1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include <asm/div64.h>
36 
37 #include "ravb.h"
38 
39 #define RAVB_DEF_MSG_ENABLE \
40 		(NETIF_MSG_LINK	  | \
41 		 NETIF_MSG_TIMER  | \
42 		 NETIF_MSG_RX_ERR | \
43 		 NETIF_MSG_TX_ERR)
44 
45 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
46 	"ch0", /* RAVB_BE */
47 	"ch1", /* RAVB_NC */
48 };
49 
50 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
51 	"ch18", /* RAVB_BE */
52 	"ch19", /* RAVB_NC */
53 };
54 
55 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
56 		 u32 set)
57 {
58 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
59 }
60 
61 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
62 {
63 	int i;
64 
65 	for (i = 0; i < 10000; i++) {
66 		if ((ravb_read(ndev, reg) & mask) == value)
67 			return 0;
68 		udelay(10);
69 	}
70 	return -ETIMEDOUT;
71 }
72 
73 static int ravb_config(struct net_device *ndev)
74 {
75 	int error;
76 
77 	/* Set config mode */
78 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
79 	/* Check if the operating mode is changed to the config mode */
80 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
81 	if (error)
82 		netdev_err(ndev, "failed to switch device to config mode\n");
83 
84 	return error;
85 }
86 
87 static void ravb_set_duplex(struct net_device *ndev)
88 {
89 	struct ravb_private *priv = netdev_priv(ndev);
90 
91 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
92 }
93 
94 static void ravb_set_rate(struct net_device *ndev)
95 {
96 	struct ravb_private *priv = netdev_priv(ndev);
97 
98 	switch (priv->speed) {
99 	case 100:		/* 100BASE */
100 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
101 		break;
102 	case 1000:		/* 1000BASE */
103 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
104 		break;
105 	}
106 }
107 
108 static void ravb_set_buffer_align(struct sk_buff *skb)
109 {
110 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
111 
112 	if (reserve)
113 		skb_reserve(skb, RAVB_ALIGN - reserve);
114 }
115 
116 /* Get MAC address from the MAC address registers
117  *
118  * Ethernet AVB device doesn't have ROM for MAC address.
119  * This function gets the MAC address that was used by a bootloader.
120  */
121 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
122 {
123 	if (mac) {
124 		ether_addr_copy(ndev->dev_addr, mac);
125 	} else {
126 		u32 mahr = ravb_read(ndev, MAHR);
127 		u32 malr = ravb_read(ndev, MALR);
128 
129 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
130 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
131 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
132 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
133 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
134 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
135 	}
136 }
137 
138 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
139 {
140 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
141 						 mdiobb);
142 
143 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
144 }
145 
146 /* MDC pin control */
147 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
148 {
149 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
150 }
151 
152 /* Data I/O pin control */
153 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
154 {
155 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
156 }
157 
158 /* Set data bit */
159 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
160 {
161 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
162 }
163 
164 /* Get data bit */
165 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
166 {
167 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
168 						 mdiobb);
169 
170 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
171 }
172 
173 /* MDIO bus control struct */
174 static struct mdiobb_ops bb_ops = {
175 	.owner = THIS_MODULE,
176 	.set_mdc = ravb_set_mdc,
177 	.set_mdio_dir = ravb_set_mdio_dir,
178 	.set_mdio_data = ravb_set_mdio_data,
179 	.get_mdio_data = ravb_get_mdio_data,
180 };
181 
182 /* Free skb's and DMA buffers for Ethernet AVB */
183 static void ravb_ring_free(struct net_device *ndev, int q)
184 {
185 	struct ravb_private *priv = netdev_priv(ndev);
186 	int ring_size;
187 	int i;
188 
189 	/* Free RX skb ringbuffer */
190 	if (priv->rx_skb[q]) {
191 		for (i = 0; i < priv->num_rx_ring[q]; i++)
192 			dev_kfree_skb(priv->rx_skb[q][i]);
193 	}
194 	kfree(priv->rx_skb[q]);
195 	priv->rx_skb[q] = NULL;
196 
197 	/* Free TX skb ringbuffer */
198 	if (priv->tx_skb[q]) {
199 		for (i = 0; i < priv->num_tx_ring[q]; i++)
200 			dev_kfree_skb(priv->tx_skb[q][i]);
201 	}
202 	kfree(priv->tx_skb[q]);
203 	priv->tx_skb[q] = NULL;
204 
205 	/* Free aligned TX buffers */
206 	kfree(priv->tx_align[q]);
207 	priv->tx_align[q] = NULL;
208 
209 	if (priv->rx_ring[q]) {
210 		ring_size = sizeof(struct ravb_ex_rx_desc) *
211 			    (priv->num_rx_ring[q] + 1);
212 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
213 				  priv->rx_desc_dma[q]);
214 		priv->rx_ring[q] = NULL;
215 	}
216 
217 	if (priv->tx_ring[q]) {
218 		ring_size = sizeof(struct ravb_tx_desc) *
219 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
220 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
221 				  priv->tx_desc_dma[q]);
222 		priv->tx_ring[q] = NULL;
223 	}
224 }
225 
226 /* Format skb and descriptor buffer for Ethernet AVB */
227 static void ravb_ring_format(struct net_device *ndev, int q)
228 {
229 	struct ravb_private *priv = netdev_priv(ndev);
230 	struct ravb_ex_rx_desc *rx_desc;
231 	struct ravb_tx_desc *tx_desc;
232 	struct ravb_desc *desc;
233 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
234 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
235 			   NUM_TX_DESC;
236 	dma_addr_t dma_addr;
237 	int i;
238 
239 	priv->cur_rx[q] = 0;
240 	priv->cur_tx[q] = 0;
241 	priv->dirty_rx[q] = 0;
242 	priv->dirty_tx[q] = 0;
243 
244 	memset(priv->rx_ring[q], 0, rx_ring_size);
245 	/* Build RX ring buffer */
246 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
247 		/* RX descriptor */
248 		rx_desc = &priv->rx_ring[q][i];
249 		rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
250 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
251 					  PKT_BUF_SZ,
252 					  DMA_FROM_DEVICE);
253 		/* We just set the data size to 0 for a failed mapping which
254 		 * should prevent DMA from happening...
255 		 */
256 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
257 			rx_desc->ds_cc = cpu_to_le16(0);
258 		rx_desc->dptr = cpu_to_le32(dma_addr);
259 		rx_desc->die_dt = DT_FEMPTY;
260 	}
261 	rx_desc = &priv->rx_ring[q][i];
262 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
263 	rx_desc->die_dt = DT_LINKFIX; /* type */
264 
265 	memset(priv->tx_ring[q], 0, tx_ring_size);
266 	/* Build TX ring buffer */
267 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
268 	     i++, tx_desc++) {
269 		tx_desc->die_dt = DT_EEMPTY;
270 		tx_desc++;
271 		tx_desc->die_dt = DT_EEMPTY;
272 	}
273 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
274 	tx_desc->die_dt = DT_LINKFIX; /* type */
275 
276 	/* RX descriptor base address for best effort */
277 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
278 	desc->die_dt = DT_LINKFIX; /* type */
279 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
280 
281 	/* TX descriptor base address for best effort */
282 	desc = &priv->desc_bat[q];
283 	desc->die_dt = DT_LINKFIX; /* type */
284 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
285 }
286 
287 /* Init skb and descriptor buffer for Ethernet AVB */
288 static int ravb_ring_init(struct net_device *ndev, int q)
289 {
290 	struct ravb_private *priv = netdev_priv(ndev);
291 	struct sk_buff *skb;
292 	int ring_size;
293 	int i;
294 
295 	/* Allocate RX and TX skb rings */
296 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
297 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
298 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
299 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
300 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
301 		goto error;
302 
303 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
304 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
305 		if (!skb)
306 			goto error;
307 		ravb_set_buffer_align(skb);
308 		priv->rx_skb[q][i] = skb;
309 	}
310 
311 	/* Allocate rings for the aligned buffers */
312 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
313 				    DPTR_ALIGN - 1, GFP_KERNEL);
314 	if (!priv->tx_align[q])
315 		goto error;
316 
317 	/* Allocate all RX descriptors. */
318 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
319 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
320 					      &priv->rx_desc_dma[q],
321 					      GFP_KERNEL);
322 	if (!priv->rx_ring[q])
323 		goto error;
324 
325 	priv->dirty_rx[q] = 0;
326 
327 	/* Allocate all TX descriptors. */
328 	ring_size = sizeof(struct ravb_tx_desc) *
329 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
330 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
331 					      &priv->tx_desc_dma[q],
332 					      GFP_KERNEL);
333 	if (!priv->tx_ring[q])
334 		goto error;
335 
336 	return 0;
337 
338 error:
339 	ravb_ring_free(ndev, q);
340 
341 	return -ENOMEM;
342 }
343 
344 /* E-MAC init function */
345 static void ravb_emac_init(struct net_device *ndev)
346 {
347 	struct ravb_private *priv = netdev_priv(ndev);
348 
349 	/* Receive frame limit set register */
350 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
351 
352 	/* PAUSE prohibition */
353 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
354 		   ECMR_TE | ECMR_RE, ECMR);
355 
356 	ravb_set_rate(ndev);
357 
358 	/* Set MAC address */
359 	ravb_write(ndev,
360 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
361 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
362 	ravb_write(ndev,
363 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
364 
365 	/* E-MAC status register clear */
366 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
367 
368 	/* E-MAC interrupt enable register */
369 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
370 }
371 
372 /* Device init function for Ethernet AVB */
373 static int ravb_dmac_init(struct net_device *ndev)
374 {
375 	struct ravb_private *priv = netdev_priv(ndev);
376 	int error;
377 
378 	/* Set CONFIG mode */
379 	error = ravb_config(ndev);
380 	if (error)
381 		return error;
382 
383 	error = ravb_ring_init(ndev, RAVB_BE);
384 	if (error)
385 		return error;
386 	error = ravb_ring_init(ndev, RAVB_NC);
387 	if (error) {
388 		ravb_ring_free(ndev, RAVB_BE);
389 		return error;
390 	}
391 
392 	/* Descriptor format */
393 	ravb_ring_format(ndev, RAVB_BE);
394 	ravb_ring_format(ndev, RAVB_NC);
395 
396 #if defined(__LITTLE_ENDIAN)
397 	ravb_modify(ndev, CCC, CCC_BOC, 0);
398 #else
399 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
400 #endif
401 
402 	/* Set AVB RX */
403 	ravb_write(ndev,
404 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
405 
406 	/* Set FIFO size */
407 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
408 
409 	/* Timestamp enable */
410 	ravb_write(ndev, TCCR_TFEN, TCCR);
411 
412 	/* Interrupt init: */
413 	if (priv->chip_id == RCAR_GEN3) {
414 		/* Clear DIL.DPLx */
415 		ravb_write(ndev, 0, DIL);
416 		/* Set queue specific interrupt */
417 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
418 	}
419 	/* Frame receive */
420 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
421 	/* Disable FIFO full warning */
422 	ravb_write(ndev, 0, RIC1);
423 	/* Receive FIFO full error, descriptor empty */
424 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
425 	/* Frame transmitted, timestamp FIFO updated */
426 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
427 
428 	/* Setting the control will start the AVB-DMAC process. */
429 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
430 
431 	return 0;
432 }
433 
434 /* Free TX skb function for AVB-IP */
435 static int ravb_tx_free(struct net_device *ndev, int q)
436 {
437 	struct ravb_private *priv = netdev_priv(ndev);
438 	struct net_device_stats *stats = &priv->stats[q];
439 	struct ravb_tx_desc *desc;
440 	int free_num = 0;
441 	int entry;
442 	u32 size;
443 
444 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
445 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
446 					     NUM_TX_DESC);
447 		desc = &priv->tx_ring[q][entry];
448 		if (desc->die_dt != DT_FEMPTY)
449 			break;
450 		/* Descriptor type must be checked before all other reads */
451 		dma_rmb();
452 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
453 		/* Free the original skb. */
454 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
455 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
456 					 size, DMA_TO_DEVICE);
457 			/* Last packet descriptor? */
458 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
459 				entry /= NUM_TX_DESC;
460 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
461 				priv->tx_skb[q][entry] = NULL;
462 				stats->tx_packets++;
463 			}
464 			free_num++;
465 		}
466 		stats->tx_bytes += size;
467 		desc->die_dt = DT_EEMPTY;
468 	}
469 	return free_num;
470 }
471 
472 static void ravb_get_tx_tstamp(struct net_device *ndev)
473 {
474 	struct ravb_private *priv = netdev_priv(ndev);
475 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
476 	struct skb_shared_hwtstamps shhwtstamps;
477 	struct sk_buff *skb;
478 	struct timespec64 ts;
479 	u16 tag, tfa_tag;
480 	int count;
481 	u32 tfa2;
482 
483 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
484 	while (count--) {
485 		tfa2 = ravb_read(ndev, TFA2);
486 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
487 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
488 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
489 			    ravb_read(ndev, TFA1);
490 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
491 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
492 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
493 					 list) {
494 			skb = ts_skb->skb;
495 			tag = ts_skb->tag;
496 			list_del(&ts_skb->list);
497 			kfree(ts_skb);
498 			if (tag == tfa_tag) {
499 				skb_tstamp_tx(skb, &shhwtstamps);
500 				break;
501 			}
502 		}
503 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
504 	}
505 }
506 
507 /* Packet receive function for Ethernet AVB */
508 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
509 {
510 	struct ravb_private *priv = netdev_priv(ndev);
511 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
512 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
513 			priv->cur_rx[q];
514 	struct net_device_stats *stats = &priv->stats[q];
515 	struct ravb_ex_rx_desc *desc;
516 	struct sk_buff *skb;
517 	dma_addr_t dma_addr;
518 	struct timespec64 ts;
519 	u8  desc_status;
520 	u16 pkt_len;
521 	int limit;
522 
523 	boguscnt = min(boguscnt, *quota);
524 	limit = boguscnt;
525 	desc = &priv->rx_ring[q][entry];
526 	while (desc->die_dt != DT_FEMPTY) {
527 		/* Descriptor type must be checked before all other reads */
528 		dma_rmb();
529 		desc_status = desc->msc;
530 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
531 
532 		if (--boguscnt < 0)
533 			break;
534 
535 		/* We use 0-byte descriptors to mark the DMA mapping errors */
536 		if (!pkt_len)
537 			continue;
538 
539 		if (desc_status & MSC_MC)
540 			stats->multicast++;
541 
542 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
543 				   MSC_CEEF)) {
544 			stats->rx_errors++;
545 			if (desc_status & MSC_CRC)
546 				stats->rx_crc_errors++;
547 			if (desc_status & MSC_RFE)
548 				stats->rx_frame_errors++;
549 			if (desc_status & (MSC_RTLF | MSC_RTSF))
550 				stats->rx_length_errors++;
551 			if (desc_status & MSC_CEEF)
552 				stats->rx_missed_errors++;
553 		} else {
554 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
555 
556 			skb = priv->rx_skb[q][entry];
557 			priv->rx_skb[q][entry] = NULL;
558 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
559 					 PKT_BUF_SZ,
560 					 DMA_FROM_DEVICE);
561 			get_ts &= (q == RAVB_NC) ?
562 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
563 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
564 			if (get_ts) {
565 				struct skb_shared_hwtstamps *shhwtstamps;
566 
567 				shhwtstamps = skb_hwtstamps(skb);
568 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
569 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
570 					     32) | le32_to_cpu(desc->ts_sl);
571 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
572 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
573 			}
574 			skb_put(skb, pkt_len);
575 			skb->protocol = eth_type_trans(skb, ndev);
576 			napi_gro_receive(&priv->napi[q], skb);
577 			stats->rx_packets++;
578 			stats->rx_bytes += pkt_len;
579 		}
580 
581 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
582 		desc = &priv->rx_ring[q][entry];
583 	}
584 
585 	/* Refill the RX ring buffers. */
586 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
587 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
588 		desc = &priv->rx_ring[q][entry];
589 		desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
590 
591 		if (!priv->rx_skb[q][entry]) {
592 			skb = netdev_alloc_skb(ndev,
593 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
594 			if (!skb)
595 				break;	/* Better luck next round. */
596 			ravb_set_buffer_align(skb);
597 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
598 						  le16_to_cpu(desc->ds_cc),
599 						  DMA_FROM_DEVICE);
600 			skb_checksum_none_assert(skb);
601 			/* We just set the data size to 0 for a failed mapping
602 			 * which should prevent DMA  from happening...
603 			 */
604 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
605 				desc->ds_cc = cpu_to_le16(0);
606 			desc->dptr = cpu_to_le32(dma_addr);
607 			priv->rx_skb[q][entry] = skb;
608 		}
609 		/* Descriptor type must be set after all the above writes */
610 		dma_wmb();
611 		desc->die_dt = DT_FEMPTY;
612 	}
613 
614 	*quota -= limit - (++boguscnt);
615 
616 	return boguscnt <= 0;
617 }
618 
619 static void ravb_rcv_snd_disable(struct net_device *ndev)
620 {
621 	/* Disable TX and RX */
622 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
623 }
624 
625 static void ravb_rcv_snd_enable(struct net_device *ndev)
626 {
627 	/* Enable TX and RX */
628 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
629 }
630 
631 /* function for waiting dma process finished */
632 static int ravb_stop_dma(struct net_device *ndev)
633 {
634 	int error;
635 
636 	/* Wait for stopping the hardware TX process */
637 	error = ravb_wait(ndev, TCCR,
638 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
639 	if (error)
640 		return error;
641 
642 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
643 			  0);
644 	if (error)
645 		return error;
646 
647 	/* Stop the E-MAC's RX/TX processes. */
648 	ravb_rcv_snd_disable(ndev);
649 
650 	/* Wait for stopping the RX DMA process */
651 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
652 	if (error)
653 		return error;
654 
655 	/* Stop AVB-DMAC process */
656 	return ravb_config(ndev);
657 }
658 
659 /* E-MAC interrupt handler */
660 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
661 {
662 	struct ravb_private *priv = netdev_priv(ndev);
663 	u32 ecsr, psr;
664 
665 	ecsr = ravb_read(ndev, ECSR);
666 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
667 	if (ecsr & ECSR_ICD)
668 		ndev->stats.tx_carrier_errors++;
669 	if (ecsr & ECSR_LCHNG) {
670 		/* Link changed */
671 		if (priv->no_avb_link)
672 			return;
673 		psr = ravb_read(ndev, PSR);
674 		if (priv->avb_link_active_low)
675 			psr ^= PSR_LMON;
676 		if (!(psr & PSR_LMON)) {
677 			/* DIsable RX and TX */
678 			ravb_rcv_snd_disable(ndev);
679 		} else {
680 			/* Enable RX and TX */
681 			ravb_rcv_snd_enable(ndev);
682 		}
683 	}
684 }
685 
686 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
687 {
688 	struct net_device *ndev = dev_id;
689 	struct ravb_private *priv = netdev_priv(ndev);
690 
691 	spin_lock(&priv->lock);
692 	ravb_emac_interrupt_unlocked(ndev);
693 	mmiowb();
694 	spin_unlock(&priv->lock);
695 	return IRQ_HANDLED;
696 }
697 
698 /* Error interrupt handler */
699 static void ravb_error_interrupt(struct net_device *ndev)
700 {
701 	struct ravb_private *priv = netdev_priv(ndev);
702 	u32 eis, ris2;
703 
704 	eis = ravb_read(ndev, EIS);
705 	ravb_write(ndev, ~EIS_QFS, EIS);
706 	if (eis & EIS_QFS) {
707 		ris2 = ravb_read(ndev, RIS2);
708 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
709 
710 		/* Receive Descriptor Empty int */
711 		if (ris2 & RIS2_QFF0)
712 			priv->stats[RAVB_BE].rx_over_errors++;
713 
714 		    /* Receive Descriptor Empty int */
715 		if (ris2 & RIS2_QFF1)
716 			priv->stats[RAVB_NC].rx_over_errors++;
717 
718 		/* Receive FIFO Overflow int */
719 		if (ris2 & RIS2_RFFF)
720 			priv->rx_fifo_errors++;
721 	}
722 }
723 
724 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
725 {
726 	struct ravb_private *priv = netdev_priv(ndev);
727 	u32 ris0 = ravb_read(ndev, RIS0);
728 	u32 ric0 = ravb_read(ndev, RIC0);
729 	u32 tis  = ravb_read(ndev, TIS);
730 	u32 tic  = ravb_read(ndev, TIC);
731 
732 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
733 		if (napi_schedule_prep(&priv->napi[q])) {
734 			/* Mask RX and TX interrupts */
735 			if (priv->chip_id == RCAR_GEN2) {
736 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
737 				ravb_write(ndev, tic & ~BIT(q), TIC);
738 			} else {
739 				ravb_write(ndev, BIT(q), RID0);
740 				ravb_write(ndev, BIT(q), TID);
741 			}
742 			__napi_schedule(&priv->napi[q]);
743 		} else {
744 			netdev_warn(ndev,
745 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
746 				    ris0, ric0);
747 			netdev_warn(ndev,
748 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
749 				    tis, tic);
750 		}
751 		return true;
752 	}
753 	return false;
754 }
755 
756 static bool ravb_timestamp_interrupt(struct net_device *ndev)
757 {
758 	u32 tis = ravb_read(ndev, TIS);
759 
760 	if (tis & TIS_TFUF) {
761 		ravb_write(ndev, ~TIS_TFUF, TIS);
762 		ravb_get_tx_tstamp(ndev);
763 		return true;
764 	}
765 	return false;
766 }
767 
768 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
769 {
770 	struct net_device *ndev = dev_id;
771 	struct ravb_private *priv = netdev_priv(ndev);
772 	irqreturn_t result = IRQ_NONE;
773 	u32 iss;
774 
775 	spin_lock(&priv->lock);
776 	/* Get interrupt status */
777 	iss = ravb_read(ndev, ISS);
778 
779 	/* Received and transmitted interrupts */
780 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
781 		int q;
782 
783 		/* Timestamp updated */
784 		if (ravb_timestamp_interrupt(ndev))
785 			result = IRQ_HANDLED;
786 
787 		/* Network control and best effort queue RX/TX */
788 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
789 			if (ravb_queue_interrupt(ndev, q))
790 				result = IRQ_HANDLED;
791 		}
792 	}
793 
794 	/* E-MAC status summary */
795 	if (iss & ISS_MS) {
796 		ravb_emac_interrupt_unlocked(ndev);
797 		result = IRQ_HANDLED;
798 	}
799 
800 	/* Error status summary */
801 	if (iss & ISS_ES) {
802 		ravb_error_interrupt(ndev);
803 		result = IRQ_HANDLED;
804 	}
805 
806 	/* gPTP interrupt status summary */
807 	if (iss & ISS_CGIS) {
808 		ravb_ptp_interrupt(ndev);
809 		result = IRQ_HANDLED;
810 	}
811 
812 	mmiowb();
813 	spin_unlock(&priv->lock);
814 	return result;
815 }
816 
817 /* Timestamp/Error/gPTP interrupt handler */
818 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
819 {
820 	struct net_device *ndev = dev_id;
821 	struct ravb_private *priv = netdev_priv(ndev);
822 	irqreturn_t result = IRQ_NONE;
823 	u32 iss;
824 
825 	spin_lock(&priv->lock);
826 	/* Get interrupt status */
827 	iss = ravb_read(ndev, ISS);
828 
829 	/* Timestamp updated */
830 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
831 		result = IRQ_HANDLED;
832 
833 	/* Error status summary */
834 	if (iss & ISS_ES) {
835 		ravb_error_interrupt(ndev);
836 		result = IRQ_HANDLED;
837 	}
838 
839 	/* gPTP interrupt status summary */
840 	if (iss & ISS_CGIS) {
841 		ravb_ptp_interrupt(ndev);
842 		result = IRQ_HANDLED;
843 	}
844 
845 	mmiowb();
846 	spin_unlock(&priv->lock);
847 	return result;
848 }
849 
850 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
851 {
852 	struct net_device *ndev = dev_id;
853 	struct ravb_private *priv = netdev_priv(ndev);
854 	irqreturn_t result = IRQ_NONE;
855 
856 	spin_lock(&priv->lock);
857 
858 	/* Network control/Best effort queue RX/TX */
859 	if (ravb_queue_interrupt(ndev, q))
860 		result = IRQ_HANDLED;
861 
862 	mmiowb();
863 	spin_unlock(&priv->lock);
864 	return result;
865 }
866 
867 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
868 {
869 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
870 }
871 
872 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
873 {
874 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
875 }
876 
877 static int ravb_poll(struct napi_struct *napi, int budget)
878 {
879 	struct net_device *ndev = napi->dev;
880 	struct ravb_private *priv = netdev_priv(ndev);
881 	unsigned long flags;
882 	int q = napi - priv->napi;
883 	int mask = BIT(q);
884 	int quota = budget;
885 	u32 ris0, tis;
886 
887 	for (;;) {
888 		tis = ravb_read(ndev, TIS);
889 		ris0 = ravb_read(ndev, RIS0);
890 		if (!((ris0 & mask) || (tis & mask)))
891 			break;
892 
893 		/* Processing RX Descriptor Ring */
894 		if (ris0 & mask) {
895 			/* Clear RX interrupt */
896 			ravb_write(ndev, ~mask, RIS0);
897 			if (ravb_rx(ndev, &quota, q))
898 				goto out;
899 		}
900 		/* Processing TX Descriptor Ring */
901 		if (tis & mask) {
902 			spin_lock_irqsave(&priv->lock, flags);
903 			/* Clear TX interrupt */
904 			ravb_write(ndev, ~mask, TIS);
905 			ravb_tx_free(ndev, q);
906 			netif_wake_subqueue(ndev, q);
907 			mmiowb();
908 			spin_unlock_irqrestore(&priv->lock, flags);
909 		}
910 	}
911 
912 	napi_complete(napi);
913 
914 	/* Re-enable RX/TX interrupts */
915 	spin_lock_irqsave(&priv->lock, flags);
916 	if (priv->chip_id == RCAR_GEN2) {
917 		ravb_modify(ndev, RIC0, mask, mask);
918 		ravb_modify(ndev, TIC,  mask, mask);
919 	} else {
920 		ravb_write(ndev, mask, RIE0);
921 		ravb_write(ndev, mask, TIE);
922 	}
923 	mmiowb();
924 	spin_unlock_irqrestore(&priv->lock, flags);
925 
926 	/* Receive error message handling */
927 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
928 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
929 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
930 		ndev->stats.rx_over_errors = priv->rx_over_errors;
931 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
932 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
933 out:
934 	return budget - quota;
935 }
936 
937 /* PHY state control function */
938 static void ravb_adjust_link(struct net_device *ndev)
939 {
940 	struct ravb_private *priv = netdev_priv(ndev);
941 	struct phy_device *phydev = ndev->phydev;
942 	bool new_state = false;
943 
944 	if (phydev->link) {
945 		if (phydev->duplex != priv->duplex) {
946 			new_state = true;
947 			priv->duplex = phydev->duplex;
948 			ravb_set_duplex(ndev);
949 		}
950 
951 		if (phydev->speed != priv->speed) {
952 			new_state = true;
953 			priv->speed = phydev->speed;
954 			ravb_set_rate(ndev);
955 		}
956 		if (!priv->link) {
957 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
958 			new_state = true;
959 			priv->link = phydev->link;
960 			if (priv->no_avb_link)
961 				ravb_rcv_snd_enable(ndev);
962 		}
963 	} else if (priv->link) {
964 		new_state = true;
965 		priv->link = 0;
966 		priv->speed = 0;
967 		priv->duplex = -1;
968 		if (priv->no_avb_link)
969 			ravb_rcv_snd_disable(ndev);
970 	}
971 
972 	if (new_state && netif_msg_link(priv))
973 		phy_print_status(phydev);
974 }
975 
976 /* PHY init function */
977 static int ravb_phy_init(struct net_device *ndev)
978 {
979 	struct device_node *np = ndev->dev.parent->of_node;
980 	struct ravb_private *priv = netdev_priv(ndev);
981 	struct phy_device *phydev;
982 	struct device_node *pn;
983 	int err;
984 
985 	priv->link = 0;
986 	priv->speed = 0;
987 	priv->duplex = -1;
988 
989 	/* Try connecting to PHY */
990 	pn = of_parse_phandle(np, "phy-handle", 0);
991 	if (!pn) {
992 		/* In the case of a fixed PHY, the DT node associated
993 		 * to the PHY is the Ethernet MAC DT node.
994 		 */
995 		if (of_phy_is_fixed_link(np)) {
996 			err = of_phy_register_fixed_link(np);
997 			if (err)
998 				return err;
999 		}
1000 		pn = of_node_get(np);
1001 	}
1002 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1003 				priv->phy_interface);
1004 	of_node_put(pn);
1005 	if (!phydev) {
1006 		netdev_err(ndev, "failed to connect PHY\n");
1007 		err = -ENOENT;
1008 		goto err_deregister_fixed_link;
1009 	}
1010 
1011 	/* This driver only support 10/100Mbit speeds on Gen3
1012 	 * at this time.
1013 	 */
1014 	if (priv->chip_id == RCAR_GEN3) {
1015 		err = phy_set_max_speed(phydev, SPEED_100);
1016 		if (err) {
1017 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1018 			goto err_phy_disconnect;
1019 		}
1020 
1021 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1022 	}
1023 
1024 	/* 10BASE is not supported */
1025 	phydev->supported &= ~PHY_10BT_FEATURES;
1026 
1027 	phy_attached_info(phydev);
1028 
1029 	return 0;
1030 
1031 err_phy_disconnect:
1032 	phy_disconnect(phydev);
1033 err_deregister_fixed_link:
1034 	if (of_phy_is_fixed_link(np))
1035 		of_phy_deregister_fixed_link(np);
1036 
1037 	return err;
1038 }
1039 
1040 /* PHY control start function */
1041 static int ravb_phy_start(struct net_device *ndev)
1042 {
1043 	int error;
1044 
1045 	error = ravb_phy_init(ndev);
1046 	if (error)
1047 		return error;
1048 
1049 	phy_start(ndev->phydev);
1050 
1051 	return 0;
1052 }
1053 
1054 static int ravb_get_link_ksettings(struct net_device *ndev,
1055 				   struct ethtool_link_ksettings *cmd)
1056 {
1057 	struct ravb_private *priv = netdev_priv(ndev);
1058 	int error = -ENODEV;
1059 	unsigned long flags;
1060 
1061 	if (ndev->phydev) {
1062 		spin_lock_irqsave(&priv->lock, flags);
1063 		error = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1064 		spin_unlock_irqrestore(&priv->lock, flags);
1065 	}
1066 
1067 	return error;
1068 }
1069 
1070 static int ravb_set_link_ksettings(struct net_device *ndev,
1071 				   const struct ethtool_link_ksettings *cmd)
1072 {
1073 	struct ravb_private *priv = netdev_priv(ndev);
1074 	unsigned long flags;
1075 	int error;
1076 
1077 	if (!ndev->phydev)
1078 		return -ENODEV;
1079 
1080 	spin_lock_irqsave(&priv->lock, flags);
1081 
1082 	/* Disable TX and RX */
1083 	ravb_rcv_snd_disable(ndev);
1084 
1085 	error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1086 	if (error)
1087 		goto error_exit;
1088 
1089 	if (cmd->base.duplex == DUPLEX_FULL)
1090 		priv->duplex = 1;
1091 	else
1092 		priv->duplex = 0;
1093 
1094 	ravb_set_duplex(ndev);
1095 
1096 error_exit:
1097 	mdelay(1);
1098 
1099 	/* Enable TX and RX */
1100 	ravb_rcv_snd_enable(ndev);
1101 
1102 	mmiowb();
1103 	spin_unlock_irqrestore(&priv->lock, flags);
1104 
1105 	return error;
1106 }
1107 
1108 static int ravb_nway_reset(struct net_device *ndev)
1109 {
1110 	struct ravb_private *priv = netdev_priv(ndev);
1111 	int error = -ENODEV;
1112 	unsigned long flags;
1113 
1114 	if (ndev->phydev) {
1115 		spin_lock_irqsave(&priv->lock, flags);
1116 		error = phy_start_aneg(ndev->phydev);
1117 		spin_unlock_irqrestore(&priv->lock, flags);
1118 	}
1119 
1120 	return error;
1121 }
1122 
1123 static u32 ravb_get_msglevel(struct net_device *ndev)
1124 {
1125 	struct ravb_private *priv = netdev_priv(ndev);
1126 
1127 	return priv->msg_enable;
1128 }
1129 
1130 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1131 {
1132 	struct ravb_private *priv = netdev_priv(ndev);
1133 
1134 	priv->msg_enable = value;
1135 }
1136 
1137 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1138 	"rx_queue_0_current",
1139 	"tx_queue_0_current",
1140 	"rx_queue_0_dirty",
1141 	"tx_queue_0_dirty",
1142 	"rx_queue_0_packets",
1143 	"tx_queue_0_packets",
1144 	"rx_queue_0_bytes",
1145 	"tx_queue_0_bytes",
1146 	"rx_queue_0_mcast_packets",
1147 	"rx_queue_0_errors",
1148 	"rx_queue_0_crc_errors",
1149 	"rx_queue_0_frame_errors",
1150 	"rx_queue_0_length_errors",
1151 	"rx_queue_0_missed_errors",
1152 	"rx_queue_0_over_errors",
1153 
1154 	"rx_queue_1_current",
1155 	"tx_queue_1_current",
1156 	"rx_queue_1_dirty",
1157 	"tx_queue_1_dirty",
1158 	"rx_queue_1_packets",
1159 	"tx_queue_1_packets",
1160 	"rx_queue_1_bytes",
1161 	"tx_queue_1_bytes",
1162 	"rx_queue_1_mcast_packets",
1163 	"rx_queue_1_errors",
1164 	"rx_queue_1_crc_errors",
1165 	"rx_queue_1_frame_errors",
1166 	"rx_queue_1_length_errors",
1167 	"rx_queue_1_missed_errors",
1168 	"rx_queue_1_over_errors",
1169 };
1170 
1171 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1172 
1173 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1174 {
1175 	switch (sset) {
1176 	case ETH_SS_STATS:
1177 		return RAVB_STATS_LEN;
1178 	default:
1179 		return -EOPNOTSUPP;
1180 	}
1181 }
1182 
1183 static void ravb_get_ethtool_stats(struct net_device *ndev,
1184 				   struct ethtool_stats *stats, u64 *data)
1185 {
1186 	struct ravb_private *priv = netdev_priv(ndev);
1187 	int i = 0;
1188 	int q;
1189 
1190 	/* Device-specific stats */
1191 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1192 		struct net_device_stats *stats = &priv->stats[q];
1193 
1194 		data[i++] = priv->cur_rx[q];
1195 		data[i++] = priv->cur_tx[q];
1196 		data[i++] = priv->dirty_rx[q];
1197 		data[i++] = priv->dirty_tx[q];
1198 		data[i++] = stats->rx_packets;
1199 		data[i++] = stats->tx_packets;
1200 		data[i++] = stats->rx_bytes;
1201 		data[i++] = stats->tx_bytes;
1202 		data[i++] = stats->multicast;
1203 		data[i++] = stats->rx_errors;
1204 		data[i++] = stats->rx_crc_errors;
1205 		data[i++] = stats->rx_frame_errors;
1206 		data[i++] = stats->rx_length_errors;
1207 		data[i++] = stats->rx_missed_errors;
1208 		data[i++] = stats->rx_over_errors;
1209 	}
1210 }
1211 
1212 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1213 {
1214 	switch (stringset) {
1215 	case ETH_SS_STATS:
1216 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1217 		break;
1218 	}
1219 }
1220 
1221 static void ravb_get_ringparam(struct net_device *ndev,
1222 			       struct ethtool_ringparam *ring)
1223 {
1224 	struct ravb_private *priv = netdev_priv(ndev);
1225 
1226 	ring->rx_max_pending = BE_RX_RING_MAX;
1227 	ring->tx_max_pending = BE_TX_RING_MAX;
1228 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1229 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1230 }
1231 
1232 static int ravb_set_ringparam(struct net_device *ndev,
1233 			      struct ethtool_ringparam *ring)
1234 {
1235 	struct ravb_private *priv = netdev_priv(ndev);
1236 	int error;
1237 
1238 	if (ring->tx_pending > BE_TX_RING_MAX ||
1239 	    ring->rx_pending > BE_RX_RING_MAX ||
1240 	    ring->tx_pending < BE_TX_RING_MIN ||
1241 	    ring->rx_pending < BE_RX_RING_MIN)
1242 		return -EINVAL;
1243 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1244 		return -EINVAL;
1245 
1246 	if (netif_running(ndev)) {
1247 		netif_device_detach(ndev);
1248 		/* Stop PTP Clock driver */
1249 		if (priv->chip_id == RCAR_GEN2)
1250 			ravb_ptp_stop(ndev);
1251 		/* Wait for DMA stopping */
1252 		error = ravb_stop_dma(ndev);
1253 		if (error) {
1254 			netdev_err(ndev,
1255 				   "cannot set ringparam! Any AVB processes are still running?\n");
1256 			return error;
1257 		}
1258 		synchronize_irq(ndev->irq);
1259 
1260 		/* Free all the skb's in the RX queue and the DMA buffers. */
1261 		ravb_ring_free(ndev, RAVB_BE);
1262 		ravb_ring_free(ndev, RAVB_NC);
1263 	}
1264 
1265 	/* Set new parameters */
1266 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1267 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1268 
1269 	if (netif_running(ndev)) {
1270 		error = ravb_dmac_init(ndev);
1271 		if (error) {
1272 			netdev_err(ndev,
1273 				   "%s: ravb_dmac_init() failed, error %d\n",
1274 				   __func__, error);
1275 			return error;
1276 		}
1277 
1278 		ravb_emac_init(ndev);
1279 
1280 		/* Initialise PTP Clock driver */
1281 		if (priv->chip_id == RCAR_GEN2)
1282 			ravb_ptp_init(ndev, priv->pdev);
1283 
1284 		netif_device_attach(ndev);
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static int ravb_get_ts_info(struct net_device *ndev,
1291 			    struct ethtool_ts_info *info)
1292 {
1293 	struct ravb_private *priv = netdev_priv(ndev);
1294 
1295 	info->so_timestamping =
1296 		SOF_TIMESTAMPING_TX_SOFTWARE |
1297 		SOF_TIMESTAMPING_RX_SOFTWARE |
1298 		SOF_TIMESTAMPING_SOFTWARE |
1299 		SOF_TIMESTAMPING_TX_HARDWARE |
1300 		SOF_TIMESTAMPING_RX_HARDWARE |
1301 		SOF_TIMESTAMPING_RAW_HARDWARE;
1302 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1303 	info->rx_filters =
1304 		(1 << HWTSTAMP_FILTER_NONE) |
1305 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1306 		(1 << HWTSTAMP_FILTER_ALL);
1307 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1308 
1309 	return 0;
1310 }
1311 
1312 static const struct ethtool_ops ravb_ethtool_ops = {
1313 	.nway_reset		= ravb_nway_reset,
1314 	.get_msglevel		= ravb_get_msglevel,
1315 	.set_msglevel		= ravb_set_msglevel,
1316 	.get_link		= ethtool_op_get_link,
1317 	.get_strings		= ravb_get_strings,
1318 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1319 	.get_sset_count		= ravb_get_sset_count,
1320 	.get_ringparam		= ravb_get_ringparam,
1321 	.set_ringparam		= ravb_set_ringparam,
1322 	.get_ts_info		= ravb_get_ts_info,
1323 	.get_link_ksettings	= ravb_get_link_ksettings,
1324 	.set_link_ksettings	= ravb_set_link_ksettings,
1325 };
1326 
1327 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1328 				struct net_device *ndev, struct device *dev,
1329 				const char *ch)
1330 {
1331 	char *name;
1332 	int error;
1333 
1334 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1335 	if (!name)
1336 		return -ENOMEM;
1337 	error = request_irq(irq, handler, 0, name, ndev);
1338 	if (error)
1339 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1340 
1341 	return error;
1342 }
1343 
1344 /* Network device open function for Ethernet AVB */
1345 static int ravb_open(struct net_device *ndev)
1346 {
1347 	struct ravb_private *priv = netdev_priv(ndev);
1348 	struct platform_device *pdev = priv->pdev;
1349 	struct device *dev = &pdev->dev;
1350 	int error;
1351 
1352 	napi_enable(&priv->napi[RAVB_BE]);
1353 	napi_enable(&priv->napi[RAVB_NC]);
1354 
1355 	if (priv->chip_id == RCAR_GEN2) {
1356 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1357 				    ndev->name, ndev);
1358 		if (error) {
1359 			netdev_err(ndev, "cannot request IRQ\n");
1360 			goto out_napi_off;
1361 		}
1362 	} else {
1363 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1364 				      dev, "ch22:multi");
1365 		if (error)
1366 			goto out_napi_off;
1367 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1368 				      dev, "ch24:emac");
1369 		if (error)
1370 			goto out_free_irq;
1371 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1372 				      ndev, dev, "ch0:rx_be");
1373 		if (error)
1374 			goto out_free_irq_emac;
1375 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1376 				      ndev, dev, "ch18:tx_be");
1377 		if (error)
1378 			goto out_free_irq_be_rx;
1379 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1380 				      ndev, dev, "ch1:rx_nc");
1381 		if (error)
1382 			goto out_free_irq_be_tx;
1383 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1384 				      ndev, dev, "ch19:tx_nc");
1385 		if (error)
1386 			goto out_free_irq_nc_rx;
1387 	}
1388 
1389 	/* Device init */
1390 	error = ravb_dmac_init(ndev);
1391 	if (error)
1392 		goto out_free_irq_nc_tx;
1393 	ravb_emac_init(ndev);
1394 
1395 	/* Initialise PTP Clock driver */
1396 	if (priv->chip_id == RCAR_GEN2)
1397 		ravb_ptp_init(ndev, priv->pdev);
1398 
1399 	netif_tx_start_all_queues(ndev);
1400 
1401 	/* PHY control start */
1402 	error = ravb_phy_start(ndev);
1403 	if (error)
1404 		goto out_ptp_stop;
1405 
1406 	return 0;
1407 
1408 out_ptp_stop:
1409 	/* Stop PTP Clock driver */
1410 	if (priv->chip_id == RCAR_GEN2)
1411 		ravb_ptp_stop(ndev);
1412 out_free_irq_nc_tx:
1413 	if (priv->chip_id == RCAR_GEN2)
1414 		goto out_free_irq;
1415 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1416 out_free_irq_nc_rx:
1417 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1418 out_free_irq_be_tx:
1419 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1420 out_free_irq_be_rx:
1421 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1422 out_free_irq_emac:
1423 	free_irq(priv->emac_irq, ndev);
1424 out_free_irq:
1425 	free_irq(ndev->irq, ndev);
1426 out_napi_off:
1427 	napi_disable(&priv->napi[RAVB_NC]);
1428 	napi_disable(&priv->napi[RAVB_BE]);
1429 	return error;
1430 }
1431 
1432 /* Timeout function for Ethernet AVB */
1433 static void ravb_tx_timeout(struct net_device *ndev)
1434 {
1435 	struct ravb_private *priv = netdev_priv(ndev);
1436 
1437 	netif_err(priv, tx_err, ndev,
1438 		  "transmit timed out, status %08x, resetting...\n",
1439 		  ravb_read(ndev, ISS));
1440 
1441 	/* tx_errors count up */
1442 	ndev->stats.tx_errors++;
1443 
1444 	schedule_work(&priv->work);
1445 }
1446 
1447 static void ravb_tx_timeout_work(struct work_struct *work)
1448 {
1449 	struct ravb_private *priv = container_of(work, struct ravb_private,
1450 						 work);
1451 	struct net_device *ndev = priv->ndev;
1452 
1453 	netif_tx_stop_all_queues(ndev);
1454 
1455 	/* Stop PTP Clock driver */
1456 	if (priv->chip_id == RCAR_GEN2)
1457 		ravb_ptp_stop(ndev);
1458 
1459 	/* Wait for DMA stopping */
1460 	ravb_stop_dma(ndev);
1461 
1462 	ravb_ring_free(ndev, RAVB_BE);
1463 	ravb_ring_free(ndev, RAVB_NC);
1464 
1465 	/* Device init */
1466 	ravb_dmac_init(ndev);
1467 	ravb_emac_init(ndev);
1468 
1469 	/* Initialise PTP Clock driver */
1470 	if (priv->chip_id == RCAR_GEN2)
1471 		ravb_ptp_init(ndev, priv->pdev);
1472 
1473 	netif_tx_start_all_queues(ndev);
1474 }
1475 
1476 /* Packet transmit function for Ethernet AVB */
1477 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1478 {
1479 	struct ravb_private *priv = netdev_priv(ndev);
1480 	u16 q = skb_get_queue_mapping(skb);
1481 	struct ravb_tstamp_skb *ts_skb;
1482 	struct ravb_tx_desc *desc;
1483 	unsigned long flags;
1484 	u32 dma_addr;
1485 	void *buffer;
1486 	u32 entry;
1487 	u32 len;
1488 
1489 	spin_lock_irqsave(&priv->lock, flags);
1490 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1491 	    NUM_TX_DESC) {
1492 		netif_err(priv, tx_queued, ndev,
1493 			  "still transmitting with the full ring!\n");
1494 		netif_stop_subqueue(ndev, q);
1495 		spin_unlock_irqrestore(&priv->lock, flags);
1496 		return NETDEV_TX_BUSY;
1497 	}
1498 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1499 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1500 
1501 	if (skb_put_padto(skb, ETH_ZLEN))
1502 		goto drop;
1503 
1504 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1505 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1506 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1507 	/* Zero length DMA descriptors are problematic as they seem to
1508 	 * terminate DMA transfers. Avoid them by simply using a length of
1509 	 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1510 	 *
1511 	 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1512 	 * data by the call to skb_put_padto() above this is safe with
1513 	 * respect to both the length of the first DMA descriptor (len)
1514 	 * overflowing the available data and the length of the second DMA
1515 	 * descriptor (skb->len - len) being negative.
1516 	 */
1517 	if (len == 0)
1518 		len = DPTR_ALIGN;
1519 
1520 	memcpy(buffer, skb->data, len);
1521 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1522 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1523 		goto drop;
1524 
1525 	desc = &priv->tx_ring[q][entry];
1526 	desc->ds_tagl = cpu_to_le16(len);
1527 	desc->dptr = cpu_to_le32(dma_addr);
1528 
1529 	buffer = skb->data + len;
1530 	len = skb->len - len;
1531 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1532 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1533 		goto unmap;
1534 
1535 	desc++;
1536 	desc->ds_tagl = cpu_to_le16(len);
1537 	desc->dptr = cpu_to_le32(dma_addr);
1538 
1539 	/* TX timestamp required */
1540 	if (q == RAVB_NC) {
1541 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1542 		if (!ts_skb) {
1543 			desc--;
1544 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1545 					 DMA_TO_DEVICE);
1546 			goto unmap;
1547 		}
1548 		ts_skb->skb = skb;
1549 		ts_skb->tag = priv->ts_skb_tag++;
1550 		priv->ts_skb_tag &= 0x3ff;
1551 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1552 
1553 		/* TAG and timestamp required flag */
1554 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1555 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1556 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1557 	}
1558 
1559 	skb_tx_timestamp(skb);
1560 	/* Descriptor type must be set after all the above writes */
1561 	dma_wmb();
1562 	desc->die_dt = DT_FEND;
1563 	desc--;
1564 	desc->die_dt = DT_FSTART;
1565 
1566 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1567 
1568 	priv->cur_tx[q] += NUM_TX_DESC;
1569 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1570 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1571 		netif_stop_subqueue(ndev, q);
1572 
1573 exit:
1574 	mmiowb();
1575 	spin_unlock_irqrestore(&priv->lock, flags);
1576 	return NETDEV_TX_OK;
1577 
1578 unmap:
1579 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1580 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1581 drop:
1582 	dev_kfree_skb_any(skb);
1583 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1584 	goto exit;
1585 }
1586 
1587 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1588 			     void *accel_priv, select_queue_fallback_t fallback)
1589 {
1590 	/* If skb needs TX timestamp, it is handled in network control queue */
1591 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1592 							       RAVB_BE;
1593 
1594 }
1595 
1596 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1597 {
1598 	struct ravb_private *priv = netdev_priv(ndev);
1599 	struct net_device_stats *nstats, *stats0, *stats1;
1600 
1601 	nstats = &ndev->stats;
1602 	stats0 = &priv->stats[RAVB_BE];
1603 	stats1 = &priv->stats[RAVB_NC];
1604 
1605 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1606 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1607 	nstats->collisions += ravb_read(ndev, CDCR);
1608 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1609 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1610 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1611 
1612 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1613 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1614 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1615 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1616 
1617 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1618 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1619 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1620 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1621 	nstats->multicast = stats0->multicast + stats1->multicast;
1622 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1623 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1624 	nstats->rx_frame_errors =
1625 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1626 	nstats->rx_length_errors =
1627 		stats0->rx_length_errors + stats1->rx_length_errors;
1628 	nstats->rx_missed_errors =
1629 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1630 	nstats->rx_over_errors =
1631 		stats0->rx_over_errors + stats1->rx_over_errors;
1632 
1633 	return nstats;
1634 }
1635 
1636 /* Update promiscuous bit */
1637 static void ravb_set_rx_mode(struct net_device *ndev)
1638 {
1639 	struct ravb_private *priv = netdev_priv(ndev);
1640 	unsigned long flags;
1641 
1642 	spin_lock_irqsave(&priv->lock, flags);
1643 	ravb_modify(ndev, ECMR, ECMR_PRM,
1644 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1645 	mmiowb();
1646 	spin_unlock_irqrestore(&priv->lock, flags);
1647 }
1648 
1649 /* Device close function for Ethernet AVB */
1650 static int ravb_close(struct net_device *ndev)
1651 {
1652 	struct device_node *np = ndev->dev.parent->of_node;
1653 	struct ravb_private *priv = netdev_priv(ndev);
1654 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1655 
1656 	netif_tx_stop_all_queues(ndev);
1657 
1658 	/* Disable interrupts by clearing the interrupt masks. */
1659 	ravb_write(ndev, 0, RIC0);
1660 	ravb_write(ndev, 0, RIC2);
1661 	ravb_write(ndev, 0, TIC);
1662 
1663 	/* Stop PTP Clock driver */
1664 	if (priv->chip_id == RCAR_GEN2)
1665 		ravb_ptp_stop(ndev);
1666 
1667 	/* Set the config mode to stop the AVB-DMAC's processes */
1668 	if (ravb_stop_dma(ndev) < 0)
1669 		netdev_err(ndev,
1670 			   "device will be stopped after h/w processes are done.\n");
1671 
1672 	/* Clear the timestamp list */
1673 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1674 		list_del(&ts_skb->list);
1675 		kfree(ts_skb);
1676 	}
1677 
1678 	/* PHY disconnect */
1679 	if (ndev->phydev) {
1680 		phy_stop(ndev->phydev);
1681 		phy_disconnect(ndev->phydev);
1682 		if (of_phy_is_fixed_link(np))
1683 			of_phy_deregister_fixed_link(np);
1684 	}
1685 
1686 	if (priv->chip_id != RCAR_GEN2) {
1687 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1688 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1689 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1690 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1691 		free_irq(priv->emac_irq, ndev);
1692 	}
1693 	free_irq(ndev->irq, ndev);
1694 
1695 	napi_disable(&priv->napi[RAVB_NC]);
1696 	napi_disable(&priv->napi[RAVB_BE]);
1697 
1698 	/* Free all the skb's in the RX queue and the DMA buffers. */
1699 	ravb_ring_free(ndev, RAVB_BE);
1700 	ravb_ring_free(ndev, RAVB_NC);
1701 
1702 	return 0;
1703 }
1704 
1705 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1706 {
1707 	struct ravb_private *priv = netdev_priv(ndev);
1708 	struct hwtstamp_config config;
1709 
1710 	config.flags = 0;
1711 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1712 						HWTSTAMP_TX_OFF;
1713 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1714 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1715 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1716 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1717 	else
1718 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1719 
1720 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1721 		-EFAULT : 0;
1722 }
1723 
1724 /* Control hardware time stamping */
1725 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1726 {
1727 	struct ravb_private *priv = netdev_priv(ndev);
1728 	struct hwtstamp_config config;
1729 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1730 	u32 tstamp_tx_ctrl;
1731 
1732 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1733 		return -EFAULT;
1734 
1735 	/* Reserved for future extensions */
1736 	if (config.flags)
1737 		return -EINVAL;
1738 
1739 	switch (config.tx_type) {
1740 	case HWTSTAMP_TX_OFF:
1741 		tstamp_tx_ctrl = 0;
1742 		break;
1743 	case HWTSTAMP_TX_ON:
1744 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1745 		break;
1746 	default:
1747 		return -ERANGE;
1748 	}
1749 
1750 	switch (config.rx_filter) {
1751 	case HWTSTAMP_FILTER_NONE:
1752 		tstamp_rx_ctrl = 0;
1753 		break;
1754 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1755 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1756 		break;
1757 	default:
1758 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1759 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1760 	}
1761 
1762 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1763 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1764 
1765 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1766 		-EFAULT : 0;
1767 }
1768 
1769 /* ioctl to device function */
1770 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1771 {
1772 	struct phy_device *phydev = ndev->phydev;
1773 
1774 	if (!netif_running(ndev))
1775 		return -EINVAL;
1776 
1777 	if (!phydev)
1778 		return -ENODEV;
1779 
1780 	switch (cmd) {
1781 	case SIOCGHWTSTAMP:
1782 		return ravb_hwtstamp_get(ndev, req);
1783 	case SIOCSHWTSTAMP:
1784 		return ravb_hwtstamp_set(ndev, req);
1785 	}
1786 
1787 	return phy_mii_ioctl(phydev, req, cmd);
1788 }
1789 
1790 static const struct net_device_ops ravb_netdev_ops = {
1791 	.ndo_open		= ravb_open,
1792 	.ndo_stop		= ravb_close,
1793 	.ndo_start_xmit		= ravb_start_xmit,
1794 	.ndo_select_queue	= ravb_select_queue,
1795 	.ndo_get_stats		= ravb_get_stats,
1796 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1797 	.ndo_tx_timeout		= ravb_tx_timeout,
1798 	.ndo_do_ioctl		= ravb_do_ioctl,
1799 	.ndo_validate_addr	= eth_validate_addr,
1800 	.ndo_set_mac_address	= eth_mac_addr,
1801 };
1802 
1803 /* MDIO bus init function */
1804 static int ravb_mdio_init(struct ravb_private *priv)
1805 {
1806 	struct platform_device *pdev = priv->pdev;
1807 	struct device *dev = &pdev->dev;
1808 	int error;
1809 
1810 	/* Bitbang init */
1811 	priv->mdiobb.ops = &bb_ops;
1812 
1813 	/* MII controller setting */
1814 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1815 	if (!priv->mii_bus)
1816 		return -ENOMEM;
1817 
1818 	/* Hook up MII support for ethtool */
1819 	priv->mii_bus->name = "ravb_mii";
1820 	priv->mii_bus->parent = dev;
1821 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1822 		 pdev->name, pdev->id);
1823 
1824 	/* Register MDIO bus */
1825 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1826 	if (error)
1827 		goto out_free_bus;
1828 
1829 	return 0;
1830 
1831 out_free_bus:
1832 	free_mdio_bitbang(priv->mii_bus);
1833 	return error;
1834 }
1835 
1836 /* MDIO bus release function */
1837 static int ravb_mdio_release(struct ravb_private *priv)
1838 {
1839 	/* Unregister mdio bus */
1840 	mdiobus_unregister(priv->mii_bus);
1841 
1842 	/* Free bitbang info */
1843 	free_mdio_bitbang(priv->mii_bus);
1844 
1845 	return 0;
1846 }
1847 
1848 static const struct of_device_id ravb_match_table[] = {
1849 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1850 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1851 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1852 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1853 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1854 	{ }
1855 };
1856 MODULE_DEVICE_TABLE(of, ravb_match_table);
1857 
1858 static int ravb_set_gti(struct net_device *ndev)
1859 {
1860 
1861 	struct device *dev = ndev->dev.parent;
1862 	struct device_node *np = dev->of_node;
1863 	unsigned long rate;
1864 	struct clk *clk;
1865 	uint64_t inc;
1866 
1867 	clk = of_clk_get(np, 0);
1868 	if (IS_ERR(clk)) {
1869 		dev_err(dev, "could not get clock\n");
1870 		return PTR_ERR(clk);
1871 	}
1872 
1873 	rate = clk_get_rate(clk);
1874 	clk_put(clk);
1875 
1876 	if (!rate)
1877 		return -EINVAL;
1878 
1879 	inc = 1000000000ULL << 20;
1880 	do_div(inc, rate);
1881 
1882 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1883 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1884 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1885 		return -EINVAL;
1886 	}
1887 
1888 	ravb_write(ndev, inc, GTI);
1889 
1890 	return 0;
1891 }
1892 
1893 static void ravb_set_config_mode(struct net_device *ndev)
1894 {
1895 	struct ravb_private *priv = netdev_priv(ndev);
1896 
1897 	if (priv->chip_id == RCAR_GEN2) {
1898 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1899 		/* Set CSEL value */
1900 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1901 	} else {
1902 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1903 			    CCC_GAC | CCC_CSEL_HPB);
1904 	}
1905 }
1906 
1907 static int ravb_probe(struct platform_device *pdev)
1908 {
1909 	struct device_node *np = pdev->dev.of_node;
1910 	struct ravb_private *priv;
1911 	enum ravb_chip_id chip_id;
1912 	struct net_device *ndev;
1913 	int error, irq, q;
1914 	struct resource *res;
1915 	int i;
1916 
1917 	if (!np) {
1918 		dev_err(&pdev->dev,
1919 			"this driver is required to be instantiated from device tree\n");
1920 		return -EINVAL;
1921 	}
1922 
1923 	/* Get base address */
1924 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1925 	if (!res) {
1926 		dev_err(&pdev->dev, "invalid resource\n");
1927 		return -EINVAL;
1928 	}
1929 
1930 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1931 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1932 	if (!ndev)
1933 		return -ENOMEM;
1934 
1935 	pm_runtime_enable(&pdev->dev);
1936 	pm_runtime_get_sync(&pdev->dev);
1937 
1938 	/* The Ether-specific entries in the device structure. */
1939 	ndev->base_addr = res->start;
1940 
1941 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1942 
1943 	if (chip_id == RCAR_GEN3)
1944 		irq = platform_get_irq_byname(pdev, "ch22");
1945 	else
1946 		irq = platform_get_irq(pdev, 0);
1947 	if (irq < 0) {
1948 		error = irq;
1949 		goto out_release;
1950 	}
1951 	ndev->irq = irq;
1952 
1953 	SET_NETDEV_DEV(ndev, &pdev->dev);
1954 
1955 	priv = netdev_priv(ndev);
1956 	priv->ndev = ndev;
1957 	priv->pdev = pdev;
1958 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1959 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1960 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1961 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1962 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1963 	if (IS_ERR(priv->addr)) {
1964 		error = PTR_ERR(priv->addr);
1965 		goto out_release;
1966 	}
1967 
1968 	spin_lock_init(&priv->lock);
1969 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1970 
1971 	priv->phy_interface = of_get_phy_mode(np);
1972 
1973 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1974 	priv->avb_link_active_low =
1975 		of_property_read_bool(np, "renesas,ether-link-active-low");
1976 
1977 	if (chip_id == RCAR_GEN3) {
1978 		irq = platform_get_irq_byname(pdev, "ch24");
1979 		if (irq < 0) {
1980 			error = irq;
1981 			goto out_release;
1982 		}
1983 		priv->emac_irq = irq;
1984 		for (i = 0; i < NUM_RX_QUEUE; i++) {
1985 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
1986 			if (irq < 0) {
1987 				error = irq;
1988 				goto out_release;
1989 			}
1990 			priv->rx_irqs[i] = irq;
1991 		}
1992 		for (i = 0; i < NUM_TX_QUEUE; i++) {
1993 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
1994 			if (irq < 0) {
1995 				error = irq;
1996 				goto out_release;
1997 			}
1998 			priv->tx_irqs[i] = irq;
1999 		}
2000 	}
2001 
2002 	priv->chip_id = chip_id;
2003 
2004 	/* Set function */
2005 	ndev->netdev_ops = &ravb_netdev_ops;
2006 	ndev->ethtool_ops = &ravb_ethtool_ops;
2007 
2008 	/* Set AVB config mode */
2009 	ravb_set_config_mode(ndev);
2010 
2011 	/* Set GTI value */
2012 	error = ravb_set_gti(ndev);
2013 	if (error)
2014 		goto out_release;
2015 
2016 	/* Request GTI loading */
2017 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2018 
2019 	/* Allocate descriptor base address table */
2020 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2021 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2022 					    &priv->desc_bat_dma, GFP_KERNEL);
2023 	if (!priv->desc_bat) {
2024 		dev_err(&pdev->dev,
2025 			"Cannot allocate desc base address table (size %d bytes)\n",
2026 			priv->desc_bat_size);
2027 		error = -ENOMEM;
2028 		goto out_release;
2029 	}
2030 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2031 		priv->desc_bat[q].die_dt = DT_EOS;
2032 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2033 
2034 	/* Initialise HW timestamp list */
2035 	INIT_LIST_HEAD(&priv->ts_skb_list);
2036 
2037 	/* Initialise PTP Clock driver */
2038 	if (chip_id != RCAR_GEN2)
2039 		ravb_ptp_init(ndev, pdev);
2040 
2041 	/* Debug message level */
2042 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2043 
2044 	/* Read and set MAC address */
2045 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2046 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2047 		dev_warn(&pdev->dev,
2048 			 "no valid MAC address supplied, using a random one\n");
2049 		eth_hw_addr_random(ndev);
2050 	}
2051 
2052 	/* MDIO bus init */
2053 	error = ravb_mdio_init(priv);
2054 	if (error) {
2055 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2056 		goto out_dma_free;
2057 	}
2058 
2059 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2060 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2061 
2062 	/* Network device register */
2063 	error = register_netdev(ndev);
2064 	if (error)
2065 		goto out_napi_del;
2066 
2067 	/* Print device information */
2068 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2069 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2070 
2071 	platform_set_drvdata(pdev, ndev);
2072 
2073 	return 0;
2074 
2075 out_napi_del:
2076 	netif_napi_del(&priv->napi[RAVB_NC]);
2077 	netif_napi_del(&priv->napi[RAVB_BE]);
2078 	ravb_mdio_release(priv);
2079 out_dma_free:
2080 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2081 			  priv->desc_bat_dma);
2082 
2083 	/* Stop PTP Clock driver */
2084 	if (chip_id != RCAR_GEN2)
2085 		ravb_ptp_stop(ndev);
2086 out_release:
2087 	if (ndev)
2088 		free_netdev(ndev);
2089 
2090 	pm_runtime_put(&pdev->dev);
2091 	pm_runtime_disable(&pdev->dev);
2092 	return error;
2093 }
2094 
2095 static int ravb_remove(struct platform_device *pdev)
2096 {
2097 	struct net_device *ndev = platform_get_drvdata(pdev);
2098 	struct ravb_private *priv = netdev_priv(ndev);
2099 
2100 	/* Stop PTP Clock driver */
2101 	if (priv->chip_id != RCAR_GEN2)
2102 		ravb_ptp_stop(ndev);
2103 
2104 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2105 			  priv->desc_bat_dma);
2106 	/* Set reset mode */
2107 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2108 	pm_runtime_put_sync(&pdev->dev);
2109 	unregister_netdev(ndev);
2110 	netif_napi_del(&priv->napi[RAVB_NC]);
2111 	netif_napi_del(&priv->napi[RAVB_BE]);
2112 	ravb_mdio_release(priv);
2113 	pm_runtime_disable(&pdev->dev);
2114 	free_netdev(ndev);
2115 	platform_set_drvdata(pdev, NULL);
2116 
2117 	return 0;
2118 }
2119 
2120 static int __maybe_unused ravb_suspend(struct device *dev)
2121 {
2122 	struct net_device *ndev = dev_get_drvdata(dev);
2123 	int ret = 0;
2124 
2125 	if (netif_running(ndev)) {
2126 		netif_device_detach(ndev);
2127 		ret = ravb_close(ndev);
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 static int __maybe_unused ravb_resume(struct device *dev)
2134 {
2135 	struct net_device *ndev = dev_get_drvdata(dev);
2136 	struct ravb_private *priv = netdev_priv(ndev);
2137 	int ret = 0;
2138 
2139 	/* All register have been reset to default values.
2140 	 * Restore all registers which where setup at probe time and
2141 	 * reopen device if it was running before system suspended.
2142 	 */
2143 
2144 	/* Set AVB config mode */
2145 	ravb_set_config_mode(ndev);
2146 
2147 	/* Set GTI value */
2148 	ret = ravb_set_gti(ndev);
2149 	if (ret)
2150 		return ret;
2151 
2152 	/* Request GTI loading */
2153 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2154 
2155 	/* Restore descriptor base address table */
2156 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2157 
2158 	if (netif_running(ndev)) {
2159 		ret = ravb_open(ndev);
2160 		if (ret < 0)
2161 			return ret;
2162 		netif_device_attach(ndev);
2163 	}
2164 
2165 	return ret;
2166 }
2167 
2168 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2169 {
2170 	/* Runtime PM callback shared between ->runtime_suspend()
2171 	 * and ->runtime_resume(). Simply returns success.
2172 	 *
2173 	 * This driver re-initializes all registers after
2174 	 * pm_runtime_get_sync() anyway so there is no need
2175 	 * to save and restore registers here.
2176 	 */
2177 	return 0;
2178 }
2179 
2180 static const struct dev_pm_ops ravb_dev_pm_ops = {
2181 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2182 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2183 };
2184 
2185 static struct platform_driver ravb_driver = {
2186 	.probe		= ravb_probe,
2187 	.remove		= ravb_remove,
2188 	.driver = {
2189 		.name	= "ravb",
2190 		.pm	= &ravb_dev_pm_ops,
2191 		.of_match_table = ravb_match_table,
2192 	},
2193 };
2194 
2195 module_platform_driver(ravb_driver);
2196 
2197 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2198 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2199 MODULE_LICENSE("GPL v2");
2200