xref: /openbmc/linux/drivers/net/ethernet/renesas/ravb_main.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct device_node *np,
113 				  struct net_device *ndev)
114 {
115 	int ret;
116 
117 	ret = of_get_mac_address(np, ndev->dev_addr);
118 	if (ret) {
119 		u32 mahr = ravb_read(ndev, MAHR);
120 		u32 malr = ravb_read(ndev, MALR);
121 
122 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
123 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
124 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
125 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
126 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
127 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
128 	}
129 }
130 
131 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
132 {
133 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
134 						 mdiobb);
135 
136 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
137 }
138 
139 /* MDC pin control */
140 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
141 {
142 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
143 }
144 
145 /* Data I/O pin control */
146 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
147 {
148 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
149 }
150 
151 /* Set data bit */
152 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
153 {
154 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
155 }
156 
157 /* Get data bit */
158 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
159 {
160 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
161 						 mdiobb);
162 
163 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
164 }
165 
166 /* MDIO bus control struct */
167 static const struct mdiobb_ops bb_ops = {
168 	.owner = THIS_MODULE,
169 	.set_mdc = ravb_set_mdc,
170 	.set_mdio_dir = ravb_set_mdio_dir,
171 	.set_mdio_data = ravb_set_mdio_data,
172 	.get_mdio_data = ravb_get_mdio_data,
173 };
174 
175 /* Free TX skb function for AVB-IP */
176 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
177 {
178 	struct ravb_private *priv = netdev_priv(ndev);
179 	struct net_device_stats *stats = &priv->stats[q];
180 	int num_tx_desc = priv->num_tx_desc;
181 	struct ravb_tx_desc *desc;
182 	int free_num = 0;
183 	int entry;
184 	u32 size;
185 
186 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
187 		bool txed;
188 
189 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
190 					     num_tx_desc);
191 		desc = &priv->tx_ring[q][entry];
192 		txed = desc->die_dt == DT_FEMPTY;
193 		if (free_txed_only && !txed)
194 			break;
195 		/* Descriptor type must be checked before all other reads */
196 		dma_rmb();
197 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
198 		/* Free the original skb. */
199 		if (priv->tx_skb[q][entry / num_tx_desc]) {
200 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
201 					 size, DMA_TO_DEVICE);
202 			/* Last packet descriptor? */
203 			if (entry % num_tx_desc == num_tx_desc - 1) {
204 				entry /= num_tx_desc;
205 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
206 				priv->tx_skb[q][entry] = NULL;
207 				if (txed)
208 					stats->tx_packets++;
209 			}
210 			free_num++;
211 		}
212 		if (txed)
213 			stats->tx_bytes += size;
214 		desc->die_dt = DT_EEMPTY;
215 	}
216 	return free_num;
217 }
218 
219 /* Free skb's and DMA buffers for Ethernet AVB */
220 static void ravb_ring_free(struct net_device *ndev, int q)
221 {
222 	struct ravb_private *priv = netdev_priv(ndev);
223 	int num_tx_desc = priv->num_tx_desc;
224 	int ring_size;
225 	int i;
226 
227 	if (priv->rx_ring[q]) {
228 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
229 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
230 
231 			if (!dma_mapping_error(ndev->dev.parent,
232 					       le32_to_cpu(desc->dptr)))
233 				dma_unmap_single(ndev->dev.parent,
234 						 le32_to_cpu(desc->dptr),
235 						 RX_BUF_SZ,
236 						 DMA_FROM_DEVICE);
237 		}
238 		ring_size = sizeof(struct ravb_ex_rx_desc) *
239 			    (priv->num_rx_ring[q] + 1);
240 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
241 				  priv->rx_desc_dma[q]);
242 		priv->rx_ring[q] = NULL;
243 	}
244 
245 	if (priv->tx_ring[q]) {
246 		ravb_tx_free(ndev, q, false);
247 
248 		ring_size = sizeof(struct ravb_tx_desc) *
249 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
250 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
251 				  priv->tx_desc_dma[q]);
252 		priv->tx_ring[q] = NULL;
253 	}
254 
255 	/* Free RX skb ringbuffer */
256 	if (priv->rx_skb[q]) {
257 		for (i = 0; i < priv->num_rx_ring[q]; i++)
258 			dev_kfree_skb(priv->rx_skb[q][i]);
259 	}
260 	kfree(priv->rx_skb[q]);
261 	priv->rx_skb[q] = NULL;
262 
263 	/* Free aligned TX buffers */
264 	kfree(priv->tx_align[q]);
265 	priv->tx_align[q] = NULL;
266 
267 	/* Free TX skb ringbuffer.
268 	 * SKBs are freed by ravb_tx_free() call above.
269 	 */
270 	kfree(priv->tx_skb[q]);
271 	priv->tx_skb[q] = NULL;
272 }
273 
274 /* Format skb and descriptor buffer for Ethernet AVB */
275 static void ravb_ring_format(struct net_device *ndev, int q)
276 {
277 	struct ravb_private *priv = netdev_priv(ndev);
278 	int num_tx_desc = priv->num_tx_desc;
279 	struct ravb_ex_rx_desc *rx_desc;
280 	struct ravb_tx_desc *tx_desc;
281 	struct ravb_desc *desc;
282 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
283 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
284 			   num_tx_desc;
285 	dma_addr_t dma_addr;
286 	int i;
287 
288 	priv->cur_rx[q] = 0;
289 	priv->cur_tx[q] = 0;
290 	priv->dirty_rx[q] = 0;
291 	priv->dirty_tx[q] = 0;
292 
293 	memset(priv->rx_ring[q], 0, rx_ring_size);
294 	/* Build RX ring buffer */
295 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
296 		/* RX descriptor */
297 		rx_desc = &priv->rx_ring[q][i];
298 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
299 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
300 					  RX_BUF_SZ,
301 					  DMA_FROM_DEVICE);
302 		/* We just set the data size to 0 for a failed mapping which
303 		 * should prevent DMA from happening...
304 		 */
305 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
306 			rx_desc->ds_cc = cpu_to_le16(0);
307 		rx_desc->dptr = cpu_to_le32(dma_addr);
308 		rx_desc->die_dt = DT_FEMPTY;
309 	}
310 	rx_desc = &priv->rx_ring[q][i];
311 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
312 	rx_desc->die_dt = DT_LINKFIX; /* type */
313 
314 	memset(priv->tx_ring[q], 0, tx_ring_size);
315 	/* Build TX ring buffer */
316 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
317 	     i++, tx_desc++) {
318 		tx_desc->die_dt = DT_EEMPTY;
319 		if (num_tx_desc > 1) {
320 			tx_desc++;
321 			tx_desc->die_dt = DT_EEMPTY;
322 		}
323 	}
324 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
325 	tx_desc->die_dt = DT_LINKFIX; /* type */
326 
327 	/* RX descriptor base address for best effort */
328 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
329 	desc->die_dt = DT_LINKFIX; /* type */
330 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
331 
332 	/* TX descriptor base address for best effort */
333 	desc = &priv->desc_bat[q];
334 	desc->die_dt = DT_LINKFIX; /* type */
335 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
336 }
337 
338 /* Init skb and descriptor buffer for Ethernet AVB */
339 static int ravb_ring_init(struct net_device *ndev, int q)
340 {
341 	struct ravb_private *priv = netdev_priv(ndev);
342 	int num_tx_desc = priv->num_tx_desc;
343 	struct sk_buff *skb;
344 	int ring_size;
345 	int i;
346 
347 	/* Allocate RX and TX skb rings */
348 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
349 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
350 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
351 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
352 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
353 		goto error;
354 
355 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
356 		skb = netdev_alloc_skb(ndev, RX_BUF_SZ + RAVB_ALIGN - 1);
357 		if (!skb)
358 			goto error;
359 		ravb_set_buffer_align(skb);
360 		priv->rx_skb[q][i] = skb;
361 	}
362 
363 	if (num_tx_desc > 1) {
364 		/* Allocate rings for the aligned buffers */
365 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
366 					    DPTR_ALIGN - 1, GFP_KERNEL);
367 		if (!priv->tx_align[q])
368 			goto error;
369 	}
370 
371 	/* Allocate all RX descriptors. */
372 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
373 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
374 					      &priv->rx_desc_dma[q],
375 					      GFP_KERNEL);
376 	if (!priv->rx_ring[q])
377 		goto error;
378 
379 	priv->dirty_rx[q] = 0;
380 
381 	/* Allocate all TX descriptors. */
382 	ring_size = sizeof(struct ravb_tx_desc) *
383 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
384 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
385 					      &priv->tx_desc_dma[q],
386 					      GFP_KERNEL);
387 	if (!priv->tx_ring[q])
388 		goto error;
389 
390 	return 0;
391 
392 error:
393 	ravb_ring_free(ndev, q);
394 
395 	return -ENOMEM;
396 }
397 
398 /* E-MAC init function */
399 static void ravb_emac_init(struct net_device *ndev)
400 {
401 	/* Receive frame limit set register */
402 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
403 
404 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
405 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
406 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
407 		   ECMR_TE | ECMR_RE, ECMR);
408 
409 	ravb_set_rate(ndev);
410 
411 	/* Set MAC address */
412 	ravb_write(ndev,
413 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
414 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
415 	ravb_write(ndev,
416 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
417 
418 	/* E-MAC status register clear */
419 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
420 
421 	/* E-MAC interrupt enable register */
422 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
423 }
424 
425 /* Device init function for Ethernet AVB */
426 static int ravb_dmac_init(struct net_device *ndev)
427 {
428 	struct ravb_private *priv = netdev_priv(ndev);
429 	int error;
430 
431 	/* Set CONFIG mode */
432 	error = ravb_config(ndev);
433 	if (error)
434 		return error;
435 
436 	error = ravb_ring_init(ndev, RAVB_BE);
437 	if (error)
438 		return error;
439 	error = ravb_ring_init(ndev, RAVB_NC);
440 	if (error) {
441 		ravb_ring_free(ndev, RAVB_BE);
442 		return error;
443 	}
444 
445 	/* Descriptor format */
446 	ravb_ring_format(ndev, RAVB_BE);
447 	ravb_ring_format(ndev, RAVB_NC);
448 
449 	/* Set AVB RX */
450 	ravb_write(ndev,
451 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
452 
453 	/* Set FIFO size */
454 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
455 
456 	/* Timestamp enable */
457 	ravb_write(ndev, TCCR_TFEN, TCCR);
458 
459 	/* Interrupt init: */
460 	if (priv->chip_id == RCAR_GEN3) {
461 		/* Clear DIL.DPLx */
462 		ravb_write(ndev, 0, DIL);
463 		/* Set queue specific interrupt */
464 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
465 	}
466 	/* Frame receive */
467 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
468 	/* Disable FIFO full warning */
469 	ravb_write(ndev, 0, RIC1);
470 	/* Receive FIFO full error, descriptor empty */
471 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
472 	/* Frame transmitted, timestamp FIFO updated */
473 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
474 
475 	/* Setting the control will start the AVB-DMAC process. */
476 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
477 
478 	return 0;
479 }
480 
481 static void ravb_get_tx_tstamp(struct net_device *ndev)
482 {
483 	struct ravb_private *priv = netdev_priv(ndev);
484 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
485 	struct skb_shared_hwtstamps shhwtstamps;
486 	struct sk_buff *skb;
487 	struct timespec64 ts;
488 	u16 tag, tfa_tag;
489 	int count;
490 	u32 tfa2;
491 
492 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
493 	while (count--) {
494 		tfa2 = ravb_read(ndev, TFA2);
495 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
496 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
497 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
498 			    ravb_read(ndev, TFA1);
499 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
500 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
501 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
502 					 list) {
503 			skb = ts_skb->skb;
504 			tag = ts_skb->tag;
505 			list_del(&ts_skb->list);
506 			kfree(ts_skb);
507 			if (tag == tfa_tag) {
508 				skb_tstamp_tx(skb, &shhwtstamps);
509 				dev_consume_skb_any(skb);
510 				break;
511 			} else {
512 				dev_kfree_skb_any(skb);
513 			}
514 		}
515 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
516 	}
517 }
518 
519 static void ravb_rx_csum(struct sk_buff *skb)
520 {
521 	u8 *hw_csum;
522 
523 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
524 	 * appended to packet data
525 	 */
526 	if (unlikely(skb->len < sizeof(__sum16)))
527 		return;
528 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
529 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
530 	skb->ip_summed = CHECKSUM_COMPLETE;
531 	skb_trim(skb, skb->len - sizeof(__sum16));
532 }
533 
534 /* Packet receive function for Ethernet AVB */
535 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
536 {
537 	struct ravb_private *priv = netdev_priv(ndev);
538 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
539 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
540 			priv->cur_rx[q];
541 	struct net_device_stats *stats = &priv->stats[q];
542 	struct ravb_ex_rx_desc *desc;
543 	struct sk_buff *skb;
544 	dma_addr_t dma_addr;
545 	struct timespec64 ts;
546 	u8  desc_status;
547 	u16 pkt_len;
548 	int limit;
549 
550 	boguscnt = min(boguscnt, *quota);
551 	limit = boguscnt;
552 	desc = &priv->rx_ring[q][entry];
553 	while (desc->die_dt != DT_FEMPTY) {
554 		/* Descriptor type must be checked before all other reads */
555 		dma_rmb();
556 		desc_status = desc->msc;
557 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
558 
559 		if (--boguscnt < 0)
560 			break;
561 
562 		/* We use 0-byte descriptors to mark the DMA mapping errors */
563 		if (!pkt_len)
564 			continue;
565 
566 		if (desc_status & MSC_MC)
567 			stats->multicast++;
568 
569 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
570 				   MSC_CEEF)) {
571 			stats->rx_errors++;
572 			if (desc_status & MSC_CRC)
573 				stats->rx_crc_errors++;
574 			if (desc_status & MSC_RFE)
575 				stats->rx_frame_errors++;
576 			if (desc_status & (MSC_RTLF | MSC_RTSF))
577 				stats->rx_length_errors++;
578 			if (desc_status & MSC_CEEF)
579 				stats->rx_missed_errors++;
580 		} else {
581 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
582 
583 			skb = priv->rx_skb[q][entry];
584 			priv->rx_skb[q][entry] = NULL;
585 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
586 					 RX_BUF_SZ,
587 					 DMA_FROM_DEVICE);
588 			get_ts &= (q == RAVB_NC) ?
589 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
590 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
591 			if (get_ts) {
592 				struct skb_shared_hwtstamps *shhwtstamps;
593 
594 				shhwtstamps = skb_hwtstamps(skb);
595 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
596 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
597 					     32) | le32_to_cpu(desc->ts_sl);
598 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
599 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
600 			}
601 
602 			skb_put(skb, pkt_len);
603 			skb->protocol = eth_type_trans(skb, ndev);
604 			if (ndev->features & NETIF_F_RXCSUM)
605 				ravb_rx_csum(skb);
606 			napi_gro_receive(&priv->napi[q], skb);
607 			stats->rx_packets++;
608 			stats->rx_bytes += pkt_len;
609 		}
610 
611 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
612 		desc = &priv->rx_ring[q][entry];
613 	}
614 
615 	/* Refill the RX ring buffers. */
616 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
617 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
618 		desc = &priv->rx_ring[q][entry];
619 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
620 
621 		if (!priv->rx_skb[q][entry]) {
622 			skb = netdev_alloc_skb(ndev,
623 					       RX_BUF_SZ +
624 					       RAVB_ALIGN - 1);
625 			if (!skb)
626 				break;	/* Better luck next round. */
627 			ravb_set_buffer_align(skb);
628 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
629 						  le16_to_cpu(desc->ds_cc),
630 						  DMA_FROM_DEVICE);
631 			skb_checksum_none_assert(skb);
632 			/* We just set the data size to 0 for a failed mapping
633 			 * which should prevent DMA  from happening...
634 			 */
635 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
636 				desc->ds_cc = cpu_to_le16(0);
637 			desc->dptr = cpu_to_le32(dma_addr);
638 			priv->rx_skb[q][entry] = skb;
639 		}
640 		/* Descriptor type must be set after all the above writes */
641 		dma_wmb();
642 		desc->die_dt = DT_FEMPTY;
643 	}
644 
645 	*quota -= limit - (++boguscnt);
646 
647 	return boguscnt <= 0;
648 }
649 
650 static void ravb_rcv_snd_disable(struct net_device *ndev)
651 {
652 	/* Disable TX and RX */
653 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
654 }
655 
656 static void ravb_rcv_snd_enable(struct net_device *ndev)
657 {
658 	/* Enable TX and RX */
659 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
660 }
661 
662 /* function for waiting dma process finished */
663 static int ravb_stop_dma(struct net_device *ndev)
664 {
665 	int error;
666 
667 	/* Wait for stopping the hardware TX process */
668 	error = ravb_wait(ndev, TCCR,
669 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
670 	if (error)
671 		return error;
672 
673 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
674 			  0);
675 	if (error)
676 		return error;
677 
678 	/* Stop the E-MAC's RX/TX processes. */
679 	ravb_rcv_snd_disable(ndev);
680 
681 	/* Wait for stopping the RX DMA process */
682 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
683 	if (error)
684 		return error;
685 
686 	/* Stop AVB-DMAC process */
687 	return ravb_config(ndev);
688 }
689 
690 /* E-MAC interrupt handler */
691 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
692 {
693 	struct ravb_private *priv = netdev_priv(ndev);
694 	u32 ecsr, psr;
695 
696 	ecsr = ravb_read(ndev, ECSR);
697 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
698 
699 	if (ecsr & ECSR_MPD)
700 		pm_wakeup_event(&priv->pdev->dev, 0);
701 	if (ecsr & ECSR_ICD)
702 		ndev->stats.tx_carrier_errors++;
703 	if (ecsr & ECSR_LCHNG) {
704 		/* Link changed */
705 		if (priv->no_avb_link)
706 			return;
707 		psr = ravb_read(ndev, PSR);
708 		if (priv->avb_link_active_low)
709 			psr ^= PSR_LMON;
710 		if (!(psr & PSR_LMON)) {
711 			/* DIsable RX and TX */
712 			ravb_rcv_snd_disable(ndev);
713 		} else {
714 			/* Enable RX and TX */
715 			ravb_rcv_snd_enable(ndev);
716 		}
717 	}
718 }
719 
720 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
721 {
722 	struct net_device *ndev = dev_id;
723 	struct ravb_private *priv = netdev_priv(ndev);
724 
725 	spin_lock(&priv->lock);
726 	ravb_emac_interrupt_unlocked(ndev);
727 	spin_unlock(&priv->lock);
728 	return IRQ_HANDLED;
729 }
730 
731 /* Error interrupt handler */
732 static void ravb_error_interrupt(struct net_device *ndev)
733 {
734 	struct ravb_private *priv = netdev_priv(ndev);
735 	u32 eis, ris2;
736 
737 	eis = ravb_read(ndev, EIS);
738 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
739 	if (eis & EIS_QFS) {
740 		ris2 = ravb_read(ndev, RIS2);
741 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
742 			   RIS2);
743 
744 		/* Receive Descriptor Empty int */
745 		if (ris2 & RIS2_QFF0)
746 			priv->stats[RAVB_BE].rx_over_errors++;
747 
748 		    /* Receive Descriptor Empty int */
749 		if (ris2 & RIS2_QFF1)
750 			priv->stats[RAVB_NC].rx_over_errors++;
751 
752 		/* Receive FIFO Overflow int */
753 		if (ris2 & RIS2_RFFF)
754 			priv->rx_fifo_errors++;
755 	}
756 }
757 
758 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
759 {
760 	struct ravb_private *priv = netdev_priv(ndev);
761 	u32 ris0 = ravb_read(ndev, RIS0);
762 	u32 ric0 = ravb_read(ndev, RIC0);
763 	u32 tis  = ravb_read(ndev, TIS);
764 	u32 tic  = ravb_read(ndev, TIC);
765 
766 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
767 		if (napi_schedule_prep(&priv->napi[q])) {
768 			/* Mask RX and TX interrupts */
769 			if (priv->chip_id == RCAR_GEN2) {
770 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
771 				ravb_write(ndev, tic & ~BIT(q), TIC);
772 			} else {
773 				ravb_write(ndev, BIT(q), RID0);
774 				ravb_write(ndev, BIT(q), TID);
775 			}
776 			__napi_schedule(&priv->napi[q]);
777 		} else {
778 			netdev_warn(ndev,
779 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
780 				    ris0, ric0);
781 			netdev_warn(ndev,
782 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
783 				    tis, tic);
784 		}
785 		return true;
786 	}
787 	return false;
788 }
789 
790 static bool ravb_timestamp_interrupt(struct net_device *ndev)
791 {
792 	u32 tis = ravb_read(ndev, TIS);
793 
794 	if (tis & TIS_TFUF) {
795 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
796 		ravb_get_tx_tstamp(ndev);
797 		return true;
798 	}
799 	return false;
800 }
801 
802 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
803 {
804 	struct net_device *ndev = dev_id;
805 	struct ravb_private *priv = netdev_priv(ndev);
806 	irqreturn_t result = IRQ_NONE;
807 	u32 iss;
808 
809 	spin_lock(&priv->lock);
810 	/* Get interrupt status */
811 	iss = ravb_read(ndev, ISS);
812 
813 	/* Received and transmitted interrupts */
814 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
815 		int q;
816 
817 		/* Timestamp updated */
818 		if (ravb_timestamp_interrupt(ndev))
819 			result = IRQ_HANDLED;
820 
821 		/* Network control and best effort queue RX/TX */
822 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
823 			if (ravb_queue_interrupt(ndev, q))
824 				result = IRQ_HANDLED;
825 		}
826 	}
827 
828 	/* E-MAC status summary */
829 	if (iss & ISS_MS) {
830 		ravb_emac_interrupt_unlocked(ndev);
831 		result = IRQ_HANDLED;
832 	}
833 
834 	/* Error status summary */
835 	if (iss & ISS_ES) {
836 		ravb_error_interrupt(ndev);
837 		result = IRQ_HANDLED;
838 	}
839 
840 	/* gPTP interrupt status summary */
841 	if (iss & ISS_CGIS) {
842 		ravb_ptp_interrupt(ndev);
843 		result = IRQ_HANDLED;
844 	}
845 
846 	spin_unlock(&priv->lock);
847 	return result;
848 }
849 
850 /* Timestamp/Error/gPTP interrupt handler */
851 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
852 {
853 	struct net_device *ndev = dev_id;
854 	struct ravb_private *priv = netdev_priv(ndev);
855 	irqreturn_t result = IRQ_NONE;
856 	u32 iss;
857 
858 	spin_lock(&priv->lock);
859 	/* Get interrupt status */
860 	iss = ravb_read(ndev, ISS);
861 
862 	/* Timestamp updated */
863 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
864 		result = IRQ_HANDLED;
865 
866 	/* Error status summary */
867 	if (iss & ISS_ES) {
868 		ravb_error_interrupt(ndev);
869 		result = IRQ_HANDLED;
870 	}
871 
872 	/* gPTP interrupt status summary */
873 	if (iss & ISS_CGIS) {
874 		ravb_ptp_interrupt(ndev);
875 		result = IRQ_HANDLED;
876 	}
877 
878 	spin_unlock(&priv->lock);
879 	return result;
880 }
881 
882 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
883 {
884 	struct net_device *ndev = dev_id;
885 	struct ravb_private *priv = netdev_priv(ndev);
886 	irqreturn_t result = IRQ_NONE;
887 
888 	spin_lock(&priv->lock);
889 
890 	/* Network control/Best effort queue RX/TX */
891 	if (ravb_queue_interrupt(ndev, q))
892 		result = IRQ_HANDLED;
893 
894 	spin_unlock(&priv->lock);
895 	return result;
896 }
897 
898 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
899 {
900 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
901 }
902 
903 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
904 {
905 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
906 }
907 
908 static int ravb_poll(struct napi_struct *napi, int budget)
909 {
910 	struct net_device *ndev = napi->dev;
911 	struct ravb_private *priv = netdev_priv(ndev);
912 	unsigned long flags;
913 	int q = napi - priv->napi;
914 	int mask = BIT(q);
915 	int quota = budget;
916 
917 	/* Processing RX Descriptor Ring */
918 	/* Clear RX interrupt */
919 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
920 	if (ravb_rx(ndev, &quota, q))
921 		goto out;
922 
923 	/* Processing RX Descriptor Ring */
924 	spin_lock_irqsave(&priv->lock, flags);
925 	/* Clear TX interrupt */
926 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
927 	ravb_tx_free(ndev, q, true);
928 	netif_wake_subqueue(ndev, q);
929 	spin_unlock_irqrestore(&priv->lock, flags);
930 
931 	napi_complete(napi);
932 
933 	/* Re-enable RX/TX interrupts */
934 	spin_lock_irqsave(&priv->lock, flags);
935 	if (priv->chip_id == RCAR_GEN2) {
936 		ravb_modify(ndev, RIC0, mask, mask);
937 		ravb_modify(ndev, TIC,  mask, mask);
938 	} else {
939 		ravb_write(ndev, mask, RIE0);
940 		ravb_write(ndev, mask, TIE);
941 	}
942 	spin_unlock_irqrestore(&priv->lock, flags);
943 
944 	/* Receive error message handling */
945 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
946 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
947 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
948 		ndev->stats.rx_over_errors = priv->rx_over_errors;
949 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
950 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
951 out:
952 	return budget - quota;
953 }
954 
955 /* PHY state control function */
956 static void ravb_adjust_link(struct net_device *ndev)
957 {
958 	struct ravb_private *priv = netdev_priv(ndev);
959 	struct phy_device *phydev = ndev->phydev;
960 	bool new_state = false;
961 	unsigned long flags;
962 
963 	spin_lock_irqsave(&priv->lock, flags);
964 
965 	/* Disable TX and RX right over here, if E-MAC change is ignored */
966 	if (priv->no_avb_link)
967 		ravb_rcv_snd_disable(ndev);
968 
969 	if (phydev->link) {
970 		if (phydev->speed != priv->speed) {
971 			new_state = true;
972 			priv->speed = phydev->speed;
973 			ravb_set_rate(ndev);
974 		}
975 		if (!priv->link) {
976 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
977 			new_state = true;
978 			priv->link = phydev->link;
979 		}
980 	} else if (priv->link) {
981 		new_state = true;
982 		priv->link = 0;
983 		priv->speed = 0;
984 	}
985 
986 	/* Enable TX and RX right over here, if E-MAC change is ignored */
987 	if (priv->no_avb_link && phydev->link)
988 		ravb_rcv_snd_enable(ndev);
989 
990 	spin_unlock_irqrestore(&priv->lock, flags);
991 
992 	if (new_state && netif_msg_link(priv))
993 		phy_print_status(phydev);
994 }
995 
996 static const struct soc_device_attribute r8a7795es10[] = {
997 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
998 	{ /* sentinel */ }
999 };
1000 
1001 /* PHY init function */
1002 static int ravb_phy_init(struct net_device *ndev)
1003 {
1004 	struct device_node *np = ndev->dev.parent->of_node;
1005 	struct ravb_private *priv = netdev_priv(ndev);
1006 	struct phy_device *phydev;
1007 	struct device_node *pn;
1008 	phy_interface_t iface;
1009 	int err;
1010 
1011 	priv->link = 0;
1012 	priv->speed = 0;
1013 
1014 	/* Try connecting to PHY */
1015 	pn = of_parse_phandle(np, "phy-handle", 0);
1016 	if (!pn) {
1017 		/* In the case of a fixed PHY, the DT node associated
1018 		 * to the PHY is the Ethernet MAC DT node.
1019 		 */
1020 		if (of_phy_is_fixed_link(np)) {
1021 			err = of_phy_register_fixed_link(np);
1022 			if (err)
1023 				return err;
1024 		}
1025 		pn = of_node_get(np);
1026 	}
1027 
1028 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1029 				     : priv->phy_interface;
1030 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1031 	of_node_put(pn);
1032 	if (!phydev) {
1033 		netdev_err(ndev, "failed to connect PHY\n");
1034 		err = -ENOENT;
1035 		goto err_deregister_fixed_link;
1036 	}
1037 
1038 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1039 	 * at this time.
1040 	 */
1041 	if (soc_device_match(r8a7795es10)) {
1042 		err = phy_set_max_speed(phydev, SPEED_100);
1043 		if (err) {
1044 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1045 			goto err_phy_disconnect;
1046 		}
1047 
1048 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1049 	}
1050 
1051 	/* 10BASE, Pause and Asym Pause is not supported */
1052 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1053 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1054 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1055 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1056 
1057 	/* Half Duplex is not supported */
1058 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1059 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1060 
1061 	phy_attached_info(phydev);
1062 
1063 	return 0;
1064 
1065 err_phy_disconnect:
1066 	phy_disconnect(phydev);
1067 err_deregister_fixed_link:
1068 	if (of_phy_is_fixed_link(np))
1069 		of_phy_deregister_fixed_link(np);
1070 
1071 	return err;
1072 }
1073 
1074 /* PHY control start function */
1075 static int ravb_phy_start(struct net_device *ndev)
1076 {
1077 	int error;
1078 
1079 	error = ravb_phy_init(ndev);
1080 	if (error)
1081 		return error;
1082 
1083 	phy_start(ndev->phydev);
1084 
1085 	return 0;
1086 }
1087 
1088 static u32 ravb_get_msglevel(struct net_device *ndev)
1089 {
1090 	struct ravb_private *priv = netdev_priv(ndev);
1091 
1092 	return priv->msg_enable;
1093 }
1094 
1095 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1096 {
1097 	struct ravb_private *priv = netdev_priv(ndev);
1098 
1099 	priv->msg_enable = value;
1100 }
1101 
1102 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1103 	"rx_queue_0_current",
1104 	"tx_queue_0_current",
1105 	"rx_queue_0_dirty",
1106 	"tx_queue_0_dirty",
1107 	"rx_queue_0_packets",
1108 	"tx_queue_0_packets",
1109 	"rx_queue_0_bytes",
1110 	"tx_queue_0_bytes",
1111 	"rx_queue_0_mcast_packets",
1112 	"rx_queue_0_errors",
1113 	"rx_queue_0_crc_errors",
1114 	"rx_queue_0_frame_errors",
1115 	"rx_queue_0_length_errors",
1116 	"rx_queue_0_missed_errors",
1117 	"rx_queue_0_over_errors",
1118 
1119 	"rx_queue_1_current",
1120 	"tx_queue_1_current",
1121 	"rx_queue_1_dirty",
1122 	"tx_queue_1_dirty",
1123 	"rx_queue_1_packets",
1124 	"tx_queue_1_packets",
1125 	"rx_queue_1_bytes",
1126 	"tx_queue_1_bytes",
1127 	"rx_queue_1_mcast_packets",
1128 	"rx_queue_1_errors",
1129 	"rx_queue_1_crc_errors",
1130 	"rx_queue_1_frame_errors",
1131 	"rx_queue_1_length_errors",
1132 	"rx_queue_1_missed_errors",
1133 	"rx_queue_1_over_errors",
1134 };
1135 
1136 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1137 
1138 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1139 {
1140 	switch (sset) {
1141 	case ETH_SS_STATS:
1142 		return RAVB_STATS_LEN;
1143 	default:
1144 		return -EOPNOTSUPP;
1145 	}
1146 }
1147 
1148 static void ravb_get_ethtool_stats(struct net_device *ndev,
1149 				   struct ethtool_stats *estats, u64 *data)
1150 {
1151 	struct ravb_private *priv = netdev_priv(ndev);
1152 	int i = 0;
1153 	int q;
1154 
1155 	/* Device-specific stats */
1156 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1157 		struct net_device_stats *stats = &priv->stats[q];
1158 
1159 		data[i++] = priv->cur_rx[q];
1160 		data[i++] = priv->cur_tx[q];
1161 		data[i++] = priv->dirty_rx[q];
1162 		data[i++] = priv->dirty_tx[q];
1163 		data[i++] = stats->rx_packets;
1164 		data[i++] = stats->tx_packets;
1165 		data[i++] = stats->rx_bytes;
1166 		data[i++] = stats->tx_bytes;
1167 		data[i++] = stats->multicast;
1168 		data[i++] = stats->rx_errors;
1169 		data[i++] = stats->rx_crc_errors;
1170 		data[i++] = stats->rx_frame_errors;
1171 		data[i++] = stats->rx_length_errors;
1172 		data[i++] = stats->rx_missed_errors;
1173 		data[i++] = stats->rx_over_errors;
1174 	}
1175 }
1176 
1177 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1178 {
1179 	switch (stringset) {
1180 	case ETH_SS_STATS:
1181 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1182 		break;
1183 	}
1184 }
1185 
1186 static void ravb_get_ringparam(struct net_device *ndev,
1187 			       struct ethtool_ringparam *ring)
1188 {
1189 	struct ravb_private *priv = netdev_priv(ndev);
1190 
1191 	ring->rx_max_pending = BE_RX_RING_MAX;
1192 	ring->tx_max_pending = BE_TX_RING_MAX;
1193 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1194 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1195 }
1196 
1197 static int ravb_set_ringparam(struct net_device *ndev,
1198 			      struct ethtool_ringparam *ring)
1199 {
1200 	struct ravb_private *priv = netdev_priv(ndev);
1201 	int error;
1202 
1203 	if (ring->tx_pending > BE_TX_RING_MAX ||
1204 	    ring->rx_pending > BE_RX_RING_MAX ||
1205 	    ring->tx_pending < BE_TX_RING_MIN ||
1206 	    ring->rx_pending < BE_RX_RING_MIN)
1207 		return -EINVAL;
1208 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1209 		return -EINVAL;
1210 
1211 	if (netif_running(ndev)) {
1212 		netif_device_detach(ndev);
1213 		/* Stop PTP Clock driver */
1214 		if (priv->chip_id == RCAR_GEN2)
1215 			ravb_ptp_stop(ndev);
1216 		/* Wait for DMA stopping */
1217 		error = ravb_stop_dma(ndev);
1218 		if (error) {
1219 			netdev_err(ndev,
1220 				   "cannot set ringparam! Any AVB processes are still running?\n");
1221 			return error;
1222 		}
1223 		synchronize_irq(ndev->irq);
1224 
1225 		/* Free all the skb's in the RX queue and the DMA buffers. */
1226 		ravb_ring_free(ndev, RAVB_BE);
1227 		ravb_ring_free(ndev, RAVB_NC);
1228 	}
1229 
1230 	/* Set new parameters */
1231 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1232 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1233 
1234 	if (netif_running(ndev)) {
1235 		error = ravb_dmac_init(ndev);
1236 		if (error) {
1237 			netdev_err(ndev,
1238 				   "%s: ravb_dmac_init() failed, error %d\n",
1239 				   __func__, error);
1240 			return error;
1241 		}
1242 
1243 		ravb_emac_init(ndev);
1244 
1245 		/* Initialise PTP Clock driver */
1246 		if (priv->chip_id == RCAR_GEN2)
1247 			ravb_ptp_init(ndev, priv->pdev);
1248 
1249 		netif_device_attach(ndev);
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static int ravb_get_ts_info(struct net_device *ndev,
1256 			    struct ethtool_ts_info *info)
1257 {
1258 	struct ravb_private *priv = netdev_priv(ndev);
1259 
1260 	info->so_timestamping =
1261 		SOF_TIMESTAMPING_TX_SOFTWARE |
1262 		SOF_TIMESTAMPING_RX_SOFTWARE |
1263 		SOF_TIMESTAMPING_SOFTWARE |
1264 		SOF_TIMESTAMPING_TX_HARDWARE |
1265 		SOF_TIMESTAMPING_RX_HARDWARE |
1266 		SOF_TIMESTAMPING_RAW_HARDWARE;
1267 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1268 	info->rx_filters =
1269 		(1 << HWTSTAMP_FILTER_NONE) |
1270 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1271 		(1 << HWTSTAMP_FILTER_ALL);
1272 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1273 
1274 	return 0;
1275 }
1276 
1277 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1278 {
1279 	struct ravb_private *priv = netdev_priv(ndev);
1280 
1281 	wol->supported = WAKE_MAGIC;
1282 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1283 }
1284 
1285 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1286 {
1287 	struct ravb_private *priv = netdev_priv(ndev);
1288 
1289 	if (wol->wolopts & ~WAKE_MAGIC)
1290 		return -EOPNOTSUPP;
1291 
1292 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1293 
1294 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1295 
1296 	return 0;
1297 }
1298 
1299 static const struct ethtool_ops ravb_ethtool_ops = {
1300 	.nway_reset		= phy_ethtool_nway_reset,
1301 	.get_msglevel		= ravb_get_msglevel,
1302 	.set_msglevel		= ravb_set_msglevel,
1303 	.get_link		= ethtool_op_get_link,
1304 	.get_strings		= ravb_get_strings,
1305 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1306 	.get_sset_count		= ravb_get_sset_count,
1307 	.get_ringparam		= ravb_get_ringparam,
1308 	.set_ringparam		= ravb_set_ringparam,
1309 	.get_ts_info		= ravb_get_ts_info,
1310 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1311 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1312 	.get_wol		= ravb_get_wol,
1313 	.set_wol		= ravb_set_wol,
1314 };
1315 
1316 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1317 				struct net_device *ndev, struct device *dev,
1318 				const char *ch)
1319 {
1320 	char *name;
1321 	int error;
1322 
1323 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1324 	if (!name)
1325 		return -ENOMEM;
1326 	error = request_irq(irq, handler, 0, name, ndev);
1327 	if (error)
1328 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1329 
1330 	return error;
1331 }
1332 
1333 /* Network device open function for Ethernet AVB */
1334 static int ravb_open(struct net_device *ndev)
1335 {
1336 	struct ravb_private *priv = netdev_priv(ndev);
1337 	struct platform_device *pdev = priv->pdev;
1338 	struct device *dev = &pdev->dev;
1339 	int error;
1340 
1341 	napi_enable(&priv->napi[RAVB_BE]);
1342 	napi_enable(&priv->napi[RAVB_NC]);
1343 
1344 	if (priv->chip_id == RCAR_GEN2) {
1345 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1346 				    ndev->name, ndev);
1347 		if (error) {
1348 			netdev_err(ndev, "cannot request IRQ\n");
1349 			goto out_napi_off;
1350 		}
1351 	} else {
1352 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1353 				      dev, "ch22:multi");
1354 		if (error)
1355 			goto out_napi_off;
1356 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1357 				      dev, "ch24:emac");
1358 		if (error)
1359 			goto out_free_irq;
1360 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1361 				      ndev, dev, "ch0:rx_be");
1362 		if (error)
1363 			goto out_free_irq_emac;
1364 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1365 				      ndev, dev, "ch18:tx_be");
1366 		if (error)
1367 			goto out_free_irq_be_rx;
1368 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1369 				      ndev, dev, "ch1:rx_nc");
1370 		if (error)
1371 			goto out_free_irq_be_tx;
1372 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1373 				      ndev, dev, "ch19:tx_nc");
1374 		if (error)
1375 			goto out_free_irq_nc_rx;
1376 	}
1377 
1378 	/* Device init */
1379 	error = ravb_dmac_init(ndev);
1380 	if (error)
1381 		goto out_free_irq_nc_tx;
1382 	ravb_emac_init(ndev);
1383 
1384 	/* Initialise PTP Clock driver */
1385 	if (priv->chip_id == RCAR_GEN2)
1386 		ravb_ptp_init(ndev, priv->pdev);
1387 
1388 	netif_tx_start_all_queues(ndev);
1389 
1390 	/* PHY control start */
1391 	error = ravb_phy_start(ndev);
1392 	if (error)
1393 		goto out_ptp_stop;
1394 
1395 	return 0;
1396 
1397 out_ptp_stop:
1398 	/* Stop PTP Clock driver */
1399 	if (priv->chip_id == RCAR_GEN2)
1400 		ravb_ptp_stop(ndev);
1401 out_free_irq_nc_tx:
1402 	if (priv->chip_id == RCAR_GEN2)
1403 		goto out_free_irq;
1404 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1405 out_free_irq_nc_rx:
1406 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1407 out_free_irq_be_tx:
1408 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1409 out_free_irq_be_rx:
1410 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1411 out_free_irq_emac:
1412 	free_irq(priv->emac_irq, ndev);
1413 out_free_irq:
1414 	free_irq(ndev->irq, ndev);
1415 out_napi_off:
1416 	napi_disable(&priv->napi[RAVB_NC]);
1417 	napi_disable(&priv->napi[RAVB_BE]);
1418 	return error;
1419 }
1420 
1421 /* Timeout function for Ethernet AVB */
1422 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1423 {
1424 	struct ravb_private *priv = netdev_priv(ndev);
1425 
1426 	netif_err(priv, tx_err, ndev,
1427 		  "transmit timed out, status %08x, resetting...\n",
1428 		  ravb_read(ndev, ISS));
1429 
1430 	/* tx_errors count up */
1431 	ndev->stats.tx_errors++;
1432 
1433 	schedule_work(&priv->work);
1434 }
1435 
1436 static void ravb_tx_timeout_work(struct work_struct *work)
1437 {
1438 	struct ravb_private *priv = container_of(work, struct ravb_private,
1439 						 work);
1440 	struct net_device *ndev = priv->ndev;
1441 	int error;
1442 
1443 	netif_tx_stop_all_queues(ndev);
1444 
1445 	/* Stop PTP Clock driver */
1446 	if (priv->chip_id == RCAR_GEN2)
1447 		ravb_ptp_stop(ndev);
1448 
1449 	/* Wait for DMA stopping */
1450 	if (ravb_stop_dma(ndev)) {
1451 		/* If ravb_stop_dma() fails, the hardware is still operating
1452 		 * for TX and/or RX. So, this should not call the following
1453 		 * functions because ravb_dmac_init() is possible to fail too.
1454 		 * Also, this should not retry ravb_stop_dma() again and again
1455 		 * here because it's possible to wait forever. So, this just
1456 		 * re-enables the TX and RX and skip the following
1457 		 * re-initialization procedure.
1458 		 */
1459 		ravb_rcv_snd_enable(ndev);
1460 		goto out;
1461 	}
1462 
1463 	ravb_ring_free(ndev, RAVB_BE);
1464 	ravb_ring_free(ndev, RAVB_NC);
1465 
1466 	/* Device init */
1467 	error = ravb_dmac_init(ndev);
1468 	if (error) {
1469 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1470 		 * should return here to avoid re-enabling the TX and RX in
1471 		 * ravb_emac_init().
1472 		 */
1473 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1474 			   __func__, error);
1475 		return;
1476 	}
1477 	ravb_emac_init(ndev);
1478 
1479 out:
1480 	/* Initialise PTP Clock driver */
1481 	if (priv->chip_id == RCAR_GEN2)
1482 		ravb_ptp_init(ndev, priv->pdev);
1483 
1484 	netif_tx_start_all_queues(ndev);
1485 }
1486 
1487 /* Packet transmit function for Ethernet AVB */
1488 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1489 {
1490 	struct ravb_private *priv = netdev_priv(ndev);
1491 	int num_tx_desc = priv->num_tx_desc;
1492 	u16 q = skb_get_queue_mapping(skb);
1493 	struct ravb_tstamp_skb *ts_skb;
1494 	struct ravb_tx_desc *desc;
1495 	unsigned long flags;
1496 	u32 dma_addr;
1497 	void *buffer;
1498 	u32 entry;
1499 	u32 len;
1500 
1501 	spin_lock_irqsave(&priv->lock, flags);
1502 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1503 	    num_tx_desc) {
1504 		netif_err(priv, tx_queued, ndev,
1505 			  "still transmitting with the full ring!\n");
1506 		netif_stop_subqueue(ndev, q);
1507 		spin_unlock_irqrestore(&priv->lock, flags);
1508 		return NETDEV_TX_BUSY;
1509 	}
1510 
1511 	if (skb_put_padto(skb, ETH_ZLEN))
1512 		goto exit;
1513 
1514 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1515 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1516 
1517 	if (num_tx_desc > 1) {
1518 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1519 			 entry / num_tx_desc * DPTR_ALIGN;
1520 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1521 
1522 		/* Zero length DMA descriptors are problematic as they seem
1523 		 * to terminate DMA transfers. Avoid them by simply using a
1524 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1525 		 * DPTR_ALIGN.
1526 		 *
1527 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1528 		 * bytes of data by the call to skb_put_padto() above this
1529 		 * is safe with respect to both the length of the first DMA
1530 		 * descriptor (len) overflowing the available data and the
1531 		 * length of the second DMA descriptor (skb->len - len)
1532 		 * being negative.
1533 		 */
1534 		if (len == 0)
1535 			len = DPTR_ALIGN;
1536 
1537 		memcpy(buffer, skb->data, len);
1538 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1539 					  DMA_TO_DEVICE);
1540 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1541 			goto drop;
1542 
1543 		desc = &priv->tx_ring[q][entry];
1544 		desc->ds_tagl = cpu_to_le16(len);
1545 		desc->dptr = cpu_to_le32(dma_addr);
1546 
1547 		buffer = skb->data + len;
1548 		len = skb->len - len;
1549 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1550 					  DMA_TO_DEVICE);
1551 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1552 			goto unmap;
1553 
1554 		desc++;
1555 	} else {
1556 		desc = &priv->tx_ring[q][entry];
1557 		len = skb->len;
1558 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1559 					  DMA_TO_DEVICE);
1560 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1561 			goto drop;
1562 	}
1563 	desc->ds_tagl = cpu_to_le16(len);
1564 	desc->dptr = cpu_to_le32(dma_addr);
1565 
1566 	/* TX timestamp required */
1567 	if (q == RAVB_NC) {
1568 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1569 		if (!ts_skb) {
1570 			if (num_tx_desc > 1) {
1571 				desc--;
1572 				dma_unmap_single(ndev->dev.parent, dma_addr,
1573 						 len, DMA_TO_DEVICE);
1574 			}
1575 			goto unmap;
1576 		}
1577 		ts_skb->skb = skb_get(skb);
1578 		ts_skb->tag = priv->ts_skb_tag++;
1579 		priv->ts_skb_tag &= 0x3ff;
1580 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1581 
1582 		/* TAG and timestamp required flag */
1583 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1584 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1585 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1586 	}
1587 
1588 	skb_tx_timestamp(skb);
1589 	/* Descriptor type must be set after all the above writes */
1590 	dma_wmb();
1591 	if (num_tx_desc > 1) {
1592 		desc->die_dt = DT_FEND;
1593 		desc--;
1594 		desc->die_dt = DT_FSTART;
1595 	} else {
1596 		desc->die_dt = DT_FSINGLE;
1597 	}
1598 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1599 
1600 	priv->cur_tx[q] += num_tx_desc;
1601 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1602 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1603 	    !ravb_tx_free(ndev, q, true))
1604 		netif_stop_subqueue(ndev, q);
1605 
1606 exit:
1607 	spin_unlock_irqrestore(&priv->lock, flags);
1608 	return NETDEV_TX_OK;
1609 
1610 unmap:
1611 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1612 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1613 drop:
1614 	dev_kfree_skb_any(skb);
1615 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1616 	goto exit;
1617 }
1618 
1619 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1620 			     struct net_device *sb_dev)
1621 {
1622 	/* If skb needs TX timestamp, it is handled in network control queue */
1623 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1624 							       RAVB_BE;
1625 
1626 }
1627 
1628 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1629 {
1630 	struct ravb_private *priv = netdev_priv(ndev);
1631 	struct net_device_stats *nstats, *stats0, *stats1;
1632 
1633 	nstats = &ndev->stats;
1634 	stats0 = &priv->stats[RAVB_BE];
1635 	stats1 = &priv->stats[RAVB_NC];
1636 
1637 	if (priv->chip_id == RCAR_GEN3) {
1638 		nstats->tx_dropped += ravb_read(ndev, TROCR);
1639 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1640 	}
1641 
1642 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1643 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1644 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1645 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1646 	nstats->multicast = stats0->multicast + stats1->multicast;
1647 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1648 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1649 	nstats->rx_frame_errors =
1650 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1651 	nstats->rx_length_errors =
1652 		stats0->rx_length_errors + stats1->rx_length_errors;
1653 	nstats->rx_missed_errors =
1654 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1655 	nstats->rx_over_errors =
1656 		stats0->rx_over_errors + stats1->rx_over_errors;
1657 
1658 	return nstats;
1659 }
1660 
1661 /* Update promiscuous bit */
1662 static void ravb_set_rx_mode(struct net_device *ndev)
1663 {
1664 	struct ravb_private *priv = netdev_priv(ndev);
1665 	unsigned long flags;
1666 
1667 	spin_lock_irqsave(&priv->lock, flags);
1668 	ravb_modify(ndev, ECMR, ECMR_PRM,
1669 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1670 	spin_unlock_irqrestore(&priv->lock, flags);
1671 }
1672 
1673 /* Device close function for Ethernet AVB */
1674 static int ravb_close(struct net_device *ndev)
1675 {
1676 	struct device_node *np = ndev->dev.parent->of_node;
1677 	struct ravb_private *priv = netdev_priv(ndev);
1678 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1679 
1680 	netif_tx_stop_all_queues(ndev);
1681 
1682 	/* Disable interrupts by clearing the interrupt masks. */
1683 	ravb_write(ndev, 0, RIC0);
1684 	ravb_write(ndev, 0, RIC2);
1685 	ravb_write(ndev, 0, TIC);
1686 
1687 	/* Stop PTP Clock driver */
1688 	if (priv->chip_id == RCAR_GEN2)
1689 		ravb_ptp_stop(ndev);
1690 
1691 	/* Set the config mode to stop the AVB-DMAC's processes */
1692 	if (ravb_stop_dma(ndev) < 0)
1693 		netdev_err(ndev,
1694 			   "device will be stopped after h/w processes are done.\n");
1695 
1696 	/* Clear the timestamp list */
1697 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1698 		list_del(&ts_skb->list);
1699 		kfree_skb(ts_skb->skb);
1700 		kfree(ts_skb);
1701 	}
1702 
1703 	/* PHY disconnect */
1704 	if (ndev->phydev) {
1705 		phy_stop(ndev->phydev);
1706 		phy_disconnect(ndev->phydev);
1707 		if (of_phy_is_fixed_link(np))
1708 			of_phy_deregister_fixed_link(np);
1709 	}
1710 
1711 	if (priv->chip_id != RCAR_GEN2) {
1712 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1713 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1714 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1715 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1716 		free_irq(priv->emac_irq, ndev);
1717 	}
1718 	free_irq(ndev->irq, ndev);
1719 
1720 	napi_disable(&priv->napi[RAVB_NC]);
1721 	napi_disable(&priv->napi[RAVB_BE]);
1722 
1723 	/* Free all the skb's in the RX queue and the DMA buffers. */
1724 	ravb_ring_free(ndev, RAVB_BE);
1725 	ravb_ring_free(ndev, RAVB_NC);
1726 
1727 	return 0;
1728 }
1729 
1730 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1731 {
1732 	struct ravb_private *priv = netdev_priv(ndev);
1733 	struct hwtstamp_config config;
1734 
1735 	config.flags = 0;
1736 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1737 						HWTSTAMP_TX_OFF;
1738 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
1739 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
1740 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1741 		break;
1742 	case RAVB_RXTSTAMP_TYPE_ALL:
1743 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1744 		break;
1745 	default:
1746 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1747 	}
1748 
1749 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1750 		-EFAULT : 0;
1751 }
1752 
1753 /* Control hardware time stamping */
1754 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1755 {
1756 	struct ravb_private *priv = netdev_priv(ndev);
1757 	struct hwtstamp_config config;
1758 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1759 	u32 tstamp_tx_ctrl;
1760 
1761 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1762 		return -EFAULT;
1763 
1764 	/* Reserved for future extensions */
1765 	if (config.flags)
1766 		return -EINVAL;
1767 
1768 	switch (config.tx_type) {
1769 	case HWTSTAMP_TX_OFF:
1770 		tstamp_tx_ctrl = 0;
1771 		break;
1772 	case HWTSTAMP_TX_ON:
1773 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1774 		break;
1775 	default:
1776 		return -ERANGE;
1777 	}
1778 
1779 	switch (config.rx_filter) {
1780 	case HWTSTAMP_FILTER_NONE:
1781 		tstamp_rx_ctrl = 0;
1782 		break;
1783 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1784 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1785 		break;
1786 	default:
1787 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1788 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1789 	}
1790 
1791 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1792 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1793 
1794 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1795 		-EFAULT : 0;
1796 }
1797 
1798 /* ioctl to device function */
1799 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1800 {
1801 	struct phy_device *phydev = ndev->phydev;
1802 
1803 	if (!netif_running(ndev))
1804 		return -EINVAL;
1805 
1806 	if (!phydev)
1807 		return -ENODEV;
1808 
1809 	switch (cmd) {
1810 	case SIOCGHWTSTAMP:
1811 		return ravb_hwtstamp_get(ndev, req);
1812 	case SIOCSHWTSTAMP:
1813 		return ravb_hwtstamp_set(ndev, req);
1814 	}
1815 
1816 	return phy_mii_ioctl(phydev, req, cmd);
1817 }
1818 
1819 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1820 {
1821 	struct ravb_private *priv = netdev_priv(ndev);
1822 
1823 	ndev->mtu = new_mtu;
1824 
1825 	if (netif_running(ndev)) {
1826 		synchronize_irq(priv->emac_irq);
1827 		ravb_emac_init(ndev);
1828 	}
1829 
1830 	netdev_update_features(ndev);
1831 
1832 	return 0;
1833 }
1834 
1835 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1836 {
1837 	struct ravb_private *priv = netdev_priv(ndev);
1838 	unsigned long flags;
1839 
1840 	spin_lock_irqsave(&priv->lock, flags);
1841 
1842 	/* Disable TX and RX */
1843 	ravb_rcv_snd_disable(ndev);
1844 
1845 	/* Modify RX Checksum setting */
1846 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1847 
1848 	/* Enable TX and RX */
1849 	ravb_rcv_snd_enable(ndev);
1850 
1851 	spin_unlock_irqrestore(&priv->lock, flags);
1852 }
1853 
1854 static int ravb_set_features(struct net_device *ndev,
1855 			     netdev_features_t features)
1856 {
1857 	netdev_features_t changed = ndev->features ^ features;
1858 
1859 	if (changed & NETIF_F_RXCSUM)
1860 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1861 
1862 	ndev->features = features;
1863 
1864 	return 0;
1865 }
1866 
1867 static const struct net_device_ops ravb_netdev_ops = {
1868 	.ndo_open		= ravb_open,
1869 	.ndo_stop		= ravb_close,
1870 	.ndo_start_xmit		= ravb_start_xmit,
1871 	.ndo_select_queue	= ravb_select_queue,
1872 	.ndo_get_stats		= ravb_get_stats,
1873 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1874 	.ndo_tx_timeout		= ravb_tx_timeout,
1875 	.ndo_do_ioctl		= ravb_do_ioctl,
1876 	.ndo_change_mtu		= ravb_change_mtu,
1877 	.ndo_validate_addr	= eth_validate_addr,
1878 	.ndo_set_mac_address	= eth_mac_addr,
1879 	.ndo_set_features	= ravb_set_features,
1880 };
1881 
1882 /* MDIO bus init function */
1883 static int ravb_mdio_init(struct ravb_private *priv)
1884 {
1885 	struct platform_device *pdev = priv->pdev;
1886 	struct device *dev = &pdev->dev;
1887 	int error;
1888 
1889 	/* Bitbang init */
1890 	priv->mdiobb.ops = &bb_ops;
1891 
1892 	/* MII controller setting */
1893 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1894 	if (!priv->mii_bus)
1895 		return -ENOMEM;
1896 
1897 	/* Hook up MII support for ethtool */
1898 	priv->mii_bus->name = "ravb_mii";
1899 	priv->mii_bus->parent = dev;
1900 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1901 		 pdev->name, pdev->id);
1902 
1903 	/* Register MDIO bus */
1904 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1905 	if (error)
1906 		goto out_free_bus;
1907 
1908 	return 0;
1909 
1910 out_free_bus:
1911 	free_mdio_bitbang(priv->mii_bus);
1912 	return error;
1913 }
1914 
1915 /* MDIO bus release function */
1916 static int ravb_mdio_release(struct ravb_private *priv)
1917 {
1918 	/* Unregister mdio bus */
1919 	mdiobus_unregister(priv->mii_bus);
1920 
1921 	/* Free bitbang info */
1922 	free_mdio_bitbang(priv->mii_bus);
1923 
1924 	return 0;
1925 }
1926 
1927 static const struct of_device_id ravb_match_table[] = {
1928 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1929 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1930 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1931 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1932 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1933 	{ }
1934 };
1935 MODULE_DEVICE_TABLE(of, ravb_match_table);
1936 
1937 static int ravb_set_gti(struct net_device *ndev)
1938 {
1939 	struct ravb_private *priv = netdev_priv(ndev);
1940 	struct device *dev = ndev->dev.parent;
1941 	unsigned long rate;
1942 	uint64_t inc;
1943 
1944 	rate = clk_get_rate(priv->clk);
1945 	if (!rate)
1946 		return -EINVAL;
1947 
1948 	inc = 1000000000ULL << 20;
1949 	do_div(inc, rate);
1950 
1951 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1952 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1953 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1954 		return -EINVAL;
1955 	}
1956 
1957 	ravb_write(ndev, inc, GTI);
1958 
1959 	return 0;
1960 }
1961 
1962 static void ravb_set_config_mode(struct net_device *ndev)
1963 {
1964 	struct ravb_private *priv = netdev_priv(ndev);
1965 
1966 	if (priv->chip_id == RCAR_GEN2) {
1967 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1968 		/* Set CSEL value */
1969 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1970 	} else {
1971 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1972 			    CCC_GAC | CCC_CSEL_HPB);
1973 	}
1974 }
1975 
1976 static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1977 	{ .soc_id = "r8a774c0" },
1978 	{ .soc_id = "r8a77990" },
1979 	{ .soc_id = "r8a77995" },
1980 	{ /* sentinel */ }
1981 };
1982 
1983 /* Set tx and rx clock internal delay modes */
1984 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1985 {
1986 	struct ravb_private *priv = netdev_priv(ndev);
1987 	bool explicit_delay = false;
1988 	u32 delay;
1989 
1990 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1991 		/* Valid values are 0 and 1800, according to DT bindings */
1992 		priv->rxcidm = !!delay;
1993 		explicit_delay = true;
1994 	}
1995 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1996 		/* Valid values are 0 and 2000, according to DT bindings */
1997 		priv->txcidm = !!delay;
1998 		explicit_delay = true;
1999 	}
2000 
2001 	if (explicit_delay)
2002 		return;
2003 
2004 	/* Fall back to legacy rgmii-*id behavior */
2005 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2006 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2007 		priv->rxcidm = 1;
2008 		priv->rgmii_override = 1;
2009 	}
2010 
2011 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2012 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2013 		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
2014 			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
2015 			  phy_modes(priv->phy_interface))) {
2016 			priv->txcidm = 1;
2017 			priv->rgmii_override = 1;
2018 		}
2019 	}
2020 }
2021 
2022 static void ravb_set_delay_mode(struct net_device *ndev)
2023 {
2024 	struct ravb_private *priv = netdev_priv(ndev);
2025 	u32 set = 0;
2026 
2027 	if (priv->rxcidm)
2028 		set |= APSR_RDM;
2029 	if (priv->txcidm)
2030 		set |= APSR_TDM;
2031 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2032 }
2033 
2034 static int ravb_probe(struct platform_device *pdev)
2035 {
2036 	struct device_node *np = pdev->dev.of_node;
2037 	struct ravb_private *priv;
2038 	enum ravb_chip_id chip_id;
2039 	struct net_device *ndev;
2040 	int error, irq, q;
2041 	struct resource *res;
2042 	int i;
2043 
2044 	if (!np) {
2045 		dev_err(&pdev->dev,
2046 			"this driver is required to be instantiated from device tree\n");
2047 		return -EINVAL;
2048 	}
2049 
2050 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2051 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2052 	if (!ndev)
2053 		return -ENOMEM;
2054 
2055 	ndev->features = NETIF_F_RXCSUM;
2056 	ndev->hw_features = NETIF_F_RXCSUM;
2057 
2058 	pm_runtime_enable(&pdev->dev);
2059 	pm_runtime_get_sync(&pdev->dev);
2060 
2061 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2062 
2063 	if (chip_id == RCAR_GEN3)
2064 		irq = platform_get_irq_byname(pdev, "ch22");
2065 	else
2066 		irq = platform_get_irq(pdev, 0);
2067 	if (irq < 0) {
2068 		error = irq;
2069 		goto out_release;
2070 	}
2071 	ndev->irq = irq;
2072 
2073 	SET_NETDEV_DEV(ndev, &pdev->dev);
2074 
2075 	priv = netdev_priv(ndev);
2076 	priv->ndev = ndev;
2077 	priv->pdev = pdev;
2078 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2079 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2080 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2081 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2082 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2083 	if (IS_ERR(priv->addr)) {
2084 		error = PTR_ERR(priv->addr);
2085 		goto out_release;
2086 	}
2087 
2088 	/* The Ether-specific entries in the device structure. */
2089 	ndev->base_addr = res->start;
2090 
2091 	spin_lock_init(&priv->lock);
2092 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2093 
2094 	error = of_get_phy_mode(np, &priv->phy_interface);
2095 	if (error && error != -ENODEV)
2096 		goto out_release;
2097 
2098 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2099 	priv->avb_link_active_low =
2100 		of_property_read_bool(np, "renesas,ether-link-active-low");
2101 
2102 	if (chip_id == RCAR_GEN3) {
2103 		irq = platform_get_irq_byname(pdev, "ch24");
2104 		if (irq < 0) {
2105 			error = irq;
2106 			goto out_release;
2107 		}
2108 		priv->emac_irq = irq;
2109 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2110 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2111 			if (irq < 0) {
2112 				error = irq;
2113 				goto out_release;
2114 			}
2115 			priv->rx_irqs[i] = irq;
2116 		}
2117 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2118 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2119 			if (irq < 0) {
2120 				error = irq;
2121 				goto out_release;
2122 			}
2123 			priv->tx_irqs[i] = irq;
2124 		}
2125 	}
2126 
2127 	priv->chip_id = chip_id;
2128 
2129 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2130 	if (IS_ERR(priv->clk)) {
2131 		error = PTR_ERR(priv->clk);
2132 		goto out_release;
2133 	}
2134 
2135 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2136 	if (IS_ERR(priv->refclk)) {
2137 		error = PTR_ERR(priv->refclk);
2138 		goto out_release;
2139 	}
2140 	clk_prepare_enable(priv->refclk);
2141 
2142 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2143 	ndev->min_mtu = ETH_MIN_MTU;
2144 
2145 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2146 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2147 
2148 	/* Set function */
2149 	ndev->netdev_ops = &ravb_netdev_ops;
2150 	ndev->ethtool_ops = &ravb_ethtool_ops;
2151 
2152 	/* Set AVB config mode */
2153 	ravb_set_config_mode(ndev);
2154 
2155 	/* Set GTI value */
2156 	error = ravb_set_gti(ndev);
2157 	if (error)
2158 		goto out_disable_refclk;
2159 
2160 	/* Request GTI loading */
2161 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2162 
2163 	if (priv->chip_id != RCAR_GEN2) {
2164 		ravb_parse_delay_mode(np, ndev);
2165 		ravb_set_delay_mode(ndev);
2166 	}
2167 
2168 	/* Allocate descriptor base address table */
2169 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2170 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2171 					    &priv->desc_bat_dma, GFP_KERNEL);
2172 	if (!priv->desc_bat) {
2173 		dev_err(&pdev->dev,
2174 			"Cannot allocate desc base address table (size %d bytes)\n",
2175 			priv->desc_bat_size);
2176 		error = -ENOMEM;
2177 		goto out_disable_refclk;
2178 	}
2179 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2180 		priv->desc_bat[q].die_dt = DT_EOS;
2181 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2182 
2183 	/* Initialise HW timestamp list */
2184 	INIT_LIST_HEAD(&priv->ts_skb_list);
2185 
2186 	/* Initialise PTP Clock driver */
2187 	if (chip_id != RCAR_GEN2)
2188 		ravb_ptp_init(ndev, pdev);
2189 
2190 	/* Debug message level */
2191 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2192 
2193 	/* Read and set MAC address */
2194 	ravb_read_mac_address(np, ndev);
2195 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2196 		dev_warn(&pdev->dev,
2197 			 "no valid MAC address supplied, using a random one\n");
2198 		eth_hw_addr_random(ndev);
2199 	}
2200 
2201 	/* MDIO bus init */
2202 	error = ravb_mdio_init(priv);
2203 	if (error) {
2204 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2205 		goto out_dma_free;
2206 	}
2207 
2208 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2209 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2210 
2211 	/* Network device register */
2212 	error = register_netdev(ndev);
2213 	if (error)
2214 		goto out_napi_del;
2215 
2216 	device_set_wakeup_capable(&pdev->dev, 1);
2217 
2218 	/* Print device information */
2219 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2220 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2221 
2222 	platform_set_drvdata(pdev, ndev);
2223 
2224 	return 0;
2225 
2226 out_napi_del:
2227 	netif_napi_del(&priv->napi[RAVB_NC]);
2228 	netif_napi_del(&priv->napi[RAVB_BE]);
2229 	ravb_mdio_release(priv);
2230 out_dma_free:
2231 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2232 			  priv->desc_bat_dma);
2233 
2234 	/* Stop PTP Clock driver */
2235 	if (chip_id != RCAR_GEN2)
2236 		ravb_ptp_stop(ndev);
2237 out_disable_refclk:
2238 	clk_disable_unprepare(priv->refclk);
2239 out_release:
2240 	free_netdev(ndev);
2241 
2242 	pm_runtime_put(&pdev->dev);
2243 	pm_runtime_disable(&pdev->dev);
2244 	return error;
2245 }
2246 
2247 static int ravb_remove(struct platform_device *pdev)
2248 {
2249 	struct net_device *ndev = platform_get_drvdata(pdev);
2250 	struct ravb_private *priv = netdev_priv(ndev);
2251 
2252 	/* Stop PTP Clock driver */
2253 	if (priv->chip_id != RCAR_GEN2)
2254 		ravb_ptp_stop(ndev);
2255 
2256 	clk_disable_unprepare(priv->refclk);
2257 
2258 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2259 			  priv->desc_bat_dma);
2260 	/* Set reset mode */
2261 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2262 	pm_runtime_put_sync(&pdev->dev);
2263 	unregister_netdev(ndev);
2264 	netif_napi_del(&priv->napi[RAVB_NC]);
2265 	netif_napi_del(&priv->napi[RAVB_BE]);
2266 	ravb_mdio_release(priv);
2267 	pm_runtime_disable(&pdev->dev);
2268 	free_netdev(ndev);
2269 	platform_set_drvdata(pdev, NULL);
2270 
2271 	return 0;
2272 }
2273 
2274 static int ravb_wol_setup(struct net_device *ndev)
2275 {
2276 	struct ravb_private *priv = netdev_priv(ndev);
2277 
2278 	/* Disable interrupts by clearing the interrupt masks. */
2279 	ravb_write(ndev, 0, RIC0);
2280 	ravb_write(ndev, 0, RIC2);
2281 	ravb_write(ndev, 0, TIC);
2282 
2283 	/* Only allow ECI interrupts */
2284 	synchronize_irq(priv->emac_irq);
2285 	napi_disable(&priv->napi[RAVB_NC]);
2286 	napi_disable(&priv->napi[RAVB_BE]);
2287 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2288 
2289 	/* Enable MagicPacket */
2290 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2291 
2292 	return enable_irq_wake(priv->emac_irq);
2293 }
2294 
2295 static int ravb_wol_restore(struct net_device *ndev)
2296 {
2297 	struct ravb_private *priv = netdev_priv(ndev);
2298 	int ret;
2299 
2300 	napi_enable(&priv->napi[RAVB_NC]);
2301 	napi_enable(&priv->napi[RAVB_BE]);
2302 
2303 	/* Disable MagicPacket */
2304 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2305 
2306 	ret = ravb_close(ndev);
2307 	if (ret < 0)
2308 		return ret;
2309 
2310 	return disable_irq_wake(priv->emac_irq);
2311 }
2312 
2313 static int __maybe_unused ravb_suspend(struct device *dev)
2314 {
2315 	struct net_device *ndev = dev_get_drvdata(dev);
2316 	struct ravb_private *priv = netdev_priv(ndev);
2317 	int ret;
2318 
2319 	if (!netif_running(ndev))
2320 		return 0;
2321 
2322 	netif_device_detach(ndev);
2323 
2324 	if (priv->wol_enabled)
2325 		ret = ravb_wol_setup(ndev);
2326 	else
2327 		ret = ravb_close(ndev);
2328 
2329 	return ret;
2330 }
2331 
2332 static int __maybe_unused ravb_resume(struct device *dev)
2333 {
2334 	struct net_device *ndev = dev_get_drvdata(dev);
2335 	struct ravb_private *priv = netdev_priv(ndev);
2336 	int ret = 0;
2337 
2338 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2339 	if (priv->wol_enabled)
2340 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2341 
2342 	/* All register have been reset to default values.
2343 	 * Restore all registers which where setup at probe time and
2344 	 * reopen device if it was running before system suspended.
2345 	 */
2346 
2347 	/* Set AVB config mode */
2348 	ravb_set_config_mode(ndev);
2349 
2350 	/* Set GTI value */
2351 	ret = ravb_set_gti(ndev);
2352 	if (ret)
2353 		return ret;
2354 
2355 	/* Request GTI loading */
2356 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2357 
2358 	if (priv->chip_id != RCAR_GEN2)
2359 		ravb_set_delay_mode(ndev);
2360 
2361 	/* Restore descriptor base address table */
2362 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2363 
2364 	if (netif_running(ndev)) {
2365 		if (priv->wol_enabled) {
2366 			ret = ravb_wol_restore(ndev);
2367 			if (ret)
2368 				return ret;
2369 		}
2370 		ret = ravb_open(ndev);
2371 		if (ret < 0)
2372 			return ret;
2373 		netif_device_attach(ndev);
2374 	}
2375 
2376 	return ret;
2377 }
2378 
2379 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2380 {
2381 	/* Runtime PM callback shared between ->runtime_suspend()
2382 	 * and ->runtime_resume(). Simply returns success.
2383 	 *
2384 	 * This driver re-initializes all registers after
2385 	 * pm_runtime_get_sync() anyway so there is no need
2386 	 * to save and restore registers here.
2387 	 */
2388 	return 0;
2389 }
2390 
2391 static const struct dev_pm_ops ravb_dev_pm_ops = {
2392 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2393 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2394 };
2395 
2396 static struct platform_driver ravb_driver = {
2397 	.probe		= ravb_probe,
2398 	.remove		= ravb_remove,
2399 	.driver = {
2400 		.name	= "ravb",
2401 		.pm	= &ravb_dev_pm_ops,
2402 		.of_match_table = ravb_match_table,
2403 	},
2404 };
2405 
2406 module_platform_driver(ravb_driver);
2407 
2408 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2409 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2410 MODULE_LICENSE("GPL v2");
2411