xref: /openbmc/linux/drivers/net/ethernet/renesas/ravb_main.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include <asm/div64.h>
36 
37 #include "ravb.h"
38 
39 #define RAVB_DEF_MSG_ENABLE \
40 		(NETIF_MSG_LINK	  | \
41 		 NETIF_MSG_TIMER  | \
42 		 NETIF_MSG_RX_ERR | \
43 		 NETIF_MSG_TX_ERR)
44 
45 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
46 	"ch0", /* RAVB_BE */
47 	"ch1", /* RAVB_NC */
48 };
49 
50 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
51 	"ch18", /* RAVB_BE */
52 	"ch19", /* RAVB_NC */
53 };
54 
55 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
56 		 u32 set)
57 {
58 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
59 }
60 
61 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
62 {
63 	int i;
64 
65 	for (i = 0; i < 10000; i++) {
66 		if ((ravb_read(ndev, reg) & mask) == value)
67 			return 0;
68 		udelay(10);
69 	}
70 	return -ETIMEDOUT;
71 }
72 
73 static int ravb_config(struct net_device *ndev)
74 {
75 	int error;
76 
77 	/* Set config mode */
78 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
79 	/* Check if the operating mode is changed to the config mode */
80 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
81 	if (error)
82 		netdev_err(ndev, "failed to switch device to config mode\n");
83 
84 	return error;
85 }
86 
87 static void ravb_set_duplex(struct net_device *ndev)
88 {
89 	struct ravb_private *priv = netdev_priv(ndev);
90 
91 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
92 }
93 
94 static void ravb_set_rate(struct net_device *ndev)
95 {
96 	struct ravb_private *priv = netdev_priv(ndev);
97 
98 	switch (priv->speed) {
99 	case 100:		/* 100BASE */
100 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
101 		break;
102 	case 1000:		/* 1000BASE */
103 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
104 		break;
105 	}
106 }
107 
108 static void ravb_set_buffer_align(struct sk_buff *skb)
109 {
110 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
111 
112 	if (reserve)
113 		skb_reserve(skb, RAVB_ALIGN - reserve);
114 }
115 
116 /* Get MAC address from the MAC address registers
117  *
118  * Ethernet AVB device doesn't have ROM for MAC address.
119  * This function gets the MAC address that was used by a bootloader.
120  */
121 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
122 {
123 	if (mac) {
124 		ether_addr_copy(ndev->dev_addr, mac);
125 	} else {
126 		u32 mahr = ravb_read(ndev, MAHR);
127 		u32 malr = ravb_read(ndev, MALR);
128 
129 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
130 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
131 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
132 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
133 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
134 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
135 	}
136 }
137 
138 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
139 {
140 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
141 						 mdiobb);
142 
143 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
144 }
145 
146 /* MDC pin control */
147 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
148 {
149 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
150 }
151 
152 /* Data I/O pin control */
153 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
154 {
155 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
156 }
157 
158 /* Set data bit */
159 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
160 {
161 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
162 }
163 
164 /* Get data bit */
165 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
166 {
167 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
168 						 mdiobb);
169 
170 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
171 }
172 
173 /* MDIO bus control struct */
174 static struct mdiobb_ops bb_ops = {
175 	.owner = THIS_MODULE,
176 	.set_mdc = ravb_set_mdc,
177 	.set_mdio_dir = ravb_set_mdio_dir,
178 	.set_mdio_data = ravb_set_mdio_data,
179 	.get_mdio_data = ravb_get_mdio_data,
180 };
181 
182 /* Free skb's and DMA buffers for Ethernet AVB */
183 static void ravb_ring_free(struct net_device *ndev, int q)
184 {
185 	struct ravb_private *priv = netdev_priv(ndev);
186 	int ring_size;
187 	int i;
188 
189 	/* Free RX skb ringbuffer */
190 	if (priv->rx_skb[q]) {
191 		for (i = 0; i < priv->num_rx_ring[q]; i++)
192 			dev_kfree_skb(priv->rx_skb[q][i]);
193 	}
194 	kfree(priv->rx_skb[q]);
195 	priv->rx_skb[q] = NULL;
196 
197 	/* Free TX skb ringbuffer */
198 	if (priv->tx_skb[q]) {
199 		for (i = 0; i < priv->num_tx_ring[q]; i++)
200 			dev_kfree_skb(priv->tx_skb[q][i]);
201 	}
202 	kfree(priv->tx_skb[q]);
203 	priv->tx_skb[q] = NULL;
204 
205 	/* Free aligned TX buffers */
206 	kfree(priv->tx_align[q]);
207 	priv->tx_align[q] = NULL;
208 
209 	if (priv->rx_ring[q]) {
210 		ring_size = sizeof(struct ravb_ex_rx_desc) *
211 			    (priv->num_rx_ring[q] + 1);
212 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
213 				  priv->rx_desc_dma[q]);
214 		priv->rx_ring[q] = NULL;
215 	}
216 
217 	if (priv->tx_ring[q]) {
218 		ring_size = sizeof(struct ravb_tx_desc) *
219 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
220 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
221 				  priv->tx_desc_dma[q]);
222 		priv->tx_ring[q] = NULL;
223 	}
224 }
225 
226 /* Format skb and descriptor buffer for Ethernet AVB */
227 static void ravb_ring_format(struct net_device *ndev, int q)
228 {
229 	struct ravb_private *priv = netdev_priv(ndev);
230 	struct ravb_ex_rx_desc *rx_desc;
231 	struct ravb_tx_desc *tx_desc;
232 	struct ravb_desc *desc;
233 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
234 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
235 			   NUM_TX_DESC;
236 	dma_addr_t dma_addr;
237 	int i;
238 
239 	priv->cur_rx[q] = 0;
240 	priv->cur_tx[q] = 0;
241 	priv->dirty_rx[q] = 0;
242 	priv->dirty_tx[q] = 0;
243 
244 	memset(priv->rx_ring[q], 0, rx_ring_size);
245 	/* Build RX ring buffer */
246 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
247 		/* RX descriptor */
248 		rx_desc = &priv->rx_ring[q][i];
249 		rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
250 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
251 					  PKT_BUF_SZ,
252 					  DMA_FROM_DEVICE);
253 		/* We just set the data size to 0 for a failed mapping which
254 		 * should prevent DMA from happening...
255 		 */
256 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
257 			rx_desc->ds_cc = cpu_to_le16(0);
258 		rx_desc->dptr = cpu_to_le32(dma_addr);
259 		rx_desc->die_dt = DT_FEMPTY;
260 	}
261 	rx_desc = &priv->rx_ring[q][i];
262 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
263 	rx_desc->die_dt = DT_LINKFIX; /* type */
264 
265 	memset(priv->tx_ring[q], 0, tx_ring_size);
266 	/* Build TX ring buffer */
267 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
268 	     i++, tx_desc++) {
269 		tx_desc->die_dt = DT_EEMPTY;
270 		tx_desc++;
271 		tx_desc->die_dt = DT_EEMPTY;
272 	}
273 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
274 	tx_desc->die_dt = DT_LINKFIX; /* type */
275 
276 	/* RX descriptor base address for best effort */
277 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
278 	desc->die_dt = DT_LINKFIX; /* type */
279 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
280 
281 	/* TX descriptor base address for best effort */
282 	desc = &priv->desc_bat[q];
283 	desc->die_dt = DT_LINKFIX; /* type */
284 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
285 }
286 
287 /* Init skb and descriptor buffer for Ethernet AVB */
288 static int ravb_ring_init(struct net_device *ndev, int q)
289 {
290 	struct ravb_private *priv = netdev_priv(ndev);
291 	struct sk_buff *skb;
292 	int ring_size;
293 	int i;
294 
295 	/* Allocate RX and TX skb rings */
296 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
297 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
298 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
299 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
300 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
301 		goto error;
302 
303 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
304 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
305 		if (!skb)
306 			goto error;
307 		ravb_set_buffer_align(skb);
308 		priv->rx_skb[q][i] = skb;
309 	}
310 
311 	/* Allocate rings for the aligned buffers */
312 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
313 				    DPTR_ALIGN - 1, GFP_KERNEL);
314 	if (!priv->tx_align[q])
315 		goto error;
316 
317 	/* Allocate all RX descriptors. */
318 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
319 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
320 					      &priv->rx_desc_dma[q],
321 					      GFP_KERNEL);
322 	if (!priv->rx_ring[q])
323 		goto error;
324 
325 	priv->dirty_rx[q] = 0;
326 
327 	/* Allocate all TX descriptors. */
328 	ring_size = sizeof(struct ravb_tx_desc) *
329 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
330 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
331 					      &priv->tx_desc_dma[q],
332 					      GFP_KERNEL);
333 	if (!priv->tx_ring[q])
334 		goto error;
335 
336 	return 0;
337 
338 error:
339 	ravb_ring_free(ndev, q);
340 
341 	return -ENOMEM;
342 }
343 
344 /* E-MAC init function */
345 static void ravb_emac_init(struct net_device *ndev)
346 {
347 	struct ravb_private *priv = netdev_priv(ndev);
348 
349 	/* Receive frame limit set register */
350 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
351 
352 	/* PAUSE prohibition */
353 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
354 		   ECMR_TE | ECMR_RE, ECMR);
355 
356 	ravb_set_rate(ndev);
357 
358 	/* Set MAC address */
359 	ravb_write(ndev,
360 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
361 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
362 	ravb_write(ndev,
363 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
364 
365 	/* E-MAC status register clear */
366 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
367 
368 	/* E-MAC interrupt enable register */
369 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
370 }
371 
372 /* Device init function for Ethernet AVB */
373 static int ravb_dmac_init(struct net_device *ndev)
374 {
375 	struct ravb_private *priv = netdev_priv(ndev);
376 	int error;
377 
378 	/* Set CONFIG mode */
379 	error = ravb_config(ndev);
380 	if (error)
381 		return error;
382 
383 	error = ravb_ring_init(ndev, RAVB_BE);
384 	if (error)
385 		return error;
386 	error = ravb_ring_init(ndev, RAVB_NC);
387 	if (error) {
388 		ravb_ring_free(ndev, RAVB_BE);
389 		return error;
390 	}
391 
392 	/* Descriptor format */
393 	ravb_ring_format(ndev, RAVB_BE);
394 	ravb_ring_format(ndev, RAVB_NC);
395 
396 #if defined(__LITTLE_ENDIAN)
397 	ravb_modify(ndev, CCC, CCC_BOC, 0);
398 #else
399 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
400 #endif
401 
402 	/* Set AVB RX */
403 	ravb_write(ndev,
404 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
405 
406 	/* Set FIFO size */
407 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
408 
409 	/* Timestamp enable */
410 	ravb_write(ndev, TCCR_TFEN, TCCR);
411 
412 	/* Interrupt init: */
413 	if (priv->chip_id == RCAR_GEN3) {
414 		/* Clear DIL.DPLx */
415 		ravb_write(ndev, 0, DIL);
416 		/* Set queue specific interrupt */
417 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
418 	}
419 	/* Frame receive */
420 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
421 	/* Disable FIFO full warning */
422 	ravb_write(ndev, 0, RIC1);
423 	/* Receive FIFO full error, descriptor empty */
424 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
425 	/* Frame transmitted, timestamp FIFO updated */
426 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
427 
428 	/* Setting the control will start the AVB-DMAC process. */
429 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
430 
431 	return 0;
432 }
433 
434 /* Free TX skb function for AVB-IP */
435 static int ravb_tx_free(struct net_device *ndev, int q)
436 {
437 	struct ravb_private *priv = netdev_priv(ndev);
438 	struct net_device_stats *stats = &priv->stats[q];
439 	struct ravb_tx_desc *desc;
440 	int free_num = 0;
441 	int entry;
442 	u32 size;
443 
444 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
445 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
446 					     NUM_TX_DESC);
447 		desc = &priv->tx_ring[q][entry];
448 		if (desc->die_dt != DT_FEMPTY)
449 			break;
450 		/* Descriptor type must be checked before all other reads */
451 		dma_rmb();
452 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
453 		/* Free the original skb. */
454 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
455 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
456 					 size, DMA_TO_DEVICE);
457 			/* Last packet descriptor? */
458 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
459 				entry /= NUM_TX_DESC;
460 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
461 				priv->tx_skb[q][entry] = NULL;
462 				stats->tx_packets++;
463 			}
464 			free_num++;
465 		}
466 		stats->tx_bytes += size;
467 		desc->die_dt = DT_EEMPTY;
468 	}
469 	return free_num;
470 }
471 
472 static void ravb_get_tx_tstamp(struct net_device *ndev)
473 {
474 	struct ravb_private *priv = netdev_priv(ndev);
475 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
476 	struct skb_shared_hwtstamps shhwtstamps;
477 	struct sk_buff *skb;
478 	struct timespec64 ts;
479 	u16 tag, tfa_tag;
480 	int count;
481 	u32 tfa2;
482 
483 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
484 	while (count--) {
485 		tfa2 = ravb_read(ndev, TFA2);
486 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
487 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
488 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
489 			    ravb_read(ndev, TFA1);
490 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
491 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
492 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
493 					 list) {
494 			skb = ts_skb->skb;
495 			tag = ts_skb->tag;
496 			list_del(&ts_skb->list);
497 			kfree(ts_skb);
498 			if (tag == tfa_tag) {
499 				skb_tstamp_tx(skb, &shhwtstamps);
500 				break;
501 			}
502 		}
503 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
504 	}
505 }
506 
507 /* Packet receive function for Ethernet AVB */
508 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
509 {
510 	struct ravb_private *priv = netdev_priv(ndev);
511 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
512 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
513 			priv->cur_rx[q];
514 	struct net_device_stats *stats = &priv->stats[q];
515 	struct ravb_ex_rx_desc *desc;
516 	struct sk_buff *skb;
517 	dma_addr_t dma_addr;
518 	struct timespec64 ts;
519 	u8  desc_status;
520 	u16 pkt_len;
521 	int limit;
522 
523 	boguscnt = min(boguscnt, *quota);
524 	limit = boguscnt;
525 	desc = &priv->rx_ring[q][entry];
526 	while (desc->die_dt != DT_FEMPTY) {
527 		/* Descriptor type must be checked before all other reads */
528 		dma_rmb();
529 		desc_status = desc->msc;
530 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
531 
532 		if (--boguscnt < 0)
533 			break;
534 
535 		/* We use 0-byte descriptors to mark the DMA mapping errors */
536 		if (!pkt_len)
537 			continue;
538 
539 		if (desc_status & MSC_MC)
540 			stats->multicast++;
541 
542 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
543 				   MSC_CEEF)) {
544 			stats->rx_errors++;
545 			if (desc_status & MSC_CRC)
546 				stats->rx_crc_errors++;
547 			if (desc_status & MSC_RFE)
548 				stats->rx_frame_errors++;
549 			if (desc_status & (MSC_RTLF | MSC_RTSF))
550 				stats->rx_length_errors++;
551 			if (desc_status & MSC_CEEF)
552 				stats->rx_missed_errors++;
553 		} else {
554 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
555 
556 			skb = priv->rx_skb[q][entry];
557 			priv->rx_skb[q][entry] = NULL;
558 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
559 					 PKT_BUF_SZ,
560 					 DMA_FROM_DEVICE);
561 			get_ts &= (q == RAVB_NC) ?
562 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
563 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
564 			if (get_ts) {
565 				struct skb_shared_hwtstamps *shhwtstamps;
566 
567 				shhwtstamps = skb_hwtstamps(skb);
568 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
569 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
570 					     32) | le32_to_cpu(desc->ts_sl);
571 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
572 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
573 			}
574 			skb_put(skb, pkt_len);
575 			skb->protocol = eth_type_trans(skb, ndev);
576 			napi_gro_receive(&priv->napi[q], skb);
577 			stats->rx_packets++;
578 			stats->rx_bytes += pkt_len;
579 		}
580 
581 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
582 		desc = &priv->rx_ring[q][entry];
583 	}
584 
585 	/* Refill the RX ring buffers. */
586 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
587 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
588 		desc = &priv->rx_ring[q][entry];
589 		desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
590 
591 		if (!priv->rx_skb[q][entry]) {
592 			skb = netdev_alloc_skb(ndev,
593 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
594 			if (!skb)
595 				break;	/* Better luck next round. */
596 			ravb_set_buffer_align(skb);
597 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
598 						  le16_to_cpu(desc->ds_cc),
599 						  DMA_FROM_DEVICE);
600 			skb_checksum_none_assert(skb);
601 			/* We just set the data size to 0 for a failed mapping
602 			 * which should prevent DMA  from happening...
603 			 */
604 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
605 				desc->ds_cc = cpu_to_le16(0);
606 			desc->dptr = cpu_to_le32(dma_addr);
607 			priv->rx_skb[q][entry] = skb;
608 		}
609 		/* Descriptor type must be set after all the above writes */
610 		dma_wmb();
611 		desc->die_dt = DT_FEMPTY;
612 	}
613 
614 	*quota -= limit - (++boguscnt);
615 
616 	return boguscnt <= 0;
617 }
618 
619 static void ravb_rcv_snd_disable(struct net_device *ndev)
620 {
621 	/* Disable TX and RX */
622 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
623 }
624 
625 static void ravb_rcv_snd_enable(struct net_device *ndev)
626 {
627 	/* Enable TX and RX */
628 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
629 }
630 
631 /* function for waiting dma process finished */
632 static int ravb_stop_dma(struct net_device *ndev)
633 {
634 	int error;
635 
636 	/* Wait for stopping the hardware TX process */
637 	error = ravb_wait(ndev, TCCR,
638 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
639 	if (error)
640 		return error;
641 
642 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
643 			  0);
644 	if (error)
645 		return error;
646 
647 	/* Stop the E-MAC's RX/TX processes. */
648 	ravb_rcv_snd_disable(ndev);
649 
650 	/* Wait for stopping the RX DMA process */
651 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
652 	if (error)
653 		return error;
654 
655 	/* Stop AVB-DMAC process */
656 	return ravb_config(ndev);
657 }
658 
659 /* E-MAC interrupt handler */
660 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
661 {
662 	struct ravb_private *priv = netdev_priv(ndev);
663 	u32 ecsr, psr;
664 
665 	ecsr = ravb_read(ndev, ECSR);
666 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
667 	if (ecsr & ECSR_ICD)
668 		ndev->stats.tx_carrier_errors++;
669 	if (ecsr & ECSR_LCHNG) {
670 		/* Link changed */
671 		if (priv->no_avb_link)
672 			return;
673 		psr = ravb_read(ndev, PSR);
674 		if (priv->avb_link_active_low)
675 			psr ^= PSR_LMON;
676 		if (!(psr & PSR_LMON)) {
677 			/* DIsable RX and TX */
678 			ravb_rcv_snd_disable(ndev);
679 		} else {
680 			/* Enable RX and TX */
681 			ravb_rcv_snd_enable(ndev);
682 		}
683 	}
684 }
685 
686 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
687 {
688 	struct net_device *ndev = dev_id;
689 	struct ravb_private *priv = netdev_priv(ndev);
690 
691 	spin_lock(&priv->lock);
692 	ravb_emac_interrupt_unlocked(ndev);
693 	mmiowb();
694 	spin_unlock(&priv->lock);
695 	return IRQ_HANDLED;
696 }
697 
698 /* Error interrupt handler */
699 static void ravb_error_interrupt(struct net_device *ndev)
700 {
701 	struct ravb_private *priv = netdev_priv(ndev);
702 	u32 eis, ris2;
703 
704 	eis = ravb_read(ndev, EIS);
705 	ravb_write(ndev, ~EIS_QFS, EIS);
706 	if (eis & EIS_QFS) {
707 		ris2 = ravb_read(ndev, RIS2);
708 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
709 
710 		/* Receive Descriptor Empty int */
711 		if (ris2 & RIS2_QFF0)
712 			priv->stats[RAVB_BE].rx_over_errors++;
713 
714 		    /* Receive Descriptor Empty int */
715 		if (ris2 & RIS2_QFF1)
716 			priv->stats[RAVB_NC].rx_over_errors++;
717 
718 		/* Receive FIFO Overflow int */
719 		if (ris2 & RIS2_RFFF)
720 			priv->rx_fifo_errors++;
721 	}
722 }
723 
724 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
725 {
726 	struct ravb_private *priv = netdev_priv(ndev);
727 	u32 ris0 = ravb_read(ndev, RIS0);
728 	u32 ric0 = ravb_read(ndev, RIC0);
729 	u32 tis  = ravb_read(ndev, TIS);
730 	u32 tic  = ravb_read(ndev, TIC);
731 
732 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
733 		if (napi_schedule_prep(&priv->napi[q])) {
734 			/* Mask RX and TX interrupts */
735 			if (priv->chip_id == RCAR_GEN2) {
736 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
737 				ravb_write(ndev, tic & ~BIT(q), TIC);
738 			} else {
739 				ravb_write(ndev, BIT(q), RID0);
740 				ravb_write(ndev, BIT(q), TID);
741 			}
742 			__napi_schedule(&priv->napi[q]);
743 		} else {
744 			netdev_warn(ndev,
745 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
746 				    ris0, ric0);
747 			netdev_warn(ndev,
748 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
749 				    tis, tic);
750 		}
751 		return true;
752 	}
753 	return false;
754 }
755 
756 static bool ravb_timestamp_interrupt(struct net_device *ndev)
757 {
758 	u32 tis = ravb_read(ndev, TIS);
759 
760 	if (tis & TIS_TFUF) {
761 		ravb_write(ndev, ~TIS_TFUF, TIS);
762 		ravb_get_tx_tstamp(ndev);
763 		return true;
764 	}
765 	return false;
766 }
767 
768 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
769 {
770 	struct net_device *ndev = dev_id;
771 	struct ravb_private *priv = netdev_priv(ndev);
772 	irqreturn_t result = IRQ_NONE;
773 	u32 iss;
774 
775 	spin_lock(&priv->lock);
776 	/* Get interrupt status */
777 	iss = ravb_read(ndev, ISS);
778 
779 	/* Received and transmitted interrupts */
780 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
781 		int q;
782 
783 		/* Timestamp updated */
784 		if (ravb_timestamp_interrupt(ndev))
785 			result = IRQ_HANDLED;
786 
787 		/* Network control and best effort queue RX/TX */
788 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
789 			if (ravb_queue_interrupt(ndev, q))
790 				result = IRQ_HANDLED;
791 		}
792 	}
793 
794 	/* E-MAC status summary */
795 	if (iss & ISS_MS) {
796 		ravb_emac_interrupt_unlocked(ndev);
797 		result = IRQ_HANDLED;
798 	}
799 
800 	/* Error status summary */
801 	if (iss & ISS_ES) {
802 		ravb_error_interrupt(ndev);
803 		result = IRQ_HANDLED;
804 	}
805 
806 	/* gPTP interrupt status summary */
807 	if (iss & ISS_CGIS) {
808 		ravb_ptp_interrupt(ndev);
809 		result = IRQ_HANDLED;
810 	}
811 
812 	mmiowb();
813 	spin_unlock(&priv->lock);
814 	return result;
815 }
816 
817 /* Timestamp/Error/gPTP interrupt handler */
818 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
819 {
820 	struct net_device *ndev = dev_id;
821 	struct ravb_private *priv = netdev_priv(ndev);
822 	irqreturn_t result = IRQ_NONE;
823 	u32 iss;
824 
825 	spin_lock(&priv->lock);
826 	/* Get interrupt status */
827 	iss = ravb_read(ndev, ISS);
828 
829 	/* Timestamp updated */
830 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
831 		result = IRQ_HANDLED;
832 
833 	/* Error status summary */
834 	if (iss & ISS_ES) {
835 		ravb_error_interrupt(ndev);
836 		result = IRQ_HANDLED;
837 	}
838 
839 	/* gPTP interrupt status summary */
840 	if (iss & ISS_CGIS) {
841 		ravb_ptp_interrupt(ndev);
842 		result = IRQ_HANDLED;
843 	}
844 
845 	mmiowb();
846 	spin_unlock(&priv->lock);
847 	return result;
848 }
849 
850 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
851 {
852 	struct net_device *ndev = dev_id;
853 	struct ravb_private *priv = netdev_priv(ndev);
854 	irqreturn_t result = IRQ_NONE;
855 
856 	spin_lock(&priv->lock);
857 
858 	/* Network control/Best effort queue RX/TX */
859 	if (ravb_queue_interrupt(ndev, q))
860 		result = IRQ_HANDLED;
861 
862 	mmiowb();
863 	spin_unlock(&priv->lock);
864 	return result;
865 }
866 
867 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
868 {
869 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
870 }
871 
872 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
873 {
874 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
875 }
876 
877 static int ravb_poll(struct napi_struct *napi, int budget)
878 {
879 	struct net_device *ndev = napi->dev;
880 	struct ravb_private *priv = netdev_priv(ndev);
881 	unsigned long flags;
882 	int q = napi - priv->napi;
883 	int mask = BIT(q);
884 	int quota = budget;
885 	u32 ris0, tis;
886 
887 	for (;;) {
888 		tis = ravb_read(ndev, TIS);
889 		ris0 = ravb_read(ndev, RIS0);
890 		if (!((ris0 & mask) || (tis & mask)))
891 			break;
892 
893 		/* Processing RX Descriptor Ring */
894 		if (ris0 & mask) {
895 			/* Clear RX interrupt */
896 			ravb_write(ndev, ~mask, RIS0);
897 			if (ravb_rx(ndev, &quota, q))
898 				goto out;
899 		}
900 		/* Processing TX Descriptor Ring */
901 		if (tis & mask) {
902 			spin_lock_irqsave(&priv->lock, flags);
903 			/* Clear TX interrupt */
904 			ravb_write(ndev, ~mask, TIS);
905 			ravb_tx_free(ndev, q);
906 			netif_wake_subqueue(ndev, q);
907 			mmiowb();
908 			spin_unlock_irqrestore(&priv->lock, flags);
909 		}
910 	}
911 
912 	napi_complete(napi);
913 
914 	/* Re-enable RX/TX interrupts */
915 	spin_lock_irqsave(&priv->lock, flags);
916 	if (priv->chip_id == RCAR_GEN2) {
917 		ravb_modify(ndev, RIC0, mask, mask);
918 		ravb_modify(ndev, TIC,  mask, mask);
919 	} else {
920 		ravb_write(ndev, mask, RIE0);
921 		ravb_write(ndev, mask, TIE);
922 	}
923 	mmiowb();
924 	spin_unlock_irqrestore(&priv->lock, flags);
925 
926 	/* Receive error message handling */
927 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
928 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
929 	if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
930 		ndev->stats.rx_over_errors = priv->rx_over_errors;
931 		netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
932 	}
933 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
934 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
935 		netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
936 	}
937 out:
938 	return budget - quota;
939 }
940 
941 /* PHY state control function */
942 static void ravb_adjust_link(struct net_device *ndev)
943 {
944 	struct ravb_private *priv = netdev_priv(ndev);
945 	struct phy_device *phydev = ndev->phydev;
946 	bool new_state = false;
947 
948 	if (phydev->link) {
949 		if (phydev->duplex != priv->duplex) {
950 			new_state = true;
951 			priv->duplex = phydev->duplex;
952 			ravb_set_duplex(ndev);
953 		}
954 
955 		if (phydev->speed != priv->speed) {
956 			new_state = true;
957 			priv->speed = phydev->speed;
958 			ravb_set_rate(ndev);
959 		}
960 		if (!priv->link) {
961 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
962 			new_state = true;
963 			priv->link = phydev->link;
964 			if (priv->no_avb_link)
965 				ravb_rcv_snd_enable(ndev);
966 		}
967 	} else if (priv->link) {
968 		new_state = true;
969 		priv->link = 0;
970 		priv->speed = 0;
971 		priv->duplex = -1;
972 		if (priv->no_avb_link)
973 			ravb_rcv_snd_disable(ndev);
974 	}
975 
976 	if (new_state && netif_msg_link(priv))
977 		phy_print_status(phydev);
978 }
979 
980 /* PHY init function */
981 static int ravb_phy_init(struct net_device *ndev)
982 {
983 	struct device_node *np = ndev->dev.parent->of_node;
984 	struct ravb_private *priv = netdev_priv(ndev);
985 	struct phy_device *phydev;
986 	struct device_node *pn;
987 	int err;
988 
989 	priv->link = 0;
990 	priv->speed = 0;
991 	priv->duplex = -1;
992 
993 	/* Try connecting to PHY */
994 	pn = of_parse_phandle(np, "phy-handle", 0);
995 	if (!pn) {
996 		/* In the case of a fixed PHY, the DT node associated
997 		 * to the PHY is the Ethernet MAC DT node.
998 		 */
999 		if (of_phy_is_fixed_link(np)) {
1000 			err = of_phy_register_fixed_link(np);
1001 			if (err)
1002 				return err;
1003 		}
1004 		pn = of_node_get(np);
1005 	}
1006 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1007 				priv->phy_interface);
1008 	of_node_put(pn);
1009 	if (!phydev) {
1010 		netdev_err(ndev, "failed to connect PHY\n");
1011 		return -ENOENT;
1012 	}
1013 
1014 	/* This driver only support 10/100Mbit speeds on Gen3
1015 	 * at this time.
1016 	 */
1017 	if (priv->chip_id == RCAR_GEN3) {
1018 		int err;
1019 
1020 		err = phy_set_max_speed(phydev, SPEED_100);
1021 		if (err) {
1022 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1023 			phy_disconnect(phydev);
1024 			return err;
1025 		}
1026 
1027 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1028 	}
1029 
1030 	/* 10BASE is not supported */
1031 	phydev->supported &= ~PHY_10BT_FEATURES;
1032 
1033 	phy_attached_info(phydev);
1034 
1035 	return 0;
1036 }
1037 
1038 /* PHY control start function */
1039 static int ravb_phy_start(struct net_device *ndev)
1040 {
1041 	int error;
1042 
1043 	error = ravb_phy_init(ndev);
1044 	if (error)
1045 		return error;
1046 
1047 	phy_start(ndev->phydev);
1048 
1049 	return 0;
1050 }
1051 
1052 static int ravb_get_link_ksettings(struct net_device *ndev,
1053 				   struct ethtool_link_ksettings *cmd)
1054 {
1055 	struct ravb_private *priv = netdev_priv(ndev);
1056 	int error = -ENODEV;
1057 	unsigned long flags;
1058 
1059 	if (ndev->phydev) {
1060 		spin_lock_irqsave(&priv->lock, flags);
1061 		error = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1062 		spin_unlock_irqrestore(&priv->lock, flags);
1063 	}
1064 
1065 	return error;
1066 }
1067 
1068 static int ravb_set_link_ksettings(struct net_device *ndev,
1069 				   const struct ethtool_link_ksettings *cmd)
1070 {
1071 	struct ravb_private *priv = netdev_priv(ndev);
1072 	unsigned long flags;
1073 	int error;
1074 
1075 	if (!ndev->phydev)
1076 		return -ENODEV;
1077 
1078 	spin_lock_irqsave(&priv->lock, flags);
1079 
1080 	/* Disable TX and RX */
1081 	ravb_rcv_snd_disable(ndev);
1082 
1083 	error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1084 	if (error)
1085 		goto error_exit;
1086 
1087 	if (cmd->base.duplex == DUPLEX_FULL)
1088 		priv->duplex = 1;
1089 	else
1090 		priv->duplex = 0;
1091 
1092 	ravb_set_duplex(ndev);
1093 
1094 error_exit:
1095 	mdelay(1);
1096 
1097 	/* Enable TX and RX */
1098 	ravb_rcv_snd_enable(ndev);
1099 
1100 	mmiowb();
1101 	spin_unlock_irqrestore(&priv->lock, flags);
1102 
1103 	return error;
1104 }
1105 
1106 static int ravb_nway_reset(struct net_device *ndev)
1107 {
1108 	struct ravb_private *priv = netdev_priv(ndev);
1109 	int error = -ENODEV;
1110 	unsigned long flags;
1111 
1112 	if (ndev->phydev) {
1113 		spin_lock_irqsave(&priv->lock, flags);
1114 		error = phy_start_aneg(ndev->phydev);
1115 		spin_unlock_irqrestore(&priv->lock, flags);
1116 	}
1117 
1118 	return error;
1119 }
1120 
1121 static u32 ravb_get_msglevel(struct net_device *ndev)
1122 {
1123 	struct ravb_private *priv = netdev_priv(ndev);
1124 
1125 	return priv->msg_enable;
1126 }
1127 
1128 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1129 {
1130 	struct ravb_private *priv = netdev_priv(ndev);
1131 
1132 	priv->msg_enable = value;
1133 }
1134 
1135 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1136 	"rx_queue_0_current",
1137 	"tx_queue_0_current",
1138 	"rx_queue_0_dirty",
1139 	"tx_queue_0_dirty",
1140 	"rx_queue_0_packets",
1141 	"tx_queue_0_packets",
1142 	"rx_queue_0_bytes",
1143 	"tx_queue_0_bytes",
1144 	"rx_queue_0_mcast_packets",
1145 	"rx_queue_0_errors",
1146 	"rx_queue_0_crc_errors",
1147 	"rx_queue_0_frame_errors",
1148 	"rx_queue_0_length_errors",
1149 	"rx_queue_0_missed_errors",
1150 	"rx_queue_0_over_errors",
1151 
1152 	"rx_queue_1_current",
1153 	"tx_queue_1_current",
1154 	"rx_queue_1_dirty",
1155 	"tx_queue_1_dirty",
1156 	"rx_queue_1_packets",
1157 	"tx_queue_1_packets",
1158 	"rx_queue_1_bytes",
1159 	"tx_queue_1_bytes",
1160 	"rx_queue_1_mcast_packets",
1161 	"rx_queue_1_errors",
1162 	"rx_queue_1_crc_errors",
1163 	"rx_queue_1_frame_errors",
1164 	"rx_queue_1_length_errors",
1165 	"rx_queue_1_missed_errors",
1166 	"rx_queue_1_over_errors",
1167 };
1168 
1169 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1170 
1171 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1172 {
1173 	switch (sset) {
1174 	case ETH_SS_STATS:
1175 		return RAVB_STATS_LEN;
1176 	default:
1177 		return -EOPNOTSUPP;
1178 	}
1179 }
1180 
1181 static void ravb_get_ethtool_stats(struct net_device *ndev,
1182 				   struct ethtool_stats *stats, u64 *data)
1183 {
1184 	struct ravb_private *priv = netdev_priv(ndev);
1185 	int i = 0;
1186 	int q;
1187 
1188 	/* Device-specific stats */
1189 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1190 		struct net_device_stats *stats = &priv->stats[q];
1191 
1192 		data[i++] = priv->cur_rx[q];
1193 		data[i++] = priv->cur_tx[q];
1194 		data[i++] = priv->dirty_rx[q];
1195 		data[i++] = priv->dirty_tx[q];
1196 		data[i++] = stats->rx_packets;
1197 		data[i++] = stats->tx_packets;
1198 		data[i++] = stats->rx_bytes;
1199 		data[i++] = stats->tx_bytes;
1200 		data[i++] = stats->multicast;
1201 		data[i++] = stats->rx_errors;
1202 		data[i++] = stats->rx_crc_errors;
1203 		data[i++] = stats->rx_frame_errors;
1204 		data[i++] = stats->rx_length_errors;
1205 		data[i++] = stats->rx_missed_errors;
1206 		data[i++] = stats->rx_over_errors;
1207 	}
1208 }
1209 
1210 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1211 {
1212 	switch (stringset) {
1213 	case ETH_SS_STATS:
1214 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1215 		break;
1216 	}
1217 }
1218 
1219 static void ravb_get_ringparam(struct net_device *ndev,
1220 			       struct ethtool_ringparam *ring)
1221 {
1222 	struct ravb_private *priv = netdev_priv(ndev);
1223 
1224 	ring->rx_max_pending = BE_RX_RING_MAX;
1225 	ring->tx_max_pending = BE_TX_RING_MAX;
1226 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1227 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1228 }
1229 
1230 static int ravb_set_ringparam(struct net_device *ndev,
1231 			      struct ethtool_ringparam *ring)
1232 {
1233 	struct ravb_private *priv = netdev_priv(ndev);
1234 	int error;
1235 
1236 	if (ring->tx_pending > BE_TX_RING_MAX ||
1237 	    ring->rx_pending > BE_RX_RING_MAX ||
1238 	    ring->tx_pending < BE_TX_RING_MIN ||
1239 	    ring->rx_pending < BE_RX_RING_MIN)
1240 		return -EINVAL;
1241 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1242 		return -EINVAL;
1243 
1244 	if (netif_running(ndev)) {
1245 		netif_device_detach(ndev);
1246 		/* Stop PTP Clock driver */
1247 		if (priv->chip_id == RCAR_GEN2)
1248 			ravb_ptp_stop(ndev);
1249 		/* Wait for DMA stopping */
1250 		error = ravb_stop_dma(ndev);
1251 		if (error) {
1252 			netdev_err(ndev,
1253 				   "cannot set ringparam! Any AVB processes are still running?\n");
1254 			return error;
1255 		}
1256 		synchronize_irq(ndev->irq);
1257 
1258 		/* Free all the skb's in the RX queue and the DMA buffers. */
1259 		ravb_ring_free(ndev, RAVB_BE);
1260 		ravb_ring_free(ndev, RAVB_NC);
1261 	}
1262 
1263 	/* Set new parameters */
1264 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1265 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1266 
1267 	if (netif_running(ndev)) {
1268 		error = ravb_dmac_init(ndev);
1269 		if (error) {
1270 			netdev_err(ndev,
1271 				   "%s: ravb_dmac_init() failed, error %d\n",
1272 				   __func__, error);
1273 			return error;
1274 		}
1275 
1276 		ravb_emac_init(ndev);
1277 
1278 		/* Initialise PTP Clock driver */
1279 		if (priv->chip_id == RCAR_GEN2)
1280 			ravb_ptp_init(ndev, priv->pdev);
1281 
1282 		netif_device_attach(ndev);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int ravb_get_ts_info(struct net_device *ndev,
1289 			    struct ethtool_ts_info *info)
1290 {
1291 	struct ravb_private *priv = netdev_priv(ndev);
1292 
1293 	info->so_timestamping =
1294 		SOF_TIMESTAMPING_TX_SOFTWARE |
1295 		SOF_TIMESTAMPING_RX_SOFTWARE |
1296 		SOF_TIMESTAMPING_SOFTWARE |
1297 		SOF_TIMESTAMPING_TX_HARDWARE |
1298 		SOF_TIMESTAMPING_RX_HARDWARE |
1299 		SOF_TIMESTAMPING_RAW_HARDWARE;
1300 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1301 	info->rx_filters =
1302 		(1 << HWTSTAMP_FILTER_NONE) |
1303 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1304 		(1 << HWTSTAMP_FILTER_ALL);
1305 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1306 
1307 	return 0;
1308 }
1309 
1310 static const struct ethtool_ops ravb_ethtool_ops = {
1311 	.nway_reset		= ravb_nway_reset,
1312 	.get_msglevel		= ravb_get_msglevel,
1313 	.set_msglevel		= ravb_set_msglevel,
1314 	.get_link		= ethtool_op_get_link,
1315 	.get_strings		= ravb_get_strings,
1316 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1317 	.get_sset_count		= ravb_get_sset_count,
1318 	.get_ringparam		= ravb_get_ringparam,
1319 	.set_ringparam		= ravb_set_ringparam,
1320 	.get_ts_info		= ravb_get_ts_info,
1321 	.get_link_ksettings	= ravb_get_link_ksettings,
1322 	.set_link_ksettings	= ravb_set_link_ksettings,
1323 };
1324 
1325 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1326 				struct net_device *ndev, struct device *dev,
1327 				const char *ch)
1328 {
1329 	char *name;
1330 	int error;
1331 
1332 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1333 	if (!name)
1334 		return -ENOMEM;
1335 	error = request_irq(irq, handler, 0, name, ndev);
1336 	if (error)
1337 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1338 
1339 	return error;
1340 }
1341 
1342 /* Network device open function for Ethernet AVB */
1343 static int ravb_open(struct net_device *ndev)
1344 {
1345 	struct ravb_private *priv = netdev_priv(ndev);
1346 	struct platform_device *pdev = priv->pdev;
1347 	struct device *dev = &pdev->dev;
1348 	int error;
1349 
1350 	napi_enable(&priv->napi[RAVB_BE]);
1351 	napi_enable(&priv->napi[RAVB_NC]);
1352 
1353 	if (priv->chip_id == RCAR_GEN2) {
1354 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1355 				    ndev->name, ndev);
1356 		if (error) {
1357 			netdev_err(ndev, "cannot request IRQ\n");
1358 			goto out_napi_off;
1359 		}
1360 	} else {
1361 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1362 				      dev, "ch22:multi");
1363 		if (error)
1364 			goto out_napi_off;
1365 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1366 				      dev, "ch24:emac");
1367 		if (error)
1368 			goto out_free_irq;
1369 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1370 				      ndev, dev, "ch0:rx_be");
1371 		if (error)
1372 			goto out_free_irq_emac;
1373 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1374 				      ndev, dev, "ch18:tx_be");
1375 		if (error)
1376 			goto out_free_irq_be_rx;
1377 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1378 				      ndev, dev, "ch1:rx_nc");
1379 		if (error)
1380 			goto out_free_irq_be_tx;
1381 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1382 				      ndev, dev, "ch19:tx_nc");
1383 		if (error)
1384 			goto out_free_irq_nc_rx;
1385 	}
1386 
1387 	/* Device init */
1388 	error = ravb_dmac_init(ndev);
1389 	if (error)
1390 		goto out_free_irq_nc_tx;
1391 	ravb_emac_init(ndev);
1392 
1393 	/* Initialise PTP Clock driver */
1394 	if (priv->chip_id == RCAR_GEN2)
1395 		ravb_ptp_init(ndev, priv->pdev);
1396 
1397 	netif_tx_start_all_queues(ndev);
1398 
1399 	/* PHY control start */
1400 	error = ravb_phy_start(ndev);
1401 	if (error)
1402 		goto out_ptp_stop;
1403 
1404 	return 0;
1405 
1406 out_ptp_stop:
1407 	/* Stop PTP Clock driver */
1408 	if (priv->chip_id == RCAR_GEN2)
1409 		ravb_ptp_stop(ndev);
1410 out_free_irq_nc_tx:
1411 	if (priv->chip_id == RCAR_GEN2)
1412 		goto out_free_irq;
1413 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1414 out_free_irq_nc_rx:
1415 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1416 out_free_irq_be_tx:
1417 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1418 out_free_irq_be_rx:
1419 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1420 out_free_irq_emac:
1421 	free_irq(priv->emac_irq, ndev);
1422 out_free_irq:
1423 	free_irq(ndev->irq, ndev);
1424 out_napi_off:
1425 	napi_disable(&priv->napi[RAVB_NC]);
1426 	napi_disable(&priv->napi[RAVB_BE]);
1427 	return error;
1428 }
1429 
1430 /* Timeout function for Ethernet AVB */
1431 static void ravb_tx_timeout(struct net_device *ndev)
1432 {
1433 	struct ravb_private *priv = netdev_priv(ndev);
1434 
1435 	netif_err(priv, tx_err, ndev,
1436 		  "transmit timed out, status %08x, resetting...\n",
1437 		  ravb_read(ndev, ISS));
1438 
1439 	/* tx_errors count up */
1440 	ndev->stats.tx_errors++;
1441 
1442 	schedule_work(&priv->work);
1443 }
1444 
1445 static void ravb_tx_timeout_work(struct work_struct *work)
1446 {
1447 	struct ravb_private *priv = container_of(work, struct ravb_private,
1448 						 work);
1449 	struct net_device *ndev = priv->ndev;
1450 
1451 	netif_tx_stop_all_queues(ndev);
1452 
1453 	/* Stop PTP Clock driver */
1454 	if (priv->chip_id == RCAR_GEN2)
1455 		ravb_ptp_stop(ndev);
1456 
1457 	/* Wait for DMA stopping */
1458 	ravb_stop_dma(ndev);
1459 
1460 	ravb_ring_free(ndev, RAVB_BE);
1461 	ravb_ring_free(ndev, RAVB_NC);
1462 
1463 	/* Device init */
1464 	ravb_dmac_init(ndev);
1465 	ravb_emac_init(ndev);
1466 
1467 	/* Initialise PTP Clock driver */
1468 	if (priv->chip_id == RCAR_GEN2)
1469 		ravb_ptp_init(ndev, priv->pdev);
1470 
1471 	netif_tx_start_all_queues(ndev);
1472 }
1473 
1474 /* Packet transmit function for Ethernet AVB */
1475 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1476 {
1477 	struct ravb_private *priv = netdev_priv(ndev);
1478 	u16 q = skb_get_queue_mapping(skb);
1479 	struct ravb_tstamp_skb *ts_skb;
1480 	struct ravb_tx_desc *desc;
1481 	unsigned long flags;
1482 	u32 dma_addr;
1483 	void *buffer;
1484 	u32 entry;
1485 	u32 len;
1486 
1487 	spin_lock_irqsave(&priv->lock, flags);
1488 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1489 	    NUM_TX_DESC) {
1490 		netif_err(priv, tx_queued, ndev,
1491 			  "still transmitting with the full ring!\n");
1492 		netif_stop_subqueue(ndev, q);
1493 		spin_unlock_irqrestore(&priv->lock, flags);
1494 		return NETDEV_TX_BUSY;
1495 	}
1496 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1497 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1498 
1499 	if (skb_put_padto(skb, ETH_ZLEN))
1500 		goto drop;
1501 
1502 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1503 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1504 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1505 	memcpy(buffer, skb->data, len);
1506 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1507 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1508 		goto drop;
1509 
1510 	desc = &priv->tx_ring[q][entry];
1511 	desc->ds_tagl = cpu_to_le16(len);
1512 	desc->dptr = cpu_to_le32(dma_addr);
1513 
1514 	buffer = skb->data + len;
1515 	len = skb->len - len;
1516 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1517 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1518 		goto unmap;
1519 
1520 	desc++;
1521 	desc->ds_tagl = cpu_to_le16(len);
1522 	desc->dptr = cpu_to_le32(dma_addr);
1523 
1524 	/* TX timestamp required */
1525 	if (q == RAVB_NC) {
1526 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1527 		if (!ts_skb) {
1528 			desc--;
1529 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1530 					 DMA_TO_DEVICE);
1531 			goto unmap;
1532 		}
1533 		ts_skb->skb = skb;
1534 		ts_skb->tag = priv->ts_skb_tag++;
1535 		priv->ts_skb_tag &= 0x3ff;
1536 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1537 
1538 		/* TAG and timestamp required flag */
1539 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1540 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1541 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1542 	}
1543 
1544 	skb_tx_timestamp(skb);
1545 	/* Descriptor type must be set after all the above writes */
1546 	dma_wmb();
1547 	desc->die_dt = DT_FEND;
1548 	desc--;
1549 	desc->die_dt = DT_FSTART;
1550 
1551 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1552 
1553 	priv->cur_tx[q] += NUM_TX_DESC;
1554 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1555 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1556 		netif_stop_subqueue(ndev, q);
1557 
1558 exit:
1559 	mmiowb();
1560 	spin_unlock_irqrestore(&priv->lock, flags);
1561 	return NETDEV_TX_OK;
1562 
1563 unmap:
1564 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1565 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1566 drop:
1567 	dev_kfree_skb_any(skb);
1568 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1569 	goto exit;
1570 }
1571 
1572 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1573 			     void *accel_priv, select_queue_fallback_t fallback)
1574 {
1575 	/* If skb needs TX timestamp, it is handled in network control queue */
1576 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1577 							       RAVB_BE;
1578 
1579 }
1580 
1581 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1582 {
1583 	struct ravb_private *priv = netdev_priv(ndev);
1584 	struct net_device_stats *nstats, *stats0, *stats1;
1585 
1586 	nstats = &ndev->stats;
1587 	stats0 = &priv->stats[RAVB_BE];
1588 	stats1 = &priv->stats[RAVB_NC];
1589 
1590 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1591 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1592 	nstats->collisions += ravb_read(ndev, CDCR);
1593 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1594 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1595 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1596 
1597 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1598 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1599 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1600 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1601 
1602 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1603 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1604 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1605 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1606 	nstats->multicast = stats0->multicast + stats1->multicast;
1607 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1608 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1609 	nstats->rx_frame_errors =
1610 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1611 	nstats->rx_length_errors =
1612 		stats0->rx_length_errors + stats1->rx_length_errors;
1613 	nstats->rx_missed_errors =
1614 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1615 	nstats->rx_over_errors =
1616 		stats0->rx_over_errors + stats1->rx_over_errors;
1617 
1618 	return nstats;
1619 }
1620 
1621 /* Update promiscuous bit */
1622 static void ravb_set_rx_mode(struct net_device *ndev)
1623 {
1624 	struct ravb_private *priv = netdev_priv(ndev);
1625 	unsigned long flags;
1626 
1627 	spin_lock_irqsave(&priv->lock, flags);
1628 	ravb_modify(ndev, ECMR, ECMR_PRM,
1629 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1630 	mmiowb();
1631 	spin_unlock_irqrestore(&priv->lock, flags);
1632 }
1633 
1634 /* Device close function for Ethernet AVB */
1635 static int ravb_close(struct net_device *ndev)
1636 {
1637 	struct ravb_private *priv = netdev_priv(ndev);
1638 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1639 
1640 	netif_tx_stop_all_queues(ndev);
1641 
1642 	/* Disable interrupts by clearing the interrupt masks. */
1643 	ravb_write(ndev, 0, RIC0);
1644 	ravb_write(ndev, 0, RIC2);
1645 	ravb_write(ndev, 0, TIC);
1646 
1647 	/* Stop PTP Clock driver */
1648 	if (priv->chip_id == RCAR_GEN2)
1649 		ravb_ptp_stop(ndev);
1650 
1651 	/* Set the config mode to stop the AVB-DMAC's processes */
1652 	if (ravb_stop_dma(ndev) < 0)
1653 		netdev_err(ndev,
1654 			   "device will be stopped after h/w processes are done.\n");
1655 
1656 	/* Clear the timestamp list */
1657 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1658 		list_del(&ts_skb->list);
1659 		kfree(ts_skb);
1660 	}
1661 
1662 	/* PHY disconnect */
1663 	if (ndev->phydev) {
1664 		phy_stop(ndev->phydev);
1665 		phy_disconnect(ndev->phydev);
1666 	}
1667 
1668 	if (priv->chip_id != RCAR_GEN2) {
1669 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1670 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1671 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1672 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1673 		free_irq(priv->emac_irq, ndev);
1674 	}
1675 	free_irq(ndev->irq, ndev);
1676 
1677 	napi_disable(&priv->napi[RAVB_NC]);
1678 	napi_disable(&priv->napi[RAVB_BE]);
1679 
1680 	/* Free all the skb's in the RX queue and the DMA buffers. */
1681 	ravb_ring_free(ndev, RAVB_BE);
1682 	ravb_ring_free(ndev, RAVB_NC);
1683 
1684 	return 0;
1685 }
1686 
1687 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1688 {
1689 	struct ravb_private *priv = netdev_priv(ndev);
1690 	struct hwtstamp_config config;
1691 
1692 	config.flags = 0;
1693 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1694 						HWTSTAMP_TX_OFF;
1695 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1696 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1697 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1698 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1699 	else
1700 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1701 
1702 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1703 		-EFAULT : 0;
1704 }
1705 
1706 /* Control hardware time stamping */
1707 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1708 {
1709 	struct ravb_private *priv = netdev_priv(ndev);
1710 	struct hwtstamp_config config;
1711 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1712 	u32 tstamp_tx_ctrl;
1713 
1714 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1715 		return -EFAULT;
1716 
1717 	/* Reserved for future extensions */
1718 	if (config.flags)
1719 		return -EINVAL;
1720 
1721 	switch (config.tx_type) {
1722 	case HWTSTAMP_TX_OFF:
1723 		tstamp_tx_ctrl = 0;
1724 		break;
1725 	case HWTSTAMP_TX_ON:
1726 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1727 		break;
1728 	default:
1729 		return -ERANGE;
1730 	}
1731 
1732 	switch (config.rx_filter) {
1733 	case HWTSTAMP_FILTER_NONE:
1734 		tstamp_rx_ctrl = 0;
1735 		break;
1736 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1737 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1738 		break;
1739 	default:
1740 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1741 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1742 	}
1743 
1744 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1745 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1746 
1747 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1748 		-EFAULT : 0;
1749 }
1750 
1751 /* ioctl to device function */
1752 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1753 {
1754 	struct phy_device *phydev = ndev->phydev;
1755 
1756 	if (!netif_running(ndev))
1757 		return -EINVAL;
1758 
1759 	if (!phydev)
1760 		return -ENODEV;
1761 
1762 	switch (cmd) {
1763 	case SIOCGHWTSTAMP:
1764 		return ravb_hwtstamp_get(ndev, req);
1765 	case SIOCSHWTSTAMP:
1766 		return ravb_hwtstamp_set(ndev, req);
1767 	}
1768 
1769 	return phy_mii_ioctl(phydev, req, cmd);
1770 }
1771 
1772 static const struct net_device_ops ravb_netdev_ops = {
1773 	.ndo_open		= ravb_open,
1774 	.ndo_stop		= ravb_close,
1775 	.ndo_start_xmit		= ravb_start_xmit,
1776 	.ndo_select_queue	= ravb_select_queue,
1777 	.ndo_get_stats		= ravb_get_stats,
1778 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1779 	.ndo_tx_timeout		= ravb_tx_timeout,
1780 	.ndo_do_ioctl		= ravb_do_ioctl,
1781 	.ndo_validate_addr	= eth_validate_addr,
1782 	.ndo_set_mac_address	= eth_mac_addr,
1783 	.ndo_change_mtu		= eth_change_mtu,
1784 };
1785 
1786 /* MDIO bus init function */
1787 static int ravb_mdio_init(struct ravb_private *priv)
1788 {
1789 	struct platform_device *pdev = priv->pdev;
1790 	struct device *dev = &pdev->dev;
1791 	int error;
1792 
1793 	/* Bitbang init */
1794 	priv->mdiobb.ops = &bb_ops;
1795 
1796 	/* MII controller setting */
1797 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1798 	if (!priv->mii_bus)
1799 		return -ENOMEM;
1800 
1801 	/* Hook up MII support for ethtool */
1802 	priv->mii_bus->name = "ravb_mii";
1803 	priv->mii_bus->parent = dev;
1804 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1805 		 pdev->name, pdev->id);
1806 
1807 	/* Register MDIO bus */
1808 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1809 	if (error)
1810 		goto out_free_bus;
1811 
1812 	return 0;
1813 
1814 out_free_bus:
1815 	free_mdio_bitbang(priv->mii_bus);
1816 	return error;
1817 }
1818 
1819 /* MDIO bus release function */
1820 static int ravb_mdio_release(struct ravb_private *priv)
1821 {
1822 	/* Unregister mdio bus */
1823 	mdiobus_unregister(priv->mii_bus);
1824 
1825 	/* Free bitbang info */
1826 	free_mdio_bitbang(priv->mii_bus);
1827 
1828 	return 0;
1829 }
1830 
1831 static const struct of_device_id ravb_match_table[] = {
1832 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1833 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1834 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1835 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1836 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1837 	{ }
1838 };
1839 MODULE_DEVICE_TABLE(of, ravb_match_table);
1840 
1841 static int ravb_set_gti(struct net_device *ndev)
1842 {
1843 
1844 	struct device *dev = ndev->dev.parent;
1845 	struct device_node *np = dev->of_node;
1846 	unsigned long rate;
1847 	struct clk *clk;
1848 	uint64_t inc;
1849 
1850 	clk = of_clk_get(np, 0);
1851 	if (IS_ERR(clk)) {
1852 		dev_err(dev, "could not get clock\n");
1853 		return PTR_ERR(clk);
1854 	}
1855 
1856 	rate = clk_get_rate(clk);
1857 	clk_put(clk);
1858 
1859 	if (!rate)
1860 		return -EINVAL;
1861 
1862 	inc = 1000000000ULL << 20;
1863 	do_div(inc, rate);
1864 
1865 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1866 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1867 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1868 		return -EINVAL;
1869 	}
1870 
1871 	ravb_write(ndev, inc, GTI);
1872 
1873 	return 0;
1874 }
1875 
1876 static void ravb_set_config_mode(struct net_device *ndev)
1877 {
1878 	struct ravb_private *priv = netdev_priv(ndev);
1879 
1880 	if (priv->chip_id == RCAR_GEN2) {
1881 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1882 		/* Set CSEL value */
1883 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1884 	} else {
1885 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1886 			    CCC_GAC | CCC_CSEL_HPB);
1887 	}
1888 }
1889 
1890 static int ravb_probe(struct platform_device *pdev)
1891 {
1892 	struct device_node *np = pdev->dev.of_node;
1893 	struct ravb_private *priv;
1894 	enum ravb_chip_id chip_id;
1895 	struct net_device *ndev;
1896 	int error, irq, q;
1897 	struct resource *res;
1898 	int i;
1899 
1900 	if (!np) {
1901 		dev_err(&pdev->dev,
1902 			"this driver is required to be instantiated from device tree\n");
1903 		return -EINVAL;
1904 	}
1905 
1906 	/* Get base address */
1907 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1908 	if (!res) {
1909 		dev_err(&pdev->dev, "invalid resource\n");
1910 		return -EINVAL;
1911 	}
1912 
1913 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1914 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1915 	if (!ndev)
1916 		return -ENOMEM;
1917 
1918 	pm_runtime_enable(&pdev->dev);
1919 	pm_runtime_get_sync(&pdev->dev);
1920 
1921 	/* The Ether-specific entries in the device structure. */
1922 	ndev->base_addr = res->start;
1923 
1924 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1925 
1926 	if (chip_id == RCAR_GEN3)
1927 		irq = platform_get_irq_byname(pdev, "ch22");
1928 	else
1929 		irq = platform_get_irq(pdev, 0);
1930 	if (irq < 0) {
1931 		error = irq;
1932 		goto out_release;
1933 	}
1934 	ndev->irq = irq;
1935 
1936 	SET_NETDEV_DEV(ndev, &pdev->dev);
1937 
1938 	priv = netdev_priv(ndev);
1939 	priv->ndev = ndev;
1940 	priv->pdev = pdev;
1941 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1942 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1943 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1944 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1945 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1946 	if (IS_ERR(priv->addr)) {
1947 		error = PTR_ERR(priv->addr);
1948 		goto out_release;
1949 	}
1950 
1951 	spin_lock_init(&priv->lock);
1952 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1953 
1954 	priv->phy_interface = of_get_phy_mode(np);
1955 
1956 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1957 	priv->avb_link_active_low =
1958 		of_property_read_bool(np, "renesas,ether-link-active-low");
1959 
1960 	if (chip_id == RCAR_GEN3) {
1961 		irq = platform_get_irq_byname(pdev, "ch24");
1962 		if (irq < 0) {
1963 			error = irq;
1964 			goto out_release;
1965 		}
1966 		priv->emac_irq = irq;
1967 		for (i = 0; i < NUM_RX_QUEUE; i++) {
1968 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
1969 			if (irq < 0) {
1970 				error = irq;
1971 				goto out_release;
1972 			}
1973 			priv->rx_irqs[i] = irq;
1974 		}
1975 		for (i = 0; i < NUM_TX_QUEUE; i++) {
1976 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
1977 			if (irq < 0) {
1978 				error = irq;
1979 				goto out_release;
1980 			}
1981 			priv->tx_irqs[i] = irq;
1982 		}
1983 	}
1984 
1985 	priv->chip_id = chip_id;
1986 
1987 	/* Set function */
1988 	ndev->netdev_ops = &ravb_netdev_ops;
1989 	ndev->ethtool_ops = &ravb_ethtool_ops;
1990 
1991 	/* Set AVB config mode */
1992 	ravb_set_config_mode(ndev);
1993 
1994 	/* Set GTI value */
1995 	error = ravb_set_gti(ndev);
1996 	if (error)
1997 		goto out_release;
1998 
1999 	/* Request GTI loading */
2000 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2001 
2002 	/* Allocate descriptor base address table */
2003 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2004 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2005 					    &priv->desc_bat_dma, GFP_KERNEL);
2006 	if (!priv->desc_bat) {
2007 		dev_err(&pdev->dev,
2008 			"Cannot allocate desc base address table (size %d bytes)\n",
2009 			priv->desc_bat_size);
2010 		error = -ENOMEM;
2011 		goto out_release;
2012 	}
2013 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2014 		priv->desc_bat[q].die_dt = DT_EOS;
2015 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2016 
2017 	/* Initialise HW timestamp list */
2018 	INIT_LIST_HEAD(&priv->ts_skb_list);
2019 
2020 	/* Initialise PTP Clock driver */
2021 	if (chip_id != RCAR_GEN2)
2022 		ravb_ptp_init(ndev, pdev);
2023 
2024 	/* Debug message level */
2025 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2026 
2027 	/* Read and set MAC address */
2028 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2029 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2030 		dev_warn(&pdev->dev,
2031 			 "no valid MAC address supplied, using a random one\n");
2032 		eth_hw_addr_random(ndev);
2033 	}
2034 
2035 	/* MDIO bus init */
2036 	error = ravb_mdio_init(priv);
2037 	if (error) {
2038 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2039 		goto out_dma_free;
2040 	}
2041 
2042 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2043 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2044 
2045 	/* Network device register */
2046 	error = register_netdev(ndev);
2047 	if (error)
2048 		goto out_napi_del;
2049 
2050 	/* Print device information */
2051 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2052 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2053 
2054 	platform_set_drvdata(pdev, ndev);
2055 
2056 	return 0;
2057 
2058 out_napi_del:
2059 	netif_napi_del(&priv->napi[RAVB_NC]);
2060 	netif_napi_del(&priv->napi[RAVB_BE]);
2061 	ravb_mdio_release(priv);
2062 out_dma_free:
2063 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2064 			  priv->desc_bat_dma);
2065 
2066 	/* Stop PTP Clock driver */
2067 	if (chip_id != RCAR_GEN2)
2068 		ravb_ptp_stop(ndev);
2069 out_release:
2070 	if (ndev)
2071 		free_netdev(ndev);
2072 
2073 	pm_runtime_put(&pdev->dev);
2074 	pm_runtime_disable(&pdev->dev);
2075 	return error;
2076 }
2077 
2078 static int ravb_remove(struct platform_device *pdev)
2079 {
2080 	struct net_device *ndev = platform_get_drvdata(pdev);
2081 	struct ravb_private *priv = netdev_priv(ndev);
2082 
2083 	/* Stop PTP Clock driver */
2084 	if (priv->chip_id != RCAR_GEN2)
2085 		ravb_ptp_stop(ndev);
2086 
2087 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2088 			  priv->desc_bat_dma);
2089 	/* Set reset mode */
2090 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2091 	pm_runtime_put_sync(&pdev->dev);
2092 	unregister_netdev(ndev);
2093 	netif_napi_del(&priv->napi[RAVB_NC]);
2094 	netif_napi_del(&priv->napi[RAVB_BE]);
2095 	ravb_mdio_release(priv);
2096 	pm_runtime_disable(&pdev->dev);
2097 	free_netdev(ndev);
2098 	platform_set_drvdata(pdev, NULL);
2099 
2100 	return 0;
2101 }
2102 
2103 static int __maybe_unused ravb_suspend(struct device *dev)
2104 {
2105 	struct net_device *ndev = dev_get_drvdata(dev);
2106 	int ret = 0;
2107 
2108 	if (netif_running(ndev)) {
2109 		netif_device_detach(ndev);
2110 		ret = ravb_close(ndev);
2111 	}
2112 
2113 	return ret;
2114 }
2115 
2116 static int __maybe_unused ravb_resume(struct device *dev)
2117 {
2118 	struct net_device *ndev = dev_get_drvdata(dev);
2119 	struct ravb_private *priv = netdev_priv(ndev);
2120 	int ret = 0;
2121 
2122 	/* All register have been reset to default values.
2123 	 * Restore all registers which where setup at probe time and
2124 	 * reopen device if it was running before system suspended.
2125 	 */
2126 
2127 	/* Set AVB config mode */
2128 	ravb_set_config_mode(ndev);
2129 
2130 	/* Set GTI value */
2131 	ret = ravb_set_gti(ndev);
2132 	if (ret)
2133 		return ret;
2134 
2135 	/* Request GTI loading */
2136 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2137 
2138 	/* Restore descriptor base address table */
2139 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2140 
2141 	if (netif_running(ndev)) {
2142 		ret = ravb_open(ndev);
2143 		if (ret < 0)
2144 			return ret;
2145 		netif_device_attach(ndev);
2146 	}
2147 
2148 	return ret;
2149 }
2150 
2151 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2152 {
2153 	/* Runtime PM callback shared between ->runtime_suspend()
2154 	 * and ->runtime_resume(). Simply returns success.
2155 	 *
2156 	 * This driver re-initializes all registers after
2157 	 * pm_runtime_get_sync() anyway so there is no need
2158 	 * to save and restore registers here.
2159 	 */
2160 	return 0;
2161 }
2162 
2163 static const struct dev_pm_ops ravb_dev_pm_ops = {
2164 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2165 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2166 };
2167 
2168 static struct platform_driver ravb_driver = {
2169 	.probe		= ravb_probe,
2170 	.remove		= ravb_remove,
2171 	.driver = {
2172 		.name	= "ravb",
2173 		.pm	= &ravb_dev_pm_ops,
2174 		.of_match_table = ravb_match_table,
2175 	},
2176 };
2177 
2178 module_platform_driver(ravb_driver);
2179 
2180 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2181 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2182 MODULE_LICENSE("GPL v2");
2183