1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (!IS_ERR(mac)) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	int num_tx_desc = priv->num_tx_desc;
179 	struct ravb_tx_desc *desc;
180 	int free_num = 0;
181 	int entry;
182 	u32 size;
183 
184 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 		bool txed;
186 
187 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 					     num_tx_desc);
189 		desc = &priv->tx_ring[q][entry];
190 		txed = desc->die_dt == DT_FEMPTY;
191 		if (free_txed_only && !txed)
192 			break;
193 		/* Descriptor type must be checked before all other reads */
194 		dma_rmb();
195 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 		/* Free the original skb. */
197 		if (priv->tx_skb[q][entry / num_tx_desc]) {
198 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 					 size, DMA_TO_DEVICE);
200 			/* Last packet descriptor? */
201 			if (entry % num_tx_desc == num_tx_desc - 1) {
202 				entry /= num_tx_desc;
203 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 				priv->tx_skb[q][entry] = NULL;
205 				if (txed)
206 					stats->tx_packets++;
207 			}
208 			free_num++;
209 		}
210 		if (txed)
211 			stats->tx_bytes += size;
212 		desc->die_dt = DT_EEMPTY;
213 	}
214 	return free_num;
215 }
216 
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 	struct ravb_private *priv = netdev_priv(ndev);
221 	int num_tx_desc = priv->num_tx_desc;
222 	int ring_size;
223 	int i;
224 
225 	if (priv->rx_ring[q]) {
226 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228 
229 			if (!dma_mapping_error(ndev->dev.parent,
230 					       le32_to_cpu(desc->dptr)))
231 				dma_unmap_single(ndev->dev.parent,
232 						 le32_to_cpu(desc->dptr),
233 						 priv->rx_buf_sz,
234 						 DMA_FROM_DEVICE);
235 		}
236 		ring_size = sizeof(struct ravb_ex_rx_desc) *
237 			    (priv->num_rx_ring[q] + 1);
238 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 				  priv->rx_desc_dma[q]);
240 		priv->rx_ring[q] = NULL;
241 	}
242 
243 	if (priv->tx_ring[q]) {
244 		ravb_tx_free(ndev, q, false);
245 
246 		ring_size = sizeof(struct ravb_tx_desc) *
247 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 				  priv->tx_desc_dma[q]);
250 		priv->tx_ring[q] = NULL;
251 	}
252 
253 	/* Free RX skb ringbuffer */
254 	if (priv->rx_skb[q]) {
255 		for (i = 0; i < priv->num_rx_ring[q]; i++)
256 			dev_kfree_skb(priv->rx_skb[q][i]);
257 	}
258 	kfree(priv->rx_skb[q]);
259 	priv->rx_skb[q] = NULL;
260 
261 	/* Free aligned TX buffers */
262 	kfree(priv->tx_align[q]);
263 	priv->tx_align[q] = NULL;
264 
265 	/* Free TX skb ringbuffer.
266 	 * SKBs are freed by ravb_tx_free() call above.
267 	 */
268 	kfree(priv->tx_skb[q]);
269 	priv->tx_skb[q] = NULL;
270 }
271 
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 	struct ravb_private *priv = netdev_priv(ndev);
276 	int num_tx_desc = priv->num_tx_desc;
277 	struct ravb_ex_rx_desc *rx_desc;
278 	struct ravb_tx_desc *tx_desc;
279 	struct ravb_desc *desc;
280 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 			   num_tx_desc;
283 	dma_addr_t dma_addr;
284 	int i;
285 
286 	priv->cur_rx[q] = 0;
287 	priv->cur_tx[q] = 0;
288 	priv->dirty_rx[q] = 0;
289 	priv->dirty_tx[q] = 0;
290 
291 	memset(priv->rx_ring[q], 0, rx_ring_size);
292 	/* Build RX ring buffer */
293 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 		/* RX descriptor */
295 		rx_desc = &priv->rx_ring[q][i];
296 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
297 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 					  priv->rx_buf_sz,
299 					  DMA_FROM_DEVICE);
300 		/* We just set the data size to 0 for a failed mapping which
301 		 * should prevent DMA from happening...
302 		 */
303 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 			rx_desc->ds_cc = cpu_to_le16(0);
305 		rx_desc->dptr = cpu_to_le32(dma_addr);
306 		rx_desc->die_dt = DT_FEMPTY;
307 	}
308 	rx_desc = &priv->rx_ring[q][i];
309 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 	rx_desc->die_dt = DT_LINKFIX; /* type */
311 
312 	memset(priv->tx_ring[q], 0, tx_ring_size);
313 	/* Build TX ring buffer */
314 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 	     i++, tx_desc++) {
316 		tx_desc->die_dt = DT_EEMPTY;
317 		if (num_tx_desc > 1) {
318 			tx_desc++;
319 			tx_desc->die_dt = DT_EEMPTY;
320 		}
321 	}
322 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 	tx_desc->die_dt = DT_LINKFIX; /* type */
324 
325 	/* RX descriptor base address for best effort */
326 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329 
330 	/* TX descriptor base address for best effort */
331 	desc = &priv->desc_bat[q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335 
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 	struct ravb_private *priv = netdev_priv(ndev);
340 	int num_tx_desc = priv->num_tx_desc;
341 	struct sk_buff *skb;
342 	int ring_size;
343 	int i;
344 
345 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
346 		ETH_HLEN + VLAN_HLEN + sizeof(__sum16);
347 
348 	/* Allocate RX and TX skb rings */
349 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
350 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
351 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
352 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
353 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
354 		goto error;
355 
356 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
357 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
358 		if (!skb)
359 			goto error;
360 		ravb_set_buffer_align(skb);
361 		priv->rx_skb[q][i] = skb;
362 	}
363 
364 	if (num_tx_desc > 1) {
365 		/* Allocate rings for the aligned buffers */
366 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 					    DPTR_ALIGN - 1, GFP_KERNEL);
368 		if (!priv->tx_align[q])
369 			goto error;
370 	}
371 
372 	/* Allocate all RX descriptors. */
373 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
374 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
375 					      &priv->rx_desc_dma[q],
376 					      GFP_KERNEL);
377 	if (!priv->rx_ring[q])
378 		goto error;
379 
380 	priv->dirty_rx[q] = 0;
381 
382 	/* Allocate all TX descriptors. */
383 	ring_size = sizeof(struct ravb_tx_desc) *
384 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
385 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
386 					      &priv->tx_desc_dma[q],
387 					      GFP_KERNEL);
388 	if (!priv->tx_ring[q])
389 		goto error;
390 
391 	return 0;
392 
393 error:
394 	ravb_ring_free(ndev, q);
395 
396 	return -ENOMEM;
397 }
398 
399 /* E-MAC init function */
400 static void ravb_emac_init(struct net_device *ndev)
401 {
402 	/* Receive frame limit set register */
403 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
404 
405 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
406 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
407 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
408 		   ECMR_TE | ECMR_RE, ECMR);
409 
410 	ravb_set_rate(ndev);
411 
412 	/* Set MAC address */
413 	ravb_write(ndev,
414 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
415 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
416 	ravb_write(ndev,
417 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
418 
419 	/* E-MAC status register clear */
420 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
421 
422 	/* E-MAC interrupt enable register */
423 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
424 }
425 
426 /* Device init function for Ethernet AVB */
427 static int ravb_dmac_init(struct net_device *ndev)
428 {
429 	struct ravb_private *priv = netdev_priv(ndev);
430 	int error;
431 
432 	/* Set CONFIG mode */
433 	error = ravb_config(ndev);
434 	if (error)
435 		return error;
436 
437 	error = ravb_ring_init(ndev, RAVB_BE);
438 	if (error)
439 		return error;
440 	error = ravb_ring_init(ndev, RAVB_NC);
441 	if (error) {
442 		ravb_ring_free(ndev, RAVB_BE);
443 		return error;
444 	}
445 
446 	/* Descriptor format */
447 	ravb_ring_format(ndev, RAVB_BE);
448 	ravb_ring_format(ndev, RAVB_NC);
449 
450 #if defined(__LITTLE_ENDIAN)
451 	ravb_modify(ndev, CCC, CCC_BOC, 0);
452 #else
453 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
454 #endif
455 
456 	/* Set AVB RX */
457 	ravb_write(ndev,
458 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
459 
460 	/* Set FIFO size */
461 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
462 
463 	/* Timestamp enable */
464 	ravb_write(ndev, TCCR_TFEN, TCCR);
465 
466 	/* Interrupt init: */
467 	if (priv->chip_id == RCAR_GEN3) {
468 		/* Clear DIL.DPLx */
469 		ravb_write(ndev, 0, DIL);
470 		/* Set queue specific interrupt */
471 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
472 	}
473 	/* Frame receive */
474 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
475 	/* Disable FIFO full warning */
476 	ravb_write(ndev, 0, RIC1);
477 	/* Receive FIFO full error, descriptor empty */
478 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
479 	/* Frame transmitted, timestamp FIFO updated */
480 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
481 
482 	/* Setting the control will start the AVB-DMAC process. */
483 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
484 
485 	return 0;
486 }
487 
488 static void ravb_get_tx_tstamp(struct net_device *ndev)
489 {
490 	struct ravb_private *priv = netdev_priv(ndev);
491 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
492 	struct skb_shared_hwtstamps shhwtstamps;
493 	struct sk_buff *skb;
494 	struct timespec64 ts;
495 	u16 tag, tfa_tag;
496 	int count;
497 	u32 tfa2;
498 
499 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
500 	while (count--) {
501 		tfa2 = ravb_read(ndev, TFA2);
502 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
503 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
504 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
505 			    ravb_read(ndev, TFA1);
506 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
507 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
508 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
509 					 list) {
510 			skb = ts_skb->skb;
511 			tag = ts_skb->tag;
512 			list_del(&ts_skb->list);
513 			kfree(ts_skb);
514 			if (tag == tfa_tag) {
515 				skb_tstamp_tx(skb, &shhwtstamps);
516 				dev_consume_skb_any(skb);
517 				break;
518 			} else {
519 				dev_kfree_skb_any(skb);
520 			}
521 		}
522 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
523 	}
524 }
525 
526 static void ravb_rx_csum(struct sk_buff *skb)
527 {
528 	u8 *hw_csum;
529 
530 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
531 	 * appended to packet data
532 	 */
533 	if (unlikely(skb->len < sizeof(__sum16)))
534 		return;
535 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
536 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
537 	skb->ip_summed = CHECKSUM_COMPLETE;
538 	skb_trim(skb, skb->len - sizeof(__sum16));
539 }
540 
541 /* Packet receive function for Ethernet AVB */
542 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
543 {
544 	struct ravb_private *priv = netdev_priv(ndev);
545 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
546 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
547 			priv->cur_rx[q];
548 	struct net_device_stats *stats = &priv->stats[q];
549 	struct ravb_ex_rx_desc *desc;
550 	struct sk_buff *skb;
551 	dma_addr_t dma_addr;
552 	struct timespec64 ts;
553 	u8  desc_status;
554 	u16 pkt_len;
555 	int limit;
556 
557 	boguscnt = min(boguscnt, *quota);
558 	limit = boguscnt;
559 	desc = &priv->rx_ring[q][entry];
560 	while (desc->die_dt != DT_FEMPTY) {
561 		/* Descriptor type must be checked before all other reads */
562 		dma_rmb();
563 		desc_status = desc->msc;
564 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
565 
566 		if (--boguscnt < 0)
567 			break;
568 
569 		/* We use 0-byte descriptors to mark the DMA mapping errors */
570 		if (!pkt_len)
571 			continue;
572 
573 		if (desc_status & MSC_MC)
574 			stats->multicast++;
575 
576 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
577 				   MSC_CEEF)) {
578 			stats->rx_errors++;
579 			if (desc_status & MSC_CRC)
580 				stats->rx_crc_errors++;
581 			if (desc_status & MSC_RFE)
582 				stats->rx_frame_errors++;
583 			if (desc_status & (MSC_RTLF | MSC_RTSF))
584 				stats->rx_length_errors++;
585 			if (desc_status & MSC_CEEF)
586 				stats->rx_missed_errors++;
587 		} else {
588 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
589 
590 			skb = priv->rx_skb[q][entry];
591 			priv->rx_skb[q][entry] = NULL;
592 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
593 					 priv->rx_buf_sz,
594 					 DMA_FROM_DEVICE);
595 			get_ts &= (q == RAVB_NC) ?
596 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
597 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
598 			if (get_ts) {
599 				struct skb_shared_hwtstamps *shhwtstamps;
600 
601 				shhwtstamps = skb_hwtstamps(skb);
602 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
603 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
604 					     32) | le32_to_cpu(desc->ts_sl);
605 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
606 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
607 			}
608 
609 			skb_put(skb, pkt_len);
610 			skb->protocol = eth_type_trans(skb, ndev);
611 			if (ndev->features & NETIF_F_RXCSUM)
612 				ravb_rx_csum(skb);
613 			napi_gro_receive(&priv->napi[q], skb);
614 			stats->rx_packets++;
615 			stats->rx_bytes += pkt_len;
616 		}
617 
618 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
619 		desc = &priv->rx_ring[q][entry];
620 	}
621 
622 	/* Refill the RX ring buffers. */
623 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
624 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
625 		desc = &priv->rx_ring[q][entry];
626 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
627 
628 		if (!priv->rx_skb[q][entry]) {
629 			skb = netdev_alloc_skb(ndev,
630 					       priv->rx_buf_sz +
631 					       RAVB_ALIGN - 1);
632 			if (!skb)
633 				break;	/* Better luck next round. */
634 			ravb_set_buffer_align(skb);
635 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
636 						  le16_to_cpu(desc->ds_cc),
637 						  DMA_FROM_DEVICE);
638 			skb_checksum_none_assert(skb);
639 			/* We just set the data size to 0 for a failed mapping
640 			 * which should prevent DMA  from happening...
641 			 */
642 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
643 				desc->ds_cc = cpu_to_le16(0);
644 			desc->dptr = cpu_to_le32(dma_addr);
645 			priv->rx_skb[q][entry] = skb;
646 		}
647 		/* Descriptor type must be set after all the above writes */
648 		dma_wmb();
649 		desc->die_dt = DT_FEMPTY;
650 	}
651 
652 	*quota -= limit - (++boguscnt);
653 
654 	return boguscnt <= 0;
655 }
656 
657 static void ravb_rcv_snd_disable(struct net_device *ndev)
658 {
659 	/* Disable TX and RX */
660 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
661 }
662 
663 static void ravb_rcv_snd_enable(struct net_device *ndev)
664 {
665 	/* Enable TX and RX */
666 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
667 }
668 
669 /* function for waiting dma process finished */
670 static int ravb_stop_dma(struct net_device *ndev)
671 {
672 	int error;
673 
674 	/* Wait for stopping the hardware TX process */
675 	error = ravb_wait(ndev, TCCR,
676 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
677 	if (error)
678 		return error;
679 
680 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
681 			  0);
682 	if (error)
683 		return error;
684 
685 	/* Stop the E-MAC's RX/TX processes. */
686 	ravb_rcv_snd_disable(ndev);
687 
688 	/* Wait for stopping the RX DMA process */
689 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
690 	if (error)
691 		return error;
692 
693 	/* Stop AVB-DMAC process */
694 	return ravb_config(ndev);
695 }
696 
697 /* E-MAC interrupt handler */
698 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
699 {
700 	struct ravb_private *priv = netdev_priv(ndev);
701 	u32 ecsr, psr;
702 
703 	ecsr = ravb_read(ndev, ECSR);
704 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
705 
706 	if (ecsr & ECSR_MPD)
707 		pm_wakeup_event(&priv->pdev->dev, 0);
708 	if (ecsr & ECSR_ICD)
709 		ndev->stats.tx_carrier_errors++;
710 	if (ecsr & ECSR_LCHNG) {
711 		/* Link changed */
712 		if (priv->no_avb_link)
713 			return;
714 		psr = ravb_read(ndev, PSR);
715 		if (priv->avb_link_active_low)
716 			psr ^= PSR_LMON;
717 		if (!(psr & PSR_LMON)) {
718 			/* DIsable RX and TX */
719 			ravb_rcv_snd_disable(ndev);
720 		} else {
721 			/* Enable RX and TX */
722 			ravb_rcv_snd_enable(ndev);
723 		}
724 	}
725 }
726 
727 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
728 {
729 	struct net_device *ndev = dev_id;
730 	struct ravb_private *priv = netdev_priv(ndev);
731 
732 	spin_lock(&priv->lock);
733 	ravb_emac_interrupt_unlocked(ndev);
734 	spin_unlock(&priv->lock);
735 	return IRQ_HANDLED;
736 }
737 
738 /* Error interrupt handler */
739 static void ravb_error_interrupt(struct net_device *ndev)
740 {
741 	struct ravb_private *priv = netdev_priv(ndev);
742 	u32 eis, ris2;
743 
744 	eis = ravb_read(ndev, EIS);
745 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
746 	if (eis & EIS_QFS) {
747 		ris2 = ravb_read(ndev, RIS2);
748 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
749 			   RIS2);
750 
751 		/* Receive Descriptor Empty int */
752 		if (ris2 & RIS2_QFF0)
753 			priv->stats[RAVB_BE].rx_over_errors++;
754 
755 		    /* Receive Descriptor Empty int */
756 		if (ris2 & RIS2_QFF1)
757 			priv->stats[RAVB_NC].rx_over_errors++;
758 
759 		/* Receive FIFO Overflow int */
760 		if (ris2 & RIS2_RFFF)
761 			priv->rx_fifo_errors++;
762 	}
763 }
764 
765 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
766 {
767 	struct ravb_private *priv = netdev_priv(ndev);
768 	u32 ris0 = ravb_read(ndev, RIS0);
769 	u32 ric0 = ravb_read(ndev, RIC0);
770 	u32 tis  = ravb_read(ndev, TIS);
771 	u32 tic  = ravb_read(ndev, TIC);
772 
773 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
774 		if (napi_schedule_prep(&priv->napi[q])) {
775 			/* Mask RX and TX interrupts */
776 			if (priv->chip_id == RCAR_GEN2) {
777 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
778 				ravb_write(ndev, tic & ~BIT(q), TIC);
779 			} else {
780 				ravb_write(ndev, BIT(q), RID0);
781 				ravb_write(ndev, BIT(q), TID);
782 			}
783 			__napi_schedule(&priv->napi[q]);
784 		} else {
785 			netdev_warn(ndev,
786 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
787 				    ris0, ric0);
788 			netdev_warn(ndev,
789 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
790 				    tis, tic);
791 		}
792 		return true;
793 	}
794 	return false;
795 }
796 
797 static bool ravb_timestamp_interrupt(struct net_device *ndev)
798 {
799 	u32 tis = ravb_read(ndev, TIS);
800 
801 	if (tis & TIS_TFUF) {
802 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
803 		ravb_get_tx_tstamp(ndev);
804 		return true;
805 	}
806 	return false;
807 }
808 
809 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
810 {
811 	struct net_device *ndev = dev_id;
812 	struct ravb_private *priv = netdev_priv(ndev);
813 	irqreturn_t result = IRQ_NONE;
814 	u32 iss;
815 
816 	spin_lock(&priv->lock);
817 	/* Get interrupt status */
818 	iss = ravb_read(ndev, ISS);
819 
820 	/* Received and transmitted interrupts */
821 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
822 		int q;
823 
824 		/* Timestamp updated */
825 		if (ravb_timestamp_interrupt(ndev))
826 			result = IRQ_HANDLED;
827 
828 		/* Network control and best effort queue RX/TX */
829 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
830 			if (ravb_queue_interrupt(ndev, q))
831 				result = IRQ_HANDLED;
832 		}
833 	}
834 
835 	/* E-MAC status summary */
836 	if (iss & ISS_MS) {
837 		ravb_emac_interrupt_unlocked(ndev);
838 		result = IRQ_HANDLED;
839 	}
840 
841 	/* Error status summary */
842 	if (iss & ISS_ES) {
843 		ravb_error_interrupt(ndev);
844 		result = IRQ_HANDLED;
845 	}
846 
847 	/* gPTP interrupt status summary */
848 	if (iss & ISS_CGIS) {
849 		ravb_ptp_interrupt(ndev);
850 		result = IRQ_HANDLED;
851 	}
852 
853 	spin_unlock(&priv->lock);
854 	return result;
855 }
856 
857 /* Timestamp/Error/gPTP interrupt handler */
858 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
859 {
860 	struct net_device *ndev = dev_id;
861 	struct ravb_private *priv = netdev_priv(ndev);
862 	irqreturn_t result = IRQ_NONE;
863 	u32 iss;
864 
865 	spin_lock(&priv->lock);
866 	/* Get interrupt status */
867 	iss = ravb_read(ndev, ISS);
868 
869 	/* Timestamp updated */
870 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
871 		result = IRQ_HANDLED;
872 
873 	/* Error status summary */
874 	if (iss & ISS_ES) {
875 		ravb_error_interrupt(ndev);
876 		result = IRQ_HANDLED;
877 	}
878 
879 	/* gPTP interrupt status summary */
880 	if (iss & ISS_CGIS) {
881 		ravb_ptp_interrupt(ndev);
882 		result = IRQ_HANDLED;
883 	}
884 
885 	spin_unlock(&priv->lock);
886 	return result;
887 }
888 
889 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
890 {
891 	struct net_device *ndev = dev_id;
892 	struct ravb_private *priv = netdev_priv(ndev);
893 	irqreturn_t result = IRQ_NONE;
894 
895 	spin_lock(&priv->lock);
896 
897 	/* Network control/Best effort queue RX/TX */
898 	if (ravb_queue_interrupt(ndev, q))
899 		result = IRQ_HANDLED;
900 
901 	spin_unlock(&priv->lock);
902 	return result;
903 }
904 
905 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
906 {
907 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
908 }
909 
910 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
911 {
912 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
913 }
914 
915 static int ravb_poll(struct napi_struct *napi, int budget)
916 {
917 	struct net_device *ndev = napi->dev;
918 	struct ravb_private *priv = netdev_priv(ndev);
919 	unsigned long flags;
920 	int q = napi - priv->napi;
921 	int mask = BIT(q);
922 	int quota = budget;
923 	u32 ris0, tis;
924 
925 	for (;;) {
926 		tis = ravb_read(ndev, TIS);
927 		ris0 = ravb_read(ndev, RIS0);
928 		if (!((ris0 & mask) || (tis & mask)))
929 			break;
930 
931 		/* Processing RX Descriptor Ring */
932 		if (ris0 & mask) {
933 			/* Clear RX interrupt */
934 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
935 			if (ravb_rx(ndev, &quota, q))
936 				goto out;
937 		}
938 		/* Processing TX Descriptor Ring */
939 		if (tis & mask) {
940 			spin_lock_irqsave(&priv->lock, flags);
941 			/* Clear TX interrupt */
942 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
943 			ravb_tx_free(ndev, q, true);
944 			netif_wake_subqueue(ndev, q);
945 			spin_unlock_irqrestore(&priv->lock, flags);
946 		}
947 	}
948 
949 	napi_complete(napi);
950 
951 	/* Re-enable RX/TX interrupts */
952 	spin_lock_irqsave(&priv->lock, flags);
953 	if (priv->chip_id == RCAR_GEN2) {
954 		ravb_modify(ndev, RIC0, mask, mask);
955 		ravb_modify(ndev, TIC,  mask, mask);
956 	} else {
957 		ravb_write(ndev, mask, RIE0);
958 		ravb_write(ndev, mask, TIE);
959 	}
960 	spin_unlock_irqrestore(&priv->lock, flags);
961 
962 	/* Receive error message handling */
963 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
964 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
965 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
966 		ndev->stats.rx_over_errors = priv->rx_over_errors;
967 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
968 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
969 out:
970 	return budget - quota;
971 }
972 
973 /* PHY state control function */
974 static void ravb_adjust_link(struct net_device *ndev)
975 {
976 	struct ravb_private *priv = netdev_priv(ndev);
977 	struct phy_device *phydev = ndev->phydev;
978 	bool new_state = false;
979 	unsigned long flags;
980 
981 	spin_lock_irqsave(&priv->lock, flags);
982 
983 	/* Disable TX and RX right over here, if E-MAC change is ignored */
984 	if (priv->no_avb_link)
985 		ravb_rcv_snd_disable(ndev);
986 
987 	if (phydev->link) {
988 		if (phydev->speed != priv->speed) {
989 			new_state = true;
990 			priv->speed = phydev->speed;
991 			ravb_set_rate(ndev);
992 		}
993 		if (!priv->link) {
994 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
995 			new_state = true;
996 			priv->link = phydev->link;
997 		}
998 	} else if (priv->link) {
999 		new_state = true;
1000 		priv->link = 0;
1001 		priv->speed = 0;
1002 	}
1003 
1004 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1005 	if (priv->no_avb_link && phydev->link)
1006 		ravb_rcv_snd_enable(ndev);
1007 
1008 	spin_unlock_irqrestore(&priv->lock, flags);
1009 
1010 	if (new_state && netif_msg_link(priv))
1011 		phy_print_status(phydev);
1012 }
1013 
1014 static const struct soc_device_attribute r8a7795es10[] = {
1015 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1016 	{ /* sentinel */ }
1017 };
1018 
1019 /* PHY init function */
1020 static int ravb_phy_init(struct net_device *ndev)
1021 {
1022 	struct device_node *np = ndev->dev.parent->of_node;
1023 	struct ravb_private *priv = netdev_priv(ndev);
1024 	struct phy_device *phydev;
1025 	struct device_node *pn;
1026 	int err;
1027 
1028 	priv->link = 0;
1029 	priv->speed = 0;
1030 
1031 	/* Try connecting to PHY */
1032 	pn = of_parse_phandle(np, "phy-handle", 0);
1033 	if (!pn) {
1034 		/* In the case of a fixed PHY, the DT node associated
1035 		 * to the PHY is the Ethernet MAC DT node.
1036 		 */
1037 		if (of_phy_is_fixed_link(np)) {
1038 			err = of_phy_register_fixed_link(np);
1039 			if (err)
1040 				return err;
1041 		}
1042 		pn = of_node_get(np);
1043 	}
1044 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1045 				priv->phy_interface);
1046 	of_node_put(pn);
1047 	if (!phydev) {
1048 		netdev_err(ndev, "failed to connect PHY\n");
1049 		err = -ENOENT;
1050 		goto err_deregister_fixed_link;
1051 	}
1052 
1053 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1054 	 * at this time.
1055 	 */
1056 	if (soc_device_match(r8a7795es10)) {
1057 		err = phy_set_max_speed(phydev, SPEED_100);
1058 		if (err) {
1059 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1060 			goto err_phy_disconnect;
1061 		}
1062 
1063 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1064 	}
1065 
1066 	/* 10BASE, Pause and Asym Pause is not supported */
1067 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1068 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1069 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1070 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1071 
1072 	/* Half Duplex is not supported */
1073 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1074 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1075 
1076 	phy_attached_info(phydev);
1077 
1078 	return 0;
1079 
1080 err_phy_disconnect:
1081 	phy_disconnect(phydev);
1082 err_deregister_fixed_link:
1083 	if (of_phy_is_fixed_link(np))
1084 		of_phy_deregister_fixed_link(np);
1085 
1086 	return err;
1087 }
1088 
1089 /* PHY control start function */
1090 static int ravb_phy_start(struct net_device *ndev)
1091 {
1092 	int error;
1093 
1094 	error = ravb_phy_init(ndev);
1095 	if (error)
1096 		return error;
1097 
1098 	phy_start(ndev->phydev);
1099 
1100 	return 0;
1101 }
1102 
1103 static u32 ravb_get_msglevel(struct net_device *ndev)
1104 {
1105 	struct ravb_private *priv = netdev_priv(ndev);
1106 
1107 	return priv->msg_enable;
1108 }
1109 
1110 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1111 {
1112 	struct ravb_private *priv = netdev_priv(ndev);
1113 
1114 	priv->msg_enable = value;
1115 }
1116 
1117 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1118 	"rx_queue_0_current",
1119 	"tx_queue_0_current",
1120 	"rx_queue_0_dirty",
1121 	"tx_queue_0_dirty",
1122 	"rx_queue_0_packets",
1123 	"tx_queue_0_packets",
1124 	"rx_queue_0_bytes",
1125 	"tx_queue_0_bytes",
1126 	"rx_queue_0_mcast_packets",
1127 	"rx_queue_0_errors",
1128 	"rx_queue_0_crc_errors",
1129 	"rx_queue_0_frame_errors",
1130 	"rx_queue_0_length_errors",
1131 	"rx_queue_0_missed_errors",
1132 	"rx_queue_0_over_errors",
1133 
1134 	"rx_queue_1_current",
1135 	"tx_queue_1_current",
1136 	"rx_queue_1_dirty",
1137 	"tx_queue_1_dirty",
1138 	"rx_queue_1_packets",
1139 	"tx_queue_1_packets",
1140 	"rx_queue_1_bytes",
1141 	"tx_queue_1_bytes",
1142 	"rx_queue_1_mcast_packets",
1143 	"rx_queue_1_errors",
1144 	"rx_queue_1_crc_errors",
1145 	"rx_queue_1_frame_errors",
1146 	"rx_queue_1_length_errors",
1147 	"rx_queue_1_missed_errors",
1148 	"rx_queue_1_over_errors",
1149 };
1150 
1151 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1152 
1153 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1154 {
1155 	switch (sset) {
1156 	case ETH_SS_STATS:
1157 		return RAVB_STATS_LEN;
1158 	default:
1159 		return -EOPNOTSUPP;
1160 	}
1161 }
1162 
1163 static void ravb_get_ethtool_stats(struct net_device *ndev,
1164 				   struct ethtool_stats *estats, u64 *data)
1165 {
1166 	struct ravb_private *priv = netdev_priv(ndev);
1167 	int i = 0;
1168 	int q;
1169 
1170 	/* Device-specific stats */
1171 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1172 		struct net_device_stats *stats = &priv->stats[q];
1173 
1174 		data[i++] = priv->cur_rx[q];
1175 		data[i++] = priv->cur_tx[q];
1176 		data[i++] = priv->dirty_rx[q];
1177 		data[i++] = priv->dirty_tx[q];
1178 		data[i++] = stats->rx_packets;
1179 		data[i++] = stats->tx_packets;
1180 		data[i++] = stats->rx_bytes;
1181 		data[i++] = stats->tx_bytes;
1182 		data[i++] = stats->multicast;
1183 		data[i++] = stats->rx_errors;
1184 		data[i++] = stats->rx_crc_errors;
1185 		data[i++] = stats->rx_frame_errors;
1186 		data[i++] = stats->rx_length_errors;
1187 		data[i++] = stats->rx_missed_errors;
1188 		data[i++] = stats->rx_over_errors;
1189 	}
1190 }
1191 
1192 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1193 {
1194 	switch (stringset) {
1195 	case ETH_SS_STATS:
1196 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1197 		break;
1198 	}
1199 }
1200 
1201 static void ravb_get_ringparam(struct net_device *ndev,
1202 			       struct ethtool_ringparam *ring)
1203 {
1204 	struct ravb_private *priv = netdev_priv(ndev);
1205 
1206 	ring->rx_max_pending = BE_RX_RING_MAX;
1207 	ring->tx_max_pending = BE_TX_RING_MAX;
1208 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1209 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1210 }
1211 
1212 static int ravb_set_ringparam(struct net_device *ndev,
1213 			      struct ethtool_ringparam *ring)
1214 {
1215 	struct ravb_private *priv = netdev_priv(ndev);
1216 	int error;
1217 
1218 	if (ring->tx_pending > BE_TX_RING_MAX ||
1219 	    ring->rx_pending > BE_RX_RING_MAX ||
1220 	    ring->tx_pending < BE_TX_RING_MIN ||
1221 	    ring->rx_pending < BE_RX_RING_MIN)
1222 		return -EINVAL;
1223 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1224 		return -EINVAL;
1225 
1226 	if (netif_running(ndev)) {
1227 		netif_device_detach(ndev);
1228 		/* Stop PTP Clock driver */
1229 		if (priv->chip_id == RCAR_GEN2)
1230 			ravb_ptp_stop(ndev);
1231 		/* Wait for DMA stopping */
1232 		error = ravb_stop_dma(ndev);
1233 		if (error) {
1234 			netdev_err(ndev,
1235 				   "cannot set ringparam! Any AVB processes are still running?\n");
1236 			return error;
1237 		}
1238 		synchronize_irq(ndev->irq);
1239 
1240 		/* Free all the skb's in the RX queue and the DMA buffers. */
1241 		ravb_ring_free(ndev, RAVB_BE);
1242 		ravb_ring_free(ndev, RAVB_NC);
1243 	}
1244 
1245 	/* Set new parameters */
1246 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1247 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1248 
1249 	if (netif_running(ndev)) {
1250 		error = ravb_dmac_init(ndev);
1251 		if (error) {
1252 			netdev_err(ndev,
1253 				   "%s: ravb_dmac_init() failed, error %d\n",
1254 				   __func__, error);
1255 			return error;
1256 		}
1257 
1258 		ravb_emac_init(ndev);
1259 
1260 		/* Initialise PTP Clock driver */
1261 		if (priv->chip_id == RCAR_GEN2)
1262 			ravb_ptp_init(ndev, priv->pdev);
1263 
1264 		netif_device_attach(ndev);
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int ravb_get_ts_info(struct net_device *ndev,
1271 			    struct ethtool_ts_info *info)
1272 {
1273 	struct ravb_private *priv = netdev_priv(ndev);
1274 
1275 	info->so_timestamping =
1276 		SOF_TIMESTAMPING_TX_SOFTWARE |
1277 		SOF_TIMESTAMPING_RX_SOFTWARE |
1278 		SOF_TIMESTAMPING_SOFTWARE |
1279 		SOF_TIMESTAMPING_TX_HARDWARE |
1280 		SOF_TIMESTAMPING_RX_HARDWARE |
1281 		SOF_TIMESTAMPING_RAW_HARDWARE;
1282 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1283 	info->rx_filters =
1284 		(1 << HWTSTAMP_FILTER_NONE) |
1285 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1286 		(1 << HWTSTAMP_FILTER_ALL);
1287 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1288 
1289 	return 0;
1290 }
1291 
1292 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1293 {
1294 	struct ravb_private *priv = netdev_priv(ndev);
1295 
1296 	wol->supported = WAKE_MAGIC;
1297 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1298 }
1299 
1300 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1301 {
1302 	struct ravb_private *priv = netdev_priv(ndev);
1303 
1304 	if (wol->wolopts & ~WAKE_MAGIC)
1305 		return -EOPNOTSUPP;
1306 
1307 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1308 
1309 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1310 
1311 	return 0;
1312 }
1313 
1314 static const struct ethtool_ops ravb_ethtool_ops = {
1315 	.nway_reset		= phy_ethtool_nway_reset,
1316 	.get_msglevel		= ravb_get_msglevel,
1317 	.set_msglevel		= ravb_set_msglevel,
1318 	.get_link		= ethtool_op_get_link,
1319 	.get_strings		= ravb_get_strings,
1320 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1321 	.get_sset_count		= ravb_get_sset_count,
1322 	.get_ringparam		= ravb_get_ringparam,
1323 	.set_ringparam		= ravb_set_ringparam,
1324 	.get_ts_info		= ravb_get_ts_info,
1325 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1326 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1327 	.get_wol		= ravb_get_wol,
1328 	.set_wol		= ravb_set_wol,
1329 };
1330 
1331 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1332 				struct net_device *ndev, struct device *dev,
1333 				const char *ch)
1334 {
1335 	char *name;
1336 	int error;
1337 
1338 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1339 	if (!name)
1340 		return -ENOMEM;
1341 	error = request_irq(irq, handler, 0, name, ndev);
1342 	if (error)
1343 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1344 
1345 	return error;
1346 }
1347 
1348 /* Network device open function for Ethernet AVB */
1349 static int ravb_open(struct net_device *ndev)
1350 {
1351 	struct ravb_private *priv = netdev_priv(ndev);
1352 	struct platform_device *pdev = priv->pdev;
1353 	struct device *dev = &pdev->dev;
1354 	int error;
1355 
1356 	napi_enable(&priv->napi[RAVB_BE]);
1357 	napi_enable(&priv->napi[RAVB_NC]);
1358 
1359 	if (priv->chip_id == RCAR_GEN2) {
1360 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1361 				    ndev->name, ndev);
1362 		if (error) {
1363 			netdev_err(ndev, "cannot request IRQ\n");
1364 			goto out_napi_off;
1365 		}
1366 	} else {
1367 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1368 				      dev, "ch22:multi");
1369 		if (error)
1370 			goto out_napi_off;
1371 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1372 				      dev, "ch24:emac");
1373 		if (error)
1374 			goto out_free_irq;
1375 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1376 				      ndev, dev, "ch0:rx_be");
1377 		if (error)
1378 			goto out_free_irq_emac;
1379 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1380 				      ndev, dev, "ch18:tx_be");
1381 		if (error)
1382 			goto out_free_irq_be_rx;
1383 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1384 				      ndev, dev, "ch1:rx_nc");
1385 		if (error)
1386 			goto out_free_irq_be_tx;
1387 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1388 				      ndev, dev, "ch19:tx_nc");
1389 		if (error)
1390 			goto out_free_irq_nc_rx;
1391 	}
1392 
1393 	/* Device init */
1394 	error = ravb_dmac_init(ndev);
1395 	if (error)
1396 		goto out_free_irq_nc_tx;
1397 	ravb_emac_init(ndev);
1398 
1399 	/* Initialise PTP Clock driver */
1400 	if (priv->chip_id == RCAR_GEN2)
1401 		ravb_ptp_init(ndev, priv->pdev);
1402 
1403 	netif_tx_start_all_queues(ndev);
1404 
1405 	/* PHY control start */
1406 	error = ravb_phy_start(ndev);
1407 	if (error)
1408 		goto out_ptp_stop;
1409 
1410 	return 0;
1411 
1412 out_ptp_stop:
1413 	/* Stop PTP Clock driver */
1414 	if (priv->chip_id == RCAR_GEN2)
1415 		ravb_ptp_stop(ndev);
1416 out_free_irq_nc_tx:
1417 	if (priv->chip_id == RCAR_GEN2)
1418 		goto out_free_irq;
1419 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1420 out_free_irq_nc_rx:
1421 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1422 out_free_irq_be_tx:
1423 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1424 out_free_irq_be_rx:
1425 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1426 out_free_irq_emac:
1427 	free_irq(priv->emac_irq, ndev);
1428 out_free_irq:
1429 	free_irq(ndev->irq, ndev);
1430 out_napi_off:
1431 	napi_disable(&priv->napi[RAVB_NC]);
1432 	napi_disable(&priv->napi[RAVB_BE]);
1433 	return error;
1434 }
1435 
1436 /* Timeout function for Ethernet AVB */
1437 static void ravb_tx_timeout(struct net_device *ndev)
1438 {
1439 	struct ravb_private *priv = netdev_priv(ndev);
1440 
1441 	netif_err(priv, tx_err, ndev,
1442 		  "transmit timed out, status %08x, resetting...\n",
1443 		  ravb_read(ndev, ISS));
1444 
1445 	/* tx_errors count up */
1446 	ndev->stats.tx_errors++;
1447 
1448 	schedule_work(&priv->work);
1449 }
1450 
1451 static void ravb_tx_timeout_work(struct work_struct *work)
1452 {
1453 	struct ravb_private *priv = container_of(work, struct ravb_private,
1454 						 work);
1455 	struct net_device *ndev = priv->ndev;
1456 
1457 	netif_tx_stop_all_queues(ndev);
1458 
1459 	/* Stop PTP Clock driver */
1460 	if (priv->chip_id == RCAR_GEN2)
1461 		ravb_ptp_stop(ndev);
1462 
1463 	/* Wait for DMA stopping */
1464 	ravb_stop_dma(ndev);
1465 
1466 	ravb_ring_free(ndev, RAVB_BE);
1467 	ravb_ring_free(ndev, RAVB_NC);
1468 
1469 	/* Device init */
1470 	ravb_dmac_init(ndev);
1471 	ravb_emac_init(ndev);
1472 
1473 	/* Initialise PTP Clock driver */
1474 	if (priv->chip_id == RCAR_GEN2)
1475 		ravb_ptp_init(ndev, priv->pdev);
1476 
1477 	netif_tx_start_all_queues(ndev);
1478 }
1479 
1480 /* Packet transmit function for Ethernet AVB */
1481 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1482 {
1483 	struct ravb_private *priv = netdev_priv(ndev);
1484 	int num_tx_desc = priv->num_tx_desc;
1485 	u16 q = skb_get_queue_mapping(skb);
1486 	struct ravb_tstamp_skb *ts_skb;
1487 	struct ravb_tx_desc *desc;
1488 	unsigned long flags;
1489 	u32 dma_addr;
1490 	void *buffer;
1491 	u32 entry;
1492 	u32 len;
1493 
1494 	spin_lock_irqsave(&priv->lock, flags);
1495 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1496 	    num_tx_desc) {
1497 		netif_err(priv, tx_queued, ndev,
1498 			  "still transmitting with the full ring!\n");
1499 		netif_stop_subqueue(ndev, q);
1500 		spin_unlock_irqrestore(&priv->lock, flags);
1501 		return NETDEV_TX_BUSY;
1502 	}
1503 
1504 	if (skb_put_padto(skb, ETH_ZLEN))
1505 		goto exit;
1506 
1507 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1508 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1509 
1510 	if (num_tx_desc > 1) {
1511 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1512 			 entry / num_tx_desc * DPTR_ALIGN;
1513 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1514 
1515 		/* Zero length DMA descriptors are problematic as they seem
1516 		 * to terminate DMA transfers. Avoid them by simply using a
1517 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1518 		 * DPTR_ALIGN.
1519 		 *
1520 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1521 		 * bytes of data by the call to skb_put_padto() above this
1522 		 * is safe with respect to both the length of the first DMA
1523 		 * descriptor (len) overflowing the available data and the
1524 		 * length of the second DMA descriptor (skb->len - len)
1525 		 * being negative.
1526 		 */
1527 		if (len == 0)
1528 			len = DPTR_ALIGN;
1529 
1530 		memcpy(buffer, skb->data, len);
1531 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1532 					  DMA_TO_DEVICE);
1533 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1534 			goto drop;
1535 
1536 		desc = &priv->tx_ring[q][entry];
1537 		desc->ds_tagl = cpu_to_le16(len);
1538 		desc->dptr = cpu_to_le32(dma_addr);
1539 
1540 		buffer = skb->data + len;
1541 		len = skb->len - len;
1542 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1543 					  DMA_TO_DEVICE);
1544 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1545 			goto unmap;
1546 
1547 		desc++;
1548 	} else {
1549 		desc = &priv->tx_ring[q][entry];
1550 		len = skb->len;
1551 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1552 					  DMA_TO_DEVICE);
1553 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1554 			goto drop;
1555 	}
1556 	desc->ds_tagl = cpu_to_le16(len);
1557 	desc->dptr = cpu_to_le32(dma_addr);
1558 
1559 	/* TX timestamp required */
1560 	if (q == RAVB_NC) {
1561 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1562 		if (!ts_skb) {
1563 			if (num_tx_desc > 1) {
1564 				desc--;
1565 				dma_unmap_single(ndev->dev.parent, dma_addr,
1566 						 len, DMA_TO_DEVICE);
1567 			}
1568 			goto unmap;
1569 		}
1570 		ts_skb->skb = skb_get(skb);
1571 		ts_skb->tag = priv->ts_skb_tag++;
1572 		priv->ts_skb_tag &= 0x3ff;
1573 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1574 
1575 		/* TAG and timestamp required flag */
1576 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1577 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1578 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1579 	}
1580 
1581 	skb_tx_timestamp(skb);
1582 	/* Descriptor type must be set after all the above writes */
1583 	dma_wmb();
1584 	if (num_tx_desc > 1) {
1585 		desc->die_dt = DT_FEND;
1586 		desc--;
1587 		desc->die_dt = DT_FSTART;
1588 	} else {
1589 		desc->die_dt = DT_FSINGLE;
1590 	}
1591 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1592 
1593 	priv->cur_tx[q] += num_tx_desc;
1594 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1595 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1596 	    !ravb_tx_free(ndev, q, true))
1597 		netif_stop_subqueue(ndev, q);
1598 
1599 exit:
1600 	spin_unlock_irqrestore(&priv->lock, flags);
1601 	return NETDEV_TX_OK;
1602 
1603 unmap:
1604 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1605 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1606 drop:
1607 	dev_kfree_skb_any(skb);
1608 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1609 	goto exit;
1610 }
1611 
1612 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1613 			     struct net_device *sb_dev)
1614 {
1615 	/* If skb needs TX timestamp, it is handled in network control queue */
1616 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1617 							       RAVB_BE;
1618 
1619 }
1620 
1621 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1622 {
1623 	struct ravb_private *priv = netdev_priv(ndev);
1624 	struct net_device_stats *nstats, *stats0, *stats1;
1625 
1626 	nstats = &ndev->stats;
1627 	stats0 = &priv->stats[RAVB_BE];
1628 	stats1 = &priv->stats[RAVB_NC];
1629 
1630 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1631 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1632 	nstats->collisions += ravb_read(ndev, CDCR);
1633 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1634 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1635 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1636 
1637 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1638 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1639 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1640 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1641 
1642 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1643 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1644 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1645 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1646 	nstats->multicast = stats0->multicast + stats1->multicast;
1647 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1648 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1649 	nstats->rx_frame_errors =
1650 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1651 	nstats->rx_length_errors =
1652 		stats0->rx_length_errors + stats1->rx_length_errors;
1653 	nstats->rx_missed_errors =
1654 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1655 	nstats->rx_over_errors =
1656 		stats0->rx_over_errors + stats1->rx_over_errors;
1657 
1658 	return nstats;
1659 }
1660 
1661 /* Update promiscuous bit */
1662 static void ravb_set_rx_mode(struct net_device *ndev)
1663 {
1664 	struct ravb_private *priv = netdev_priv(ndev);
1665 	unsigned long flags;
1666 
1667 	spin_lock_irqsave(&priv->lock, flags);
1668 	ravb_modify(ndev, ECMR, ECMR_PRM,
1669 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1670 	spin_unlock_irqrestore(&priv->lock, flags);
1671 }
1672 
1673 /* Device close function for Ethernet AVB */
1674 static int ravb_close(struct net_device *ndev)
1675 {
1676 	struct device_node *np = ndev->dev.parent->of_node;
1677 	struct ravb_private *priv = netdev_priv(ndev);
1678 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1679 
1680 	netif_tx_stop_all_queues(ndev);
1681 
1682 	/* Disable interrupts by clearing the interrupt masks. */
1683 	ravb_write(ndev, 0, RIC0);
1684 	ravb_write(ndev, 0, RIC2);
1685 	ravb_write(ndev, 0, TIC);
1686 
1687 	/* Stop PTP Clock driver */
1688 	if (priv->chip_id == RCAR_GEN2)
1689 		ravb_ptp_stop(ndev);
1690 
1691 	/* Set the config mode to stop the AVB-DMAC's processes */
1692 	if (ravb_stop_dma(ndev) < 0)
1693 		netdev_err(ndev,
1694 			   "device will be stopped after h/w processes are done.\n");
1695 
1696 	/* Clear the timestamp list */
1697 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1698 		list_del(&ts_skb->list);
1699 		kfree_skb(ts_skb->skb);
1700 		kfree(ts_skb);
1701 	}
1702 
1703 	/* PHY disconnect */
1704 	if (ndev->phydev) {
1705 		phy_stop(ndev->phydev);
1706 		phy_disconnect(ndev->phydev);
1707 		if (of_phy_is_fixed_link(np))
1708 			of_phy_deregister_fixed_link(np);
1709 	}
1710 
1711 	if (priv->chip_id != RCAR_GEN2) {
1712 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1713 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1714 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1715 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1716 		free_irq(priv->emac_irq, ndev);
1717 	}
1718 	free_irq(ndev->irq, ndev);
1719 
1720 	napi_disable(&priv->napi[RAVB_NC]);
1721 	napi_disable(&priv->napi[RAVB_BE]);
1722 
1723 	/* Free all the skb's in the RX queue and the DMA buffers. */
1724 	ravb_ring_free(ndev, RAVB_BE);
1725 	ravb_ring_free(ndev, RAVB_NC);
1726 
1727 	return 0;
1728 }
1729 
1730 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1731 {
1732 	struct ravb_private *priv = netdev_priv(ndev);
1733 	struct hwtstamp_config config;
1734 
1735 	config.flags = 0;
1736 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1737 						HWTSTAMP_TX_OFF;
1738 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1739 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1740 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1741 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1742 	else
1743 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1744 
1745 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1746 		-EFAULT : 0;
1747 }
1748 
1749 /* Control hardware time stamping */
1750 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1751 {
1752 	struct ravb_private *priv = netdev_priv(ndev);
1753 	struct hwtstamp_config config;
1754 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1755 	u32 tstamp_tx_ctrl;
1756 
1757 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1758 		return -EFAULT;
1759 
1760 	/* Reserved for future extensions */
1761 	if (config.flags)
1762 		return -EINVAL;
1763 
1764 	switch (config.tx_type) {
1765 	case HWTSTAMP_TX_OFF:
1766 		tstamp_tx_ctrl = 0;
1767 		break;
1768 	case HWTSTAMP_TX_ON:
1769 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1770 		break;
1771 	default:
1772 		return -ERANGE;
1773 	}
1774 
1775 	switch (config.rx_filter) {
1776 	case HWTSTAMP_FILTER_NONE:
1777 		tstamp_rx_ctrl = 0;
1778 		break;
1779 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1780 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1781 		break;
1782 	default:
1783 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1784 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1785 	}
1786 
1787 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1788 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1789 
1790 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1791 		-EFAULT : 0;
1792 }
1793 
1794 /* ioctl to device function */
1795 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1796 {
1797 	struct phy_device *phydev = ndev->phydev;
1798 
1799 	if (!netif_running(ndev))
1800 		return -EINVAL;
1801 
1802 	if (!phydev)
1803 		return -ENODEV;
1804 
1805 	switch (cmd) {
1806 	case SIOCGHWTSTAMP:
1807 		return ravb_hwtstamp_get(ndev, req);
1808 	case SIOCSHWTSTAMP:
1809 		return ravb_hwtstamp_set(ndev, req);
1810 	}
1811 
1812 	return phy_mii_ioctl(phydev, req, cmd);
1813 }
1814 
1815 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1816 {
1817 	if (netif_running(ndev))
1818 		return -EBUSY;
1819 
1820 	ndev->mtu = new_mtu;
1821 	netdev_update_features(ndev);
1822 
1823 	return 0;
1824 }
1825 
1826 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1827 {
1828 	struct ravb_private *priv = netdev_priv(ndev);
1829 	unsigned long flags;
1830 
1831 	spin_lock_irqsave(&priv->lock, flags);
1832 
1833 	/* Disable TX and RX */
1834 	ravb_rcv_snd_disable(ndev);
1835 
1836 	/* Modify RX Checksum setting */
1837 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1838 
1839 	/* Enable TX and RX */
1840 	ravb_rcv_snd_enable(ndev);
1841 
1842 	spin_unlock_irqrestore(&priv->lock, flags);
1843 }
1844 
1845 static int ravb_set_features(struct net_device *ndev,
1846 			     netdev_features_t features)
1847 {
1848 	netdev_features_t changed = ndev->features ^ features;
1849 
1850 	if (changed & NETIF_F_RXCSUM)
1851 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1852 
1853 	ndev->features = features;
1854 
1855 	return 0;
1856 }
1857 
1858 static const struct net_device_ops ravb_netdev_ops = {
1859 	.ndo_open		= ravb_open,
1860 	.ndo_stop		= ravb_close,
1861 	.ndo_start_xmit		= ravb_start_xmit,
1862 	.ndo_select_queue	= ravb_select_queue,
1863 	.ndo_get_stats		= ravb_get_stats,
1864 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1865 	.ndo_tx_timeout		= ravb_tx_timeout,
1866 	.ndo_do_ioctl		= ravb_do_ioctl,
1867 	.ndo_change_mtu		= ravb_change_mtu,
1868 	.ndo_validate_addr	= eth_validate_addr,
1869 	.ndo_set_mac_address	= eth_mac_addr,
1870 	.ndo_set_features	= ravb_set_features,
1871 };
1872 
1873 /* MDIO bus init function */
1874 static int ravb_mdio_init(struct ravb_private *priv)
1875 {
1876 	struct platform_device *pdev = priv->pdev;
1877 	struct device *dev = &pdev->dev;
1878 	int error;
1879 
1880 	/* Bitbang init */
1881 	priv->mdiobb.ops = &bb_ops;
1882 
1883 	/* MII controller setting */
1884 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1885 	if (!priv->mii_bus)
1886 		return -ENOMEM;
1887 
1888 	/* Hook up MII support for ethtool */
1889 	priv->mii_bus->name = "ravb_mii";
1890 	priv->mii_bus->parent = dev;
1891 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1892 		 pdev->name, pdev->id);
1893 
1894 	/* Register MDIO bus */
1895 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1896 	if (error)
1897 		goto out_free_bus;
1898 
1899 	return 0;
1900 
1901 out_free_bus:
1902 	free_mdio_bitbang(priv->mii_bus);
1903 	return error;
1904 }
1905 
1906 /* MDIO bus release function */
1907 static int ravb_mdio_release(struct ravb_private *priv)
1908 {
1909 	/* Unregister mdio bus */
1910 	mdiobus_unregister(priv->mii_bus);
1911 
1912 	/* Free bitbang info */
1913 	free_mdio_bitbang(priv->mii_bus);
1914 
1915 	return 0;
1916 }
1917 
1918 static const struct of_device_id ravb_match_table[] = {
1919 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1920 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1921 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1922 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1923 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1924 	{ }
1925 };
1926 MODULE_DEVICE_TABLE(of, ravb_match_table);
1927 
1928 static int ravb_set_gti(struct net_device *ndev)
1929 {
1930 	struct ravb_private *priv = netdev_priv(ndev);
1931 	struct device *dev = ndev->dev.parent;
1932 	unsigned long rate;
1933 	uint64_t inc;
1934 
1935 	rate = clk_get_rate(priv->clk);
1936 	if (!rate)
1937 		return -EINVAL;
1938 
1939 	inc = 1000000000ULL << 20;
1940 	do_div(inc, rate);
1941 
1942 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1943 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1944 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1945 		return -EINVAL;
1946 	}
1947 
1948 	ravb_write(ndev, inc, GTI);
1949 
1950 	return 0;
1951 }
1952 
1953 static void ravb_set_config_mode(struct net_device *ndev)
1954 {
1955 	struct ravb_private *priv = netdev_priv(ndev);
1956 
1957 	if (priv->chip_id == RCAR_GEN2) {
1958 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1959 		/* Set CSEL value */
1960 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1961 	} else {
1962 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1963 			    CCC_GAC | CCC_CSEL_HPB);
1964 	}
1965 }
1966 
1967 static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1968 	{ .soc_id = "r8a774c0" },
1969 	{ .soc_id = "r8a77990" },
1970 	{ .soc_id = "r8a77995" },
1971 	{ /* sentinel */ }
1972 };
1973 
1974 /* Set tx and rx clock internal delay modes */
1975 static void ravb_set_delay_mode(struct net_device *ndev)
1976 {
1977 	struct ravb_private *priv = netdev_priv(ndev);
1978 	int set = 0;
1979 
1980 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1981 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1982 		set |= APSR_DM_RDM;
1983 
1984 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1985 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1986 		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
1987 			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
1988 			  phy_modes(priv->phy_interface)))
1989 			set |= APSR_DM_TDM;
1990 	}
1991 
1992 	ravb_modify(ndev, APSR, APSR_DM, set);
1993 }
1994 
1995 static int ravb_probe(struct platform_device *pdev)
1996 {
1997 	struct device_node *np = pdev->dev.of_node;
1998 	struct ravb_private *priv;
1999 	enum ravb_chip_id chip_id;
2000 	struct net_device *ndev;
2001 	int error, irq, q;
2002 	struct resource *res;
2003 	int i;
2004 
2005 	if (!np) {
2006 		dev_err(&pdev->dev,
2007 			"this driver is required to be instantiated from device tree\n");
2008 		return -EINVAL;
2009 	}
2010 
2011 	/* Get base address */
2012 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2013 	if (!res) {
2014 		dev_err(&pdev->dev, "invalid resource\n");
2015 		return -EINVAL;
2016 	}
2017 
2018 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2019 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2020 	if (!ndev)
2021 		return -ENOMEM;
2022 
2023 	ndev->features = NETIF_F_RXCSUM;
2024 	ndev->hw_features = NETIF_F_RXCSUM;
2025 
2026 	pm_runtime_enable(&pdev->dev);
2027 	pm_runtime_get_sync(&pdev->dev);
2028 
2029 	/* The Ether-specific entries in the device structure. */
2030 	ndev->base_addr = res->start;
2031 
2032 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2033 
2034 	if (chip_id == RCAR_GEN3)
2035 		irq = platform_get_irq_byname(pdev, "ch22");
2036 	else
2037 		irq = platform_get_irq(pdev, 0);
2038 	if (irq < 0) {
2039 		error = irq;
2040 		goto out_release;
2041 	}
2042 	ndev->irq = irq;
2043 
2044 	SET_NETDEV_DEV(ndev, &pdev->dev);
2045 
2046 	priv = netdev_priv(ndev);
2047 	priv->ndev = ndev;
2048 	priv->pdev = pdev;
2049 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2050 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2051 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2052 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2053 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2054 	if (IS_ERR(priv->addr)) {
2055 		error = PTR_ERR(priv->addr);
2056 		goto out_release;
2057 	}
2058 
2059 	spin_lock_init(&priv->lock);
2060 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2061 
2062 	priv->phy_interface = of_get_phy_mode(np);
2063 
2064 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2065 	priv->avb_link_active_low =
2066 		of_property_read_bool(np, "renesas,ether-link-active-low");
2067 
2068 	if (chip_id == RCAR_GEN3) {
2069 		irq = platform_get_irq_byname(pdev, "ch24");
2070 		if (irq < 0) {
2071 			error = irq;
2072 			goto out_release;
2073 		}
2074 		priv->emac_irq = irq;
2075 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2076 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2077 			if (irq < 0) {
2078 				error = irq;
2079 				goto out_release;
2080 			}
2081 			priv->rx_irqs[i] = irq;
2082 		}
2083 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2084 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2085 			if (irq < 0) {
2086 				error = irq;
2087 				goto out_release;
2088 			}
2089 			priv->tx_irqs[i] = irq;
2090 		}
2091 	}
2092 
2093 	priv->chip_id = chip_id;
2094 
2095 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2096 	if (IS_ERR(priv->clk)) {
2097 		error = PTR_ERR(priv->clk);
2098 		goto out_release;
2099 	}
2100 
2101 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2102 	ndev->min_mtu = ETH_MIN_MTU;
2103 
2104 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2105 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2106 
2107 	/* Set function */
2108 	ndev->netdev_ops = &ravb_netdev_ops;
2109 	ndev->ethtool_ops = &ravb_ethtool_ops;
2110 
2111 	/* Set AVB config mode */
2112 	ravb_set_config_mode(ndev);
2113 
2114 	/* Set GTI value */
2115 	error = ravb_set_gti(ndev);
2116 	if (error)
2117 		goto out_release;
2118 
2119 	/* Request GTI loading */
2120 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2121 
2122 	if (priv->chip_id != RCAR_GEN2)
2123 		ravb_set_delay_mode(ndev);
2124 
2125 	/* Allocate descriptor base address table */
2126 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2127 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2128 					    &priv->desc_bat_dma, GFP_KERNEL);
2129 	if (!priv->desc_bat) {
2130 		dev_err(&pdev->dev,
2131 			"Cannot allocate desc base address table (size %d bytes)\n",
2132 			priv->desc_bat_size);
2133 		error = -ENOMEM;
2134 		goto out_release;
2135 	}
2136 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2137 		priv->desc_bat[q].die_dt = DT_EOS;
2138 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2139 
2140 	/* Initialise HW timestamp list */
2141 	INIT_LIST_HEAD(&priv->ts_skb_list);
2142 
2143 	/* Initialise PTP Clock driver */
2144 	if (chip_id != RCAR_GEN2)
2145 		ravb_ptp_init(ndev, pdev);
2146 
2147 	/* Debug message level */
2148 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2149 
2150 	/* Read and set MAC address */
2151 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2152 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2153 		dev_warn(&pdev->dev,
2154 			 "no valid MAC address supplied, using a random one\n");
2155 		eth_hw_addr_random(ndev);
2156 	}
2157 
2158 	/* MDIO bus init */
2159 	error = ravb_mdio_init(priv);
2160 	if (error) {
2161 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2162 		goto out_dma_free;
2163 	}
2164 
2165 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2166 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2167 
2168 	/* Network device register */
2169 	error = register_netdev(ndev);
2170 	if (error)
2171 		goto out_napi_del;
2172 
2173 	device_set_wakeup_capable(&pdev->dev, 1);
2174 
2175 	/* Print device information */
2176 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2177 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2178 
2179 	platform_set_drvdata(pdev, ndev);
2180 
2181 	return 0;
2182 
2183 out_napi_del:
2184 	netif_napi_del(&priv->napi[RAVB_NC]);
2185 	netif_napi_del(&priv->napi[RAVB_BE]);
2186 	ravb_mdio_release(priv);
2187 out_dma_free:
2188 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2189 			  priv->desc_bat_dma);
2190 
2191 	/* Stop PTP Clock driver */
2192 	if (chip_id != RCAR_GEN2)
2193 		ravb_ptp_stop(ndev);
2194 out_release:
2195 	free_netdev(ndev);
2196 
2197 	pm_runtime_put(&pdev->dev);
2198 	pm_runtime_disable(&pdev->dev);
2199 	return error;
2200 }
2201 
2202 static int ravb_remove(struct platform_device *pdev)
2203 {
2204 	struct net_device *ndev = platform_get_drvdata(pdev);
2205 	struct ravb_private *priv = netdev_priv(ndev);
2206 
2207 	/* Stop PTP Clock driver */
2208 	if (priv->chip_id != RCAR_GEN2)
2209 		ravb_ptp_stop(ndev);
2210 
2211 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2212 			  priv->desc_bat_dma);
2213 	/* Set reset mode */
2214 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2215 	pm_runtime_put_sync(&pdev->dev);
2216 	unregister_netdev(ndev);
2217 	netif_napi_del(&priv->napi[RAVB_NC]);
2218 	netif_napi_del(&priv->napi[RAVB_BE]);
2219 	ravb_mdio_release(priv);
2220 	pm_runtime_disable(&pdev->dev);
2221 	free_netdev(ndev);
2222 	platform_set_drvdata(pdev, NULL);
2223 
2224 	return 0;
2225 }
2226 
2227 static int ravb_wol_setup(struct net_device *ndev)
2228 {
2229 	struct ravb_private *priv = netdev_priv(ndev);
2230 
2231 	/* Disable interrupts by clearing the interrupt masks. */
2232 	ravb_write(ndev, 0, RIC0);
2233 	ravb_write(ndev, 0, RIC2);
2234 	ravb_write(ndev, 0, TIC);
2235 
2236 	/* Only allow ECI interrupts */
2237 	synchronize_irq(priv->emac_irq);
2238 	napi_disable(&priv->napi[RAVB_NC]);
2239 	napi_disable(&priv->napi[RAVB_BE]);
2240 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2241 
2242 	/* Enable MagicPacket */
2243 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2244 
2245 	return enable_irq_wake(priv->emac_irq);
2246 }
2247 
2248 static int ravb_wol_restore(struct net_device *ndev)
2249 {
2250 	struct ravb_private *priv = netdev_priv(ndev);
2251 	int ret;
2252 
2253 	napi_enable(&priv->napi[RAVB_NC]);
2254 	napi_enable(&priv->napi[RAVB_BE]);
2255 
2256 	/* Disable MagicPacket */
2257 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2258 
2259 	ret = ravb_close(ndev);
2260 	if (ret < 0)
2261 		return ret;
2262 
2263 	return disable_irq_wake(priv->emac_irq);
2264 }
2265 
2266 static int __maybe_unused ravb_suspend(struct device *dev)
2267 {
2268 	struct net_device *ndev = dev_get_drvdata(dev);
2269 	struct ravb_private *priv = netdev_priv(ndev);
2270 	int ret;
2271 
2272 	if (!netif_running(ndev))
2273 		return 0;
2274 
2275 	netif_device_detach(ndev);
2276 
2277 	if (priv->wol_enabled)
2278 		ret = ravb_wol_setup(ndev);
2279 	else
2280 		ret = ravb_close(ndev);
2281 
2282 	return ret;
2283 }
2284 
2285 static int __maybe_unused ravb_resume(struct device *dev)
2286 {
2287 	struct net_device *ndev = dev_get_drvdata(dev);
2288 	struct ravb_private *priv = netdev_priv(ndev);
2289 	int ret = 0;
2290 
2291 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2292 	if (priv->wol_enabled)
2293 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2294 
2295 	/* All register have been reset to default values.
2296 	 * Restore all registers which where setup at probe time and
2297 	 * reopen device if it was running before system suspended.
2298 	 */
2299 
2300 	/* Set AVB config mode */
2301 	ravb_set_config_mode(ndev);
2302 
2303 	/* Set GTI value */
2304 	ret = ravb_set_gti(ndev);
2305 	if (ret)
2306 		return ret;
2307 
2308 	/* Request GTI loading */
2309 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2310 
2311 	if (priv->chip_id != RCAR_GEN2)
2312 		ravb_set_delay_mode(ndev);
2313 
2314 	/* Restore descriptor base address table */
2315 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2316 
2317 	if (netif_running(ndev)) {
2318 		if (priv->wol_enabled) {
2319 			ret = ravb_wol_restore(ndev);
2320 			if (ret)
2321 				return ret;
2322 		}
2323 		ret = ravb_open(ndev);
2324 		if (ret < 0)
2325 			return ret;
2326 		netif_device_attach(ndev);
2327 	}
2328 
2329 	return ret;
2330 }
2331 
2332 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2333 {
2334 	/* Runtime PM callback shared between ->runtime_suspend()
2335 	 * and ->runtime_resume(). Simply returns success.
2336 	 *
2337 	 * This driver re-initializes all registers after
2338 	 * pm_runtime_get_sync() anyway so there is no need
2339 	 * to save and restore registers here.
2340 	 */
2341 	return 0;
2342 }
2343 
2344 static const struct dev_pm_ops ravb_dev_pm_ops = {
2345 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2346 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2347 };
2348 
2349 static struct platform_driver ravb_driver = {
2350 	.probe		= ravb_probe,
2351 	.remove		= ravb_remove,
2352 	.driver = {
2353 		.name	= "ravb",
2354 		.pm	= &ravb_dev_pm_ops,
2355 		.of_match_table = ravb_match_table,
2356 	},
2357 };
2358 
2359 module_platform_driver(ravb_driver);
2360 
2361 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2362 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2363 MODULE_LICENSE("GPL v2");
2364