1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sys_soc.h>
35 
36 #include <asm/div64.h>
37 
38 #include "ravb.h"
39 
40 #define RAVB_DEF_MSG_ENABLE \
41 		(NETIF_MSG_LINK	  | \
42 		 NETIF_MSG_TIMER  | \
43 		 NETIF_MSG_RX_ERR | \
44 		 NETIF_MSG_TX_ERR)
45 
46 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
47 	"ch0", /* RAVB_BE */
48 	"ch1", /* RAVB_NC */
49 };
50 
51 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
52 	"ch18", /* RAVB_BE */
53 	"ch19", /* RAVB_NC */
54 };
55 
56 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
57 		 u32 set)
58 {
59 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
60 }
61 
62 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
63 {
64 	int i;
65 
66 	for (i = 0; i < 10000; i++) {
67 		if ((ravb_read(ndev, reg) & mask) == value)
68 			return 0;
69 		udelay(10);
70 	}
71 	return -ETIMEDOUT;
72 }
73 
74 static int ravb_config(struct net_device *ndev)
75 {
76 	int error;
77 
78 	/* Set config mode */
79 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
80 	/* Check if the operating mode is changed to the config mode */
81 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
82 	if (error)
83 		netdev_err(ndev, "failed to switch device to config mode\n");
84 
85 	return error;
86 }
87 
88 static void ravb_set_duplex(struct net_device *ndev)
89 {
90 	struct ravb_private *priv = netdev_priv(ndev);
91 
92 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
93 }
94 
95 static void ravb_set_rate(struct net_device *ndev)
96 {
97 	struct ravb_private *priv = netdev_priv(ndev);
98 
99 	switch (priv->speed) {
100 	case 100:		/* 100BASE */
101 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
102 		break;
103 	case 1000:		/* 1000BASE */
104 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
105 		break;
106 	}
107 }
108 
109 static void ravb_set_buffer_align(struct sk_buff *skb)
110 {
111 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
112 
113 	if (reserve)
114 		skb_reserve(skb, RAVB_ALIGN - reserve);
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
122 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
123 {
124 	if (mac) {
125 		ether_addr_copy(ndev->dev_addr, mac);
126 	} else {
127 		u32 mahr = ravb_read(ndev, MAHR);
128 		u32 malr = ravb_read(ndev, MALR);
129 
130 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
131 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
132 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
133 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
134 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
135 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
136 	}
137 }
138 
139 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
140 {
141 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
142 						 mdiobb);
143 
144 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
145 }
146 
147 /* MDC pin control */
148 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
149 {
150 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
151 }
152 
153 /* Data I/O pin control */
154 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
155 {
156 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
157 }
158 
159 /* Set data bit */
160 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
161 {
162 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
163 }
164 
165 /* Get data bit */
166 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
167 {
168 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
169 						 mdiobb);
170 
171 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
172 }
173 
174 /* MDIO bus control struct */
175 static struct mdiobb_ops bb_ops = {
176 	.owner = THIS_MODULE,
177 	.set_mdc = ravb_set_mdc,
178 	.set_mdio_dir = ravb_set_mdio_dir,
179 	.set_mdio_data = ravb_set_mdio_data,
180 	.get_mdio_data = ravb_get_mdio_data,
181 };
182 
183 /* Free TX skb function for AVB-IP */
184 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
185 {
186 	struct ravb_private *priv = netdev_priv(ndev);
187 	struct net_device_stats *stats = &priv->stats[q];
188 	struct ravb_tx_desc *desc;
189 	int free_num = 0;
190 	int entry;
191 	u32 size;
192 
193 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
194 		bool txed;
195 
196 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
197 					     NUM_TX_DESC);
198 		desc = &priv->tx_ring[q][entry];
199 		txed = desc->die_dt == DT_FEMPTY;
200 		if (free_txed_only && !txed)
201 			break;
202 		/* Descriptor type must be checked before all other reads */
203 		dma_rmb();
204 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
205 		/* Free the original skb. */
206 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
207 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
208 					 size, DMA_TO_DEVICE);
209 			/* Last packet descriptor? */
210 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
211 				entry /= NUM_TX_DESC;
212 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
213 				priv->tx_skb[q][entry] = NULL;
214 				if (txed)
215 					stats->tx_packets++;
216 			}
217 			free_num++;
218 		}
219 		if (txed)
220 			stats->tx_bytes += size;
221 		desc->die_dt = DT_EEMPTY;
222 	}
223 	return free_num;
224 }
225 
226 /* Free skb's and DMA buffers for Ethernet AVB */
227 static void ravb_ring_free(struct net_device *ndev, int q)
228 {
229 	struct ravb_private *priv = netdev_priv(ndev);
230 	int ring_size;
231 	int i;
232 
233 	if (priv->rx_ring[q]) {
234 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
235 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
236 
237 			if (!dma_mapping_error(ndev->dev.parent,
238 					       le32_to_cpu(desc->dptr)))
239 				dma_unmap_single(ndev->dev.parent,
240 						 le32_to_cpu(desc->dptr),
241 						 priv->rx_buf_sz,
242 						 DMA_FROM_DEVICE);
243 		}
244 		ring_size = sizeof(struct ravb_ex_rx_desc) *
245 			    (priv->num_rx_ring[q] + 1);
246 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
247 				  priv->rx_desc_dma[q]);
248 		priv->rx_ring[q] = NULL;
249 	}
250 
251 	if (priv->tx_ring[q]) {
252 		ravb_tx_free(ndev, q, false);
253 
254 		ring_size = sizeof(struct ravb_tx_desc) *
255 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
256 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
257 				  priv->tx_desc_dma[q]);
258 		priv->tx_ring[q] = NULL;
259 	}
260 
261 	/* Free RX skb ringbuffer */
262 	if (priv->rx_skb[q]) {
263 		for (i = 0; i < priv->num_rx_ring[q]; i++)
264 			dev_kfree_skb(priv->rx_skb[q][i]);
265 	}
266 	kfree(priv->rx_skb[q]);
267 	priv->rx_skb[q] = NULL;
268 
269 	/* Free aligned TX buffers */
270 	kfree(priv->tx_align[q]);
271 	priv->tx_align[q] = NULL;
272 
273 	/* Free TX skb ringbuffer.
274 	 * SKBs are freed by ravb_tx_free() call above.
275 	 */
276 	kfree(priv->tx_skb[q]);
277 	priv->tx_skb[q] = NULL;
278 }
279 
280 /* Format skb and descriptor buffer for Ethernet AVB */
281 static void ravb_ring_format(struct net_device *ndev, int q)
282 {
283 	struct ravb_private *priv = netdev_priv(ndev);
284 	struct ravb_ex_rx_desc *rx_desc;
285 	struct ravb_tx_desc *tx_desc;
286 	struct ravb_desc *desc;
287 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
288 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
289 			   NUM_TX_DESC;
290 	dma_addr_t dma_addr;
291 	int i;
292 
293 	priv->cur_rx[q] = 0;
294 	priv->cur_tx[q] = 0;
295 	priv->dirty_rx[q] = 0;
296 	priv->dirty_tx[q] = 0;
297 
298 	memset(priv->rx_ring[q], 0, rx_ring_size);
299 	/* Build RX ring buffer */
300 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
301 		/* RX descriptor */
302 		rx_desc = &priv->rx_ring[q][i];
303 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
304 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
305 					  priv->rx_buf_sz,
306 					  DMA_FROM_DEVICE);
307 		/* We just set the data size to 0 for a failed mapping which
308 		 * should prevent DMA from happening...
309 		 */
310 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
311 			rx_desc->ds_cc = cpu_to_le16(0);
312 		rx_desc->dptr = cpu_to_le32(dma_addr);
313 		rx_desc->die_dt = DT_FEMPTY;
314 	}
315 	rx_desc = &priv->rx_ring[q][i];
316 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
317 	rx_desc->die_dt = DT_LINKFIX; /* type */
318 
319 	memset(priv->tx_ring[q], 0, tx_ring_size);
320 	/* Build TX ring buffer */
321 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
322 	     i++, tx_desc++) {
323 		tx_desc->die_dt = DT_EEMPTY;
324 		tx_desc++;
325 		tx_desc->die_dt = DT_EEMPTY;
326 	}
327 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
328 	tx_desc->die_dt = DT_LINKFIX; /* type */
329 
330 	/* RX descriptor base address for best effort */
331 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
334 
335 	/* TX descriptor base address for best effort */
336 	desc = &priv->desc_bat[q];
337 	desc->die_dt = DT_LINKFIX; /* type */
338 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
339 }
340 
341 /* Init skb and descriptor buffer for Ethernet AVB */
342 static int ravb_ring_init(struct net_device *ndev, int q)
343 {
344 	struct ravb_private *priv = netdev_priv(ndev);
345 	struct sk_buff *skb;
346 	int ring_size;
347 	int i;
348 
349 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
350 		ETH_HLEN + VLAN_HLEN;
351 
352 	/* Allocate RX and TX skb rings */
353 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
354 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
355 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
356 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
357 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
358 		goto error;
359 
360 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
361 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
362 		if (!skb)
363 			goto error;
364 		ravb_set_buffer_align(skb);
365 		priv->rx_skb[q][i] = skb;
366 	}
367 
368 	/* Allocate rings for the aligned buffers */
369 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
370 				    DPTR_ALIGN - 1, GFP_KERNEL);
371 	if (!priv->tx_align[q])
372 		goto error;
373 
374 	/* Allocate all RX descriptors. */
375 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
376 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
377 					      &priv->rx_desc_dma[q],
378 					      GFP_KERNEL);
379 	if (!priv->rx_ring[q])
380 		goto error;
381 
382 	priv->dirty_rx[q] = 0;
383 
384 	/* Allocate all TX descriptors. */
385 	ring_size = sizeof(struct ravb_tx_desc) *
386 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
387 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
388 					      &priv->tx_desc_dma[q],
389 					      GFP_KERNEL);
390 	if (!priv->tx_ring[q])
391 		goto error;
392 
393 	return 0;
394 
395 error:
396 	ravb_ring_free(ndev, q);
397 
398 	return -ENOMEM;
399 }
400 
401 /* E-MAC init function */
402 static void ravb_emac_init(struct net_device *ndev)
403 {
404 	struct ravb_private *priv = netdev_priv(ndev);
405 
406 	/* Receive frame limit set register */
407 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
408 
409 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
410 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
411 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
412 		   ECMR_TE | ECMR_RE, ECMR);
413 
414 	ravb_set_rate(ndev);
415 
416 	/* Set MAC address */
417 	ravb_write(ndev,
418 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
419 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
420 	ravb_write(ndev,
421 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
422 
423 	/* E-MAC status register clear */
424 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
425 
426 	/* E-MAC interrupt enable register */
427 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
428 }
429 
430 /* Device init function for Ethernet AVB */
431 static int ravb_dmac_init(struct net_device *ndev)
432 {
433 	struct ravb_private *priv = netdev_priv(ndev);
434 	int error;
435 
436 	/* Set CONFIG mode */
437 	error = ravb_config(ndev);
438 	if (error)
439 		return error;
440 
441 	error = ravb_ring_init(ndev, RAVB_BE);
442 	if (error)
443 		return error;
444 	error = ravb_ring_init(ndev, RAVB_NC);
445 	if (error) {
446 		ravb_ring_free(ndev, RAVB_BE);
447 		return error;
448 	}
449 
450 	/* Descriptor format */
451 	ravb_ring_format(ndev, RAVB_BE);
452 	ravb_ring_format(ndev, RAVB_NC);
453 
454 #if defined(__LITTLE_ENDIAN)
455 	ravb_modify(ndev, CCC, CCC_BOC, 0);
456 #else
457 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
458 #endif
459 
460 	/* Set AVB RX */
461 	ravb_write(ndev,
462 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
463 
464 	/* Set FIFO size */
465 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
466 
467 	/* Timestamp enable */
468 	ravb_write(ndev, TCCR_TFEN, TCCR);
469 
470 	/* Interrupt init: */
471 	if (priv->chip_id == RCAR_GEN3) {
472 		/* Clear DIL.DPLx */
473 		ravb_write(ndev, 0, DIL);
474 		/* Set queue specific interrupt */
475 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
476 	}
477 	/* Frame receive */
478 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
479 	/* Disable FIFO full warning */
480 	ravb_write(ndev, 0, RIC1);
481 	/* Receive FIFO full error, descriptor empty */
482 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
483 	/* Frame transmitted, timestamp FIFO updated */
484 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
485 
486 	/* Setting the control will start the AVB-DMAC process. */
487 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
488 
489 	return 0;
490 }
491 
492 static void ravb_get_tx_tstamp(struct net_device *ndev)
493 {
494 	struct ravb_private *priv = netdev_priv(ndev);
495 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
496 	struct skb_shared_hwtstamps shhwtstamps;
497 	struct sk_buff *skb;
498 	struct timespec64 ts;
499 	u16 tag, tfa_tag;
500 	int count;
501 	u32 tfa2;
502 
503 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
504 	while (count--) {
505 		tfa2 = ravb_read(ndev, TFA2);
506 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
507 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
508 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
509 			    ravb_read(ndev, TFA1);
510 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
511 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
512 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
513 					 list) {
514 			skb = ts_skb->skb;
515 			tag = ts_skb->tag;
516 			list_del(&ts_skb->list);
517 			kfree(ts_skb);
518 			if (tag == tfa_tag) {
519 				skb_tstamp_tx(skb, &shhwtstamps);
520 				break;
521 			}
522 		}
523 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
524 	}
525 }
526 
527 static void ravb_rx_csum(struct sk_buff *skb)
528 {
529 	u8 *hw_csum;
530 
531 	/* The hardware checksum is 2 bytes appended to packet data */
532 	if (unlikely(skb->len < 2))
533 		return;
534 	hw_csum = skb_tail_pointer(skb) - 2;
535 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
536 	skb->ip_summed = CHECKSUM_COMPLETE;
537 	skb_trim(skb, skb->len - 2);
538 }
539 
540 /* Packet receive function for Ethernet AVB */
541 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
542 {
543 	struct ravb_private *priv = netdev_priv(ndev);
544 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
545 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
546 			priv->cur_rx[q];
547 	struct net_device_stats *stats = &priv->stats[q];
548 	struct ravb_ex_rx_desc *desc;
549 	struct sk_buff *skb;
550 	dma_addr_t dma_addr;
551 	struct timespec64 ts;
552 	u8  desc_status;
553 	u16 pkt_len;
554 	int limit;
555 
556 	boguscnt = min(boguscnt, *quota);
557 	limit = boguscnt;
558 	desc = &priv->rx_ring[q][entry];
559 	while (desc->die_dt != DT_FEMPTY) {
560 		/* Descriptor type must be checked before all other reads */
561 		dma_rmb();
562 		desc_status = desc->msc;
563 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
564 
565 		if (--boguscnt < 0)
566 			break;
567 
568 		/* We use 0-byte descriptors to mark the DMA mapping errors */
569 		if (!pkt_len)
570 			continue;
571 
572 		if (desc_status & MSC_MC)
573 			stats->multicast++;
574 
575 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
576 				   MSC_CEEF)) {
577 			stats->rx_errors++;
578 			if (desc_status & MSC_CRC)
579 				stats->rx_crc_errors++;
580 			if (desc_status & MSC_RFE)
581 				stats->rx_frame_errors++;
582 			if (desc_status & (MSC_RTLF | MSC_RTSF))
583 				stats->rx_length_errors++;
584 			if (desc_status & MSC_CEEF)
585 				stats->rx_missed_errors++;
586 		} else {
587 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
588 
589 			skb = priv->rx_skb[q][entry];
590 			priv->rx_skb[q][entry] = NULL;
591 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
592 					 priv->rx_buf_sz,
593 					 DMA_FROM_DEVICE);
594 			get_ts &= (q == RAVB_NC) ?
595 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
596 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
597 			if (get_ts) {
598 				struct skb_shared_hwtstamps *shhwtstamps;
599 
600 				shhwtstamps = skb_hwtstamps(skb);
601 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
602 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
603 					     32) | le32_to_cpu(desc->ts_sl);
604 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
605 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
606 			}
607 
608 			skb_put(skb, pkt_len);
609 			skb->protocol = eth_type_trans(skb, ndev);
610 			if (ndev->features & NETIF_F_RXCSUM)
611 				ravb_rx_csum(skb);
612 			napi_gro_receive(&priv->napi[q], skb);
613 			stats->rx_packets++;
614 			stats->rx_bytes += pkt_len;
615 		}
616 
617 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
618 		desc = &priv->rx_ring[q][entry];
619 	}
620 
621 	/* Refill the RX ring buffers. */
622 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
623 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
624 		desc = &priv->rx_ring[q][entry];
625 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
626 
627 		if (!priv->rx_skb[q][entry]) {
628 			skb = netdev_alloc_skb(ndev,
629 					       priv->rx_buf_sz +
630 					       RAVB_ALIGN - 1);
631 			if (!skb)
632 				break;	/* Better luck next round. */
633 			ravb_set_buffer_align(skb);
634 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
635 						  le16_to_cpu(desc->ds_cc),
636 						  DMA_FROM_DEVICE);
637 			skb_checksum_none_assert(skb);
638 			/* We just set the data size to 0 for a failed mapping
639 			 * which should prevent DMA  from happening...
640 			 */
641 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
642 				desc->ds_cc = cpu_to_le16(0);
643 			desc->dptr = cpu_to_le32(dma_addr);
644 			priv->rx_skb[q][entry] = skb;
645 		}
646 		/* Descriptor type must be set after all the above writes */
647 		dma_wmb();
648 		desc->die_dt = DT_FEMPTY;
649 	}
650 
651 	*quota -= limit - (++boguscnt);
652 
653 	return boguscnt <= 0;
654 }
655 
656 static void ravb_rcv_snd_disable(struct net_device *ndev)
657 {
658 	/* Disable TX and RX */
659 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
660 }
661 
662 static void ravb_rcv_snd_enable(struct net_device *ndev)
663 {
664 	/* Enable TX and RX */
665 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
666 }
667 
668 /* function for waiting dma process finished */
669 static int ravb_stop_dma(struct net_device *ndev)
670 {
671 	int error;
672 
673 	/* Wait for stopping the hardware TX process */
674 	error = ravb_wait(ndev, TCCR,
675 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
676 	if (error)
677 		return error;
678 
679 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
680 			  0);
681 	if (error)
682 		return error;
683 
684 	/* Stop the E-MAC's RX/TX processes. */
685 	ravb_rcv_snd_disable(ndev);
686 
687 	/* Wait for stopping the RX DMA process */
688 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
689 	if (error)
690 		return error;
691 
692 	/* Stop AVB-DMAC process */
693 	return ravb_config(ndev);
694 }
695 
696 /* E-MAC interrupt handler */
697 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
698 {
699 	struct ravb_private *priv = netdev_priv(ndev);
700 	u32 ecsr, psr;
701 
702 	ecsr = ravb_read(ndev, ECSR);
703 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
704 
705 	if (ecsr & ECSR_MPD)
706 		pm_wakeup_event(&priv->pdev->dev, 0);
707 	if (ecsr & ECSR_ICD)
708 		ndev->stats.tx_carrier_errors++;
709 	if (ecsr & ECSR_LCHNG) {
710 		/* Link changed */
711 		if (priv->no_avb_link)
712 			return;
713 		psr = ravb_read(ndev, PSR);
714 		if (priv->avb_link_active_low)
715 			psr ^= PSR_LMON;
716 		if (!(psr & PSR_LMON)) {
717 			/* DIsable RX and TX */
718 			ravb_rcv_snd_disable(ndev);
719 		} else {
720 			/* Enable RX and TX */
721 			ravb_rcv_snd_enable(ndev);
722 		}
723 	}
724 }
725 
726 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
727 {
728 	struct net_device *ndev = dev_id;
729 	struct ravb_private *priv = netdev_priv(ndev);
730 
731 	spin_lock(&priv->lock);
732 	ravb_emac_interrupt_unlocked(ndev);
733 	mmiowb();
734 	spin_unlock(&priv->lock);
735 	return IRQ_HANDLED;
736 }
737 
738 /* Error interrupt handler */
739 static void ravb_error_interrupt(struct net_device *ndev)
740 {
741 	struct ravb_private *priv = netdev_priv(ndev);
742 	u32 eis, ris2;
743 
744 	eis = ravb_read(ndev, EIS);
745 	ravb_write(ndev, ~EIS_QFS, EIS);
746 	if (eis & EIS_QFS) {
747 		ris2 = ravb_read(ndev, RIS2);
748 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
749 
750 		/* Receive Descriptor Empty int */
751 		if (ris2 & RIS2_QFF0)
752 			priv->stats[RAVB_BE].rx_over_errors++;
753 
754 		    /* Receive Descriptor Empty int */
755 		if (ris2 & RIS2_QFF1)
756 			priv->stats[RAVB_NC].rx_over_errors++;
757 
758 		/* Receive FIFO Overflow int */
759 		if (ris2 & RIS2_RFFF)
760 			priv->rx_fifo_errors++;
761 	}
762 }
763 
764 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
765 {
766 	struct ravb_private *priv = netdev_priv(ndev);
767 	u32 ris0 = ravb_read(ndev, RIS0);
768 	u32 ric0 = ravb_read(ndev, RIC0);
769 	u32 tis  = ravb_read(ndev, TIS);
770 	u32 tic  = ravb_read(ndev, TIC);
771 
772 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
773 		if (napi_schedule_prep(&priv->napi[q])) {
774 			/* Mask RX and TX interrupts */
775 			if (priv->chip_id == RCAR_GEN2) {
776 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
777 				ravb_write(ndev, tic & ~BIT(q), TIC);
778 			} else {
779 				ravb_write(ndev, BIT(q), RID0);
780 				ravb_write(ndev, BIT(q), TID);
781 			}
782 			__napi_schedule(&priv->napi[q]);
783 		} else {
784 			netdev_warn(ndev,
785 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
786 				    ris0, ric0);
787 			netdev_warn(ndev,
788 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
789 				    tis, tic);
790 		}
791 		return true;
792 	}
793 	return false;
794 }
795 
796 static bool ravb_timestamp_interrupt(struct net_device *ndev)
797 {
798 	u32 tis = ravb_read(ndev, TIS);
799 
800 	if (tis & TIS_TFUF) {
801 		ravb_write(ndev, ~TIS_TFUF, TIS);
802 		ravb_get_tx_tstamp(ndev);
803 		return true;
804 	}
805 	return false;
806 }
807 
808 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
809 {
810 	struct net_device *ndev = dev_id;
811 	struct ravb_private *priv = netdev_priv(ndev);
812 	irqreturn_t result = IRQ_NONE;
813 	u32 iss;
814 
815 	spin_lock(&priv->lock);
816 	/* Get interrupt status */
817 	iss = ravb_read(ndev, ISS);
818 
819 	/* Received and transmitted interrupts */
820 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
821 		int q;
822 
823 		/* Timestamp updated */
824 		if (ravb_timestamp_interrupt(ndev))
825 			result = IRQ_HANDLED;
826 
827 		/* Network control and best effort queue RX/TX */
828 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
829 			if (ravb_queue_interrupt(ndev, q))
830 				result = IRQ_HANDLED;
831 		}
832 	}
833 
834 	/* E-MAC status summary */
835 	if (iss & ISS_MS) {
836 		ravb_emac_interrupt_unlocked(ndev);
837 		result = IRQ_HANDLED;
838 	}
839 
840 	/* Error status summary */
841 	if (iss & ISS_ES) {
842 		ravb_error_interrupt(ndev);
843 		result = IRQ_HANDLED;
844 	}
845 
846 	/* gPTP interrupt status summary */
847 	if (iss & ISS_CGIS) {
848 		ravb_ptp_interrupt(ndev);
849 		result = IRQ_HANDLED;
850 	}
851 
852 	mmiowb();
853 	spin_unlock(&priv->lock);
854 	return result;
855 }
856 
857 /* Timestamp/Error/gPTP interrupt handler */
858 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
859 {
860 	struct net_device *ndev = dev_id;
861 	struct ravb_private *priv = netdev_priv(ndev);
862 	irqreturn_t result = IRQ_NONE;
863 	u32 iss;
864 
865 	spin_lock(&priv->lock);
866 	/* Get interrupt status */
867 	iss = ravb_read(ndev, ISS);
868 
869 	/* Timestamp updated */
870 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
871 		result = IRQ_HANDLED;
872 
873 	/* Error status summary */
874 	if (iss & ISS_ES) {
875 		ravb_error_interrupt(ndev);
876 		result = IRQ_HANDLED;
877 	}
878 
879 	/* gPTP interrupt status summary */
880 	if (iss & ISS_CGIS) {
881 		ravb_ptp_interrupt(ndev);
882 		result = IRQ_HANDLED;
883 	}
884 
885 	mmiowb();
886 	spin_unlock(&priv->lock);
887 	return result;
888 }
889 
890 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
891 {
892 	struct net_device *ndev = dev_id;
893 	struct ravb_private *priv = netdev_priv(ndev);
894 	irqreturn_t result = IRQ_NONE;
895 
896 	spin_lock(&priv->lock);
897 
898 	/* Network control/Best effort queue RX/TX */
899 	if (ravb_queue_interrupt(ndev, q))
900 		result = IRQ_HANDLED;
901 
902 	mmiowb();
903 	spin_unlock(&priv->lock);
904 	return result;
905 }
906 
907 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
908 {
909 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
910 }
911 
912 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
913 {
914 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
915 }
916 
917 static int ravb_poll(struct napi_struct *napi, int budget)
918 {
919 	struct net_device *ndev = napi->dev;
920 	struct ravb_private *priv = netdev_priv(ndev);
921 	unsigned long flags;
922 	int q = napi - priv->napi;
923 	int mask = BIT(q);
924 	int quota = budget;
925 	u32 ris0, tis;
926 
927 	for (;;) {
928 		tis = ravb_read(ndev, TIS);
929 		ris0 = ravb_read(ndev, RIS0);
930 		if (!((ris0 & mask) || (tis & mask)))
931 			break;
932 
933 		/* Processing RX Descriptor Ring */
934 		if (ris0 & mask) {
935 			/* Clear RX interrupt */
936 			ravb_write(ndev, ~mask, RIS0);
937 			if (ravb_rx(ndev, &quota, q))
938 				goto out;
939 		}
940 		/* Processing TX Descriptor Ring */
941 		if (tis & mask) {
942 			spin_lock_irqsave(&priv->lock, flags);
943 			/* Clear TX interrupt */
944 			ravb_write(ndev, ~mask, TIS);
945 			ravb_tx_free(ndev, q, true);
946 			netif_wake_subqueue(ndev, q);
947 			mmiowb();
948 			spin_unlock_irqrestore(&priv->lock, flags);
949 		}
950 	}
951 
952 	napi_complete(napi);
953 
954 	/* Re-enable RX/TX interrupts */
955 	spin_lock_irqsave(&priv->lock, flags);
956 	if (priv->chip_id == RCAR_GEN2) {
957 		ravb_modify(ndev, RIC0, mask, mask);
958 		ravb_modify(ndev, TIC,  mask, mask);
959 	} else {
960 		ravb_write(ndev, mask, RIE0);
961 		ravb_write(ndev, mask, TIE);
962 	}
963 	mmiowb();
964 	spin_unlock_irqrestore(&priv->lock, flags);
965 
966 	/* Receive error message handling */
967 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
968 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
969 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
970 		ndev->stats.rx_over_errors = priv->rx_over_errors;
971 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
972 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
973 out:
974 	return budget - quota;
975 }
976 
977 /* PHY state control function */
978 static void ravb_adjust_link(struct net_device *ndev)
979 {
980 	struct ravb_private *priv = netdev_priv(ndev);
981 	struct phy_device *phydev = ndev->phydev;
982 	bool new_state = false;
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(&priv->lock, flags);
986 
987 	/* Disable TX and RX right over here, if E-MAC change is ignored */
988 	if (priv->no_avb_link)
989 		ravb_rcv_snd_disable(ndev);
990 
991 	if (phydev->link) {
992 		if (phydev->duplex != priv->duplex) {
993 			new_state = true;
994 			priv->duplex = phydev->duplex;
995 			ravb_set_duplex(ndev);
996 		}
997 
998 		if (phydev->speed != priv->speed) {
999 			new_state = true;
1000 			priv->speed = phydev->speed;
1001 			ravb_set_rate(ndev);
1002 		}
1003 		if (!priv->link) {
1004 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1005 			new_state = true;
1006 			priv->link = phydev->link;
1007 		}
1008 	} else if (priv->link) {
1009 		new_state = true;
1010 		priv->link = 0;
1011 		priv->speed = 0;
1012 		priv->duplex = -1;
1013 	}
1014 
1015 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1016 	if (priv->no_avb_link && phydev->link)
1017 		ravb_rcv_snd_enable(ndev);
1018 
1019 	mmiowb();
1020 	spin_unlock_irqrestore(&priv->lock, flags);
1021 
1022 	if (new_state && netif_msg_link(priv))
1023 		phy_print_status(phydev);
1024 }
1025 
1026 static const struct soc_device_attribute r8a7795es10[] = {
1027 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1028 	{ /* sentinel */ }
1029 };
1030 
1031 /* PHY init function */
1032 static int ravb_phy_init(struct net_device *ndev)
1033 {
1034 	struct device_node *np = ndev->dev.parent->of_node;
1035 	struct ravb_private *priv = netdev_priv(ndev);
1036 	struct phy_device *phydev;
1037 	struct device_node *pn;
1038 	int err;
1039 
1040 	priv->link = 0;
1041 	priv->speed = 0;
1042 	priv->duplex = -1;
1043 
1044 	/* Try connecting to PHY */
1045 	pn = of_parse_phandle(np, "phy-handle", 0);
1046 	if (!pn) {
1047 		/* In the case of a fixed PHY, the DT node associated
1048 		 * to the PHY is the Ethernet MAC DT node.
1049 		 */
1050 		if (of_phy_is_fixed_link(np)) {
1051 			err = of_phy_register_fixed_link(np);
1052 			if (err)
1053 				return err;
1054 		}
1055 		pn = of_node_get(np);
1056 	}
1057 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1058 				priv->phy_interface);
1059 	of_node_put(pn);
1060 	if (!phydev) {
1061 		netdev_err(ndev, "failed to connect PHY\n");
1062 		err = -ENOENT;
1063 		goto err_deregister_fixed_link;
1064 	}
1065 
1066 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1067 	 * at this time.
1068 	 */
1069 	if (soc_device_match(r8a7795es10)) {
1070 		err = phy_set_max_speed(phydev, SPEED_100);
1071 		if (err) {
1072 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1073 			goto err_phy_disconnect;
1074 		}
1075 
1076 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1077 	}
1078 
1079 	/* 10BASE is not supported */
1080 	phydev->supported &= ~PHY_10BT_FEATURES;
1081 
1082 	phy_attached_info(phydev);
1083 
1084 	return 0;
1085 
1086 err_phy_disconnect:
1087 	phy_disconnect(phydev);
1088 err_deregister_fixed_link:
1089 	if (of_phy_is_fixed_link(np))
1090 		of_phy_deregister_fixed_link(np);
1091 
1092 	return err;
1093 }
1094 
1095 /* PHY control start function */
1096 static int ravb_phy_start(struct net_device *ndev)
1097 {
1098 	int error;
1099 
1100 	error = ravb_phy_init(ndev);
1101 	if (error)
1102 		return error;
1103 
1104 	phy_start(ndev->phydev);
1105 
1106 	return 0;
1107 }
1108 
1109 static u32 ravb_get_msglevel(struct net_device *ndev)
1110 {
1111 	struct ravb_private *priv = netdev_priv(ndev);
1112 
1113 	return priv->msg_enable;
1114 }
1115 
1116 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1117 {
1118 	struct ravb_private *priv = netdev_priv(ndev);
1119 
1120 	priv->msg_enable = value;
1121 }
1122 
1123 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1124 	"rx_queue_0_current",
1125 	"tx_queue_0_current",
1126 	"rx_queue_0_dirty",
1127 	"tx_queue_0_dirty",
1128 	"rx_queue_0_packets",
1129 	"tx_queue_0_packets",
1130 	"rx_queue_0_bytes",
1131 	"tx_queue_0_bytes",
1132 	"rx_queue_0_mcast_packets",
1133 	"rx_queue_0_errors",
1134 	"rx_queue_0_crc_errors",
1135 	"rx_queue_0_frame_errors",
1136 	"rx_queue_0_length_errors",
1137 	"rx_queue_0_missed_errors",
1138 	"rx_queue_0_over_errors",
1139 
1140 	"rx_queue_1_current",
1141 	"tx_queue_1_current",
1142 	"rx_queue_1_dirty",
1143 	"tx_queue_1_dirty",
1144 	"rx_queue_1_packets",
1145 	"tx_queue_1_packets",
1146 	"rx_queue_1_bytes",
1147 	"tx_queue_1_bytes",
1148 	"rx_queue_1_mcast_packets",
1149 	"rx_queue_1_errors",
1150 	"rx_queue_1_crc_errors",
1151 	"rx_queue_1_frame_errors",
1152 	"rx_queue_1_length_errors",
1153 	"rx_queue_1_missed_errors",
1154 	"rx_queue_1_over_errors",
1155 };
1156 
1157 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1158 
1159 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1160 {
1161 	switch (sset) {
1162 	case ETH_SS_STATS:
1163 		return RAVB_STATS_LEN;
1164 	default:
1165 		return -EOPNOTSUPP;
1166 	}
1167 }
1168 
1169 static void ravb_get_ethtool_stats(struct net_device *ndev,
1170 				   struct ethtool_stats *estats, u64 *data)
1171 {
1172 	struct ravb_private *priv = netdev_priv(ndev);
1173 	int i = 0;
1174 	int q;
1175 
1176 	/* Device-specific stats */
1177 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1178 		struct net_device_stats *stats = &priv->stats[q];
1179 
1180 		data[i++] = priv->cur_rx[q];
1181 		data[i++] = priv->cur_tx[q];
1182 		data[i++] = priv->dirty_rx[q];
1183 		data[i++] = priv->dirty_tx[q];
1184 		data[i++] = stats->rx_packets;
1185 		data[i++] = stats->tx_packets;
1186 		data[i++] = stats->rx_bytes;
1187 		data[i++] = stats->tx_bytes;
1188 		data[i++] = stats->multicast;
1189 		data[i++] = stats->rx_errors;
1190 		data[i++] = stats->rx_crc_errors;
1191 		data[i++] = stats->rx_frame_errors;
1192 		data[i++] = stats->rx_length_errors;
1193 		data[i++] = stats->rx_missed_errors;
1194 		data[i++] = stats->rx_over_errors;
1195 	}
1196 }
1197 
1198 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1199 {
1200 	switch (stringset) {
1201 	case ETH_SS_STATS:
1202 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1203 		break;
1204 	}
1205 }
1206 
1207 static void ravb_get_ringparam(struct net_device *ndev,
1208 			       struct ethtool_ringparam *ring)
1209 {
1210 	struct ravb_private *priv = netdev_priv(ndev);
1211 
1212 	ring->rx_max_pending = BE_RX_RING_MAX;
1213 	ring->tx_max_pending = BE_TX_RING_MAX;
1214 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1215 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1216 }
1217 
1218 static int ravb_set_ringparam(struct net_device *ndev,
1219 			      struct ethtool_ringparam *ring)
1220 {
1221 	struct ravb_private *priv = netdev_priv(ndev);
1222 	int error;
1223 
1224 	if (ring->tx_pending > BE_TX_RING_MAX ||
1225 	    ring->rx_pending > BE_RX_RING_MAX ||
1226 	    ring->tx_pending < BE_TX_RING_MIN ||
1227 	    ring->rx_pending < BE_RX_RING_MIN)
1228 		return -EINVAL;
1229 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1230 		return -EINVAL;
1231 
1232 	if (netif_running(ndev)) {
1233 		netif_device_detach(ndev);
1234 		/* Stop PTP Clock driver */
1235 		if (priv->chip_id == RCAR_GEN2)
1236 			ravb_ptp_stop(ndev);
1237 		/* Wait for DMA stopping */
1238 		error = ravb_stop_dma(ndev);
1239 		if (error) {
1240 			netdev_err(ndev,
1241 				   "cannot set ringparam! Any AVB processes are still running?\n");
1242 			return error;
1243 		}
1244 		synchronize_irq(ndev->irq);
1245 
1246 		/* Free all the skb's in the RX queue and the DMA buffers. */
1247 		ravb_ring_free(ndev, RAVB_BE);
1248 		ravb_ring_free(ndev, RAVB_NC);
1249 	}
1250 
1251 	/* Set new parameters */
1252 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1253 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1254 
1255 	if (netif_running(ndev)) {
1256 		error = ravb_dmac_init(ndev);
1257 		if (error) {
1258 			netdev_err(ndev,
1259 				   "%s: ravb_dmac_init() failed, error %d\n",
1260 				   __func__, error);
1261 			return error;
1262 		}
1263 
1264 		ravb_emac_init(ndev);
1265 
1266 		/* Initialise PTP Clock driver */
1267 		if (priv->chip_id == RCAR_GEN2)
1268 			ravb_ptp_init(ndev, priv->pdev);
1269 
1270 		netif_device_attach(ndev);
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static int ravb_get_ts_info(struct net_device *ndev,
1277 			    struct ethtool_ts_info *info)
1278 {
1279 	struct ravb_private *priv = netdev_priv(ndev);
1280 
1281 	info->so_timestamping =
1282 		SOF_TIMESTAMPING_TX_SOFTWARE |
1283 		SOF_TIMESTAMPING_RX_SOFTWARE |
1284 		SOF_TIMESTAMPING_SOFTWARE |
1285 		SOF_TIMESTAMPING_TX_HARDWARE |
1286 		SOF_TIMESTAMPING_RX_HARDWARE |
1287 		SOF_TIMESTAMPING_RAW_HARDWARE;
1288 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1289 	info->rx_filters =
1290 		(1 << HWTSTAMP_FILTER_NONE) |
1291 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1292 		(1 << HWTSTAMP_FILTER_ALL);
1293 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1294 
1295 	return 0;
1296 }
1297 
1298 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1299 {
1300 	struct ravb_private *priv = netdev_priv(ndev);
1301 
1302 	wol->supported = WAKE_MAGIC;
1303 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1304 }
1305 
1306 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1307 {
1308 	struct ravb_private *priv = netdev_priv(ndev);
1309 
1310 	if (wol->wolopts & ~WAKE_MAGIC)
1311 		return -EOPNOTSUPP;
1312 
1313 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1314 
1315 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1316 
1317 	return 0;
1318 }
1319 
1320 static const struct ethtool_ops ravb_ethtool_ops = {
1321 	.nway_reset		= phy_ethtool_nway_reset,
1322 	.get_msglevel		= ravb_get_msglevel,
1323 	.set_msglevel		= ravb_set_msglevel,
1324 	.get_link		= ethtool_op_get_link,
1325 	.get_strings		= ravb_get_strings,
1326 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1327 	.get_sset_count		= ravb_get_sset_count,
1328 	.get_ringparam		= ravb_get_ringparam,
1329 	.set_ringparam		= ravb_set_ringparam,
1330 	.get_ts_info		= ravb_get_ts_info,
1331 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1332 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1333 	.get_wol		= ravb_get_wol,
1334 	.set_wol		= ravb_set_wol,
1335 };
1336 
1337 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1338 				struct net_device *ndev, struct device *dev,
1339 				const char *ch)
1340 {
1341 	char *name;
1342 	int error;
1343 
1344 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1345 	if (!name)
1346 		return -ENOMEM;
1347 	error = request_irq(irq, handler, 0, name, ndev);
1348 	if (error)
1349 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1350 
1351 	return error;
1352 }
1353 
1354 /* Network device open function for Ethernet AVB */
1355 static int ravb_open(struct net_device *ndev)
1356 {
1357 	struct ravb_private *priv = netdev_priv(ndev);
1358 	struct platform_device *pdev = priv->pdev;
1359 	struct device *dev = &pdev->dev;
1360 	int error;
1361 
1362 	napi_enable(&priv->napi[RAVB_BE]);
1363 	napi_enable(&priv->napi[RAVB_NC]);
1364 
1365 	if (priv->chip_id == RCAR_GEN2) {
1366 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1367 				    ndev->name, ndev);
1368 		if (error) {
1369 			netdev_err(ndev, "cannot request IRQ\n");
1370 			goto out_napi_off;
1371 		}
1372 	} else {
1373 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1374 				      dev, "ch22:multi");
1375 		if (error)
1376 			goto out_napi_off;
1377 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1378 				      dev, "ch24:emac");
1379 		if (error)
1380 			goto out_free_irq;
1381 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1382 				      ndev, dev, "ch0:rx_be");
1383 		if (error)
1384 			goto out_free_irq_emac;
1385 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1386 				      ndev, dev, "ch18:tx_be");
1387 		if (error)
1388 			goto out_free_irq_be_rx;
1389 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1390 				      ndev, dev, "ch1:rx_nc");
1391 		if (error)
1392 			goto out_free_irq_be_tx;
1393 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1394 				      ndev, dev, "ch19:tx_nc");
1395 		if (error)
1396 			goto out_free_irq_nc_rx;
1397 	}
1398 
1399 	/* Device init */
1400 	error = ravb_dmac_init(ndev);
1401 	if (error)
1402 		goto out_free_irq_nc_tx;
1403 	ravb_emac_init(ndev);
1404 
1405 	/* Initialise PTP Clock driver */
1406 	if (priv->chip_id == RCAR_GEN2)
1407 		ravb_ptp_init(ndev, priv->pdev);
1408 
1409 	netif_tx_start_all_queues(ndev);
1410 
1411 	/* PHY control start */
1412 	error = ravb_phy_start(ndev);
1413 	if (error)
1414 		goto out_ptp_stop;
1415 
1416 	return 0;
1417 
1418 out_ptp_stop:
1419 	/* Stop PTP Clock driver */
1420 	if (priv->chip_id == RCAR_GEN2)
1421 		ravb_ptp_stop(ndev);
1422 out_free_irq_nc_tx:
1423 	if (priv->chip_id == RCAR_GEN2)
1424 		goto out_free_irq;
1425 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1426 out_free_irq_nc_rx:
1427 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1428 out_free_irq_be_tx:
1429 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1430 out_free_irq_be_rx:
1431 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1432 out_free_irq_emac:
1433 	free_irq(priv->emac_irq, ndev);
1434 out_free_irq:
1435 	free_irq(ndev->irq, ndev);
1436 out_napi_off:
1437 	napi_disable(&priv->napi[RAVB_NC]);
1438 	napi_disable(&priv->napi[RAVB_BE]);
1439 	return error;
1440 }
1441 
1442 /* Timeout function for Ethernet AVB */
1443 static void ravb_tx_timeout(struct net_device *ndev)
1444 {
1445 	struct ravb_private *priv = netdev_priv(ndev);
1446 
1447 	netif_err(priv, tx_err, ndev,
1448 		  "transmit timed out, status %08x, resetting...\n",
1449 		  ravb_read(ndev, ISS));
1450 
1451 	/* tx_errors count up */
1452 	ndev->stats.tx_errors++;
1453 
1454 	schedule_work(&priv->work);
1455 }
1456 
1457 static void ravb_tx_timeout_work(struct work_struct *work)
1458 {
1459 	struct ravb_private *priv = container_of(work, struct ravb_private,
1460 						 work);
1461 	struct net_device *ndev = priv->ndev;
1462 
1463 	netif_tx_stop_all_queues(ndev);
1464 
1465 	/* Stop PTP Clock driver */
1466 	if (priv->chip_id == RCAR_GEN2)
1467 		ravb_ptp_stop(ndev);
1468 
1469 	/* Wait for DMA stopping */
1470 	ravb_stop_dma(ndev);
1471 
1472 	ravb_ring_free(ndev, RAVB_BE);
1473 	ravb_ring_free(ndev, RAVB_NC);
1474 
1475 	/* Device init */
1476 	ravb_dmac_init(ndev);
1477 	ravb_emac_init(ndev);
1478 
1479 	/* Initialise PTP Clock driver */
1480 	if (priv->chip_id == RCAR_GEN2)
1481 		ravb_ptp_init(ndev, priv->pdev);
1482 
1483 	netif_tx_start_all_queues(ndev);
1484 }
1485 
1486 /* Packet transmit function for Ethernet AVB */
1487 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1488 {
1489 	struct ravb_private *priv = netdev_priv(ndev);
1490 	u16 q = skb_get_queue_mapping(skb);
1491 	struct ravb_tstamp_skb *ts_skb;
1492 	struct ravb_tx_desc *desc;
1493 	unsigned long flags;
1494 	u32 dma_addr;
1495 	void *buffer;
1496 	u32 entry;
1497 	u32 len;
1498 
1499 	spin_lock_irqsave(&priv->lock, flags);
1500 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1501 	    NUM_TX_DESC) {
1502 		netif_err(priv, tx_queued, ndev,
1503 			  "still transmitting with the full ring!\n");
1504 		netif_stop_subqueue(ndev, q);
1505 		spin_unlock_irqrestore(&priv->lock, flags);
1506 		return NETDEV_TX_BUSY;
1507 	}
1508 
1509 	if (skb_put_padto(skb, ETH_ZLEN))
1510 		goto exit;
1511 
1512 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1513 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1514 
1515 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1516 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1517 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1518 	/* Zero length DMA descriptors are problematic as they seem to
1519 	 * terminate DMA transfers. Avoid them by simply using a length of
1520 	 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1521 	 *
1522 	 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1523 	 * data by the call to skb_put_padto() above this is safe with
1524 	 * respect to both the length of the first DMA descriptor (len)
1525 	 * overflowing the available data and the length of the second DMA
1526 	 * descriptor (skb->len - len) being negative.
1527 	 */
1528 	if (len == 0)
1529 		len = DPTR_ALIGN;
1530 
1531 	memcpy(buffer, skb->data, len);
1532 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1533 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1534 		goto drop;
1535 
1536 	desc = &priv->tx_ring[q][entry];
1537 	desc->ds_tagl = cpu_to_le16(len);
1538 	desc->dptr = cpu_to_le32(dma_addr);
1539 
1540 	buffer = skb->data + len;
1541 	len = skb->len - len;
1542 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1543 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1544 		goto unmap;
1545 
1546 	desc++;
1547 	desc->ds_tagl = cpu_to_le16(len);
1548 	desc->dptr = cpu_to_le32(dma_addr);
1549 
1550 	/* TX timestamp required */
1551 	if (q == RAVB_NC) {
1552 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1553 		if (!ts_skb) {
1554 			desc--;
1555 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1556 					 DMA_TO_DEVICE);
1557 			goto unmap;
1558 		}
1559 		ts_skb->skb = skb;
1560 		ts_skb->tag = priv->ts_skb_tag++;
1561 		priv->ts_skb_tag &= 0x3ff;
1562 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1563 
1564 		/* TAG and timestamp required flag */
1565 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1566 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1567 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1568 	}
1569 
1570 	skb_tx_timestamp(skb);
1571 	/* Descriptor type must be set after all the above writes */
1572 	dma_wmb();
1573 	desc->die_dt = DT_FEND;
1574 	desc--;
1575 	desc->die_dt = DT_FSTART;
1576 
1577 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1578 
1579 	priv->cur_tx[q] += NUM_TX_DESC;
1580 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1581 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
1582 	    !ravb_tx_free(ndev, q, true))
1583 		netif_stop_subqueue(ndev, q);
1584 
1585 exit:
1586 	mmiowb();
1587 	spin_unlock_irqrestore(&priv->lock, flags);
1588 	return NETDEV_TX_OK;
1589 
1590 unmap:
1591 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1592 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1593 drop:
1594 	dev_kfree_skb_any(skb);
1595 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1596 	goto exit;
1597 }
1598 
1599 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1600 			     struct net_device *sb_dev,
1601 			     select_queue_fallback_t fallback)
1602 {
1603 	/* If skb needs TX timestamp, it is handled in network control queue */
1604 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1605 							       RAVB_BE;
1606 
1607 }
1608 
1609 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1610 {
1611 	struct ravb_private *priv = netdev_priv(ndev);
1612 	struct net_device_stats *nstats, *stats0, *stats1;
1613 
1614 	nstats = &ndev->stats;
1615 	stats0 = &priv->stats[RAVB_BE];
1616 	stats1 = &priv->stats[RAVB_NC];
1617 
1618 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1619 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1620 	nstats->collisions += ravb_read(ndev, CDCR);
1621 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1622 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1623 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1624 
1625 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1626 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1627 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1628 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1629 
1630 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1631 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1632 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1633 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1634 	nstats->multicast = stats0->multicast + stats1->multicast;
1635 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1636 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1637 	nstats->rx_frame_errors =
1638 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1639 	nstats->rx_length_errors =
1640 		stats0->rx_length_errors + stats1->rx_length_errors;
1641 	nstats->rx_missed_errors =
1642 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1643 	nstats->rx_over_errors =
1644 		stats0->rx_over_errors + stats1->rx_over_errors;
1645 
1646 	return nstats;
1647 }
1648 
1649 /* Update promiscuous bit */
1650 static void ravb_set_rx_mode(struct net_device *ndev)
1651 {
1652 	struct ravb_private *priv = netdev_priv(ndev);
1653 	unsigned long flags;
1654 
1655 	spin_lock_irqsave(&priv->lock, flags);
1656 	ravb_modify(ndev, ECMR, ECMR_PRM,
1657 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1658 	mmiowb();
1659 	spin_unlock_irqrestore(&priv->lock, flags);
1660 }
1661 
1662 /* Device close function for Ethernet AVB */
1663 static int ravb_close(struct net_device *ndev)
1664 {
1665 	struct device_node *np = ndev->dev.parent->of_node;
1666 	struct ravb_private *priv = netdev_priv(ndev);
1667 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1668 
1669 	netif_tx_stop_all_queues(ndev);
1670 
1671 	/* Disable interrupts by clearing the interrupt masks. */
1672 	ravb_write(ndev, 0, RIC0);
1673 	ravb_write(ndev, 0, RIC2);
1674 	ravb_write(ndev, 0, TIC);
1675 
1676 	/* Stop PTP Clock driver */
1677 	if (priv->chip_id == RCAR_GEN2)
1678 		ravb_ptp_stop(ndev);
1679 
1680 	/* Set the config mode to stop the AVB-DMAC's processes */
1681 	if (ravb_stop_dma(ndev) < 0)
1682 		netdev_err(ndev,
1683 			   "device will be stopped after h/w processes are done.\n");
1684 
1685 	/* Clear the timestamp list */
1686 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1687 		list_del(&ts_skb->list);
1688 		kfree(ts_skb);
1689 	}
1690 
1691 	/* PHY disconnect */
1692 	if (ndev->phydev) {
1693 		phy_stop(ndev->phydev);
1694 		phy_disconnect(ndev->phydev);
1695 		if (of_phy_is_fixed_link(np))
1696 			of_phy_deregister_fixed_link(np);
1697 	}
1698 
1699 	if (priv->chip_id != RCAR_GEN2) {
1700 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1701 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1702 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1703 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1704 		free_irq(priv->emac_irq, ndev);
1705 	}
1706 	free_irq(ndev->irq, ndev);
1707 
1708 	napi_disable(&priv->napi[RAVB_NC]);
1709 	napi_disable(&priv->napi[RAVB_BE]);
1710 
1711 	/* Free all the skb's in the RX queue and the DMA buffers. */
1712 	ravb_ring_free(ndev, RAVB_BE);
1713 	ravb_ring_free(ndev, RAVB_NC);
1714 
1715 	return 0;
1716 }
1717 
1718 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1719 {
1720 	struct ravb_private *priv = netdev_priv(ndev);
1721 	struct hwtstamp_config config;
1722 
1723 	config.flags = 0;
1724 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1725 						HWTSTAMP_TX_OFF;
1726 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1727 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1728 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1729 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1730 	else
1731 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1732 
1733 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1734 		-EFAULT : 0;
1735 }
1736 
1737 /* Control hardware time stamping */
1738 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1739 {
1740 	struct ravb_private *priv = netdev_priv(ndev);
1741 	struct hwtstamp_config config;
1742 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1743 	u32 tstamp_tx_ctrl;
1744 
1745 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1746 		return -EFAULT;
1747 
1748 	/* Reserved for future extensions */
1749 	if (config.flags)
1750 		return -EINVAL;
1751 
1752 	switch (config.tx_type) {
1753 	case HWTSTAMP_TX_OFF:
1754 		tstamp_tx_ctrl = 0;
1755 		break;
1756 	case HWTSTAMP_TX_ON:
1757 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1758 		break;
1759 	default:
1760 		return -ERANGE;
1761 	}
1762 
1763 	switch (config.rx_filter) {
1764 	case HWTSTAMP_FILTER_NONE:
1765 		tstamp_rx_ctrl = 0;
1766 		break;
1767 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1768 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1769 		break;
1770 	default:
1771 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1772 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1773 	}
1774 
1775 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1776 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1777 
1778 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1779 		-EFAULT : 0;
1780 }
1781 
1782 /* ioctl to device function */
1783 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1784 {
1785 	struct phy_device *phydev = ndev->phydev;
1786 
1787 	if (!netif_running(ndev))
1788 		return -EINVAL;
1789 
1790 	if (!phydev)
1791 		return -ENODEV;
1792 
1793 	switch (cmd) {
1794 	case SIOCGHWTSTAMP:
1795 		return ravb_hwtstamp_get(ndev, req);
1796 	case SIOCSHWTSTAMP:
1797 		return ravb_hwtstamp_set(ndev, req);
1798 	}
1799 
1800 	return phy_mii_ioctl(phydev, req, cmd);
1801 }
1802 
1803 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1804 {
1805 	if (netif_running(ndev))
1806 		return -EBUSY;
1807 
1808 	ndev->mtu = new_mtu;
1809 	netdev_update_features(ndev);
1810 
1811 	return 0;
1812 }
1813 
1814 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1815 {
1816 	struct ravb_private *priv = netdev_priv(ndev);
1817 	unsigned long flags;
1818 
1819 	spin_lock_irqsave(&priv->lock, flags);
1820 
1821 	/* Disable TX and RX */
1822 	ravb_rcv_snd_disable(ndev);
1823 
1824 	/* Modify RX Checksum setting */
1825 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1826 
1827 	/* Enable TX and RX */
1828 	ravb_rcv_snd_enable(ndev);
1829 
1830 	spin_unlock_irqrestore(&priv->lock, flags);
1831 }
1832 
1833 static int ravb_set_features(struct net_device *ndev,
1834 			     netdev_features_t features)
1835 {
1836 	netdev_features_t changed = ndev->features ^ features;
1837 
1838 	if (changed & NETIF_F_RXCSUM)
1839 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1840 
1841 	ndev->features = features;
1842 
1843 	return 0;
1844 }
1845 
1846 static const struct net_device_ops ravb_netdev_ops = {
1847 	.ndo_open		= ravb_open,
1848 	.ndo_stop		= ravb_close,
1849 	.ndo_start_xmit		= ravb_start_xmit,
1850 	.ndo_select_queue	= ravb_select_queue,
1851 	.ndo_get_stats		= ravb_get_stats,
1852 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1853 	.ndo_tx_timeout		= ravb_tx_timeout,
1854 	.ndo_do_ioctl		= ravb_do_ioctl,
1855 	.ndo_change_mtu		= ravb_change_mtu,
1856 	.ndo_validate_addr	= eth_validate_addr,
1857 	.ndo_set_mac_address	= eth_mac_addr,
1858 	.ndo_set_features	= ravb_set_features,
1859 };
1860 
1861 /* MDIO bus init function */
1862 static int ravb_mdio_init(struct ravb_private *priv)
1863 {
1864 	struct platform_device *pdev = priv->pdev;
1865 	struct device *dev = &pdev->dev;
1866 	int error;
1867 
1868 	/* Bitbang init */
1869 	priv->mdiobb.ops = &bb_ops;
1870 
1871 	/* MII controller setting */
1872 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1873 	if (!priv->mii_bus)
1874 		return -ENOMEM;
1875 
1876 	/* Hook up MII support for ethtool */
1877 	priv->mii_bus->name = "ravb_mii";
1878 	priv->mii_bus->parent = dev;
1879 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1880 		 pdev->name, pdev->id);
1881 
1882 	/* Register MDIO bus */
1883 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1884 	if (error)
1885 		goto out_free_bus;
1886 
1887 	return 0;
1888 
1889 out_free_bus:
1890 	free_mdio_bitbang(priv->mii_bus);
1891 	return error;
1892 }
1893 
1894 /* MDIO bus release function */
1895 static int ravb_mdio_release(struct ravb_private *priv)
1896 {
1897 	/* Unregister mdio bus */
1898 	mdiobus_unregister(priv->mii_bus);
1899 
1900 	/* Free bitbang info */
1901 	free_mdio_bitbang(priv->mii_bus);
1902 
1903 	return 0;
1904 }
1905 
1906 static const struct of_device_id ravb_match_table[] = {
1907 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1908 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1909 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1910 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1911 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1912 	{ }
1913 };
1914 MODULE_DEVICE_TABLE(of, ravb_match_table);
1915 
1916 static int ravb_set_gti(struct net_device *ndev)
1917 {
1918 	struct ravb_private *priv = netdev_priv(ndev);
1919 	struct device *dev = ndev->dev.parent;
1920 	unsigned long rate;
1921 	uint64_t inc;
1922 
1923 	rate = clk_get_rate(priv->clk);
1924 	if (!rate)
1925 		return -EINVAL;
1926 
1927 	inc = 1000000000ULL << 20;
1928 	do_div(inc, rate);
1929 
1930 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1931 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1932 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1933 		return -EINVAL;
1934 	}
1935 
1936 	ravb_write(ndev, inc, GTI);
1937 
1938 	return 0;
1939 }
1940 
1941 static void ravb_set_config_mode(struct net_device *ndev)
1942 {
1943 	struct ravb_private *priv = netdev_priv(ndev);
1944 
1945 	if (priv->chip_id == RCAR_GEN2) {
1946 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1947 		/* Set CSEL value */
1948 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1949 	} else {
1950 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1951 			    CCC_GAC | CCC_CSEL_HPB);
1952 	}
1953 }
1954 
1955 /* Set tx and rx clock internal delay modes */
1956 static void ravb_set_delay_mode(struct net_device *ndev)
1957 {
1958 	struct ravb_private *priv = netdev_priv(ndev);
1959 	int set = 0;
1960 
1961 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1962 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1963 		set |= APSR_DM_RDM;
1964 
1965 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1966 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1967 		set |= APSR_DM_TDM;
1968 
1969 	ravb_modify(ndev, APSR, APSR_DM, set);
1970 }
1971 
1972 static int ravb_probe(struct platform_device *pdev)
1973 {
1974 	struct device_node *np = pdev->dev.of_node;
1975 	struct ravb_private *priv;
1976 	enum ravb_chip_id chip_id;
1977 	struct net_device *ndev;
1978 	int error, irq, q;
1979 	struct resource *res;
1980 	int i;
1981 
1982 	if (!np) {
1983 		dev_err(&pdev->dev,
1984 			"this driver is required to be instantiated from device tree\n");
1985 		return -EINVAL;
1986 	}
1987 
1988 	/* Get base address */
1989 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1990 	if (!res) {
1991 		dev_err(&pdev->dev, "invalid resource\n");
1992 		return -EINVAL;
1993 	}
1994 
1995 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1996 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1997 	if (!ndev)
1998 		return -ENOMEM;
1999 
2000 	ndev->features = NETIF_F_RXCSUM;
2001 	ndev->hw_features = NETIF_F_RXCSUM;
2002 
2003 	pm_runtime_enable(&pdev->dev);
2004 	pm_runtime_get_sync(&pdev->dev);
2005 
2006 	/* The Ether-specific entries in the device structure. */
2007 	ndev->base_addr = res->start;
2008 
2009 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2010 
2011 	if (chip_id == RCAR_GEN3)
2012 		irq = platform_get_irq_byname(pdev, "ch22");
2013 	else
2014 		irq = platform_get_irq(pdev, 0);
2015 	if (irq < 0) {
2016 		error = irq;
2017 		goto out_release;
2018 	}
2019 	ndev->irq = irq;
2020 
2021 	SET_NETDEV_DEV(ndev, &pdev->dev);
2022 
2023 	priv = netdev_priv(ndev);
2024 	priv->ndev = ndev;
2025 	priv->pdev = pdev;
2026 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2027 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2028 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2029 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2030 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2031 	if (IS_ERR(priv->addr)) {
2032 		error = PTR_ERR(priv->addr);
2033 		goto out_release;
2034 	}
2035 
2036 	spin_lock_init(&priv->lock);
2037 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2038 
2039 	priv->phy_interface = of_get_phy_mode(np);
2040 
2041 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2042 	priv->avb_link_active_low =
2043 		of_property_read_bool(np, "renesas,ether-link-active-low");
2044 
2045 	if (chip_id == RCAR_GEN3) {
2046 		irq = platform_get_irq_byname(pdev, "ch24");
2047 		if (irq < 0) {
2048 			error = irq;
2049 			goto out_release;
2050 		}
2051 		priv->emac_irq = irq;
2052 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2053 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2054 			if (irq < 0) {
2055 				error = irq;
2056 				goto out_release;
2057 			}
2058 			priv->rx_irqs[i] = irq;
2059 		}
2060 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2061 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2062 			if (irq < 0) {
2063 				error = irq;
2064 				goto out_release;
2065 			}
2066 			priv->tx_irqs[i] = irq;
2067 		}
2068 	}
2069 
2070 	priv->chip_id = chip_id;
2071 
2072 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2073 	if (IS_ERR(priv->clk)) {
2074 		error = PTR_ERR(priv->clk);
2075 		goto out_release;
2076 	}
2077 
2078 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2079 	ndev->min_mtu = ETH_MIN_MTU;
2080 
2081 	/* Set function */
2082 	ndev->netdev_ops = &ravb_netdev_ops;
2083 	ndev->ethtool_ops = &ravb_ethtool_ops;
2084 
2085 	/* Set AVB config mode */
2086 	ravb_set_config_mode(ndev);
2087 
2088 	/* Set GTI value */
2089 	error = ravb_set_gti(ndev);
2090 	if (error)
2091 		goto out_release;
2092 
2093 	/* Request GTI loading */
2094 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2095 
2096 	if (priv->chip_id != RCAR_GEN2)
2097 		ravb_set_delay_mode(ndev);
2098 
2099 	/* Allocate descriptor base address table */
2100 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2101 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2102 					    &priv->desc_bat_dma, GFP_KERNEL);
2103 	if (!priv->desc_bat) {
2104 		dev_err(&pdev->dev,
2105 			"Cannot allocate desc base address table (size %d bytes)\n",
2106 			priv->desc_bat_size);
2107 		error = -ENOMEM;
2108 		goto out_release;
2109 	}
2110 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2111 		priv->desc_bat[q].die_dt = DT_EOS;
2112 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2113 
2114 	/* Initialise HW timestamp list */
2115 	INIT_LIST_HEAD(&priv->ts_skb_list);
2116 
2117 	/* Initialise PTP Clock driver */
2118 	if (chip_id != RCAR_GEN2)
2119 		ravb_ptp_init(ndev, pdev);
2120 
2121 	/* Debug message level */
2122 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2123 
2124 	/* Read and set MAC address */
2125 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2126 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2127 		dev_warn(&pdev->dev,
2128 			 "no valid MAC address supplied, using a random one\n");
2129 		eth_hw_addr_random(ndev);
2130 	}
2131 
2132 	/* MDIO bus init */
2133 	error = ravb_mdio_init(priv);
2134 	if (error) {
2135 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2136 		goto out_dma_free;
2137 	}
2138 
2139 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2140 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2141 
2142 	/* Network device register */
2143 	error = register_netdev(ndev);
2144 	if (error)
2145 		goto out_napi_del;
2146 
2147 	device_set_wakeup_capable(&pdev->dev, 1);
2148 
2149 	/* Print device information */
2150 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2151 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2152 
2153 	platform_set_drvdata(pdev, ndev);
2154 
2155 	return 0;
2156 
2157 out_napi_del:
2158 	netif_napi_del(&priv->napi[RAVB_NC]);
2159 	netif_napi_del(&priv->napi[RAVB_BE]);
2160 	ravb_mdio_release(priv);
2161 out_dma_free:
2162 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2163 			  priv->desc_bat_dma);
2164 
2165 	/* Stop PTP Clock driver */
2166 	if (chip_id != RCAR_GEN2)
2167 		ravb_ptp_stop(ndev);
2168 out_release:
2169 	free_netdev(ndev);
2170 
2171 	pm_runtime_put(&pdev->dev);
2172 	pm_runtime_disable(&pdev->dev);
2173 	return error;
2174 }
2175 
2176 static int ravb_remove(struct platform_device *pdev)
2177 {
2178 	struct net_device *ndev = platform_get_drvdata(pdev);
2179 	struct ravb_private *priv = netdev_priv(ndev);
2180 
2181 	/* Stop PTP Clock driver */
2182 	if (priv->chip_id != RCAR_GEN2)
2183 		ravb_ptp_stop(ndev);
2184 
2185 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2186 			  priv->desc_bat_dma);
2187 	/* Set reset mode */
2188 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2189 	pm_runtime_put_sync(&pdev->dev);
2190 	unregister_netdev(ndev);
2191 	netif_napi_del(&priv->napi[RAVB_NC]);
2192 	netif_napi_del(&priv->napi[RAVB_BE]);
2193 	ravb_mdio_release(priv);
2194 	pm_runtime_disable(&pdev->dev);
2195 	free_netdev(ndev);
2196 	platform_set_drvdata(pdev, NULL);
2197 
2198 	return 0;
2199 }
2200 
2201 static int ravb_wol_setup(struct net_device *ndev)
2202 {
2203 	struct ravb_private *priv = netdev_priv(ndev);
2204 
2205 	/* Disable interrupts by clearing the interrupt masks. */
2206 	ravb_write(ndev, 0, RIC0);
2207 	ravb_write(ndev, 0, RIC2);
2208 	ravb_write(ndev, 0, TIC);
2209 
2210 	/* Only allow ECI interrupts */
2211 	synchronize_irq(priv->emac_irq);
2212 	napi_disable(&priv->napi[RAVB_NC]);
2213 	napi_disable(&priv->napi[RAVB_BE]);
2214 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2215 
2216 	/* Enable MagicPacket */
2217 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2218 
2219 	return enable_irq_wake(priv->emac_irq);
2220 }
2221 
2222 static int ravb_wol_restore(struct net_device *ndev)
2223 {
2224 	struct ravb_private *priv = netdev_priv(ndev);
2225 	int ret;
2226 
2227 	napi_enable(&priv->napi[RAVB_NC]);
2228 	napi_enable(&priv->napi[RAVB_BE]);
2229 
2230 	/* Disable MagicPacket */
2231 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2232 
2233 	ret = ravb_close(ndev);
2234 	if (ret < 0)
2235 		return ret;
2236 
2237 	return disable_irq_wake(priv->emac_irq);
2238 }
2239 
2240 static int __maybe_unused ravb_suspend(struct device *dev)
2241 {
2242 	struct net_device *ndev = dev_get_drvdata(dev);
2243 	struct ravb_private *priv = netdev_priv(ndev);
2244 	int ret;
2245 
2246 	if (!netif_running(ndev))
2247 		return 0;
2248 
2249 	netif_device_detach(ndev);
2250 
2251 	if (priv->wol_enabled)
2252 		ret = ravb_wol_setup(ndev);
2253 	else
2254 		ret = ravb_close(ndev);
2255 
2256 	return ret;
2257 }
2258 
2259 static int __maybe_unused ravb_resume(struct device *dev)
2260 {
2261 	struct net_device *ndev = dev_get_drvdata(dev);
2262 	struct ravb_private *priv = netdev_priv(ndev);
2263 	int ret = 0;
2264 
2265 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2266 	if (priv->wol_enabled)
2267 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2268 
2269 	/* All register have been reset to default values.
2270 	 * Restore all registers which where setup at probe time and
2271 	 * reopen device if it was running before system suspended.
2272 	 */
2273 
2274 	/* Set AVB config mode */
2275 	ravb_set_config_mode(ndev);
2276 
2277 	/* Set GTI value */
2278 	ret = ravb_set_gti(ndev);
2279 	if (ret)
2280 		return ret;
2281 
2282 	/* Request GTI loading */
2283 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2284 
2285 	if (priv->chip_id != RCAR_GEN2)
2286 		ravb_set_delay_mode(ndev);
2287 
2288 	/* Restore descriptor base address table */
2289 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2290 
2291 	if (netif_running(ndev)) {
2292 		if (priv->wol_enabled) {
2293 			ret = ravb_wol_restore(ndev);
2294 			if (ret)
2295 				return ret;
2296 		}
2297 		ret = ravb_open(ndev);
2298 		if (ret < 0)
2299 			return ret;
2300 		netif_device_attach(ndev);
2301 	}
2302 
2303 	return ret;
2304 }
2305 
2306 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2307 {
2308 	/* Runtime PM callback shared between ->runtime_suspend()
2309 	 * and ->runtime_resume(). Simply returns success.
2310 	 *
2311 	 * This driver re-initializes all registers after
2312 	 * pm_runtime_get_sync() anyway so there is no need
2313 	 * to save and restore registers here.
2314 	 */
2315 	return 0;
2316 }
2317 
2318 static const struct dev_pm_ops ravb_dev_pm_ops = {
2319 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2320 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2321 };
2322 
2323 static struct platform_driver ravb_driver = {
2324 	.probe		= ravb_probe,
2325 	.remove		= ravb_remove,
2326 	.driver = {
2327 		.name	= "ravb",
2328 		.pm	= &ravb_dev_pm_ops,
2329 		.of_match_table = ravb_match_table,
2330 	},
2331 };
2332 
2333 module_platform_driver(ravb_driver);
2334 
2335 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2336 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2337 MODULE_LICENSE("GPL v2");
2338