1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 #include <linux/reset.h>
33 #include <linux/math64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate_gbeth(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 10:                /* 10BASE */
91 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
92 		break;
93 	case 100:               /* 100BASE */
94 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
95 		break;
96 	case 1000:              /* 1000BASE */
97 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
98 		break;
99 	}
100 }
101 
102 static void ravb_set_rate_rcar(struct net_device *ndev)
103 {
104 	struct ravb_private *priv = netdev_priv(ndev);
105 
106 	switch (priv->speed) {
107 	case 100:		/* 100BASE */
108 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
109 		break;
110 	case 1000:		/* 1000BASE */
111 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
112 		break;
113 	}
114 }
115 
116 static void ravb_set_buffer_align(struct sk_buff *skb)
117 {
118 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
119 
120 	if (reserve)
121 		skb_reserve(skb, RAVB_ALIGN - reserve);
122 }
123 
124 /* Get MAC address from the MAC address registers
125  *
126  * Ethernet AVB device doesn't have ROM for MAC address.
127  * This function gets the MAC address that was used by a bootloader.
128  */
129 static void ravb_read_mac_address(struct device_node *np,
130 				  struct net_device *ndev)
131 {
132 	int ret;
133 
134 	ret = of_get_ethdev_address(np, ndev);
135 	if (ret) {
136 		u32 mahr = ravb_read(ndev, MAHR);
137 		u32 malr = ravb_read(ndev, MALR);
138 		u8 addr[ETH_ALEN];
139 
140 		addr[0] = (mahr >> 24) & 0xFF;
141 		addr[1] = (mahr >> 16) & 0xFF;
142 		addr[2] = (mahr >>  8) & 0xFF;
143 		addr[3] = (mahr >>  0) & 0xFF;
144 		addr[4] = (malr >>  8) & 0xFF;
145 		addr[5] = (malr >>  0) & 0xFF;
146 		eth_hw_addr_set(ndev, addr);
147 	}
148 }
149 
150 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
151 {
152 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
153 						 mdiobb);
154 
155 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
156 }
157 
158 /* MDC pin control */
159 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
160 {
161 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
162 }
163 
164 /* Data I/O pin control */
165 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
166 {
167 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
168 }
169 
170 /* Set data bit */
171 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
172 {
173 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
174 }
175 
176 /* Get data bit */
177 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
178 {
179 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
180 						 mdiobb);
181 
182 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
183 }
184 
185 /* MDIO bus control struct */
186 static const struct mdiobb_ops bb_ops = {
187 	.owner = THIS_MODULE,
188 	.set_mdc = ravb_set_mdc,
189 	.set_mdio_dir = ravb_set_mdio_dir,
190 	.set_mdio_data = ravb_set_mdio_data,
191 	.get_mdio_data = ravb_get_mdio_data,
192 };
193 
194 /* Free TX skb function for AVB-IP */
195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
238 static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 	unsigned int i;
243 
244 	if (!priv->gbeth_rx_ring)
245 		return;
246 
247 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
248 		struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
249 
250 		if (!dma_mapping_error(ndev->dev.parent,
251 				       le32_to_cpu(desc->dptr)))
252 			dma_unmap_single(ndev->dev.parent,
253 					 le32_to_cpu(desc->dptr),
254 					 GBETH_RX_BUFF_MAX,
255 					 DMA_FROM_DEVICE);
256 	}
257 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
258 	dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
259 			  priv->rx_desc_dma[q]);
260 	priv->gbeth_rx_ring = NULL;
261 }
262 
263 static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
264 {
265 	struct ravb_private *priv = netdev_priv(ndev);
266 	unsigned int ring_size;
267 	unsigned int i;
268 
269 	if (!priv->rx_ring[q])
270 		return;
271 
272 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
273 		struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
274 
275 		if (!dma_mapping_error(ndev->dev.parent,
276 				       le32_to_cpu(desc->dptr)))
277 			dma_unmap_single(ndev->dev.parent,
278 					 le32_to_cpu(desc->dptr),
279 					 RX_BUF_SZ,
280 					 DMA_FROM_DEVICE);
281 	}
282 	ring_size = sizeof(struct ravb_ex_rx_desc) *
283 		    (priv->num_rx_ring[q] + 1);
284 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
285 			  priv->rx_desc_dma[q]);
286 	priv->rx_ring[q] = NULL;
287 }
288 
289 /* Free skb's and DMA buffers for Ethernet AVB */
290 static void ravb_ring_free(struct net_device *ndev, int q)
291 {
292 	struct ravb_private *priv = netdev_priv(ndev);
293 	const struct ravb_hw_info *info = priv->info;
294 	unsigned int num_tx_desc = priv->num_tx_desc;
295 	unsigned int ring_size;
296 	unsigned int i;
297 
298 	info->rx_ring_free(ndev, q);
299 
300 	if (priv->tx_ring[q]) {
301 		ravb_tx_free(ndev, q, false);
302 
303 		ring_size = sizeof(struct ravb_tx_desc) *
304 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
305 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
306 				  priv->tx_desc_dma[q]);
307 		priv->tx_ring[q] = NULL;
308 	}
309 
310 	/* Free RX skb ringbuffer */
311 	if (priv->rx_skb[q]) {
312 		for (i = 0; i < priv->num_rx_ring[q]; i++)
313 			dev_kfree_skb(priv->rx_skb[q][i]);
314 	}
315 	kfree(priv->rx_skb[q]);
316 	priv->rx_skb[q] = NULL;
317 
318 	/* Free aligned TX buffers */
319 	kfree(priv->tx_align[q]);
320 	priv->tx_align[q] = NULL;
321 
322 	/* Free TX skb ringbuffer.
323 	 * SKBs are freed by ravb_tx_free() call above.
324 	 */
325 	kfree(priv->tx_skb[q]);
326 	priv->tx_skb[q] = NULL;
327 }
328 
329 static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
330 {
331 	struct ravb_private *priv = netdev_priv(ndev);
332 	struct ravb_rx_desc *rx_desc;
333 	unsigned int rx_ring_size;
334 	dma_addr_t dma_addr;
335 	unsigned int i;
336 
337 	rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
338 	memset(priv->gbeth_rx_ring, 0, rx_ring_size);
339 	/* Build RX ring buffer */
340 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
341 		/* RX descriptor */
342 		rx_desc = &priv->gbeth_rx_ring[i];
343 		rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
344 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
345 					  GBETH_RX_BUFF_MAX,
346 					  DMA_FROM_DEVICE);
347 		/* We just set the data size to 0 for a failed mapping which
348 		 * should prevent DMA from happening...
349 		 */
350 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
351 			rx_desc->ds_cc = cpu_to_le16(0);
352 		rx_desc->dptr = cpu_to_le32(dma_addr);
353 		rx_desc->die_dt = DT_FEMPTY;
354 	}
355 	rx_desc = &priv->gbeth_rx_ring[i];
356 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
357 	rx_desc->die_dt = DT_LINKFIX; /* type */
358 }
359 
360 static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
361 {
362 	struct ravb_private *priv = netdev_priv(ndev);
363 	struct ravb_ex_rx_desc *rx_desc;
364 	unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
365 	dma_addr_t dma_addr;
366 	unsigned int i;
367 
368 	memset(priv->rx_ring[q], 0, rx_ring_size);
369 	/* Build RX ring buffer */
370 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
371 		/* RX descriptor */
372 		rx_desc = &priv->rx_ring[q][i];
373 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
374 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
375 					  RX_BUF_SZ,
376 					  DMA_FROM_DEVICE);
377 		/* We just set the data size to 0 for a failed mapping which
378 		 * should prevent DMA from happening...
379 		 */
380 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
381 			rx_desc->ds_cc = cpu_to_le16(0);
382 		rx_desc->dptr = cpu_to_le32(dma_addr);
383 		rx_desc->die_dt = DT_FEMPTY;
384 	}
385 	rx_desc = &priv->rx_ring[q][i];
386 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
387 	rx_desc->die_dt = DT_LINKFIX; /* type */
388 }
389 
390 /* Format skb and descriptor buffer for Ethernet AVB */
391 static void ravb_ring_format(struct net_device *ndev, int q)
392 {
393 	struct ravb_private *priv = netdev_priv(ndev);
394 	const struct ravb_hw_info *info = priv->info;
395 	unsigned int num_tx_desc = priv->num_tx_desc;
396 	struct ravb_tx_desc *tx_desc;
397 	struct ravb_desc *desc;
398 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
399 				    num_tx_desc;
400 	unsigned int i;
401 
402 	priv->cur_rx[q] = 0;
403 	priv->cur_tx[q] = 0;
404 	priv->dirty_rx[q] = 0;
405 	priv->dirty_tx[q] = 0;
406 
407 	info->rx_ring_format(ndev, q);
408 
409 	memset(priv->tx_ring[q], 0, tx_ring_size);
410 	/* Build TX ring buffer */
411 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
412 	     i++, tx_desc++) {
413 		tx_desc->die_dt = DT_EEMPTY;
414 		if (num_tx_desc > 1) {
415 			tx_desc++;
416 			tx_desc->die_dt = DT_EEMPTY;
417 		}
418 	}
419 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
420 	tx_desc->die_dt = DT_LINKFIX; /* type */
421 
422 	/* RX descriptor base address for best effort */
423 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
424 	desc->die_dt = DT_LINKFIX; /* type */
425 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
426 
427 	/* TX descriptor base address for best effort */
428 	desc = &priv->desc_bat[q];
429 	desc->die_dt = DT_LINKFIX; /* type */
430 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
431 }
432 
433 static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
434 {
435 	struct ravb_private *priv = netdev_priv(ndev);
436 	unsigned int ring_size;
437 
438 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
439 
440 	priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
441 						 &priv->rx_desc_dma[q],
442 						 GFP_KERNEL);
443 	return priv->gbeth_rx_ring;
444 }
445 
446 static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
447 {
448 	struct ravb_private *priv = netdev_priv(ndev);
449 	unsigned int ring_size;
450 
451 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
452 
453 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
454 					      &priv->rx_desc_dma[q],
455 					      GFP_KERNEL);
456 	return priv->rx_ring[q];
457 }
458 
459 /* Init skb and descriptor buffer for Ethernet AVB */
460 static int ravb_ring_init(struct net_device *ndev, int q)
461 {
462 	struct ravb_private *priv = netdev_priv(ndev);
463 	const struct ravb_hw_info *info = priv->info;
464 	unsigned int num_tx_desc = priv->num_tx_desc;
465 	unsigned int ring_size;
466 	struct sk_buff *skb;
467 	unsigned int i;
468 
469 	/* Allocate RX and TX skb rings */
470 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
471 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
472 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
473 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
474 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
475 		goto error;
476 
477 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
478 		skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL);
479 		if (!skb)
480 			goto error;
481 		ravb_set_buffer_align(skb);
482 		priv->rx_skb[q][i] = skb;
483 	}
484 
485 	if (num_tx_desc > 1) {
486 		/* Allocate rings for the aligned buffers */
487 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
488 					    DPTR_ALIGN - 1, GFP_KERNEL);
489 		if (!priv->tx_align[q])
490 			goto error;
491 	}
492 
493 	/* Allocate all RX descriptors. */
494 	if (!info->alloc_rx_desc(ndev, q))
495 		goto error;
496 
497 	priv->dirty_rx[q] = 0;
498 
499 	/* Allocate all TX descriptors. */
500 	ring_size = sizeof(struct ravb_tx_desc) *
501 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
502 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
503 					      &priv->tx_desc_dma[q],
504 					      GFP_KERNEL);
505 	if (!priv->tx_ring[q])
506 		goto error;
507 
508 	return 0;
509 
510 error:
511 	ravb_ring_free(ndev, q);
512 
513 	return -ENOMEM;
514 }
515 
516 static void ravb_emac_init_gbeth(struct net_device *ndev)
517 {
518 	struct ravb_private *priv = netdev_priv(ndev);
519 
520 	/* Receive frame limit set register */
521 	ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
522 
523 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
524 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
525 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
526 			 ECMR_TXF | ECMR_RXF, ECMR);
527 
528 	ravb_set_rate_gbeth(ndev);
529 
530 	/* Set MAC address */
531 	ravb_write(ndev,
532 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
533 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
534 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
535 
536 	/* E-MAC status register clear */
537 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
538 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
539 
540 	/* E-MAC interrupt enable register */
541 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
542 
543 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
544 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
545 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
546 	} else {
547 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
548 			    CXR31_SEL_LINK0);
549 	}
550 }
551 
552 static void ravb_emac_init_rcar(struct net_device *ndev)
553 {
554 	/* Receive frame limit set register */
555 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
556 
557 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
558 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
559 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
560 		   ECMR_TE | ECMR_RE, ECMR);
561 
562 	ravb_set_rate_rcar(ndev);
563 
564 	/* Set MAC address */
565 	ravb_write(ndev,
566 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
567 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
568 	ravb_write(ndev,
569 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
570 
571 	/* E-MAC status register clear */
572 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
573 
574 	/* E-MAC interrupt enable register */
575 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
576 }
577 
578 /* E-MAC init function */
579 static void ravb_emac_init(struct net_device *ndev)
580 {
581 	struct ravb_private *priv = netdev_priv(ndev);
582 	const struct ravb_hw_info *info = priv->info;
583 
584 	info->emac_init(ndev);
585 }
586 
587 static int ravb_dmac_init_gbeth(struct net_device *ndev)
588 {
589 	int error;
590 
591 	error = ravb_ring_init(ndev, RAVB_BE);
592 	if (error)
593 		return error;
594 
595 	/* Descriptor format */
596 	ravb_ring_format(ndev, RAVB_BE);
597 
598 	/* Set DMAC RX */
599 	ravb_write(ndev, 0x60000000, RCR);
600 
601 	/* Set Max Frame Length (RTC) */
602 	ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
603 
604 	/* Set FIFO size */
605 	ravb_write(ndev, 0x00222200, TGC);
606 
607 	ravb_write(ndev, 0, TCCR);
608 
609 	/* Frame receive */
610 	ravb_write(ndev, RIC0_FRE0, RIC0);
611 	/* Disable FIFO full warning */
612 	ravb_write(ndev, 0x0, RIC1);
613 	/* Receive FIFO full error, descriptor empty */
614 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
615 
616 	ravb_write(ndev, TIC_FTE0, TIC);
617 
618 	return 0;
619 }
620 
621 static int ravb_dmac_init_rcar(struct net_device *ndev)
622 {
623 	struct ravb_private *priv = netdev_priv(ndev);
624 	const struct ravb_hw_info *info = priv->info;
625 	int error;
626 
627 	error = ravb_ring_init(ndev, RAVB_BE);
628 	if (error)
629 		return error;
630 	error = ravb_ring_init(ndev, RAVB_NC);
631 	if (error) {
632 		ravb_ring_free(ndev, RAVB_BE);
633 		return error;
634 	}
635 
636 	/* Descriptor format */
637 	ravb_ring_format(ndev, RAVB_BE);
638 	ravb_ring_format(ndev, RAVB_NC);
639 
640 	/* Set AVB RX */
641 	ravb_write(ndev,
642 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
643 
644 	/* Set FIFO size */
645 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
646 
647 	/* Timestamp enable */
648 	ravb_write(ndev, TCCR_TFEN, TCCR);
649 
650 	/* Interrupt init: */
651 	if (info->multi_irqs) {
652 		/* Clear DIL.DPLx */
653 		ravb_write(ndev, 0, DIL);
654 		/* Set queue specific interrupt */
655 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
656 	}
657 	/* Frame receive */
658 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
659 	/* Disable FIFO full warning */
660 	ravb_write(ndev, 0, RIC1);
661 	/* Receive FIFO full error, descriptor empty */
662 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
663 	/* Frame transmitted, timestamp FIFO updated */
664 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
665 
666 	return 0;
667 }
668 
669 /* Device init function for Ethernet AVB */
670 static int ravb_dmac_init(struct net_device *ndev)
671 {
672 	struct ravb_private *priv = netdev_priv(ndev);
673 	const struct ravb_hw_info *info = priv->info;
674 	int error;
675 
676 	/* Set CONFIG mode */
677 	error = ravb_config(ndev);
678 	if (error)
679 		return error;
680 
681 	error = info->dmac_init(ndev);
682 	if (error)
683 		return error;
684 
685 	/* Setting the control will start the AVB-DMAC process. */
686 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
687 
688 	return 0;
689 }
690 
691 static void ravb_get_tx_tstamp(struct net_device *ndev)
692 {
693 	struct ravb_private *priv = netdev_priv(ndev);
694 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
695 	struct skb_shared_hwtstamps shhwtstamps;
696 	struct sk_buff *skb;
697 	struct timespec64 ts;
698 	u16 tag, tfa_tag;
699 	int count;
700 	u32 tfa2;
701 
702 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
703 	while (count--) {
704 		tfa2 = ravb_read(ndev, TFA2);
705 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
706 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
707 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
708 			    ravb_read(ndev, TFA1);
709 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
710 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
711 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
712 					 list) {
713 			skb = ts_skb->skb;
714 			tag = ts_skb->tag;
715 			list_del(&ts_skb->list);
716 			kfree(ts_skb);
717 			if (tag == tfa_tag) {
718 				skb_tstamp_tx(skb, &shhwtstamps);
719 				dev_consume_skb_any(skb);
720 				break;
721 			} else {
722 				dev_kfree_skb_any(skb);
723 			}
724 		}
725 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
726 	}
727 }
728 
729 static void ravb_rx_csum(struct sk_buff *skb)
730 {
731 	u8 *hw_csum;
732 
733 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
734 	 * appended to packet data
735 	 */
736 	if (unlikely(skb->len < sizeof(__sum16)))
737 		return;
738 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
739 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
740 	skb->ip_summed = CHECKSUM_COMPLETE;
741 	skb_trim(skb, skb->len - sizeof(__sum16));
742 }
743 
744 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
745 					  struct ravb_rx_desc *desc)
746 {
747 	struct ravb_private *priv = netdev_priv(ndev);
748 	struct sk_buff *skb;
749 
750 	skb = priv->rx_skb[RAVB_BE][entry];
751 	priv->rx_skb[RAVB_BE][entry] = NULL;
752 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
753 			 ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
754 
755 	return skb;
756 }
757 
758 /* Packet receive function for Gigabit Ethernet */
759 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
760 {
761 	struct ravb_private *priv = netdev_priv(ndev);
762 	const struct ravb_hw_info *info = priv->info;
763 	struct net_device_stats *stats;
764 	struct ravb_rx_desc *desc;
765 	struct sk_buff *skb;
766 	dma_addr_t dma_addr;
767 	u8  desc_status;
768 	int boguscnt;
769 	u16 pkt_len;
770 	u8  die_dt;
771 	int entry;
772 	int limit;
773 
774 	entry = priv->cur_rx[q] % priv->num_rx_ring[q];
775 	boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
776 	stats = &priv->stats[q];
777 
778 	boguscnt = min(boguscnt, *quota);
779 	limit = boguscnt;
780 	desc = &priv->gbeth_rx_ring[entry];
781 	while (desc->die_dt != DT_FEMPTY) {
782 		/* Descriptor type must be checked before all other reads */
783 		dma_rmb();
784 		desc_status = desc->msc;
785 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
786 
787 		if (--boguscnt < 0)
788 			break;
789 
790 		/* We use 0-byte descriptors to mark the DMA mapping errors */
791 		if (!pkt_len)
792 			continue;
793 
794 		if (desc_status & MSC_MC)
795 			stats->multicast++;
796 
797 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
798 			stats->rx_errors++;
799 			if (desc_status & MSC_CRC)
800 				stats->rx_crc_errors++;
801 			if (desc_status & MSC_RFE)
802 				stats->rx_frame_errors++;
803 			if (desc_status & (MSC_RTLF | MSC_RTSF))
804 				stats->rx_length_errors++;
805 			if (desc_status & MSC_CEEF)
806 				stats->rx_missed_errors++;
807 		} else {
808 			die_dt = desc->die_dt & 0xF0;
809 			switch (die_dt) {
810 			case DT_FSINGLE:
811 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
812 				skb_put(skb, pkt_len);
813 				skb->protocol = eth_type_trans(skb, ndev);
814 				napi_gro_receive(&priv->napi[q], skb);
815 				stats->rx_packets++;
816 				stats->rx_bytes += pkt_len;
817 				break;
818 			case DT_FSTART:
819 				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
820 				skb_put(priv->rx_1st_skb, pkt_len);
821 				break;
822 			case DT_FMID:
823 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
824 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
825 							       priv->rx_1st_skb->len,
826 							       skb->data,
827 							       pkt_len);
828 				skb_put(priv->rx_1st_skb, pkt_len);
829 				dev_kfree_skb(skb);
830 				break;
831 			case DT_FEND:
832 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
833 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
834 							       priv->rx_1st_skb->len,
835 							       skb->data,
836 							       pkt_len);
837 				skb_put(priv->rx_1st_skb, pkt_len);
838 				dev_kfree_skb(skb);
839 				priv->rx_1st_skb->protocol =
840 					eth_type_trans(priv->rx_1st_skb, ndev);
841 				napi_gro_receive(&priv->napi[q],
842 						 priv->rx_1st_skb);
843 				stats->rx_packets++;
844 				stats->rx_bytes += pkt_len;
845 				break;
846 			}
847 		}
848 
849 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
850 		desc = &priv->gbeth_rx_ring[entry];
851 	}
852 
853 	/* Refill the RX ring buffers. */
854 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
855 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
856 		desc = &priv->gbeth_rx_ring[entry];
857 		desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
858 
859 		if (!priv->rx_skb[q][entry]) {
860 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
861 			if (!skb)
862 				break;
863 			ravb_set_buffer_align(skb);
864 			dma_addr = dma_map_single(ndev->dev.parent,
865 						  skb->data,
866 						  GBETH_RX_BUFF_MAX,
867 						  DMA_FROM_DEVICE);
868 			skb_checksum_none_assert(skb);
869 			/* We just set the data size to 0 for a failed mapping
870 			 * which should prevent DMA  from happening...
871 			 */
872 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
873 				desc->ds_cc = cpu_to_le16(0);
874 			desc->dptr = cpu_to_le32(dma_addr);
875 			priv->rx_skb[q][entry] = skb;
876 		}
877 		/* Descriptor type must be set after all the above writes */
878 		dma_wmb();
879 		desc->die_dt = DT_FEMPTY;
880 	}
881 
882 	*quota -= limit - (++boguscnt);
883 
884 	return boguscnt <= 0;
885 }
886 
887 /* Packet receive function for Ethernet AVB */
888 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
889 {
890 	struct ravb_private *priv = netdev_priv(ndev);
891 	const struct ravb_hw_info *info = priv->info;
892 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
893 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
894 			priv->cur_rx[q];
895 	struct net_device_stats *stats = &priv->stats[q];
896 	struct ravb_ex_rx_desc *desc;
897 	struct sk_buff *skb;
898 	dma_addr_t dma_addr;
899 	struct timespec64 ts;
900 	u8  desc_status;
901 	u16 pkt_len;
902 	int limit;
903 
904 	boguscnt = min(boguscnt, *quota);
905 	limit = boguscnt;
906 	desc = &priv->rx_ring[q][entry];
907 	while (desc->die_dt != DT_FEMPTY) {
908 		/* Descriptor type must be checked before all other reads */
909 		dma_rmb();
910 		desc_status = desc->msc;
911 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
912 
913 		if (--boguscnt < 0)
914 			break;
915 
916 		/* We use 0-byte descriptors to mark the DMA mapping errors */
917 		if (!pkt_len)
918 			continue;
919 
920 		if (desc_status & MSC_MC)
921 			stats->multicast++;
922 
923 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
924 				   MSC_CEEF)) {
925 			stats->rx_errors++;
926 			if (desc_status & MSC_CRC)
927 				stats->rx_crc_errors++;
928 			if (desc_status & MSC_RFE)
929 				stats->rx_frame_errors++;
930 			if (desc_status & (MSC_RTLF | MSC_RTSF))
931 				stats->rx_length_errors++;
932 			if (desc_status & MSC_CEEF)
933 				stats->rx_missed_errors++;
934 		} else {
935 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
936 
937 			skb = priv->rx_skb[q][entry];
938 			priv->rx_skb[q][entry] = NULL;
939 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
940 					 RX_BUF_SZ,
941 					 DMA_FROM_DEVICE);
942 			get_ts &= (q == RAVB_NC) ?
943 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
944 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
945 			if (get_ts) {
946 				struct skb_shared_hwtstamps *shhwtstamps;
947 
948 				shhwtstamps = skb_hwtstamps(skb);
949 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
950 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
951 					     32) | le32_to_cpu(desc->ts_sl);
952 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
953 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
954 			}
955 
956 			skb_put(skb, pkt_len);
957 			skb->protocol = eth_type_trans(skb, ndev);
958 			if (ndev->features & NETIF_F_RXCSUM)
959 				ravb_rx_csum(skb);
960 			napi_gro_receive(&priv->napi[q], skb);
961 			stats->rx_packets++;
962 			stats->rx_bytes += pkt_len;
963 		}
964 
965 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
966 		desc = &priv->rx_ring[q][entry];
967 	}
968 
969 	/* Refill the RX ring buffers. */
970 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
971 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
972 		desc = &priv->rx_ring[q][entry];
973 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
974 
975 		if (!priv->rx_skb[q][entry]) {
976 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
977 			if (!skb)
978 				break;	/* Better luck next round. */
979 			ravb_set_buffer_align(skb);
980 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
981 						  le16_to_cpu(desc->ds_cc),
982 						  DMA_FROM_DEVICE);
983 			skb_checksum_none_assert(skb);
984 			/* We just set the data size to 0 for a failed mapping
985 			 * which should prevent DMA  from happening...
986 			 */
987 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
988 				desc->ds_cc = cpu_to_le16(0);
989 			desc->dptr = cpu_to_le32(dma_addr);
990 			priv->rx_skb[q][entry] = skb;
991 		}
992 		/* Descriptor type must be set after all the above writes */
993 		dma_wmb();
994 		desc->die_dt = DT_FEMPTY;
995 	}
996 
997 	*quota -= limit - (++boguscnt);
998 
999 	return boguscnt <= 0;
1000 }
1001 
1002 /* Packet receive function for Ethernet AVB */
1003 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1004 {
1005 	struct ravb_private *priv = netdev_priv(ndev);
1006 	const struct ravb_hw_info *info = priv->info;
1007 
1008 	return info->receive(ndev, quota, q);
1009 }
1010 
1011 static void ravb_rcv_snd_disable(struct net_device *ndev)
1012 {
1013 	/* Disable TX and RX */
1014 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1015 }
1016 
1017 static void ravb_rcv_snd_enable(struct net_device *ndev)
1018 {
1019 	/* Enable TX and RX */
1020 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1021 }
1022 
1023 /* function for waiting dma process finished */
1024 static int ravb_stop_dma(struct net_device *ndev)
1025 {
1026 	struct ravb_private *priv = netdev_priv(ndev);
1027 	const struct ravb_hw_info *info = priv->info;
1028 	int error;
1029 
1030 	/* Wait for stopping the hardware TX process */
1031 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1032 
1033 	if (error)
1034 		return error;
1035 
1036 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1037 			  0);
1038 	if (error)
1039 		return error;
1040 
1041 	/* Stop the E-MAC's RX/TX processes. */
1042 	ravb_rcv_snd_disable(ndev);
1043 
1044 	/* Wait for stopping the RX DMA process */
1045 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1046 	if (error)
1047 		return error;
1048 
1049 	/* Stop AVB-DMAC process */
1050 	return ravb_config(ndev);
1051 }
1052 
1053 /* E-MAC interrupt handler */
1054 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1055 {
1056 	struct ravb_private *priv = netdev_priv(ndev);
1057 	u32 ecsr, psr;
1058 
1059 	ecsr = ravb_read(ndev, ECSR);
1060 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1061 
1062 	if (ecsr & ECSR_MPD)
1063 		pm_wakeup_event(&priv->pdev->dev, 0);
1064 	if (ecsr & ECSR_ICD)
1065 		ndev->stats.tx_carrier_errors++;
1066 	if (ecsr & ECSR_LCHNG) {
1067 		/* Link changed */
1068 		if (priv->no_avb_link)
1069 			return;
1070 		psr = ravb_read(ndev, PSR);
1071 		if (priv->avb_link_active_low)
1072 			psr ^= PSR_LMON;
1073 		if (!(psr & PSR_LMON)) {
1074 			/* DIsable RX and TX */
1075 			ravb_rcv_snd_disable(ndev);
1076 		} else {
1077 			/* Enable RX and TX */
1078 			ravb_rcv_snd_enable(ndev);
1079 		}
1080 	}
1081 }
1082 
1083 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1084 {
1085 	struct net_device *ndev = dev_id;
1086 	struct ravb_private *priv = netdev_priv(ndev);
1087 
1088 	spin_lock(&priv->lock);
1089 	ravb_emac_interrupt_unlocked(ndev);
1090 	spin_unlock(&priv->lock);
1091 	return IRQ_HANDLED;
1092 }
1093 
1094 /* Error interrupt handler */
1095 static void ravb_error_interrupt(struct net_device *ndev)
1096 {
1097 	struct ravb_private *priv = netdev_priv(ndev);
1098 	u32 eis, ris2;
1099 
1100 	eis = ravb_read(ndev, EIS);
1101 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1102 	if (eis & EIS_QFS) {
1103 		ris2 = ravb_read(ndev, RIS2);
1104 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
1105 			   RIS2);
1106 
1107 		/* Receive Descriptor Empty int */
1108 		if (ris2 & RIS2_QFF0)
1109 			priv->stats[RAVB_BE].rx_over_errors++;
1110 
1111 		    /* Receive Descriptor Empty int */
1112 		if (ris2 & RIS2_QFF1)
1113 			priv->stats[RAVB_NC].rx_over_errors++;
1114 
1115 		/* Receive FIFO Overflow int */
1116 		if (ris2 & RIS2_RFFF)
1117 			priv->rx_fifo_errors++;
1118 	}
1119 }
1120 
1121 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1122 {
1123 	struct ravb_private *priv = netdev_priv(ndev);
1124 	const struct ravb_hw_info *info = priv->info;
1125 	u32 ris0 = ravb_read(ndev, RIS0);
1126 	u32 ric0 = ravb_read(ndev, RIC0);
1127 	u32 tis  = ravb_read(ndev, TIS);
1128 	u32 tic  = ravb_read(ndev, TIC);
1129 
1130 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1131 		if (napi_schedule_prep(&priv->napi[q])) {
1132 			/* Mask RX and TX interrupts */
1133 			if (!info->irq_en_dis) {
1134 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1135 				ravb_write(ndev, tic & ~BIT(q), TIC);
1136 			} else {
1137 				ravb_write(ndev, BIT(q), RID0);
1138 				ravb_write(ndev, BIT(q), TID);
1139 			}
1140 			__napi_schedule(&priv->napi[q]);
1141 		} else {
1142 			netdev_warn(ndev,
1143 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1144 				    ris0, ric0);
1145 			netdev_warn(ndev,
1146 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1147 				    tis, tic);
1148 		}
1149 		return true;
1150 	}
1151 	return false;
1152 }
1153 
1154 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1155 {
1156 	u32 tis = ravb_read(ndev, TIS);
1157 
1158 	if (tis & TIS_TFUF) {
1159 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1160 		ravb_get_tx_tstamp(ndev);
1161 		return true;
1162 	}
1163 	return false;
1164 }
1165 
1166 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1167 {
1168 	struct net_device *ndev = dev_id;
1169 	struct ravb_private *priv = netdev_priv(ndev);
1170 	const struct ravb_hw_info *info = priv->info;
1171 	irqreturn_t result = IRQ_NONE;
1172 	u32 iss;
1173 
1174 	spin_lock(&priv->lock);
1175 	/* Get interrupt status */
1176 	iss = ravb_read(ndev, ISS);
1177 
1178 	/* Received and transmitted interrupts */
1179 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1180 		int q;
1181 
1182 		/* Timestamp updated */
1183 		if (ravb_timestamp_interrupt(ndev))
1184 			result = IRQ_HANDLED;
1185 
1186 		/* Network control and best effort queue RX/TX */
1187 		if (info->nc_queues) {
1188 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1189 				if (ravb_queue_interrupt(ndev, q))
1190 					result = IRQ_HANDLED;
1191 			}
1192 		} else {
1193 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1194 				result = IRQ_HANDLED;
1195 		}
1196 	}
1197 
1198 	/* E-MAC status summary */
1199 	if (iss & ISS_MS) {
1200 		ravb_emac_interrupt_unlocked(ndev);
1201 		result = IRQ_HANDLED;
1202 	}
1203 
1204 	/* Error status summary */
1205 	if (iss & ISS_ES) {
1206 		ravb_error_interrupt(ndev);
1207 		result = IRQ_HANDLED;
1208 	}
1209 
1210 	/* gPTP interrupt status summary */
1211 	if (iss & ISS_CGIS) {
1212 		ravb_ptp_interrupt(ndev);
1213 		result = IRQ_HANDLED;
1214 	}
1215 
1216 	spin_unlock(&priv->lock);
1217 	return result;
1218 }
1219 
1220 /* Timestamp/Error/gPTP interrupt handler */
1221 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1222 {
1223 	struct net_device *ndev = dev_id;
1224 	struct ravb_private *priv = netdev_priv(ndev);
1225 	irqreturn_t result = IRQ_NONE;
1226 	u32 iss;
1227 
1228 	spin_lock(&priv->lock);
1229 	/* Get interrupt status */
1230 	iss = ravb_read(ndev, ISS);
1231 
1232 	/* Timestamp updated */
1233 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1234 		result = IRQ_HANDLED;
1235 
1236 	/* Error status summary */
1237 	if (iss & ISS_ES) {
1238 		ravb_error_interrupt(ndev);
1239 		result = IRQ_HANDLED;
1240 	}
1241 
1242 	/* gPTP interrupt status summary */
1243 	if (iss & ISS_CGIS) {
1244 		ravb_ptp_interrupt(ndev);
1245 		result = IRQ_HANDLED;
1246 	}
1247 
1248 	spin_unlock(&priv->lock);
1249 	return result;
1250 }
1251 
1252 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1253 {
1254 	struct net_device *ndev = dev_id;
1255 	struct ravb_private *priv = netdev_priv(ndev);
1256 	irqreturn_t result = IRQ_NONE;
1257 
1258 	spin_lock(&priv->lock);
1259 
1260 	/* Network control/Best effort queue RX/TX */
1261 	if (ravb_queue_interrupt(ndev, q))
1262 		result = IRQ_HANDLED;
1263 
1264 	spin_unlock(&priv->lock);
1265 	return result;
1266 }
1267 
1268 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1269 {
1270 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1271 }
1272 
1273 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1274 {
1275 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1276 }
1277 
1278 static int ravb_poll(struct napi_struct *napi, int budget)
1279 {
1280 	struct net_device *ndev = napi->dev;
1281 	struct ravb_private *priv = netdev_priv(ndev);
1282 	const struct ravb_hw_info *info = priv->info;
1283 	bool gptp = info->gptp || info->ccc_gac;
1284 	struct ravb_rx_desc *desc;
1285 	unsigned long flags;
1286 	int q = napi - priv->napi;
1287 	int mask = BIT(q);
1288 	int quota = budget;
1289 	unsigned int entry;
1290 
1291 	if (!gptp) {
1292 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
1293 		desc = &priv->gbeth_rx_ring[entry];
1294 	}
1295 	/* Processing RX Descriptor Ring */
1296 	/* Clear RX interrupt */
1297 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1298 	if (gptp || desc->die_dt != DT_FEMPTY) {
1299 		if (ravb_rx(ndev, &quota, q))
1300 			goto out;
1301 	}
1302 
1303 	/* Processing TX Descriptor Ring */
1304 	spin_lock_irqsave(&priv->lock, flags);
1305 	/* Clear TX interrupt */
1306 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1307 	ravb_tx_free(ndev, q, true);
1308 	netif_wake_subqueue(ndev, q);
1309 	spin_unlock_irqrestore(&priv->lock, flags);
1310 
1311 	napi_complete(napi);
1312 
1313 	/* Re-enable RX/TX interrupts */
1314 	spin_lock_irqsave(&priv->lock, flags);
1315 	if (!info->irq_en_dis) {
1316 		ravb_modify(ndev, RIC0, mask, mask);
1317 		ravb_modify(ndev, TIC,  mask, mask);
1318 	} else {
1319 		ravb_write(ndev, mask, RIE0);
1320 		ravb_write(ndev, mask, TIE);
1321 	}
1322 	spin_unlock_irqrestore(&priv->lock, flags);
1323 
1324 	/* Receive error message handling */
1325 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1326 	if (info->nc_queues)
1327 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1328 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1329 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1330 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1331 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1332 out:
1333 	return budget - quota;
1334 }
1335 
1336 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1337 {
1338 	struct ravb_private *priv = netdev_priv(ndev);
1339 
1340 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1341 }
1342 
1343 /* PHY state control function */
1344 static void ravb_adjust_link(struct net_device *ndev)
1345 {
1346 	struct ravb_private *priv = netdev_priv(ndev);
1347 	const struct ravb_hw_info *info = priv->info;
1348 	struct phy_device *phydev = ndev->phydev;
1349 	bool new_state = false;
1350 	unsigned long flags;
1351 
1352 	spin_lock_irqsave(&priv->lock, flags);
1353 
1354 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1355 	if (priv->no_avb_link)
1356 		ravb_rcv_snd_disable(ndev);
1357 
1358 	if (phydev->link) {
1359 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1360 			new_state = true;
1361 			priv->duplex = phydev->duplex;
1362 			ravb_set_duplex_gbeth(ndev);
1363 		}
1364 
1365 		if (phydev->speed != priv->speed) {
1366 			new_state = true;
1367 			priv->speed = phydev->speed;
1368 			info->set_rate(ndev);
1369 		}
1370 		if (!priv->link) {
1371 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1372 			new_state = true;
1373 			priv->link = phydev->link;
1374 		}
1375 	} else if (priv->link) {
1376 		new_state = true;
1377 		priv->link = 0;
1378 		priv->speed = 0;
1379 		if (info->half_duplex)
1380 			priv->duplex = -1;
1381 	}
1382 
1383 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1384 	if (priv->no_avb_link && phydev->link)
1385 		ravb_rcv_snd_enable(ndev);
1386 
1387 	spin_unlock_irqrestore(&priv->lock, flags);
1388 
1389 	if (new_state && netif_msg_link(priv))
1390 		phy_print_status(phydev);
1391 }
1392 
1393 static const struct soc_device_attribute r8a7795es10[] = {
1394 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1395 	{ /* sentinel */ }
1396 };
1397 
1398 /* PHY init function */
1399 static int ravb_phy_init(struct net_device *ndev)
1400 {
1401 	struct device_node *np = ndev->dev.parent->of_node;
1402 	struct ravb_private *priv = netdev_priv(ndev);
1403 	const struct ravb_hw_info *info = priv->info;
1404 	struct phy_device *phydev;
1405 	struct device_node *pn;
1406 	phy_interface_t iface;
1407 	int err;
1408 
1409 	priv->link = 0;
1410 	priv->speed = 0;
1411 	priv->duplex = -1;
1412 
1413 	/* Try connecting to PHY */
1414 	pn = of_parse_phandle(np, "phy-handle", 0);
1415 	if (!pn) {
1416 		/* In the case of a fixed PHY, the DT node associated
1417 		 * to the PHY is the Ethernet MAC DT node.
1418 		 */
1419 		if (of_phy_is_fixed_link(np)) {
1420 			err = of_phy_register_fixed_link(np);
1421 			if (err)
1422 				return err;
1423 		}
1424 		pn = of_node_get(np);
1425 	}
1426 
1427 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1428 				     : priv->phy_interface;
1429 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1430 	of_node_put(pn);
1431 	if (!phydev) {
1432 		netdev_err(ndev, "failed to connect PHY\n");
1433 		err = -ENOENT;
1434 		goto err_deregister_fixed_link;
1435 	}
1436 
1437 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1438 	 * at this time.
1439 	 */
1440 	if (soc_device_match(r8a7795es10)) {
1441 		phy_set_max_speed(phydev, SPEED_100);
1442 
1443 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1444 	}
1445 
1446 	if (!info->half_duplex) {
1447 		/* 10BASE, Pause and Asym Pause is not supported */
1448 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1449 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1450 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1451 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1452 
1453 		/* Half Duplex is not supported */
1454 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1455 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1456 	}
1457 
1458 	/* Indicate that the MAC is responsible for managing PHY PM */
1459 	phydev->mac_managed_pm = true;
1460 	phy_attached_info(phydev);
1461 
1462 	return 0;
1463 
1464 err_deregister_fixed_link:
1465 	if (of_phy_is_fixed_link(np))
1466 		of_phy_deregister_fixed_link(np);
1467 
1468 	return err;
1469 }
1470 
1471 /* PHY control start function */
1472 static int ravb_phy_start(struct net_device *ndev)
1473 {
1474 	int error;
1475 
1476 	error = ravb_phy_init(ndev);
1477 	if (error)
1478 		return error;
1479 
1480 	phy_start(ndev->phydev);
1481 
1482 	return 0;
1483 }
1484 
1485 static u32 ravb_get_msglevel(struct net_device *ndev)
1486 {
1487 	struct ravb_private *priv = netdev_priv(ndev);
1488 
1489 	return priv->msg_enable;
1490 }
1491 
1492 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1493 {
1494 	struct ravb_private *priv = netdev_priv(ndev);
1495 
1496 	priv->msg_enable = value;
1497 }
1498 
1499 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1500 	"rx_queue_0_current",
1501 	"tx_queue_0_current",
1502 	"rx_queue_0_dirty",
1503 	"tx_queue_0_dirty",
1504 	"rx_queue_0_packets",
1505 	"tx_queue_0_packets",
1506 	"rx_queue_0_bytes",
1507 	"tx_queue_0_bytes",
1508 	"rx_queue_0_mcast_packets",
1509 	"rx_queue_0_errors",
1510 	"rx_queue_0_crc_errors",
1511 	"rx_queue_0_frame_errors",
1512 	"rx_queue_0_length_errors",
1513 	"rx_queue_0_csum_offload_errors",
1514 	"rx_queue_0_over_errors",
1515 };
1516 
1517 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1518 	"rx_queue_0_current",
1519 	"tx_queue_0_current",
1520 	"rx_queue_0_dirty",
1521 	"tx_queue_0_dirty",
1522 	"rx_queue_0_packets",
1523 	"tx_queue_0_packets",
1524 	"rx_queue_0_bytes",
1525 	"tx_queue_0_bytes",
1526 	"rx_queue_0_mcast_packets",
1527 	"rx_queue_0_errors",
1528 	"rx_queue_0_crc_errors",
1529 	"rx_queue_0_frame_errors",
1530 	"rx_queue_0_length_errors",
1531 	"rx_queue_0_missed_errors",
1532 	"rx_queue_0_over_errors",
1533 
1534 	"rx_queue_1_current",
1535 	"tx_queue_1_current",
1536 	"rx_queue_1_dirty",
1537 	"tx_queue_1_dirty",
1538 	"rx_queue_1_packets",
1539 	"tx_queue_1_packets",
1540 	"rx_queue_1_bytes",
1541 	"tx_queue_1_bytes",
1542 	"rx_queue_1_mcast_packets",
1543 	"rx_queue_1_errors",
1544 	"rx_queue_1_crc_errors",
1545 	"rx_queue_1_frame_errors",
1546 	"rx_queue_1_length_errors",
1547 	"rx_queue_1_missed_errors",
1548 	"rx_queue_1_over_errors",
1549 };
1550 
1551 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1552 {
1553 	struct ravb_private *priv = netdev_priv(netdev);
1554 	const struct ravb_hw_info *info = priv->info;
1555 
1556 	switch (sset) {
1557 	case ETH_SS_STATS:
1558 		return info->stats_len;
1559 	default:
1560 		return -EOPNOTSUPP;
1561 	}
1562 }
1563 
1564 static void ravb_get_ethtool_stats(struct net_device *ndev,
1565 				   struct ethtool_stats *estats, u64 *data)
1566 {
1567 	struct ravb_private *priv = netdev_priv(ndev);
1568 	const struct ravb_hw_info *info = priv->info;
1569 	int num_rx_q;
1570 	int i = 0;
1571 	int q;
1572 
1573 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1574 	/* Device-specific stats */
1575 	for (q = RAVB_BE; q < num_rx_q; q++) {
1576 		struct net_device_stats *stats = &priv->stats[q];
1577 
1578 		data[i++] = priv->cur_rx[q];
1579 		data[i++] = priv->cur_tx[q];
1580 		data[i++] = priv->dirty_rx[q];
1581 		data[i++] = priv->dirty_tx[q];
1582 		data[i++] = stats->rx_packets;
1583 		data[i++] = stats->tx_packets;
1584 		data[i++] = stats->rx_bytes;
1585 		data[i++] = stats->tx_bytes;
1586 		data[i++] = stats->multicast;
1587 		data[i++] = stats->rx_errors;
1588 		data[i++] = stats->rx_crc_errors;
1589 		data[i++] = stats->rx_frame_errors;
1590 		data[i++] = stats->rx_length_errors;
1591 		data[i++] = stats->rx_missed_errors;
1592 		data[i++] = stats->rx_over_errors;
1593 	}
1594 }
1595 
1596 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1597 {
1598 	struct ravb_private *priv = netdev_priv(ndev);
1599 	const struct ravb_hw_info *info = priv->info;
1600 
1601 	switch (stringset) {
1602 	case ETH_SS_STATS:
1603 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1604 		break;
1605 	}
1606 }
1607 
1608 static void ravb_get_ringparam(struct net_device *ndev,
1609 			       struct ethtool_ringparam *ring,
1610 			       struct kernel_ethtool_ringparam *kernel_ring,
1611 			       struct netlink_ext_ack *extack)
1612 {
1613 	struct ravb_private *priv = netdev_priv(ndev);
1614 
1615 	ring->rx_max_pending = BE_RX_RING_MAX;
1616 	ring->tx_max_pending = BE_TX_RING_MAX;
1617 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1618 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1619 }
1620 
1621 static int ravb_set_ringparam(struct net_device *ndev,
1622 			      struct ethtool_ringparam *ring,
1623 			      struct kernel_ethtool_ringparam *kernel_ring,
1624 			      struct netlink_ext_ack *extack)
1625 {
1626 	struct ravb_private *priv = netdev_priv(ndev);
1627 	const struct ravb_hw_info *info = priv->info;
1628 	int error;
1629 
1630 	if (ring->tx_pending > BE_TX_RING_MAX ||
1631 	    ring->rx_pending > BE_RX_RING_MAX ||
1632 	    ring->tx_pending < BE_TX_RING_MIN ||
1633 	    ring->rx_pending < BE_RX_RING_MIN)
1634 		return -EINVAL;
1635 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1636 		return -EINVAL;
1637 
1638 	if (netif_running(ndev)) {
1639 		netif_device_detach(ndev);
1640 		/* Stop PTP Clock driver */
1641 		if (info->gptp)
1642 			ravb_ptp_stop(ndev);
1643 		/* Wait for DMA stopping */
1644 		error = ravb_stop_dma(ndev);
1645 		if (error) {
1646 			netdev_err(ndev,
1647 				   "cannot set ringparam! Any AVB processes are still running?\n");
1648 			return error;
1649 		}
1650 		synchronize_irq(ndev->irq);
1651 
1652 		/* Free all the skb's in the RX queue and the DMA buffers. */
1653 		ravb_ring_free(ndev, RAVB_BE);
1654 		if (info->nc_queues)
1655 			ravb_ring_free(ndev, RAVB_NC);
1656 	}
1657 
1658 	/* Set new parameters */
1659 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1660 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1661 
1662 	if (netif_running(ndev)) {
1663 		error = ravb_dmac_init(ndev);
1664 		if (error) {
1665 			netdev_err(ndev,
1666 				   "%s: ravb_dmac_init() failed, error %d\n",
1667 				   __func__, error);
1668 			return error;
1669 		}
1670 
1671 		ravb_emac_init(ndev);
1672 
1673 		/* Initialise PTP Clock driver */
1674 		if (info->gptp)
1675 			ravb_ptp_init(ndev, priv->pdev);
1676 
1677 		netif_device_attach(ndev);
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 static int ravb_get_ts_info(struct net_device *ndev,
1684 			    struct ethtool_ts_info *info)
1685 {
1686 	struct ravb_private *priv = netdev_priv(ndev);
1687 	const struct ravb_hw_info *hw_info = priv->info;
1688 
1689 	info->so_timestamping =
1690 		SOF_TIMESTAMPING_TX_SOFTWARE |
1691 		SOF_TIMESTAMPING_RX_SOFTWARE |
1692 		SOF_TIMESTAMPING_SOFTWARE |
1693 		SOF_TIMESTAMPING_TX_HARDWARE |
1694 		SOF_TIMESTAMPING_RX_HARDWARE |
1695 		SOF_TIMESTAMPING_RAW_HARDWARE;
1696 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1697 	info->rx_filters =
1698 		(1 << HWTSTAMP_FILTER_NONE) |
1699 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1700 		(1 << HWTSTAMP_FILTER_ALL);
1701 	if (hw_info->gptp || hw_info->ccc_gac)
1702 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1703 
1704 	return 0;
1705 }
1706 
1707 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1708 {
1709 	struct ravb_private *priv = netdev_priv(ndev);
1710 
1711 	wol->supported = WAKE_MAGIC;
1712 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1713 }
1714 
1715 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1716 {
1717 	struct ravb_private *priv = netdev_priv(ndev);
1718 	const struct ravb_hw_info *info = priv->info;
1719 
1720 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1721 		return -EOPNOTSUPP;
1722 
1723 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1724 
1725 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1726 
1727 	return 0;
1728 }
1729 
1730 static const struct ethtool_ops ravb_ethtool_ops = {
1731 	.nway_reset		= phy_ethtool_nway_reset,
1732 	.get_msglevel		= ravb_get_msglevel,
1733 	.set_msglevel		= ravb_set_msglevel,
1734 	.get_link		= ethtool_op_get_link,
1735 	.get_strings		= ravb_get_strings,
1736 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1737 	.get_sset_count		= ravb_get_sset_count,
1738 	.get_ringparam		= ravb_get_ringparam,
1739 	.set_ringparam		= ravb_set_ringparam,
1740 	.get_ts_info		= ravb_get_ts_info,
1741 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1742 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1743 	.get_wol		= ravb_get_wol,
1744 	.set_wol		= ravb_set_wol,
1745 };
1746 
1747 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1748 				struct net_device *ndev, struct device *dev,
1749 				const char *ch)
1750 {
1751 	char *name;
1752 	int error;
1753 
1754 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1755 	if (!name)
1756 		return -ENOMEM;
1757 	error = request_irq(irq, handler, 0, name, ndev);
1758 	if (error)
1759 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1760 
1761 	return error;
1762 }
1763 
1764 /* Network device open function for Ethernet AVB */
1765 static int ravb_open(struct net_device *ndev)
1766 {
1767 	struct ravb_private *priv = netdev_priv(ndev);
1768 	const struct ravb_hw_info *info = priv->info;
1769 	struct platform_device *pdev = priv->pdev;
1770 	struct device *dev = &pdev->dev;
1771 	int error;
1772 
1773 	napi_enable(&priv->napi[RAVB_BE]);
1774 	if (info->nc_queues)
1775 		napi_enable(&priv->napi[RAVB_NC]);
1776 
1777 	if (!info->multi_irqs) {
1778 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1779 				    ndev->name, ndev);
1780 		if (error) {
1781 			netdev_err(ndev, "cannot request IRQ\n");
1782 			goto out_napi_off;
1783 		}
1784 	} else {
1785 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1786 				      dev, "ch22:multi");
1787 		if (error)
1788 			goto out_napi_off;
1789 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1790 				      dev, "ch24:emac");
1791 		if (error)
1792 			goto out_free_irq;
1793 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1794 				      ndev, dev, "ch0:rx_be");
1795 		if (error)
1796 			goto out_free_irq_emac;
1797 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1798 				      ndev, dev, "ch18:tx_be");
1799 		if (error)
1800 			goto out_free_irq_be_rx;
1801 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1802 				      ndev, dev, "ch1:rx_nc");
1803 		if (error)
1804 			goto out_free_irq_be_tx;
1805 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1806 				      ndev, dev, "ch19:tx_nc");
1807 		if (error)
1808 			goto out_free_irq_nc_rx;
1809 
1810 		if (info->err_mgmt_irqs) {
1811 			error = ravb_hook_irq(priv->erra_irq, ravb_multi_interrupt,
1812 					      ndev, dev, "err_a");
1813 			if (error)
1814 				goto out_free_irq_nc_tx;
1815 			error = ravb_hook_irq(priv->mgmta_irq, ravb_multi_interrupt,
1816 					      ndev, dev, "mgmt_a");
1817 			if (error)
1818 				goto out_free_irq_erra;
1819 		}
1820 	}
1821 
1822 	/* Device init */
1823 	error = ravb_dmac_init(ndev);
1824 	if (error)
1825 		goto out_free_irq_mgmta;
1826 	ravb_emac_init(ndev);
1827 
1828 	/* Initialise PTP Clock driver */
1829 	if (info->gptp)
1830 		ravb_ptp_init(ndev, priv->pdev);
1831 
1832 	netif_tx_start_all_queues(ndev);
1833 
1834 	/* PHY control start */
1835 	error = ravb_phy_start(ndev);
1836 	if (error)
1837 		goto out_ptp_stop;
1838 
1839 	return 0;
1840 
1841 out_ptp_stop:
1842 	/* Stop PTP Clock driver */
1843 	if (info->gptp)
1844 		ravb_ptp_stop(ndev);
1845 out_free_irq_mgmta:
1846 	if (!info->multi_irqs)
1847 		goto out_free_irq;
1848 	if (info->err_mgmt_irqs)
1849 		free_irq(priv->mgmta_irq, ndev);
1850 out_free_irq_erra:
1851 	if (info->err_mgmt_irqs)
1852 		free_irq(priv->erra_irq, ndev);
1853 out_free_irq_nc_tx:
1854 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1855 out_free_irq_nc_rx:
1856 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1857 out_free_irq_be_tx:
1858 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1859 out_free_irq_be_rx:
1860 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1861 out_free_irq_emac:
1862 	free_irq(priv->emac_irq, ndev);
1863 out_free_irq:
1864 	free_irq(ndev->irq, ndev);
1865 out_napi_off:
1866 	if (info->nc_queues)
1867 		napi_disable(&priv->napi[RAVB_NC]);
1868 	napi_disable(&priv->napi[RAVB_BE]);
1869 	return error;
1870 }
1871 
1872 /* Timeout function for Ethernet AVB */
1873 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1874 {
1875 	struct ravb_private *priv = netdev_priv(ndev);
1876 
1877 	netif_err(priv, tx_err, ndev,
1878 		  "transmit timed out, status %08x, resetting...\n",
1879 		  ravb_read(ndev, ISS));
1880 
1881 	/* tx_errors count up */
1882 	ndev->stats.tx_errors++;
1883 
1884 	schedule_work(&priv->work);
1885 }
1886 
1887 static void ravb_tx_timeout_work(struct work_struct *work)
1888 {
1889 	struct ravb_private *priv = container_of(work, struct ravb_private,
1890 						 work);
1891 	const struct ravb_hw_info *info = priv->info;
1892 	struct net_device *ndev = priv->ndev;
1893 	int error;
1894 
1895 	netif_tx_stop_all_queues(ndev);
1896 
1897 	/* Stop PTP Clock driver */
1898 	if (info->gptp)
1899 		ravb_ptp_stop(ndev);
1900 
1901 	/* Wait for DMA stopping */
1902 	if (ravb_stop_dma(ndev)) {
1903 		/* If ravb_stop_dma() fails, the hardware is still operating
1904 		 * for TX and/or RX. So, this should not call the following
1905 		 * functions because ravb_dmac_init() is possible to fail too.
1906 		 * Also, this should not retry ravb_stop_dma() again and again
1907 		 * here because it's possible to wait forever. So, this just
1908 		 * re-enables the TX and RX and skip the following
1909 		 * re-initialization procedure.
1910 		 */
1911 		ravb_rcv_snd_enable(ndev);
1912 		goto out;
1913 	}
1914 
1915 	ravb_ring_free(ndev, RAVB_BE);
1916 	if (info->nc_queues)
1917 		ravb_ring_free(ndev, RAVB_NC);
1918 
1919 	/* Device init */
1920 	error = ravb_dmac_init(ndev);
1921 	if (error) {
1922 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1923 		 * should return here to avoid re-enabling the TX and RX in
1924 		 * ravb_emac_init().
1925 		 */
1926 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1927 			   __func__, error);
1928 		return;
1929 	}
1930 	ravb_emac_init(ndev);
1931 
1932 out:
1933 	/* Initialise PTP Clock driver */
1934 	if (info->gptp)
1935 		ravb_ptp_init(ndev, priv->pdev);
1936 
1937 	netif_tx_start_all_queues(ndev);
1938 }
1939 
1940 /* Packet transmit function for Ethernet AVB */
1941 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1942 {
1943 	struct ravb_private *priv = netdev_priv(ndev);
1944 	const struct ravb_hw_info *info = priv->info;
1945 	unsigned int num_tx_desc = priv->num_tx_desc;
1946 	u16 q = skb_get_queue_mapping(skb);
1947 	struct ravb_tstamp_skb *ts_skb;
1948 	struct ravb_tx_desc *desc;
1949 	unsigned long flags;
1950 	u32 dma_addr;
1951 	void *buffer;
1952 	u32 entry;
1953 	u32 len;
1954 
1955 	spin_lock_irqsave(&priv->lock, flags);
1956 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1957 	    num_tx_desc) {
1958 		netif_err(priv, tx_queued, ndev,
1959 			  "still transmitting with the full ring!\n");
1960 		netif_stop_subqueue(ndev, q);
1961 		spin_unlock_irqrestore(&priv->lock, flags);
1962 		return NETDEV_TX_BUSY;
1963 	}
1964 
1965 	if (skb_put_padto(skb, ETH_ZLEN))
1966 		goto exit;
1967 
1968 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1969 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1970 
1971 	if (num_tx_desc > 1) {
1972 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1973 			 entry / num_tx_desc * DPTR_ALIGN;
1974 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1975 
1976 		/* Zero length DMA descriptors are problematic as they seem
1977 		 * to terminate DMA transfers. Avoid them by simply using a
1978 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1979 		 * DPTR_ALIGN.
1980 		 *
1981 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1982 		 * bytes of data by the call to skb_put_padto() above this
1983 		 * is safe with respect to both the length of the first DMA
1984 		 * descriptor (len) overflowing the available data and the
1985 		 * length of the second DMA descriptor (skb->len - len)
1986 		 * being negative.
1987 		 */
1988 		if (len == 0)
1989 			len = DPTR_ALIGN;
1990 
1991 		memcpy(buffer, skb->data, len);
1992 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1993 					  DMA_TO_DEVICE);
1994 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1995 			goto drop;
1996 
1997 		desc = &priv->tx_ring[q][entry];
1998 		desc->ds_tagl = cpu_to_le16(len);
1999 		desc->dptr = cpu_to_le32(dma_addr);
2000 
2001 		buffer = skb->data + len;
2002 		len = skb->len - len;
2003 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2004 					  DMA_TO_DEVICE);
2005 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2006 			goto unmap;
2007 
2008 		desc++;
2009 	} else {
2010 		desc = &priv->tx_ring[q][entry];
2011 		len = skb->len;
2012 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2013 					  DMA_TO_DEVICE);
2014 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2015 			goto drop;
2016 	}
2017 	desc->ds_tagl = cpu_to_le16(len);
2018 	desc->dptr = cpu_to_le32(dma_addr);
2019 
2020 	/* TX timestamp required */
2021 	if (info->gptp || info->ccc_gac) {
2022 		if (q == RAVB_NC) {
2023 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2024 			if (!ts_skb) {
2025 				if (num_tx_desc > 1) {
2026 					desc--;
2027 					dma_unmap_single(ndev->dev.parent, dma_addr,
2028 							 len, DMA_TO_DEVICE);
2029 				}
2030 				goto unmap;
2031 			}
2032 			ts_skb->skb = skb_get(skb);
2033 			ts_skb->tag = priv->ts_skb_tag++;
2034 			priv->ts_skb_tag &= 0x3ff;
2035 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2036 
2037 			/* TAG and timestamp required flag */
2038 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2039 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2040 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2041 		}
2042 
2043 		skb_tx_timestamp(skb);
2044 	}
2045 	/* Descriptor type must be set after all the above writes */
2046 	dma_wmb();
2047 	if (num_tx_desc > 1) {
2048 		desc->die_dt = DT_FEND;
2049 		desc--;
2050 		desc->die_dt = DT_FSTART;
2051 	} else {
2052 		desc->die_dt = DT_FSINGLE;
2053 	}
2054 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2055 
2056 	priv->cur_tx[q] += num_tx_desc;
2057 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2058 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2059 	    !ravb_tx_free(ndev, q, true))
2060 		netif_stop_subqueue(ndev, q);
2061 
2062 exit:
2063 	spin_unlock_irqrestore(&priv->lock, flags);
2064 	return NETDEV_TX_OK;
2065 
2066 unmap:
2067 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2068 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2069 drop:
2070 	dev_kfree_skb_any(skb);
2071 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2072 	goto exit;
2073 }
2074 
2075 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2076 			     struct net_device *sb_dev)
2077 {
2078 	/* If skb needs TX timestamp, it is handled in network control queue */
2079 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2080 							       RAVB_BE;
2081 
2082 }
2083 
2084 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2085 {
2086 	struct ravb_private *priv = netdev_priv(ndev);
2087 	const struct ravb_hw_info *info = priv->info;
2088 	struct net_device_stats *nstats, *stats0, *stats1;
2089 
2090 	nstats = &ndev->stats;
2091 	stats0 = &priv->stats[RAVB_BE];
2092 
2093 	if (info->tx_counters) {
2094 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2095 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2096 	}
2097 
2098 	if (info->carrier_counters) {
2099 		nstats->collisions += ravb_read(ndev, CXR41);
2100 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2101 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2102 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2103 	}
2104 
2105 	nstats->rx_packets = stats0->rx_packets;
2106 	nstats->tx_packets = stats0->tx_packets;
2107 	nstats->rx_bytes = stats0->rx_bytes;
2108 	nstats->tx_bytes = stats0->tx_bytes;
2109 	nstats->multicast = stats0->multicast;
2110 	nstats->rx_errors = stats0->rx_errors;
2111 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2112 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2113 	nstats->rx_length_errors = stats0->rx_length_errors;
2114 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2115 	nstats->rx_over_errors = stats0->rx_over_errors;
2116 	if (info->nc_queues) {
2117 		stats1 = &priv->stats[RAVB_NC];
2118 
2119 		nstats->rx_packets += stats1->rx_packets;
2120 		nstats->tx_packets += stats1->tx_packets;
2121 		nstats->rx_bytes += stats1->rx_bytes;
2122 		nstats->tx_bytes += stats1->tx_bytes;
2123 		nstats->multicast += stats1->multicast;
2124 		nstats->rx_errors += stats1->rx_errors;
2125 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2126 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2127 		nstats->rx_length_errors += stats1->rx_length_errors;
2128 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2129 		nstats->rx_over_errors += stats1->rx_over_errors;
2130 	}
2131 
2132 	return nstats;
2133 }
2134 
2135 /* Update promiscuous bit */
2136 static void ravb_set_rx_mode(struct net_device *ndev)
2137 {
2138 	struct ravb_private *priv = netdev_priv(ndev);
2139 	unsigned long flags;
2140 
2141 	spin_lock_irqsave(&priv->lock, flags);
2142 	ravb_modify(ndev, ECMR, ECMR_PRM,
2143 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2144 	spin_unlock_irqrestore(&priv->lock, flags);
2145 }
2146 
2147 /* Device close function for Ethernet AVB */
2148 static int ravb_close(struct net_device *ndev)
2149 {
2150 	struct device_node *np = ndev->dev.parent->of_node;
2151 	struct ravb_private *priv = netdev_priv(ndev);
2152 	const struct ravb_hw_info *info = priv->info;
2153 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2154 
2155 	netif_tx_stop_all_queues(ndev);
2156 
2157 	/* Disable interrupts by clearing the interrupt masks. */
2158 	ravb_write(ndev, 0, RIC0);
2159 	ravb_write(ndev, 0, RIC2);
2160 	ravb_write(ndev, 0, TIC);
2161 
2162 	/* Stop PTP Clock driver */
2163 	if (info->gptp)
2164 		ravb_ptp_stop(ndev);
2165 
2166 	/* Set the config mode to stop the AVB-DMAC's processes */
2167 	if (ravb_stop_dma(ndev) < 0)
2168 		netdev_err(ndev,
2169 			   "device will be stopped after h/w processes are done.\n");
2170 
2171 	/* Clear the timestamp list */
2172 	if (info->gptp || info->ccc_gac) {
2173 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2174 			list_del(&ts_skb->list);
2175 			kfree_skb(ts_skb->skb);
2176 			kfree(ts_skb);
2177 		}
2178 	}
2179 
2180 	/* PHY disconnect */
2181 	if (ndev->phydev) {
2182 		phy_stop(ndev->phydev);
2183 		phy_disconnect(ndev->phydev);
2184 		if (of_phy_is_fixed_link(np))
2185 			of_phy_deregister_fixed_link(np);
2186 	}
2187 
2188 	if (info->multi_irqs) {
2189 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
2190 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
2191 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
2192 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
2193 		free_irq(priv->emac_irq, ndev);
2194 		if (info->err_mgmt_irqs) {
2195 			free_irq(priv->erra_irq, ndev);
2196 			free_irq(priv->mgmta_irq, ndev);
2197 		}
2198 	}
2199 	free_irq(ndev->irq, ndev);
2200 
2201 	if (info->nc_queues)
2202 		napi_disable(&priv->napi[RAVB_NC]);
2203 	napi_disable(&priv->napi[RAVB_BE]);
2204 
2205 	/* Free all the skb's in the RX queue and the DMA buffers. */
2206 	ravb_ring_free(ndev, RAVB_BE);
2207 	if (info->nc_queues)
2208 		ravb_ring_free(ndev, RAVB_NC);
2209 
2210 	return 0;
2211 }
2212 
2213 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2214 {
2215 	struct ravb_private *priv = netdev_priv(ndev);
2216 	struct hwtstamp_config config;
2217 
2218 	config.flags = 0;
2219 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2220 						HWTSTAMP_TX_OFF;
2221 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2222 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2223 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2224 		break;
2225 	case RAVB_RXTSTAMP_TYPE_ALL:
2226 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2227 		break;
2228 	default:
2229 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2230 	}
2231 
2232 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2233 		-EFAULT : 0;
2234 }
2235 
2236 /* Control hardware time stamping */
2237 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2238 {
2239 	struct ravb_private *priv = netdev_priv(ndev);
2240 	struct hwtstamp_config config;
2241 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2242 	u32 tstamp_tx_ctrl;
2243 
2244 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2245 		return -EFAULT;
2246 
2247 	switch (config.tx_type) {
2248 	case HWTSTAMP_TX_OFF:
2249 		tstamp_tx_ctrl = 0;
2250 		break;
2251 	case HWTSTAMP_TX_ON:
2252 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2253 		break;
2254 	default:
2255 		return -ERANGE;
2256 	}
2257 
2258 	switch (config.rx_filter) {
2259 	case HWTSTAMP_FILTER_NONE:
2260 		tstamp_rx_ctrl = 0;
2261 		break;
2262 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2263 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2264 		break;
2265 	default:
2266 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2267 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2268 	}
2269 
2270 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2271 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2272 
2273 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2274 		-EFAULT : 0;
2275 }
2276 
2277 /* ioctl to device function */
2278 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2279 {
2280 	struct phy_device *phydev = ndev->phydev;
2281 
2282 	if (!netif_running(ndev))
2283 		return -EINVAL;
2284 
2285 	if (!phydev)
2286 		return -ENODEV;
2287 
2288 	switch (cmd) {
2289 	case SIOCGHWTSTAMP:
2290 		return ravb_hwtstamp_get(ndev, req);
2291 	case SIOCSHWTSTAMP:
2292 		return ravb_hwtstamp_set(ndev, req);
2293 	}
2294 
2295 	return phy_mii_ioctl(phydev, req, cmd);
2296 }
2297 
2298 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2299 {
2300 	struct ravb_private *priv = netdev_priv(ndev);
2301 
2302 	ndev->mtu = new_mtu;
2303 
2304 	if (netif_running(ndev)) {
2305 		synchronize_irq(priv->emac_irq);
2306 		ravb_emac_init(ndev);
2307 	}
2308 
2309 	netdev_update_features(ndev);
2310 
2311 	return 0;
2312 }
2313 
2314 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2315 {
2316 	struct ravb_private *priv = netdev_priv(ndev);
2317 	unsigned long flags;
2318 
2319 	spin_lock_irqsave(&priv->lock, flags);
2320 
2321 	/* Disable TX and RX */
2322 	ravb_rcv_snd_disable(ndev);
2323 
2324 	/* Modify RX Checksum setting */
2325 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2326 
2327 	/* Enable TX and RX */
2328 	ravb_rcv_snd_enable(ndev);
2329 
2330 	spin_unlock_irqrestore(&priv->lock, flags);
2331 }
2332 
2333 static int ravb_set_features_gbeth(struct net_device *ndev,
2334 				   netdev_features_t features)
2335 {
2336 	/* Place holder */
2337 	return 0;
2338 }
2339 
2340 static int ravb_set_features_rcar(struct net_device *ndev,
2341 				  netdev_features_t features)
2342 {
2343 	netdev_features_t changed = ndev->features ^ features;
2344 
2345 	if (changed & NETIF_F_RXCSUM)
2346 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2347 
2348 	ndev->features = features;
2349 
2350 	return 0;
2351 }
2352 
2353 static int ravb_set_features(struct net_device *ndev,
2354 			     netdev_features_t features)
2355 {
2356 	struct ravb_private *priv = netdev_priv(ndev);
2357 	const struct ravb_hw_info *info = priv->info;
2358 
2359 	return info->set_feature(ndev, features);
2360 }
2361 
2362 static const struct net_device_ops ravb_netdev_ops = {
2363 	.ndo_open		= ravb_open,
2364 	.ndo_stop		= ravb_close,
2365 	.ndo_start_xmit		= ravb_start_xmit,
2366 	.ndo_select_queue	= ravb_select_queue,
2367 	.ndo_get_stats		= ravb_get_stats,
2368 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2369 	.ndo_tx_timeout		= ravb_tx_timeout,
2370 	.ndo_eth_ioctl		= ravb_do_ioctl,
2371 	.ndo_change_mtu		= ravb_change_mtu,
2372 	.ndo_validate_addr	= eth_validate_addr,
2373 	.ndo_set_mac_address	= eth_mac_addr,
2374 	.ndo_set_features	= ravb_set_features,
2375 };
2376 
2377 /* MDIO bus init function */
2378 static int ravb_mdio_init(struct ravb_private *priv)
2379 {
2380 	struct platform_device *pdev = priv->pdev;
2381 	struct device *dev = &pdev->dev;
2382 	int error;
2383 
2384 	/* Bitbang init */
2385 	priv->mdiobb.ops = &bb_ops;
2386 
2387 	/* MII controller setting */
2388 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2389 	if (!priv->mii_bus)
2390 		return -ENOMEM;
2391 
2392 	/* Hook up MII support for ethtool */
2393 	priv->mii_bus->name = "ravb_mii";
2394 	priv->mii_bus->parent = dev;
2395 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2396 		 pdev->name, pdev->id);
2397 
2398 	/* Register MDIO bus */
2399 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2400 	if (error)
2401 		goto out_free_bus;
2402 
2403 	return 0;
2404 
2405 out_free_bus:
2406 	free_mdio_bitbang(priv->mii_bus);
2407 	return error;
2408 }
2409 
2410 /* MDIO bus release function */
2411 static int ravb_mdio_release(struct ravb_private *priv)
2412 {
2413 	/* Unregister mdio bus */
2414 	mdiobus_unregister(priv->mii_bus);
2415 
2416 	/* Free bitbang info */
2417 	free_mdio_bitbang(priv->mii_bus);
2418 
2419 	return 0;
2420 }
2421 
2422 static const struct ravb_hw_info ravb_gen3_hw_info = {
2423 	.rx_ring_free = ravb_rx_ring_free_rcar,
2424 	.rx_ring_format = ravb_rx_ring_format_rcar,
2425 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2426 	.receive = ravb_rx_rcar,
2427 	.set_rate = ravb_set_rate_rcar,
2428 	.set_feature = ravb_set_features_rcar,
2429 	.dmac_init = ravb_dmac_init_rcar,
2430 	.emac_init = ravb_emac_init_rcar,
2431 	.gstrings_stats = ravb_gstrings_stats,
2432 	.gstrings_size = sizeof(ravb_gstrings_stats),
2433 	.net_hw_features = NETIF_F_RXCSUM,
2434 	.net_features = NETIF_F_RXCSUM,
2435 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2436 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2437 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2438 	.rx_max_buf_size = SZ_2K,
2439 	.internal_delay = 1,
2440 	.tx_counters = 1,
2441 	.multi_irqs = 1,
2442 	.irq_en_dis = 1,
2443 	.ccc_gac = 1,
2444 	.nc_queues = 1,
2445 	.magic_pkt = 1,
2446 };
2447 
2448 static const struct ravb_hw_info ravb_gen2_hw_info = {
2449 	.rx_ring_free = ravb_rx_ring_free_rcar,
2450 	.rx_ring_format = ravb_rx_ring_format_rcar,
2451 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2452 	.receive = ravb_rx_rcar,
2453 	.set_rate = ravb_set_rate_rcar,
2454 	.set_feature = ravb_set_features_rcar,
2455 	.dmac_init = ravb_dmac_init_rcar,
2456 	.emac_init = ravb_emac_init_rcar,
2457 	.gstrings_stats = ravb_gstrings_stats,
2458 	.gstrings_size = sizeof(ravb_gstrings_stats),
2459 	.net_hw_features = NETIF_F_RXCSUM,
2460 	.net_features = NETIF_F_RXCSUM,
2461 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2462 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2463 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2464 	.rx_max_buf_size = SZ_2K,
2465 	.aligned_tx = 1,
2466 	.gptp = 1,
2467 	.nc_queues = 1,
2468 	.magic_pkt = 1,
2469 };
2470 
2471 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2472 	.rx_ring_free = ravb_rx_ring_free_rcar,
2473 	.rx_ring_format = ravb_rx_ring_format_rcar,
2474 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2475 	.receive = ravb_rx_rcar,
2476 	.set_rate = ravb_set_rate_rcar,
2477 	.set_feature = ravb_set_features_rcar,
2478 	.dmac_init = ravb_dmac_init_rcar,
2479 	.emac_init = ravb_emac_init_rcar,
2480 	.gstrings_stats = ravb_gstrings_stats,
2481 	.gstrings_size = sizeof(ravb_gstrings_stats),
2482 	.net_hw_features = NETIF_F_RXCSUM,
2483 	.net_features = NETIF_F_RXCSUM,
2484 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2485 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2486 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2487 	.rx_max_buf_size = SZ_2K,
2488 	.multi_irqs = 1,
2489 	.err_mgmt_irqs = 1,
2490 	.gptp = 1,
2491 	.gptp_ref_clk = 1,
2492 	.nc_queues = 1,
2493 	.magic_pkt = 1,
2494 };
2495 
2496 static const struct ravb_hw_info gbeth_hw_info = {
2497 	.rx_ring_free = ravb_rx_ring_free_gbeth,
2498 	.rx_ring_format = ravb_rx_ring_format_gbeth,
2499 	.alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
2500 	.receive = ravb_rx_gbeth,
2501 	.set_rate = ravb_set_rate_gbeth,
2502 	.set_feature = ravb_set_features_gbeth,
2503 	.dmac_init = ravb_dmac_init_gbeth,
2504 	.emac_init = ravb_emac_init_gbeth,
2505 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2506 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2507 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2508 	.max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
2509 	.tccr_mask = TCCR_TSRQ0,
2510 	.rx_max_buf_size = SZ_8K,
2511 	.aligned_tx = 1,
2512 	.tx_counters = 1,
2513 	.carrier_counters = 1,
2514 	.half_duplex = 1,
2515 };
2516 
2517 static const struct of_device_id ravb_match_table[] = {
2518 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2519 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2520 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2521 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2522 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2523 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2524 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2525 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2526 	{ }
2527 };
2528 MODULE_DEVICE_TABLE(of, ravb_match_table);
2529 
2530 static int ravb_set_gti(struct net_device *ndev)
2531 {
2532 	struct ravb_private *priv = netdev_priv(ndev);
2533 	const struct ravb_hw_info *info = priv->info;
2534 	struct device *dev = ndev->dev.parent;
2535 	unsigned long rate;
2536 	uint64_t inc;
2537 
2538 	if (info->gptp_ref_clk)
2539 		rate = clk_get_rate(priv->gptp_clk);
2540 	else
2541 		rate = clk_get_rate(priv->clk);
2542 	if (!rate)
2543 		return -EINVAL;
2544 
2545 	inc = div64_ul(1000000000ULL << 20, rate);
2546 
2547 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
2548 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
2549 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
2550 		return -EINVAL;
2551 	}
2552 
2553 	ravb_write(ndev, inc, GTI);
2554 
2555 	return 0;
2556 }
2557 
2558 static void ravb_set_config_mode(struct net_device *ndev)
2559 {
2560 	struct ravb_private *priv = netdev_priv(ndev);
2561 	const struct ravb_hw_info *info = priv->info;
2562 
2563 	if (info->gptp) {
2564 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2565 		/* Set CSEL value */
2566 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2567 	} else if (info->ccc_gac) {
2568 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
2569 			    CCC_GAC | CCC_CSEL_HPB);
2570 	} else {
2571 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2572 	}
2573 }
2574 
2575 /* Set tx and rx clock internal delay modes */
2576 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
2577 {
2578 	struct ravb_private *priv = netdev_priv(ndev);
2579 	bool explicit_delay = false;
2580 	u32 delay;
2581 
2582 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2583 		/* Valid values are 0 and 1800, according to DT bindings */
2584 		priv->rxcidm = !!delay;
2585 		explicit_delay = true;
2586 	}
2587 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2588 		/* Valid values are 0 and 2000, according to DT bindings */
2589 		priv->txcidm = !!delay;
2590 		explicit_delay = true;
2591 	}
2592 
2593 	if (explicit_delay)
2594 		return;
2595 
2596 	/* Fall back to legacy rgmii-*id behavior */
2597 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2598 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2599 		priv->rxcidm = 1;
2600 		priv->rgmii_override = 1;
2601 	}
2602 
2603 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2604 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2605 		priv->txcidm = 1;
2606 		priv->rgmii_override = 1;
2607 	}
2608 }
2609 
2610 static void ravb_set_delay_mode(struct net_device *ndev)
2611 {
2612 	struct ravb_private *priv = netdev_priv(ndev);
2613 	u32 set = 0;
2614 
2615 	if (priv->rxcidm)
2616 		set |= APSR_RDM;
2617 	if (priv->txcidm)
2618 		set |= APSR_TDM;
2619 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2620 }
2621 
2622 static int ravb_probe(struct platform_device *pdev)
2623 {
2624 	struct device_node *np = pdev->dev.of_node;
2625 	const struct ravb_hw_info *info;
2626 	struct reset_control *rstc;
2627 	struct ravb_private *priv;
2628 	struct net_device *ndev;
2629 	int error, irq, q;
2630 	struct resource *res;
2631 	int i;
2632 
2633 	if (!np) {
2634 		dev_err(&pdev->dev,
2635 			"this driver is required to be instantiated from device tree\n");
2636 		return -EINVAL;
2637 	}
2638 
2639 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2640 	if (IS_ERR(rstc))
2641 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2642 				     "failed to get cpg reset\n");
2643 
2644 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2645 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2646 	if (!ndev)
2647 		return -ENOMEM;
2648 
2649 	info = of_device_get_match_data(&pdev->dev);
2650 
2651 	ndev->features = info->net_features;
2652 	ndev->hw_features = info->net_hw_features;
2653 
2654 	reset_control_deassert(rstc);
2655 	pm_runtime_enable(&pdev->dev);
2656 	pm_runtime_get_sync(&pdev->dev);
2657 
2658 	if (info->multi_irqs) {
2659 		if (info->err_mgmt_irqs)
2660 			irq = platform_get_irq_byname(pdev, "dia");
2661 		else
2662 			irq = platform_get_irq_byname(pdev, "ch22");
2663 	} else {
2664 		irq = platform_get_irq(pdev, 0);
2665 	}
2666 	if (irq < 0) {
2667 		error = irq;
2668 		goto out_release;
2669 	}
2670 	ndev->irq = irq;
2671 
2672 	SET_NETDEV_DEV(ndev, &pdev->dev);
2673 
2674 	priv = netdev_priv(ndev);
2675 	priv->info = info;
2676 	priv->rstc = rstc;
2677 	priv->ndev = ndev;
2678 	priv->pdev = pdev;
2679 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2680 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2681 	if (info->nc_queues) {
2682 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2683 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2684 	}
2685 
2686 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2687 	if (IS_ERR(priv->addr)) {
2688 		error = PTR_ERR(priv->addr);
2689 		goto out_release;
2690 	}
2691 
2692 	/* The Ether-specific entries in the device structure. */
2693 	ndev->base_addr = res->start;
2694 
2695 	spin_lock_init(&priv->lock);
2696 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2697 
2698 	error = of_get_phy_mode(np, &priv->phy_interface);
2699 	if (error && error != -ENODEV)
2700 		goto out_release;
2701 
2702 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2703 	priv->avb_link_active_low =
2704 		of_property_read_bool(np, "renesas,ether-link-active-low");
2705 
2706 	if (info->multi_irqs) {
2707 		if (info->err_mgmt_irqs)
2708 			irq = platform_get_irq_byname(pdev, "line3");
2709 		else
2710 			irq = platform_get_irq_byname(pdev, "ch24");
2711 		if (irq < 0) {
2712 			error = irq;
2713 			goto out_release;
2714 		}
2715 		priv->emac_irq = irq;
2716 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2717 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2718 			if (irq < 0) {
2719 				error = irq;
2720 				goto out_release;
2721 			}
2722 			priv->rx_irqs[i] = irq;
2723 		}
2724 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2725 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2726 			if (irq < 0) {
2727 				error = irq;
2728 				goto out_release;
2729 			}
2730 			priv->tx_irqs[i] = irq;
2731 		}
2732 
2733 		if (info->err_mgmt_irqs) {
2734 			irq = platform_get_irq_byname(pdev, "err_a");
2735 			if (irq < 0) {
2736 				error = irq;
2737 				goto out_release;
2738 			}
2739 			priv->erra_irq = irq;
2740 
2741 			irq = platform_get_irq_byname(pdev, "mgmt_a");
2742 			if (irq < 0) {
2743 				error = irq;
2744 				goto out_release;
2745 			}
2746 			priv->mgmta_irq = irq;
2747 		}
2748 	}
2749 
2750 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2751 	if (IS_ERR(priv->clk)) {
2752 		error = PTR_ERR(priv->clk);
2753 		goto out_release;
2754 	}
2755 
2756 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2757 	if (IS_ERR(priv->refclk)) {
2758 		error = PTR_ERR(priv->refclk);
2759 		goto out_release;
2760 	}
2761 	clk_prepare_enable(priv->refclk);
2762 
2763 	if (info->gptp_ref_clk) {
2764 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2765 		if (IS_ERR(priv->gptp_clk)) {
2766 			error = PTR_ERR(priv->gptp_clk);
2767 			goto out_disable_refclk;
2768 		}
2769 		clk_prepare_enable(priv->gptp_clk);
2770 	}
2771 
2772 	ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2773 	ndev->min_mtu = ETH_MIN_MTU;
2774 
2775 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2776 	 * Use two descriptor to handle such situation. First descriptor to
2777 	 * handle aligned data buffer and second descriptor to handle the
2778 	 * overflow data because of alignment.
2779 	 */
2780 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2781 
2782 	/* Set function */
2783 	ndev->netdev_ops = &ravb_netdev_ops;
2784 	ndev->ethtool_ops = &ravb_ethtool_ops;
2785 
2786 	/* Set AVB config mode */
2787 	ravb_set_config_mode(ndev);
2788 
2789 	if (info->gptp || info->ccc_gac) {
2790 		/* Set GTI value */
2791 		error = ravb_set_gti(ndev);
2792 		if (error)
2793 			goto out_disable_gptp_clk;
2794 
2795 		/* Request GTI loading */
2796 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2797 	}
2798 
2799 	if (info->internal_delay) {
2800 		ravb_parse_delay_mode(np, ndev);
2801 		ravb_set_delay_mode(ndev);
2802 	}
2803 
2804 	/* Allocate descriptor base address table */
2805 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2806 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2807 					    &priv->desc_bat_dma, GFP_KERNEL);
2808 	if (!priv->desc_bat) {
2809 		dev_err(&pdev->dev,
2810 			"Cannot allocate desc base address table (size %d bytes)\n",
2811 			priv->desc_bat_size);
2812 		error = -ENOMEM;
2813 		goto out_disable_gptp_clk;
2814 	}
2815 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2816 		priv->desc_bat[q].die_dt = DT_EOS;
2817 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2818 
2819 	/* Initialise HW timestamp list */
2820 	INIT_LIST_HEAD(&priv->ts_skb_list);
2821 
2822 	/* Initialise PTP Clock driver */
2823 	if (info->ccc_gac)
2824 		ravb_ptp_init(ndev, pdev);
2825 
2826 	/* Debug message level */
2827 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2828 
2829 	/* Read and set MAC address */
2830 	ravb_read_mac_address(np, ndev);
2831 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2832 		dev_warn(&pdev->dev,
2833 			 "no valid MAC address supplied, using a random one\n");
2834 		eth_hw_addr_random(ndev);
2835 	}
2836 
2837 	/* MDIO bus init */
2838 	error = ravb_mdio_init(priv);
2839 	if (error) {
2840 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2841 		goto out_dma_free;
2842 	}
2843 
2844 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
2845 	if (info->nc_queues)
2846 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
2847 
2848 	/* Network device register */
2849 	error = register_netdev(ndev);
2850 	if (error)
2851 		goto out_napi_del;
2852 
2853 	device_set_wakeup_capable(&pdev->dev, 1);
2854 
2855 	/* Print device information */
2856 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2857 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2858 
2859 	platform_set_drvdata(pdev, ndev);
2860 
2861 	return 0;
2862 
2863 out_napi_del:
2864 	if (info->nc_queues)
2865 		netif_napi_del(&priv->napi[RAVB_NC]);
2866 
2867 	netif_napi_del(&priv->napi[RAVB_BE]);
2868 	ravb_mdio_release(priv);
2869 out_dma_free:
2870 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2871 			  priv->desc_bat_dma);
2872 
2873 	/* Stop PTP Clock driver */
2874 	if (info->ccc_gac)
2875 		ravb_ptp_stop(ndev);
2876 out_disable_gptp_clk:
2877 	clk_disable_unprepare(priv->gptp_clk);
2878 out_disable_refclk:
2879 	clk_disable_unprepare(priv->refclk);
2880 out_release:
2881 	free_netdev(ndev);
2882 
2883 	pm_runtime_put(&pdev->dev);
2884 	pm_runtime_disable(&pdev->dev);
2885 	reset_control_assert(rstc);
2886 	return error;
2887 }
2888 
2889 static int ravb_remove(struct platform_device *pdev)
2890 {
2891 	struct net_device *ndev = platform_get_drvdata(pdev);
2892 	struct ravb_private *priv = netdev_priv(ndev);
2893 	const struct ravb_hw_info *info = priv->info;
2894 
2895 	/* Stop PTP Clock driver */
2896 	if (info->ccc_gac)
2897 		ravb_ptp_stop(ndev);
2898 
2899 	clk_disable_unprepare(priv->gptp_clk);
2900 	clk_disable_unprepare(priv->refclk);
2901 
2902 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2903 			  priv->desc_bat_dma);
2904 	/* Set reset mode */
2905 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2906 	unregister_netdev(ndev);
2907 	if (info->nc_queues)
2908 		netif_napi_del(&priv->napi[RAVB_NC]);
2909 	netif_napi_del(&priv->napi[RAVB_BE]);
2910 	ravb_mdio_release(priv);
2911 	pm_runtime_put_sync(&pdev->dev);
2912 	pm_runtime_disable(&pdev->dev);
2913 	reset_control_assert(priv->rstc);
2914 	free_netdev(ndev);
2915 	platform_set_drvdata(pdev, NULL);
2916 
2917 	return 0;
2918 }
2919 
2920 static int ravb_wol_setup(struct net_device *ndev)
2921 {
2922 	struct ravb_private *priv = netdev_priv(ndev);
2923 	const struct ravb_hw_info *info = priv->info;
2924 
2925 	/* Disable interrupts by clearing the interrupt masks. */
2926 	ravb_write(ndev, 0, RIC0);
2927 	ravb_write(ndev, 0, RIC2);
2928 	ravb_write(ndev, 0, TIC);
2929 
2930 	/* Only allow ECI interrupts */
2931 	synchronize_irq(priv->emac_irq);
2932 	if (info->nc_queues)
2933 		napi_disable(&priv->napi[RAVB_NC]);
2934 	napi_disable(&priv->napi[RAVB_BE]);
2935 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2936 
2937 	/* Enable MagicPacket */
2938 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2939 
2940 	return enable_irq_wake(priv->emac_irq);
2941 }
2942 
2943 static int ravb_wol_restore(struct net_device *ndev)
2944 {
2945 	struct ravb_private *priv = netdev_priv(ndev);
2946 	const struct ravb_hw_info *info = priv->info;
2947 
2948 	if (info->nc_queues)
2949 		napi_enable(&priv->napi[RAVB_NC]);
2950 	napi_enable(&priv->napi[RAVB_BE]);
2951 
2952 	/* Disable MagicPacket */
2953 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2954 
2955 	ravb_close(ndev);
2956 
2957 	return disable_irq_wake(priv->emac_irq);
2958 }
2959 
2960 static int __maybe_unused ravb_suspend(struct device *dev)
2961 {
2962 	struct net_device *ndev = dev_get_drvdata(dev);
2963 	struct ravb_private *priv = netdev_priv(ndev);
2964 	int ret;
2965 
2966 	if (!netif_running(ndev))
2967 		return 0;
2968 
2969 	netif_device_detach(ndev);
2970 
2971 	if (priv->wol_enabled)
2972 		ret = ravb_wol_setup(ndev);
2973 	else
2974 		ret = ravb_close(ndev);
2975 
2976 	return ret;
2977 }
2978 
2979 static int __maybe_unused ravb_resume(struct device *dev)
2980 {
2981 	struct net_device *ndev = dev_get_drvdata(dev);
2982 	struct ravb_private *priv = netdev_priv(ndev);
2983 	const struct ravb_hw_info *info = priv->info;
2984 	int ret = 0;
2985 
2986 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2987 	if (priv->wol_enabled)
2988 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2989 
2990 	/* All register have been reset to default values.
2991 	 * Restore all registers which where setup at probe time and
2992 	 * reopen device if it was running before system suspended.
2993 	 */
2994 
2995 	/* Set AVB config mode */
2996 	ravb_set_config_mode(ndev);
2997 
2998 	if (info->gptp || info->ccc_gac) {
2999 		/* Set GTI value */
3000 		ret = ravb_set_gti(ndev);
3001 		if (ret)
3002 			return ret;
3003 
3004 		/* Request GTI loading */
3005 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
3006 	}
3007 
3008 	if (info->internal_delay)
3009 		ravb_set_delay_mode(ndev);
3010 
3011 	/* Restore descriptor base address table */
3012 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
3013 
3014 	if (netif_running(ndev)) {
3015 		if (priv->wol_enabled) {
3016 			ret = ravb_wol_restore(ndev);
3017 			if (ret)
3018 				return ret;
3019 		}
3020 		ret = ravb_open(ndev);
3021 		if (ret < 0)
3022 			return ret;
3023 		ravb_set_rx_mode(ndev);
3024 		netif_device_attach(ndev);
3025 	}
3026 
3027 	return ret;
3028 }
3029 
3030 static int __maybe_unused ravb_runtime_nop(struct device *dev)
3031 {
3032 	/* Runtime PM callback shared between ->runtime_suspend()
3033 	 * and ->runtime_resume(). Simply returns success.
3034 	 *
3035 	 * This driver re-initializes all registers after
3036 	 * pm_runtime_get_sync() anyway so there is no need
3037 	 * to save and restore registers here.
3038 	 */
3039 	return 0;
3040 }
3041 
3042 static const struct dev_pm_ops ravb_dev_pm_ops = {
3043 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3044 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
3045 };
3046 
3047 static struct platform_driver ravb_driver = {
3048 	.probe		= ravb_probe,
3049 	.remove		= ravb_remove,
3050 	.driver = {
3051 		.name	= "ravb",
3052 		.pm	= &ravb_dev_pm_ops,
3053 		.of_match_table = ravb_match_table,
3054 	},
3055 };
3056 
3057 module_platform_driver(ravb_driver);
3058 
3059 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3060 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3061 MODULE_LICENSE("GPL v2");
3062