1 // SPDX-License-Identifier: GPL-2.0 2 /* Renesas Ethernet AVB device driver 3 * 4 * Copyright (C) 2014-2019 Renesas Electronics Corporation 5 * Copyright (C) 2015 Renesas Solutions Corp. 6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com> 7 * 8 * Based on the SuperH Ethernet driver 9 */ 10 11 #include <linux/cache.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/if_vlan.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/net_tstamp.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/of_mdio.h> 27 #include <linux/of_net.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 #include <linux/spinlock.h> 31 #include <linux/sys_soc.h> 32 #include <linux/reset.h> 33 #include <linux/math64.h> 34 35 #include "ravb.h" 36 37 #define RAVB_DEF_MSG_ENABLE \ 38 (NETIF_MSG_LINK | \ 39 NETIF_MSG_TIMER | \ 40 NETIF_MSG_RX_ERR | \ 41 NETIF_MSG_TX_ERR) 42 43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = { 44 "ch0", /* RAVB_BE */ 45 "ch1", /* RAVB_NC */ 46 }; 47 48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = { 49 "ch18", /* RAVB_BE */ 50 "ch19", /* RAVB_NC */ 51 }; 52 53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear, 54 u32 set) 55 { 56 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg); 57 } 58 59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value) 60 { 61 int i; 62 63 for (i = 0; i < 10000; i++) { 64 if ((ravb_read(ndev, reg) & mask) == value) 65 return 0; 66 udelay(10); 67 } 68 return -ETIMEDOUT; 69 } 70 71 static int ravb_config(struct net_device *ndev) 72 { 73 int error; 74 75 /* Set config mode */ 76 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG); 77 /* Check if the operating mode is changed to the config mode */ 78 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG); 79 if (error) 80 netdev_err(ndev, "failed to switch device to config mode\n"); 81 82 return error; 83 } 84 85 static void ravb_set_rate_gbeth(struct net_device *ndev) 86 { 87 struct ravb_private *priv = netdev_priv(ndev); 88 89 switch (priv->speed) { 90 case 10: /* 10BASE */ 91 ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR); 92 break; 93 case 100: /* 100BASE */ 94 ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR); 95 break; 96 case 1000: /* 1000BASE */ 97 ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR); 98 break; 99 } 100 } 101 102 static void ravb_set_rate_rcar(struct net_device *ndev) 103 { 104 struct ravb_private *priv = netdev_priv(ndev); 105 106 switch (priv->speed) { 107 case 100: /* 100BASE */ 108 ravb_write(ndev, GECMR_SPEED_100, GECMR); 109 break; 110 case 1000: /* 1000BASE */ 111 ravb_write(ndev, GECMR_SPEED_1000, GECMR); 112 break; 113 } 114 } 115 116 static void ravb_set_buffer_align(struct sk_buff *skb) 117 { 118 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1); 119 120 if (reserve) 121 skb_reserve(skb, RAVB_ALIGN - reserve); 122 } 123 124 /* Get MAC address from the MAC address registers 125 * 126 * Ethernet AVB device doesn't have ROM for MAC address. 127 * This function gets the MAC address that was used by a bootloader. 128 */ 129 static void ravb_read_mac_address(struct device_node *np, 130 struct net_device *ndev) 131 { 132 int ret; 133 134 ret = of_get_ethdev_address(np, ndev); 135 if (ret) { 136 u32 mahr = ravb_read(ndev, MAHR); 137 u32 malr = ravb_read(ndev, MALR); 138 u8 addr[ETH_ALEN]; 139 140 addr[0] = (mahr >> 24) & 0xFF; 141 addr[1] = (mahr >> 16) & 0xFF; 142 addr[2] = (mahr >> 8) & 0xFF; 143 addr[3] = (mahr >> 0) & 0xFF; 144 addr[4] = (malr >> 8) & 0xFF; 145 addr[5] = (malr >> 0) & 0xFF; 146 eth_hw_addr_set(ndev, addr); 147 } 148 } 149 150 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) 151 { 152 struct ravb_private *priv = container_of(ctrl, struct ravb_private, 153 mdiobb); 154 155 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0); 156 } 157 158 /* MDC pin control */ 159 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level) 160 { 161 ravb_mdio_ctrl(ctrl, PIR_MDC, level); 162 } 163 164 /* Data I/O pin control */ 165 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output) 166 { 167 ravb_mdio_ctrl(ctrl, PIR_MMD, output); 168 } 169 170 /* Set data bit */ 171 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value) 172 { 173 ravb_mdio_ctrl(ctrl, PIR_MDO, value); 174 } 175 176 /* Get data bit */ 177 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl) 178 { 179 struct ravb_private *priv = container_of(ctrl, struct ravb_private, 180 mdiobb); 181 182 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0; 183 } 184 185 /* MDIO bus control struct */ 186 static const struct mdiobb_ops bb_ops = { 187 .owner = THIS_MODULE, 188 .set_mdc = ravb_set_mdc, 189 .set_mdio_dir = ravb_set_mdio_dir, 190 .set_mdio_data = ravb_set_mdio_data, 191 .get_mdio_data = ravb_get_mdio_data, 192 }; 193 194 /* Free TX skb function for AVB-IP */ 195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only) 196 { 197 struct ravb_private *priv = netdev_priv(ndev); 198 struct net_device_stats *stats = &priv->stats[q]; 199 unsigned int num_tx_desc = priv->num_tx_desc; 200 struct ravb_tx_desc *desc; 201 unsigned int entry; 202 int free_num = 0; 203 u32 size; 204 205 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) { 206 bool txed; 207 208 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] * 209 num_tx_desc); 210 desc = &priv->tx_ring[q][entry]; 211 txed = desc->die_dt == DT_FEMPTY; 212 if (free_txed_only && !txed) 213 break; 214 /* Descriptor type must be checked before all other reads */ 215 dma_rmb(); 216 size = le16_to_cpu(desc->ds_tagl) & TX_DS; 217 /* Free the original skb. */ 218 if (priv->tx_skb[q][entry / num_tx_desc]) { 219 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), 220 size, DMA_TO_DEVICE); 221 /* Last packet descriptor? */ 222 if (entry % num_tx_desc == num_tx_desc - 1) { 223 entry /= num_tx_desc; 224 dev_kfree_skb_any(priv->tx_skb[q][entry]); 225 priv->tx_skb[q][entry] = NULL; 226 if (txed) 227 stats->tx_packets++; 228 } 229 free_num++; 230 } 231 if (txed) 232 stats->tx_bytes += size; 233 desc->die_dt = DT_EEMPTY; 234 } 235 return free_num; 236 } 237 238 static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q) 239 { 240 struct ravb_private *priv = netdev_priv(ndev); 241 unsigned int ring_size; 242 unsigned int i; 243 244 if (!priv->gbeth_rx_ring) 245 return; 246 247 for (i = 0; i < priv->num_rx_ring[q]; i++) { 248 struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i]; 249 250 if (!dma_mapping_error(ndev->dev.parent, 251 le32_to_cpu(desc->dptr))) 252 dma_unmap_single(ndev->dev.parent, 253 le32_to_cpu(desc->dptr), 254 GBETH_RX_BUFF_MAX, 255 DMA_FROM_DEVICE); 256 } 257 ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1); 258 dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring, 259 priv->rx_desc_dma[q]); 260 priv->gbeth_rx_ring = NULL; 261 } 262 263 static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q) 264 { 265 struct ravb_private *priv = netdev_priv(ndev); 266 unsigned int ring_size; 267 unsigned int i; 268 269 if (!priv->rx_ring[q]) 270 return; 271 272 for (i = 0; i < priv->num_rx_ring[q]; i++) { 273 struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i]; 274 275 if (!dma_mapping_error(ndev->dev.parent, 276 le32_to_cpu(desc->dptr))) 277 dma_unmap_single(ndev->dev.parent, 278 le32_to_cpu(desc->dptr), 279 RX_BUF_SZ, 280 DMA_FROM_DEVICE); 281 } 282 ring_size = sizeof(struct ravb_ex_rx_desc) * 283 (priv->num_rx_ring[q] + 1); 284 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q], 285 priv->rx_desc_dma[q]); 286 priv->rx_ring[q] = NULL; 287 } 288 289 /* Free skb's and DMA buffers for Ethernet AVB */ 290 static void ravb_ring_free(struct net_device *ndev, int q) 291 { 292 struct ravb_private *priv = netdev_priv(ndev); 293 const struct ravb_hw_info *info = priv->info; 294 unsigned int num_tx_desc = priv->num_tx_desc; 295 unsigned int ring_size; 296 unsigned int i; 297 298 info->rx_ring_free(ndev, q); 299 300 if (priv->tx_ring[q]) { 301 ravb_tx_free(ndev, q, false); 302 303 ring_size = sizeof(struct ravb_tx_desc) * 304 (priv->num_tx_ring[q] * num_tx_desc + 1); 305 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q], 306 priv->tx_desc_dma[q]); 307 priv->tx_ring[q] = NULL; 308 } 309 310 /* Free RX skb ringbuffer */ 311 if (priv->rx_skb[q]) { 312 for (i = 0; i < priv->num_rx_ring[q]; i++) 313 dev_kfree_skb(priv->rx_skb[q][i]); 314 } 315 kfree(priv->rx_skb[q]); 316 priv->rx_skb[q] = NULL; 317 318 /* Free aligned TX buffers */ 319 kfree(priv->tx_align[q]); 320 priv->tx_align[q] = NULL; 321 322 /* Free TX skb ringbuffer. 323 * SKBs are freed by ravb_tx_free() call above. 324 */ 325 kfree(priv->tx_skb[q]); 326 priv->tx_skb[q] = NULL; 327 } 328 329 static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q) 330 { 331 struct ravb_private *priv = netdev_priv(ndev); 332 struct ravb_rx_desc *rx_desc; 333 unsigned int rx_ring_size; 334 dma_addr_t dma_addr; 335 unsigned int i; 336 337 rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q]; 338 memset(priv->gbeth_rx_ring, 0, rx_ring_size); 339 /* Build RX ring buffer */ 340 for (i = 0; i < priv->num_rx_ring[q]; i++) { 341 /* RX descriptor */ 342 rx_desc = &priv->gbeth_rx_ring[i]; 343 rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE); 344 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data, 345 GBETH_RX_BUFF_MAX, 346 DMA_FROM_DEVICE); 347 /* We just set the data size to 0 for a failed mapping which 348 * should prevent DMA from happening... 349 */ 350 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 351 rx_desc->ds_cc = cpu_to_le16(0); 352 rx_desc->dptr = cpu_to_le32(dma_addr); 353 rx_desc->die_dt = DT_FEMPTY; 354 } 355 rx_desc = &priv->gbeth_rx_ring[i]; 356 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); 357 rx_desc->die_dt = DT_LINKFIX; /* type */ 358 } 359 360 static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q) 361 { 362 struct ravb_private *priv = netdev_priv(ndev); 363 struct ravb_ex_rx_desc *rx_desc; 364 unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q]; 365 dma_addr_t dma_addr; 366 unsigned int i; 367 368 memset(priv->rx_ring[q], 0, rx_ring_size); 369 /* Build RX ring buffer */ 370 for (i = 0; i < priv->num_rx_ring[q]; i++) { 371 /* RX descriptor */ 372 rx_desc = &priv->rx_ring[q][i]; 373 rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ); 374 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data, 375 RX_BUF_SZ, 376 DMA_FROM_DEVICE); 377 /* We just set the data size to 0 for a failed mapping which 378 * should prevent DMA from happening... 379 */ 380 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 381 rx_desc->ds_cc = cpu_to_le16(0); 382 rx_desc->dptr = cpu_to_le32(dma_addr); 383 rx_desc->die_dt = DT_FEMPTY; 384 } 385 rx_desc = &priv->rx_ring[q][i]; 386 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); 387 rx_desc->die_dt = DT_LINKFIX; /* type */ 388 } 389 390 /* Format skb and descriptor buffer for Ethernet AVB */ 391 static void ravb_ring_format(struct net_device *ndev, int q) 392 { 393 struct ravb_private *priv = netdev_priv(ndev); 394 const struct ravb_hw_info *info = priv->info; 395 unsigned int num_tx_desc = priv->num_tx_desc; 396 struct ravb_tx_desc *tx_desc; 397 struct ravb_desc *desc; 398 unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] * 399 num_tx_desc; 400 unsigned int i; 401 402 priv->cur_rx[q] = 0; 403 priv->cur_tx[q] = 0; 404 priv->dirty_rx[q] = 0; 405 priv->dirty_tx[q] = 0; 406 407 info->rx_ring_format(ndev, q); 408 409 memset(priv->tx_ring[q], 0, tx_ring_size); 410 /* Build TX ring buffer */ 411 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q]; 412 i++, tx_desc++) { 413 tx_desc->die_dt = DT_EEMPTY; 414 if (num_tx_desc > 1) { 415 tx_desc++; 416 tx_desc->die_dt = DT_EEMPTY; 417 } 418 } 419 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]); 420 tx_desc->die_dt = DT_LINKFIX; /* type */ 421 422 /* RX descriptor base address for best effort */ 423 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q]; 424 desc->die_dt = DT_LINKFIX; /* type */ 425 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); 426 427 /* TX descriptor base address for best effort */ 428 desc = &priv->desc_bat[q]; 429 desc->die_dt = DT_LINKFIX; /* type */ 430 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]); 431 } 432 433 static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q) 434 { 435 struct ravb_private *priv = netdev_priv(ndev); 436 unsigned int ring_size; 437 438 ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1); 439 440 priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size, 441 &priv->rx_desc_dma[q], 442 GFP_KERNEL); 443 return priv->gbeth_rx_ring; 444 } 445 446 static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q) 447 { 448 struct ravb_private *priv = netdev_priv(ndev); 449 unsigned int ring_size; 450 451 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1); 452 453 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size, 454 &priv->rx_desc_dma[q], 455 GFP_KERNEL); 456 return priv->rx_ring[q]; 457 } 458 459 /* Init skb and descriptor buffer for Ethernet AVB */ 460 static int ravb_ring_init(struct net_device *ndev, int q) 461 { 462 struct ravb_private *priv = netdev_priv(ndev); 463 const struct ravb_hw_info *info = priv->info; 464 unsigned int num_tx_desc = priv->num_tx_desc; 465 unsigned int ring_size; 466 struct sk_buff *skb; 467 unsigned int i; 468 469 /* Allocate RX and TX skb rings */ 470 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q], 471 sizeof(*priv->rx_skb[q]), GFP_KERNEL); 472 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q], 473 sizeof(*priv->tx_skb[q]), GFP_KERNEL); 474 if (!priv->rx_skb[q] || !priv->tx_skb[q]) 475 goto error; 476 477 for (i = 0; i < priv->num_rx_ring[q]; i++) { 478 skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL); 479 if (!skb) 480 goto error; 481 ravb_set_buffer_align(skb); 482 priv->rx_skb[q][i] = skb; 483 } 484 485 if (num_tx_desc > 1) { 486 /* Allocate rings for the aligned buffers */ 487 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] + 488 DPTR_ALIGN - 1, GFP_KERNEL); 489 if (!priv->tx_align[q]) 490 goto error; 491 } 492 493 /* Allocate all RX descriptors. */ 494 if (!info->alloc_rx_desc(ndev, q)) 495 goto error; 496 497 priv->dirty_rx[q] = 0; 498 499 /* Allocate all TX descriptors. */ 500 ring_size = sizeof(struct ravb_tx_desc) * 501 (priv->num_tx_ring[q] * num_tx_desc + 1); 502 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size, 503 &priv->tx_desc_dma[q], 504 GFP_KERNEL); 505 if (!priv->tx_ring[q]) 506 goto error; 507 508 return 0; 509 510 error: 511 ravb_ring_free(ndev, q); 512 513 return -ENOMEM; 514 } 515 516 static void ravb_emac_init_gbeth(struct net_device *ndev) 517 { 518 struct ravb_private *priv = netdev_priv(ndev); 519 520 /* Receive frame limit set register */ 521 ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR); 522 523 /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */ 524 ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) | 525 ECMR_TE | ECMR_RE | ECMR_RCPT | 526 ECMR_TXF | ECMR_RXF, ECMR); 527 528 ravb_set_rate_gbeth(ndev); 529 530 /* Set MAC address */ 531 ravb_write(ndev, 532 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 533 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 534 ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 535 536 /* E-MAC status register clear */ 537 ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR); 538 ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0); 539 540 /* E-MAC interrupt enable register */ 541 ravb_write(ndev, ECSIPR_ICDIP, ECSIPR); 542 543 if (priv->phy_interface == PHY_INTERFACE_MODE_MII) { 544 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0); 545 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35); 546 } else { 547 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 548 CXR31_SEL_LINK0); 549 } 550 } 551 552 static void ravb_emac_init_rcar(struct net_device *ndev) 553 { 554 /* Receive frame limit set register */ 555 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR); 556 557 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */ 558 ravb_write(ndev, ECMR_ZPF | ECMR_DM | 559 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) | 560 ECMR_TE | ECMR_RE, ECMR); 561 562 ravb_set_rate_rcar(ndev); 563 564 /* Set MAC address */ 565 ravb_write(ndev, 566 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 567 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 568 ravb_write(ndev, 569 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 570 571 /* E-MAC status register clear */ 572 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR); 573 574 /* E-MAC interrupt enable register */ 575 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR); 576 } 577 578 /* E-MAC init function */ 579 static void ravb_emac_init(struct net_device *ndev) 580 { 581 struct ravb_private *priv = netdev_priv(ndev); 582 const struct ravb_hw_info *info = priv->info; 583 584 info->emac_init(ndev); 585 } 586 587 static int ravb_dmac_init_gbeth(struct net_device *ndev) 588 { 589 int error; 590 591 error = ravb_ring_init(ndev, RAVB_BE); 592 if (error) 593 return error; 594 595 /* Descriptor format */ 596 ravb_ring_format(ndev, RAVB_BE); 597 598 /* Set DMAC RX */ 599 ravb_write(ndev, 0x60000000, RCR); 600 601 /* Set Max Frame Length (RTC) */ 602 ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC); 603 604 /* Set FIFO size */ 605 ravb_write(ndev, 0x00222200, TGC); 606 607 ravb_write(ndev, 0, TCCR); 608 609 /* Frame receive */ 610 ravb_write(ndev, RIC0_FRE0, RIC0); 611 /* Disable FIFO full warning */ 612 ravb_write(ndev, 0x0, RIC1); 613 /* Receive FIFO full error, descriptor empty */ 614 ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2); 615 616 ravb_write(ndev, TIC_FTE0, TIC); 617 618 return 0; 619 } 620 621 static int ravb_dmac_init_rcar(struct net_device *ndev) 622 { 623 struct ravb_private *priv = netdev_priv(ndev); 624 const struct ravb_hw_info *info = priv->info; 625 int error; 626 627 error = ravb_ring_init(ndev, RAVB_BE); 628 if (error) 629 return error; 630 error = ravb_ring_init(ndev, RAVB_NC); 631 if (error) { 632 ravb_ring_free(ndev, RAVB_BE); 633 return error; 634 } 635 636 /* Descriptor format */ 637 ravb_ring_format(ndev, RAVB_BE); 638 ravb_ring_format(ndev, RAVB_NC); 639 640 /* Set AVB RX */ 641 ravb_write(ndev, 642 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR); 643 644 /* Set FIFO size */ 645 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC); 646 647 /* Timestamp enable */ 648 ravb_write(ndev, TCCR_TFEN, TCCR); 649 650 /* Interrupt init: */ 651 if (info->multi_irqs) { 652 /* Clear DIL.DPLx */ 653 ravb_write(ndev, 0, DIL); 654 /* Set queue specific interrupt */ 655 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE); 656 } 657 /* Frame receive */ 658 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0); 659 /* Disable FIFO full warning */ 660 ravb_write(ndev, 0, RIC1); 661 /* Receive FIFO full error, descriptor empty */ 662 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2); 663 /* Frame transmitted, timestamp FIFO updated */ 664 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC); 665 666 return 0; 667 } 668 669 /* Device init function for Ethernet AVB */ 670 static int ravb_dmac_init(struct net_device *ndev) 671 { 672 struct ravb_private *priv = netdev_priv(ndev); 673 const struct ravb_hw_info *info = priv->info; 674 int error; 675 676 /* Set CONFIG mode */ 677 error = ravb_config(ndev); 678 if (error) 679 return error; 680 681 error = info->dmac_init(ndev); 682 if (error) 683 return error; 684 685 /* Setting the control will start the AVB-DMAC process. */ 686 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION); 687 688 return 0; 689 } 690 691 static void ravb_get_tx_tstamp(struct net_device *ndev) 692 { 693 struct ravb_private *priv = netdev_priv(ndev); 694 struct ravb_tstamp_skb *ts_skb, *ts_skb2; 695 struct skb_shared_hwtstamps shhwtstamps; 696 struct sk_buff *skb; 697 struct timespec64 ts; 698 u16 tag, tfa_tag; 699 int count; 700 u32 tfa2; 701 702 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8; 703 while (count--) { 704 tfa2 = ravb_read(ndev, TFA2); 705 tfa_tag = (tfa2 & TFA2_TST) >> 16; 706 ts.tv_nsec = (u64)ravb_read(ndev, TFA0); 707 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) | 708 ravb_read(ndev, TFA1); 709 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 710 shhwtstamps.hwtstamp = timespec64_to_ktime(ts); 711 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, 712 list) { 713 skb = ts_skb->skb; 714 tag = ts_skb->tag; 715 list_del(&ts_skb->list); 716 kfree(ts_skb); 717 if (tag == tfa_tag) { 718 skb_tstamp_tx(skb, &shhwtstamps); 719 dev_consume_skb_any(skb); 720 break; 721 } else { 722 dev_kfree_skb_any(skb); 723 } 724 } 725 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR); 726 } 727 } 728 729 static void ravb_rx_csum(struct sk_buff *skb) 730 { 731 u8 *hw_csum; 732 733 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes 734 * appended to packet data 735 */ 736 if (unlikely(skb->len < sizeof(__sum16))) 737 return; 738 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16); 739 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum)); 740 skb->ip_summed = CHECKSUM_COMPLETE; 741 skb_trim(skb, skb->len - sizeof(__sum16)); 742 } 743 744 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry, 745 struct ravb_rx_desc *desc) 746 { 747 struct ravb_private *priv = netdev_priv(ndev); 748 struct sk_buff *skb; 749 750 skb = priv->rx_skb[RAVB_BE][entry]; 751 priv->rx_skb[RAVB_BE][entry] = NULL; 752 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), 753 ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE); 754 755 return skb; 756 } 757 758 /* Packet receive function for Gigabit Ethernet */ 759 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q) 760 { 761 struct ravb_private *priv = netdev_priv(ndev); 762 const struct ravb_hw_info *info = priv->info; 763 struct net_device_stats *stats; 764 struct ravb_rx_desc *desc; 765 struct sk_buff *skb; 766 dma_addr_t dma_addr; 767 u8 desc_status; 768 int boguscnt; 769 u16 pkt_len; 770 u8 die_dt; 771 int entry; 772 int limit; 773 774 entry = priv->cur_rx[q] % priv->num_rx_ring[q]; 775 boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q]; 776 stats = &priv->stats[q]; 777 778 boguscnt = min(boguscnt, *quota); 779 limit = boguscnt; 780 desc = &priv->gbeth_rx_ring[entry]; 781 while (desc->die_dt != DT_FEMPTY) { 782 /* Descriptor type must be checked before all other reads */ 783 dma_rmb(); 784 desc_status = desc->msc; 785 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS; 786 787 if (--boguscnt < 0) 788 break; 789 790 /* We use 0-byte descriptors to mark the DMA mapping errors */ 791 if (!pkt_len) 792 continue; 793 794 if (desc_status & MSC_MC) 795 stats->multicast++; 796 797 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) { 798 stats->rx_errors++; 799 if (desc_status & MSC_CRC) 800 stats->rx_crc_errors++; 801 if (desc_status & MSC_RFE) 802 stats->rx_frame_errors++; 803 if (desc_status & (MSC_RTLF | MSC_RTSF)) 804 stats->rx_length_errors++; 805 if (desc_status & MSC_CEEF) 806 stats->rx_missed_errors++; 807 } else { 808 die_dt = desc->die_dt & 0xF0; 809 switch (die_dt) { 810 case DT_FSINGLE: 811 skb = ravb_get_skb_gbeth(ndev, entry, desc); 812 skb_put(skb, pkt_len); 813 skb->protocol = eth_type_trans(skb, ndev); 814 napi_gro_receive(&priv->napi[q], skb); 815 stats->rx_packets++; 816 stats->rx_bytes += pkt_len; 817 break; 818 case DT_FSTART: 819 priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc); 820 skb_put(priv->rx_1st_skb, pkt_len); 821 break; 822 case DT_FMID: 823 skb = ravb_get_skb_gbeth(ndev, entry, desc); 824 skb_copy_to_linear_data_offset(priv->rx_1st_skb, 825 priv->rx_1st_skb->len, 826 skb->data, 827 pkt_len); 828 skb_put(priv->rx_1st_skb, pkt_len); 829 dev_kfree_skb(skb); 830 break; 831 case DT_FEND: 832 skb = ravb_get_skb_gbeth(ndev, entry, desc); 833 skb_copy_to_linear_data_offset(priv->rx_1st_skb, 834 priv->rx_1st_skb->len, 835 skb->data, 836 pkt_len); 837 skb_put(priv->rx_1st_skb, pkt_len); 838 dev_kfree_skb(skb); 839 priv->rx_1st_skb->protocol = 840 eth_type_trans(priv->rx_1st_skb, ndev); 841 napi_gro_receive(&priv->napi[q], 842 priv->rx_1st_skb); 843 stats->rx_packets++; 844 stats->rx_bytes += pkt_len; 845 break; 846 } 847 } 848 849 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q]; 850 desc = &priv->gbeth_rx_ring[entry]; 851 } 852 853 /* Refill the RX ring buffers. */ 854 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) { 855 entry = priv->dirty_rx[q] % priv->num_rx_ring[q]; 856 desc = &priv->gbeth_rx_ring[entry]; 857 desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE); 858 859 if (!priv->rx_skb[q][entry]) { 860 skb = netdev_alloc_skb(ndev, info->max_rx_len); 861 if (!skb) 862 break; 863 ravb_set_buffer_align(skb); 864 dma_addr = dma_map_single(ndev->dev.parent, 865 skb->data, 866 GBETH_RX_BUFF_MAX, 867 DMA_FROM_DEVICE); 868 skb_checksum_none_assert(skb); 869 /* We just set the data size to 0 for a failed mapping 870 * which should prevent DMA from happening... 871 */ 872 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 873 desc->ds_cc = cpu_to_le16(0); 874 desc->dptr = cpu_to_le32(dma_addr); 875 priv->rx_skb[q][entry] = skb; 876 } 877 /* Descriptor type must be set after all the above writes */ 878 dma_wmb(); 879 desc->die_dt = DT_FEMPTY; 880 } 881 882 *quota -= limit - (++boguscnt); 883 884 return boguscnt <= 0; 885 } 886 887 /* Packet receive function for Ethernet AVB */ 888 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q) 889 { 890 struct ravb_private *priv = netdev_priv(ndev); 891 const struct ravb_hw_info *info = priv->info; 892 int entry = priv->cur_rx[q] % priv->num_rx_ring[q]; 893 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) - 894 priv->cur_rx[q]; 895 struct net_device_stats *stats = &priv->stats[q]; 896 struct ravb_ex_rx_desc *desc; 897 struct sk_buff *skb; 898 dma_addr_t dma_addr; 899 struct timespec64 ts; 900 u8 desc_status; 901 u16 pkt_len; 902 int limit; 903 904 boguscnt = min(boguscnt, *quota); 905 limit = boguscnt; 906 desc = &priv->rx_ring[q][entry]; 907 while (desc->die_dt != DT_FEMPTY) { 908 /* Descriptor type must be checked before all other reads */ 909 dma_rmb(); 910 desc_status = desc->msc; 911 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS; 912 913 if (--boguscnt < 0) 914 break; 915 916 /* We use 0-byte descriptors to mark the DMA mapping errors */ 917 if (!pkt_len) 918 continue; 919 920 if (desc_status & MSC_MC) 921 stats->multicast++; 922 923 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | 924 MSC_CEEF)) { 925 stats->rx_errors++; 926 if (desc_status & MSC_CRC) 927 stats->rx_crc_errors++; 928 if (desc_status & MSC_RFE) 929 stats->rx_frame_errors++; 930 if (desc_status & (MSC_RTLF | MSC_RTSF)) 931 stats->rx_length_errors++; 932 if (desc_status & MSC_CEEF) 933 stats->rx_missed_errors++; 934 } else { 935 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE; 936 937 skb = priv->rx_skb[q][entry]; 938 priv->rx_skb[q][entry] = NULL; 939 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), 940 RX_BUF_SZ, 941 DMA_FROM_DEVICE); 942 get_ts &= (q == RAVB_NC) ? 943 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT : 944 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT; 945 if (get_ts) { 946 struct skb_shared_hwtstamps *shhwtstamps; 947 948 shhwtstamps = skb_hwtstamps(skb); 949 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 950 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) << 951 32) | le32_to_cpu(desc->ts_sl); 952 ts.tv_nsec = le32_to_cpu(desc->ts_n); 953 shhwtstamps->hwtstamp = timespec64_to_ktime(ts); 954 } 955 956 skb_put(skb, pkt_len); 957 skb->protocol = eth_type_trans(skb, ndev); 958 if (ndev->features & NETIF_F_RXCSUM) 959 ravb_rx_csum(skb); 960 napi_gro_receive(&priv->napi[q], skb); 961 stats->rx_packets++; 962 stats->rx_bytes += pkt_len; 963 } 964 965 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q]; 966 desc = &priv->rx_ring[q][entry]; 967 } 968 969 /* Refill the RX ring buffers. */ 970 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) { 971 entry = priv->dirty_rx[q] % priv->num_rx_ring[q]; 972 desc = &priv->rx_ring[q][entry]; 973 desc->ds_cc = cpu_to_le16(RX_BUF_SZ); 974 975 if (!priv->rx_skb[q][entry]) { 976 skb = netdev_alloc_skb(ndev, info->max_rx_len); 977 if (!skb) 978 break; /* Better luck next round. */ 979 ravb_set_buffer_align(skb); 980 dma_addr = dma_map_single(ndev->dev.parent, skb->data, 981 le16_to_cpu(desc->ds_cc), 982 DMA_FROM_DEVICE); 983 skb_checksum_none_assert(skb); 984 /* We just set the data size to 0 for a failed mapping 985 * which should prevent DMA from happening... 986 */ 987 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 988 desc->ds_cc = cpu_to_le16(0); 989 desc->dptr = cpu_to_le32(dma_addr); 990 priv->rx_skb[q][entry] = skb; 991 } 992 /* Descriptor type must be set after all the above writes */ 993 dma_wmb(); 994 desc->die_dt = DT_FEMPTY; 995 } 996 997 *quota -= limit - (++boguscnt); 998 999 return boguscnt <= 0; 1000 } 1001 1002 /* Packet receive function for Ethernet AVB */ 1003 static bool ravb_rx(struct net_device *ndev, int *quota, int q) 1004 { 1005 struct ravb_private *priv = netdev_priv(ndev); 1006 const struct ravb_hw_info *info = priv->info; 1007 1008 return info->receive(ndev, quota, q); 1009 } 1010 1011 static void ravb_rcv_snd_disable(struct net_device *ndev) 1012 { 1013 /* Disable TX and RX */ 1014 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); 1015 } 1016 1017 static void ravb_rcv_snd_enable(struct net_device *ndev) 1018 { 1019 /* Enable TX and RX */ 1020 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); 1021 } 1022 1023 /* function for waiting dma process finished */ 1024 static int ravb_stop_dma(struct net_device *ndev) 1025 { 1026 struct ravb_private *priv = netdev_priv(ndev); 1027 const struct ravb_hw_info *info = priv->info; 1028 int error; 1029 1030 /* Wait for stopping the hardware TX process */ 1031 error = ravb_wait(ndev, TCCR, info->tccr_mask, 0); 1032 1033 if (error) 1034 return error; 1035 1036 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3, 1037 0); 1038 if (error) 1039 return error; 1040 1041 /* Stop the E-MAC's RX/TX processes. */ 1042 ravb_rcv_snd_disable(ndev); 1043 1044 /* Wait for stopping the RX DMA process */ 1045 error = ravb_wait(ndev, CSR, CSR_RPO, 0); 1046 if (error) 1047 return error; 1048 1049 /* Stop AVB-DMAC process */ 1050 return ravb_config(ndev); 1051 } 1052 1053 /* E-MAC interrupt handler */ 1054 static void ravb_emac_interrupt_unlocked(struct net_device *ndev) 1055 { 1056 struct ravb_private *priv = netdev_priv(ndev); 1057 u32 ecsr, psr; 1058 1059 ecsr = ravb_read(ndev, ECSR); 1060 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */ 1061 1062 if (ecsr & ECSR_MPD) 1063 pm_wakeup_event(&priv->pdev->dev, 0); 1064 if (ecsr & ECSR_ICD) 1065 ndev->stats.tx_carrier_errors++; 1066 if (ecsr & ECSR_LCHNG) { 1067 /* Link changed */ 1068 if (priv->no_avb_link) 1069 return; 1070 psr = ravb_read(ndev, PSR); 1071 if (priv->avb_link_active_low) 1072 psr ^= PSR_LMON; 1073 if (!(psr & PSR_LMON)) { 1074 /* DIsable RX and TX */ 1075 ravb_rcv_snd_disable(ndev); 1076 } else { 1077 /* Enable RX and TX */ 1078 ravb_rcv_snd_enable(ndev); 1079 } 1080 } 1081 } 1082 1083 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id) 1084 { 1085 struct net_device *ndev = dev_id; 1086 struct ravb_private *priv = netdev_priv(ndev); 1087 1088 spin_lock(&priv->lock); 1089 ravb_emac_interrupt_unlocked(ndev); 1090 spin_unlock(&priv->lock); 1091 return IRQ_HANDLED; 1092 } 1093 1094 /* Error interrupt handler */ 1095 static void ravb_error_interrupt(struct net_device *ndev) 1096 { 1097 struct ravb_private *priv = netdev_priv(ndev); 1098 u32 eis, ris2; 1099 1100 eis = ravb_read(ndev, EIS); 1101 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS); 1102 if (eis & EIS_QFS) { 1103 ris2 = ravb_read(ndev, RIS2); 1104 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED), 1105 RIS2); 1106 1107 /* Receive Descriptor Empty int */ 1108 if (ris2 & RIS2_QFF0) 1109 priv->stats[RAVB_BE].rx_over_errors++; 1110 1111 /* Receive Descriptor Empty int */ 1112 if (ris2 & RIS2_QFF1) 1113 priv->stats[RAVB_NC].rx_over_errors++; 1114 1115 /* Receive FIFO Overflow int */ 1116 if (ris2 & RIS2_RFFF) 1117 priv->rx_fifo_errors++; 1118 } 1119 } 1120 1121 static bool ravb_queue_interrupt(struct net_device *ndev, int q) 1122 { 1123 struct ravb_private *priv = netdev_priv(ndev); 1124 const struct ravb_hw_info *info = priv->info; 1125 u32 ris0 = ravb_read(ndev, RIS0); 1126 u32 ric0 = ravb_read(ndev, RIC0); 1127 u32 tis = ravb_read(ndev, TIS); 1128 u32 tic = ravb_read(ndev, TIC); 1129 1130 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) { 1131 if (napi_schedule_prep(&priv->napi[q])) { 1132 /* Mask RX and TX interrupts */ 1133 if (!info->irq_en_dis) { 1134 ravb_write(ndev, ric0 & ~BIT(q), RIC0); 1135 ravb_write(ndev, tic & ~BIT(q), TIC); 1136 } else { 1137 ravb_write(ndev, BIT(q), RID0); 1138 ravb_write(ndev, BIT(q), TID); 1139 } 1140 __napi_schedule(&priv->napi[q]); 1141 } else { 1142 netdev_warn(ndev, 1143 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n", 1144 ris0, ric0); 1145 netdev_warn(ndev, 1146 " tx status 0x%08x, tx mask 0x%08x.\n", 1147 tis, tic); 1148 } 1149 return true; 1150 } 1151 return false; 1152 } 1153 1154 static bool ravb_timestamp_interrupt(struct net_device *ndev) 1155 { 1156 u32 tis = ravb_read(ndev, TIS); 1157 1158 if (tis & TIS_TFUF) { 1159 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS); 1160 ravb_get_tx_tstamp(ndev); 1161 return true; 1162 } 1163 return false; 1164 } 1165 1166 static irqreturn_t ravb_interrupt(int irq, void *dev_id) 1167 { 1168 struct net_device *ndev = dev_id; 1169 struct ravb_private *priv = netdev_priv(ndev); 1170 const struct ravb_hw_info *info = priv->info; 1171 irqreturn_t result = IRQ_NONE; 1172 u32 iss; 1173 1174 spin_lock(&priv->lock); 1175 /* Get interrupt status */ 1176 iss = ravb_read(ndev, ISS); 1177 1178 /* Received and transmitted interrupts */ 1179 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) { 1180 int q; 1181 1182 /* Timestamp updated */ 1183 if (ravb_timestamp_interrupt(ndev)) 1184 result = IRQ_HANDLED; 1185 1186 /* Network control and best effort queue RX/TX */ 1187 if (info->nc_queues) { 1188 for (q = RAVB_NC; q >= RAVB_BE; q--) { 1189 if (ravb_queue_interrupt(ndev, q)) 1190 result = IRQ_HANDLED; 1191 } 1192 } else { 1193 if (ravb_queue_interrupt(ndev, RAVB_BE)) 1194 result = IRQ_HANDLED; 1195 } 1196 } 1197 1198 /* E-MAC status summary */ 1199 if (iss & ISS_MS) { 1200 ravb_emac_interrupt_unlocked(ndev); 1201 result = IRQ_HANDLED; 1202 } 1203 1204 /* Error status summary */ 1205 if (iss & ISS_ES) { 1206 ravb_error_interrupt(ndev); 1207 result = IRQ_HANDLED; 1208 } 1209 1210 /* gPTP interrupt status summary */ 1211 if (iss & ISS_CGIS) { 1212 ravb_ptp_interrupt(ndev); 1213 result = IRQ_HANDLED; 1214 } 1215 1216 spin_unlock(&priv->lock); 1217 return result; 1218 } 1219 1220 /* Timestamp/Error/gPTP interrupt handler */ 1221 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id) 1222 { 1223 struct net_device *ndev = dev_id; 1224 struct ravb_private *priv = netdev_priv(ndev); 1225 irqreturn_t result = IRQ_NONE; 1226 u32 iss; 1227 1228 spin_lock(&priv->lock); 1229 /* Get interrupt status */ 1230 iss = ravb_read(ndev, ISS); 1231 1232 /* Timestamp updated */ 1233 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev)) 1234 result = IRQ_HANDLED; 1235 1236 /* Error status summary */ 1237 if (iss & ISS_ES) { 1238 ravb_error_interrupt(ndev); 1239 result = IRQ_HANDLED; 1240 } 1241 1242 /* gPTP interrupt status summary */ 1243 if (iss & ISS_CGIS) { 1244 ravb_ptp_interrupt(ndev); 1245 result = IRQ_HANDLED; 1246 } 1247 1248 spin_unlock(&priv->lock); 1249 return result; 1250 } 1251 1252 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q) 1253 { 1254 struct net_device *ndev = dev_id; 1255 struct ravb_private *priv = netdev_priv(ndev); 1256 irqreturn_t result = IRQ_NONE; 1257 1258 spin_lock(&priv->lock); 1259 1260 /* Network control/Best effort queue RX/TX */ 1261 if (ravb_queue_interrupt(ndev, q)) 1262 result = IRQ_HANDLED; 1263 1264 spin_unlock(&priv->lock); 1265 return result; 1266 } 1267 1268 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id) 1269 { 1270 return ravb_dma_interrupt(irq, dev_id, RAVB_BE); 1271 } 1272 1273 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id) 1274 { 1275 return ravb_dma_interrupt(irq, dev_id, RAVB_NC); 1276 } 1277 1278 static int ravb_poll(struct napi_struct *napi, int budget) 1279 { 1280 struct net_device *ndev = napi->dev; 1281 struct ravb_private *priv = netdev_priv(ndev); 1282 const struct ravb_hw_info *info = priv->info; 1283 bool gptp = info->gptp || info->ccc_gac; 1284 struct ravb_rx_desc *desc; 1285 unsigned long flags; 1286 int q = napi - priv->napi; 1287 int mask = BIT(q); 1288 int quota = budget; 1289 unsigned int entry; 1290 1291 if (!gptp) { 1292 entry = priv->cur_rx[q] % priv->num_rx_ring[q]; 1293 desc = &priv->gbeth_rx_ring[entry]; 1294 } 1295 /* Processing RX Descriptor Ring */ 1296 /* Clear RX interrupt */ 1297 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0); 1298 if (gptp || desc->die_dt != DT_FEMPTY) { 1299 if (ravb_rx(ndev, "a, q)) 1300 goto out; 1301 } 1302 1303 /* Processing TX Descriptor Ring */ 1304 spin_lock_irqsave(&priv->lock, flags); 1305 /* Clear TX interrupt */ 1306 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS); 1307 ravb_tx_free(ndev, q, true); 1308 netif_wake_subqueue(ndev, q); 1309 spin_unlock_irqrestore(&priv->lock, flags); 1310 1311 napi_complete(napi); 1312 1313 /* Re-enable RX/TX interrupts */ 1314 spin_lock_irqsave(&priv->lock, flags); 1315 if (!info->irq_en_dis) { 1316 ravb_modify(ndev, RIC0, mask, mask); 1317 ravb_modify(ndev, TIC, mask, mask); 1318 } else { 1319 ravb_write(ndev, mask, RIE0); 1320 ravb_write(ndev, mask, TIE); 1321 } 1322 spin_unlock_irqrestore(&priv->lock, flags); 1323 1324 /* Receive error message handling */ 1325 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors; 1326 if (info->nc_queues) 1327 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors; 1328 if (priv->rx_over_errors != ndev->stats.rx_over_errors) 1329 ndev->stats.rx_over_errors = priv->rx_over_errors; 1330 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) 1331 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors; 1332 out: 1333 return budget - quota; 1334 } 1335 1336 static void ravb_set_duplex_gbeth(struct net_device *ndev) 1337 { 1338 struct ravb_private *priv = netdev_priv(ndev); 1339 1340 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0); 1341 } 1342 1343 /* PHY state control function */ 1344 static void ravb_adjust_link(struct net_device *ndev) 1345 { 1346 struct ravb_private *priv = netdev_priv(ndev); 1347 const struct ravb_hw_info *info = priv->info; 1348 struct phy_device *phydev = ndev->phydev; 1349 bool new_state = false; 1350 unsigned long flags; 1351 1352 spin_lock_irqsave(&priv->lock, flags); 1353 1354 /* Disable TX and RX right over here, if E-MAC change is ignored */ 1355 if (priv->no_avb_link) 1356 ravb_rcv_snd_disable(ndev); 1357 1358 if (phydev->link) { 1359 if (info->half_duplex && phydev->duplex != priv->duplex) { 1360 new_state = true; 1361 priv->duplex = phydev->duplex; 1362 ravb_set_duplex_gbeth(ndev); 1363 } 1364 1365 if (phydev->speed != priv->speed) { 1366 new_state = true; 1367 priv->speed = phydev->speed; 1368 info->set_rate(ndev); 1369 } 1370 if (!priv->link) { 1371 ravb_modify(ndev, ECMR, ECMR_TXF, 0); 1372 new_state = true; 1373 priv->link = phydev->link; 1374 } 1375 } else if (priv->link) { 1376 new_state = true; 1377 priv->link = 0; 1378 priv->speed = 0; 1379 if (info->half_duplex) 1380 priv->duplex = -1; 1381 } 1382 1383 /* Enable TX and RX right over here, if E-MAC change is ignored */ 1384 if (priv->no_avb_link && phydev->link) 1385 ravb_rcv_snd_enable(ndev); 1386 1387 spin_unlock_irqrestore(&priv->lock, flags); 1388 1389 if (new_state && netif_msg_link(priv)) 1390 phy_print_status(phydev); 1391 } 1392 1393 static const struct soc_device_attribute r8a7795es10[] = { 1394 { .soc_id = "r8a7795", .revision = "ES1.0", }, 1395 { /* sentinel */ } 1396 }; 1397 1398 /* PHY init function */ 1399 static int ravb_phy_init(struct net_device *ndev) 1400 { 1401 struct device_node *np = ndev->dev.parent->of_node; 1402 struct ravb_private *priv = netdev_priv(ndev); 1403 const struct ravb_hw_info *info = priv->info; 1404 struct phy_device *phydev; 1405 struct device_node *pn; 1406 phy_interface_t iface; 1407 int err; 1408 1409 priv->link = 0; 1410 priv->speed = 0; 1411 priv->duplex = -1; 1412 1413 /* Try connecting to PHY */ 1414 pn = of_parse_phandle(np, "phy-handle", 0); 1415 if (!pn) { 1416 /* In the case of a fixed PHY, the DT node associated 1417 * to the PHY is the Ethernet MAC DT node. 1418 */ 1419 if (of_phy_is_fixed_link(np)) { 1420 err = of_phy_register_fixed_link(np); 1421 if (err) 1422 return err; 1423 } 1424 pn = of_node_get(np); 1425 } 1426 1427 iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII 1428 : priv->phy_interface; 1429 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface); 1430 of_node_put(pn); 1431 if (!phydev) { 1432 netdev_err(ndev, "failed to connect PHY\n"); 1433 err = -ENOENT; 1434 goto err_deregister_fixed_link; 1435 } 1436 1437 /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0 1438 * at this time. 1439 */ 1440 if (soc_device_match(r8a7795es10)) { 1441 phy_set_max_speed(phydev, SPEED_100); 1442 1443 netdev_info(ndev, "limited PHY to 100Mbit/s\n"); 1444 } 1445 1446 if (!info->half_duplex) { 1447 /* 10BASE, Pause and Asym Pause is not supported */ 1448 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); 1449 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT); 1450 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT); 1451 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT); 1452 1453 /* Half Duplex is not supported */ 1454 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1455 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); 1456 } 1457 1458 /* Indicate that the MAC is responsible for managing PHY PM */ 1459 phydev->mac_managed_pm = true; 1460 phy_attached_info(phydev); 1461 1462 return 0; 1463 1464 err_deregister_fixed_link: 1465 if (of_phy_is_fixed_link(np)) 1466 of_phy_deregister_fixed_link(np); 1467 1468 return err; 1469 } 1470 1471 /* PHY control start function */ 1472 static int ravb_phy_start(struct net_device *ndev) 1473 { 1474 int error; 1475 1476 error = ravb_phy_init(ndev); 1477 if (error) 1478 return error; 1479 1480 phy_start(ndev->phydev); 1481 1482 return 0; 1483 } 1484 1485 static u32 ravb_get_msglevel(struct net_device *ndev) 1486 { 1487 struct ravb_private *priv = netdev_priv(ndev); 1488 1489 return priv->msg_enable; 1490 } 1491 1492 static void ravb_set_msglevel(struct net_device *ndev, u32 value) 1493 { 1494 struct ravb_private *priv = netdev_priv(ndev); 1495 1496 priv->msg_enable = value; 1497 } 1498 1499 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = { 1500 "rx_queue_0_current", 1501 "tx_queue_0_current", 1502 "rx_queue_0_dirty", 1503 "tx_queue_0_dirty", 1504 "rx_queue_0_packets", 1505 "tx_queue_0_packets", 1506 "rx_queue_0_bytes", 1507 "tx_queue_0_bytes", 1508 "rx_queue_0_mcast_packets", 1509 "rx_queue_0_errors", 1510 "rx_queue_0_crc_errors", 1511 "rx_queue_0_frame_errors", 1512 "rx_queue_0_length_errors", 1513 "rx_queue_0_csum_offload_errors", 1514 "rx_queue_0_over_errors", 1515 }; 1516 1517 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = { 1518 "rx_queue_0_current", 1519 "tx_queue_0_current", 1520 "rx_queue_0_dirty", 1521 "tx_queue_0_dirty", 1522 "rx_queue_0_packets", 1523 "tx_queue_0_packets", 1524 "rx_queue_0_bytes", 1525 "tx_queue_0_bytes", 1526 "rx_queue_0_mcast_packets", 1527 "rx_queue_0_errors", 1528 "rx_queue_0_crc_errors", 1529 "rx_queue_0_frame_errors", 1530 "rx_queue_0_length_errors", 1531 "rx_queue_0_missed_errors", 1532 "rx_queue_0_over_errors", 1533 1534 "rx_queue_1_current", 1535 "tx_queue_1_current", 1536 "rx_queue_1_dirty", 1537 "tx_queue_1_dirty", 1538 "rx_queue_1_packets", 1539 "tx_queue_1_packets", 1540 "rx_queue_1_bytes", 1541 "tx_queue_1_bytes", 1542 "rx_queue_1_mcast_packets", 1543 "rx_queue_1_errors", 1544 "rx_queue_1_crc_errors", 1545 "rx_queue_1_frame_errors", 1546 "rx_queue_1_length_errors", 1547 "rx_queue_1_missed_errors", 1548 "rx_queue_1_over_errors", 1549 }; 1550 1551 static int ravb_get_sset_count(struct net_device *netdev, int sset) 1552 { 1553 struct ravb_private *priv = netdev_priv(netdev); 1554 const struct ravb_hw_info *info = priv->info; 1555 1556 switch (sset) { 1557 case ETH_SS_STATS: 1558 return info->stats_len; 1559 default: 1560 return -EOPNOTSUPP; 1561 } 1562 } 1563 1564 static void ravb_get_ethtool_stats(struct net_device *ndev, 1565 struct ethtool_stats *estats, u64 *data) 1566 { 1567 struct ravb_private *priv = netdev_priv(ndev); 1568 const struct ravb_hw_info *info = priv->info; 1569 int num_rx_q; 1570 int i = 0; 1571 int q; 1572 1573 num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1; 1574 /* Device-specific stats */ 1575 for (q = RAVB_BE; q < num_rx_q; q++) { 1576 struct net_device_stats *stats = &priv->stats[q]; 1577 1578 data[i++] = priv->cur_rx[q]; 1579 data[i++] = priv->cur_tx[q]; 1580 data[i++] = priv->dirty_rx[q]; 1581 data[i++] = priv->dirty_tx[q]; 1582 data[i++] = stats->rx_packets; 1583 data[i++] = stats->tx_packets; 1584 data[i++] = stats->rx_bytes; 1585 data[i++] = stats->tx_bytes; 1586 data[i++] = stats->multicast; 1587 data[i++] = stats->rx_errors; 1588 data[i++] = stats->rx_crc_errors; 1589 data[i++] = stats->rx_frame_errors; 1590 data[i++] = stats->rx_length_errors; 1591 data[i++] = stats->rx_missed_errors; 1592 data[i++] = stats->rx_over_errors; 1593 } 1594 } 1595 1596 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1597 { 1598 struct ravb_private *priv = netdev_priv(ndev); 1599 const struct ravb_hw_info *info = priv->info; 1600 1601 switch (stringset) { 1602 case ETH_SS_STATS: 1603 memcpy(data, info->gstrings_stats, info->gstrings_size); 1604 break; 1605 } 1606 } 1607 1608 static void ravb_get_ringparam(struct net_device *ndev, 1609 struct ethtool_ringparam *ring, 1610 struct kernel_ethtool_ringparam *kernel_ring, 1611 struct netlink_ext_ack *extack) 1612 { 1613 struct ravb_private *priv = netdev_priv(ndev); 1614 1615 ring->rx_max_pending = BE_RX_RING_MAX; 1616 ring->tx_max_pending = BE_TX_RING_MAX; 1617 ring->rx_pending = priv->num_rx_ring[RAVB_BE]; 1618 ring->tx_pending = priv->num_tx_ring[RAVB_BE]; 1619 } 1620 1621 static int ravb_set_ringparam(struct net_device *ndev, 1622 struct ethtool_ringparam *ring, 1623 struct kernel_ethtool_ringparam *kernel_ring, 1624 struct netlink_ext_ack *extack) 1625 { 1626 struct ravb_private *priv = netdev_priv(ndev); 1627 const struct ravb_hw_info *info = priv->info; 1628 int error; 1629 1630 if (ring->tx_pending > BE_TX_RING_MAX || 1631 ring->rx_pending > BE_RX_RING_MAX || 1632 ring->tx_pending < BE_TX_RING_MIN || 1633 ring->rx_pending < BE_RX_RING_MIN) 1634 return -EINVAL; 1635 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 1636 return -EINVAL; 1637 1638 if (netif_running(ndev)) { 1639 netif_device_detach(ndev); 1640 /* Stop PTP Clock driver */ 1641 if (info->gptp) 1642 ravb_ptp_stop(ndev); 1643 /* Wait for DMA stopping */ 1644 error = ravb_stop_dma(ndev); 1645 if (error) { 1646 netdev_err(ndev, 1647 "cannot set ringparam! Any AVB processes are still running?\n"); 1648 return error; 1649 } 1650 synchronize_irq(ndev->irq); 1651 1652 /* Free all the skb's in the RX queue and the DMA buffers. */ 1653 ravb_ring_free(ndev, RAVB_BE); 1654 if (info->nc_queues) 1655 ravb_ring_free(ndev, RAVB_NC); 1656 } 1657 1658 /* Set new parameters */ 1659 priv->num_rx_ring[RAVB_BE] = ring->rx_pending; 1660 priv->num_tx_ring[RAVB_BE] = ring->tx_pending; 1661 1662 if (netif_running(ndev)) { 1663 error = ravb_dmac_init(ndev); 1664 if (error) { 1665 netdev_err(ndev, 1666 "%s: ravb_dmac_init() failed, error %d\n", 1667 __func__, error); 1668 return error; 1669 } 1670 1671 ravb_emac_init(ndev); 1672 1673 /* Initialise PTP Clock driver */ 1674 if (info->gptp) 1675 ravb_ptp_init(ndev, priv->pdev); 1676 1677 netif_device_attach(ndev); 1678 } 1679 1680 return 0; 1681 } 1682 1683 static int ravb_get_ts_info(struct net_device *ndev, 1684 struct ethtool_ts_info *info) 1685 { 1686 struct ravb_private *priv = netdev_priv(ndev); 1687 const struct ravb_hw_info *hw_info = priv->info; 1688 1689 info->so_timestamping = 1690 SOF_TIMESTAMPING_TX_SOFTWARE | 1691 SOF_TIMESTAMPING_RX_SOFTWARE | 1692 SOF_TIMESTAMPING_SOFTWARE | 1693 SOF_TIMESTAMPING_TX_HARDWARE | 1694 SOF_TIMESTAMPING_RX_HARDWARE | 1695 SOF_TIMESTAMPING_RAW_HARDWARE; 1696 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); 1697 info->rx_filters = 1698 (1 << HWTSTAMP_FILTER_NONE) | 1699 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1700 (1 << HWTSTAMP_FILTER_ALL); 1701 if (hw_info->gptp || hw_info->ccc_gac) 1702 info->phc_index = ptp_clock_index(priv->ptp.clock); 1703 1704 return 0; 1705 } 1706 1707 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1708 { 1709 struct ravb_private *priv = netdev_priv(ndev); 1710 1711 wol->supported = WAKE_MAGIC; 1712 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0; 1713 } 1714 1715 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 1716 { 1717 struct ravb_private *priv = netdev_priv(ndev); 1718 const struct ravb_hw_info *info = priv->info; 1719 1720 if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC)) 1721 return -EOPNOTSUPP; 1722 1723 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC); 1724 1725 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled); 1726 1727 return 0; 1728 } 1729 1730 static const struct ethtool_ops ravb_ethtool_ops = { 1731 .nway_reset = phy_ethtool_nway_reset, 1732 .get_msglevel = ravb_get_msglevel, 1733 .set_msglevel = ravb_set_msglevel, 1734 .get_link = ethtool_op_get_link, 1735 .get_strings = ravb_get_strings, 1736 .get_ethtool_stats = ravb_get_ethtool_stats, 1737 .get_sset_count = ravb_get_sset_count, 1738 .get_ringparam = ravb_get_ringparam, 1739 .set_ringparam = ravb_set_ringparam, 1740 .get_ts_info = ravb_get_ts_info, 1741 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1742 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1743 .get_wol = ravb_get_wol, 1744 .set_wol = ravb_set_wol, 1745 }; 1746 1747 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler, 1748 struct net_device *ndev, struct device *dev, 1749 const char *ch) 1750 { 1751 char *name; 1752 int error; 1753 1754 name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch); 1755 if (!name) 1756 return -ENOMEM; 1757 error = request_irq(irq, handler, 0, name, ndev); 1758 if (error) 1759 netdev_err(ndev, "cannot request IRQ %s\n", name); 1760 1761 return error; 1762 } 1763 1764 /* Network device open function for Ethernet AVB */ 1765 static int ravb_open(struct net_device *ndev) 1766 { 1767 struct ravb_private *priv = netdev_priv(ndev); 1768 const struct ravb_hw_info *info = priv->info; 1769 struct platform_device *pdev = priv->pdev; 1770 struct device *dev = &pdev->dev; 1771 int error; 1772 1773 napi_enable(&priv->napi[RAVB_BE]); 1774 if (info->nc_queues) 1775 napi_enable(&priv->napi[RAVB_NC]); 1776 1777 if (!info->multi_irqs) { 1778 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, 1779 ndev->name, ndev); 1780 if (error) { 1781 netdev_err(ndev, "cannot request IRQ\n"); 1782 goto out_napi_off; 1783 } 1784 } else { 1785 error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev, 1786 dev, "ch22:multi"); 1787 if (error) 1788 goto out_napi_off; 1789 error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev, 1790 dev, "ch24:emac"); 1791 if (error) 1792 goto out_free_irq; 1793 error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt, 1794 ndev, dev, "ch0:rx_be"); 1795 if (error) 1796 goto out_free_irq_emac; 1797 error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt, 1798 ndev, dev, "ch18:tx_be"); 1799 if (error) 1800 goto out_free_irq_be_rx; 1801 error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt, 1802 ndev, dev, "ch1:rx_nc"); 1803 if (error) 1804 goto out_free_irq_be_tx; 1805 error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt, 1806 ndev, dev, "ch19:tx_nc"); 1807 if (error) 1808 goto out_free_irq_nc_rx; 1809 1810 if (info->err_mgmt_irqs) { 1811 error = ravb_hook_irq(priv->erra_irq, ravb_multi_interrupt, 1812 ndev, dev, "err_a"); 1813 if (error) 1814 goto out_free_irq_nc_tx; 1815 error = ravb_hook_irq(priv->mgmta_irq, ravb_multi_interrupt, 1816 ndev, dev, "mgmt_a"); 1817 if (error) 1818 goto out_free_irq_erra; 1819 } 1820 } 1821 1822 /* Device init */ 1823 error = ravb_dmac_init(ndev); 1824 if (error) 1825 goto out_free_irq_mgmta; 1826 ravb_emac_init(ndev); 1827 1828 /* Initialise PTP Clock driver */ 1829 if (info->gptp) 1830 ravb_ptp_init(ndev, priv->pdev); 1831 1832 netif_tx_start_all_queues(ndev); 1833 1834 /* PHY control start */ 1835 error = ravb_phy_start(ndev); 1836 if (error) 1837 goto out_ptp_stop; 1838 1839 return 0; 1840 1841 out_ptp_stop: 1842 /* Stop PTP Clock driver */ 1843 if (info->gptp) 1844 ravb_ptp_stop(ndev); 1845 out_free_irq_mgmta: 1846 if (!info->multi_irqs) 1847 goto out_free_irq; 1848 if (info->err_mgmt_irqs) 1849 free_irq(priv->mgmta_irq, ndev); 1850 out_free_irq_erra: 1851 if (info->err_mgmt_irqs) 1852 free_irq(priv->erra_irq, ndev); 1853 out_free_irq_nc_tx: 1854 free_irq(priv->tx_irqs[RAVB_NC], ndev); 1855 out_free_irq_nc_rx: 1856 free_irq(priv->rx_irqs[RAVB_NC], ndev); 1857 out_free_irq_be_tx: 1858 free_irq(priv->tx_irqs[RAVB_BE], ndev); 1859 out_free_irq_be_rx: 1860 free_irq(priv->rx_irqs[RAVB_BE], ndev); 1861 out_free_irq_emac: 1862 free_irq(priv->emac_irq, ndev); 1863 out_free_irq: 1864 free_irq(ndev->irq, ndev); 1865 out_napi_off: 1866 if (info->nc_queues) 1867 napi_disable(&priv->napi[RAVB_NC]); 1868 napi_disable(&priv->napi[RAVB_BE]); 1869 return error; 1870 } 1871 1872 /* Timeout function for Ethernet AVB */ 1873 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1874 { 1875 struct ravb_private *priv = netdev_priv(ndev); 1876 1877 netif_err(priv, tx_err, ndev, 1878 "transmit timed out, status %08x, resetting...\n", 1879 ravb_read(ndev, ISS)); 1880 1881 /* tx_errors count up */ 1882 ndev->stats.tx_errors++; 1883 1884 schedule_work(&priv->work); 1885 } 1886 1887 static void ravb_tx_timeout_work(struct work_struct *work) 1888 { 1889 struct ravb_private *priv = container_of(work, struct ravb_private, 1890 work); 1891 const struct ravb_hw_info *info = priv->info; 1892 struct net_device *ndev = priv->ndev; 1893 int error; 1894 1895 netif_tx_stop_all_queues(ndev); 1896 1897 /* Stop PTP Clock driver */ 1898 if (info->gptp) 1899 ravb_ptp_stop(ndev); 1900 1901 /* Wait for DMA stopping */ 1902 if (ravb_stop_dma(ndev)) { 1903 /* If ravb_stop_dma() fails, the hardware is still operating 1904 * for TX and/or RX. So, this should not call the following 1905 * functions because ravb_dmac_init() is possible to fail too. 1906 * Also, this should not retry ravb_stop_dma() again and again 1907 * here because it's possible to wait forever. So, this just 1908 * re-enables the TX and RX and skip the following 1909 * re-initialization procedure. 1910 */ 1911 ravb_rcv_snd_enable(ndev); 1912 goto out; 1913 } 1914 1915 ravb_ring_free(ndev, RAVB_BE); 1916 if (info->nc_queues) 1917 ravb_ring_free(ndev, RAVB_NC); 1918 1919 /* Device init */ 1920 error = ravb_dmac_init(ndev); 1921 if (error) { 1922 /* If ravb_dmac_init() fails, descriptors are freed. So, this 1923 * should return here to avoid re-enabling the TX and RX in 1924 * ravb_emac_init(). 1925 */ 1926 netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n", 1927 __func__, error); 1928 return; 1929 } 1930 ravb_emac_init(ndev); 1931 1932 out: 1933 /* Initialise PTP Clock driver */ 1934 if (info->gptp) 1935 ravb_ptp_init(ndev, priv->pdev); 1936 1937 netif_tx_start_all_queues(ndev); 1938 } 1939 1940 /* Packet transmit function for Ethernet AVB */ 1941 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1942 { 1943 struct ravb_private *priv = netdev_priv(ndev); 1944 const struct ravb_hw_info *info = priv->info; 1945 unsigned int num_tx_desc = priv->num_tx_desc; 1946 u16 q = skb_get_queue_mapping(skb); 1947 struct ravb_tstamp_skb *ts_skb; 1948 struct ravb_tx_desc *desc; 1949 unsigned long flags; 1950 u32 dma_addr; 1951 void *buffer; 1952 u32 entry; 1953 u32 len; 1954 1955 spin_lock_irqsave(&priv->lock, flags); 1956 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) * 1957 num_tx_desc) { 1958 netif_err(priv, tx_queued, ndev, 1959 "still transmitting with the full ring!\n"); 1960 netif_stop_subqueue(ndev, q); 1961 spin_unlock_irqrestore(&priv->lock, flags); 1962 return NETDEV_TX_BUSY; 1963 } 1964 1965 if (skb_put_padto(skb, ETH_ZLEN)) 1966 goto exit; 1967 1968 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc); 1969 priv->tx_skb[q][entry / num_tx_desc] = skb; 1970 1971 if (num_tx_desc > 1) { 1972 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) + 1973 entry / num_tx_desc * DPTR_ALIGN; 1974 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data; 1975 1976 /* Zero length DMA descriptors are problematic as they seem 1977 * to terminate DMA transfers. Avoid them by simply using a 1978 * length of DPTR_ALIGN (4) when skb data is aligned to 1979 * DPTR_ALIGN. 1980 * 1981 * As skb is guaranteed to have at least ETH_ZLEN (60) 1982 * bytes of data by the call to skb_put_padto() above this 1983 * is safe with respect to both the length of the first DMA 1984 * descriptor (len) overflowing the available data and the 1985 * length of the second DMA descriptor (skb->len - len) 1986 * being negative. 1987 */ 1988 if (len == 0) 1989 len = DPTR_ALIGN; 1990 1991 memcpy(buffer, skb->data, len); 1992 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, 1993 DMA_TO_DEVICE); 1994 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 1995 goto drop; 1996 1997 desc = &priv->tx_ring[q][entry]; 1998 desc->ds_tagl = cpu_to_le16(len); 1999 desc->dptr = cpu_to_le32(dma_addr); 2000 2001 buffer = skb->data + len; 2002 len = skb->len - len; 2003 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, 2004 DMA_TO_DEVICE); 2005 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 2006 goto unmap; 2007 2008 desc++; 2009 } else { 2010 desc = &priv->tx_ring[q][entry]; 2011 len = skb->len; 2012 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len, 2013 DMA_TO_DEVICE); 2014 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 2015 goto drop; 2016 } 2017 desc->ds_tagl = cpu_to_le16(len); 2018 desc->dptr = cpu_to_le32(dma_addr); 2019 2020 /* TX timestamp required */ 2021 if (info->gptp || info->ccc_gac) { 2022 if (q == RAVB_NC) { 2023 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC); 2024 if (!ts_skb) { 2025 if (num_tx_desc > 1) { 2026 desc--; 2027 dma_unmap_single(ndev->dev.parent, dma_addr, 2028 len, DMA_TO_DEVICE); 2029 } 2030 goto unmap; 2031 } 2032 ts_skb->skb = skb_get(skb); 2033 ts_skb->tag = priv->ts_skb_tag++; 2034 priv->ts_skb_tag &= 0x3ff; 2035 list_add_tail(&ts_skb->list, &priv->ts_skb_list); 2036 2037 /* TAG and timestamp required flag */ 2038 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2039 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR; 2040 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12); 2041 } 2042 2043 skb_tx_timestamp(skb); 2044 } 2045 /* Descriptor type must be set after all the above writes */ 2046 dma_wmb(); 2047 if (num_tx_desc > 1) { 2048 desc->die_dt = DT_FEND; 2049 desc--; 2050 desc->die_dt = DT_FSTART; 2051 } else { 2052 desc->die_dt = DT_FSINGLE; 2053 } 2054 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q); 2055 2056 priv->cur_tx[q] += num_tx_desc; 2057 if (priv->cur_tx[q] - priv->dirty_tx[q] > 2058 (priv->num_tx_ring[q] - 1) * num_tx_desc && 2059 !ravb_tx_free(ndev, q, true)) 2060 netif_stop_subqueue(ndev, q); 2061 2062 exit: 2063 spin_unlock_irqrestore(&priv->lock, flags); 2064 return NETDEV_TX_OK; 2065 2066 unmap: 2067 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), 2068 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE); 2069 drop: 2070 dev_kfree_skb_any(skb); 2071 priv->tx_skb[q][entry / num_tx_desc] = NULL; 2072 goto exit; 2073 } 2074 2075 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb, 2076 struct net_device *sb_dev) 2077 { 2078 /* If skb needs TX timestamp, it is handled in network control queue */ 2079 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC : 2080 RAVB_BE; 2081 2082 } 2083 2084 static struct net_device_stats *ravb_get_stats(struct net_device *ndev) 2085 { 2086 struct ravb_private *priv = netdev_priv(ndev); 2087 const struct ravb_hw_info *info = priv->info; 2088 struct net_device_stats *nstats, *stats0, *stats1; 2089 2090 nstats = &ndev->stats; 2091 stats0 = &priv->stats[RAVB_BE]; 2092 2093 if (info->tx_counters) { 2094 nstats->tx_dropped += ravb_read(ndev, TROCR); 2095 ravb_write(ndev, 0, TROCR); /* (write clear) */ 2096 } 2097 2098 if (info->carrier_counters) { 2099 nstats->collisions += ravb_read(ndev, CXR41); 2100 ravb_write(ndev, 0, CXR41); /* (write clear) */ 2101 nstats->tx_carrier_errors += ravb_read(ndev, CXR42); 2102 ravb_write(ndev, 0, CXR42); /* (write clear) */ 2103 } 2104 2105 nstats->rx_packets = stats0->rx_packets; 2106 nstats->tx_packets = stats0->tx_packets; 2107 nstats->rx_bytes = stats0->rx_bytes; 2108 nstats->tx_bytes = stats0->tx_bytes; 2109 nstats->multicast = stats0->multicast; 2110 nstats->rx_errors = stats0->rx_errors; 2111 nstats->rx_crc_errors = stats0->rx_crc_errors; 2112 nstats->rx_frame_errors = stats0->rx_frame_errors; 2113 nstats->rx_length_errors = stats0->rx_length_errors; 2114 nstats->rx_missed_errors = stats0->rx_missed_errors; 2115 nstats->rx_over_errors = stats0->rx_over_errors; 2116 if (info->nc_queues) { 2117 stats1 = &priv->stats[RAVB_NC]; 2118 2119 nstats->rx_packets += stats1->rx_packets; 2120 nstats->tx_packets += stats1->tx_packets; 2121 nstats->rx_bytes += stats1->rx_bytes; 2122 nstats->tx_bytes += stats1->tx_bytes; 2123 nstats->multicast += stats1->multicast; 2124 nstats->rx_errors += stats1->rx_errors; 2125 nstats->rx_crc_errors += stats1->rx_crc_errors; 2126 nstats->rx_frame_errors += stats1->rx_frame_errors; 2127 nstats->rx_length_errors += stats1->rx_length_errors; 2128 nstats->rx_missed_errors += stats1->rx_missed_errors; 2129 nstats->rx_over_errors += stats1->rx_over_errors; 2130 } 2131 2132 return nstats; 2133 } 2134 2135 /* Update promiscuous bit */ 2136 static void ravb_set_rx_mode(struct net_device *ndev) 2137 { 2138 struct ravb_private *priv = netdev_priv(ndev); 2139 unsigned long flags; 2140 2141 spin_lock_irqsave(&priv->lock, flags); 2142 ravb_modify(ndev, ECMR, ECMR_PRM, 2143 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0); 2144 spin_unlock_irqrestore(&priv->lock, flags); 2145 } 2146 2147 /* Device close function for Ethernet AVB */ 2148 static int ravb_close(struct net_device *ndev) 2149 { 2150 struct device_node *np = ndev->dev.parent->of_node; 2151 struct ravb_private *priv = netdev_priv(ndev); 2152 const struct ravb_hw_info *info = priv->info; 2153 struct ravb_tstamp_skb *ts_skb, *ts_skb2; 2154 2155 netif_tx_stop_all_queues(ndev); 2156 2157 /* Disable interrupts by clearing the interrupt masks. */ 2158 ravb_write(ndev, 0, RIC0); 2159 ravb_write(ndev, 0, RIC2); 2160 ravb_write(ndev, 0, TIC); 2161 2162 /* Stop PTP Clock driver */ 2163 if (info->gptp) 2164 ravb_ptp_stop(ndev); 2165 2166 /* Set the config mode to stop the AVB-DMAC's processes */ 2167 if (ravb_stop_dma(ndev) < 0) 2168 netdev_err(ndev, 2169 "device will be stopped after h/w processes are done.\n"); 2170 2171 /* Clear the timestamp list */ 2172 if (info->gptp || info->ccc_gac) { 2173 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) { 2174 list_del(&ts_skb->list); 2175 kfree_skb(ts_skb->skb); 2176 kfree(ts_skb); 2177 } 2178 } 2179 2180 /* PHY disconnect */ 2181 if (ndev->phydev) { 2182 phy_stop(ndev->phydev); 2183 phy_disconnect(ndev->phydev); 2184 if (of_phy_is_fixed_link(np)) 2185 of_phy_deregister_fixed_link(np); 2186 } 2187 2188 if (info->multi_irqs) { 2189 free_irq(priv->tx_irqs[RAVB_NC], ndev); 2190 free_irq(priv->rx_irqs[RAVB_NC], ndev); 2191 free_irq(priv->tx_irqs[RAVB_BE], ndev); 2192 free_irq(priv->rx_irqs[RAVB_BE], ndev); 2193 free_irq(priv->emac_irq, ndev); 2194 if (info->err_mgmt_irqs) { 2195 free_irq(priv->erra_irq, ndev); 2196 free_irq(priv->mgmta_irq, ndev); 2197 } 2198 } 2199 free_irq(ndev->irq, ndev); 2200 2201 if (info->nc_queues) 2202 napi_disable(&priv->napi[RAVB_NC]); 2203 napi_disable(&priv->napi[RAVB_BE]); 2204 2205 /* Free all the skb's in the RX queue and the DMA buffers. */ 2206 ravb_ring_free(ndev, RAVB_BE); 2207 if (info->nc_queues) 2208 ravb_ring_free(ndev, RAVB_NC); 2209 2210 return 0; 2211 } 2212 2213 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req) 2214 { 2215 struct ravb_private *priv = netdev_priv(ndev); 2216 struct hwtstamp_config config; 2217 2218 config.flags = 0; 2219 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON : 2220 HWTSTAMP_TX_OFF; 2221 switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) { 2222 case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT: 2223 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 2224 break; 2225 case RAVB_RXTSTAMP_TYPE_ALL: 2226 config.rx_filter = HWTSTAMP_FILTER_ALL; 2227 break; 2228 default: 2229 config.rx_filter = HWTSTAMP_FILTER_NONE; 2230 } 2231 2232 return copy_to_user(req->ifr_data, &config, sizeof(config)) ? 2233 -EFAULT : 0; 2234 } 2235 2236 /* Control hardware time stamping */ 2237 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req) 2238 { 2239 struct ravb_private *priv = netdev_priv(ndev); 2240 struct hwtstamp_config config; 2241 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED; 2242 u32 tstamp_tx_ctrl; 2243 2244 if (copy_from_user(&config, req->ifr_data, sizeof(config))) 2245 return -EFAULT; 2246 2247 switch (config.tx_type) { 2248 case HWTSTAMP_TX_OFF: 2249 tstamp_tx_ctrl = 0; 2250 break; 2251 case HWTSTAMP_TX_ON: 2252 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED; 2253 break; 2254 default: 2255 return -ERANGE; 2256 } 2257 2258 switch (config.rx_filter) { 2259 case HWTSTAMP_FILTER_NONE: 2260 tstamp_rx_ctrl = 0; 2261 break; 2262 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2263 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT; 2264 break; 2265 default: 2266 config.rx_filter = HWTSTAMP_FILTER_ALL; 2267 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL; 2268 } 2269 2270 priv->tstamp_tx_ctrl = tstamp_tx_ctrl; 2271 priv->tstamp_rx_ctrl = tstamp_rx_ctrl; 2272 2273 return copy_to_user(req->ifr_data, &config, sizeof(config)) ? 2274 -EFAULT : 0; 2275 } 2276 2277 /* ioctl to device function */ 2278 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd) 2279 { 2280 struct phy_device *phydev = ndev->phydev; 2281 2282 if (!netif_running(ndev)) 2283 return -EINVAL; 2284 2285 if (!phydev) 2286 return -ENODEV; 2287 2288 switch (cmd) { 2289 case SIOCGHWTSTAMP: 2290 return ravb_hwtstamp_get(ndev, req); 2291 case SIOCSHWTSTAMP: 2292 return ravb_hwtstamp_set(ndev, req); 2293 } 2294 2295 return phy_mii_ioctl(phydev, req, cmd); 2296 } 2297 2298 static int ravb_change_mtu(struct net_device *ndev, int new_mtu) 2299 { 2300 struct ravb_private *priv = netdev_priv(ndev); 2301 2302 ndev->mtu = new_mtu; 2303 2304 if (netif_running(ndev)) { 2305 synchronize_irq(priv->emac_irq); 2306 ravb_emac_init(ndev); 2307 } 2308 2309 netdev_update_features(ndev); 2310 2311 return 0; 2312 } 2313 2314 static void ravb_set_rx_csum(struct net_device *ndev, bool enable) 2315 { 2316 struct ravb_private *priv = netdev_priv(ndev); 2317 unsigned long flags; 2318 2319 spin_lock_irqsave(&priv->lock, flags); 2320 2321 /* Disable TX and RX */ 2322 ravb_rcv_snd_disable(ndev); 2323 2324 /* Modify RX Checksum setting */ 2325 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0); 2326 2327 /* Enable TX and RX */ 2328 ravb_rcv_snd_enable(ndev); 2329 2330 spin_unlock_irqrestore(&priv->lock, flags); 2331 } 2332 2333 static int ravb_set_features_gbeth(struct net_device *ndev, 2334 netdev_features_t features) 2335 { 2336 /* Place holder */ 2337 return 0; 2338 } 2339 2340 static int ravb_set_features_rcar(struct net_device *ndev, 2341 netdev_features_t features) 2342 { 2343 netdev_features_t changed = ndev->features ^ features; 2344 2345 if (changed & NETIF_F_RXCSUM) 2346 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM); 2347 2348 ndev->features = features; 2349 2350 return 0; 2351 } 2352 2353 static int ravb_set_features(struct net_device *ndev, 2354 netdev_features_t features) 2355 { 2356 struct ravb_private *priv = netdev_priv(ndev); 2357 const struct ravb_hw_info *info = priv->info; 2358 2359 return info->set_feature(ndev, features); 2360 } 2361 2362 static const struct net_device_ops ravb_netdev_ops = { 2363 .ndo_open = ravb_open, 2364 .ndo_stop = ravb_close, 2365 .ndo_start_xmit = ravb_start_xmit, 2366 .ndo_select_queue = ravb_select_queue, 2367 .ndo_get_stats = ravb_get_stats, 2368 .ndo_set_rx_mode = ravb_set_rx_mode, 2369 .ndo_tx_timeout = ravb_tx_timeout, 2370 .ndo_eth_ioctl = ravb_do_ioctl, 2371 .ndo_change_mtu = ravb_change_mtu, 2372 .ndo_validate_addr = eth_validate_addr, 2373 .ndo_set_mac_address = eth_mac_addr, 2374 .ndo_set_features = ravb_set_features, 2375 }; 2376 2377 /* MDIO bus init function */ 2378 static int ravb_mdio_init(struct ravb_private *priv) 2379 { 2380 struct platform_device *pdev = priv->pdev; 2381 struct device *dev = &pdev->dev; 2382 int error; 2383 2384 /* Bitbang init */ 2385 priv->mdiobb.ops = &bb_ops; 2386 2387 /* MII controller setting */ 2388 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb); 2389 if (!priv->mii_bus) 2390 return -ENOMEM; 2391 2392 /* Hook up MII support for ethtool */ 2393 priv->mii_bus->name = "ravb_mii"; 2394 priv->mii_bus->parent = dev; 2395 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2396 pdev->name, pdev->id); 2397 2398 /* Register MDIO bus */ 2399 error = of_mdiobus_register(priv->mii_bus, dev->of_node); 2400 if (error) 2401 goto out_free_bus; 2402 2403 return 0; 2404 2405 out_free_bus: 2406 free_mdio_bitbang(priv->mii_bus); 2407 return error; 2408 } 2409 2410 /* MDIO bus release function */ 2411 static int ravb_mdio_release(struct ravb_private *priv) 2412 { 2413 /* Unregister mdio bus */ 2414 mdiobus_unregister(priv->mii_bus); 2415 2416 /* Free bitbang info */ 2417 free_mdio_bitbang(priv->mii_bus); 2418 2419 return 0; 2420 } 2421 2422 static const struct ravb_hw_info ravb_gen3_hw_info = { 2423 .rx_ring_free = ravb_rx_ring_free_rcar, 2424 .rx_ring_format = ravb_rx_ring_format_rcar, 2425 .alloc_rx_desc = ravb_alloc_rx_desc_rcar, 2426 .receive = ravb_rx_rcar, 2427 .set_rate = ravb_set_rate_rcar, 2428 .set_feature = ravb_set_features_rcar, 2429 .dmac_init = ravb_dmac_init_rcar, 2430 .emac_init = ravb_emac_init_rcar, 2431 .gstrings_stats = ravb_gstrings_stats, 2432 .gstrings_size = sizeof(ravb_gstrings_stats), 2433 .net_hw_features = NETIF_F_RXCSUM, 2434 .net_features = NETIF_F_RXCSUM, 2435 .stats_len = ARRAY_SIZE(ravb_gstrings_stats), 2436 .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1, 2437 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 2438 .rx_max_buf_size = SZ_2K, 2439 .internal_delay = 1, 2440 .tx_counters = 1, 2441 .multi_irqs = 1, 2442 .irq_en_dis = 1, 2443 .ccc_gac = 1, 2444 .nc_queues = 1, 2445 .magic_pkt = 1, 2446 }; 2447 2448 static const struct ravb_hw_info ravb_gen2_hw_info = { 2449 .rx_ring_free = ravb_rx_ring_free_rcar, 2450 .rx_ring_format = ravb_rx_ring_format_rcar, 2451 .alloc_rx_desc = ravb_alloc_rx_desc_rcar, 2452 .receive = ravb_rx_rcar, 2453 .set_rate = ravb_set_rate_rcar, 2454 .set_feature = ravb_set_features_rcar, 2455 .dmac_init = ravb_dmac_init_rcar, 2456 .emac_init = ravb_emac_init_rcar, 2457 .gstrings_stats = ravb_gstrings_stats, 2458 .gstrings_size = sizeof(ravb_gstrings_stats), 2459 .net_hw_features = NETIF_F_RXCSUM, 2460 .net_features = NETIF_F_RXCSUM, 2461 .stats_len = ARRAY_SIZE(ravb_gstrings_stats), 2462 .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1, 2463 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 2464 .rx_max_buf_size = SZ_2K, 2465 .aligned_tx = 1, 2466 .gptp = 1, 2467 .nc_queues = 1, 2468 .magic_pkt = 1, 2469 }; 2470 2471 static const struct ravb_hw_info ravb_rzv2m_hw_info = { 2472 .rx_ring_free = ravb_rx_ring_free_rcar, 2473 .rx_ring_format = ravb_rx_ring_format_rcar, 2474 .alloc_rx_desc = ravb_alloc_rx_desc_rcar, 2475 .receive = ravb_rx_rcar, 2476 .set_rate = ravb_set_rate_rcar, 2477 .set_feature = ravb_set_features_rcar, 2478 .dmac_init = ravb_dmac_init_rcar, 2479 .emac_init = ravb_emac_init_rcar, 2480 .gstrings_stats = ravb_gstrings_stats, 2481 .gstrings_size = sizeof(ravb_gstrings_stats), 2482 .net_hw_features = NETIF_F_RXCSUM, 2483 .net_features = NETIF_F_RXCSUM, 2484 .stats_len = ARRAY_SIZE(ravb_gstrings_stats), 2485 .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1, 2486 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 2487 .rx_max_buf_size = SZ_2K, 2488 .multi_irqs = 1, 2489 .err_mgmt_irqs = 1, 2490 .gptp = 1, 2491 .gptp_ref_clk = 1, 2492 .nc_queues = 1, 2493 .magic_pkt = 1, 2494 }; 2495 2496 static const struct ravb_hw_info gbeth_hw_info = { 2497 .rx_ring_free = ravb_rx_ring_free_gbeth, 2498 .rx_ring_format = ravb_rx_ring_format_gbeth, 2499 .alloc_rx_desc = ravb_alloc_rx_desc_gbeth, 2500 .receive = ravb_rx_gbeth, 2501 .set_rate = ravb_set_rate_gbeth, 2502 .set_feature = ravb_set_features_gbeth, 2503 .dmac_init = ravb_dmac_init_gbeth, 2504 .emac_init = ravb_emac_init_gbeth, 2505 .gstrings_stats = ravb_gstrings_stats_gbeth, 2506 .gstrings_size = sizeof(ravb_gstrings_stats_gbeth), 2507 .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth), 2508 .max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN), 2509 .tccr_mask = TCCR_TSRQ0, 2510 .rx_max_buf_size = SZ_8K, 2511 .aligned_tx = 1, 2512 .tx_counters = 1, 2513 .carrier_counters = 1, 2514 .half_duplex = 1, 2515 }; 2516 2517 static const struct of_device_id ravb_match_table[] = { 2518 { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info }, 2519 { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info }, 2520 { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info }, 2521 { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info }, 2522 { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info }, 2523 { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info }, 2524 { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info }, 2525 { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info }, 2526 { } 2527 }; 2528 MODULE_DEVICE_TABLE(of, ravb_match_table); 2529 2530 static int ravb_set_gti(struct net_device *ndev) 2531 { 2532 struct ravb_private *priv = netdev_priv(ndev); 2533 const struct ravb_hw_info *info = priv->info; 2534 struct device *dev = ndev->dev.parent; 2535 unsigned long rate; 2536 uint64_t inc; 2537 2538 if (info->gptp_ref_clk) 2539 rate = clk_get_rate(priv->gptp_clk); 2540 else 2541 rate = clk_get_rate(priv->clk); 2542 if (!rate) 2543 return -EINVAL; 2544 2545 inc = div64_ul(1000000000ULL << 20, rate); 2546 2547 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) { 2548 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n", 2549 inc, GTI_TIV_MIN, GTI_TIV_MAX); 2550 return -EINVAL; 2551 } 2552 2553 ravb_write(ndev, inc, GTI); 2554 2555 return 0; 2556 } 2557 2558 static void ravb_set_config_mode(struct net_device *ndev) 2559 { 2560 struct ravb_private *priv = netdev_priv(ndev); 2561 const struct ravb_hw_info *info = priv->info; 2562 2563 if (info->gptp) { 2564 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG); 2565 /* Set CSEL value */ 2566 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB); 2567 } else if (info->ccc_gac) { 2568 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG | 2569 CCC_GAC | CCC_CSEL_HPB); 2570 } else { 2571 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG); 2572 } 2573 } 2574 2575 /* Set tx and rx clock internal delay modes */ 2576 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev) 2577 { 2578 struct ravb_private *priv = netdev_priv(ndev); 2579 bool explicit_delay = false; 2580 u32 delay; 2581 2582 if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) { 2583 /* Valid values are 0 and 1800, according to DT bindings */ 2584 priv->rxcidm = !!delay; 2585 explicit_delay = true; 2586 } 2587 if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) { 2588 /* Valid values are 0 and 2000, according to DT bindings */ 2589 priv->txcidm = !!delay; 2590 explicit_delay = true; 2591 } 2592 2593 if (explicit_delay) 2594 return; 2595 2596 /* Fall back to legacy rgmii-*id behavior */ 2597 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 2598 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) { 2599 priv->rxcidm = 1; 2600 priv->rgmii_override = 1; 2601 } 2602 2603 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 2604 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) { 2605 priv->txcidm = 1; 2606 priv->rgmii_override = 1; 2607 } 2608 } 2609 2610 static void ravb_set_delay_mode(struct net_device *ndev) 2611 { 2612 struct ravb_private *priv = netdev_priv(ndev); 2613 u32 set = 0; 2614 2615 if (priv->rxcidm) 2616 set |= APSR_RDM; 2617 if (priv->txcidm) 2618 set |= APSR_TDM; 2619 ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set); 2620 } 2621 2622 static int ravb_probe(struct platform_device *pdev) 2623 { 2624 struct device_node *np = pdev->dev.of_node; 2625 const struct ravb_hw_info *info; 2626 struct reset_control *rstc; 2627 struct ravb_private *priv; 2628 struct net_device *ndev; 2629 int error, irq, q; 2630 struct resource *res; 2631 int i; 2632 2633 if (!np) { 2634 dev_err(&pdev->dev, 2635 "this driver is required to be instantiated from device tree\n"); 2636 return -EINVAL; 2637 } 2638 2639 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); 2640 if (IS_ERR(rstc)) 2641 return dev_err_probe(&pdev->dev, PTR_ERR(rstc), 2642 "failed to get cpg reset\n"); 2643 2644 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private), 2645 NUM_TX_QUEUE, NUM_RX_QUEUE); 2646 if (!ndev) 2647 return -ENOMEM; 2648 2649 info = of_device_get_match_data(&pdev->dev); 2650 2651 ndev->features = info->net_features; 2652 ndev->hw_features = info->net_hw_features; 2653 2654 reset_control_deassert(rstc); 2655 pm_runtime_enable(&pdev->dev); 2656 pm_runtime_get_sync(&pdev->dev); 2657 2658 if (info->multi_irqs) { 2659 if (info->err_mgmt_irqs) 2660 irq = platform_get_irq_byname(pdev, "dia"); 2661 else 2662 irq = platform_get_irq_byname(pdev, "ch22"); 2663 } else { 2664 irq = platform_get_irq(pdev, 0); 2665 } 2666 if (irq < 0) { 2667 error = irq; 2668 goto out_release; 2669 } 2670 ndev->irq = irq; 2671 2672 SET_NETDEV_DEV(ndev, &pdev->dev); 2673 2674 priv = netdev_priv(ndev); 2675 priv->info = info; 2676 priv->rstc = rstc; 2677 priv->ndev = ndev; 2678 priv->pdev = pdev; 2679 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE; 2680 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE; 2681 if (info->nc_queues) { 2682 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE; 2683 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE; 2684 } 2685 2686 priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2687 if (IS_ERR(priv->addr)) { 2688 error = PTR_ERR(priv->addr); 2689 goto out_release; 2690 } 2691 2692 /* The Ether-specific entries in the device structure. */ 2693 ndev->base_addr = res->start; 2694 2695 spin_lock_init(&priv->lock); 2696 INIT_WORK(&priv->work, ravb_tx_timeout_work); 2697 2698 error = of_get_phy_mode(np, &priv->phy_interface); 2699 if (error && error != -ENODEV) 2700 goto out_release; 2701 2702 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link"); 2703 priv->avb_link_active_low = 2704 of_property_read_bool(np, "renesas,ether-link-active-low"); 2705 2706 if (info->multi_irqs) { 2707 if (info->err_mgmt_irqs) 2708 irq = platform_get_irq_byname(pdev, "line3"); 2709 else 2710 irq = platform_get_irq_byname(pdev, "ch24"); 2711 if (irq < 0) { 2712 error = irq; 2713 goto out_release; 2714 } 2715 priv->emac_irq = irq; 2716 for (i = 0; i < NUM_RX_QUEUE; i++) { 2717 irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]); 2718 if (irq < 0) { 2719 error = irq; 2720 goto out_release; 2721 } 2722 priv->rx_irqs[i] = irq; 2723 } 2724 for (i = 0; i < NUM_TX_QUEUE; i++) { 2725 irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]); 2726 if (irq < 0) { 2727 error = irq; 2728 goto out_release; 2729 } 2730 priv->tx_irqs[i] = irq; 2731 } 2732 2733 if (info->err_mgmt_irqs) { 2734 irq = platform_get_irq_byname(pdev, "err_a"); 2735 if (irq < 0) { 2736 error = irq; 2737 goto out_release; 2738 } 2739 priv->erra_irq = irq; 2740 2741 irq = platform_get_irq_byname(pdev, "mgmt_a"); 2742 if (irq < 0) { 2743 error = irq; 2744 goto out_release; 2745 } 2746 priv->mgmta_irq = irq; 2747 } 2748 } 2749 2750 priv->clk = devm_clk_get(&pdev->dev, NULL); 2751 if (IS_ERR(priv->clk)) { 2752 error = PTR_ERR(priv->clk); 2753 goto out_release; 2754 } 2755 2756 priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk"); 2757 if (IS_ERR(priv->refclk)) { 2758 error = PTR_ERR(priv->refclk); 2759 goto out_release; 2760 } 2761 clk_prepare_enable(priv->refclk); 2762 2763 if (info->gptp_ref_clk) { 2764 priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp"); 2765 if (IS_ERR(priv->gptp_clk)) { 2766 error = PTR_ERR(priv->gptp_clk); 2767 goto out_disable_refclk; 2768 } 2769 clk_prepare_enable(priv->gptp_clk); 2770 } 2771 2772 ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); 2773 ndev->min_mtu = ETH_MIN_MTU; 2774 2775 /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer 2776 * Use two descriptor to handle such situation. First descriptor to 2777 * handle aligned data buffer and second descriptor to handle the 2778 * overflow data because of alignment. 2779 */ 2780 priv->num_tx_desc = info->aligned_tx ? 2 : 1; 2781 2782 /* Set function */ 2783 ndev->netdev_ops = &ravb_netdev_ops; 2784 ndev->ethtool_ops = &ravb_ethtool_ops; 2785 2786 /* Set AVB config mode */ 2787 ravb_set_config_mode(ndev); 2788 2789 if (info->gptp || info->ccc_gac) { 2790 /* Set GTI value */ 2791 error = ravb_set_gti(ndev); 2792 if (error) 2793 goto out_disable_gptp_clk; 2794 2795 /* Request GTI loading */ 2796 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI); 2797 } 2798 2799 if (info->internal_delay) { 2800 ravb_parse_delay_mode(np, ndev); 2801 ravb_set_delay_mode(ndev); 2802 } 2803 2804 /* Allocate descriptor base address table */ 2805 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM; 2806 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size, 2807 &priv->desc_bat_dma, GFP_KERNEL); 2808 if (!priv->desc_bat) { 2809 dev_err(&pdev->dev, 2810 "Cannot allocate desc base address table (size %d bytes)\n", 2811 priv->desc_bat_size); 2812 error = -ENOMEM; 2813 goto out_disable_gptp_clk; 2814 } 2815 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++) 2816 priv->desc_bat[q].die_dt = DT_EOS; 2817 ravb_write(ndev, priv->desc_bat_dma, DBAT); 2818 2819 /* Initialise HW timestamp list */ 2820 INIT_LIST_HEAD(&priv->ts_skb_list); 2821 2822 /* Initialise PTP Clock driver */ 2823 if (info->ccc_gac) 2824 ravb_ptp_init(ndev, pdev); 2825 2826 /* Debug message level */ 2827 priv->msg_enable = RAVB_DEF_MSG_ENABLE; 2828 2829 /* Read and set MAC address */ 2830 ravb_read_mac_address(np, ndev); 2831 if (!is_valid_ether_addr(ndev->dev_addr)) { 2832 dev_warn(&pdev->dev, 2833 "no valid MAC address supplied, using a random one\n"); 2834 eth_hw_addr_random(ndev); 2835 } 2836 2837 /* MDIO bus init */ 2838 error = ravb_mdio_init(priv); 2839 if (error) { 2840 dev_err(&pdev->dev, "failed to initialize MDIO\n"); 2841 goto out_dma_free; 2842 } 2843 2844 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll); 2845 if (info->nc_queues) 2846 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll); 2847 2848 /* Network device register */ 2849 error = register_netdev(ndev); 2850 if (error) 2851 goto out_napi_del; 2852 2853 device_set_wakeup_capable(&pdev->dev, 1); 2854 2855 /* Print device information */ 2856 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n", 2857 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 2858 2859 platform_set_drvdata(pdev, ndev); 2860 2861 return 0; 2862 2863 out_napi_del: 2864 if (info->nc_queues) 2865 netif_napi_del(&priv->napi[RAVB_NC]); 2866 2867 netif_napi_del(&priv->napi[RAVB_BE]); 2868 ravb_mdio_release(priv); 2869 out_dma_free: 2870 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat, 2871 priv->desc_bat_dma); 2872 2873 /* Stop PTP Clock driver */ 2874 if (info->ccc_gac) 2875 ravb_ptp_stop(ndev); 2876 out_disable_gptp_clk: 2877 clk_disable_unprepare(priv->gptp_clk); 2878 out_disable_refclk: 2879 clk_disable_unprepare(priv->refclk); 2880 out_release: 2881 free_netdev(ndev); 2882 2883 pm_runtime_put(&pdev->dev); 2884 pm_runtime_disable(&pdev->dev); 2885 reset_control_assert(rstc); 2886 return error; 2887 } 2888 2889 static int ravb_remove(struct platform_device *pdev) 2890 { 2891 struct net_device *ndev = platform_get_drvdata(pdev); 2892 struct ravb_private *priv = netdev_priv(ndev); 2893 const struct ravb_hw_info *info = priv->info; 2894 2895 /* Stop PTP Clock driver */ 2896 if (info->ccc_gac) 2897 ravb_ptp_stop(ndev); 2898 2899 clk_disable_unprepare(priv->gptp_clk); 2900 clk_disable_unprepare(priv->refclk); 2901 2902 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat, 2903 priv->desc_bat_dma); 2904 /* Set reset mode */ 2905 ravb_write(ndev, CCC_OPC_RESET, CCC); 2906 unregister_netdev(ndev); 2907 if (info->nc_queues) 2908 netif_napi_del(&priv->napi[RAVB_NC]); 2909 netif_napi_del(&priv->napi[RAVB_BE]); 2910 ravb_mdio_release(priv); 2911 pm_runtime_put_sync(&pdev->dev); 2912 pm_runtime_disable(&pdev->dev); 2913 reset_control_assert(priv->rstc); 2914 free_netdev(ndev); 2915 platform_set_drvdata(pdev, NULL); 2916 2917 return 0; 2918 } 2919 2920 static int ravb_wol_setup(struct net_device *ndev) 2921 { 2922 struct ravb_private *priv = netdev_priv(ndev); 2923 const struct ravb_hw_info *info = priv->info; 2924 2925 /* Disable interrupts by clearing the interrupt masks. */ 2926 ravb_write(ndev, 0, RIC0); 2927 ravb_write(ndev, 0, RIC2); 2928 ravb_write(ndev, 0, TIC); 2929 2930 /* Only allow ECI interrupts */ 2931 synchronize_irq(priv->emac_irq); 2932 if (info->nc_queues) 2933 napi_disable(&priv->napi[RAVB_NC]); 2934 napi_disable(&priv->napi[RAVB_BE]); 2935 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR); 2936 2937 /* Enable MagicPacket */ 2938 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE); 2939 2940 return enable_irq_wake(priv->emac_irq); 2941 } 2942 2943 static int ravb_wol_restore(struct net_device *ndev) 2944 { 2945 struct ravb_private *priv = netdev_priv(ndev); 2946 const struct ravb_hw_info *info = priv->info; 2947 2948 if (info->nc_queues) 2949 napi_enable(&priv->napi[RAVB_NC]); 2950 napi_enable(&priv->napi[RAVB_BE]); 2951 2952 /* Disable MagicPacket */ 2953 ravb_modify(ndev, ECMR, ECMR_MPDE, 0); 2954 2955 ravb_close(ndev); 2956 2957 return disable_irq_wake(priv->emac_irq); 2958 } 2959 2960 static int __maybe_unused ravb_suspend(struct device *dev) 2961 { 2962 struct net_device *ndev = dev_get_drvdata(dev); 2963 struct ravb_private *priv = netdev_priv(ndev); 2964 int ret; 2965 2966 if (!netif_running(ndev)) 2967 return 0; 2968 2969 netif_device_detach(ndev); 2970 2971 if (priv->wol_enabled) 2972 ret = ravb_wol_setup(ndev); 2973 else 2974 ret = ravb_close(ndev); 2975 2976 return ret; 2977 } 2978 2979 static int __maybe_unused ravb_resume(struct device *dev) 2980 { 2981 struct net_device *ndev = dev_get_drvdata(dev); 2982 struct ravb_private *priv = netdev_priv(ndev); 2983 const struct ravb_hw_info *info = priv->info; 2984 int ret = 0; 2985 2986 /* If WoL is enabled set reset mode to rearm the WoL logic */ 2987 if (priv->wol_enabled) 2988 ravb_write(ndev, CCC_OPC_RESET, CCC); 2989 2990 /* All register have been reset to default values. 2991 * Restore all registers which where setup at probe time and 2992 * reopen device if it was running before system suspended. 2993 */ 2994 2995 /* Set AVB config mode */ 2996 ravb_set_config_mode(ndev); 2997 2998 if (info->gptp || info->ccc_gac) { 2999 /* Set GTI value */ 3000 ret = ravb_set_gti(ndev); 3001 if (ret) 3002 return ret; 3003 3004 /* Request GTI loading */ 3005 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI); 3006 } 3007 3008 if (info->internal_delay) 3009 ravb_set_delay_mode(ndev); 3010 3011 /* Restore descriptor base address table */ 3012 ravb_write(ndev, priv->desc_bat_dma, DBAT); 3013 3014 if (netif_running(ndev)) { 3015 if (priv->wol_enabled) { 3016 ret = ravb_wol_restore(ndev); 3017 if (ret) 3018 return ret; 3019 } 3020 ret = ravb_open(ndev); 3021 if (ret < 0) 3022 return ret; 3023 ravb_set_rx_mode(ndev); 3024 netif_device_attach(ndev); 3025 } 3026 3027 return ret; 3028 } 3029 3030 static int __maybe_unused ravb_runtime_nop(struct device *dev) 3031 { 3032 /* Runtime PM callback shared between ->runtime_suspend() 3033 * and ->runtime_resume(). Simply returns success. 3034 * 3035 * This driver re-initializes all registers after 3036 * pm_runtime_get_sync() anyway so there is no need 3037 * to save and restore registers here. 3038 */ 3039 return 0; 3040 } 3041 3042 static const struct dev_pm_ops ravb_dev_pm_ops = { 3043 SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume) 3044 SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL) 3045 }; 3046 3047 static struct platform_driver ravb_driver = { 3048 .probe = ravb_probe, 3049 .remove = ravb_remove, 3050 .driver = { 3051 .name = "ravb", 3052 .pm = &ravb_dev_pm_ops, 3053 .of_match_table = ravb_match_table, 3054 }, 3055 }; 3056 3057 module_platform_driver(ravb_driver); 3058 3059 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai"); 3060 MODULE_DESCRIPTION("Renesas Ethernet AVB driver"); 3061 MODULE_LICENSE("GPL v2"); 3062