1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sys_soc.h>
35 
36 #include <asm/div64.h>
37 
38 #include "ravb.h"
39 
40 #define RAVB_DEF_MSG_ENABLE \
41 		(NETIF_MSG_LINK	  | \
42 		 NETIF_MSG_TIMER  | \
43 		 NETIF_MSG_RX_ERR | \
44 		 NETIF_MSG_TX_ERR)
45 
46 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
47 	"ch0", /* RAVB_BE */
48 	"ch1", /* RAVB_NC */
49 };
50 
51 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
52 	"ch18", /* RAVB_BE */
53 	"ch19", /* RAVB_NC */
54 };
55 
56 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
57 		 u32 set)
58 {
59 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
60 }
61 
62 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
63 {
64 	int i;
65 
66 	for (i = 0; i < 10000; i++) {
67 		if ((ravb_read(ndev, reg) & mask) == value)
68 			return 0;
69 		udelay(10);
70 	}
71 	return -ETIMEDOUT;
72 }
73 
74 static int ravb_config(struct net_device *ndev)
75 {
76 	int error;
77 
78 	/* Set config mode */
79 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
80 	/* Check if the operating mode is changed to the config mode */
81 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
82 	if (error)
83 		netdev_err(ndev, "failed to switch device to config mode\n");
84 
85 	return error;
86 }
87 
88 static void ravb_set_duplex(struct net_device *ndev)
89 {
90 	struct ravb_private *priv = netdev_priv(ndev);
91 
92 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
93 }
94 
95 static void ravb_set_rate(struct net_device *ndev)
96 {
97 	struct ravb_private *priv = netdev_priv(ndev);
98 
99 	switch (priv->speed) {
100 	case 100:		/* 100BASE */
101 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
102 		break;
103 	case 1000:		/* 1000BASE */
104 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
105 		break;
106 	}
107 }
108 
109 static void ravb_set_buffer_align(struct sk_buff *skb)
110 {
111 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
112 
113 	if (reserve)
114 		skb_reserve(skb, RAVB_ALIGN - reserve);
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
122 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
123 {
124 	if (mac) {
125 		ether_addr_copy(ndev->dev_addr, mac);
126 	} else {
127 		u32 mahr = ravb_read(ndev, MAHR);
128 		u32 malr = ravb_read(ndev, MALR);
129 
130 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
131 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
132 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
133 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
134 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
135 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
136 	}
137 }
138 
139 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
140 {
141 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
142 						 mdiobb);
143 
144 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
145 }
146 
147 /* MDC pin control */
148 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
149 {
150 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
151 }
152 
153 /* Data I/O pin control */
154 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
155 {
156 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
157 }
158 
159 /* Set data bit */
160 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
161 {
162 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
163 }
164 
165 /* Get data bit */
166 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
167 {
168 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
169 						 mdiobb);
170 
171 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
172 }
173 
174 /* MDIO bus control struct */
175 static struct mdiobb_ops bb_ops = {
176 	.owner = THIS_MODULE,
177 	.set_mdc = ravb_set_mdc,
178 	.set_mdio_dir = ravb_set_mdio_dir,
179 	.set_mdio_data = ravb_set_mdio_data,
180 	.get_mdio_data = ravb_get_mdio_data,
181 };
182 
183 /* Free TX skb function for AVB-IP */
184 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
185 {
186 	struct ravb_private *priv = netdev_priv(ndev);
187 	struct net_device_stats *stats = &priv->stats[q];
188 	struct ravb_tx_desc *desc;
189 	int free_num = 0;
190 	int entry;
191 	u32 size;
192 
193 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
194 		bool txed;
195 
196 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
197 					     NUM_TX_DESC);
198 		desc = &priv->tx_ring[q][entry];
199 		txed = desc->die_dt == DT_FEMPTY;
200 		if (free_txed_only && !txed)
201 			break;
202 		/* Descriptor type must be checked before all other reads */
203 		dma_rmb();
204 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
205 		/* Free the original skb. */
206 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
207 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
208 					 size, DMA_TO_DEVICE);
209 			/* Last packet descriptor? */
210 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
211 				entry /= NUM_TX_DESC;
212 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
213 				priv->tx_skb[q][entry] = NULL;
214 				if (txed)
215 					stats->tx_packets++;
216 			}
217 			free_num++;
218 		}
219 		if (txed)
220 			stats->tx_bytes += size;
221 		desc->die_dt = DT_EEMPTY;
222 	}
223 	return free_num;
224 }
225 
226 /* Free skb's and DMA buffers for Ethernet AVB */
227 static void ravb_ring_free(struct net_device *ndev, int q)
228 {
229 	struct ravb_private *priv = netdev_priv(ndev);
230 	int ring_size;
231 	int i;
232 
233 	if (priv->rx_ring[q]) {
234 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
235 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
236 
237 			if (!dma_mapping_error(ndev->dev.parent,
238 					       le32_to_cpu(desc->dptr)))
239 				dma_unmap_single(ndev->dev.parent,
240 						 le32_to_cpu(desc->dptr),
241 						 PKT_BUF_SZ,
242 						 DMA_FROM_DEVICE);
243 		}
244 		ring_size = sizeof(struct ravb_ex_rx_desc) *
245 			    (priv->num_rx_ring[q] + 1);
246 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
247 				  priv->rx_desc_dma[q]);
248 		priv->rx_ring[q] = NULL;
249 	}
250 
251 	if (priv->tx_ring[q]) {
252 		ravb_tx_free(ndev, q, false);
253 
254 		ring_size = sizeof(struct ravb_tx_desc) *
255 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
256 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
257 				  priv->tx_desc_dma[q]);
258 		priv->tx_ring[q] = NULL;
259 	}
260 
261 	/* Free RX skb ringbuffer */
262 	if (priv->rx_skb[q]) {
263 		for (i = 0; i < priv->num_rx_ring[q]; i++)
264 			dev_kfree_skb(priv->rx_skb[q][i]);
265 	}
266 	kfree(priv->rx_skb[q]);
267 	priv->rx_skb[q] = NULL;
268 
269 	/* Free aligned TX buffers */
270 	kfree(priv->tx_align[q]);
271 	priv->tx_align[q] = NULL;
272 
273 	/* Free TX skb ringbuffer.
274 	 * SKBs are freed by ravb_tx_free() call above.
275 	 */
276 	kfree(priv->tx_skb[q]);
277 	priv->tx_skb[q] = NULL;
278 }
279 
280 /* Format skb and descriptor buffer for Ethernet AVB */
281 static void ravb_ring_format(struct net_device *ndev, int q)
282 {
283 	struct ravb_private *priv = netdev_priv(ndev);
284 	struct ravb_ex_rx_desc *rx_desc;
285 	struct ravb_tx_desc *tx_desc;
286 	struct ravb_desc *desc;
287 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
288 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
289 			   NUM_TX_DESC;
290 	dma_addr_t dma_addr;
291 	int i;
292 
293 	priv->cur_rx[q] = 0;
294 	priv->cur_tx[q] = 0;
295 	priv->dirty_rx[q] = 0;
296 	priv->dirty_tx[q] = 0;
297 
298 	memset(priv->rx_ring[q], 0, rx_ring_size);
299 	/* Build RX ring buffer */
300 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
301 		/* RX descriptor */
302 		rx_desc = &priv->rx_ring[q][i];
303 		rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
304 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
305 					  PKT_BUF_SZ,
306 					  DMA_FROM_DEVICE);
307 		/* We just set the data size to 0 for a failed mapping which
308 		 * should prevent DMA from happening...
309 		 */
310 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
311 			rx_desc->ds_cc = cpu_to_le16(0);
312 		rx_desc->dptr = cpu_to_le32(dma_addr);
313 		rx_desc->die_dt = DT_FEMPTY;
314 	}
315 	rx_desc = &priv->rx_ring[q][i];
316 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
317 	rx_desc->die_dt = DT_LINKFIX; /* type */
318 
319 	memset(priv->tx_ring[q], 0, tx_ring_size);
320 	/* Build TX ring buffer */
321 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
322 	     i++, tx_desc++) {
323 		tx_desc->die_dt = DT_EEMPTY;
324 		tx_desc++;
325 		tx_desc->die_dt = DT_EEMPTY;
326 	}
327 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
328 	tx_desc->die_dt = DT_LINKFIX; /* type */
329 
330 	/* RX descriptor base address for best effort */
331 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
334 
335 	/* TX descriptor base address for best effort */
336 	desc = &priv->desc_bat[q];
337 	desc->die_dt = DT_LINKFIX; /* type */
338 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
339 }
340 
341 /* Init skb and descriptor buffer for Ethernet AVB */
342 static int ravb_ring_init(struct net_device *ndev, int q)
343 {
344 	struct ravb_private *priv = netdev_priv(ndev);
345 	struct sk_buff *skb;
346 	int ring_size;
347 	int i;
348 
349 	/* Allocate RX and TX skb rings */
350 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
351 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
352 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
353 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
354 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
355 		goto error;
356 
357 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
358 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
359 		if (!skb)
360 			goto error;
361 		ravb_set_buffer_align(skb);
362 		priv->rx_skb[q][i] = skb;
363 	}
364 
365 	/* Allocate rings for the aligned buffers */
366 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 				    DPTR_ALIGN - 1, GFP_KERNEL);
368 	if (!priv->tx_align[q])
369 		goto error;
370 
371 	/* Allocate all RX descriptors. */
372 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
373 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
374 					      &priv->rx_desc_dma[q],
375 					      GFP_KERNEL);
376 	if (!priv->rx_ring[q])
377 		goto error;
378 
379 	priv->dirty_rx[q] = 0;
380 
381 	/* Allocate all TX descriptors. */
382 	ring_size = sizeof(struct ravb_tx_desc) *
383 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
384 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
385 					      &priv->tx_desc_dma[q],
386 					      GFP_KERNEL);
387 	if (!priv->tx_ring[q])
388 		goto error;
389 
390 	return 0;
391 
392 error:
393 	ravb_ring_free(ndev, q);
394 
395 	return -ENOMEM;
396 }
397 
398 /* E-MAC init function */
399 static void ravb_emac_init(struct net_device *ndev)
400 {
401 	struct ravb_private *priv = netdev_priv(ndev);
402 
403 	/* Receive frame limit set register */
404 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
405 
406 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
407 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
408 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
409 		   ECMR_TE | ECMR_RE, ECMR);
410 
411 	ravb_set_rate(ndev);
412 
413 	/* Set MAC address */
414 	ravb_write(ndev,
415 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
416 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
417 	ravb_write(ndev,
418 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
419 
420 	/* E-MAC status register clear */
421 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
422 
423 	/* E-MAC interrupt enable register */
424 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
425 }
426 
427 /* Device init function for Ethernet AVB */
428 static int ravb_dmac_init(struct net_device *ndev)
429 {
430 	struct ravb_private *priv = netdev_priv(ndev);
431 	int error;
432 
433 	/* Set CONFIG mode */
434 	error = ravb_config(ndev);
435 	if (error)
436 		return error;
437 
438 	error = ravb_ring_init(ndev, RAVB_BE);
439 	if (error)
440 		return error;
441 	error = ravb_ring_init(ndev, RAVB_NC);
442 	if (error) {
443 		ravb_ring_free(ndev, RAVB_BE);
444 		return error;
445 	}
446 
447 	/* Descriptor format */
448 	ravb_ring_format(ndev, RAVB_BE);
449 	ravb_ring_format(ndev, RAVB_NC);
450 
451 #if defined(__LITTLE_ENDIAN)
452 	ravb_modify(ndev, CCC, CCC_BOC, 0);
453 #else
454 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
455 #endif
456 
457 	/* Set AVB RX */
458 	ravb_write(ndev,
459 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
460 
461 	/* Set FIFO size */
462 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
463 
464 	/* Timestamp enable */
465 	ravb_write(ndev, TCCR_TFEN, TCCR);
466 
467 	/* Interrupt init: */
468 	if (priv->chip_id == RCAR_GEN3) {
469 		/* Clear DIL.DPLx */
470 		ravb_write(ndev, 0, DIL);
471 		/* Set queue specific interrupt */
472 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
473 	}
474 	/* Frame receive */
475 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
476 	/* Disable FIFO full warning */
477 	ravb_write(ndev, 0, RIC1);
478 	/* Receive FIFO full error, descriptor empty */
479 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
480 	/* Frame transmitted, timestamp FIFO updated */
481 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
482 
483 	/* Setting the control will start the AVB-DMAC process. */
484 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
485 
486 	return 0;
487 }
488 
489 static void ravb_get_tx_tstamp(struct net_device *ndev)
490 {
491 	struct ravb_private *priv = netdev_priv(ndev);
492 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
493 	struct skb_shared_hwtstamps shhwtstamps;
494 	struct sk_buff *skb;
495 	struct timespec64 ts;
496 	u16 tag, tfa_tag;
497 	int count;
498 	u32 tfa2;
499 
500 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
501 	while (count--) {
502 		tfa2 = ravb_read(ndev, TFA2);
503 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
504 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
505 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
506 			    ravb_read(ndev, TFA1);
507 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
508 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
509 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
510 					 list) {
511 			skb = ts_skb->skb;
512 			tag = ts_skb->tag;
513 			list_del(&ts_skb->list);
514 			kfree(ts_skb);
515 			if (tag == tfa_tag) {
516 				skb_tstamp_tx(skb, &shhwtstamps);
517 				break;
518 			}
519 		}
520 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
521 	}
522 }
523 
524 static void ravb_rx_csum(struct sk_buff *skb)
525 {
526 	u8 *hw_csum;
527 
528 	/* The hardware checksum is 2 bytes appended to packet data */
529 	if (unlikely(skb->len < 2))
530 		return;
531 	hw_csum = skb_tail_pointer(skb) - 2;
532 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
533 	skb->ip_summed = CHECKSUM_COMPLETE;
534 	skb_trim(skb, skb->len - 2);
535 }
536 
537 /* Packet receive function for Ethernet AVB */
538 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
539 {
540 	struct ravb_private *priv = netdev_priv(ndev);
541 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
542 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
543 			priv->cur_rx[q];
544 	struct net_device_stats *stats = &priv->stats[q];
545 	struct ravb_ex_rx_desc *desc;
546 	struct sk_buff *skb;
547 	dma_addr_t dma_addr;
548 	struct timespec64 ts;
549 	u8  desc_status;
550 	u16 pkt_len;
551 	int limit;
552 
553 	boguscnt = min(boguscnt, *quota);
554 	limit = boguscnt;
555 	desc = &priv->rx_ring[q][entry];
556 	while (desc->die_dt != DT_FEMPTY) {
557 		/* Descriptor type must be checked before all other reads */
558 		dma_rmb();
559 		desc_status = desc->msc;
560 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
561 
562 		if (--boguscnt < 0)
563 			break;
564 
565 		/* We use 0-byte descriptors to mark the DMA mapping errors */
566 		if (!pkt_len)
567 			continue;
568 
569 		if (desc_status & MSC_MC)
570 			stats->multicast++;
571 
572 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
573 				   MSC_CEEF)) {
574 			stats->rx_errors++;
575 			if (desc_status & MSC_CRC)
576 				stats->rx_crc_errors++;
577 			if (desc_status & MSC_RFE)
578 				stats->rx_frame_errors++;
579 			if (desc_status & (MSC_RTLF | MSC_RTSF))
580 				stats->rx_length_errors++;
581 			if (desc_status & MSC_CEEF)
582 				stats->rx_missed_errors++;
583 		} else {
584 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
585 
586 			skb = priv->rx_skb[q][entry];
587 			priv->rx_skb[q][entry] = NULL;
588 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
589 					 PKT_BUF_SZ,
590 					 DMA_FROM_DEVICE);
591 			get_ts &= (q == RAVB_NC) ?
592 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
593 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
594 			if (get_ts) {
595 				struct skb_shared_hwtstamps *shhwtstamps;
596 
597 				shhwtstamps = skb_hwtstamps(skb);
598 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
599 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
600 					     32) | le32_to_cpu(desc->ts_sl);
601 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
602 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
603 			}
604 
605 			skb_put(skb, pkt_len);
606 			skb->protocol = eth_type_trans(skb, ndev);
607 			if (ndev->features & NETIF_F_RXCSUM)
608 				ravb_rx_csum(skb);
609 			napi_gro_receive(&priv->napi[q], skb);
610 			stats->rx_packets++;
611 			stats->rx_bytes += pkt_len;
612 		}
613 
614 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
615 		desc = &priv->rx_ring[q][entry];
616 	}
617 
618 	/* Refill the RX ring buffers. */
619 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
620 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
621 		desc = &priv->rx_ring[q][entry];
622 		desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
623 
624 		if (!priv->rx_skb[q][entry]) {
625 			skb = netdev_alloc_skb(ndev,
626 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
627 			if (!skb)
628 				break;	/* Better luck next round. */
629 			ravb_set_buffer_align(skb);
630 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
631 						  le16_to_cpu(desc->ds_cc),
632 						  DMA_FROM_DEVICE);
633 			skb_checksum_none_assert(skb);
634 			/* We just set the data size to 0 for a failed mapping
635 			 * which should prevent DMA  from happening...
636 			 */
637 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
638 				desc->ds_cc = cpu_to_le16(0);
639 			desc->dptr = cpu_to_le32(dma_addr);
640 			priv->rx_skb[q][entry] = skb;
641 		}
642 		/* Descriptor type must be set after all the above writes */
643 		dma_wmb();
644 		desc->die_dt = DT_FEMPTY;
645 	}
646 
647 	*quota -= limit - (++boguscnt);
648 
649 	return boguscnt <= 0;
650 }
651 
652 static void ravb_rcv_snd_disable(struct net_device *ndev)
653 {
654 	/* Disable TX and RX */
655 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
656 }
657 
658 static void ravb_rcv_snd_enable(struct net_device *ndev)
659 {
660 	/* Enable TX and RX */
661 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
662 }
663 
664 /* function for waiting dma process finished */
665 static int ravb_stop_dma(struct net_device *ndev)
666 {
667 	int error;
668 
669 	/* Wait for stopping the hardware TX process */
670 	error = ravb_wait(ndev, TCCR,
671 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
672 	if (error)
673 		return error;
674 
675 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
676 			  0);
677 	if (error)
678 		return error;
679 
680 	/* Stop the E-MAC's RX/TX processes. */
681 	ravb_rcv_snd_disable(ndev);
682 
683 	/* Wait for stopping the RX DMA process */
684 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
685 	if (error)
686 		return error;
687 
688 	/* Stop AVB-DMAC process */
689 	return ravb_config(ndev);
690 }
691 
692 /* E-MAC interrupt handler */
693 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
694 {
695 	struct ravb_private *priv = netdev_priv(ndev);
696 	u32 ecsr, psr;
697 
698 	ecsr = ravb_read(ndev, ECSR);
699 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
700 
701 	if (ecsr & ECSR_MPD)
702 		pm_wakeup_event(&priv->pdev->dev, 0);
703 	if (ecsr & ECSR_ICD)
704 		ndev->stats.tx_carrier_errors++;
705 	if (ecsr & ECSR_LCHNG) {
706 		/* Link changed */
707 		if (priv->no_avb_link)
708 			return;
709 		psr = ravb_read(ndev, PSR);
710 		if (priv->avb_link_active_low)
711 			psr ^= PSR_LMON;
712 		if (!(psr & PSR_LMON)) {
713 			/* DIsable RX and TX */
714 			ravb_rcv_snd_disable(ndev);
715 		} else {
716 			/* Enable RX and TX */
717 			ravb_rcv_snd_enable(ndev);
718 		}
719 	}
720 }
721 
722 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
723 {
724 	struct net_device *ndev = dev_id;
725 	struct ravb_private *priv = netdev_priv(ndev);
726 
727 	spin_lock(&priv->lock);
728 	ravb_emac_interrupt_unlocked(ndev);
729 	mmiowb();
730 	spin_unlock(&priv->lock);
731 	return IRQ_HANDLED;
732 }
733 
734 /* Error interrupt handler */
735 static void ravb_error_interrupt(struct net_device *ndev)
736 {
737 	struct ravb_private *priv = netdev_priv(ndev);
738 	u32 eis, ris2;
739 
740 	eis = ravb_read(ndev, EIS);
741 	ravb_write(ndev, ~EIS_QFS, EIS);
742 	if (eis & EIS_QFS) {
743 		ris2 = ravb_read(ndev, RIS2);
744 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
745 
746 		/* Receive Descriptor Empty int */
747 		if (ris2 & RIS2_QFF0)
748 			priv->stats[RAVB_BE].rx_over_errors++;
749 
750 		    /* Receive Descriptor Empty int */
751 		if (ris2 & RIS2_QFF1)
752 			priv->stats[RAVB_NC].rx_over_errors++;
753 
754 		/* Receive FIFO Overflow int */
755 		if (ris2 & RIS2_RFFF)
756 			priv->rx_fifo_errors++;
757 	}
758 }
759 
760 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
761 {
762 	struct ravb_private *priv = netdev_priv(ndev);
763 	u32 ris0 = ravb_read(ndev, RIS0);
764 	u32 ric0 = ravb_read(ndev, RIC0);
765 	u32 tis  = ravb_read(ndev, TIS);
766 	u32 tic  = ravb_read(ndev, TIC);
767 
768 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
769 		if (napi_schedule_prep(&priv->napi[q])) {
770 			/* Mask RX and TX interrupts */
771 			if (priv->chip_id == RCAR_GEN2) {
772 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
773 				ravb_write(ndev, tic & ~BIT(q), TIC);
774 			} else {
775 				ravb_write(ndev, BIT(q), RID0);
776 				ravb_write(ndev, BIT(q), TID);
777 			}
778 			__napi_schedule(&priv->napi[q]);
779 		} else {
780 			netdev_warn(ndev,
781 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
782 				    ris0, ric0);
783 			netdev_warn(ndev,
784 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
785 				    tis, tic);
786 		}
787 		return true;
788 	}
789 	return false;
790 }
791 
792 static bool ravb_timestamp_interrupt(struct net_device *ndev)
793 {
794 	u32 tis = ravb_read(ndev, TIS);
795 
796 	if (tis & TIS_TFUF) {
797 		ravb_write(ndev, ~TIS_TFUF, TIS);
798 		ravb_get_tx_tstamp(ndev);
799 		return true;
800 	}
801 	return false;
802 }
803 
804 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
805 {
806 	struct net_device *ndev = dev_id;
807 	struct ravb_private *priv = netdev_priv(ndev);
808 	irqreturn_t result = IRQ_NONE;
809 	u32 iss;
810 
811 	spin_lock(&priv->lock);
812 	/* Get interrupt status */
813 	iss = ravb_read(ndev, ISS);
814 
815 	/* Received and transmitted interrupts */
816 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
817 		int q;
818 
819 		/* Timestamp updated */
820 		if (ravb_timestamp_interrupt(ndev))
821 			result = IRQ_HANDLED;
822 
823 		/* Network control and best effort queue RX/TX */
824 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
825 			if (ravb_queue_interrupt(ndev, q))
826 				result = IRQ_HANDLED;
827 		}
828 	}
829 
830 	/* E-MAC status summary */
831 	if (iss & ISS_MS) {
832 		ravb_emac_interrupt_unlocked(ndev);
833 		result = IRQ_HANDLED;
834 	}
835 
836 	/* Error status summary */
837 	if (iss & ISS_ES) {
838 		ravb_error_interrupt(ndev);
839 		result = IRQ_HANDLED;
840 	}
841 
842 	/* gPTP interrupt status summary */
843 	if (iss & ISS_CGIS) {
844 		ravb_ptp_interrupt(ndev);
845 		result = IRQ_HANDLED;
846 	}
847 
848 	mmiowb();
849 	spin_unlock(&priv->lock);
850 	return result;
851 }
852 
853 /* Timestamp/Error/gPTP interrupt handler */
854 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
855 {
856 	struct net_device *ndev = dev_id;
857 	struct ravb_private *priv = netdev_priv(ndev);
858 	irqreturn_t result = IRQ_NONE;
859 	u32 iss;
860 
861 	spin_lock(&priv->lock);
862 	/* Get interrupt status */
863 	iss = ravb_read(ndev, ISS);
864 
865 	/* Timestamp updated */
866 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
867 		result = IRQ_HANDLED;
868 
869 	/* Error status summary */
870 	if (iss & ISS_ES) {
871 		ravb_error_interrupt(ndev);
872 		result = IRQ_HANDLED;
873 	}
874 
875 	/* gPTP interrupt status summary */
876 	if (iss & ISS_CGIS) {
877 		ravb_ptp_interrupt(ndev);
878 		result = IRQ_HANDLED;
879 	}
880 
881 	mmiowb();
882 	spin_unlock(&priv->lock);
883 	return result;
884 }
885 
886 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
887 {
888 	struct net_device *ndev = dev_id;
889 	struct ravb_private *priv = netdev_priv(ndev);
890 	irqreturn_t result = IRQ_NONE;
891 
892 	spin_lock(&priv->lock);
893 
894 	/* Network control/Best effort queue RX/TX */
895 	if (ravb_queue_interrupt(ndev, q))
896 		result = IRQ_HANDLED;
897 
898 	mmiowb();
899 	spin_unlock(&priv->lock);
900 	return result;
901 }
902 
903 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
904 {
905 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
906 }
907 
908 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
909 {
910 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
911 }
912 
913 static int ravb_poll(struct napi_struct *napi, int budget)
914 {
915 	struct net_device *ndev = napi->dev;
916 	struct ravb_private *priv = netdev_priv(ndev);
917 	unsigned long flags;
918 	int q = napi - priv->napi;
919 	int mask = BIT(q);
920 	int quota = budget;
921 	u32 ris0, tis;
922 
923 	for (;;) {
924 		tis = ravb_read(ndev, TIS);
925 		ris0 = ravb_read(ndev, RIS0);
926 		if (!((ris0 & mask) || (tis & mask)))
927 			break;
928 
929 		/* Processing RX Descriptor Ring */
930 		if (ris0 & mask) {
931 			/* Clear RX interrupt */
932 			ravb_write(ndev, ~mask, RIS0);
933 			if (ravb_rx(ndev, &quota, q))
934 				goto out;
935 		}
936 		/* Processing TX Descriptor Ring */
937 		if (tis & mask) {
938 			spin_lock_irqsave(&priv->lock, flags);
939 			/* Clear TX interrupt */
940 			ravb_write(ndev, ~mask, TIS);
941 			ravb_tx_free(ndev, q, true);
942 			netif_wake_subqueue(ndev, q);
943 			mmiowb();
944 			spin_unlock_irqrestore(&priv->lock, flags);
945 		}
946 	}
947 
948 	napi_complete(napi);
949 
950 	/* Re-enable RX/TX interrupts */
951 	spin_lock_irqsave(&priv->lock, flags);
952 	if (priv->chip_id == RCAR_GEN2) {
953 		ravb_modify(ndev, RIC0, mask, mask);
954 		ravb_modify(ndev, TIC,  mask, mask);
955 	} else {
956 		ravb_write(ndev, mask, RIE0);
957 		ravb_write(ndev, mask, TIE);
958 	}
959 	mmiowb();
960 	spin_unlock_irqrestore(&priv->lock, flags);
961 
962 	/* Receive error message handling */
963 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
964 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
965 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
966 		ndev->stats.rx_over_errors = priv->rx_over_errors;
967 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
968 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
969 out:
970 	return budget - quota;
971 }
972 
973 /* PHY state control function */
974 static void ravb_adjust_link(struct net_device *ndev)
975 {
976 	struct ravb_private *priv = netdev_priv(ndev);
977 	struct phy_device *phydev = ndev->phydev;
978 	bool new_state = false;
979 
980 	if (phydev->link) {
981 		if (phydev->duplex != priv->duplex) {
982 			new_state = true;
983 			priv->duplex = phydev->duplex;
984 			ravb_set_duplex(ndev);
985 		}
986 
987 		if (phydev->speed != priv->speed) {
988 			new_state = true;
989 			priv->speed = phydev->speed;
990 			ravb_set_rate(ndev);
991 		}
992 		if (!priv->link) {
993 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
994 			new_state = true;
995 			priv->link = phydev->link;
996 			if (priv->no_avb_link)
997 				ravb_rcv_snd_enable(ndev);
998 		}
999 	} else if (priv->link) {
1000 		new_state = true;
1001 		priv->link = 0;
1002 		priv->speed = 0;
1003 		priv->duplex = -1;
1004 		if (priv->no_avb_link)
1005 			ravb_rcv_snd_disable(ndev);
1006 	}
1007 
1008 	if (new_state && netif_msg_link(priv))
1009 		phy_print_status(phydev);
1010 }
1011 
1012 static const struct soc_device_attribute r8a7795es10[] = {
1013 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1014 	{ /* sentinel */ }
1015 };
1016 
1017 /* PHY init function */
1018 static int ravb_phy_init(struct net_device *ndev)
1019 {
1020 	struct device_node *np = ndev->dev.parent->of_node;
1021 	struct ravb_private *priv = netdev_priv(ndev);
1022 	struct phy_device *phydev;
1023 	struct device_node *pn;
1024 	int err;
1025 
1026 	priv->link = 0;
1027 	priv->speed = 0;
1028 	priv->duplex = -1;
1029 
1030 	/* Try connecting to PHY */
1031 	pn = of_parse_phandle(np, "phy-handle", 0);
1032 	if (!pn) {
1033 		/* In the case of a fixed PHY, the DT node associated
1034 		 * to the PHY is the Ethernet MAC DT node.
1035 		 */
1036 		if (of_phy_is_fixed_link(np)) {
1037 			err = of_phy_register_fixed_link(np);
1038 			if (err)
1039 				return err;
1040 		}
1041 		pn = of_node_get(np);
1042 	}
1043 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1044 				priv->phy_interface);
1045 	of_node_put(pn);
1046 	if (!phydev) {
1047 		netdev_err(ndev, "failed to connect PHY\n");
1048 		err = -ENOENT;
1049 		goto err_deregister_fixed_link;
1050 	}
1051 
1052 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1053 	 * at this time.
1054 	 */
1055 	if (soc_device_match(r8a7795es10)) {
1056 		err = phy_set_max_speed(phydev, SPEED_100);
1057 		if (err) {
1058 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1059 			goto err_phy_disconnect;
1060 		}
1061 
1062 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1063 	}
1064 
1065 	/* 10BASE is not supported */
1066 	phydev->supported &= ~PHY_10BT_FEATURES;
1067 
1068 	phy_attached_info(phydev);
1069 
1070 	return 0;
1071 
1072 err_phy_disconnect:
1073 	phy_disconnect(phydev);
1074 err_deregister_fixed_link:
1075 	if (of_phy_is_fixed_link(np))
1076 		of_phy_deregister_fixed_link(np);
1077 
1078 	return err;
1079 }
1080 
1081 /* PHY control start function */
1082 static int ravb_phy_start(struct net_device *ndev)
1083 {
1084 	int error;
1085 
1086 	error = ravb_phy_init(ndev);
1087 	if (error)
1088 		return error;
1089 
1090 	phy_start(ndev->phydev);
1091 
1092 	return 0;
1093 }
1094 
1095 static int ravb_get_link_ksettings(struct net_device *ndev,
1096 				   struct ethtool_link_ksettings *cmd)
1097 {
1098 	struct ravb_private *priv = netdev_priv(ndev);
1099 	unsigned long flags;
1100 
1101 	if (!ndev->phydev)
1102 		return -ENODEV;
1103 
1104 	spin_lock_irqsave(&priv->lock, flags);
1105 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1106 	spin_unlock_irqrestore(&priv->lock, flags);
1107 
1108 	return 0;
1109 }
1110 
1111 static int ravb_set_link_ksettings(struct net_device *ndev,
1112 				   const struct ethtool_link_ksettings *cmd)
1113 {
1114 	struct ravb_private *priv = netdev_priv(ndev);
1115 	unsigned long flags;
1116 	int error;
1117 
1118 	if (!ndev->phydev)
1119 		return -ENODEV;
1120 
1121 	spin_lock_irqsave(&priv->lock, flags);
1122 
1123 	/* Disable TX and RX */
1124 	ravb_rcv_snd_disable(ndev);
1125 
1126 	error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1127 	if (error)
1128 		goto error_exit;
1129 
1130 	if (cmd->base.duplex == DUPLEX_FULL)
1131 		priv->duplex = 1;
1132 	else
1133 		priv->duplex = 0;
1134 
1135 	ravb_set_duplex(ndev);
1136 
1137 error_exit:
1138 	mdelay(1);
1139 
1140 	/* Enable TX and RX */
1141 	ravb_rcv_snd_enable(ndev);
1142 
1143 	mmiowb();
1144 	spin_unlock_irqrestore(&priv->lock, flags);
1145 
1146 	return error;
1147 }
1148 
1149 static int ravb_nway_reset(struct net_device *ndev)
1150 {
1151 	struct ravb_private *priv = netdev_priv(ndev);
1152 	int error = -ENODEV;
1153 	unsigned long flags;
1154 
1155 	if (ndev->phydev) {
1156 		spin_lock_irqsave(&priv->lock, flags);
1157 		error = phy_start_aneg(ndev->phydev);
1158 		spin_unlock_irqrestore(&priv->lock, flags);
1159 	}
1160 
1161 	return error;
1162 }
1163 
1164 static u32 ravb_get_msglevel(struct net_device *ndev)
1165 {
1166 	struct ravb_private *priv = netdev_priv(ndev);
1167 
1168 	return priv->msg_enable;
1169 }
1170 
1171 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1172 {
1173 	struct ravb_private *priv = netdev_priv(ndev);
1174 
1175 	priv->msg_enable = value;
1176 }
1177 
1178 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1179 	"rx_queue_0_current",
1180 	"tx_queue_0_current",
1181 	"rx_queue_0_dirty",
1182 	"tx_queue_0_dirty",
1183 	"rx_queue_0_packets",
1184 	"tx_queue_0_packets",
1185 	"rx_queue_0_bytes",
1186 	"tx_queue_0_bytes",
1187 	"rx_queue_0_mcast_packets",
1188 	"rx_queue_0_errors",
1189 	"rx_queue_0_crc_errors",
1190 	"rx_queue_0_frame_errors",
1191 	"rx_queue_0_length_errors",
1192 	"rx_queue_0_missed_errors",
1193 	"rx_queue_0_over_errors",
1194 
1195 	"rx_queue_1_current",
1196 	"tx_queue_1_current",
1197 	"rx_queue_1_dirty",
1198 	"tx_queue_1_dirty",
1199 	"rx_queue_1_packets",
1200 	"tx_queue_1_packets",
1201 	"rx_queue_1_bytes",
1202 	"tx_queue_1_bytes",
1203 	"rx_queue_1_mcast_packets",
1204 	"rx_queue_1_errors",
1205 	"rx_queue_1_crc_errors",
1206 	"rx_queue_1_frame_errors",
1207 	"rx_queue_1_length_errors",
1208 	"rx_queue_1_missed_errors",
1209 	"rx_queue_1_over_errors",
1210 };
1211 
1212 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1213 
1214 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1215 {
1216 	switch (sset) {
1217 	case ETH_SS_STATS:
1218 		return RAVB_STATS_LEN;
1219 	default:
1220 		return -EOPNOTSUPP;
1221 	}
1222 }
1223 
1224 static void ravb_get_ethtool_stats(struct net_device *ndev,
1225 				   struct ethtool_stats *stats, u64 *data)
1226 {
1227 	struct ravb_private *priv = netdev_priv(ndev);
1228 	int i = 0;
1229 	int q;
1230 
1231 	/* Device-specific stats */
1232 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1233 		struct net_device_stats *stats = &priv->stats[q];
1234 
1235 		data[i++] = priv->cur_rx[q];
1236 		data[i++] = priv->cur_tx[q];
1237 		data[i++] = priv->dirty_rx[q];
1238 		data[i++] = priv->dirty_tx[q];
1239 		data[i++] = stats->rx_packets;
1240 		data[i++] = stats->tx_packets;
1241 		data[i++] = stats->rx_bytes;
1242 		data[i++] = stats->tx_bytes;
1243 		data[i++] = stats->multicast;
1244 		data[i++] = stats->rx_errors;
1245 		data[i++] = stats->rx_crc_errors;
1246 		data[i++] = stats->rx_frame_errors;
1247 		data[i++] = stats->rx_length_errors;
1248 		data[i++] = stats->rx_missed_errors;
1249 		data[i++] = stats->rx_over_errors;
1250 	}
1251 }
1252 
1253 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1254 {
1255 	switch (stringset) {
1256 	case ETH_SS_STATS:
1257 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1258 		break;
1259 	}
1260 }
1261 
1262 static void ravb_get_ringparam(struct net_device *ndev,
1263 			       struct ethtool_ringparam *ring)
1264 {
1265 	struct ravb_private *priv = netdev_priv(ndev);
1266 
1267 	ring->rx_max_pending = BE_RX_RING_MAX;
1268 	ring->tx_max_pending = BE_TX_RING_MAX;
1269 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1270 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1271 }
1272 
1273 static int ravb_set_ringparam(struct net_device *ndev,
1274 			      struct ethtool_ringparam *ring)
1275 {
1276 	struct ravb_private *priv = netdev_priv(ndev);
1277 	int error;
1278 
1279 	if (ring->tx_pending > BE_TX_RING_MAX ||
1280 	    ring->rx_pending > BE_RX_RING_MAX ||
1281 	    ring->tx_pending < BE_TX_RING_MIN ||
1282 	    ring->rx_pending < BE_RX_RING_MIN)
1283 		return -EINVAL;
1284 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1285 		return -EINVAL;
1286 
1287 	if (netif_running(ndev)) {
1288 		netif_device_detach(ndev);
1289 		/* Stop PTP Clock driver */
1290 		if (priv->chip_id == RCAR_GEN2)
1291 			ravb_ptp_stop(ndev);
1292 		/* Wait for DMA stopping */
1293 		error = ravb_stop_dma(ndev);
1294 		if (error) {
1295 			netdev_err(ndev,
1296 				   "cannot set ringparam! Any AVB processes are still running?\n");
1297 			return error;
1298 		}
1299 		synchronize_irq(ndev->irq);
1300 
1301 		/* Free all the skb's in the RX queue and the DMA buffers. */
1302 		ravb_ring_free(ndev, RAVB_BE);
1303 		ravb_ring_free(ndev, RAVB_NC);
1304 	}
1305 
1306 	/* Set new parameters */
1307 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1308 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1309 
1310 	if (netif_running(ndev)) {
1311 		error = ravb_dmac_init(ndev);
1312 		if (error) {
1313 			netdev_err(ndev,
1314 				   "%s: ravb_dmac_init() failed, error %d\n",
1315 				   __func__, error);
1316 			return error;
1317 		}
1318 
1319 		ravb_emac_init(ndev);
1320 
1321 		/* Initialise PTP Clock driver */
1322 		if (priv->chip_id == RCAR_GEN2)
1323 			ravb_ptp_init(ndev, priv->pdev);
1324 
1325 		netif_device_attach(ndev);
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int ravb_get_ts_info(struct net_device *ndev,
1332 			    struct ethtool_ts_info *info)
1333 {
1334 	struct ravb_private *priv = netdev_priv(ndev);
1335 
1336 	info->so_timestamping =
1337 		SOF_TIMESTAMPING_TX_SOFTWARE |
1338 		SOF_TIMESTAMPING_RX_SOFTWARE |
1339 		SOF_TIMESTAMPING_SOFTWARE |
1340 		SOF_TIMESTAMPING_TX_HARDWARE |
1341 		SOF_TIMESTAMPING_RX_HARDWARE |
1342 		SOF_TIMESTAMPING_RAW_HARDWARE;
1343 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1344 	info->rx_filters =
1345 		(1 << HWTSTAMP_FILTER_NONE) |
1346 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1347 		(1 << HWTSTAMP_FILTER_ALL);
1348 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1349 
1350 	return 0;
1351 }
1352 
1353 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1354 {
1355 	struct ravb_private *priv = netdev_priv(ndev);
1356 
1357 	wol->supported = WAKE_MAGIC;
1358 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1359 }
1360 
1361 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1362 {
1363 	struct ravb_private *priv = netdev_priv(ndev);
1364 
1365 	if (wol->wolopts & ~WAKE_MAGIC)
1366 		return -EOPNOTSUPP;
1367 
1368 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1369 
1370 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1371 
1372 	return 0;
1373 }
1374 
1375 static const struct ethtool_ops ravb_ethtool_ops = {
1376 	.nway_reset		= ravb_nway_reset,
1377 	.get_msglevel		= ravb_get_msglevel,
1378 	.set_msglevel		= ravb_set_msglevel,
1379 	.get_link		= ethtool_op_get_link,
1380 	.get_strings		= ravb_get_strings,
1381 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1382 	.get_sset_count		= ravb_get_sset_count,
1383 	.get_ringparam		= ravb_get_ringparam,
1384 	.set_ringparam		= ravb_set_ringparam,
1385 	.get_ts_info		= ravb_get_ts_info,
1386 	.get_link_ksettings	= ravb_get_link_ksettings,
1387 	.set_link_ksettings	= ravb_set_link_ksettings,
1388 	.get_wol		= ravb_get_wol,
1389 	.set_wol		= ravb_set_wol,
1390 };
1391 
1392 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1393 				struct net_device *ndev, struct device *dev,
1394 				const char *ch)
1395 {
1396 	char *name;
1397 	int error;
1398 
1399 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1400 	if (!name)
1401 		return -ENOMEM;
1402 	error = request_irq(irq, handler, 0, name, ndev);
1403 	if (error)
1404 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1405 
1406 	return error;
1407 }
1408 
1409 /* Network device open function for Ethernet AVB */
1410 static int ravb_open(struct net_device *ndev)
1411 {
1412 	struct ravb_private *priv = netdev_priv(ndev);
1413 	struct platform_device *pdev = priv->pdev;
1414 	struct device *dev = &pdev->dev;
1415 	int error;
1416 
1417 	napi_enable(&priv->napi[RAVB_BE]);
1418 	napi_enable(&priv->napi[RAVB_NC]);
1419 
1420 	if (priv->chip_id == RCAR_GEN2) {
1421 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1422 				    ndev->name, ndev);
1423 		if (error) {
1424 			netdev_err(ndev, "cannot request IRQ\n");
1425 			goto out_napi_off;
1426 		}
1427 	} else {
1428 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1429 				      dev, "ch22:multi");
1430 		if (error)
1431 			goto out_napi_off;
1432 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1433 				      dev, "ch24:emac");
1434 		if (error)
1435 			goto out_free_irq;
1436 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1437 				      ndev, dev, "ch0:rx_be");
1438 		if (error)
1439 			goto out_free_irq_emac;
1440 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1441 				      ndev, dev, "ch18:tx_be");
1442 		if (error)
1443 			goto out_free_irq_be_rx;
1444 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1445 				      ndev, dev, "ch1:rx_nc");
1446 		if (error)
1447 			goto out_free_irq_be_tx;
1448 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1449 				      ndev, dev, "ch19:tx_nc");
1450 		if (error)
1451 			goto out_free_irq_nc_rx;
1452 	}
1453 
1454 	/* Device init */
1455 	error = ravb_dmac_init(ndev);
1456 	if (error)
1457 		goto out_free_irq_nc_tx;
1458 	ravb_emac_init(ndev);
1459 
1460 	/* Initialise PTP Clock driver */
1461 	if (priv->chip_id == RCAR_GEN2)
1462 		ravb_ptp_init(ndev, priv->pdev);
1463 
1464 	netif_tx_start_all_queues(ndev);
1465 
1466 	/* PHY control start */
1467 	error = ravb_phy_start(ndev);
1468 	if (error)
1469 		goto out_ptp_stop;
1470 
1471 	return 0;
1472 
1473 out_ptp_stop:
1474 	/* Stop PTP Clock driver */
1475 	if (priv->chip_id == RCAR_GEN2)
1476 		ravb_ptp_stop(ndev);
1477 out_free_irq_nc_tx:
1478 	if (priv->chip_id == RCAR_GEN2)
1479 		goto out_free_irq;
1480 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1481 out_free_irq_nc_rx:
1482 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1483 out_free_irq_be_tx:
1484 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1485 out_free_irq_be_rx:
1486 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1487 out_free_irq_emac:
1488 	free_irq(priv->emac_irq, ndev);
1489 out_free_irq:
1490 	free_irq(ndev->irq, ndev);
1491 out_napi_off:
1492 	napi_disable(&priv->napi[RAVB_NC]);
1493 	napi_disable(&priv->napi[RAVB_BE]);
1494 	return error;
1495 }
1496 
1497 /* Timeout function for Ethernet AVB */
1498 static void ravb_tx_timeout(struct net_device *ndev)
1499 {
1500 	struct ravb_private *priv = netdev_priv(ndev);
1501 
1502 	netif_err(priv, tx_err, ndev,
1503 		  "transmit timed out, status %08x, resetting...\n",
1504 		  ravb_read(ndev, ISS));
1505 
1506 	/* tx_errors count up */
1507 	ndev->stats.tx_errors++;
1508 
1509 	schedule_work(&priv->work);
1510 }
1511 
1512 static void ravb_tx_timeout_work(struct work_struct *work)
1513 {
1514 	struct ravb_private *priv = container_of(work, struct ravb_private,
1515 						 work);
1516 	struct net_device *ndev = priv->ndev;
1517 
1518 	netif_tx_stop_all_queues(ndev);
1519 
1520 	/* Stop PTP Clock driver */
1521 	if (priv->chip_id == RCAR_GEN2)
1522 		ravb_ptp_stop(ndev);
1523 
1524 	/* Wait for DMA stopping */
1525 	ravb_stop_dma(ndev);
1526 
1527 	ravb_ring_free(ndev, RAVB_BE);
1528 	ravb_ring_free(ndev, RAVB_NC);
1529 
1530 	/* Device init */
1531 	ravb_dmac_init(ndev);
1532 	ravb_emac_init(ndev);
1533 
1534 	/* Initialise PTP Clock driver */
1535 	if (priv->chip_id == RCAR_GEN2)
1536 		ravb_ptp_init(ndev, priv->pdev);
1537 
1538 	netif_tx_start_all_queues(ndev);
1539 }
1540 
1541 /* Packet transmit function for Ethernet AVB */
1542 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1543 {
1544 	struct ravb_private *priv = netdev_priv(ndev);
1545 	u16 q = skb_get_queue_mapping(skb);
1546 	struct ravb_tstamp_skb *ts_skb;
1547 	struct ravb_tx_desc *desc;
1548 	unsigned long flags;
1549 	u32 dma_addr;
1550 	void *buffer;
1551 	u32 entry;
1552 	u32 len;
1553 
1554 	spin_lock_irqsave(&priv->lock, flags);
1555 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1556 	    NUM_TX_DESC) {
1557 		netif_err(priv, tx_queued, ndev,
1558 			  "still transmitting with the full ring!\n");
1559 		netif_stop_subqueue(ndev, q);
1560 		spin_unlock_irqrestore(&priv->lock, flags);
1561 		return NETDEV_TX_BUSY;
1562 	}
1563 
1564 	if (skb_put_padto(skb, ETH_ZLEN))
1565 		goto exit;
1566 
1567 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1568 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1569 
1570 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1571 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1572 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1573 	/* Zero length DMA descriptors are problematic as they seem to
1574 	 * terminate DMA transfers. Avoid them by simply using a length of
1575 	 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1576 	 *
1577 	 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1578 	 * data by the call to skb_put_padto() above this is safe with
1579 	 * respect to both the length of the first DMA descriptor (len)
1580 	 * overflowing the available data and the length of the second DMA
1581 	 * descriptor (skb->len - len) being negative.
1582 	 */
1583 	if (len == 0)
1584 		len = DPTR_ALIGN;
1585 
1586 	memcpy(buffer, skb->data, len);
1587 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1588 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1589 		goto drop;
1590 
1591 	desc = &priv->tx_ring[q][entry];
1592 	desc->ds_tagl = cpu_to_le16(len);
1593 	desc->dptr = cpu_to_le32(dma_addr);
1594 
1595 	buffer = skb->data + len;
1596 	len = skb->len - len;
1597 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1598 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1599 		goto unmap;
1600 
1601 	desc++;
1602 	desc->ds_tagl = cpu_to_le16(len);
1603 	desc->dptr = cpu_to_le32(dma_addr);
1604 
1605 	/* TX timestamp required */
1606 	if (q == RAVB_NC) {
1607 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1608 		if (!ts_skb) {
1609 			desc--;
1610 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1611 					 DMA_TO_DEVICE);
1612 			goto unmap;
1613 		}
1614 		ts_skb->skb = skb;
1615 		ts_skb->tag = priv->ts_skb_tag++;
1616 		priv->ts_skb_tag &= 0x3ff;
1617 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1618 
1619 		/* TAG and timestamp required flag */
1620 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1621 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1622 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1623 	}
1624 
1625 	skb_tx_timestamp(skb);
1626 	/* Descriptor type must be set after all the above writes */
1627 	dma_wmb();
1628 	desc->die_dt = DT_FEND;
1629 	desc--;
1630 	desc->die_dt = DT_FSTART;
1631 
1632 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1633 
1634 	priv->cur_tx[q] += NUM_TX_DESC;
1635 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1636 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
1637 	    !ravb_tx_free(ndev, q, true))
1638 		netif_stop_subqueue(ndev, q);
1639 
1640 exit:
1641 	mmiowb();
1642 	spin_unlock_irqrestore(&priv->lock, flags);
1643 	return NETDEV_TX_OK;
1644 
1645 unmap:
1646 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1647 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1648 drop:
1649 	dev_kfree_skb_any(skb);
1650 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1651 	goto exit;
1652 }
1653 
1654 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1655 			     void *accel_priv, select_queue_fallback_t fallback)
1656 {
1657 	/* If skb needs TX timestamp, it is handled in network control queue */
1658 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1659 							       RAVB_BE;
1660 
1661 }
1662 
1663 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1664 {
1665 	struct ravb_private *priv = netdev_priv(ndev);
1666 	struct net_device_stats *nstats, *stats0, *stats1;
1667 
1668 	nstats = &ndev->stats;
1669 	stats0 = &priv->stats[RAVB_BE];
1670 	stats1 = &priv->stats[RAVB_NC];
1671 
1672 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1673 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1674 	nstats->collisions += ravb_read(ndev, CDCR);
1675 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1676 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1677 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1678 
1679 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1680 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1681 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1682 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1683 
1684 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1685 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1686 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1687 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1688 	nstats->multicast = stats0->multicast + stats1->multicast;
1689 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1690 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1691 	nstats->rx_frame_errors =
1692 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1693 	nstats->rx_length_errors =
1694 		stats0->rx_length_errors + stats1->rx_length_errors;
1695 	nstats->rx_missed_errors =
1696 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1697 	nstats->rx_over_errors =
1698 		stats0->rx_over_errors + stats1->rx_over_errors;
1699 
1700 	return nstats;
1701 }
1702 
1703 /* Update promiscuous bit */
1704 static void ravb_set_rx_mode(struct net_device *ndev)
1705 {
1706 	struct ravb_private *priv = netdev_priv(ndev);
1707 	unsigned long flags;
1708 
1709 	spin_lock_irqsave(&priv->lock, flags);
1710 	ravb_modify(ndev, ECMR, ECMR_PRM,
1711 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1712 	mmiowb();
1713 	spin_unlock_irqrestore(&priv->lock, flags);
1714 }
1715 
1716 /* Device close function for Ethernet AVB */
1717 static int ravb_close(struct net_device *ndev)
1718 {
1719 	struct device_node *np = ndev->dev.parent->of_node;
1720 	struct ravb_private *priv = netdev_priv(ndev);
1721 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1722 
1723 	netif_tx_stop_all_queues(ndev);
1724 
1725 	/* Disable interrupts by clearing the interrupt masks. */
1726 	ravb_write(ndev, 0, RIC0);
1727 	ravb_write(ndev, 0, RIC2);
1728 	ravb_write(ndev, 0, TIC);
1729 
1730 	/* Stop PTP Clock driver */
1731 	if (priv->chip_id == RCAR_GEN2)
1732 		ravb_ptp_stop(ndev);
1733 
1734 	/* Set the config mode to stop the AVB-DMAC's processes */
1735 	if (ravb_stop_dma(ndev) < 0)
1736 		netdev_err(ndev,
1737 			   "device will be stopped after h/w processes are done.\n");
1738 
1739 	/* Clear the timestamp list */
1740 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1741 		list_del(&ts_skb->list);
1742 		kfree(ts_skb);
1743 	}
1744 
1745 	/* PHY disconnect */
1746 	if (ndev->phydev) {
1747 		phy_stop(ndev->phydev);
1748 		phy_disconnect(ndev->phydev);
1749 		if (of_phy_is_fixed_link(np))
1750 			of_phy_deregister_fixed_link(np);
1751 	}
1752 
1753 	if (priv->chip_id != RCAR_GEN2) {
1754 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1755 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1756 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1757 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1758 		free_irq(priv->emac_irq, ndev);
1759 	}
1760 	free_irq(ndev->irq, ndev);
1761 
1762 	napi_disable(&priv->napi[RAVB_NC]);
1763 	napi_disable(&priv->napi[RAVB_BE]);
1764 
1765 	/* Free all the skb's in the RX queue and the DMA buffers. */
1766 	ravb_ring_free(ndev, RAVB_BE);
1767 	ravb_ring_free(ndev, RAVB_NC);
1768 
1769 	return 0;
1770 }
1771 
1772 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1773 {
1774 	struct ravb_private *priv = netdev_priv(ndev);
1775 	struct hwtstamp_config config;
1776 
1777 	config.flags = 0;
1778 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1779 						HWTSTAMP_TX_OFF;
1780 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1781 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1782 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1783 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1784 	else
1785 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1786 
1787 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1788 		-EFAULT : 0;
1789 }
1790 
1791 /* Control hardware time stamping */
1792 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1793 {
1794 	struct ravb_private *priv = netdev_priv(ndev);
1795 	struct hwtstamp_config config;
1796 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1797 	u32 tstamp_tx_ctrl;
1798 
1799 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1800 		return -EFAULT;
1801 
1802 	/* Reserved for future extensions */
1803 	if (config.flags)
1804 		return -EINVAL;
1805 
1806 	switch (config.tx_type) {
1807 	case HWTSTAMP_TX_OFF:
1808 		tstamp_tx_ctrl = 0;
1809 		break;
1810 	case HWTSTAMP_TX_ON:
1811 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1812 		break;
1813 	default:
1814 		return -ERANGE;
1815 	}
1816 
1817 	switch (config.rx_filter) {
1818 	case HWTSTAMP_FILTER_NONE:
1819 		tstamp_rx_ctrl = 0;
1820 		break;
1821 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1822 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1823 		break;
1824 	default:
1825 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1826 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1827 	}
1828 
1829 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1830 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1831 
1832 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1833 		-EFAULT : 0;
1834 }
1835 
1836 /* ioctl to device function */
1837 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1838 {
1839 	struct phy_device *phydev = ndev->phydev;
1840 
1841 	if (!netif_running(ndev))
1842 		return -EINVAL;
1843 
1844 	if (!phydev)
1845 		return -ENODEV;
1846 
1847 	switch (cmd) {
1848 	case SIOCGHWTSTAMP:
1849 		return ravb_hwtstamp_get(ndev, req);
1850 	case SIOCSHWTSTAMP:
1851 		return ravb_hwtstamp_set(ndev, req);
1852 	}
1853 
1854 	return phy_mii_ioctl(phydev, req, cmd);
1855 }
1856 
1857 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1858 {
1859 	struct ravb_private *priv = netdev_priv(ndev);
1860 	unsigned long flags;
1861 
1862 	spin_lock_irqsave(&priv->lock, flags);
1863 
1864 	/* Disable TX and RX */
1865 	ravb_rcv_snd_disable(ndev);
1866 
1867 	/* Modify RX Checksum setting */
1868 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1869 
1870 	/* Enable TX and RX */
1871 	ravb_rcv_snd_enable(ndev);
1872 
1873 	spin_unlock_irqrestore(&priv->lock, flags);
1874 }
1875 
1876 static int ravb_set_features(struct net_device *ndev,
1877 			     netdev_features_t features)
1878 {
1879 	netdev_features_t changed = ndev->features ^ features;
1880 
1881 	if (changed & NETIF_F_RXCSUM)
1882 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1883 
1884 	ndev->features = features;
1885 
1886 	return 0;
1887 }
1888 
1889 static const struct net_device_ops ravb_netdev_ops = {
1890 	.ndo_open		= ravb_open,
1891 	.ndo_stop		= ravb_close,
1892 	.ndo_start_xmit		= ravb_start_xmit,
1893 	.ndo_select_queue	= ravb_select_queue,
1894 	.ndo_get_stats		= ravb_get_stats,
1895 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1896 	.ndo_tx_timeout		= ravb_tx_timeout,
1897 	.ndo_do_ioctl		= ravb_do_ioctl,
1898 	.ndo_validate_addr	= eth_validate_addr,
1899 	.ndo_set_mac_address	= eth_mac_addr,
1900 	.ndo_set_features	= ravb_set_features,
1901 };
1902 
1903 /* MDIO bus init function */
1904 static int ravb_mdio_init(struct ravb_private *priv)
1905 {
1906 	struct platform_device *pdev = priv->pdev;
1907 	struct device *dev = &pdev->dev;
1908 	int error;
1909 
1910 	/* Bitbang init */
1911 	priv->mdiobb.ops = &bb_ops;
1912 
1913 	/* MII controller setting */
1914 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1915 	if (!priv->mii_bus)
1916 		return -ENOMEM;
1917 
1918 	/* Hook up MII support for ethtool */
1919 	priv->mii_bus->name = "ravb_mii";
1920 	priv->mii_bus->parent = dev;
1921 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1922 		 pdev->name, pdev->id);
1923 
1924 	/* Register MDIO bus */
1925 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1926 	if (error)
1927 		goto out_free_bus;
1928 
1929 	return 0;
1930 
1931 out_free_bus:
1932 	free_mdio_bitbang(priv->mii_bus);
1933 	return error;
1934 }
1935 
1936 /* MDIO bus release function */
1937 static int ravb_mdio_release(struct ravb_private *priv)
1938 {
1939 	/* Unregister mdio bus */
1940 	mdiobus_unregister(priv->mii_bus);
1941 
1942 	/* Free bitbang info */
1943 	free_mdio_bitbang(priv->mii_bus);
1944 
1945 	return 0;
1946 }
1947 
1948 static const struct of_device_id ravb_match_table[] = {
1949 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1950 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1951 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1952 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1953 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1954 	{ }
1955 };
1956 MODULE_DEVICE_TABLE(of, ravb_match_table);
1957 
1958 static int ravb_set_gti(struct net_device *ndev)
1959 {
1960 	struct ravb_private *priv = netdev_priv(ndev);
1961 	struct device *dev = ndev->dev.parent;
1962 	unsigned long rate;
1963 	uint64_t inc;
1964 
1965 	rate = clk_get_rate(priv->clk);
1966 	if (!rate)
1967 		return -EINVAL;
1968 
1969 	inc = 1000000000ULL << 20;
1970 	do_div(inc, rate);
1971 
1972 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1973 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1974 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1975 		return -EINVAL;
1976 	}
1977 
1978 	ravb_write(ndev, inc, GTI);
1979 
1980 	return 0;
1981 }
1982 
1983 static void ravb_set_config_mode(struct net_device *ndev)
1984 {
1985 	struct ravb_private *priv = netdev_priv(ndev);
1986 
1987 	if (priv->chip_id == RCAR_GEN2) {
1988 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1989 		/* Set CSEL value */
1990 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1991 	} else {
1992 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1993 			    CCC_GAC | CCC_CSEL_HPB);
1994 	}
1995 }
1996 
1997 /* Set tx and rx clock internal delay modes */
1998 static void ravb_set_delay_mode(struct net_device *ndev)
1999 {
2000 	struct ravb_private *priv = netdev_priv(ndev);
2001 	int set = 0;
2002 
2003 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2004 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
2005 		set |= APSR_DM_RDM;
2006 
2007 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2008 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
2009 		set |= APSR_DM_TDM;
2010 
2011 	ravb_modify(ndev, APSR, APSR_DM, set);
2012 }
2013 
2014 static int ravb_probe(struct platform_device *pdev)
2015 {
2016 	struct device_node *np = pdev->dev.of_node;
2017 	struct ravb_private *priv;
2018 	enum ravb_chip_id chip_id;
2019 	struct net_device *ndev;
2020 	int error, irq, q;
2021 	struct resource *res;
2022 	int i;
2023 
2024 	if (!np) {
2025 		dev_err(&pdev->dev,
2026 			"this driver is required to be instantiated from device tree\n");
2027 		return -EINVAL;
2028 	}
2029 
2030 	/* Get base address */
2031 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2032 	if (!res) {
2033 		dev_err(&pdev->dev, "invalid resource\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2038 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2039 	if (!ndev)
2040 		return -ENOMEM;
2041 
2042 	ndev->features = NETIF_F_RXCSUM;
2043 	ndev->hw_features = NETIF_F_RXCSUM;
2044 
2045 	pm_runtime_enable(&pdev->dev);
2046 	pm_runtime_get_sync(&pdev->dev);
2047 
2048 	/* The Ether-specific entries in the device structure. */
2049 	ndev->base_addr = res->start;
2050 
2051 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2052 
2053 	if (chip_id == RCAR_GEN3)
2054 		irq = platform_get_irq_byname(pdev, "ch22");
2055 	else
2056 		irq = platform_get_irq(pdev, 0);
2057 	if (irq < 0) {
2058 		error = irq;
2059 		goto out_release;
2060 	}
2061 	ndev->irq = irq;
2062 
2063 	SET_NETDEV_DEV(ndev, &pdev->dev);
2064 
2065 	priv = netdev_priv(ndev);
2066 	priv->ndev = ndev;
2067 	priv->pdev = pdev;
2068 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2069 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2070 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2071 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2072 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2073 	if (IS_ERR(priv->addr)) {
2074 		error = PTR_ERR(priv->addr);
2075 		goto out_release;
2076 	}
2077 
2078 	spin_lock_init(&priv->lock);
2079 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2080 
2081 	priv->phy_interface = of_get_phy_mode(np);
2082 
2083 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2084 	priv->avb_link_active_low =
2085 		of_property_read_bool(np, "renesas,ether-link-active-low");
2086 
2087 	if (chip_id == RCAR_GEN3) {
2088 		irq = platform_get_irq_byname(pdev, "ch24");
2089 		if (irq < 0) {
2090 			error = irq;
2091 			goto out_release;
2092 		}
2093 		priv->emac_irq = irq;
2094 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2095 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2096 			if (irq < 0) {
2097 				error = irq;
2098 				goto out_release;
2099 			}
2100 			priv->rx_irqs[i] = irq;
2101 		}
2102 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2103 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2104 			if (irq < 0) {
2105 				error = irq;
2106 				goto out_release;
2107 			}
2108 			priv->tx_irqs[i] = irq;
2109 		}
2110 	}
2111 
2112 	priv->chip_id = chip_id;
2113 
2114 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2115 	if (IS_ERR(priv->clk)) {
2116 		error = PTR_ERR(priv->clk);
2117 		goto out_release;
2118 	}
2119 
2120 	/* Set function */
2121 	ndev->netdev_ops = &ravb_netdev_ops;
2122 	ndev->ethtool_ops = &ravb_ethtool_ops;
2123 
2124 	/* Set AVB config mode */
2125 	ravb_set_config_mode(ndev);
2126 
2127 	/* Set GTI value */
2128 	error = ravb_set_gti(ndev);
2129 	if (error)
2130 		goto out_release;
2131 
2132 	/* Request GTI loading */
2133 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2134 
2135 	if (priv->chip_id != RCAR_GEN2)
2136 		ravb_set_delay_mode(ndev);
2137 
2138 	/* Allocate descriptor base address table */
2139 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2140 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2141 					    &priv->desc_bat_dma, GFP_KERNEL);
2142 	if (!priv->desc_bat) {
2143 		dev_err(&pdev->dev,
2144 			"Cannot allocate desc base address table (size %d bytes)\n",
2145 			priv->desc_bat_size);
2146 		error = -ENOMEM;
2147 		goto out_release;
2148 	}
2149 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2150 		priv->desc_bat[q].die_dt = DT_EOS;
2151 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2152 
2153 	/* Initialise HW timestamp list */
2154 	INIT_LIST_HEAD(&priv->ts_skb_list);
2155 
2156 	/* Initialise PTP Clock driver */
2157 	if (chip_id != RCAR_GEN2)
2158 		ravb_ptp_init(ndev, pdev);
2159 
2160 	/* Debug message level */
2161 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2162 
2163 	/* Read and set MAC address */
2164 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2165 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2166 		dev_warn(&pdev->dev,
2167 			 "no valid MAC address supplied, using a random one\n");
2168 		eth_hw_addr_random(ndev);
2169 	}
2170 
2171 	/* MDIO bus init */
2172 	error = ravb_mdio_init(priv);
2173 	if (error) {
2174 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2175 		goto out_dma_free;
2176 	}
2177 
2178 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2179 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2180 
2181 	/* Network device register */
2182 	error = register_netdev(ndev);
2183 	if (error)
2184 		goto out_napi_del;
2185 
2186 	device_set_wakeup_capable(&pdev->dev, 1);
2187 
2188 	/* Print device information */
2189 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2190 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2191 
2192 	platform_set_drvdata(pdev, ndev);
2193 
2194 	return 0;
2195 
2196 out_napi_del:
2197 	netif_napi_del(&priv->napi[RAVB_NC]);
2198 	netif_napi_del(&priv->napi[RAVB_BE]);
2199 	ravb_mdio_release(priv);
2200 out_dma_free:
2201 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2202 			  priv->desc_bat_dma);
2203 
2204 	/* Stop PTP Clock driver */
2205 	if (chip_id != RCAR_GEN2)
2206 		ravb_ptp_stop(ndev);
2207 out_release:
2208 	free_netdev(ndev);
2209 
2210 	pm_runtime_put(&pdev->dev);
2211 	pm_runtime_disable(&pdev->dev);
2212 	return error;
2213 }
2214 
2215 static int ravb_remove(struct platform_device *pdev)
2216 {
2217 	struct net_device *ndev = platform_get_drvdata(pdev);
2218 	struct ravb_private *priv = netdev_priv(ndev);
2219 
2220 	/* Stop PTP Clock driver */
2221 	if (priv->chip_id != RCAR_GEN2)
2222 		ravb_ptp_stop(ndev);
2223 
2224 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2225 			  priv->desc_bat_dma);
2226 	/* Set reset mode */
2227 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2228 	pm_runtime_put_sync(&pdev->dev);
2229 	unregister_netdev(ndev);
2230 	netif_napi_del(&priv->napi[RAVB_NC]);
2231 	netif_napi_del(&priv->napi[RAVB_BE]);
2232 	ravb_mdio_release(priv);
2233 	pm_runtime_disable(&pdev->dev);
2234 	free_netdev(ndev);
2235 	platform_set_drvdata(pdev, NULL);
2236 
2237 	return 0;
2238 }
2239 
2240 static int ravb_wol_setup(struct net_device *ndev)
2241 {
2242 	struct ravb_private *priv = netdev_priv(ndev);
2243 
2244 	/* Disable interrupts by clearing the interrupt masks. */
2245 	ravb_write(ndev, 0, RIC0);
2246 	ravb_write(ndev, 0, RIC2);
2247 	ravb_write(ndev, 0, TIC);
2248 
2249 	/* Only allow ECI interrupts */
2250 	synchronize_irq(priv->emac_irq);
2251 	napi_disable(&priv->napi[RAVB_NC]);
2252 	napi_disable(&priv->napi[RAVB_BE]);
2253 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2254 
2255 	/* Enable MagicPacket */
2256 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2257 
2258 	return enable_irq_wake(priv->emac_irq);
2259 }
2260 
2261 static int ravb_wol_restore(struct net_device *ndev)
2262 {
2263 	struct ravb_private *priv = netdev_priv(ndev);
2264 	int ret;
2265 
2266 	napi_enable(&priv->napi[RAVB_NC]);
2267 	napi_enable(&priv->napi[RAVB_BE]);
2268 
2269 	/* Disable MagicPacket */
2270 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2271 
2272 	ret = ravb_close(ndev);
2273 	if (ret < 0)
2274 		return ret;
2275 
2276 	return disable_irq_wake(priv->emac_irq);
2277 }
2278 
2279 static int __maybe_unused ravb_suspend(struct device *dev)
2280 {
2281 	struct net_device *ndev = dev_get_drvdata(dev);
2282 	struct ravb_private *priv = netdev_priv(ndev);
2283 	int ret;
2284 
2285 	if (!netif_running(ndev))
2286 		return 0;
2287 
2288 	netif_device_detach(ndev);
2289 
2290 	if (priv->wol_enabled)
2291 		ret = ravb_wol_setup(ndev);
2292 	else
2293 		ret = ravb_close(ndev);
2294 
2295 	return ret;
2296 }
2297 
2298 static int __maybe_unused ravb_resume(struct device *dev)
2299 {
2300 	struct net_device *ndev = dev_get_drvdata(dev);
2301 	struct ravb_private *priv = netdev_priv(ndev);
2302 	int ret = 0;
2303 
2304 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2305 	if (priv->wol_enabled)
2306 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2307 
2308 	/* All register have been reset to default values.
2309 	 * Restore all registers which where setup at probe time and
2310 	 * reopen device if it was running before system suspended.
2311 	 */
2312 
2313 	/* Set AVB config mode */
2314 	ravb_set_config_mode(ndev);
2315 
2316 	/* Set GTI value */
2317 	ret = ravb_set_gti(ndev);
2318 	if (ret)
2319 		return ret;
2320 
2321 	/* Request GTI loading */
2322 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2323 
2324 	if (priv->chip_id != RCAR_GEN2)
2325 		ravb_set_delay_mode(ndev);
2326 
2327 	/* Restore descriptor base address table */
2328 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2329 
2330 	if (netif_running(ndev)) {
2331 		if (priv->wol_enabled) {
2332 			ret = ravb_wol_restore(ndev);
2333 			if (ret)
2334 				return ret;
2335 		}
2336 		ret = ravb_open(ndev);
2337 		if (ret < 0)
2338 			return ret;
2339 		netif_device_attach(ndev);
2340 	}
2341 
2342 	return ret;
2343 }
2344 
2345 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2346 {
2347 	/* Runtime PM callback shared between ->runtime_suspend()
2348 	 * and ->runtime_resume(). Simply returns success.
2349 	 *
2350 	 * This driver re-initializes all registers after
2351 	 * pm_runtime_get_sync() anyway so there is no need
2352 	 * to save and restore registers here.
2353 	 */
2354 	return 0;
2355 }
2356 
2357 static const struct dev_pm_ops ravb_dev_pm_ops = {
2358 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2359 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2360 };
2361 
2362 static struct platform_driver ravb_driver = {
2363 	.probe		= ravb_probe,
2364 	.remove		= ravb_remove,
2365 	.driver = {
2366 		.name	= "ravb",
2367 		.pm	= &ravb_dev_pm_ops,
2368 		.of_match_table = ravb_match_table,
2369 	},
2370 };
2371 
2372 module_platform_driver(ravb_driver);
2373 
2374 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2375 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2376 MODULE_LICENSE("GPL v2");
2377