1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
44 {
45 	int i;
46 
47 	for (i = 0; i < 10000; i++) {
48 		if ((ravb_read(ndev, reg) & mask) == value)
49 			return 0;
50 		udelay(10);
51 	}
52 	return -ETIMEDOUT;
53 }
54 
55 static int ravb_config(struct net_device *ndev)
56 {
57 	int error;
58 
59 	/* Set config mode */
60 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
61 		   CCC);
62 	/* Check if the operating mode is changed to the config mode */
63 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
64 	if (error)
65 		netdev_err(ndev, "failed to switch device to config mode\n");
66 
67 	return error;
68 }
69 
70 static void ravb_set_duplex(struct net_device *ndev)
71 {
72 	struct ravb_private *priv = netdev_priv(ndev);
73 	u32 ecmr = ravb_read(ndev, ECMR);
74 
75 	if (priv->duplex)	/* Full */
76 		ecmr |=  ECMR_DM;
77 	else			/* Half */
78 		ecmr &= ~ECMR_DM;
79 	ravb_write(ndev, ecmr, ECMR);
80 }
81 
82 static void ravb_set_rate(struct net_device *ndev)
83 {
84 	struct ravb_private *priv = netdev_priv(ndev);
85 
86 	switch (priv->speed) {
87 	case 100:		/* 100BASE */
88 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
89 		break;
90 	case 1000:		/* 1000BASE */
91 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
92 		break;
93 	default:
94 		break;
95 	}
96 }
97 
98 static void ravb_set_buffer_align(struct sk_buff *skb)
99 {
100 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
101 
102 	if (reserve)
103 		skb_reserve(skb, RAVB_ALIGN - reserve);
104 }
105 
106 /* Get MAC address from the MAC address registers
107  *
108  * Ethernet AVB device doesn't have ROM for MAC address.
109  * This function gets the MAC address that was used by a bootloader.
110  */
111 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
112 {
113 	if (mac) {
114 		ether_addr_copy(ndev->dev_addr, mac);
115 	} else {
116 		ndev->dev_addr[0] = (ravb_read(ndev, MAHR) >> 24);
117 		ndev->dev_addr[1] = (ravb_read(ndev, MAHR) >> 16) & 0xFF;
118 		ndev->dev_addr[2] = (ravb_read(ndev, MAHR) >> 8) & 0xFF;
119 		ndev->dev_addr[3] = (ravb_read(ndev, MAHR) >> 0) & 0xFF;
120 		ndev->dev_addr[4] = (ravb_read(ndev, MALR) >> 8) & 0xFF;
121 		ndev->dev_addr[5] = (ravb_read(ndev, MALR) >> 0) & 0xFF;
122 	}
123 }
124 
125 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
126 {
127 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
128 						 mdiobb);
129 	u32 pir = ravb_read(priv->ndev, PIR);
130 
131 	if (set)
132 		pir |=  mask;
133 	else
134 		pir &= ~mask;
135 	ravb_write(priv->ndev, pir, PIR);
136 }
137 
138 /* MDC pin control */
139 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
140 {
141 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
142 }
143 
144 /* Data I/O pin control */
145 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
146 {
147 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
148 }
149 
150 /* Set data bit */
151 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
152 {
153 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
154 }
155 
156 /* Get data bit */
157 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
158 {
159 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
160 						 mdiobb);
161 
162 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
163 }
164 
165 /* MDIO bus control struct */
166 static struct mdiobb_ops bb_ops = {
167 	.owner = THIS_MODULE,
168 	.set_mdc = ravb_set_mdc,
169 	.set_mdio_dir = ravb_set_mdio_dir,
170 	.set_mdio_data = ravb_set_mdio_data,
171 	.get_mdio_data = ravb_get_mdio_data,
172 };
173 
174 /* Free skb's and DMA buffers for Ethernet AVB */
175 static void ravb_ring_free(struct net_device *ndev, int q)
176 {
177 	struct ravb_private *priv = netdev_priv(ndev);
178 	int ring_size;
179 	int i;
180 
181 	/* Free RX skb ringbuffer */
182 	if (priv->rx_skb[q]) {
183 		for (i = 0; i < priv->num_rx_ring[q]; i++)
184 			dev_kfree_skb(priv->rx_skb[q][i]);
185 	}
186 	kfree(priv->rx_skb[q]);
187 	priv->rx_skb[q] = NULL;
188 
189 	/* Free TX skb ringbuffer */
190 	if (priv->tx_skb[q]) {
191 		for (i = 0; i < priv->num_tx_ring[q]; i++)
192 			dev_kfree_skb(priv->tx_skb[q][i]);
193 	}
194 	kfree(priv->tx_skb[q]);
195 	priv->tx_skb[q] = NULL;
196 
197 	/* Free aligned TX buffers */
198 	if (priv->tx_buffers[q]) {
199 		for (i = 0; i < priv->num_tx_ring[q]; i++)
200 			kfree(priv->tx_buffers[q][i]);
201 	}
202 	kfree(priv->tx_buffers[q]);
203 	priv->tx_buffers[q] = NULL;
204 
205 	if (priv->rx_ring[q]) {
206 		ring_size = sizeof(struct ravb_ex_rx_desc) *
207 			    (priv->num_rx_ring[q] + 1);
208 		dma_free_coherent(NULL, ring_size, priv->rx_ring[q],
209 				  priv->rx_desc_dma[q]);
210 		priv->rx_ring[q] = NULL;
211 	}
212 
213 	if (priv->tx_ring[q]) {
214 		ring_size = sizeof(struct ravb_tx_desc) *
215 			    (priv->num_tx_ring[q] + 1);
216 		dma_free_coherent(NULL, ring_size, priv->tx_ring[q],
217 				  priv->tx_desc_dma[q]);
218 		priv->tx_ring[q] = NULL;
219 	}
220 }
221 
222 /* Format skb and descriptor buffer for Ethernet AVB */
223 static void ravb_ring_format(struct net_device *ndev, int q)
224 {
225 	struct ravb_private *priv = netdev_priv(ndev);
226 	struct ravb_ex_rx_desc *rx_desc = NULL;
227 	struct ravb_tx_desc *tx_desc = NULL;
228 	struct ravb_desc *desc = NULL;
229 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
230 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q];
231 	dma_addr_t dma_addr;
232 	int i;
233 
234 	priv->cur_rx[q] = 0;
235 	priv->cur_tx[q] = 0;
236 	priv->dirty_rx[q] = 0;
237 	priv->dirty_tx[q] = 0;
238 
239 	memset(priv->rx_ring[q], 0, rx_ring_size);
240 	/* Build RX ring buffer */
241 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
242 		/* RX descriptor */
243 		rx_desc = &priv->rx_ring[q][i];
244 		/* The size of the buffer should be on 16-byte boundary. */
245 		rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
246 		dma_addr = dma_map_single(&ndev->dev, priv->rx_skb[q][i]->data,
247 					  ALIGN(PKT_BUF_SZ, 16),
248 					  DMA_FROM_DEVICE);
249 		/* We just set the data size to 0 for a failed mapping which
250 		 * should prevent DMA from happening...
251 		 */
252 		if (dma_mapping_error(&ndev->dev, dma_addr))
253 			rx_desc->ds_cc = cpu_to_le16(0);
254 		rx_desc->dptr = cpu_to_le32(dma_addr);
255 		rx_desc->die_dt = DT_FEMPTY;
256 	}
257 	rx_desc = &priv->rx_ring[q][i];
258 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
259 	rx_desc->die_dt = DT_LINKFIX; /* type */
260 
261 	memset(priv->tx_ring[q], 0, tx_ring_size);
262 	/* Build TX ring buffer */
263 	for (i = 0; i < priv->num_tx_ring[q]; i++) {
264 		tx_desc = &priv->tx_ring[q][i];
265 		tx_desc->die_dt = DT_EEMPTY;
266 	}
267 	tx_desc = &priv->tx_ring[q][i];
268 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
269 	tx_desc->die_dt = DT_LINKFIX; /* type */
270 
271 	/* RX descriptor base address for best effort */
272 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
273 	desc->die_dt = DT_LINKFIX; /* type */
274 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
275 
276 	/* TX descriptor base address for best effort */
277 	desc = &priv->desc_bat[q];
278 	desc->die_dt = DT_LINKFIX; /* type */
279 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
280 }
281 
282 /* Init skb and descriptor buffer for Ethernet AVB */
283 static int ravb_ring_init(struct net_device *ndev, int q)
284 {
285 	struct ravb_private *priv = netdev_priv(ndev);
286 	struct sk_buff *skb;
287 	int ring_size;
288 	void *buffer;
289 	int i;
290 
291 	/* Allocate RX and TX skb rings */
292 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
293 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
294 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
295 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
296 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
297 		goto error;
298 
299 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
300 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
301 		if (!skb)
302 			goto error;
303 		ravb_set_buffer_align(skb);
304 		priv->rx_skb[q][i] = skb;
305 	}
306 
307 	/* Allocate rings for the aligned buffers */
308 	priv->tx_buffers[q] = kcalloc(priv->num_tx_ring[q],
309 				      sizeof(*priv->tx_buffers[q]), GFP_KERNEL);
310 	if (!priv->tx_buffers[q])
311 		goto error;
312 
313 	for (i = 0; i < priv->num_tx_ring[q]; i++) {
314 		buffer = kmalloc(PKT_BUF_SZ + RAVB_ALIGN - 1, GFP_KERNEL);
315 		if (!buffer)
316 			goto error;
317 		/* Aligned TX buffer */
318 		priv->tx_buffers[q][i] = buffer;
319 	}
320 
321 	/* Allocate all RX descriptors. */
322 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
323 	priv->rx_ring[q] = dma_alloc_coherent(NULL, ring_size,
324 					      &priv->rx_desc_dma[q],
325 					      GFP_KERNEL);
326 	if (!priv->rx_ring[q])
327 		goto error;
328 
329 	priv->dirty_rx[q] = 0;
330 
331 	/* Allocate all TX descriptors. */
332 	ring_size = sizeof(struct ravb_tx_desc) * (priv->num_tx_ring[q] + 1);
333 	priv->tx_ring[q] = dma_alloc_coherent(NULL, ring_size,
334 					      &priv->tx_desc_dma[q],
335 					      GFP_KERNEL);
336 	if (!priv->tx_ring[q])
337 		goto error;
338 
339 	return 0;
340 
341 error:
342 	ravb_ring_free(ndev, q);
343 
344 	return -ENOMEM;
345 }
346 
347 /* E-MAC init function */
348 static void ravb_emac_init(struct net_device *ndev)
349 {
350 	struct ravb_private *priv = netdev_priv(ndev);
351 	u32 ecmr;
352 
353 	/* Receive frame limit set register */
354 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
355 
356 	/* PAUSE prohibition */
357 	ecmr =  ravb_read(ndev, ECMR);
358 	ecmr &= ECMR_DM;
359 	ecmr |= ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
360 	ravb_write(ndev, ecmr, ECMR);
361 
362 	ravb_set_rate(ndev);
363 
364 	/* Set MAC address */
365 	ravb_write(ndev,
366 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
367 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
368 	ravb_write(ndev,
369 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
370 
371 	ravb_write(ndev, 1, MPR);
372 
373 	/* E-MAC status register clear */
374 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
375 
376 	/* E-MAC interrupt enable register */
377 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
378 }
379 
380 /* Device init function for Ethernet AVB */
381 static int ravb_dmac_init(struct net_device *ndev)
382 {
383 	int error;
384 
385 	/* Set CONFIG mode */
386 	error = ravb_config(ndev);
387 	if (error)
388 		return error;
389 
390 	error = ravb_ring_init(ndev, RAVB_BE);
391 	if (error)
392 		return error;
393 	error = ravb_ring_init(ndev, RAVB_NC);
394 	if (error) {
395 		ravb_ring_free(ndev, RAVB_BE);
396 		return error;
397 	}
398 
399 	/* Descriptor format */
400 	ravb_ring_format(ndev, RAVB_BE);
401 	ravb_ring_format(ndev, RAVB_NC);
402 
403 #if defined(__LITTLE_ENDIAN)
404 	ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC);
405 #else
406 	ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC);
407 #endif
408 
409 	/* Set AVB RX */
410 	ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
411 
412 	/* Set FIFO size */
413 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
414 
415 	/* Timestamp enable */
416 	ravb_write(ndev, TCCR_TFEN, TCCR);
417 
418 	/* Interrupt enable: */
419 	/* Frame receive */
420 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
421 	/* Receive FIFO full warning */
422 	ravb_write(ndev, RIC1_RFWE, RIC1);
423 	/* Receive FIFO full error, descriptor empty */
424 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
425 	/* Frame transmitted, timestamp FIFO updated */
426 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
427 
428 	/* Setting the control will start the AVB-DMAC process. */
429 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION,
430 		   CCC);
431 
432 	return 0;
433 }
434 
435 /* Free TX skb function for AVB-IP */
436 static int ravb_tx_free(struct net_device *ndev, int q)
437 {
438 	struct ravb_private *priv = netdev_priv(ndev);
439 	struct net_device_stats *stats = &priv->stats[q];
440 	struct ravb_tx_desc *desc;
441 	int free_num = 0;
442 	int entry = 0;
443 	u32 size;
444 
445 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
446 		entry = priv->dirty_tx[q] % priv->num_tx_ring[q];
447 		desc = &priv->tx_ring[q][entry];
448 		if (desc->die_dt != DT_FEMPTY)
449 			break;
450 		/* Descriptor type must be checked before all other reads */
451 		dma_rmb();
452 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
453 		/* Free the original skb. */
454 		if (priv->tx_skb[q][entry]) {
455 			dma_unmap_single(&ndev->dev, le32_to_cpu(desc->dptr),
456 					 size, DMA_TO_DEVICE);
457 			dev_kfree_skb_any(priv->tx_skb[q][entry]);
458 			priv->tx_skb[q][entry] = NULL;
459 			free_num++;
460 		}
461 		stats->tx_packets++;
462 		stats->tx_bytes += size;
463 		desc->die_dt = DT_EEMPTY;
464 	}
465 	return free_num;
466 }
467 
468 static void ravb_get_tx_tstamp(struct net_device *ndev)
469 {
470 	struct ravb_private *priv = netdev_priv(ndev);
471 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
472 	struct skb_shared_hwtstamps shhwtstamps;
473 	struct sk_buff *skb;
474 	struct timespec64 ts;
475 	u16 tag, tfa_tag;
476 	int count;
477 	u32 tfa2;
478 
479 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
480 	while (count--) {
481 		tfa2 = ravb_read(ndev, TFA2);
482 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
483 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
484 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
485 			    ravb_read(ndev, TFA1);
486 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
487 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
488 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
489 					 list) {
490 			skb = ts_skb->skb;
491 			tag = ts_skb->tag;
492 			list_del(&ts_skb->list);
493 			kfree(ts_skb);
494 			if (tag == tfa_tag) {
495 				skb_tstamp_tx(skb, &shhwtstamps);
496 				break;
497 			}
498 		}
499 		ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR);
500 	}
501 }
502 
503 /* Packet receive function for Ethernet AVB */
504 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
505 {
506 	struct ravb_private *priv = netdev_priv(ndev);
507 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
508 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
509 			priv->cur_rx[q];
510 	struct net_device_stats *stats = &priv->stats[q];
511 	struct ravb_ex_rx_desc *desc;
512 	struct sk_buff *skb;
513 	dma_addr_t dma_addr;
514 	struct timespec64 ts;
515 	u16 pkt_len = 0;
516 	u8  desc_status;
517 	int limit;
518 
519 	boguscnt = min(boguscnt, *quota);
520 	limit = boguscnt;
521 	desc = &priv->rx_ring[q][entry];
522 	while (desc->die_dt != DT_FEMPTY) {
523 		/* Descriptor type must be checked before all other reads */
524 		dma_rmb();
525 		desc_status = desc->msc;
526 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
527 
528 		if (--boguscnt < 0)
529 			break;
530 
531 		/* We use 0-byte descriptors to mark the DMA mapping errors */
532 		if (!pkt_len)
533 			continue;
534 
535 		if (desc_status & MSC_MC)
536 			stats->multicast++;
537 
538 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
539 				   MSC_CEEF)) {
540 			stats->rx_errors++;
541 			if (desc_status & MSC_CRC)
542 				stats->rx_crc_errors++;
543 			if (desc_status & MSC_RFE)
544 				stats->rx_frame_errors++;
545 			if (desc_status & (MSC_RTLF | MSC_RTSF))
546 				stats->rx_length_errors++;
547 			if (desc_status & MSC_CEEF)
548 				stats->rx_missed_errors++;
549 		} else {
550 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
551 
552 			skb = priv->rx_skb[q][entry];
553 			priv->rx_skb[q][entry] = NULL;
554 			dma_unmap_single(&ndev->dev, le32_to_cpu(desc->dptr),
555 					 ALIGN(PKT_BUF_SZ, 16),
556 					 DMA_FROM_DEVICE);
557 			get_ts &= (q == RAVB_NC) ?
558 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
559 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
560 			if (get_ts) {
561 				struct skb_shared_hwtstamps *shhwtstamps;
562 
563 				shhwtstamps = skb_hwtstamps(skb);
564 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
565 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
566 					     32) | le32_to_cpu(desc->ts_sl);
567 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
568 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
569 			}
570 			skb_put(skb, pkt_len);
571 			skb->protocol = eth_type_trans(skb, ndev);
572 			napi_gro_receive(&priv->napi[q], skb);
573 			stats->rx_packets++;
574 			stats->rx_bytes += pkt_len;
575 		}
576 
577 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
578 		desc = &priv->rx_ring[q][entry];
579 	}
580 
581 	/* Refill the RX ring buffers. */
582 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
583 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
584 		desc = &priv->rx_ring[q][entry];
585 		/* The size of the buffer should be on 16-byte boundary. */
586 		desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
587 
588 		if (!priv->rx_skb[q][entry]) {
589 			skb = netdev_alloc_skb(ndev,
590 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
591 			if (!skb)
592 				break;	/* Better luck next round. */
593 			ravb_set_buffer_align(skb);
594 			dma_addr = dma_map_single(&ndev->dev, skb->data,
595 						  le16_to_cpu(desc->ds_cc),
596 						  DMA_FROM_DEVICE);
597 			skb_checksum_none_assert(skb);
598 			/* We just set the data size to 0 for a failed mapping
599 			 * which should prevent DMA  from happening...
600 			 */
601 			if (dma_mapping_error(&ndev->dev, dma_addr))
602 				desc->ds_cc = cpu_to_le16(0);
603 			desc->dptr = cpu_to_le32(dma_addr);
604 			priv->rx_skb[q][entry] = skb;
605 		}
606 		/* Descriptor type must be set after all the above writes */
607 		dma_wmb();
608 		desc->die_dt = DT_FEMPTY;
609 	}
610 
611 	*quota -= limit - (++boguscnt);
612 
613 	return boguscnt <= 0;
614 }
615 
616 static void ravb_rcv_snd_disable(struct net_device *ndev)
617 {
618 	/* Disable TX and RX */
619 	ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR);
620 }
621 
622 static void ravb_rcv_snd_enable(struct net_device *ndev)
623 {
624 	/* Enable TX and RX */
625 	ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR);
626 }
627 
628 /* function for waiting dma process finished */
629 static int ravb_stop_dma(struct net_device *ndev)
630 {
631 	int error;
632 
633 	/* Wait for stopping the hardware TX process */
634 	error = ravb_wait(ndev, TCCR,
635 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
636 	if (error)
637 		return error;
638 
639 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
640 			  0);
641 	if (error)
642 		return error;
643 
644 	/* Stop the E-MAC's RX/TX processes. */
645 	ravb_rcv_snd_disable(ndev);
646 
647 	/* Wait for stopping the RX DMA process */
648 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
649 	if (error)
650 		return error;
651 
652 	/* Stop AVB-DMAC process */
653 	return ravb_config(ndev);
654 }
655 
656 /* E-MAC interrupt handler */
657 static void ravb_emac_interrupt(struct net_device *ndev)
658 {
659 	struct ravb_private *priv = netdev_priv(ndev);
660 	u32 ecsr, psr;
661 
662 	ecsr = ravb_read(ndev, ECSR);
663 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
664 	if (ecsr & ECSR_ICD)
665 		ndev->stats.tx_carrier_errors++;
666 	if (ecsr & ECSR_LCHNG) {
667 		/* Link changed */
668 		if (priv->no_avb_link)
669 			return;
670 		psr = ravb_read(ndev, PSR);
671 		if (priv->avb_link_active_low)
672 			psr ^= PSR_LMON;
673 		if (!(psr & PSR_LMON)) {
674 			/* DIsable RX and TX */
675 			ravb_rcv_snd_disable(ndev);
676 		} else {
677 			/* Enable RX and TX */
678 			ravb_rcv_snd_enable(ndev);
679 		}
680 	}
681 }
682 
683 /* Error interrupt handler */
684 static void ravb_error_interrupt(struct net_device *ndev)
685 {
686 	struct ravb_private *priv = netdev_priv(ndev);
687 	u32 eis, ris2;
688 
689 	eis = ravb_read(ndev, EIS);
690 	ravb_write(ndev, ~EIS_QFS, EIS);
691 	if (eis & EIS_QFS) {
692 		ris2 = ravb_read(ndev, RIS2);
693 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
694 
695 		/* Receive Descriptor Empty int */
696 		if (ris2 & RIS2_QFF0)
697 			priv->stats[RAVB_BE].rx_over_errors++;
698 
699 		    /* Receive Descriptor Empty int */
700 		if (ris2 & RIS2_QFF1)
701 			priv->stats[RAVB_NC].rx_over_errors++;
702 
703 		/* Receive FIFO Overflow int */
704 		if (ris2 & RIS2_RFFF)
705 			priv->rx_fifo_errors++;
706 	}
707 }
708 
709 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
710 {
711 	struct net_device *ndev = dev_id;
712 	struct ravb_private *priv = netdev_priv(ndev);
713 	irqreturn_t result = IRQ_NONE;
714 	u32 iss;
715 
716 	spin_lock(&priv->lock);
717 	/* Get interrupt status */
718 	iss = ravb_read(ndev, ISS);
719 
720 	/* Received and transmitted interrupts */
721 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
722 		u32 ris0 = ravb_read(ndev, RIS0);
723 		u32 ric0 = ravb_read(ndev, RIC0);
724 		u32 tis  = ravb_read(ndev, TIS);
725 		u32 tic  = ravb_read(ndev, TIC);
726 		int q;
727 
728 		/* Timestamp updated */
729 		if (tis & TIS_TFUF) {
730 			ravb_write(ndev, ~TIS_TFUF, TIS);
731 			ravb_get_tx_tstamp(ndev);
732 			result = IRQ_HANDLED;
733 		}
734 
735 		/* Network control and best effort queue RX/TX */
736 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
737 			if (((ris0 & ric0) & BIT(q)) ||
738 			    ((tis  & tic)  & BIT(q))) {
739 				if (napi_schedule_prep(&priv->napi[q])) {
740 					/* Mask RX and TX interrupts */
741 					ravb_write(ndev, ric0 & ~BIT(q), RIC0);
742 					ravb_write(ndev, tic  & ~BIT(q), TIC);
743 					__napi_schedule(&priv->napi[q]);
744 				} else {
745 					netdev_warn(ndev,
746 						    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
747 						    ris0, ric0);
748 					netdev_warn(ndev,
749 						    "                    tx status 0x%08x, tx mask 0x%08x.\n",
750 						    tis, tic);
751 				}
752 				result = IRQ_HANDLED;
753 			}
754 		}
755 	}
756 
757 	/* E-MAC status summary */
758 	if (iss & ISS_MS) {
759 		ravb_emac_interrupt(ndev);
760 		result = IRQ_HANDLED;
761 	}
762 
763 	/* Error status summary */
764 	if (iss & ISS_ES) {
765 		ravb_error_interrupt(ndev);
766 		result = IRQ_HANDLED;
767 	}
768 
769 	if (iss & ISS_CGIS)
770 		result = ravb_ptp_interrupt(ndev);
771 
772 	mmiowb();
773 	spin_unlock(&priv->lock);
774 	return result;
775 }
776 
777 static int ravb_poll(struct napi_struct *napi, int budget)
778 {
779 	struct net_device *ndev = napi->dev;
780 	struct ravb_private *priv = netdev_priv(ndev);
781 	unsigned long flags;
782 	int q = napi - priv->napi;
783 	int mask = BIT(q);
784 	int quota = budget;
785 	u32 ris0, tis;
786 
787 	for (;;) {
788 		tis = ravb_read(ndev, TIS);
789 		ris0 = ravb_read(ndev, RIS0);
790 		if (!((ris0 & mask) || (tis & mask)))
791 			break;
792 
793 		/* Processing RX Descriptor Ring */
794 		if (ris0 & mask) {
795 			/* Clear RX interrupt */
796 			ravb_write(ndev, ~mask, RIS0);
797 			if (ravb_rx(ndev, &quota, q))
798 				goto out;
799 		}
800 		/* Processing TX Descriptor Ring */
801 		if (tis & mask) {
802 			spin_lock_irqsave(&priv->lock, flags);
803 			/* Clear TX interrupt */
804 			ravb_write(ndev, ~mask, TIS);
805 			ravb_tx_free(ndev, q);
806 			netif_wake_subqueue(ndev, q);
807 			mmiowb();
808 			spin_unlock_irqrestore(&priv->lock, flags);
809 		}
810 	}
811 
812 	napi_complete(napi);
813 
814 	/* Re-enable RX/TX interrupts */
815 	spin_lock_irqsave(&priv->lock, flags);
816 	ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0);
817 	ravb_write(ndev, ravb_read(ndev, TIC)  | mask,  TIC);
818 	mmiowb();
819 	spin_unlock_irqrestore(&priv->lock, flags);
820 
821 	/* Receive error message handling */
822 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
823 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
824 	if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
825 		ndev->stats.rx_over_errors = priv->rx_over_errors;
826 		netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
827 	}
828 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
829 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
830 		netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
831 	}
832 out:
833 	return budget - quota;
834 }
835 
836 /* PHY state control function */
837 static void ravb_adjust_link(struct net_device *ndev)
838 {
839 	struct ravb_private *priv = netdev_priv(ndev);
840 	struct phy_device *phydev = priv->phydev;
841 	bool new_state = false;
842 
843 	if (phydev->link) {
844 		if (phydev->duplex != priv->duplex) {
845 			new_state = true;
846 			priv->duplex = phydev->duplex;
847 			ravb_set_duplex(ndev);
848 		}
849 
850 		if (phydev->speed != priv->speed) {
851 			new_state = true;
852 			priv->speed = phydev->speed;
853 			ravb_set_rate(ndev);
854 		}
855 		if (!priv->link) {
856 			ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF,
857 				   ECMR);
858 			new_state = true;
859 			priv->link = phydev->link;
860 			if (priv->no_avb_link)
861 				ravb_rcv_snd_enable(ndev);
862 		}
863 	} else if (priv->link) {
864 		new_state = true;
865 		priv->link = 0;
866 		priv->speed = 0;
867 		priv->duplex = -1;
868 		if (priv->no_avb_link)
869 			ravb_rcv_snd_disable(ndev);
870 	}
871 
872 	if (new_state && netif_msg_link(priv))
873 		phy_print_status(phydev);
874 }
875 
876 /* PHY init function */
877 static int ravb_phy_init(struct net_device *ndev)
878 {
879 	struct device_node *np = ndev->dev.parent->of_node;
880 	struct ravb_private *priv = netdev_priv(ndev);
881 	struct phy_device *phydev;
882 	struct device_node *pn;
883 
884 	priv->link = 0;
885 	priv->speed = 0;
886 	priv->duplex = -1;
887 
888 	/* Try connecting to PHY */
889 	pn = of_parse_phandle(np, "phy-handle", 0);
890 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
891 				priv->phy_interface);
892 	if (!phydev) {
893 		netdev_err(ndev, "failed to connect PHY\n");
894 		return -ENOENT;
895 	}
896 
897 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
898 		    phydev->addr, phydev->irq, phydev->drv->name);
899 
900 	priv->phydev = phydev;
901 
902 	return 0;
903 }
904 
905 /* PHY control start function */
906 static int ravb_phy_start(struct net_device *ndev)
907 {
908 	struct ravb_private *priv = netdev_priv(ndev);
909 	int error;
910 
911 	error = ravb_phy_init(ndev);
912 	if (error)
913 		return error;
914 
915 	phy_start(priv->phydev);
916 
917 	return 0;
918 }
919 
920 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
921 {
922 	struct ravb_private *priv = netdev_priv(ndev);
923 	int error = -ENODEV;
924 	unsigned long flags;
925 
926 	if (priv->phydev) {
927 		spin_lock_irqsave(&priv->lock, flags);
928 		error = phy_ethtool_gset(priv->phydev, ecmd);
929 		spin_unlock_irqrestore(&priv->lock, flags);
930 	}
931 
932 	return error;
933 }
934 
935 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
936 {
937 	struct ravb_private *priv = netdev_priv(ndev);
938 	unsigned long flags;
939 	int error;
940 
941 	if (!priv->phydev)
942 		return -ENODEV;
943 
944 	spin_lock_irqsave(&priv->lock, flags);
945 
946 	/* Disable TX and RX */
947 	ravb_rcv_snd_disable(ndev);
948 
949 	error = phy_ethtool_sset(priv->phydev, ecmd);
950 	if (error)
951 		goto error_exit;
952 
953 	if (ecmd->duplex == DUPLEX_FULL)
954 		priv->duplex = 1;
955 	else
956 		priv->duplex = 0;
957 
958 	ravb_set_duplex(ndev);
959 
960 error_exit:
961 	mdelay(1);
962 
963 	/* Enable TX and RX */
964 	ravb_rcv_snd_enable(ndev);
965 
966 	mmiowb();
967 	spin_unlock_irqrestore(&priv->lock, flags);
968 
969 	return error;
970 }
971 
972 static int ravb_nway_reset(struct net_device *ndev)
973 {
974 	struct ravb_private *priv = netdev_priv(ndev);
975 	int error = -ENODEV;
976 	unsigned long flags;
977 
978 	if (priv->phydev) {
979 		spin_lock_irqsave(&priv->lock, flags);
980 		error = phy_start_aneg(priv->phydev);
981 		spin_unlock_irqrestore(&priv->lock, flags);
982 	}
983 
984 	return error;
985 }
986 
987 static u32 ravb_get_msglevel(struct net_device *ndev)
988 {
989 	struct ravb_private *priv = netdev_priv(ndev);
990 
991 	return priv->msg_enable;
992 }
993 
994 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
995 {
996 	struct ravb_private *priv = netdev_priv(ndev);
997 
998 	priv->msg_enable = value;
999 }
1000 
1001 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1002 	"rx_queue_0_current",
1003 	"tx_queue_0_current",
1004 	"rx_queue_0_dirty",
1005 	"tx_queue_0_dirty",
1006 	"rx_queue_0_packets",
1007 	"tx_queue_0_packets",
1008 	"rx_queue_0_bytes",
1009 	"tx_queue_0_bytes",
1010 	"rx_queue_0_mcast_packets",
1011 	"rx_queue_0_errors",
1012 	"rx_queue_0_crc_errors",
1013 	"rx_queue_0_frame_errors",
1014 	"rx_queue_0_length_errors",
1015 	"rx_queue_0_missed_errors",
1016 	"rx_queue_0_over_errors",
1017 
1018 	"rx_queue_1_current",
1019 	"tx_queue_1_current",
1020 	"rx_queue_1_dirty",
1021 	"tx_queue_1_dirty",
1022 	"rx_queue_1_packets",
1023 	"tx_queue_1_packets",
1024 	"rx_queue_1_bytes",
1025 	"tx_queue_1_bytes",
1026 	"rx_queue_1_mcast_packets",
1027 	"rx_queue_1_errors",
1028 	"rx_queue_1_crc_errors",
1029 	"rx_queue_1_frame_errors_",
1030 	"rx_queue_1_length_errors",
1031 	"rx_queue_1_missed_errors",
1032 	"rx_queue_1_over_errors",
1033 };
1034 
1035 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1036 
1037 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1038 {
1039 	switch (sset) {
1040 	case ETH_SS_STATS:
1041 		return RAVB_STATS_LEN;
1042 	default:
1043 		return -EOPNOTSUPP;
1044 	}
1045 }
1046 
1047 static void ravb_get_ethtool_stats(struct net_device *ndev,
1048 				   struct ethtool_stats *stats, u64 *data)
1049 {
1050 	struct ravb_private *priv = netdev_priv(ndev);
1051 	int i = 0;
1052 	int q;
1053 
1054 	/* Device-specific stats */
1055 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1056 		struct net_device_stats *stats = &priv->stats[q];
1057 
1058 		data[i++] = priv->cur_rx[q];
1059 		data[i++] = priv->cur_tx[q];
1060 		data[i++] = priv->dirty_rx[q];
1061 		data[i++] = priv->dirty_tx[q];
1062 		data[i++] = stats->rx_packets;
1063 		data[i++] = stats->tx_packets;
1064 		data[i++] = stats->rx_bytes;
1065 		data[i++] = stats->tx_bytes;
1066 		data[i++] = stats->multicast;
1067 		data[i++] = stats->rx_errors;
1068 		data[i++] = stats->rx_crc_errors;
1069 		data[i++] = stats->rx_frame_errors;
1070 		data[i++] = stats->rx_length_errors;
1071 		data[i++] = stats->rx_missed_errors;
1072 		data[i++] = stats->rx_over_errors;
1073 	}
1074 }
1075 
1076 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1077 {
1078 	switch (stringset) {
1079 	case ETH_SS_STATS:
1080 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1081 		break;
1082 	}
1083 }
1084 
1085 static void ravb_get_ringparam(struct net_device *ndev,
1086 			       struct ethtool_ringparam *ring)
1087 {
1088 	struct ravb_private *priv = netdev_priv(ndev);
1089 
1090 	ring->rx_max_pending = BE_RX_RING_MAX;
1091 	ring->tx_max_pending = BE_TX_RING_MAX;
1092 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1093 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1094 }
1095 
1096 static int ravb_set_ringparam(struct net_device *ndev,
1097 			      struct ethtool_ringparam *ring)
1098 {
1099 	struct ravb_private *priv = netdev_priv(ndev);
1100 	int error;
1101 
1102 	if (ring->tx_pending > BE_TX_RING_MAX ||
1103 	    ring->rx_pending > BE_RX_RING_MAX ||
1104 	    ring->tx_pending < BE_TX_RING_MIN ||
1105 	    ring->rx_pending < BE_RX_RING_MIN)
1106 		return -EINVAL;
1107 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1108 		return -EINVAL;
1109 
1110 	if (netif_running(ndev)) {
1111 		netif_device_detach(ndev);
1112 		/* Stop PTP Clock driver */
1113 		ravb_ptp_stop(ndev);
1114 		/* Wait for DMA stopping */
1115 		error = ravb_stop_dma(ndev);
1116 		if (error) {
1117 			netdev_err(ndev,
1118 				   "cannot set ringparam! Any AVB processes are still running?\n");
1119 			return error;
1120 		}
1121 		synchronize_irq(ndev->irq);
1122 
1123 		/* Free all the skb's in the RX queue and the DMA buffers. */
1124 		ravb_ring_free(ndev, RAVB_BE);
1125 		ravb_ring_free(ndev, RAVB_NC);
1126 	}
1127 
1128 	/* Set new parameters */
1129 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1130 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1131 
1132 	if (netif_running(ndev)) {
1133 		error = ravb_dmac_init(ndev);
1134 		if (error) {
1135 			netdev_err(ndev,
1136 				   "%s: ravb_dmac_init() failed, error %d\n",
1137 				   __func__, error);
1138 			return error;
1139 		}
1140 
1141 		ravb_emac_init(ndev);
1142 
1143 		/* Initialise PTP Clock driver */
1144 		ravb_ptp_init(ndev, priv->pdev);
1145 
1146 		netif_device_attach(ndev);
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static int ravb_get_ts_info(struct net_device *ndev,
1153 			    struct ethtool_ts_info *info)
1154 {
1155 	struct ravb_private *priv = netdev_priv(ndev);
1156 
1157 	info->so_timestamping =
1158 		SOF_TIMESTAMPING_TX_SOFTWARE |
1159 		SOF_TIMESTAMPING_RX_SOFTWARE |
1160 		SOF_TIMESTAMPING_SOFTWARE |
1161 		SOF_TIMESTAMPING_TX_HARDWARE |
1162 		SOF_TIMESTAMPING_RX_HARDWARE |
1163 		SOF_TIMESTAMPING_RAW_HARDWARE;
1164 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1165 	info->rx_filters =
1166 		(1 << HWTSTAMP_FILTER_NONE) |
1167 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1168 		(1 << HWTSTAMP_FILTER_ALL);
1169 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1170 
1171 	return 0;
1172 }
1173 
1174 static const struct ethtool_ops ravb_ethtool_ops = {
1175 	.get_settings		= ravb_get_settings,
1176 	.set_settings		= ravb_set_settings,
1177 	.nway_reset		= ravb_nway_reset,
1178 	.get_msglevel		= ravb_get_msglevel,
1179 	.set_msglevel		= ravb_set_msglevel,
1180 	.get_link		= ethtool_op_get_link,
1181 	.get_strings		= ravb_get_strings,
1182 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1183 	.get_sset_count		= ravb_get_sset_count,
1184 	.get_ringparam		= ravb_get_ringparam,
1185 	.set_ringparam		= ravb_set_ringparam,
1186 	.get_ts_info		= ravb_get_ts_info,
1187 };
1188 
1189 /* Network device open function for Ethernet AVB */
1190 static int ravb_open(struct net_device *ndev)
1191 {
1192 	struct ravb_private *priv = netdev_priv(ndev);
1193 	int error;
1194 
1195 	napi_enable(&priv->napi[RAVB_BE]);
1196 	napi_enable(&priv->napi[RAVB_NC]);
1197 
1198 	error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
1199 			    ndev);
1200 	if (error) {
1201 		netdev_err(ndev, "cannot request IRQ\n");
1202 		goto out_napi_off;
1203 	}
1204 
1205 	/* Device init */
1206 	error = ravb_dmac_init(ndev);
1207 	if (error)
1208 		goto out_free_irq;
1209 	ravb_emac_init(ndev);
1210 
1211 	/* Initialise PTP Clock driver */
1212 	ravb_ptp_init(ndev, priv->pdev);
1213 
1214 	netif_tx_start_all_queues(ndev);
1215 
1216 	/* PHY control start */
1217 	error = ravb_phy_start(ndev);
1218 	if (error)
1219 		goto out_ptp_stop;
1220 
1221 	return 0;
1222 
1223 out_ptp_stop:
1224 	/* Stop PTP Clock driver */
1225 	ravb_ptp_stop(ndev);
1226 out_free_irq:
1227 	free_irq(ndev->irq, ndev);
1228 out_napi_off:
1229 	napi_disable(&priv->napi[RAVB_NC]);
1230 	napi_disable(&priv->napi[RAVB_BE]);
1231 	return error;
1232 }
1233 
1234 /* Timeout function for Ethernet AVB */
1235 static void ravb_tx_timeout(struct net_device *ndev)
1236 {
1237 	struct ravb_private *priv = netdev_priv(ndev);
1238 
1239 	netif_err(priv, tx_err, ndev,
1240 		  "transmit timed out, status %08x, resetting...\n",
1241 		  ravb_read(ndev, ISS));
1242 
1243 	/* tx_errors count up */
1244 	ndev->stats.tx_errors++;
1245 
1246 	schedule_work(&priv->work);
1247 }
1248 
1249 static void ravb_tx_timeout_work(struct work_struct *work)
1250 {
1251 	struct ravb_private *priv = container_of(work, struct ravb_private,
1252 						 work);
1253 	struct net_device *ndev = priv->ndev;
1254 
1255 	netif_tx_stop_all_queues(ndev);
1256 
1257 	/* Stop PTP Clock driver */
1258 	ravb_ptp_stop(ndev);
1259 
1260 	/* Wait for DMA stopping */
1261 	ravb_stop_dma(ndev);
1262 
1263 	ravb_ring_free(ndev, RAVB_BE);
1264 	ravb_ring_free(ndev, RAVB_NC);
1265 
1266 	/* Device init */
1267 	ravb_dmac_init(ndev);
1268 	ravb_emac_init(ndev);
1269 
1270 	/* Initialise PTP Clock driver */
1271 	ravb_ptp_init(ndev, priv->pdev);
1272 
1273 	netif_tx_start_all_queues(ndev);
1274 }
1275 
1276 /* Packet transmit function for Ethernet AVB */
1277 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1278 {
1279 	struct ravb_private *priv = netdev_priv(ndev);
1280 	struct ravb_tstamp_skb *ts_skb = NULL;
1281 	u16 q = skb_get_queue_mapping(skb);
1282 	struct ravb_tx_desc *desc;
1283 	unsigned long flags;
1284 	u32 dma_addr;
1285 	void *buffer;
1286 	u32 entry;
1287 
1288 	spin_lock_irqsave(&priv->lock, flags);
1289 	if (priv->cur_tx[q] - priv->dirty_tx[q] >= priv->num_tx_ring[q]) {
1290 		netif_err(priv, tx_queued, ndev,
1291 			  "still transmitting with the full ring!\n");
1292 		netif_stop_subqueue(ndev, q);
1293 		spin_unlock_irqrestore(&priv->lock, flags);
1294 		return NETDEV_TX_BUSY;
1295 	}
1296 	entry = priv->cur_tx[q] % priv->num_tx_ring[q];
1297 	priv->tx_skb[q][entry] = skb;
1298 
1299 	if (skb_put_padto(skb, ETH_ZLEN))
1300 		goto drop;
1301 
1302 	buffer = PTR_ALIGN(priv->tx_buffers[q][entry], RAVB_ALIGN);
1303 	memcpy(buffer, skb->data, skb->len);
1304 	desc = &priv->tx_ring[q][entry];
1305 	desc->ds_tagl = cpu_to_le16(skb->len);
1306 	dma_addr = dma_map_single(&ndev->dev, buffer, skb->len, DMA_TO_DEVICE);
1307 	if (dma_mapping_error(&ndev->dev, dma_addr))
1308 		goto drop;
1309 	desc->dptr = cpu_to_le32(dma_addr);
1310 
1311 	/* TX timestamp required */
1312 	if (q == RAVB_NC) {
1313 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1314 		if (!ts_skb) {
1315 			dma_unmap_single(&ndev->dev, dma_addr, skb->len,
1316 					 DMA_TO_DEVICE);
1317 			goto drop;
1318 		}
1319 		ts_skb->skb = skb;
1320 		ts_skb->tag = priv->ts_skb_tag++;
1321 		priv->ts_skb_tag &= 0x3ff;
1322 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1323 
1324 		/* TAG and timestamp required flag */
1325 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1326 		skb_tx_timestamp(skb);
1327 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1328 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1329 	}
1330 
1331 	/* Descriptor type must be set after all the above writes */
1332 	dma_wmb();
1333 	desc->die_dt = DT_FSINGLE;
1334 
1335 	ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR);
1336 
1337 	priv->cur_tx[q]++;
1338 	if (priv->cur_tx[q] - priv->dirty_tx[q] >= priv->num_tx_ring[q] &&
1339 	    !ravb_tx_free(ndev, q))
1340 		netif_stop_subqueue(ndev, q);
1341 
1342 exit:
1343 	mmiowb();
1344 	spin_unlock_irqrestore(&priv->lock, flags);
1345 	return NETDEV_TX_OK;
1346 
1347 drop:
1348 	dev_kfree_skb_any(skb);
1349 	priv->tx_skb[q][entry] = NULL;
1350 	goto exit;
1351 }
1352 
1353 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1354 			     void *accel_priv, select_queue_fallback_t fallback)
1355 {
1356 	/* If skb needs TX timestamp, it is handled in network control queue */
1357 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1358 							       RAVB_BE;
1359 
1360 }
1361 
1362 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1363 {
1364 	struct ravb_private *priv = netdev_priv(ndev);
1365 	struct net_device_stats *nstats, *stats0, *stats1;
1366 
1367 	nstats = &ndev->stats;
1368 	stats0 = &priv->stats[RAVB_BE];
1369 	stats1 = &priv->stats[RAVB_NC];
1370 
1371 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1372 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1373 	nstats->collisions += ravb_read(ndev, CDCR);
1374 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1375 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1376 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1377 
1378 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1379 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1380 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1381 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1382 
1383 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1384 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1385 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1386 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1387 	nstats->multicast = stats0->multicast + stats1->multicast;
1388 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1389 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1390 	nstats->rx_frame_errors =
1391 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1392 	nstats->rx_length_errors =
1393 		stats0->rx_length_errors + stats1->rx_length_errors;
1394 	nstats->rx_missed_errors =
1395 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1396 	nstats->rx_over_errors =
1397 		stats0->rx_over_errors + stats1->rx_over_errors;
1398 
1399 	return nstats;
1400 }
1401 
1402 /* Update promiscuous bit */
1403 static void ravb_set_rx_mode(struct net_device *ndev)
1404 {
1405 	struct ravb_private *priv = netdev_priv(ndev);
1406 	unsigned long flags;
1407 	u32 ecmr;
1408 
1409 	spin_lock_irqsave(&priv->lock, flags);
1410 	ecmr = ravb_read(ndev, ECMR);
1411 	if (ndev->flags & IFF_PROMISC)
1412 		ecmr |=  ECMR_PRM;
1413 	else
1414 		ecmr &= ~ECMR_PRM;
1415 	ravb_write(ndev, ecmr, ECMR);
1416 	mmiowb();
1417 	spin_unlock_irqrestore(&priv->lock, flags);
1418 }
1419 
1420 /* Device close function for Ethernet AVB */
1421 static int ravb_close(struct net_device *ndev)
1422 {
1423 	struct ravb_private *priv = netdev_priv(ndev);
1424 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1425 
1426 	netif_tx_stop_all_queues(ndev);
1427 
1428 	/* Disable interrupts by clearing the interrupt masks. */
1429 	ravb_write(ndev, 0, RIC0);
1430 	ravb_write(ndev, 0, RIC1);
1431 	ravb_write(ndev, 0, RIC2);
1432 	ravb_write(ndev, 0, TIC);
1433 
1434 	/* Stop PTP Clock driver */
1435 	ravb_ptp_stop(ndev);
1436 
1437 	/* Set the config mode to stop the AVB-DMAC's processes */
1438 	if (ravb_stop_dma(ndev) < 0)
1439 		netdev_err(ndev,
1440 			   "device will be stopped after h/w processes are done.\n");
1441 
1442 	/* Clear the timestamp list */
1443 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1444 		list_del(&ts_skb->list);
1445 		kfree(ts_skb);
1446 	}
1447 
1448 	/* PHY disconnect */
1449 	if (priv->phydev) {
1450 		phy_stop(priv->phydev);
1451 		phy_disconnect(priv->phydev);
1452 		priv->phydev = NULL;
1453 	}
1454 
1455 	free_irq(ndev->irq, ndev);
1456 
1457 	napi_disable(&priv->napi[RAVB_NC]);
1458 	napi_disable(&priv->napi[RAVB_BE]);
1459 
1460 	/* Free all the skb's in the RX queue and the DMA buffers. */
1461 	ravb_ring_free(ndev, RAVB_BE);
1462 	ravb_ring_free(ndev, RAVB_NC);
1463 
1464 	return 0;
1465 }
1466 
1467 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1468 {
1469 	struct ravb_private *priv = netdev_priv(ndev);
1470 	struct hwtstamp_config config;
1471 
1472 	config.flags = 0;
1473 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1474 						HWTSTAMP_TX_OFF;
1475 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1476 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1477 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1478 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1479 	else
1480 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1481 
1482 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1483 		-EFAULT : 0;
1484 }
1485 
1486 /* Control hardware time stamping */
1487 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1488 {
1489 	struct ravb_private *priv = netdev_priv(ndev);
1490 	struct hwtstamp_config config;
1491 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1492 	u32 tstamp_tx_ctrl;
1493 
1494 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1495 		return -EFAULT;
1496 
1497 	/* Reserved for future extensions */
1498 	if (config.flags)
1499 		return -EINVAL;
1500 
1501 	switch (config.tx_type) {
1502 	case HWTSTAMP_TX_OFF:
1503 		tstamp_tx_ctrl = 0;
1504 		break;
1505 	case HWTSTAMP_TX_ON:
1506 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1507 		break;
1508 	default:
1509 		return -ERANGE;
1510 	}
1511 
1512 	switch (config.rx_filter) {
1513 	case HWTSTAMP_FILTER_NONE:
1514 		tstamp_rx_ctrl = 0;
1515 		break;
1516 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1517 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1518 		break;
1519 	default:
1520 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1521 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1522 	}
1523 
1524 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1525 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1526 
1527 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1528 		-EFAULT : 0;
1529 }
1530 
1531 /* ioctl to device function */
1532 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1533 {
1534 	struct ravb_private *priv = netdev_priv(ndev);
1535 	struct phy_device *phydev = priv->phydev;
1536 
1537 	if (!netif_running(ndev))
1538 		return -EINVAL;
1539 
1540 	if (!phydev)
1541 		return -ENODEV;
1542 
1543 	switch (cmd) {
1544 	case SIOCGHWTSTAMP:
1545 		return ravb_hwtstamp_get(ndev, req);
1546 	case SIOCSHWTSTAMP:
1547 		return ravb_hwtstamp_set(ndev, req);
1548 	}
1549 
1550 	return phy_mii_ioctl(phydev, req, cmd);
1551 }
1552 
1553 static const struct net_device_ops ravb_netdev_ops = {
1554 	.ndo_open		= ravb_open,
1555 	.ndo_stop		= ravb_close,
1556 	.ndo_start_xmit		= ravb_start_xmit,
1557 	.ndo_select_queue	= ravb_select_queue,
1558 	.ndo_get_stats		= ravb_get_stats,
1559 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1560 	.ndo_tx_timeout		= ravb_tx_timeout,
1561 	.ndo_do_ioctl		= ravb_do_ioctl,
1562 	.ndo_validate_addr	= eth_validate_addr,
1563 	.ndo_set_mac_address	= eth_mac_addr,
1564 	.ndo_change_mtu		= eth_change_mtu,
1565 };
1566 
1567 /* MDIO bus init function */
1568 static int ravb_mdio_init(struct ravb_private *priv)
1569 {
1570 	struct platform_device *pdev = priv->pdev;
1571 	struct device *dev = &pdev->dev;
1572 	int error;
1573 
1574 	/* Bitbang init */
1575 	priv->mdiobb.ops = &bb_ops;
1576 
1577 	/* MII controller setting */
1578 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1579 	if (!priv->mii_bus)
1580 		return -ENOMEM;
1581 
1582 	/* Hook up MII support for ethtool */
1583 	priv->mii_bus->name = "ravb_mii";
1584 	priv->mii_bus->parent = dev;
1585 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1586 		 pdev->name, pdev->id);
1587 
1588 	/* Register MDIO bus */
1589 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1590 	if (error)
1591 		goto out_free_bus;
1592 
1593 	return 0;
1594 
1595 out_free_bus:
1596 	free_mdio_bitbang(priv->mii_bus);
1597 	return error;
1598 }
1599 
1600 /* MDIO bus release function */
1601 static int ravb_mdio_release(struct ravb_private *priv)
1602 {
1603 	/* Unregister mdio bus */
1604 	mdiobus_unregister(priv->mii_bus);
1605 
1606 	/* Free bitbang info */
1607 	free_mdio_bitbang(priv->mii_bus);
1608 
1609 	return 0;
1610 }
1611 
1612 static int ravb_probe(struct platform_device *pdev)
1613 {
1614 	struct device_node *np = pdev->dev.of_node;
1615 	struct ravb_private *priv;
1616 	struct net_device *ndev;
1617 	int error, irq, q;
1618 	struct resource *res;
1619 
1620 	if (!np) {
1621 		dev_err(&pdev->dev,
1622 			"this driver is required to be instantiated from device tree\n");
1623 		return -EINVAL;
1624 	}
1625 
1626 	/* Get base address */
1627 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1628 	if (!res) {
1629 		dev_err(&pdev->dev, "invalid resource\n");
1630 		return -EINVAL;
1631 	}
1632 
1633 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1634 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1635 	if (!ndev)
1636 		return -ENOMEM;
1637 
1638 	pm_runtime_enable(&pdev->dev);
1639 	pm_runtime_get_sync(&pdev->dev);
1640 
1641 	/* The Ether-specific entries in the device structure. */
1642 	ndev->base_addr = res->start;
1643 	ndev->dma = -1;
1644 	irq = platform_get_irq(pdev, 0);
1645 	if (irq < 0) {
1646 		error = -ENODEV;
1647 		goto out_release;
1648 	}
1649 	ndev->irq = irq;
1650 
1651 	SET_NETDEV_DEV(ndev, &pdev->dev);
1652 
1653 	priv = netdev_priv(ndev);
1654 	priv->ndev = ndev;
1655 	priv->pdev = pdev;
1656 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1657 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1658 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1659 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1660 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1661 	if (IS_ERR(priv->addr)) {
1662 		error = PTR_ERR(priv->addr);
1663 		goto out_release;
1664 	}
1665 
1666 	spin_lock_init(&priv->lock);
1667 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1668 
1669 	priv->phy_interface = of_get_phy_mode(np);
1670 
1671 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1672 	priv->avb_link_active_low =
1673 		of_property_read_bool(np, "renesas,ether-link-active-low");
1674 
1675 	/* Set function */
1676 	ndev->netdev_ops = &ravb_netdev_ops;
1677 	ndev->ethtool_ops = &ravb_ethtool_ops;
1678 
1679 	/* Set AVB config mode */
1680 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
1681 		   CCC);
1682 
1683 	/* Set CSEL value */
1684 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB,
1685 		   CCC);
1686 
1687 	/* Set GTI value */
1688 	ravb_write(ndev, ((1000 << 20) / 130) & GTI_TIV, GTI);
1689 
1690 	/* Request GTI loading */
1691 	ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR);
1692 
1693 	/* Allocate descriptor base address table */
1694 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
1695 	priv->desc_bat = dma_alloc_coherent(NULL, priv->desc_bat_size,
1696 					    &priv->desc_bat_dma, GFP_KERNEL);
1697 	if (!priv->desc_bat) {
1698 		dev_err(&ndev->dev,
1699 			"Cannot allocate desc base address table (size %d bytes)\n",
1700 			priv->desc_bat_size);
1701 		error = -ENOMEM;
1702 		goto out_release;
1703 	}
1704 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
1705 		priv->desc_bat[q].die_dt = DT_EOS;
1706 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1707 
1708 	/* Initialise HW timestamp list */
1709 	INIT_LIST_HEAD(&priv->ts_skb_list);
1710 
1711 	/* Debug message level */
1712 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
1713 
1714 	/* Read and set MAC address */
1715 	ravb_read_mac_address(ndev, of_get_mac_address(np));
1716 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1717 		dev_warn(&pdev->dev,
1718 			 "no valid MAC address supplied, using a random one\n");
1719 		eth_hw_addr_random(ndev);
1720 	}
1721 
1722 	/* MDIO bus init */
1723 	error = ravb_mdio_init(priv);
1724 	if (error) {
1725 		dev_err(&ndev->dev, "failed to initialize MDIO\n");
1726 		goto out_dma_free;
1727 	}
1728 
1729 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
1730 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
1731 
1732 	/* Network device register */
1733 	error = register_netdev(ndev);
1734 	if (error)
1735 		goto out_napi_del;
1736 
1737 	/* Print device information */
1738 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
1739 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1740 
1741 	platform_set_drvdata(pdev, ndev);
1742 
1743 	return 0;
1744 
1745 out_napi_del:
1746 	netif_napi_del(&priv->napi[RAVB_NC]);
1747 	netif_napi_del(&priv->napi[RAVB_BE]);
1748 	ravb_mdio_release(priv);
1749 out_dma_free:
1750 	dma_free_coherent(NULL, priv->desc_bat_size, priv->desc_bat,
1751 			  priv->desc_bat_dma);
1752 out_release:
1753 	if (ndev)
1754 		free_netdev(ndev);
1755 
1756 	pm_runtime_put(&pdev->dev);
1757 	pm_runtime_disable(&pdev->dev);
1758 	return error;
1759 }
1760 
1761 static int ravb_remove(struct platform_device *pdev)
1762 {
1763 	struct net_device *ndev = platform_get_drvdata(pdev);
1764 	struct ravb_private *priv = netdev_priv(ndev);
1765 
1766 	dma_free_coherent(NULL, priv->desc_bat_size, priv->desc_bat,
1767 			  priv->desc_bat_dma);
1768 	/* Set reset mode */
1769 	ravb_write(ndev, CCC_OPC_RESET, CCC);
1770 	pm_runtime_put_sync(&pdev->dev);
1771 	unregister_netdev(ndev);
1772 	netif_napi_del(&priv->napi[RAVB_NC]);
1773 	netif_napi_del(&priv->napi[RAVB_BE]);
1774 	ravb_mdio_release(priv);
1775 	pm_runtime_disable(&pdev->dev);
1776 	free_netdev(ndev);
1777 	platform_set_drvdata(pdev, NULL);
1778 
1779 	return 0;
1780 }
1781 
1782 #ifdef CONFIG_PM
1783 static int ravb_runtime_nop(struct device *dev)
1784 {
1785 	/* Runtime PM callback shared between ->runtime_suspend()
1786 	 * and ->runtime_resume(). Simply returns success.
1787 	 *
1788 	 * This driver re-initializes all registers after
1789 	 * pm_runtime_get_sync() anyway so there is no need
1790 	 * to save and restore registers here.
1791 	 */
1792 	return 0;
1793 }
1794 
1795 static const struct dev_pm_ops ravb_dev_pm_ops = {
1796 	.runtime_suspend = ravb_runtime_nop,
1797 	.runtime_resume = ravb_runtime_nop,
1798 };
1799 
1800 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
1801 #else
1802 #define RAVB_PM_OPS NULL
1803 #endif
1804 
1805 static const struct of_device_id ravb_match_table[] = {
1806 	{ .compatible = "renesas,etheravb-r8a7790" },
1807 	{ .compatible = "renesas,etheravb-r8a7794" },
1808 	{ }
1809 };
1810 MODULE_DEVICE_TABLE(of, ravb_match_table);
1811 
1812 static struct platform_driver ravb_driver = {
1813 	.probe		= ravb_probe,
1814 	.remove		= ravb_remove,
1815 	.driver = {
1816 		.name	= "ravb",
1817 		.pm	= RAVB_PM_OPS,
1818 		.of_match_table = ravb_match_table,
1819 	},
1820 };
1821 
1822 module_platform_driver(ravb_driver);
1823 
1824 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
1825 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
1826 MODULE_LICENSE("GPL v2");
1827