xref: /openbmc/linux/drivers/net/ethernet/renesas/ravb_main.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (!IS_ERR(mac)) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	int num_tx_desc = priv->num_tx_desc;
179 	struct ravb_tx_desc *desc;
180 	int free_num = 0;
181 	int entry;
182 	u32 size;
183 
184 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 		bool txed;
186 
187 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 					     num_tx_desc);
189 		desc = &priv->tx_ring[q][entry];
190 		txed = desc->die_dt == DT_FEMPTY;
191 		if (free_txed_only && !txed)
192 			break;
193 		/* Descriptor type must be checked before all other reads */
194 		dma_rmb();
195 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 		/* Free the original skb. */
197 		if (priv->tx_skb[q][entry / num_tx_desc]) {
198 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 					 size, DMA_TO_DEVICE);
200 			/* Last packet descriptor? */
201 			if (entry % num_tx_desc == num_tx_desc - 1) {
202 				entry /= num_tx_desc;
203 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 				priv->tx_skb[q][entry] = NULL;
205 				if (txed)
206 					stats->tx_packets++;
207 			}
208 			free_num++;
209 		}
210 		if (txed)
211 			stats->tx_bytes += size;
212 		desc->die_dt = DT_EEMPTY;
213 	}
214 	return free_num;
215 }
216 
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 	struct ravb_private *priv = netdev_priv(ndev);
221 	int num_tx_desc = priv->num_tx_desc;
222 	int ring_size;
223 	int i;
224 
225 	if (priv->rx_ring[q]) {
226 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228 
229 			if (!dma_mapping_error(ndev->dev.parent,
230 					       le32_to_cpu(desc->dptr)))
231 				dma_unmap_single(ndev->dev.parent,
232 						 le32_to_cpu(desc->dptr),
233 						 RX_BUF_SZ,
234 						 DMA_FROM_DEVICE);
235 		}
236 		ring_size = sizeof(struct ravb_ex_rx_desc) *
237 			    (priv->num_rx_ring[q] + 1);
238 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 				  priv->rx_desc_dma[q]);
240 		priv->rx_ring[q] = NULL;
241 	}
242 
243 	if (priv->tx_ring[q]) {
244 		ravb_tx_free(ndev, q, false);
245 
246 		ring_size = sizeof(struct ravb_tx_desc) *
247 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 				  priv->tx_desc_dma[q]);
250 		priv->tx_ring[q] = NULL;
251 	}
252 
253 	/* Free RX skb ringbuffer */
254 	if (priv->rx_skb[q]) {
255 		for (i = 0; i < priv->num_rx_ring[q]; i++)
256 			dev_kfree_skb(priv->rx_skb[q][i]);
257 	}
258 	kfree(priv->rx_skb[q]);
259 	priv->rx_skb[q] = NULL;
260 
261 	/* Free aligned TX buffers */
262 	kfree(priv->tx_align[q]);
263 	priv->tx_align[q] = NULL;
264 
265 	/* Free TX skb ringbuffer.
266 	 * SKBs are freed by ravb_tx_free() call above.
267 	 */
268 	kfree(priv->tx_skb[q]);
269 	priv->tx_skb[q] = NULL;
270 }
271 
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 	struct ravb_private *priv = netdev_priv(ndev);
276 	int num_tx_desc = priv->num_tx_desc;
277 	struct ravb_ex_rx_desc *rx_desc;
278 	struct ravb_tx_desc *tx_desc;
279 	struct ravb_desc *desc;
280 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 			   num_tx_desc;
283 	dma_addr_t dma_addr;
284 	int i;
285 
286 	priv->cur_rx[q] = 0;
287 	priv->cur_tx[q] = 0;
288 	priv->dirty_rx[q] = 0;
289 	priv->dirty_tx[q] = 0;
290 
291 	memset(priv->rx_ring[q], 0, rx_ring_size);
292 	/* Build RX ring buffer */
293 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 		/* RX descriptor */
295 		rx_desc = &priv->rx_ring[q][i];
296 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
297 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 					  RX_BUF_SZ,
299 					  DMA_FROM_DEVICE);
300 		/* We just set the data size to 0 for a failed mapping which
301 		 * should prevent DMA from happening...
302 		 */
303 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 			rx_desc->ds_cc = cpu_to_le16(0);
305 		rx_desc->dptr = cpu_to_le32(dma_addr);
306 		rx_desc->die_dt = DT_FEMPTY;
307 	}
308 	rx_desc = &priv->rx_ring[q][i];
309 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 	rx_desc->die_dt = DT_LINKFIX; /* type */
311 
312 	memset(priv->tx_ring[q], 0, tx_ring_size);
313 	/* Build TX ring buffer */
314 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 	     i++, tx_desc++) {
316 		tx_desc->die_dt = DT_EEMPTY;
317 		if (num_tx_desc > 1) {
318 			tx_desc++;
319 			tx_desc->die_dt = DT_EEMPTY;
320 		}
321 	}
322 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 	tx_desc->die_dt = DT_LINKFIX; /* type */
324 
325 	/* RX descriptor base address for best effort */
326 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329 
330 	/* TX descriptor base address for best effort */
331 	desc = &priv->desc_bat[q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335 
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 	struct ravb_private *priv = netdev_priv(ndev);
340 	int num_tx_desc = priv->num_tx_desc;
341 	struct sk_buff *skb;
342 	int ring_size;
343 	int i;
344 
345 	/* Allocate RX and TX skb rings */
346 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
347 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
348 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
349 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
350 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
351 		goto error;
352 
353 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
354 		skb = netdev_alloc_skb(ndev, RX_BUF_SZ + RAVB_ALIGN - 1);
355 		if (!skb)
356 			goto error;
357 		ravb_set_buffer_align(skb);
358 		priv->rx_skb[q][i] = skb;
359 	}
360 
361 	if (num_tx_desc > 1) {
362 		/* Allocate rings for the aligned buffers */
363 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
364 					    DPTR_ALIGN - 1, GFP_KERNEL);
365 		if (!priv->tx_align[q])
366 			goto error;
367 	}
368 
369 	/* Allocate all RX descriptors. */
370 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
371 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
372 					      &priv->rx_desc_dma[q],
373 					      GFP_KERNEL);
374 	if (!priv->rx_ring[q])
375 		goto error;
376 
377 	priv->dirty_rx[q] = 0;
378 
379 	/* Allocate all TX descriptors. */
380 	ring_size = sizeof(struct ravb_tx_desc) *
381 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
382 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
383 					      &priv->tx_desc_dma[q],
384 					      GFP_KERNEL);
385 	if (!priv->tx_ring[q])
386 		goto error;
387 
388 	return 0;
389 
390 error:
391 	ravb_ring_free(ndev, q);
392 
393 	return -ENOMEM;
394 }
395 
396 /* E-MAC init function */
397 static void ravb_emac_init(struct net_device *ndev)
398 {
399 	/* Receive frame limit set register */
400 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
401 
402 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
403 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
404 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
405 		   ECMR_TE | ECMR_RE, ECMR);
406 
407 	ravb_set_rate(ndev);
408 
409 	/* Set MAC address */
410 	ravb_write(ndev,
411 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
412 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
413 	ravb_write(ndev,
414 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
415 
416 	/* E-MAC status register clear */
417 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
418 
419 	/* E-MAC interrupt enable register */
420 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
421 }
422 
423 /* Device init function for Ethernet AVB */
424 static int ravb_dmac_init(struct net_device *ndev)
425 {
426 	struct ravb_private *priv = netdev_priv(ndev);
427 	int error;
428 
429 	/* Set CONFIG mode */
430 	error = ravb_config(ndev);
431 	if (error)
432 		return error;
433 
434 	error = ravb_ring_init(ndev, RAVB_BE);
435 	if (error)
436 		return error;
437 	error = ravb_ring_init(ndev, RAVB_NC);
438 	if (error) {
439 		ravb_ring_free(ndev, RAVB_BE);
440 		return error;
441 	}
442 
443 	/* Descriptor format */
444 	ravb_ring_format(ndev, RAVB_BE);
445 	ravb_ring_format(ndev, RAVB_NC);
446 
447 	/* Set AVB RX */
448 	ravb_write(ndev,
449 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
450 
451 	/* Set FIFO size */
452 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
453 
454 	/* Timestamp enable */
455 	ravb_write(ndev, TCCR_TFEN, TCCR);
456 
457 	/* Interrupt init: */
458 	if (priv->chip_id == RCAR_GEN3) {
459 		/* Clear DIL.DPLx */
460 		ravb_write(ndev, 0, DIL);
461 		/* Set queue specific interrupt */
462 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
463 	}
464 	/* Frame receive */
465 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
466 	/* Disable FIFO full warning */
467 	ravb_write(ndev, 0, RIC1);
468 	/* Receive FIFO full error, descriptor empty */
469 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
470 	/* Frame transmitted, timestamp FIFO updated */
471 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
472 
473 	/* Setting the control will start the AVB-DMAC process. */
474 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
475 
476 	return 0;
477 }
478 
479 static void ravb_get_tx_tstamp(struct net_device *ndev)
480 {
481 	struct ravb_private *priv = netdev_priv(ndev);
482 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
483 	struct skb_shared_hwtstamps shhwtstamps;
484 	struct sk_buff *skb;
485 	struct timespec64 ts;
486 	u16 tag, tfa_tag;
487 	int count;
488 	u32 tfa2;
489 
490 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
491 	while (count--) {
492 		tfa2 = ravb_read(ndev, TFA2);
493 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
494 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
495 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
496 			    ravb_read(ndev, TFA1);
497 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
498 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
499 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
500 					 list) {
501 			skb = ts_skb->skb;
502 			tag = ts_skb->tag;
503 			list_del(&ts_skb->list);
504 			kfree(ts_skb);
505 			if (tag == tfa_tag) {
506 				skb_tstamp_tx(skb, &shhwtstamps);
507 				dev_consume_skb_any(skb);
508 				break;
509 			} else {
510 				dev_kfree_skb_any(skb);
511 			}
512 		}
513 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
514 	}
515 }
516 
517 static void ravb_rx_csum(struct sk_buff *skb)
518 {
519 	u8 *hw_csum;
520 
521 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
522 	 * appended to packet data
523 	 */
524 	if (unlikely(skb->len < sizeof(__sum16)))
525 		return;
526 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
527 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
528 	skb->ip_summed = CHECKSUM_COMPLETE;
529 	skb_trim(skb, skb->len - sizeof(__sum16));
530 }
531 
532 /* Packet receive function for Ethernet AVB */
533 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
534 {
535 	struct ravb_private *priv = netdev_priv(ndev);
536 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
537 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
538 			priv->cur_rx[q];
539 	struct net_device_stats *stats = &priv->stats[q];
540 	struct ravb_ex_rx_desc *desc;
541 	struct sk_buff *skb;
542 	dma_addr_t dma_addr;
543 	struct timespec64 ts;
544 	u8  desc_status;
545 	u16 pkt_len;
546 	int limit;
547 
548 	boguscnt = min(boguscnt, *quota);
549 	limit = boguscnt;
550 	desc = &priv->rx_ring[q][entry];
551 	while (desc->die_dt != DT_FEMPTY) {
552 		/* Descriptor type must be checked before all other reads */
553 		dma_rmb();
554 		desc_status = desc->msc;
555 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
556 
557 		if (--boguscnt < 0)
558 			break;
559 
560 		/* We use 0-byte descriptors to mark the DMA mapping errors */
561 		if (!pkt_len)
562 			continue;
563 
564 		if (desc_status & MSC_MC)
565 			stats->multicast++;
566 
567 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
568 				   MSC_CEEF)) {
569 			stats->rx_errors++;
570 			if (desc_status & MSC_CRC)
571 				stats->rx_crc_errors++;
572 			if (desc_status & MSC_RFE)
573 				stats->rx_frame_errors++;
574 			if (desc_status & (MSC_RTLF | MSC_RTSF))
575 				stats->rx_length_errors++;
576 			if (desc_status & MSC_CEEF)
577 				stats->rx_missed_errors++;
578 		} else {
579 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
580 
581 			skb = priv->rx_skb[q][entry];
582 			priv->rx_skb[q][entry] = NULL;
583 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
584 					 RX_BUF_SZ,
585 					 DMA_FROM_DEVICE);
586 			get_ts &= (q == RAVB_NC) ?
587 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
588 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
589 			if (get_ts) {
590 				struct skb_shared_hwtstamps *shhwtstamps;
591 
592 				shhwtstamps = skb_hwtstamps(skb);
593 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
594 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
595 					     32) | le32_to_cpu(desc->ts_sl);
596 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
597 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
598 			}
599 
600 			skb_put(skb, pkt_len);
601 			skb->protocol = eth_type_trans(skb, ndev);
602 			if (ndev->features & NETIF_F_RXCSUM)
603 				ravb_rx_csum(skb);
604 			napi_gro_receive(&priv->napi[q], skb);
605 			stats->rx_packets++;
606 			stats->rx_bytes += pkt_len;
607 		}
608 
609 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
610 		desc = &priv->rx_ring[q][entry];
611 	}
612 
613 	/* Refill the RX ring buffers. */
614 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
615 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
616 		desc = &priv->rx_ring[q][entry];
617 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
618 
619 		if (!priv->rx_skb[q][entry]) {
620 			skb = netdev_alloc_skb(ndev,
621 					       RX_BUF_SZ +
622 					       RAVB_ALIGN - 1);
623 			if (!skb)
624 				break;	/* Better luck next round. */
625 			ravb_set_buffer_align(skb);
626 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
627 						  le16_to_cpu(desc->ds_cc),
628 						  DMA_FROM_DEVICE);
629 			skb_checksum_none_assert(skb);
630 			/* We just set the data size to 0 for a failed mapping
631 			 * which should prevent DMA  from happening...
632 			 */
633 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
634 				desc->ds_cc = cpu_to_le16(0);
635 			desc->dptr = cpu_to_le32(dma_addr);
636 			priv->rx_skb[q][entry] = skb;
637 		}
638 		/* Descriptor type must be set after all the above writes */
639 		dma_wmb();
640 		desc->die_dt = DT_FEMPTY;
641 	}
642 
643 	*quota -= limit - (++boguscnt);
644 
645 	return boguscnt <= 0;
646 }
647 
648 static void ravb_rcv_snd_disable(struct net_device *ndev)
649 {
650 	/* Disable TX and RX */
651 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
652 }
653 
654 static void ravb_rcv_snd_enable(struct net_device *ndev)
655 {
656 	/* Enable TX and RX */
657 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
658 }
659 
660 /* function for waiting dma process finished */
661 static int ravb_stop_dma(struct net_device *ndev)
662 {
663 	int error;
664 
665 	/* Wait for stopping the hardware TX process */
666 	error = ravb_wait(ndev, TCCR,
667 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
668 	if (error)
669 		return error;
670 
671 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
672 			  0);
673 	if (error)
674 		return error;
675 
676 	/* Stop the E-MAC's RX/TX processes. */
677 	ravb_rcv_snd_disable(ndev);
678 
679 	/* Wait for stopping the RX DMA process */
680 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
681 	if (error)
682 		return error;
683 
684 	/* Stop AVB-DMAC process */
685 	return ravb_config(ndev);
686 }
687 
688 /* E-MAC interrupt handler */
689 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
690 {
691 	struct ravb_private *priv = netdev_priv(ndev);
692 	u32 ecsr, psr;
693 
694 	ecsr = ravb_read(ndev, ECSR);
695 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
696 
697 	if (ecsr & ECSR_MPD)
698 		pm_wakeup_event(&priv->pdev->dev, 0);
699 	if (ecsr & ECSR_ICD)
700 		ndev->stats.tx_carrier_errors++;
701 	if (ecsr & ECSR_LCHNG) {
702 		/* Link changed */
703 		if (priv->no_avb_link)
704 			return;
705 		psr = ravb_read(ndev, PSR);
706 		if (priv->avb_link_active_low)
707 			psr ^= PSR_LMON;
708 		if (!(psr & PSR_LMON)) {
709 			/* DIsable RX and TX */
710 			ravb_rcv_snd_disable(ndev);
711 		} else {
712 			/* Enable RX and TX */
713 			ravb_rcv_snd_enable(ndev);
714 		}
715 	}
716 }
717 
718 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
719 {
720 	struct net_device *ndev = dev_id;
721 	struct ravb_private *priv = netdev_priv(ndev);
722 
723 	spin_lock(&priv->lock);
724 	ravb_emac_interrupt_unlocked(ndev);
725 	spin_unlock(&priv->lock);
726 	return IRQ_HANDLED;
727 }
728 
729 /* Error interrupt handler */
730 static void ravb_error_interrupt(struct net_device *ndev)
731 {
732 	struct ravb_private *priv = netdev_priv(ndev);
733 	u32 eis, ris2;
734 
735 	eis = ravb_read(ndev, EIS);
736 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
737 	if (eis & EIS_QFS) {
738 		ris2 = ravb_read(ndev, RIS2);
739 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
740 			   RIS2);
741 
742 		/* Receive Descriptor Empty int */
743 		if (ris2 & RIS2_QFF0)
744 			priv->stats[RAVB_BE].rx_over_errors++;
745 
746 		    /* Receive Descriptor Empty int */
747 		if (ris2 & RIS2_QFF1)
748 			priv->stats[RAVB_NC].rx_over_errors++;
749 
750 		/* Receive FIFO Overflow int */
751 		if (ris2 & RIS2_RFFF)
752 			priv->rx_fifo_errors++;
753 	}
754 }
755 
756 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
757 {
758 	struct ravb_private *priv = netdev_priv(ndev);
759 	u32 ris0 = ravb_read(ndev, RIS0);
760 	u32 ric0 = ravb_read(ndev, RIC0);
761 	u32 tis  = ravb_read(ndev, TIS);
762 	u32 tic  = ravb_read(ndev, TIC);
763 
764 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
765 		if (napi_schedule_prep(&priv->napi[q])) {
766 			/* Mask RX and TX interrupts */
767 			if (priv->chip_id == RCAR_GEN2) {
768 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
769 				ravb_write(ndev, tic & ~BIT(q), TIC);
770 			} else {
771 				ravb_write(ndev, BIT(q), RID0);
772 				ravb_write(ndev, BIT(q), TID);
773 			}
774 			__napi_schedule(&priv->napi[q]);
775 		} else {
776 			netdev_warn(ndev,
777 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
778 				    ris0, ric0);
779 			netdev_warn(ndev,
780 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
781 				    tis, tic);
782 		}
783 		return true;
784 	}
785 	return false;
786 }
787 
788 static bool ravb_timestamp_interrupt(struct net_device *ndev)
789 {
790 	u32 tis = ravb_read(ndev, TIS);
791 
792 	if (tis & TIS_TFUF) {
793 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
794 		ravb_get_tx_tstamp(ndev);
795 		return true;
796 	}
797 	return false;
798 }
799 
800 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
801 {
802 	struct net_device *ndev = dev_id;
803 	struct ravb_private *priv = netdev_priv(ndev);
804 	irqreturn_t result = IRQ_NONE;
805 	u32 iss;
806 
807 	spin_lock(&priv->lock);
808 	/* Get interrupt status */
809 	iss = ravb_read(ndev, ISS);
810 
811 	/* Received and transmitted interrupts */
812 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
813 		int q;
814 
815 		/* Timestamp updated */
816 		if (ravb_timestamp_interrupt(ndev))
817 			result = IRQ_HANDLED;
818 
819 		/* Network control and best effort queue RX/TX */
820 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
821 			if (ravb_queue_interrupt(ndev, q))
822 				result = IRQ_HANDLED;
823 		}
824 	}
825 
826 	/* E-MAC status summary */
827 	if (iss & ISS_MS) {
828 		ravb_emac_interrupt_unlocked(ndev);
829 		result = IRQ_HANDLED;
830 	}
831 
832 	/* Error status summary */
833 	if (iss & ISS_ES) {
834 		ravb_error_interrupt(ndev);
835 		result = IRQ_HANDLED;
836 	}
837 
838 	/* gPTP interrupt status summary */
839 	if (iss & ISS_CGIS) {
840 		ravb_ptp_interrupt(ndev);
841 		result = IRQ_HANDLED;
842 	}
843 
844 	spin_unlock(&priv->lock);
845 	return result;
846 }
847 
848 /* Timestamp/Error/gPTP interrupt handler */
849 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
850 {
851 	struct net_device *ndev = dev_id;
852 	struct ravb_private *priv = netdev_priv(ndev);
853 	irqreturn_t result = IRQ_NONE;
854 	u32 iss;
855 
856 	spin_lock(&priv->lock);
857 	/* Get interrupt status */
858 	iss = ravb_read(ndev, ISS);
859 
860 	/* Timestamp updated */
861 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
862 		result = IRQ_HANDLED;
863 
864 	/* Error status summary */
865 	if (iss & ISS_ES) {
866 		ravb_error_interrupt(ndev);
867 		result = IRQ_HANDLED;
868 	}
869 
870 	/* gPTP interrupt status summary */
871 	if (iss & ISS_CGIS) {
872 		ravb_ptp_interrupt(ndev);
873 		result = IRQ_HANDLED;
874 	}
875 
876 	spin_unlock(&priv->lock);
877 	return result;
878 }
879 
880 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
881 {
882 	struct net_device *ndev = dev_id;
883 	struct ravb_private *priv = netdev_priv(ndev);
884 	irqreturn_t result = IRQ_NONE;
885 
886 	spin_lock(&priv->lock);
887 
888 	/* Network control/Best effort queue RX/TX */
889 	if (ravb_queue_interrupt(ndev, q))
890 		result = IRQ_HANDLED;
891 
892 	spin_unlock(&priv->lock);
893 	return result;
894 }
895 
896 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
897 {
898 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
899 }
900 
901 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
902 {
903 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
904 }
905 
906 static int ravb_poll(struct napi_struct *napi, int budget)
907 {
908 	struct net_device *ndev = napi->dev;
909 	struct ravb_private *priv = netdev_priv(ndev);
910 	unsigned long flags;
911 	int q = napi - priv->napi;
912 	int mask = BIT(q);
913 	int quota = budget;
914 	u32 ris0, tis;
915 
916 	for (;;) {
917 		tis = ravb_read(ndev, TIS);
918 		ris0 = ravb_read(ndev, RIS0);
919 		if (!((ris0 & mask) || (tis & mask)))
920 			break;
921 
922 		/* Processing RX Descriptor Ring */
923 		if (ris0 & mask) {
924 			/* Clear RX interrupt */
925 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
926 			if (ravb_rx(ndev, &quota, q))
927 				goto out;
928 		}
929 		/* Processing TX Descriptor Ring */
930 		if (tis & mask) {
931 			spin_lock_irqsave(&priv->lock, flags);
932 			/* Clear TX interrupt */
933 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
934 			ravb_tx_free(ndev, q, true);
935 			netif_wake_subqueue(ndev, q);
936 			spin_unlock_irqrestore(&priv->lock, flags);
937 		}
938 	}
939 
940 	napi_complete(napi);
941 
942 	/* Re-enable RX/TX interrupts */
943 	spin_lock_irqsave(&priv->lock, flags);
944 	if (priv->chip_id == RCAR_GEN2) {
945 		ravb_modify(ndev, RIC0, mask, mask);
946 		ravb_modify(ndev, TIC,  mask, mask);
947 	} else {
948 		ravb_write(ndev, mask, RIE0);
949 		ravb_write(ndev, mask, TIE);
950 	}
951 	spin_unlock_irqrestore(&priv->lock, flags);
952 
953 	/* Receive error message handling */
954 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
955 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
956 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
957 		ndev->stats.rx_over_errors = priv->rx_over_errors;
958 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
959 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
960 out:
961 	return budget - quota;
962 }
963 
964 /* PHY state control function */
965 static void ravb_adjust_link(struct net_device *ndev)
966 {
967 	struct ravb_private *priv = netdev_priv(ndev);
968 	struct phy_device *phydev = ndev->phydev;
969 	bool new_state = false;
970 	unsigned long flags;
971 
972 	spin_lock_irqsave(&priv->lock, flags);
973 
974 	/* Disable TX and RX right over here, if E-MAC change is ignored */
975 	if (priv->no_avb_link)
976 		ravb_rcv_snd_disable(ndev);
977 
978 	if (phydev->link) {
979 		if (phydev->speed != priv->speed) {
980 			new_state = true;
981 			priv->speed = phydev->speed;
982 			ravb_set_rate(ndev);
983 		}
984 		if (!priv->link) {
985 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
986 			new_state = true;
987 			priv->link = phydev->link;
988 		}
989 	} else if (priv->link) {
990 		new_state = true;
991 		priv->link = 0;
992 		priv->speed = 0;
993 	}
994 
995 	/* Enable TX and RX right over here, if E-MAC change is ignored */
996 	if (priv->no_avb_link && phydev->link)
997 		ravb_rcv_snd_enable(ndev);
998 
999 	spin_unlock_irqrestore(&priv->lock, flags);
1000 
1001 	if (new_state && netif_msg_link(priv))
1002 		phy_print_status(phydev);
1003 }
1004 
1005 static const struct soc_device_attribute r8a7795es10[] = {
1006 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1007 	{ /* sentinel */ }
1008 };
1009 
1010 /* PHY init function */
1011 static int ravb_phy_init(struct net_device *ndev)
1012 {
1013 	struct device_node *np = ndev->dev.parent->of_node;
1014 	struct ravb_private *priv = netdev_priv(ndev);
1015 	struct phy_device *phydev;
1016 	struct device_node *pn;
1017 	phy_interface_t iface;
1018 	int err;
1019 
1020 	priv->link = 0;
1021 	priv->speed = 0;
1022 
1023 	/* Try connecting to PHY */
1024 	pn = of_parse_phandle(np, "phy-handle", 0);
1025 	if (!pn) {
1026 		/* In the case of a fixed PHY, the DT node associated
1027 		 * to the PHY is the Ethernet MAC DT node.
1028 		 */
1029 		if (of_phy_is_fixed_link(np)) {
1030 			err = of_phy_register_fixed_link(np);
1031 			if (err)
1032 				return err;
1033 		}
1034 		pn = of_node_get(np);
1035 	}
1036 
1037 	iface = priv->phy_interface;
1038 	if (priv->chip_id != RCAR_GEN2 && phy_interface_mode_is_rgmii(iface)) {
1039 		/* ravb_set_delay_mode() takes care of internal delay mode */
1040 		iface = PHY_INTERFACE_MODE_RGMII;
1041 	}
1042 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1043 	of_node_put(pn);
1044 	if (!phydev) {
1045 		netdev_err(ndev, "failed to connect PHY\n");
1046 		err = -ENOENT;
1047 		goto err_deregister_fixed_link;
1048 	}
1049 
1050 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1051 	 * at this time.
1052 	 */
1053 	if (soc_device_match(r8a7795es10)) {
1054 		err = phy_set_max_speed(phydev, SPEED_100);
1055 		if (err) {
1056 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1057 			goto err_phy_disconnect;
1058 		}
1059 
1060 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1061 	}
1062 
1063 	/* 10BASE, Pause and Asym Pause is not supported */
1064 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1065 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1066 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1067 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1068 
1069 	/* Half Duplex is not supported */
1070 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1071 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1072 
1073 	phy_attached_info(phydev);
1074 
1075 	return 0;
1076 
1077 err_phy_disconnect:
1078 	phy_disconnect(phydev);
1079 err_deregister_fixed_link:
1080 	if (of_phy_is_fixed_link(np))
1081 		of_phy_deregister_fixed_link(np);
1082 
1083 	return err;
1084 }
1085 
1086 /* PHY control start function */
1087 static int ravb_phy_start(struct net_device *ndev)
1088 {
1089 	int error;
1090 
1091 	error = ravb_phy_init(ndev);
1092 	if (error)
1093 		return error;
1094 
1095 	phy_start(ndev->phydev);
1096 
1097 	return 0;
1098 }
1099 
1100 static u32 ravb_get_msglevel(struct net_device *ndev)
1101 {
1102 	struct ravb_private *priv = netdev_priv(ndev);
1103 
1104 	return priv->msg_enable;
1105 }
1106 
1107 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1108 {
1109 	struct ravb_private *priv = netdev_priv(ndev);
1110 
1111 	priv->msg_enable = value;
1112 }
1113 
1114 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1115 	"rx_queue_0_current",
1116 	"tx_queue_0_current",
1117 	"rx_queue_0_dirty",
1118 	"tx_queue_0_dirty",
1119 	"rx_queue_0_packets",
1120 	"tx_queue_0_packets",
1121 	"rx_queue_0_bytes",
1122 	"tx_queue_0_bytes",
1123 	"rx_queue_0_mcast_packets",
1124 	"rx_queue_0_errors",
1125 	"rx_queue_0_crc_errors",
1126 	"rx_queue_0_frame_errors",
1127 	"rx_queue_0_length_errors",
1128 	"rx_queue_0_missed_errors",
1129 	"rx_queue_0_over_errors",
1130 
1131 	"rx_queue_1_current",
1132 	"tx_queue_1_current",
1133 	"rx_queue_1_dirty",
1134 	"tx_queue_1_dirty",
1135 	"rx_queue_1_packets",
1136 	"tx_queue_1_packets",
1137 	"rx_queue_1_bytes",
1138 	"tx_queue_1_bytes",
1139 	"rx_queue_1_mcast_packets",
1140 	"rx_queue_1_errors",
1141 	"rx_queue_1_crc_errors",
1142 	"rx_queue_1_frame_errors",
1143 	"rx_queue_1_length_errors",
1144 	"rx_queue_1_missed_errors",
1145 	"rx_queue_1_over_errors",
1146 };
1147 
1148 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1149 
1150 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1151 {
1152 	switch (sset) {
1153 	case ETH_SS_STATS:
1154 		return RAVB_STATS_LEN;
1155 	default:
1156 		return -EOPNOTSUPP;
1157 	}
1158 }
1159 
1160 static void ravb_get_ethtool_stats(struct net_device *ndev,
1161 				   struct ethtool_stats *estats, u64 *data)
1162 {
1163 	struct ravb_private *priv = netdev_priv(ndev);
1164 	int i = 0;
1165 	int q;
1166 
1167 	/* Device-specific stats */
1168 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1169 		struct net_device_stats *stats = &priv->stats[q];
1170 
1171 		data[i++] = priv->cur_rx[q];
1172 		data[i++] = priv->cur_tx[q];
1173 		data[i++] = priv->dirty_rx[q];
1174 		data[i++] = priv->dirty_tx[q];
1175 		data[i++] = stats->rx_packets;
1176 		data[i++] = stats->tx_packets;
1177 		data[i++] = stats->rx_bytes;
1178 		data[i++] = stats->tx_bytes;
1179 		data[i++] = stats->multicast;
1180 		data[i++] = stats->rx_errors;
1181 		data[i++] = stats->rx_crc_errors;
1182 		data[i++] = stats->rx_frame_errors;
1183 		data[i++] = stats->rx_length_errors;
1184 		data[i++] = stats->rx_missed_errors;
1185 		data[i++] = stats->rx_over_errors;
1186 	}
1187 }
1188 
1189 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1190 {
1191 	switch (stringset) {
1192 	case ETH_SS_STATS:
1193 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1194 		break;
1195 	}
1196 }
1197 
1198 static void ravb_get_ringparam(struct net_device *ndev,
1199 			       struct ethtool_ringparam *ring)
1200 {
1201 	struct ravb_private *priv = netdev_priv(ndev);
1202 
1203 	ring->rx_max_pending = BE_RX_RING_MAX;
1204 	ring->tx_max_pending = BE_TX_RING_MAX;
1205 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1206 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1207 }
1208 
1209 static int ravb_set_ringparam(struct net_device *ndev,
1210 			      struct ethtool_ringparam *ring)
1211 {
1212 	struct ravb_private *priv = netdev_priv(ndev);
1213 	int error;
1214 
1215 	if (ring->tx_pending > BE_TX_RING_MAX ||
1216 	    ring->rx_pending > BE_RX_RING_MAX ||
1217 	    ring->tx_pending < BE_TX_RING_MIN ||
1218 	    ring->rx_pending < BE_RX_RING_MIN)
1219 		return -EINVAL;
1220 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1221 		return -EINVAL;
1222 
1223 	if (netif_running(ndev)) {
1224 		netif_device_detach(ndev);
1225 		/* Stop PTP Clock driver */
1226 		if (priv->chip_id == RCAR_GEN2)
1227 			ravb_ptp_stop(ndev);
1228 		/* Wait for DMA stopping */
1229 		error = ravb_stop_dma(ndev);
1230 		if (error) {
1231 			netdev_err(ndev,
1232 				   "cannot set ringparam! Any AVB processes are still running?\n");
1233 			return error;
1234 		}
1235 		synchronize_irq(ndev->irq);
1236 
1237 		/* Free all the skb's in the RX queue and the DMA buffers. */
1238 		ravb_ring_free(ndev, RAVB_BE);
1239 		ravb_ring_free(ndev, RAVB_NC);
1240 	}
1241 
1242 	/* Set new parameters */
1243 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1244 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1245 
1246 	if (netif_running(ndev)) {
1247 		error = ravb_dmac_init(ndev);
1248 		if (error) {
1249 			netdev_err(ndev,
1250 				   "%s: ravb_dmac_init() failed, error %d\n",
1251 				   __func__, error);
1252 			return error;
1253 		}
1254 
1255 		ravb_emac_init(ndev);
1256 
1257 		/* Initialise PTP Clock driver */
1258 		if (priv->chip_id == RCAR_GEN2)
1259 			ravb_ptp_init(ndev, priv->pdev);
1260 
1261 		netif_device_attach(ndev);
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 static int ravb_get_ts_info(struct net_device *ndev,
1268 			    struct ethtool_ts_info *info)
1269 {
1270 	struct ravb_private *priv = netdev_priv(ndev);
1271 
1272 	info->so_timestamping =
1273 		SOF_TIMESTAMPING_TX_SOFTWARE |
1274 		SOF_TIMESTAMPING_RX_SOFTWARE |
1275 		SOF_TIMESTAMPING_SOFTWARE |
1276 		SOF_TIMESTAMPING_TX_HARDWARE |
1277 		SOF_TIMESTAMPING_RX_HARDWARE |
1278 		SOF_TIMESTAMPING_RAW_HARDWARE;
1279 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1280 	info->rx_filters =
1281 		(1 << HWTSTAMP_FILTER_NONE) |
1282 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1283 		(1 << HWTSTAMP_FILTER_ALL);
1284 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1285 
1286 	return 0;
1287 }
1288 
1289 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1290 {
1291 	struct ravb_private *priv = netdev_priv(ndev);
1292 
1293 	wol->supported = WAKE_MAGIC;
1294 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1295 }
1296 
1297 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1298 {
1299 	struct ravb_private *priv = netdev_priv(ndev);
1300 
1301 	if (wol->wolopts & ~WAKE_MAGIC)
1302 		return -EOPNOTSUPP;
1303 
1304 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1305 
1306 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1307 
1308 	return 0;
1309 }
1310 
1311 static const struct ethtool_ops ravb_ethtool_ops = {
1312 	.nway_reset		= phy_ethtool_nway_reset,
1313 	.get_msglevel		= ravb_get_msglevel,
1314 	.set_msglevel		= ravb_set_msglevel,
1315 	.get_link		= ethtool_op_get_link,
1316 	.get_strings		= ravb_get_strings,
1317 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1318 	.get_sset_count		= ravb_get_sset_count,
1319 	.get_ringparam		= ravb_get_ringparam,
1320 	.set_ringparam		= ravb_set_ringparam,
1321 	.get_ts_info		= ravb_get_ts_info,
1322 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1323 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1324 	.get_wol		= ravb_get_wol,
1325 	.set_wol		= ravb_set_wol,
1326 };
1327 
1328 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1329 				struct net_device *ndev, struct device *dev,
1330 				const char *ch)
1331 {
1332 	char *name;
1333 	int error;
1334 
1335 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1336 	if (!name)
1337 		return -ENOMEM;
1338 	error = request_irq(irq, handler, 0, name, ndev);
1339 	if (error)
1340 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1341 
1342 	return error;
1343 }
1344 
1345 /* MDIO bus init function */
1346 static int ravb_mdio_init(struct ravb_private *priv)
1347 {
1348 	struct platform_device *pdev = priv->pdev;
1349 	struct device *dev = &pdev->dev;
1350 	int error;
1351 
1352 	/* Bitbang init */
1353 	priv->mdiobb.ops = &bb_ops;
1354 
1355 	/* MII controller setting */
1356 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1357 	if (!priv->mii_bus)
1358 		return -ENOMEM;
1359 
1360 	/* Hook up MII support for ethtool */
1361 	priv->mii_bus->name = "ravb_mii";
1362 	priv->mii_bus->parent = dev;
1363 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1364 		 pdev->name, pdev->id);
1365 
1366 	/* Register MDIO bus */
1367 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1368 	if (error)
1369 		goto out_free_bus;
1370 
1371 	return 0;
1372 
1373 out_free_bus:
1374 	free_mdio_bitbang(priv->mii_bus);
1375 	return error;
1376 }
1377 
1378 /* MDIO bus release function */
1379 static int ravb_mdio_release(struct ravb_private *priv)
1380 {
1381 	/* Unregister mdio bus */
1382 	mdiobus_unregister(priv->mii_bus);
1383 
1384 	/* Free bitbang info */
1385 	free_mdio_bitbang(priv->mii_bus);
1386 
1387 	return 0;
1388 }
1389 
1390 /* Network device open function for Ethernet AVB */
1391 static int ravb_open(struct net_device *ndev)
1392 {
1393 	struct ravb_private *priv = netdev_priv(ndev);
1394 	struct platform_device *pdev = priv->pdev;
1395 	struct device *dev = &pdev->dev;
1396 	int error;
1397 
1398 	/* MDIO bus init */
1399 	error = ravb_mdio_init(priv);
1400 	if (error) {
1401 		netdev_err(ndev, "failed to initialize MDIO\n");
1402 		return error;
1403 	}
1404 
1405 	napi_enable(&priv->napi[RAVB_BE]);
1406 	napi_enable(&priv->napi[RAVB_NC]);
1407 
1408 	if (priv->chip_id == RCAR_GEN2) {
1409 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1410 				    ndev->name, ndev);
1411 		if (error) {
1412 			netdev_err(ndev, "cannot request IRQ\n");
1413 			goto out_napi_off;
1414 		}
1415 	} else {
1416 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1417 				      dev, "ch22:multi");
1418 		if (error)
1419 			goto out_napi_off;
1420 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1421 				      dev, "ch24:emac");
1422 		if (error)
1423 			goto out_free_irq;
1424 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1425 				      ndev, dev, "ch0:rx_be");
1426 		if (error)
1427 			goto out_free_irq_emac;
1428 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1429 				      ndev, dev, "ch18:tx_be");
1430 		if (error)
1431 			goto out_free_irq_be_rx;
1432 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1433 				      ndev, dev, "ch1:rx_nc");
1434 		if (error)
1435 			goto out_free_irq_be_tx;
1436 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1437 				      ndev, dev, "ch19:tx_nc");
1438 		if (error)
1439 			goto out_free_irq_nc_rx;
1440 	}
1441 
1442 	/* Device init */
1443 	error = ravb_dmac_init(ndev);
1444 	if (error)
1445 		goto out_free_irq_nc_tx;
1446 	ravb_emac_init(ndev);
1447 
1448 	/* Initialise PTP Clock driver */
1449 	if (priv->chip_id == RCAR_GEN2)
1450 		ravb_ptp_init(ndev, priv->pdev);
1451 
1452 	netif_tx_start_all_queues(ndev);
1453 
1454 	/* PHY control start */
1455 	error = ravb_phy_start(ndev);
1456 	if (error)
1457 		goto out_ptp_stop;
1458 
1459 	return 0;
1460 
1461 out_ptp_stop:
1462 	/* Stop PTP Clock driver */
1463 	if (priv->chip_id == RCAR_GEN2)
1464 		ravb_ptp_stop(ndev);
1465 out_free_irq_nc_tx:
1466 	if (priv->chip_id == RCAR_GEN2)
1467 		goto out_free_irq;
1468 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1469 out_free_irq_nc_rx:
1470 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1471 out_free_irq_be_tx:
1472 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1473 out_free_irq_be_rx:
1474 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1475 out_free_irq_emac:
1476 	free_irq(priv->emac_irq, ndev);
1477 out_free_irq:
1478 	free_irq(ndev->irq, ndev);
1479 out_napi_off:
1480 	napi_disable(&priv->napi[RAVB_NC]);
1481 	napi_disable(&priv->napi[RAVB_BE]);
1482 	ravb_mdio_release(priv);
1483 	return error;
1484 }
1485 
1486 /* Timeout function for Ethernet AVB */
1487 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1488 {
1489 	struct ravb_private *priv = netdev_priv(ndev);
1490 
1491 	netif_err(priv, tx_err, ndev,
1492 		  "transmit timed out, status %08x, resetting...\n",
1493 		  ravb_read(ndev, ISS));
1494 
1495 	/* tx_errors count up */
1496 	ndev->stats.tx_errors++;
1497 
1498 	schedule_work(&priv->work);
1499 }
1500 
1501 static void ravb_tx_timeout_work(struct work_struct *work)
1502 {
1503 	struct ravb_private *priv = container_of(work, struct ravb_private,
1504 						 work);
1505 	struct net_device *ndev = priv->ndev;
1506 	int error;
1507 
1508 	netif_tx_stop_all_queues(ndev);
1509 
1510 	/* Stop PTP Clock driver */
1511 	if (priv->chip_id == RCAR_GEN2)
1512 		ravb_ptp_stop(ndev);
1513 
1514 	/* Wait for DMA stopping */
1515 	if (ravb_stop_dma(ndev)) {
1516 		/* If ravb_stop_dma() fails, the hardware is still operating
1517 		 * for TX and/or RX. So, this should not call the following
1518 		 * functions because ravb_dmac_init() is possible to fail too.
1519 		 * Also, this should not retry ravb_stop_dma() again and again
1520 		 * here because it's possible to wait forever. So, this just
1521 		 * re-enables the TX and RX and skip the following
1522 		 * re-initialization procedure.
1523 		 */
1524 		ravb_rcv_snd_enable(ndev);
1525 		goto out;
1526 	}
1527 
1528 	ravb_ring_free(ndev, RAVB_BE);
1529 	ravb_ring_free(ndev, RAVB_NC);
1530 
1531 	/* Device init */
1532 	error = ravb_dmac_init(ndev);
1533 	if (error) {
1534 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1535 		 * should return here to avoid re-enabling the TX and RX in
1536 		 * ravb_emac_init().
1537 		 */
1538 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1539 			   __func__, error);
1540 		return;
1541 	}
1542 	ravb_emac_init(ndev);
1543 
1544 out:
1545 	/* Initialise PTP Clock driver */
1546 	if (priv->chip_id == RCAR_GEN2)
1547 		ravb_ptp_init(ndev, priv->pdev);
1548 
1549 	netif_tx_start_all_queues(ndev);
1550 }
1551 
1552 /* Packet transmit function for Ethernet AVB */
1553 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1554 {
1555 	struct ravb_private *priv = netdev_priv(ndev);
1556 	int num_tx_desc = priv->num_tx_desc;
1557 	u16 q = skb_get_queue_mapping(skb);
1558 	struct ravb_tstamp_skb *ts_skb;
1559 	struct ravb_tx_desc *desc;
1560 	unsigned long flags;
1561 	u32 dma_addr;
1562 	void *buffer;
1563 	u32 entry;
1564 	u32 len;
1565 
1566 	spin_lock_irqsave(&priv->lock, flags);
1567 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1568 	    num_tx_desc) {
1569 		netif_err(priv, tx_queued, ndev,
1570 			  "still transmitting with the full ring!\n");
1571 		netif_stop_subqueue(ndev, q);
1572 		spin_unlock_irqrestore(&priv->lock, flags);
1573 		return NETDEV_TX_BUSY;
1574 	}
1575 
1576 	if (skb_put_padto(skb, ETH_ZLEN))
1577 		goto exit;
1578 
1579 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1580 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1581 
1582 	if (num_tx_desc > 1) {
1583 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1584 			 entry / num_tx_desc * DPTR_ALIGN;
1585 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1586 
1587 		/* Zero length DMA descriptors are problematic as they seem
1588 		 * to terminate DMA transfers. Avoid them by simply using a
1589 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1590 		 * DPTR_ALIGN.
1591 		 *
1592 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1593 		 * bytes of data by the call to skb_put_padto() above this
1594 		 * is safe with respect to both the length of the first DMA
1595 		 * descriptor (len) overflowing the available data and the
1596 		 * length of the second DMA descriptor (skb->len - len)
1597 		 * being negative.
1598 		 */
1599 		if (len == 0)
1600 			len = DPTR_ALIGN;
1601 
1602 		memcpy(buffer, skb->data, len);
1603 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1604 					  DMA_TO_DEVICE);
1605 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1606 			goto drop;
1607 
1608 		desc = &priv->tx_ring[q][entry];
1609 		desc->ds_tagl = cpu_to_le16(len);
1610 		desc->dptr = cpu_to_le32(dma_addr);
1611 
1612 		buffer = skb->data + len;
1613 		len = skb->len - len;
1614 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1615 					  DMA_TO_DEVICE);
1616 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1617 			goto unmap;
1618 
1619 		desc++;
1620 	} else {
1621 		desc = &priv->tx_ring[q][entry];
1622 		len = skb->len;
1623 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1624 					  DMA_TO_DEVICE);
1625 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1626 			goto drop;
1627 	}
1628 	desc->ds_tagl = cpu_to_le16(len);
1629 	desc->dptr = cpu_to_le32(dma_addr);
1630 
1631 	/* TX timestamp required */
1632 	if (q == RAVB_NC) {
1633 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1634 		if (!ts_skb) {
1635 			if (num_tx_desc > 1) {
1636 				desc--;
1637 				dma_unmap_single(ndev->dev.parent, dma_addr,
1638 						 len, DMA_TO_DEVICE);
1639 			}
1640 			goto unmap;
1641 		}
1642 		ts_skb->skb = skb_get(skb);
1643 		ts_skb->tag = priv->ts_skb_tag++;
1644 		priv->ts_skb_tag &= 0x3ff;
1645 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1646 
1647 		/* TAG and timestamp required flag */
1648 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1649 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1650 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1651 	}
1652 
1653 	skb_tx_timestamp(skb);
1654 	/* Descriptor type must be set after all the above writes */
1655 	dma_wmb();
1656 	if (num_tx_desc > 1) {
1657 		desc->die_dt = DT_FEND;
1658 		desc--;
1659 		desc->die_dt = DT_FSTART;
1660 	} else {
1661 		desc->die_dt = DT_FSINGLE;
1662 	}
1663 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1664 
1665 	priv->cur_tx[q] += num_tx_desc;
1666 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1667 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1668 	    !ravb_tx_free(ndev, q, true))
1669 		netif_stop_subqueue(ndev, q);
1670 
1671 exit:
1672 	spin_unlock_irqrestore(&priv->lock, flags);
1673 	return NETDEV_TX_OK;
1674 
1675 unmap:
1676 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1677 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1678 drop:
1679 	dev_kfree_skb_any(skb);
1680 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1681 	goto exit;
1682 }
1683 
1684 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1685 			     struct net_device *sb_dev)
1686 {
1687 	/* If skb needs TX timestamp, it is handled in network control queue */
1688 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1689 							       RAVB_BE;
1690 
1691 }
1692 
1693 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1694 {
1695 	struct ravb_private *priv = netdev_priv(ndev);
1696 	struct net_device_stats *nstats, *stats0, *stats1;
1697 
1698 	nstats = &ndev->stats;
1699 	stats0 = &priv->stats[RAVB_BE];
1700 	stats1 = &priv->stats[RAVB_NC];
1701 
1702 	if (priv->chip_id == RCAR_GEN3) {
1703 		nstats->tx_dropped += ravb_read(ndev, TROCR);
1704 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1705 	}
1706 
1707 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1708 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1709 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1710 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1711 	nstats->multicast = stats0->multicast + stats1->multicast;
1712 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1713 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1714 	nstats->rx_frame_errors =
1715 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1716 	nstats->rx_length_errors =
1717 		stats0->rx_length_errors + stats1->rx_length_errors;
1718 	nstats->rx_missed_errors =
1719 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1720 	nstats->rx_over_errors =
1721 		stats0->rx_over_errors + stats1->rx_over_errors;
1722 
1723 	return nstats;
1724 }
1725 
1726 /* Update promiscuous bit */
1727 static void ravb_set_rx_mode(struct net_device *ndev)
1728 {
1729 	struct ravb_private *priv = netdev_priv(ndev);
1730 	unsigned long flags;
1731 
1732 	spin_lock_irqsave(&priv->lock, flags);
1733 	ravb_modify(ndev, ECMR, ECMR_PRM,
1734 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1735 	spin_unlock_irqrestore(&priv->lock, flags);
1736 }
1737 
1738 /* Device close function for Ethernet AVB */
1739 static int ravb_close(struct net_device *ndev)
1740 {
1741 	struct device_node *np = ndev->dev.parent->of_node;
1742 	struct ravb_private *priv = netdev_priv(ndev);
1743 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1744 
1745 	netif_tx_stop_all_queues(ndev);
1746 
1747 	/* Disable interrupts by clearing the interrupt masks. */
1748 	ravb_write(ndev, 0, RIC0);
1749 	ravb_write(ndev, 0, RIC2);
1750 	ravb_write(ndev, 0, TIC);
1751 
1752 	/* Stop PTP Clock driver */
1753 	if (priv->chip_id == RCAR_GEN2)
1754 		ravb_ptp_stop(ndev);
1755 
1756 	/* Set the config mode to stop the AVB-DMAC's processes */
1757 	if (ravb_stop_dma(ndev) < 0)
1758 		netdev_err(ndev,
1759 			   "device will be stopped after h/w processes are done.\n");
1760 
1761 	/* Clear the timestamp list */
1762 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1763 		list_del(&ts_skb->list);
1764 		kfree_skb(ts_skb->skb);
1765 		kfree(ts_skb);
1766 	}
1767 
1768 	/* PHY disconnect */
1769 	if (ndev->phydev) {
1770 		phy_stop(ndev->phydev);
1771 		phy_disconnect(ndev->phydev);
1772 		if (of_phy_is_fixed_link(np))
1773 			of_phy_deregister_fixed_link(np);
1774 	}
1775 
1776 	if (priv->chip_id != RCAR_GEN2) {
1777 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1778 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1779 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1780 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1781 		free_irq(priv->emac_irq, ndev);
1782 	}
1783 	free_irq(ndev->irq, ndev);
1784 
1785 	napi_disable(&priv->napi[RAVB_NC]);
1786 	napi_disable(&priv->napi[RAVB_BE]);
1787 
1788 	/* Free all the skb's in the RX queue and the DMA buffers. */
1789 	ravb_ring_free(ndev, RAVB_BE);
1790 	ravb_ring_free(ndev, RAVB_NC);
1791 
1792 	ravb_mdio_release(priv);
1793 
1794 	return 0;
1795 }
1796 
1797 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1798 {
1799 	struct ravb_private *priv = netdev_priv(ndev);
1800 	struct hwtstamp_config config;
1801 
1802 	config.flags = 0;
1803 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1804 						HWTSTAMP_TX_OFF;
1805 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1806 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1807 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1808 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1809 	else
1810 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1811 
1812 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1813 		-EFAULT : 0;
1814 }
1815 
1816 /* Control hardware time stamping */
1817 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1818 {
1819 	struct ravb_private *priv = netdev_priv(ndev);
1820 	struct hwtstamp_config config;
1821 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1822 	u32 tstamp_tx_ctrl;
1823 
1824 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1825 		return -EFAULT;
1826 
1827 	/* Reserved for future extensions */
1828 	if (config.flags)
1829 		return -EINVAL;
1830 
1831 	switch (config.tx_type) {
1832 	case HWTSTAMP_TX_OFF:
1833 		tstamp_tx_ctrl = 0;
1834 		break;
1835 	case HWTSTAMP_TX_ON:
1836 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1837 		break;
1838 	default:
1839 		return -ERANGE;
1840 	}
1841 
1842 	switch (config.rx_filter) {
1843 	case HWTSTAMP_FILTER_NONE:
1844 		tstamp_rx_ctrl = 0;
1845 		break;
1846 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1847 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1848 		break;
1849 	default:
1850 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1851 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1852 	}
1853 
1854 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1855 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1856 
1857 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1858 		-EFAULT : 0;
1859 }
1860 
1861 /* ioctl to device function */
1862 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1863 {
1864 	struct phy_device *phydev = ndev->phydev;
1865 
1866 	if (!netif_running(ndev))
1867 		return -EINVAL;
1868 
1869 	if (!phydev)
1870 		return -ENODEV;
1871 
1872 	switch (cmd) {
1873 	case SIOCGHWTSTAMP:
1874 		return ravb_hwtstamp_get(ndev, req);
1875 	case SIOCSHWTSTAMP:
1876 		return ravb_hwtstamp_set(ndev, req);
1877 	}
1878 
1879 	return phy_mii_ioctl(phydev, req, cmd);
1880 }
1881 
1882 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1883 {
1884 	struct ravb_private *priv = netdev_priv(ndev);
1885 
1886 	ndev->mtu = new_mtu;
1887 
1888 	if (netif_running(ndev)) {
1889 		synchronize_irq(priv->emac_irq);
1890 		ravb_emac_init(ndev);
1891 	}
1892 
1893 	netdev_update_features(ndev);
1894 
1895 	return 0;
1896 }
1897 
1898 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1899 {
1900 	struct ravb_private *priv = netdev_priv(ndev);
1901 	unsigned long flags;
1902 
1903 	spin_lock_irqsave(&priv->lock, flags);
1904 
1905 	/* Disable TX and RX */
1906 	ravb_rcv_snd_disable(ndev);
1907 
1908 	/* Modify RX Checksum setting */
1909 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1910 
1911 	/* Enable TX and RX */
1912 	ravb_rcv_snd_enable(ndev);
1913 
1914 	spin_unlock_irqrestore(&priv->lock, flags);
1915 }
1916 
1917 static int ravb_set_features(struct net_device *ndev,
1918 			     netdev_features_t features)
1919 {
1920 	netdev_features_t changed = ndev->features ^ features;
1921 
1922 	if (changed & NETIF_F_RXCSUM)
1923 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1924 
1925 	ndev->features = features;
1926 
1927 	return 0;
1928 }
1929 
1930 static const struct net_device_ops ravb_netdev_ops = {
1931 	.ndo_open		= ravb_open,
1932 	.ndo_stop		= ravb_close,
1933 	.ndo_start_xmit		= ravb_start_xmit,
1934 	.ndo_select_queue	= ravb_select_queue,
1935 	.ndo_get_stats		= ravb_get_stats,
1936 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1937 	.ndo_tx_timeout		= ravb_tx_timeout,
1938 	.ndo_do_ioctl		= ravb_do_ioctl,
1939 	.ndo_change_mtu		= ravb_change_mtu,
1940 	.ndo_validate_addr	= eth_validate_addr,
1941 	.ndo_set_mac_address	= eth_mac_addr,
1942 	.ndo_set_features	= ravb_set_features,
1943 };
1944 
1945 static const struct of_device_id ravb_match_table[] = {
1946 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1947 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1948 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1949 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1950 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1951 	{ }
1952 };
1953 MODULE_DEVICE_TABLE(of, ravb_match_table);
1954 
1955 static int ravb_set_gti(struct net_device *ndev)
1956 {
1957 	struct ravb_private *priv = netdev_priv(ndev);
1958 	struct device *dev = ndev->dev.parent;
1959 	unsigned long rate;
1960 	uint64_t inc;
1961 
1962 	rate = clk_get_rate(priv->clk);
1963 	if (!rate)
1964 		return -EINVAL;
1965 
1966 	inc = 1000000000ULL << 20;
1967 	do_div(inc, rate);
1968 
1969 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1970 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1971 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1972 		return -EINVAL;
1973 	}
1974 
1975 	ravb_write(ndev, inc, GTI);
1976 
1977 	return 0;
1978 }
1979 
1980 static void ravb_set_config_mode(struct net_device *ndev)
1981 {
1982 	struct ravb_private *priv = netdev_priv(ndev);
1983 
1984 	if (priv->chip_id == RCAR_GEN2) {
1985 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1986 		/* Set CSEL value */
1987 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1988 	} else {
1989 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1990 			    CCC_GAC | CCC_CSEL_HPB);
1991 	}
1992 }
1993 
1994 static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1995 	{ .soc_id = "r8a774c0" },
1996 	{ .soc_id = "r8a77990" },
1997 	{ .soc_id = "r8a77995" },
1998 	{ /* sentinel */ }
1999 };
2000 
2001 /* Set tx and rx clock internal delay modes */
2002 static void ravb_set_delay_mode(struct net_device *ndev)
2003 {
2004 	struct ravb_private *priv = netdev_priv(ndev);
2005 	int set = 0;
2006 
2007 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2008 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
2009 		set |= APSR_DM_RDM;
2010 
2011 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2012 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2013 		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
2014 			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
2015 			  phy_modes(priv->phy_interface)))
2016 			set |= APSR_DM_TDM;
2017 	}
2018 
2019 	ravb_modify(ndev, APSR, APSR_DM, set);
2020 }
2021 
2022 static int ravb_probe(struct platform_device *pdev)
2023 {
2024 	struct device_node *np = pdev->dev.of_node;
2025 	struct ravb_private *priv;
2026 	enum ravb_chip_id chip_id;
2027 	struct net_device *ndev;
2028 	int error, irq, q;
2029 	struct resource *res;
2030 	int i;
2031 
2032 	if (!np) {
2033 		dev_err(&pdev->dev,
2034 			"this driver is required to be instantiated from device tree\n");
2035 		return -EINVAL;
2036 	}
2037 
2038 	/* Get base address */
2039 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2040 	if (!res) {
2041 		dev_err(&pdev->dev, "invalid resource\n");
2042 		return -EINVAL;
2043 	}
2044 
2045 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2046 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2047 	if (!ndev)
2048 		return -ENOMEM;
2049 
2050 	ndev->features = NETIF_F_RXCSUM;
2051 	ndev->hw_features = NETIF_F_RXCSUM;
2052 
2053 	pm_runtime_enable(&pdev->dev);
2054 	pm_runtime_get_sync(&pdev->dev);
2055 
2056 	/* The Ether-specific entries in the device structure. */
2057 	ndev->base_addr = res->start;
2058 
2059 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2060 
2061 	if (chip_id == RCAR_GEN3)
2062 		irq = platform_get_irq_byname(pdev, "ch22");
2063 	else
2064 		irq = platform_get_irq(pdev, 0);
2065 	if (irq < 0) {
2066 		error = irq;
2067 		goto out_release;
2068 	}
2069 	ndev->irq = irq;
2070 
2071 	SET_NETDEV_DEV(ndev, &pdev->dev);
2072 
2073 	priv = netdev_priv(ndev);
2074 	priv->ndev = ndev;
2075 	priv->pdev = pdev;
2076 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2077 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2078 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2079 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2080 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2081 	if (IS_ERR(priv->addr)) {
2082 		error = PTR_ERR(priv->addr);
2083 		goto out_release;
2084 	}
2085 
2086 	spin_lock_init(&priv->lock);
2087 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2088 
2089 	error = of_get_phy_mode(np, &priv->phy_interface);
2090 	if (error && error != -ENODEV)
2091 		goto out_release;
2092 
2093 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2094 	priv->avb_link_active_low =
2095 		of_property_read_bool(np, "renesas,ether-link-active-low");
2096 
2097 	if (chip_id == RCAR_GEN3) {
2098 		irq = platform_get_irq_byname(pdev, "ch24");
2099 		if (irq < 0) {
2100 			error = irq;
2101 			goto out_release;
2102 		}
2103 		priv->emac_irq = irq;
2104 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2105 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2106 			if (irq < 0) {
2107 				error = irq;
2108 				goto out_release;
2109 			}
2110 			priv->rx_irqs[i] = irq;
2111 		}
2112 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2113 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2114 			if (irq < 0) {
2115 				error = irq;
2116 				goto out_release;
2117 			}
2118 			priv->tx_irqs[i] = irq;
2119 		}
2120 	}
2121 
2122 	priv->chip_id = chip_id;
2123 
2124 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2125 	if (IS_ERR(priv->clk)) {
2126 		error = PTR_ERR(priv->clk);
2127 		goto out_release;
2128 	}
2129 
2130 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2131 	ndev->min_mtu = ETH_MIN_MTU;
2132 
2133 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2134 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2135 
2136 	/* Set function */
2137 	ndev->netdev_ops = &ravb_netdev_ops;
2138 	ndev->ethtool_ops = &ravb_ethtool_ops;
2139 
2140 	/* Set AVB config mode */
2141 	ravb_set_config_mode(ndev);
2142 
2143 	/* Set GTI value */
2144 	error = ravb_set_gti(ndev);
2145 	if (error)
2146 		goto out_release;
2147 
2148 	/* Request GTI loading */
2149 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2150 
2151 	if (priv->chip_id != RCAR_GEN2)
2152 		ravb_set_delay_mode(ndev);
2153 
2154 	/* Allocate descriptor base address table */
2155 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2156 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2157 					    &priv->desc_bat_dma, GFP_KERNEL);
2158 	if (!priv->desc_bat) {
2159 		dev_err(&pdev->dev,
2160 			"Cannot allocate desc base address table (size %d bytes)\n",
2161 			priv->desc_bat_size);
2162 		error = -ENOMEM;
2163 		goto out_release;
2164 	}
2165 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2166 		priv->desc_bat[q].die_dt = DT_EOS;
2167 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2168 
2169 	/* Initialise HW timestamp list */
2170 	INIT_LIST_HEAD(&priv->ts_skb_list);
2171 
2172 	/* Initialise PTP Clock driver */
2173 	if (chip_id != RCAR_GEN2)
2174 		ravb_ptp_init(ndev, pdev);
2175 
2176 	/* Debug message level */
2177 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2178 
2179 	/* Read and set MAC address */
2180 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2181 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2182 		dev_warn(&pdev->dev,
2183 			 "no valid MAC address supplied, using a random one\n");
2184 		eth_hw_addr_random(ndev);
2185 	}
2186 
2187 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2188 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2189 
2190 	/* Network device register */
2191 	error = register_netdev(ndev);
2192 	if (error)
2193 		goto out_napi_del;
2194 
2195 	device_set_wakeup_capable(&pdev->dev, 1);
2196 
2197 	/* Print device information */
2198 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2199 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2200 
2201 	platform_set_drvdata(pdev, ndev);
2202 
2203 	return 0;
2204 
2205 out_napi_del:
2206 	netif_napi_del(&priv->napi[RAVB_NC]);
2207 	netif_napi_del(&priv->napi[RAVB_BE]);
2208 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2209 			  priv->desc_bat_dma);
2210 
2211 	/* Stop PTP Clock driver */
2212 	if (chip_id != RCAR_GEN2)
2213 		ravb_ptp_stop(ndev);
2214 out_release:
2215 	free_netdev(ndev);
2216 
2217 	pm_runtime_put(&pdev->dev);
2218 	pm_runtime_disable(&pdev->dev);
2219 	return error;
2220 }
2221 
2222 static int ravb_remove(struct platform_device *pdev)
2223 {
2224 	struct net_device *ndev = platform_get_drvdata(pdev);
2225 	struct ravb_private *priv = netdev_priv(ndev);
2226 
2227 	/* Stop PTP Clock driver */
2228 	if (priv->chip_id != RCAR_GEN2)
2229 		ravb_ptp_stop(ndev);
2230 
2231 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2232 			  priv->desc_bat_dma);
2233 	/* Set reset mode */
2234 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2235 	pm_runtime_put_sync(&pdev->dev);
2236 	unregister_netdev(ndev);
2237 	netif_napi_del(&priv->napi[RAVB_NC]);
2238 	netif_napi_del(&priv->napi[RAVB_BE]);
2239 	pm_runtime_disable(&pdev->dev);
2240 	free_netdev(ndev);
2241 	platform_set_drvdata(pdev, NULL);
2242 
2243 	return 0;
2244 }
2245 
2246 static int ravb_wol_setup(struct net_device *ndev)
2247 {
2248 	struct ravb_private *priv = netdev_priv(ndev);
2249 
2250 	/* Disable interrupts by clearing the interrupt masks. */
2251 	ravb_write(ndev, 0, RIC0);
2252 	ravb_write(ndev, 0, RIC2);
2253 	ravb_write(ndev, 0, TIC);
2254 
2255 	/* Only allow ECI interrupts */
2256 	synchronize_irq(priv->emac_irq);
2257 	napi_disable(&priv->napi[RAVB_NC]);
2258 	napi_disable(&priv->napi[RAVB_BE]);
2259 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2260 
2261 	/* Enable MagicPacket */
2262 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2263 
2264 	return enable_irq_wake(priv->emac_irq);
2265 }
2266 
2267 static int ravb_wol_restore(struct net_device *ndev)
2268 {
2269 	struct ravb_private *priv = netdev_priv(ndev);
2270 	int ret;
2271 
2272 	napi_enable(&priv->napi[RAVB_NC]);
2273 	napi_enable(&priv->napi[RAVB_BE]);
2274 
2275 	/* Disable MagicPacket */
2276 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2277 
2278 	ret = ravb_close(ndev);
2279 	if (ret < 0)
2280 		return ret;
2281 
2282 	return disable_irq_wake(priv->emac_irq);
2283 }
2284 
2285 static int __maybe_unused ravb_suspend(struct device *dev)
2286 {
2287 	struct net_device *ndev = dev_get_drvdata(dev);
2288 	struct ravb_private *priv = netdev_priv(ndev);
2289 	int ret;
2290 
2291 	if (!netif_running(ndev))
2292 		return 0;
2293 
2294 	netif_device_detach(ndev);
2295 
2296 	if (priv->wol_enabled)
2297 		ret = ravb_wol_setup(ndev);
2298 	else
2299 		ret = ravb_close(ndev);
2300 
2301 	return ret;
2302 }
2303 
2304 static int __maybe_unused ravb_resume(struct device *dev)
2305 {
2306 	struct net_device *ndev = dev_get_drvdata(dev);
2307 	struct ravb_private *priv = netdev_priv(ndev);
2308 	int ret = 0;
2309 
2310 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2311 	if (priv->wol_enabled)
2312 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2313 
2314 	/* All register have been reset to default values.
2315 	 * Restore all registers which where setup at probe time and
2316 	 * reopen device if it was running before system suspended.
2317 	 */
2318 
2319 	/* Set AVB config mode */
2320 	ravb_set_config_mode(ndev);
2321 
2322 	/* Set GTI value */
2323 	ret = ravb_set_gti(ndev);
2324 	if (ret)
2325 		return ret;
2326 
2327 	/* Request GTI loading */
2328 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2329 
2330 	if (priv->chip_id != RCAR_GEN2)
2331 		ravb_set_delay_mode(ndev);
2332 
2333 	/* Restore descriptor base address table */
2334 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2335 
2336 	if (netif_running(ndev)) {
2337 		if (priv->wol_enabled) {
2338 			ret = ravb_wol_restore(ndev);
2339 			if (ret)
2340 				return ret;
2341 		}
2342 		ret = ravb_open(ndev);
2343 		if (ret < 0)
2344 			return ret;
2345 		netif_device_attach(ndev);
2346 	}
2347 
2348 	return ret;
2349 }
2350 
2351 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2352 {
2353 	/* Runtime PM callback shared between ->runtime_suspend()
2354 	 * and ->runtime_resume(). Simply returns success.
2355 	 *
2356 	 * This driver re-initializes all registers after
2357 	 * pm_runtime_get_sync() anyway so there is no need
2358 	 * to save and restore registers here.
2359 	 */
2360 	return 0;
2361 }
2362 
2363 static const struct dev_pm_ops ravb_dev_pm_ops = {
2364 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2365 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2366 };
2367 
2368 static struct platform_driver ravb_driver = {
2369 	.probe		= ravb_probe,
2370 	.remove		= ravb_remove,
2371 	.driver = {
2372 		.name	= "ravb",
2373 		.pm	= &ravb_dev_pm_ops,
2374 		.of_match_table = ravb_match_table,
2375 	},
2376 };
2377 
2378 module_platform_driver(ravb_driver);
2379 
2380 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2381 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2382 MODULE_LICENSE("GPL v2");
2383