset,
734 	.set_duplex	= sh_eth_set_duplex,
735 	.set_rate	= sh_eth_set_rate_gether,
736 
737 	.register_type	= SH_ETH_REG_GIGABIT,
738 
739 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
740 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
741 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
742 
743 	.tx_check	= EESR_TC1 | EESR_FTC,
744 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
745 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
746 			  EESR_ECI,
747 
748 	.apr		= 1,
749 	.mpr		= 1,
750 	.tpauser	= 1,
751 	.bculr		= 1,
752 	.hw_swap	= 1,
753 	.no_trimd	= 1,
754 	.no_ade		= 1,
755 	.tsu		= 1,
756 	.irq_flags	= IRQF_SHARED,
757 };
758 
759 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
760 {
761 	struct sh_eth_private *mdp = netdev_priv(ndev);
762 
763 	/* reset device */
764 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
765 	mdelay(1);
766 
767 	sh_eth_select_mii(ndev);
768 }
769 
770 /* R8A7740 */
771 static struct sh_eth_cpu_data r8a7740_data = {
772 	.chip_reset	= sh_eth_chip_reset_r8a7740,
773 	.set_duplex	= sh_eth_set_duplex,
774 	.set_rate	= sh_eth_set_rate_gether,
775 
776 	.register_type	= SH_ETH_REG_GIGABIT,
777 
778 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
779 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
780 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
781 
782 	.tx_check	= EESR_TC1 | EESR_FTC,
783 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
784 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
785 			  EESR_TDE | EESR_ECI,
786 	.fdr_value	= 0x0000070f,
787 
788 	.apr		= 1,
789 	.mpr		= 1,
790 	.tpauser	= 1,
791 	.bculr		= 1,
792 	.hw_swap	= 1,
793 	.rpadir		= 1,
794 	.rpadir_value   = 2 << 16,
795 	.no_trimd	= 1,
796 	.no_ade		= 1,
797 	.tsu		= 1,
798 	.select_mii	= 1,
799 	.shift_rd0	= 1,
800 };
801 
802 /* R7S72100 */
803 static struct sh_eth_cpu_data r7s72100_data = {
804 	.chip_reset	= sh_eth_chip_reset,
805 	.set_duplex	= sh_eth_set_duplex,
806 
807 	.register_type	= SH_ETH_REG_FAST_RZ,
808 
809 	.ecsr_value	= ECSR_ICD,
810 	.ecsipr_value	= ECSIPR_ICDIP,
811 	.eesipr_value	= 0xff7f009f,
812 
813 	.tx_check	= EESR_TC1 | EESR_FTC,
814 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
815 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
816 			  EESR_TDE | EESR_ECI,
817 	.fdr_value	= 0x0000070f,
818 
819 	.no_psr		= 1,
820 	.apr		= 1,
821 	.mpr		= 1,
822 	.tpauser	= 1,
823 	.hw_swap	= 1,
824 	.rpadir		= 1,
825 	.rpadir_value   = 2 << 16,
826 	.no_trimd	= 1,
827 	.no_ade		= 1,
828 	.hw_crc		= 1,
829 	.tsu		= 1,
830 	.shift_rd0	= 1,
831 };
832 
833 static struct sh_eth_cpu_data sh7619_data = {
834 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
835 
836 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
837 
838 	.apr		= 1,
839 	.mpr		= 1,
840 	.tpauser	= 1,
841 	.hw_swap	= 1,
842 };
843 
844 static struct sh_eth_cpu_data sh771x_data = {
845 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
846 
847 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
848 	.tsu		= 1,
849 };
850 
851 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
852 {
853 	if (!cd->ecsr_value)
854 		cd->ecsr_value = DEFAULT_ECSR_INIT;
855 
856 	if (!cd->ecsipr_value)
857 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
858 
859 	if (!cd->fcftr_value)
860 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
861 				  DEFAULT_FIFO_F_D_RFD;
862 
863 	if (!cd->fdr_value)
864 		cd->fdr_value = DEFAULT_FDR_INIT;
865 
866 	if (!cd->tx_check)
867 		cd->tx_check = DEFAULT_TX_CHECK;
868 
869 	if (!cd->eesr_err_check)
870 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
871 
872 	if (!cd->trscer_err_mask)
873 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
874 }
875 
876 static int sh_eth_check_reset(struct net_device *ndev)
877 {
878 	int ret = 0;
879 	int cnt = 100;
880 
881 	while (cnt > 0) {
882 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
883 			break;
884 		mdelay(1);
885 		cnt--;
886 	}
887 	if (cnt <= 0) {
888 		netdev_err(ndev, "Device reset failed\n");
889 		ret = -ETIMEDOUT;
890 	}
891 	return ret;
892 }
893 
894 static int sh_eth_reset(struct net_device *ndev)
895 {
896 	struct sh_eth_private *mdp = netdev_priv(ndev);
897 	int ret = 0;
898 
899 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
900 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
901 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
902 			     EDMR);
903 
904 		ret = sh_eth_check_reset(ndev);
905 		if (ret)
906 			return ret;
907 
908 		/* Table Init */
909 		sh_eth_write(ndev, 0x0, TDLAR);
910 		sh_eth_write(ndev, 0x0, TDFAR);
911 		sh_eth_write(ndev, 0x0, TDFXR);
912 		sh_eth_write(ndev, 0x0, TDFFR);
913 		sh_eth_write(ndev, 0x0, RDLAR);
914 		sh_eth_write(ndev, 0x0, RDFAR);
915 		sh_eth_write(ndev, 0x0, RDFXR);
916 		sh_eth_write(ndev, 0x0, RDFFR);
917 
918 		/* Reset HW CRC register */
919 		if (mdp->cd->hw_crc)
920 			sh_eth_write(ndev, 0x0, CSMR);
921 
922 		/* Select MII mode */
923 		if (mdp->cd->select_mii)
924 			sh_eth_select_mii(ndev);
925 	} else {
926 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
927 			     EDMR);
928 		mdelay(3);
929 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
930 			     EDMR);
931 	}
932 
933 	return ret;
934 }
935 
936 static void sh_eth_set_receive_align(struct sk_buff *skb)
937 {
938 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
939 
940 	if (reserve)
941 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
942 }
943 
944 
945 /* CPU <-> EDMAC endian convert */
946 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
947 {
948 	switch (mdp->edmac_endian) {
949 	case EDMAC_LITTLE_ENDIAN:
950 		return cpu_to_le32(x);
951 	case EDMAC_BIG_ENDIAN:
952 		return cpu_to_be32(x);
953 	}
954 	return x;
955 }
956 
957 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
958 {
959 	switch (mdp->edmac_endian) {
960 	case EDMAC_LITTLE_ENDIAN:
961 		return le32_to_cpu(x);
962 	case EDMAC_BIG_ENDIAN:
963 		return be32_to_cpu(x);
964 	}
965 	return x;
966 }
967 
968 /* Program the hardware MAC address from dev->dev_addr. */
969 static void update_mac_address(struct net_device *ndev)
970 {
971 	sh_eth_write(ndev,
972 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
973 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
974 	sh_eth_write(ndev,
975 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
976 }
977 
978 /* Get MAC address from SuperH MAC address register
979  *
980  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
981  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
982  * When you want use this device, you must set MAC address in bootloader.
983  *
984  */
985 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
986 {
987 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
988 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
989 	} else {
990 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
991 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
992 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
993 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
994 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
995 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
996 	}
997 }
998 
999 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1000 {
1001 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1002 		return EDTRR_TRNS_GETHER;
1003 	else
1004 		return EDTRR_TRNS_ETHER;
1005 }
1006 
1007 struct bb_info {
1008 	void (*set_gate)(void *addr);
1009 	struct mdiobb_ctrl ctrl;
1010 	void *addr;
1011 	u32 mmd_msk;/* MMD */
1012 	u32 mdo_msk;
1013 	u32 mdi_msk;
1014 	u32 mdc_msk;
1015 };
1016 
1017 /* PHY bit set */
1018 static void bb_set(void *addr, u32 msk)
1019 {
1020 	iowrite32(ioread32(addr) | msk, addr);
1021 }
1022 
1023 /* PHY bit clear */
1024 static void bb_clr(void *addr, u32 msk)
1025 {
1026 	iowrite32((ioread32(addr) & ~msk), addr);
1027 }
1028 
1029 /* PHY bit read */
1030 static int bb_read(void *addr, u32 msk)
1031 {
1032 	return (ioread32(addr) & msk) != 0;
1033 }
1034 
1035 /* Data I/O pin control */
1036 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1037 {
1038 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1039 
1040 	if (bitbang->set_gate)
1041 		bitbang->set_gate(bitbang->addr);
1042 
1043 	if (bit)
1044 		bb_set(bitbang->addr, bitbang->mmd_msk);
1045 	else
1046 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1047 }
1048 
1049 /* Set bit data*/
1050 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1051 {
1052 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1053 
1054 	if (bitbang->set_gate)
1055 		bitbang->set_gate(bitbang->addr);
1056 
1057 	if (bit)
1058 		bb_set(bitbang->addr, bitbang->mdo_msk);
1059 	else
1060 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1061 }
1062 
1063 /* Get bit data*/
1064 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1065 {
1066 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1067 
1068 	if (bitbang->set_gate)
1069 		bitbang->set_gate(bitbang->addr);
1070 
1071 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1072 }
1073 
1074 /* MDC pin control */
1075 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1076 {
1077 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1078 
1079 	if (bitbang->set_gate)
1080 		bitbang->set_gate(bitbang->addr);
1081 
1082 	if (bit)
1083 		bb_set(bitbang->addr, bitbang->mdc_msk);
1084 	else
1085 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1086 }
1087 
1088 /* mdio bus control struct */
1089 static struct mdiobb_ops bb_ops = {
1090 	.owner = THIS_MODULE,
1091 	.set_mdc = sh_mdc_ctrl,
1092 	.set_mdio_dir = sh_mmd_ctrl,
1093 	.set_mdio_data = sh_set_mdio,
1094 	.get_mdio_data = sh_get_mdio,
1095 };
1096 
1097 /* free skb and descriptor buffer */
1098 static void sh_eth_ring_free(struct net_device *ndev)
1099 {
1100 	struct sh_eth_private *mdp = netdev_priv(ndev);
1101 	int ringsize, i;
1102 
1103 	/* Free Rx skb ringbuffer */
1104 	if (mdp->rx_skbuff) {
1105 		for (i = 0; i < mdp->num_rx_ring; i++)
1106 			dev_kfree_skb(mdp->rx_skbuff[i]);
1107 	}
1108 	kfree(mdp->rx_skbuff);
1109 	mdp->rx_skbuff = NULL;
1110 
1111 	/* Free Tx skb ringbuffer */
1112 	if (mdp->tx_skbuff) {
1113 		for (i = 0; i < mdp->num_tx_ring; i++)
1114 			dev_kfree_skb(mdp->tx_skbuff[i]);
1115 	}
1116 	kfree(mdp->tx_skbuff);
1117 	mdp->tx_skbuff = NULL;
1118 
1119 	if (mdp->rx_ring) {
1120 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1121 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1122 				  mdp->rx_desc_dma);
1123 		mdp->rx_ring = NULL;
1124 	}
1125 
1126 	if (mdp->tx_ring) {
1127 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1128 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1129 				  mdp->tx_desc_dma);
1130 		mdp->tx_ring = NULL;
1131 	}
1132 }
1133 
1134 /* format skb and descriptor buffer */
1135 static void sh_eth_ring_format(struct net_device *ndev)
1136 {
1137 	struct sh_eth_private *mdp = netdev_priv(ndev);
1138 	int i;
1139 	struct sk_buff *skb;
1140 	struct sh_eth_rxdesc *rxdesc = NULL;
1141 	struct sh_eth_txdesc *txdesc = NULL;
1142 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1143 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1144 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1145 	dma_addr_t dma_addr;
1146 
1147 	mdp->cur_rx = 0;
1148 	mdp->cur_tx = 0;
1149 	mdp->dirty_rx = 0;
1150 	mdp->dirty_tx = 0;
1151 
1152 	memset(mdp->rx_ring, 0, rx_ringsize);
1153 
1154 	/* build Rx ring buffer */
1155 	for (i = 0; i < mdp->num_rx_ring; i++) {
1156 		/* skb */
1157 		mdp->rx_skbuff[i] = NULL;
1158 		skb = netdev_alloc_skb(ndev, skbuff_size);
1159 		if (skb == NULL)
1160 			break;
1161 		sh_eth_set_receive_align(skb);
1162 
1163 		/* RX descriptor */
1164 		rxdesc = &mdp->rx_ring[i];
1165 		/* The size of the buffer is a multiple of 32 bytes. */
1166 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 32);
1167 		dma_addr = dma_map_single(&ndev->dev, skb->data,
1168 					  rxdesc->buffer_length,
1169 					  DMA_FROM_DEVICE);
1170 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1171 			kfree_skb(skb);
1172 			break;
1173 		}
1174 		mdp->rx_skbuff[i] = skb;
1175 		rxdesc->addr = dma_addr;
1176 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1177 
1178 		/* Rx descriptor address set */
1179 		if (i == 0) {
1180 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1181 			if (sh_eth_is_gether(mdp) ||
1182 			    sh_eth_is_rz_fast_ether(mdp))
1183 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1184 		}
1185 	}
1186 
1187 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1188 
1189 	/* Mark the last entry as wrapping the ring. */
1190 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDLE);
1191 
1192 	memset(mdp->tx_ring, 0, tx_ringsize);
1193 
1194 	/* build Tx ring buffer */
1195 	for (i = 0; i < mdp->num_tx_ring; i++) {
1196 		mdp->tx_skbuff[i] = NULL;
1197 		txdesc = &mdp->tx_ring[i];
1198 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1199 		txdesc->buffer_length = 0;
1200 		if (i == 0) {
1201 			/* Tx descriptor address set */
1202 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1203 			if (sh_eth_is_gether(mdp) ||
1204 			    sh_eth_is_rz_fast_ether(mdp))
1205 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1206 		}
1207 	}
1208 
1209 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1210 }
1211 
1212 /* Get skb and descriptor buffer */
1213 static int sh_eth_ring_init(struct net_device *ndev)
1214 {
1215 	struct sh_eth_private *mdp = netdev_priv(ndev);
1216 	int rx_ringsize, tx_ringsize;
1217 
1218 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1219 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1220 	 * the first 2 bytes, and +16 gets room for the status word from the
1221 	 * card.
1222 	 */
1223 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1224 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1225 	if (mdp->cd->rpadir)
1226 		mdp->rx_buf_sz += NET_IP_ALIGN;
1227 
1228 	/* Allocate RX and TX skb rings */
1229 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1230 				 GFP_KERNEL);
1231 	if (!mdp->rx_skbuff)
1232 		return -ENOMEM;
1233 
1234 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1235 				 GFP_KERNEL);
1236 	if (!mdp->tx_skbuff)
1237 		goto ring_free;
1238 
1239 	/* Allocate all Rx descriptors. */
1240 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1241 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1242 					  GFP_KERNEL);
1243 	if (!mdp->rx_ring)
1244 		goto ring_free;
1245 
1246 	mdp->dirty_rx = 0;
1247 
1248 	/* Allocate all Tx descriptors. */
1249 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1250 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1251 					  GFP_KERNEL);
1252 	if (!mdp->tx_ring)
1253 		goto ring_free;
1254 	return 0;
1255 
1256 ring_free:
1257 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1258 	sh_eth_ring_free(ndev);
1259 
1260 	return -ENOMEM;
1261 }
1262 
1263 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1264 {
1265 	int ret = 0;
1266 	struct sh_eth_private *mdp = netdev_priv(ndev);
1267 	u32 val;
1268 
1269 	/* Soft Reset */
1270 	ret = sh_eth_reset(ndev);
1271 	if (ret)
1272 		return ret;
1273 
1274 	if (mdp->cd->rmiimode)
1275 		sh_eth_write(ndev, 0x1, RMIIMODE);
1276 
1277 	/* Descriptor format */
1278 	sh_eth_ring_format(ndev);
1279 	if (mdp->cd->rpadir)
1280 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1281 
1282 	/* all sh_eth int mask */
1283 	sh_eth_write(ndev, 0, EESIPR);
1284 
1285 #if defined(__LITTLE_ENDIAN)
1286 	if (mdp->cd->hw_swap)
1287 		sh_eth_write(ndev, EDMR_EL, EDMR);
1288 	else
1289 #endif
1290 		sh_eth_write(ndev, 0, EDMR);
1291 
1292 	/* FIFO size set */
1293 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1294 	sh_eth_write(ndev, 0, TFTR);
1295 
1296 	/* Frame recv control (enable multiple-packets per rx irq) */
1297 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1298 
1299 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1300 
1301 	if (mdp->cd->bculr)
1302 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1303 
1304 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1305 
1306 	if (!mdp->cd->no_trimd)
1307 		sh_eth_write(ndev, 0, TRIMD);
1308 
1309 	/* Recv frame limit set register */
1310 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1311 		     RFLR);
1312 
1313 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1314 	if (start) {
1315 		mdp->irq_enabled = true;
1316 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1317 	}
1318 
1319 	/* PAUSE Prohibition */
1320 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1321 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1322 
1323 	sh_eth_write(ndev, val, ECMR);
1324 
1325 	if (mdp->cd->set_rate)
1326 		mdp->cd->set_rate(ndev);
1327 
1328 	/* E-MAC Status Register clear */
1329 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1330 
1331 	/* E-MAC Interrupt Enable register */
1332 	if (start)
1333 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1334 
1335 	/* Set MAC address */
1336 	update_mac_address(ndev);
1337 
1338 	/* mask reset */
1339 	if (mdp->cd->apr)
1340 		sh_eth_write(ndev, APR_AP, APR);
1341 	if (mdp->cd->mpr)
1342 		sh_eth_write(ndev, MPR_MP, MPR);
1343 	if (mdp->cd->tpauser)
1344 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1345 
1346 	if (start) {
1347 		/* Setting the Rx mode will start the Rx process. */
1348 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1349 
1350 		netif_start_queue(ndev);
1351 	}
1352 
1353 	return ret;
1354 }
1355 
1356 static void sh_eth_dev_exit(struct net_device *ndev)
1357 {
1358 	struct sh_eth_private *mdp = netdev_priv(ndev);
1359 	int i;
1360 
1361 	/* Deactivate all TX descriptors, so DMA should stop at next
1362 	 * packet boundary if it's currently running
1363 	 */
1364 	for (i = 0; i < mdp->num_tx_ring; i++)
1365 		mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1366 
1367 	/* Disable TX FIFO egress to MAC */
1368 	sh_eth_rcv_snd_disable(ndev);
1369 
1370 	/* Stop RX DMA at next packet boundary */
1371 	sh_eth_write(ndev, 0, EDRRR);
1372 
1373 	/* Aside from TX DMA, we can't tell when the hardware is
1374 	 * really stopped, so we need to reset to make sure.
1375 	 * Before doing that, wait for long enough to *probably*
1376 	 * finish transmitting the last packet and poll stats.
1377 	 */
1378 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1379 	sh_eth_get_stats(ndev);
1380 	sh_eth_reset(ndev);
1381 
1382 	/* Set MAC address again */
1383 	update_mac_address(ndev);
1384 }
1385 
1386 /* free Tx skb function */
1387 static int sh_eth_txfree(struct net_device *ndev)
1388 {
1389 	struct sh_eth_private *mdp = netdev_priv(ndev);
1390 	struct sh_eth_txdesc *txdesc;
1391 	int free_num = 0;
1392 	int entry = 0;
1393 
1394 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1395 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1396 		txdesc = &mdp->tx_ring[entry];
1397 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1398 			break;
1399 		/* TACT bit must be checked before all the following reads */
1400 		dma_rmb();
1401 		netif_info(mdp, tx_done, ndev,
1402 			   "tx entry %d status 0x%08x\n",
1403 			   entry, edmac_to_cpu(mdp, txdesc->status));
1404 		/* Free the original skb. */
1405 		if (mdp->tx_skbuff[entry]) {
1406 			dma_unmap_single(&ndev->dev, txdesc->addr,
1407 					 txdesc->buffer_length, DMA_TO_DEVICE);
1408 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1409 			mdp->tx_skbuff[entry] = NULL;
1410 			free_num++;
1411 		}
1412 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1413 		if (entry >= mdp->num_tx_ring - 1)
1414 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1415 
1416 		ndev->stats.tx_packets++;
1417 		ndev->stats.tx_bytes += txdesc->buffer_length;
1418 	}
1419 	return free_num;
1420 }
1421 
1422 /* Packet receive function */
1423 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1424 {
1425 	struct sh_eth_private *mdp = netdev_priv(ndev);
1426 	struct sh_eth_rxdesc *rxdesc;
1427 
1428 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1429 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1430 	int limit;
1431 	struct sk_buff *skb;
1432 	u16 pkt_len = 0;
1433 	u32 desc_status;
1434 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1435 	dma_addr_t dma_addr;
1436 
1437 	boguscnt = min(boguscnt, *quota);
1438 	limit = boguscnt;
1439 	rxdesc = &mdp->rx_ring[entry];
1440 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1441 		/* RACT bit must be checked before all the following reads */
1442 		dma_rmb();
1443 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1444 		pkt_len = rxdesc->frame_length;
1445 
1446 		if (--boguscnt < 0)
1447 			break;
1448 
1449 		netif_info(mdp, rx_status, ndev,
1450 			   "rx entry %d status 0x%08x len %d\n",
1451 			   entry, desc_status, pkt_len);
1452 
1453 		if (!(desc_status & RDFEND))
1454 			ndev->stats.rx_length_errors++;
1455 
1456 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1457 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1458 		 * bit 0. However, in case of the R8A7740 and R7S72100
1459 		 * the RFS bits are from bit 25 to bit 16. So, the
1460 		 * driver needs right shifting by 16.
1461 		 */
1462 		if (mdp->cd->shift_rd0)
1463 			desc_status >>= 16;
1464 
1465 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1466 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1467 			ndev->stats.rx_errors++;
1468 			if (desc_status & RD_RFS1)
1469 				ndev->stats.rx_crc_errors++;
1470 			if (desc_status & RD_RFS2)
1471 				ndev->stats.rx_frame_errors++;
1472 			if (desc_status & RD_RFS3)
1473 				ndev->stats.rx_length_errors++;
1474 			if (desc_status & RD_RFS4)
1475 				ndev->stats.rx_length_errors++;
1476 			if (desc_status & RD_RFS6)
1477 				ndev->stats.rx_missed_errors++;
1478 			if (desc_status & RD_RFS10)
1479 				ndev->stats.rx_over_errors++;
1480 		} else {
1481 			if (!mdp->cd->hw_swap)
1482 				sh_eth_soft_swap(
1483 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1484 					pkt_len + 2);
1485 			skb = mdp->rx_skbuff[entry];
1486 			mdp->rx_skbuff[entry] = NULL;
1487 			if (mdp->cd->rpadir)
1488 				skb_reserve(skb, NET_IP_ALIGN);
1489 			dma_unmap_single(&ndev->dev, rxdesc->addr,
1490 					 ALIGN(mdp->rx_buf_sz, 32),
1491 					 DMA_FROM_DEVICE);
1492 			skb_put(skb, pkt_len);
1493 			skb->protocol = eth_type_trans(skb, ndev);
1494 			netif_receive_skb(skb);
1495 			ndev->stats.rx_packets++;
1496 			ndev->stats.rx_bytes += pkt_len;
1497 			if (desc_status & RD_RFS8)
1498 				ndev->stats.multicast++;
1499 		}
1500 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1501 		rxdesc = &mdp->rx_ring[entry];
1502 	}
1503 
1504 	/* Refill the Rx ring buffers. */
1505 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1506 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1507 		rxdesc = &mdp->rx_ring[entry];
1508 		/* The size of the buffer is 32 byte boundary. */
1509 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 32);
1510 
1511 		if (mdp->rx_skbuff[entry] == NULL) {
1512 			skb = netdev_alloc_skb(ndev, skbuff_size);
1513 			if (skb == NULL)
1514 				break;	/* Better luck next round. */
1515 			sh_eth_set_receive_align(skb);
1516 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1517 						  rxdesc->buffer_length,
1518 						  DMA_FROM_DEVICE);
1519 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1520 				kfree_skb(skb);
1521 				break;
1522 			}
1523 			mdp->rx_skbuff[entry] = skb;
1524 
1525 			skb_checksum_none_assert(skb);
1526 			rxdesc->addr = dma_addr;
1527 		}
1528 		dma_wmb(); /* RACT bit must be set after all the above writes */
1529 		if (entry >= mdp->num_rx_ring - 1)
1530 			rxdesc->status |=
1531 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDLE);
1532 		else
1533 			rxdesc->status |=
1534 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1535 	}
1536 
1537 	/* Restart Rx engine if stopped. */
1538 	/* If we don't need to check status, don't. -KDU */
1539 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1540 		/* fix the values for the next receiving if RDE is set */
1541 		if (intr_status & EESR_RDE &&
1542 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1543 			u32 count = (sh_eth_read(ndev, RDFAR) -
1544 				     sh_eth_read(ndev, RDLAR)) >> 4;
1545 
1546 			mdp->cur_rx = count;
1547 			mdp->dirty_rx = count;
1548 		}
1549 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1550 	}
1551 
1552 	*quota -= limit - boguscnt - 1;
1553 
1554 	return *quota <= 0;
1555 }
1556 
1557 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1558 {
1559 	/* disable tx and rx */
1560 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1561 		~(ECMR_RE | ECMR_TE), ECMR);
1562 }
1563 
1564 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1565 {
1566 	/* enable tx and rx */
1567 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1568 		(ECMR_RE | ECMR_TE), ECMR);
1569 }
1570 
1571 /* error control function */
1572 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1573 {
1574 	struct sh_eth_private *mdp = netdev_priv(ndev);
1575 	u32 felic_stat;
1576 	u32 link_stat;
1577 	u32 mask;
1578 
1579 	if (intr_status & EESR_ECI) {
1580 		felic_stat = sh_eth_read(ndev, ECSR);
1581 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1582 		if (felic_stat & ECSR_ICD)
1583 			ndev->stats.tx_carrier_errors++;
1584 		if (felic_stat & ECSR_LCHNG) {
1585 			/* Link Changed */
1586 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1587 				goto ignore_link;
1588 			} else {
1589 				link_stat = (sh_eth_read(ndev, PSR));
1590 				if (mdp->ether_link_active_low)
1591 					link_stat = ~link_stat;
1592 			}
1593 			if (!(link_stat & PHY_ST_LINK)) {
1594 				sh_eth_rcv_snd_disable(ndev);
1595 			} else {
1596 				/* Link Up */
1597 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1598 						   ~DMAC_M_ECI, EESIPR);
1599 				/* clear int */
1600 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1601 					     ECSR);
1602 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1603 						   DMAC_M_ECI, EESIPR);
1604 				/* enable tx and rx */
1605 				sh_eth_rcv_snd_enable(ndev);
1606 			}
1607 		}
1608 	}
1609 
1610 ignore_link:
1611 	if (intr_status & EESR_TWB) {
1612 		/* Unused write back interrupt */
1613 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1614 			ndev->stats.tx_aborted_errors++;
1615 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1616 		}
1617 	}
1618 
1619 	if (intr_status & EESR_RABT) {
1620 		/* Receive Abort int */
1621 		if (intr_status & EESR_RFRMER) {
1622 			/* Receive Frame Overflow int */
1623 			ndev->stats.rx_frame_errors++;
1624 		}
1625 	}
1626 
1627 	if (intr_status & EESR_TDE) {
1628 		/* Transmit Descriptor Empty int */
1629 		ndev->stats.tx_fifo_errors++;
1630 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1631 	}
1632 
1633 	if (intr_status & EESR_TFE) {
1634 		/* FIFO under flow */
1635 		ndev->stats.tx_fifo_errors++;
1636 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1637 	}
1638 
1639 	if (intr_status & EESR_RDE) {
1640 		/* Receive Descriptor Empty int */
1641 		ndev->stats.rx_over_errors++;
1642 	}
1643 
1644 	if (intr_status & EESR_RFE) {
1645 		/* Receive FIFO Overflow int */
1646 		ndev->stats.rx_fifo_errors++;
1647 	}
1648 
1649 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1650 		/* Address Error */
1651 		ndev->stats.tx_fifo_errors++;
1652 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1653 	}
1654 
1655 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1656 	if (mdp->cd->no_ade)
1657 		mask &= ~EESR_ADE;
1658 	if (intr_status & mask) {
1659 		/* Tx error */
1660 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1661 
1662 		/* dmesg */
1663 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1664 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1665 			   (u32)ndev->state, edtrr);
1666 		/* dirty buffer free */
1667 		sh_eth_txfree(ndev);
1668 
1669 		/* SH7712 BUG */
1670 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1671 			/* tx dma start */
1672 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1673 		}
1674 		/* wakeup */
1675 		netif_wake_queue(ndev);
1676 	}
1677 }
1678 
1679 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1680 {
1681 	struct net_device *ndev = netdev;
1682 	struct sh_eth_private *mdp = netdev_priv(ndev);
1683 	struct sh_eth_cpu_data *cd = mdp->cd;
1684 	irqreturn_t ret = IRQ_NONE;
1685 	u32 intr_status, intr_enable;
1686 
1687 	spin_lock(&mdp->lock);
1688 
1689 	/* Get interrupt status */
1690 	intr_status = sh_eth_read(ndev, EESR);
1691 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1692 	 * enabled since it's the one that  comes thru regardless of the mask,
1693 	 * and we need to fully handle it in sh_eth_error() in order to quench
1694 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1695 	 */
1696 	intr_enable = sh_eth_read(ndev, EESIPR);
1697 	intr_status &= intr_enable | DMAC_M_ECI;
1698 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1699 		ret = IRQ_HANDLED;
1700 	else
1701 		goto out;
1702 
1703 	if (!likely(mdp->irq_enabled)) {
1704 		sh_eth_write(ndev, 0, EESIPR);
1705 		goto out;
1706 	}
1707 
1708 	if (intr_status & EESR_RX_CHECK) {
1709 		if (napi_schedule_prep(&mdp->napi)) {
1710 			/* Mask Rx interrupts */
1711 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1712 				     EESIPR);
1713 			__napi_schedule(&mdp->napi);
1714 		} else {
1715 			netdev_warn(ndev,
1716 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1717 				    intr_status, intr_enable);
1718 		}
1719 	}
1720 
1721 	/* Tx Check */
1722 	if (intr_status & cd->tx_check) {
1723 		/* Clear Tx interrupts */
1724 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1725 
1726 		sh_eth_txfree(ndev);
1727 		netif_wake_queue(ndev);
1728 	}
1729 
1730 	if (intr_status & cd->eesr_err_check) {
1731 		/* Clear error interrupts */
1732 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1733 
1734 		sh_eth_error(ndev, intr_status);
1735 	}
1736 
1737 out:
1738 	spin_unlock(&mdp->lock);
1739 
1740 	return ret;
1741 }
1742 
1743 static int sh_eth_poll(struct napi_struct *napi, int budget)
1744 {
1745 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1746 						  napi);
1747 	struct net_device *ndev = napi->dev;
1748 	int quota = budget;
1749 	u32 intr_status;
1750 
1751 	for (;;) {
1752 		intr_status = sh_eth_read(ndev, EESR);
1753 		if (!(intr_status & EESR_RX_CHECK))
1754 			break;
1755 		/* Clear Rx interrupts */
1756 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1757 
1758 		if (sh_eth_rx(ndev, intr_status, &quota))
1759 			goto out;
1760 	}
1761 
1762 	napi_complete(napi);
1763 
1764 	/* Reenable Rx interrupts */
1765 	if (mdp->irq_enabled)
1766 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1767 out:
1768 	return budget - quota;
1769 }
1770 
1771 /* PHY state control function */
1772 static void sh_eth_adjust_link(struct net_device *ndev)
1773 {
1774 	struct sh_eth_private *mdp = netdev_priv(ndev);
1775 	struct phy_device *phydev = mdp->phydev;
1776 	int new_state = 0;
1777 
1778 	if (phydev->link) {
1779 		if (phydev->duplex != mdp->duplex) {
1780 			new_state = 1;
1781 			mdp->duplex = phydev->duplex;
1782 			if (mdp->cd->set_duplex)
1783 				mdp->cd->set_duplex(ndev);
1784 		}
1785 
1786 		if (phydev->speed != mdp->speed) {
1787 			new_state = 1;
1788 			mdp->speed = phydev->speed;
1789 			if (mdp->cd->set_rate)
1790 				mdp->cd->set_rate(ndev);
1791 		}
1792 		if (!mdp->link) {
1793 			sh_eth_write(ndev,
1794 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1795 				     ECMR);
1796 			new_state = 1;
1797 			mdp->link = phydev->link;
1798 			if (mdp->cd->no_psr || mdp->no_ether_link)
1799 				sh_eth_rcv_snd_enable(ndev);
1800 		}
1801 	} else if (mdp->link) {
1802 		new_state = 1;
1803 		mdp->link = 0;
1804 		mdp->speed = 0;
1805 		mdp->duplex = -1;
1806 		if (mdp->cd->no_psr || mdp->no_ether_link)
1807 			sh_eth_rcv_snd_disable(ndev);
1808 	}
1809 
1810 	if (new_state && netif_msg_link(mdp))
1811 		phy_print_status(phydev);
1812 }
1813 
1814 /* PHY init function */
1815 static int sh_eth_phy_init(struct net_device *ndev)
1816 {
1817 	struct device_node *np = ndev->dev.parent->of_node;
1818 	struct sh_eth_private *mdp = netdev_priv(ndev);
1819 	struct phy_device *phydev = NULL;
1820 
1821 	mdp->link = 0;
1822 	mdp->speed = 0;
1823 	mdp->duplex = -1;
1824 
1825 	/* Try connect to PHY */
1826 	if (np) {
1827 		struct device_node *pn;
1828 
1829 		pn = of_parse_phandle(np, "phy-handle", 0);
1830 		phydev = of_phy_connect(ndev, pn,
1831 					sh_eth_adjust_link, 0,
1832 					mdp->phy_interface);
1833 
1834 		if (!phydev)
1835 			phydev = ERR_PTR(-ENOENT);
1836 	} else {
1837 		char phy_id[MII_BUS_ID_SIZE + 3];
1838 
1839 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1840 			 mdp->mii_bus->id, mdp->phy_id);
1841 
1842 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1843 				     mdp->phy_interface);
1844 	}
1845 
1846 	if (IS_ERR(phydev)) {
1847 		netdev_err(ndev, "failed to connect PHY\n");
1848 		return PTR_ERR(phydev);
1849 	}
1850 
1851 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1852 		    phydev->addr, phydev->irq, phydev->drv->name);
1853 
1854 	mdp->phydev = phydev;
1855 
1856 	return 0;
1857 }
1858 
1859 /* PHY control start function */
1860 static int sh_eth_phy_start(struct net_device *ndev)
1861 {
1862 	struct sh_eth_private *mdp = netdev_priv(ndev);
1863 	int ret;
1864 
1865 	ret = sh_eth_phy_init(ndev);
1866 	if (ret)
1867 		return ret;
1868 
1869 	phy_start(mdp->phydev);
1870 
1871 	return 0;
1872 }
1873 
1874 static int sh_eth_get_settings(struct net_device *ndev,
1875 			       struct ethtool_cmd *ecmd)
1876 {
1877 	struct sh_eth_private *mdp = netdev_priv(ndev);
1878 	unsigned long flags;
1879 	int ret;
1880 
1881 	if (!mdp->phydev)
1882 		return -ENODEV;
1883 
1884 	spin_lock_irqsave(&mdp->lock, flags);
1885 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1886 	spin_unlock_irqrestore(&mdp->lock, flags);
1887 
1888 	return ret;
1889 }
1890 
1891 static int sh_eth_set_settings(struct net_device *ndev,
1892 			       struct ethtool_cmd *ecmd)
1893 {
1894 	struct sh_eth_private *mdp = netdev_priv(ndev);
1895 	unsigned long flags;
1896 	int ret;
1897 
1898 	if (!mdp->phydev)
1899 		return -ENODEV;
1900 
1901 	spin_lock_irqsave(&mdp->lock, flags);
1902 
1903 	/* disable tx and rx */
1904 	sh_eth_rcv_snd_disable(ndev);
1905 
1906 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1907 	if (ret)
1908 		goto error_exit;
1909 
1910 	if (ecmd->duplex == DUPLEX_FULL)
1911 		mdp->duplex = 1;
1912 	else
1913 		mdp->duplex = 0;
1914 
1915 	if (mdp->cd->set_duplex)
1916 		mdp->cd->set_duplex(ndev);
1917 
1918 error_exit:
1919 	mdelay(1);
1920 
1921 	/* enable tx and rx */
1922 	sh_eth_rcv_snd_enable(ndev);
1923 
1924 	spin_unlock_irqrestore(&mdp->lock, flags);
1925 
1926 	return ret;
1927 }
1928 
1929 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1930  * version must be bumped as well.  Just adding registers up to that
1931  * limit is fine, as long as the existing register indices don't
1932  * change.
1933  */
1934 #define SH_ETH_REG_DUMP_VERSION		1
1935 #define SH_ETH_REG_DUMP_MAX_REGS	256
1936 
1937 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1938 {
1939 	struct sh_eth_private *mdp = netdev_priv(ndev);
1940 	struct sh_eth_cpu_data *cd = mdp->cd;
1941 	u32 *valid_map;
1942 	size_t len;
1943 
1944 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1945 
1946 	/* Dump starts with a bitmap that tells ethtool which
1947 	 * registers are defined for this chip.
1948 	 */
1949 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1950 	if (buf) {
1951 		valid_map = buf;
1952 		buf += len;
1953 	} else {
1954 		valid_map = NULL;
1955 	}
1956 
1957 	/* Add a register to the dump, if it has a defined offset.
1958 	 * This automatically skips most undefined registers, but for
1959 	 * some it is also necessary to check a capability flag in
1960 	 * struct sh_eth_cpu_data.
1961 	 */
1962 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1963 #define add_reg_from(reg, read_expr) do {				\
1964 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1965 			if (buf) {					\
1966 				mark_reg_valid(reg);			\
1967 				*buf++ = read_expr;			\
1968 			}						\
1969 			++len;						\
1970 		}							\
1971 	} while (0)
1972 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1973 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1974 
1975 	add_reg(EDSR);
1976 	add_reg(EDMR);
1977 	add_reg(EDTRR);
1978 	add_reg(EDRRR);
1979 	add_reg(EESR);
1980 	add_reg(EESIPR);
1981 	add_reg(TDLAR);
1982 	add_reg(TDFAR);
1983 	add_reg(TDFXR);
1984 	add_reg(TDFFR);
1985 	add_reg(RDLAR);
1986 	add_reg(RDFAR);
1987 	add_reg(RDFXR);
1988 	add_reg(RDFFR);
1989 	add_reg(TRSCER);
1990 	add_reg(RMFCR);
1991 	add_reg(TFTR);
1992 	add_reg(FDR);
1993 	add_reg(RMCR);
1994 	add_reg(TFUCR);
1995 	add_reg(RFOCR);
1996 	if (cd->rmiimode)
1997 		add_reg(RMIIMODE);
1998 	add_reg(FCFTR);
1999 	if (cd->rpadir)
2000 		add_reg(RPADIR);
2001 	if (!cd->no_trimd)
2002 		add_reg(TRIMD);
2003 	add_reg(ECMR);
2004 	add_reg(ECSR);
2005 	add_reg(ECSIPR);
2006 	add_reg(PIR);
2007 	if (!cd->no_psr)
2008 		add_reg(PSR);
2009 	add_reg(RDMLR);
2010 	add_reg(RFLR);
2011 	add_reg(IPGR);
2012 	if (cd->apr)
2013 		add_reg(APR);
2014 	if (cd->mpr)
2015 		add_reg(MPR);
2016 	add_reg(RFCR);
2017 	add_reg(RFCF);
2018 	if (cd->tpauser)
2019 		add_reg(TPAUSER);
2020 	add_reg(TPAUSECR);
2021 	add_reg(GECMR);
2022 	if (cd->bculr)
2023 		add_reg(BCULR);
2024 	add_reg(MAHR);
2025 	add_reg(MALR);
2026 	add_reg(TROCR);
2027 	add_reg(CDCR);
2028 	add_reg(LCCR);
2029 	add_reg(CNDCR);
2030 	add_reg(CEFCR);
2031 	add_reg(FRECR);
2032 	add_reg(TSFRCR);
2033 	add_reg(TLFRCR);
2034 	add_reg(CERCR);
2035 	add_reg(CEECR);
2036 	add_reg(MAFCR);
2037 	if (cd->rtrate)
2038 		add_reg(RTRATE);
2039 	if (cd->hw_crc)
2040 		add_reg(CSMR);
2041 	if (cd->select_mii)
2042 		add_reg(RMII_MII);
2043 	add_reg(ARSTR);
2044 	if (cd->tsu) {
2045 		add_tsu_reg(TSU_CTRST);
2046 		add_tsu_reg(TSU_FWEN0);
2047 		add_tsu_reg(TSU_FWEN1);
2048 		add_tsu_reg(TSU_FCM);
2049 		add_tsu_reg(TSU_BSYSL0);
2050 		add_tsu_reg(TSU_BSYSL1);
2051 		add_tsu_reg(TSU_PRISL0);
2052 		add_tsu_reg(TSU_PRISL1);
2053 		add_tsu_reg(TSU_FWSL0);
2054 		add_tsu_reg(TSU_FWSL1);
2055 		add_tsu_reg(TSU_FWSLC);
2056 		add_tsu_reg(TSU_QTAG0);
2057 		add_tsu_reg(TSU_QTAG1);
2058 		add_tsu_reg(TSU_QTAGM0);
2059 		add_tsu_reg(TSU_QTAGM1);
2060 		add_tsu_reg(TSU_FWSR);
2061 		add_tsu_reg(TSU_FWINMK);
2062 		add_tsu_reg(TSU_ADQT0);
2063 		add_tsu_reg(TSU_ADQT1);
2064 		add_tsu_reg(TSU_VTAG0);
2065 		add_tsu_reg(TSU_VTAG1);
2066 		add_tsu_reg(TSU_ADSBSY);
2067 		add_tsu_reg(TSU_TEN);
2068 		add_tsu_reg(TSU_POST1);
2069 		add_tsu_reg(TSU_POST2);
2070 		add_tsu_reg(TSU_POST3);
2071 		add_tsu_reg(TSU_POST4);
2072 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2073 			/* This is the start of a table, not just a single
2074 			 * register.
2075 			 */
2076 			if (buf) {
2077 				unsigned int i;
2078 
2079 				mark_reg_valid(TSU_ADRH0);
2080 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2081 					*buf++ = ioread32(
2082 						mdp->tsu_addr +
2083 						mdp->reg_offset[TSU_ADRH0] +
2084 						i * 4);
2085 			}
2086 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2087 		}
2088 	}
2089 
2090 #undef mark_reg_valid
2091 #undef add_reg_from
2092 #undef add_reg
2093 #undef add_tsu_reg
2094 
2095 	return len * 4;
2096 }
2097 
2098 static int sh_eth_get_regs_len(struct net_device *ndev)
2099 {
2100 	return __sh_eth_get_regs(ndev, NULL);
2101 }
2102 
2103 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2104 			    void *buf)
2105 {
2106 	struct sh_eth_private *mdp = netdev_priv(ndev);
2107 
2108 	regs->version = SH_ETH_REG_DUMP_VERSION;
2109 
2110 	pm_runtime_get_sync(&mdp->pdev->dev);
2111 	__sh_eth_get_regs(ndev, buf);
2112 	pm_runtime_put_sync(&mdp->pdev->dev);
2113 }
2114 
2115 static int sh_eth_nway_reset(struct net_device *ndev)
2116 {
2117 	struct sh_eth_private *mdp = netdev_priv(ndev);
2118 	unsigned long flags;
2119 	int ret;
2120 
2121 	if (!mdp->phydev)
2122 		return -ENODEV;
2123 
2124 	spin_lock_irqsave(&mdp->lock, flags);
2125 	ret = phy_start_aneg(mdp->phydev);
2126 	spin_unlock_irqrestore(&mdp->lock, flags);
2127 
2128 	return ret;
2129 }
2130 
2131 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2132 {
2133 	struct sh_eth_private *mdp = netdev_priv(ndev);
2134 	return mdp->msg_enable;
2135 }
2136 
2137 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2138 {
2139 	struct sh_eth_private *mdp = netdev_priv(ndev);
2140 	mdp->msg_enable = value;
2141 }
2142 
2143 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2144 	"rx_current", "tx_current",
2145 	"rx_dirty", "tx_dirty",
2146 };
2147 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2148 
2149 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2150 {
2151 	switch (sset) {
2152 	case ETH_SS_STATS:
2153 		return SH_ETH_STATS_LEN;
2154 	default:
2155 		return -EOPNOTSUPP;
2156 	}
2157 }
2158 
2159 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2160 				     struct ethtool_stats *stats, u64 *data)
2161 {
2162 	struct sh_eth_private *mdp = netdev_priv(ndev);
2163 	int i = 0;
2164 
2165 	/* device-specific stats */
2166 	data[i++] = mdp->cur_rx;
2167 	data[i++] = mdp->cur_tx;
2168 	data[i++] = mdp->dirty_rx;
2169 	data[i++] = mdp->dirty_tx;
2170 }
2171 
2172 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2173 {
2174 	switch (stringset) {
2175 	case ETH_SS_STATS:
2176 		memcpy(data, *sh_eth_gstrings_stats,
2177 		       sizeof(sh_eth_gstrings_stats));
2178 		break;
2179 	}
2180 }
2181 
2182 static void sh_eth_get_ringparam(struct net_device *ndev,
2183 				 struct ethtool_ringparam *ring)
2184 {
2185 	struct sh_eth_private *mdp = netdev_priv(ndev);
2186 
2187 	ring->rx_max_pending = RX_RING_MAX;
2188 	ring->tx_max_pending = TX_RING_MAX;
2189 	ring->rx_pending = mdp->num_rx_ring;
2190 	ring->tx_pending = mdp->num_tx_ring;
2191 }
2192 
2193 static int sh_eth_set_ringparam(struct net_device *ndev,
2194 				struct ethtool_ringparam *ring)
2195 {
2196 	struct sh_eth_private *mdp = netdev_priv(ndev);
2197 	int ret;
2198 
2199 	if (ring->tx_pending > TX_RING_MAX ||
2200 	    ring->rx_pending > RX_RING_MAX ||
2201 	    ring->tx_pending < TX_RING_MIN ||
2202 	    ring->rx_pending < RX_RING_MIN)
2203 		return -EINVAL;
2204 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2205 		return -EINVAL;
2206 
2207 	if (netif_running(ndev)) {
2208 		netif_device_detach(ndev);
2209 		netif_tx_disable(ndev);
2210 
2211 		/* Serialise with the interrupt handler and NAPI, then
2212 		 * disable interrupts.  We have to clear the
2213 		 * irq_enabled flag first to ensure that interrupts
2214 		 * won't be re-enabled.
2215 		 */
2216 		mdp->irq_enabled = false;
2217 		synchronize_irq(ndev->irq);
2218 		napi_synchronize(&mdp->napi);
2219 		sh_eth_write(ndev, 0x0000, EESIPR);
2220 
2221 		sh_eth_dev_exit(ndev);
2222 
2223 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2224 		sh_eth_ring_free(ndev);
2225 	}
2226 
2227 	/* Set new parameters */
2228 	mdp->num_rx_ring = ring->rx_pending;
2229 	mdp->num_tx_ring = ring->tx_pending;
2230 
2231 	if (netif_running(ndev)) {
2232 		ret = sh_eth_ring_init(ndev);
2233 		if (ret < 0) {
2234 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2235 				   __func__);
2236 			return ret;
2237 		}
2238 		ret = sh_eth_dev_init(ndev, false);
2239 		if (ret < 0) {
2240 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2241 				   __func__);
2242 			return ret;
2243 		}
2244 
2245 		mdp->irq_enabled = true;
2246 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2247 		/* Setting the Rx mode will start the Rx process. */
2248 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2249 		netif_device_attach(ndev);
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static const struct ethtool_ops sh_eth_ethtool_ops = {
2256 	.get_settings	= sh_eth_get_settings,
2257 	.set_settings	= sh_eth_set_settings,
2258 	.get_regs_len	= sh_eth_get_regs_len,
2259 	.get_regs	= sh_eth_get_regs,
2260 	.nway_reset	= sh_eth_nway_reset,
2261 	.get_msglevel	= sh_eth_get_msglevel,
2262 	.set_msglevel	= sh_eth_set_msglevel,
2263 	.get_link	= ethtool_op_get_link,
2264 	.get_strings	= sh_eth_get_strings,
2265 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2266 	.get_sset_count     = sh_eth_get_sset_count,
2267 	.get_ringparam	= sh_eth_get_ringparam,
2268 	.set_ringparam	= sh_eth_set_ringparam,
2269 };
2270 
2271 /* network device open function */
2272 static int sh_eth_open(struct net_device *ndev)
2273 {
2274 	int ret = 0;
2275 	struct sh_eth_private *mdp = netdev_priv(ndev);
2276 
2277 	pm_runtime_get_sync(&mdp->pdev->dev);
2278 
2279 	napi_enable(&mdp->napi);
2280 
2281 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2282 			  mdp->cd->irq_flags, ndev->name, ndev);
2283 	if (ret) {
2284 		netdev_err(ndev, "Can not assign IRQ number\n");
2285 		goto out_napi_off;
2286 	}
2287 
2288 	/* Descriptor set */
2289 	ret = sh_eth_ring_init(ndev);
2290 	if (ret)
2291 		goto out_free_irq;
2292 
2293 	/* device init */
2294 	ret = sh_eth_dev_init(ndev, true);
2295 	if (ret)
2296 		goto out_free_irq;
2297 
2298 	/* PHY control start*/
2299 	ret = sh_eth_phy_start(ndev);
2300 	if (ret)
2301 		goto out_free_irq;
2302 
2303 	mdp->is_opened = 1;
2304 
2305 	return ret;
2306 
2307 out_free_irq:
2308 	free_irq(ndev->irq, ndev);
2309 out_napi_off:
2310 	napi_disable(&mdp->napi);
2311 	pm_runtime_put_sync(&mdp->pdev->dev);
2312 	return ret;
2313 }
2314 
2315 /* Timeout function */
2316 static void sh_eth_tx_timeout(struct net_device *ndev)
2317 {
2318 	struct sh_eth_private *mdp = netdev_priv(ndev);
2319 	struct sh_eth_rxdesc *rxdesc;
2320 	int i;
2321 
2322 	netif_stop_queue(ndev);
2323 
2324 	netif_err(mdp, timer, ndev,
2325 		  "transmit timed out, status %8.8x, resetting...\n",
2326 		  sh_eth_read(ndev, EESR));
2327 
2328 	/* tx_errors count up */
2329 	ndev->stats.tx_errors++;
2330 
2331 	/* Free all the skbuffs in the Rx queue. */
2332 	for (i = 0; i < mdp->num_rx_ring; i++) {
2333 		rxdesc = &mdp->rx_ring[i];
2334 		rxdesc->status = 0;
2335 		rxdesc->addr = 0xBADF00D0;
2336 		dev_kfree_skb(mdp->rx_skbuff[i]);
2337 		mdp->rx_skbuff[i] = NULL;
2338 	}
2339 	for (i = 0; i < mdp->num_tx_ring; i++) {
2340 		dev_kfree_skb(mdp->tx_skbuff[i]);
2341 		mdp->tx_skbuff[i] = NULL;
2342 	}
2343 
2344 	/* device init */
2345 	sh_eth_dev_init(ndev, true);
2346 }
2347 
2348 /* Packet transmit function */
2349 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2350 {
2351 	struct sh_eth_private *mdp = netdev_priv(ndev);
2352 	struct sh_eth_txdesc *txdesc;
2353 	u32 entry;
2354 	unsigned long flags;
2355 
2356 	spin_lock_irqsave(&mdp->lock, flags);
2357 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2358 		if (!sh_eth_txfree(ndev)) {
2359 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2360 			netif_stop_queue(ndev);
2361 			spin_unlock_irqrestore(&mdp->lock, flags);
2362 			return NETDEV_TX_BUSY;
2363 		}
2364 	}
2365 	spin_unlock_irqrestore(&mdp->lock, flags);
2366 
2367 	if (skb_put_padto(skb, ETH_ZLEN))
2368 		return NETDEV_TX_OK;
2369 
2370 	entry = mdp->cur_tx % mdp->num_tx_ring;
2371 	mdp->tx_skbuff[entry] = skb;
2372 	txdesc = &mdp->tx_ring[entry];
2373 	/* soft swap. */
2374 	if (!mdp->cd->hw_swap)
2375 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2376 				 skb->len + 2);
2377 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2378 				      DMA_TO_DEVICE);
2379 	if (dma_mapping_error(&ndev->dev, txdesc->addr)) {
2380 		kfree_skb(skb);
2381 		return NETDEV_TX_OK;
2382 	}
2383 	txdesc->buffer_length = skb->len;
2384 
2385 	dma_wmb(); /* TACT bit must be set after all the above writes */
2386 	if (entry >= mdp->num_tx_ring - 1)
2387 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2388 	else
2389 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2390 
2391 	mdp->cur_tx++;
2392 
2393 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2394 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2395 
2396 	return NETDEV_TX_OK;
2397 }
2398 
2399 /* The statistics registers have write-clear behaviour, which means we
2400  * will lose any increment between the read and write.  We mitigate
2401  * this by only clearing when we read a non-zero value, so we will
2402  * never falsely report a total of zero.
2403  */
2404 static void
2405 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2406 {
2407 	u32 delta = sh_eth_read(ndev, reg);
2408 
2409 	if (delta) {
2410 		*stat += delta;
2411 		sh_eth_write(ndev, 0, reg);
2412 	}
2413 }
2414 
2415 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2416 {
2417 	struct sh_eth_private *mdp = netdev_priv(ndev);
2418 
2419 	if (sh_eth_is_rz_fast_ether(mdp))
2420 		return &ndev->stats;
2421 
2422 	if (!mdp->is_opened)
2423 		return &ndev->stats;
2424 
2425 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2426 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2427 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2428 
2429 	if (sh_eth_is_gether(mdp)) {
2430 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2431 				   CERCR);
2432 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2433 				   CEECR);
2434 	} else {
2435 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2436 				   CNDCR);
2437 	}
2438 
2439 	return &ndev->stats;
2440 }
2441 
2442 /* device close function */
2443 static int sh_eth_close(struct net_device *ndev)
2444 {
2445 	struct sh_eth_private *mdp = netdev_priv(ndev);
2446 
2447 	netif_stop_queue(ndev);
2448 
2449 	/* Serialise with the interrupt handler and NAPI, then disable
2450 	 * interrupts.  We have to clear the irq_enabled flag first to
2451 	 * ensure that interrupts won't be re-enabled.
2452 	 */
2453 	mdp->irq_enabled = false;
2454 	synchronize_irq(ndev->irq);
2455 	napi_disable(&mdp->napi);
2456 	sh_eth_write(ndev, 0x0000, EESIPR);
2457 
2458 	sh_eth_dev_exit(ndev);
2459 
2460 	/* PHY Disconnect */
2461 	if (mdp->phydev) {
2462 		phy_stop(mdp->phydev);
2463 		phy_disconnect(mdp->phydev);
2464 		mdp->phydev = NULL;
2465 	}
2466 
2467 	free_irq(ndev->irq, ndev);
2468 
2469 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2470 	sh_eth_ring_free(ndev);
2471 
2472 	pm_runtime_put_sync(&mdp->pdev->dev);
2473 
2474 	mdp->is_opened = 0;
2475 
2476 	return 0;
2477 }
2478 
2479 /* ioctl to device function */
2480 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2481 {
2482 	struct sh_eth_private *mdp = netdev_priv(ndev);
2483 	struct phy_device *phydev = mdp->phydev;
2484 
2485 	if (!netif_running(ndev))
2486 		return -EINVAL;
2487 
2488 	if (!phydev)
2489 		return -ENODEV;
2490 
2491 	return phy_mii_ioctl(phydev, rq, cmd);
2492 }
2493 
2494 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2495 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2496 					    int entry)
2497 {
2498 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2499 }
2500 
2501 static u32 sh_eth_tsu_get_post_mask(int entry)
2502 {
2503 	return 0x0f << (28 - ((entry % 8) * 4));
2504 }
2505 
2506 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2507 {
2508 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2509 }
2510 
2511 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2512 					     int entry)
2513 {
2514 	struct sh_eth_private *mdp = netdev_priv(ndev);
2515 	u32 tmp;
2516 	void *reg_offset;
2517 
2518 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2519 	tmp = ioread32(reg_offset);
2520 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2521 }
2522 
2523 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2524 					      int entry)
2525 {
2526 	struct sh_eth_private *mdp = netdev_priv(ndev);
2527 	u32 post_mask, ref_mask, tmp;
2528 	void *reg_offset;
2529 
2530 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2531 	post_mask = sh_eth_tsu_get_post_mask(entry);
2532 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2533 
2534 	tmp = ioread32(reg_offset);
2535 	iowrite32(tmp & ~post_mask, reg_offset);
2536 
2537 	/* If other port enables, the function returns "true" */
2538 	return tmp & ref_mask;
2539 }
2540 
2541 static int sh_eth_tsu_busy(struct net_device *ndev)
2542 {
2543 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2544 	struct sh_eth_private *mdp = netdev_priv(ndev);
2545 
2546 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2547 		udelay(10);
2548 		timeout--;
2549 		if (timeout <= 0) {
2550 			netdev_err(ndev, "%s: timeout\n", __func__);
2551 			return -ETIMEDOUT;
2552 		}
2553 	}
2554 
2555 	return 0;
2556 }
2557 
2558 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2559 				  const u8 *addr)
2560 {
2561 	u32 val;
2562 
2563 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2564 	iowrite32(val, reg);
2565 	if (sh_eth_tsu_busy(ndev) < 0)
2566 		return -EBUSY;
2567 
2568 	val = addr[4] << 8 | addr[5];
2569 	iowrite32(val, reg + 4);
2570 	if (sh_eth_tsu_busy(ndev) < 0)
2571 		return -EBUSY;
2572 
2573 	return 0;
2574 }
2575 
2576 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2577 {
2578 	u32 val;
2579 
2580 	val = ioread32(reg);
2581 	addr[0] = (val >> 24) & 0xff;
2582 	addr[1] = (val >> 16) & 0xff;
2583 	addr[2] = (val >> 8) & 0xff;
2584 	addr[3] = val & 0xff;
2585 	val = ioread32(reg + 4);
2586 	addr[4] = (val >> 8) & 0xff;
2587 	addr[5] = val & 0xff;
2588 }
2589 
2590 
2591 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2592 {
2593 	struct sh_eth_private *mdp = netdev_priv(ndev);
2594 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2595 	int i;
2596 	u8 c_addr[ETH_ALEN];
2597 
2598 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2599 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2600 		if (ether_addr_equal(addr, c_addr))
2601 			return i;
2602 	}
2603 
2604 	return -ENOENT;
2605 }
2606 
2607 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2608 {
2609 	u8 blank[ETH_ALEN];
2610 	int entry;
2611 
2612 	memset(blank, 0, sizeof(blank));
2613 	entry = sh_eth_tsu_find_entry(ndev, blank);
2614 	return (entry < 0) ? -ENOMEM : entry;
2615 }
2616 
2617 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2618 					      int entry)
2619 {
2620 	struct sh_eth_private *mdp = netdev_priv(ndev);
2621 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2622 	int ret;
2623 	u8 blank[ETH_ALEN];
2624 
2625 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2626 			 ~(1 << (31 - entry)), TSU_TEN);
2627 
2628 	memset(blank, 0, sizeof(blank));
2629 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2630 	if (ret < 0)
2631 		return ret;
2632 	return 0;
2633 }
2634 
2635 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2636 {
2637 	struct sh_eth_private *mdp = netdev_priv(ndev);
2638 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2639 	int i, ret;
2640 
2641 	if (!mdp->cd->tsu)
2642 		return 0;
2643 
2644 	i = sh_eth_tsu_find_entry(ndev, addr);
2645 	if (i < 0) {
2646 		/* No entry found, create one */
2647 		i = sh_eth_tsu_find_empty(ndev);
2648 		if (i < 0)
2649 			return -ENOMEM;
2650 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2651 		if (ret < 0)
2652 			return ret;
2653 
2654 		/* Enable the entry */
2655 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2656 				 (1 << (31 - i)), TSU_TEN);
2657 	}
2658 
2659 	/* Entry found or created, enable POST */
2660 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2661 
2662 	return 0;
2663 }
2664 
2665 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2666 {
2667 	struct sh_eth_private *mdp = netdev_priv(ndev);
2668 	int i, ret;
2669 
2670 	if (!mdp->cd->tsu)
2671 		return 0;
2672 
2673 	i = sh_eth_tsu_find_entry(ndev, addr);
2674 	if (i) {
2675 		/* Entry found */
2676 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2677 			goto done;
2678 
2679 		/* Disable the entry if both ports was disabled */
2680 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2681 		if (ret < 0)
2682 			return ret;
2683 	}
2684 done:
2685 	return 0;
2686 }
2687 
2688 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2689 {
2690 	struct sh_eth_private *mdp = netdev_priv(ndev);
2691 	int i, ret;
2692 
2693 	if (!mdp->cd->tsu)
2694 		return 0;
2695 
2696 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2697 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2698 			continue;
2699 
2700 		/* Disable the entry if both ports was disabled */
2701 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2702 		if (ret < 0)
2703 			return ret;
2704 	}
2705 
2706 	return 0;
2707 }
2708 
2709 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2710 {
2711 	struct sh_eth_private *mdp = netdev_priv(ndev);
2712 	u8 addr[ETH_ALEN];
2713 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2714 	int i;
2715 
2716 	if (!mdp->cd->tsu)
2717 		return;
2718 
2719 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2720 		sh_eth_tsu_read_entry(reg_offset, addr);
2721 		if (is_multicast_ether_addr(addr))
2722 			sh_eth_tsu_del_entry(ndev, addr);
2723 	}
2724 }
2725 
2726 /* Update promiscuous flag and multicast filter */
2727 static void sh_eth_set_rx_mode(struct net_device *ndev)
2728 {
2729 	struct sh_eth_private *mdp = netdev_priv(ndev);
2730 	u32 ecmr_bits;
2731 	int mcast_all = 0;
2732 	unsigned long flags;
2733 
2734 	spin_lock_irqsave(&mdp->lock, flags);
2735 	/* Initial condition is MCT = 1, PRM = 0.
2736 	 * Depending on ndev->flags, set PRM or clear MCT
2737 	 */
2738 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2739 	if (mdp->cd->tsu)
2740 		ecmr_bits |= ECMR_MCT;
2741 
2742 	if (!(ndev->flags & IFF_MULTICAST)) {
2743 		sh_eth_tsu_purge_mcast(ndev);
2744 		mcast_all = 1;
2745 	}
2746 	if (ndev->flags & IFF_ALLMULTI) {
2747 		sh_eth_tsu_purge_mcast(ndev);
2748 		ecmr_bits &= ~ECMR_MCT;
2749 		mcast_all = 1;
2750 	}
2751 
2752 	if (ndev->flags & IFF_PROMISC) {
2753 		sh_eth_tsu_purge_all(ndev);
2754 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2755 	} else if (mdp->cd->tsu) {
2756 		struct netdev_hw_addr *ha;
2757 		netdev_for_each_mc_addr(ha, ndev) {
2758 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2759 				continue;
2760 
2761 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2762 				if (!mcast_all) {
2763 					sh_eth_tsu_purge_mcast(ndev);
2764 					ecmr_bits &= ~ECMR_MCT;
2765 					mcast_all = 1;
2766 				}
2767 			}
2768 		}
2769 	}
2770 
2771 	/* update the ethernet mode */
2772 	sh_eth_write(ndev, ecmr_bits, ECMR);
2773 
2774 	spin_unlock_irqrestore(&mdp->lock, flags);
2775 }
2776 
2777 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2778 {
2779 	if (!mdp->port)
2780 		return TSU_VTAG0;
2781 	else
2782 		return TSU_VTAG1;
2783 }
2784 
2785 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2786 				  __be16 proto, u16 vid)
2787 {
2788 	struct sh_eth_private *mdp = netdev_priv(ndev);
2789 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2790 
2791 	if (unlikely(!mdp->cd->tsu))
2792 		return -EPERM;
2793 
2794 	/* No filtering if vid = 0 */
2795 	if (!vid)
2796 		return 0;
2797 
2798 	mdp->vlan_num_ids++;
2799 
2800 	/* The controller has one VLAN tag HW filter. So, if the filter is
2801 	 * already enabled, the driver disables it and the filte
2802 	 */
2803 	if (mdp->vlan_num_ids > 1) {
2804 		/* disable VLAN filter */
2805 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2806 		return 0;
2807 	}
2808 
2809 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2810 			 vtag_reg_index);
2811 
2812 	return 0;
2813 }
2814 
2815 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2816 				   __be16 proto, u16 vid)
2817 {
2818 	struct sh_eth_private *mdp = netdev_priv(ndev);
2819 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2820 
2821 	if (unlikely(!mdp->cd->tsu))
2822 		return -EPERM;
2823 
2824 	/* No filtering if vid = 0 */
2825 	if (!vid)
2826 		return 0;
2827 
2828 	mdp->vlan_num_ids--;
2829 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2830 
2831 	return 0;
2832 }
2833 
2834 /* SuperH's TSU register init function */
2835 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2836 {
2837 	if (sh_eth_is_rz_fast_ether(mdp)) {
2838 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2839 		return;
2840 	}
2841 
2842 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2843 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2844 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2845 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2846 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2847 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2848 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2849 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2850 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2851 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2852 	if (sh_eth_is_gether(mdp)) {
2853 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2854 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2855 	} else {
2856 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2857 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2858 	}
2859 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2860 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2861 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2862 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2863 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2864 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2865 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2866 }
2867 
2868 /* MDIO bus release function */
2869 static int sh_mdio_release(struct sh_eth_private *mdp)
2870 {
2871 	/* unregister mdio bus */
2872 	mdiobus_unregister(mdp->mii_bus);
2873 
2874 	/* free bitbang info */
2875 	free_mdio_bitbang(mdp->mii_bus);
2876 
2877 	return 0;
2878 }
2879 
2880 /* MDIO bus init function */
2881 static int sh_mdio_init(struct sh_eth_private *mdp,
2882 			struct sh_eth_plat_data *pd)
2883 {
2884 	int ret, i;
2885 	struct bb_info *bitbang;
2886 	struct platform_device *pdev = mdp->pdev;
2887 	struct device *dev = &mdp->pdev->dev;
2888 
2889 	/* create bit control struct for PHY */
2890 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2891 	if (!bitbang)
2892 		return -ENOMEM;
2893 
2894 	/* bitbang init */
2895 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2896 	bitbang->set_gate = pd->set_mdio_gate;
2897 	bitbang->mdi_msk = PIR_MDI;
2898 	bitbang->mdo_msk = PIR_MDO;
2899 	bitbang->mmd_msk = PIR_MMD;
2900 	bitbang->mdc_msk = PIR_MDC;
2901 	bitbang->ctrl.ops = &bb_ops;
2902 
2903 	/* MII controller setting */
2904 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2905 	if (!mdp->mii_bus)
2906 		return -ENOMEM;
2907 
2908 	/* Hook up MII support for ethtool */
2909 	mdp->mii_bus->name = "sh_mii";
2910 	mdp->mii_bus->parent = dev;
2911 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2912 		 pdev->name, pdev->id);
2913 
2914 	/* PHY IRQ */
2915 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2916 					       GFP_KERNEL);
2917 	if (!mdp->mii_bus->irq) {
2918 		ret = -ENOMEM;
2919 		goto out_free_bus;
2920 	}
2921 
2922 	/* register MDIO bus */
2923 	if (dev->of_node) {
2924 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2925 	} else {
2926 		for (i = 0; i < PHY_MAX_ADDR; i++)
2927 			mdp->mii_bus->irq[i] = PHY_POLL;
2928 		if (pd->phy_irq > 0)
2929 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2930 
2931 		ret = mdiobus_register(mdp->mii_bus);
2932 	}
2933 
2934 	if (ret)
2935 		goto out_free_bus;
2936 
2937 	return 0;
2938 
2939 out_free_bus:
2940 	free_mdio_bitbang(mdp->mii_bus);
2941 	return ret;
2942 }
2943 
2944 static const u16 *sh_eth_get_register_offset(int register_type)
2945 {
2946 	const u16 *reg_offset = NULL;
2947 
2948 	switch (register_type) {
2949 	case SH_ETH_REG_GIGABIT:
2950 		reg_offset = sh_eth_offset_gigabit;
2951 		break;
2952 	case SH_ETH_REG_FAST_RZ:
2953 		reg_offset = sh_eth_offset_fast_rz;
2954 		break;
2955 	case SH_ETH_REG_FAST_RCAR:
2956 		reg_offset = sh_eth_offset_fast_rcar;
2957 		break;
2958 	case SH_ETH_REG_FAST_SH4:
2959 		reg_offset = sh_eth_offset_fast_sh4;
2960 		break;
2961 	case SH_ETH_REG_FAST_SH3_SH2:
2962 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2963 		break;
2964 	default:
2965 		break;
2966 	}
2967 
2968 	return reg_offset;
2969 }
2970 
2971 static const struct net_device_ops sh_eth_netdev_ops = {
2972 	.ndo_open		= sh_eth_open,
2973 	.ndo_stop		= sh_eth_close,
2974 	.ndo_start_xmit		= sh_eth_start_xmit,
2975 	.ndo_get_stats		= sh_eth_get_stats,
2976 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2977 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2978 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2979 	.ndo_validate_addr	= eth_validate_addr,
2980 	.ndo_set_mac_address	= eth_mac_addr,
2981 	.ndo_change_mtu		= eth_change_mtu,
2982 };
2983 
2984 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2985 	.ndo_open		= sh_eth_open,
2986 	.ndo_stop		= sh_eth_close,
2987 	.ndo_start_xmit		= sh_eth_start_xmit,
2988 	.ndo_get_stats		= sh_eth_get_stats,
2989 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2990 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2991 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2992 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2993 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2994 	.ndo_validate_addr	= eth_validate_addr,
2995 	.ndo_set_mac_address	= eth_mac_addr,
2996 	.ndo_change_mtu		= eth_change_mtu,
2997 };
2998 
2999 #ifdef CONFIG_OF
3000 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3001 {
3002 	struct device_node *np = dev->of_node;
3003 	struct sh_eth_plat_data *pdata;
3004 	const char *mac_addr;
3005 
3006 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3007 	if (!pdata)
3008 		return NULL;
3009 
3010 	pdata->phy_interface = of_get_phy_mode(np);
3011 
3012 	mac_addr = of_get_mac_address(np);
3013 	if (mac_addr)
3014 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3015 
3016 	pdata->no_ether_link =
3017 		of_property_read_bool(np, "renesas,no-ether-link");
3018 	pdata->ether_link_active_low =
3019 		of_property_read_bool(np, "renesas,ether-link-active-low");
3020 
3021 	return pdata;
3022 }
3023 
3024 static const struct of_device_id sh_eth_match_table[] = {
3025 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3026 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3027 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3028 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3029 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3030 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3031 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3032 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3033 	{ }
3034 };
3035 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3036 #else
3037 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3038 {
3039 	return NULL;
3040 }
3041 #endif
3042 
3043 static int sh_eth_drv_probe(struct platform_device *pdev)
3044 {
3045 	int ret, devno = 0;
3046 	struct resource *res;
3047 	struct net_device *ndev = NULL;
3048 	struct sh_eth_private *mdp = NULL;
3049 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3050 	const struct platform_device_id *id = platform_get_device_id(pdev);
3051 
3052 	/* get base addr */
3053 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3054 
3055 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3056 	if (!ndev)
3057 		return -ENOMEM;
3058 
3059 	pm_runtime_enable(&pdev->dev);
3060 	pm_runtime_get_sync(&pdev->dev);
3061 
3062 	devno = pdev->id;
3063 	if (devno < 0)
3064 		devno = 0;
3065 
3066 	ndev->dma = -1;
3067 	ret = platform_get_irq(pdev, 0);
3068 	if (ret < 0)
3069 		goto out_release;
3070 	ndev->irq = ret;
3071 
3072 	SET_NETDEV_DEV(ndev, &pdev->dev);
3073 
3074 	mdp = netdev_priv(ndev);
3075 	mdp->num_tx_ring = TX_RING_SIZE;
3076 	mdp->num_rx_ring = RX_RING_SIZE;
3077 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3078 	if (IS_ERR(mdp->addr)) {
3079 		ret = PTR_ERR(mdp->addr);
3080 		goto out_release;
3081 	}
3082 
3083 	ndev->base_addr = res->start;
3084 
3085 	spin_lock_init(&mdp->lock);
3086 	mdp->pdev = pdev;
3087 
3088 	if (pdev->dev.of_node)
3089 		pd = sh_eth_parse_dt(&pdev->dev);
3090 	if (!pd) {
3091 		dev_err(&pdev->dev, "no platform data\n");
3092 		ret = -EINVAL;
3093 		goto out_release;
3094 	}
3095 
3096 	/* get PHY ID */
3097 	mdp->phy_id = pd->phy;
3098 	mdp->phy_interface = pd->phy_interface;
3099 	/* EDMAC endian */
3100 	mdp->edmac_endian = pd->edmac_endian;
3101 	mdp->no_ether_link = pd->no_ether_link;
3102 	mdp->ether_link_active_low = pd->ether_link_active_low;
3103 
3104 	/* set cpu data */
3105 	if (id) {
3106 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3107 	} else	{
3108 		const struct of_device_id *match;
3109 
3110 		match = of_match_device(of_match_ptr(sh_eth_match_table),
3111 					&pdev->dev);
3112 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
3113 	}
3114 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3115 	if (!mdp->reg_offset) {
3116 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3117 			mdp->cd->register_type);
3118 		ret = -EINVAL;
3119 		goto out_release;
3120 	}
3121 	sh_eth_set_default_cpu_data(mdp->cd);
3122 
3123 	/* set function */
3124 	if (mdp->cd->tsu)
3125 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3126 	else
3127 		ndev->netdev_ops = &sh_eth_netdev_ops;
3128 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3129 	ndev->watchdog_timeo = TX_TIMEOUT;
3130 
3131 	/* debug message level */
3132 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3133 
3134 	/* read and set MAC address */
3135 	read_mac_address(ndev, pd->mac_addr);
3136 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3137 		dev_warn(&pdev->dev,
3138 			 "no valid MAC address supplied, using a random one.\n");
3139 		eth_hw_addr_random(ndev);
3140 	}
3141 
3142 	/* ioremap the TSU registers */
3143 	if (mdp->cd->tsu) {
3144 		struct resource *rtsu;
3145 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3146 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3147 		if (IS_ERR(mdp->tsu_addr)) {
3148 			ret = PTR_ERR(mdp->tsu_addr);
3149 			goto out_release;
3150 		}
3151 		mdp->port = devno % 2;
3152 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3153 	}
3154 
3155 	/* initialize first or needed device */
3156 	if (!devno || pd->needs_init) {
3157 		if (mdp->cd->chip_reset)
3158 			mdp->cd->chip_reset(ndev);
3159 
3160 		if (mdp->cd->tsu) {
3161 			/* TSU init (Init only)*/
3162 			sh_eth_tsu_init(mdp);
3163 		}
3164 	}
3165 
3166 	if (mdp->cd->rmiimode)
3167 		sh_eth_write(ndev, 0x1, RMIIMODE);
3168 
3169 	/* MDIO bus init */
3170 	ret = sh_mdio_init(mdp, pd);
3171 	if (ret) {
3172 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3173 		goto out_release;
3174 	}
3175 
3176 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3177 
3178 	/* network device register */
3179 	ret = register_netdev(ndev);
3180 	if (ret)
3181 		goto out_napi_del;
3182 
3183 	/* print device information */
3184 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3185 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3186 
3187 	pm_runtime_put(&pdev->dev);
3188 	platform_set_drvdata(pdev, ndev);
3189 
3190 	return ret;
3191 
3192 out_napi_del:
3193 	netif_napi_del(&mdp->napi);
3194 	sh_mdio_release(mdp);
3195 
3196 out_release:
3197 	/* net_dev free */
3198 	if (ndev)
3199 		free_netdev(ndev);
3200 
3201 	pm_runtime_put(&pdev->dev);
3202 	pm_runtime_disable(&pdev->dev);
3203 	return ret;
3204 }
3205 
3206 static int sh_eth_drv_remove(struct platform_device *pdev)
3207 {
3208 	struct net_device *ndev = platform_get_drvdata(pdev);
3209 	struct sh_eth_private *mdp = netdev_priv(ndev);
3210 
3211 	unregister_netdev(ndev);
3212 	netif_napi_del(&mdp->napi);
3213 	sh_mdio_release(mdp);
3214 	pm_runtime_disable(&pdev->dev);
3215 	free_netdev(ndev);
3216 
3217 	return 0;
3218 }
3219 
3220 #ifdef CONFIG_PM
3221 #ifdef CONFIG_PM_SLEEP
3222 static int sh_eth_suspend(struct device *dev)
3223 {
3224 	struct net_device *ndev = dev_get_drvdata(dev);
3225 	int ret = 0;
3226 
3227 	if (netif_running(ndev)) {
3228 		netif_device_detach(ndev);
3229 		ret = sh_eth_close(ndev);
3230 	}
3231 
3232 	return ret;
3233 }
3234 
3235 static int sh_eth_resume(struct device *dev)
3236 {
3237 	struct net_device *ndev = dev_get_drvdata(dev);
3238 	int ret = 0;
3239 
3240 	if (netif_running(ndev)) {
3241 		ret = sh_eth_open(ndev);
3242 		if (ret < 0)
3243 			return ret;
3244 		netif_device_attach(ndev);
3245 	}
3246 
3247 	return ret;
3248 }
3249 #endif
3250 
3251 static int sh_eth_runtime_nop(struct device *dev)
3252 {
3253 	/* Runtime PM callback shared between ->runtime_suspend()
3254 	 * and ->runtime_resume(). Simply returns success.
3255 	 *
3256 	 * This driver re-initializes all registers after
3257 	 * pm_runtime_get_sync() anyway so there is no need
3258 	 * to save and restore registers here.
3259 	 */
3260 	return 0;
3261 }
3262 
3263 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3264 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3265 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3266 };
3267 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3268 #else
3269 #define SH_ETH_PM_OPS NULL
3270 #endif
3271 
3272 static struct platform_device_id sh_eth_id_table[] = {
3273 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3274 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3275 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3276 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3277 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3278 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3279 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3280 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3281 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3282 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3283 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3284 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3285 	{ "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3286 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3287 	{ }
3288 };
3289 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3290 
3291 static struct platform_driver sh_eth_driver = {
3292 	.probe = sh_eth_drv_probe,
3293 	.remove = sh_eth_drv_remove,
3294 	.id_table = sh_eth_id_table,
3295 	.driver = {
3296 		   .name = CARDNAME,
3297 		   .pm = SH_ETH_PM_OPS,
3298 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3299 	},
3300 };
3301 
3302 module_platform_driver(sh_eth_driver);
3303 
3304 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3305 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3306 MODULE_LICENSE("GPL v2");
3307