1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include <asm/div64.h>
36 
37 #include "ravb.h"
38 
39 #define RAVB_DEF_MSG_ENABLE \
40 		(NETIF_MSG_LINK	  | \
41 		 NETIF_MSG_TIMER  | \
42 		 NETIF_MSG_RX_ERR | \
43 		 NETIF_MSG_TX_ERR)
44 
45 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
46 	"ch0", /* RAVB_BE */
47 	"ch1", /* RAVB_NC */
48 };
49 
50 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
51 	"ch18", /* RAVB_BE */
52 	"ch19", /* RAVB_NC */
53 };
54 
55 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
56 		 u32 set)
57 {
58 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
59 }
60 
61 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
62 {
63 	int i;
64 
65 	for (i = 0; i < 10000; i++) {
66 		if ((ravb_read(ndev, reg) & mask) == value)
67 			return 0;
68 		udelay(10);
69 	}
70 	return -ETIMEDOUT;
71 }
72 
73 static int ravb_config(struct net_device *ndev)
74 {
75 	int error;
76 
77 	/* Set config mode */
78 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
79 	/* Check if the operating mode is changed to the config mode */
80 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
81 	if (error)
82 		netdev_err(ndev, "failed to switch device to config mode\n");
83 
84 	return error;
85 }
86 
87 static void ravb_set_duplex(struct net_device *ndev)
88 {
89 	struct ravb_private *priv = netdev_priv(ndev);
90 
91 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
92 }
93 
94 static void ravb_set_rate(struct net_device *ndev)
95 {
96 	struct ravb_private *priv = netdev_priv(ndev);
97 
98 	switch (priv->speed) {
99 	case 100:		/* 100BASE */
100 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
101 		break;
102 	case 1000:		/* 1000BASE */
103 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
104 		break;
105 	}
106 }
107 
108 static void ravb_set_buffer_align(struct sk_buff *skb)
109 {
110 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
111 
112 	if (reserve)
113 		skb_reserve(skb, RAVB_ALIGN - reserve);
114 }
115 
116 /* Get MAC address from the MAC address registers
117  *
118  * Ethernet AVB device doesn't have ROM for MAC address.
119  * This function gets the MAC address that was used by a bootloader.
120  */
121 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
122 {
123 	if (mac) {
124 		ether_addr_copy(ndev->dev_addr, mac);
125 	} else {
126 		u32 mahr = ravb_read(ndev, MAHR);
127 		u32 malr = ravb_read(ndev, MALR);
128 
129 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
130 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
131 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
132 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
133 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
134 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
135 	}
136 }
137 
138 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
139 {
140 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
141 						 mdiobb);
142 
143 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
144 }
145 
146 /* MDC pin control */
147 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
148 {
149 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
150 }
151 
152 /* Data I/O pin control */
153 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
154 {
155 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
156 }
157 
158 /* Set data bit */
159 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
160 {
161 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
162 }
163 
164 /* Get data bit */
165 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
166 {
167 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
168 						 mdiobb);
169 
170 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
171 }
172 
173 /* MDIO bus control struct */
174 static struct mdiobb_ops bb_ops = {
175 	.owner = THIS_MODULE,
176 	.set_mdc = ravb_set_mdc,
177 	.set_mdio_dir = ravb_set_mdio_dir,
178 	.set_mdio_data = ravb_set_mdio_data,
179 	.get_mdio_data = ravb_get_mdio_data,
180 };
181 
182 /* Free skb's and DMA buffers for Ethernet AVB */
183 static void ravb_ring_free(struct net_device *ndev, int q)
184 {
185 	struct ravb_private *priv = netdev_priv(ndev);
186 	int ring_size;
187 	int i;
188 
189 	/* Free RX skb ringbuffer */
190 	if (priv->rx_skb[q]) {
191 		for (i = 0; i < priv->num_rx_ring[q]; i++)
192 			dev_kfree_skb(priv->rx_skb[q][i]);
193 	}
194 	kfree(priv->rx_skb[q]);
195 	priv->rx_skb[q] = NULL;
196 
197 	/* Free TX skb ringbuffer */
198 	if (priv->tx_skb[q]) {
199 		for (i = 0; i < priv->num_tx_ring[q]; i++)
200 			dev_kfree_skb(priv->tx_skb[q][i]);
201 	}
202 	kfree(priv->tx_skb[q]);
203 	priv->tx_skb[q] = NULL;
204 
205 	/* Free aligned TX buffers */
206 	kfree(priv->tx_align[q]);
207 	priv->tx_align[q] = NULL;
208 
209 	if (priv->rx_ring[q]) {
210 		ring_size = sizeof(struct ravb_ex_rx_desc) *
211 			    (priv->num_rx_ring[q] + 1);
212 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
213 				  priv->rx_desc_dma[q]);
214 		priv->rx_ring[q] = NULL;
215 	}
216 
217 	if (priv->tx_ring[q]) {
218 		ring_size = sizeof(struct ravb_tx_desc) *
219 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
220 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
221 				  priv->tx_desc_dma[q]);
222 		priv->tx_ring[q] = NULL;
223 	}
224 }
225 
226 /* Format skb and descriptor buffer for Ethernet AVB */
227 static void ravb_ring_format(struct net_device *ndev, int q)
228 {
229 	struct ravb_private *priv = netdev_priv(ndev);
230 	struct ravb_ex_rx_desc *rx_desc;
231 	struct ravb_tx_desc *tx_desc;
232 	struct ravb_desc *desc;
233 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
234 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
235 			   NUM_TX_DESC;
236 	dma_addr_t dma_addr;
237 	int i;
238 
239 	priv->cur_rx[q] = 0;
240 	priv->cur_tx[q] = 0;
241 	priv->dirty_rx[q] = 0;
242 	priv->dirty_tx[q] = 0;
243 
244 	memset(priv->rx_ring[q], 0, rx_ring_size);
245 	/* Build RX ring buffer */
246 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
247 		/* RX descriptor */
248 		rx_desc = &priv->rx_ring[q][i];
249 		rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
250 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
251 					  PKT_BUF_SZ,
252 					  DMA_FROM_DEVICE);
253 		/* We just set the data size to 0 for a failed mapping which
254 		 * should prevent DMA from happening...
255 		 */
256 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
257 			rx_desc->ds_cc = cpu_to_le16(0);
258 		rx_desc->dptr = cpu_to_le32(dma_addr);
259 		rx_desc->die_dt = DT_FEMPTY;
260 	}
261 	rx_desc = &priv->rx_ring[q][i];
262 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
263 	rx_desc->die_dt = DT_LINKFIX; /* type */
264 
265 	memset(priv->tx_ring[q], 0, tx_ring_size);
266 	/* Build TX ring buffer */
267 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
268 	     i++, tx_desc++) {
269 		tx_desc->die_dt = DT_EEMPTY;
270 		tx_desc++;
271 		tx_desc->die_dt = DT_EEMPTY;
272 	}
273 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
274 	tx_desc->die_dt = DT_LINKFIX; /* type */
275 
276 	/* RX descriptor base address for best effort */
277 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
278 	desc->die_dt = DT_LINKFIX; /* type */
279 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
280 
281 	/* TX descriptor base address for best effort */
282 	desc = &priv->desc_bat[q];
283 	desc->die_dt = DT_LINKFIX; /* type */
284 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
285 }
286 
287 /* Init skb and descriptor buffer for Ethernet AVB */
288 static int ravb_ring_init(struct net_device *ndev, int q)
289 {
290 	struct ravb_private *priv = netdev_priv(ndev);
291 	struct sk_buff *skb;
292 	int ring_size;
293 	int i;
294 
295 	/* Allocate RX and TX skb rings */
296 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
297 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
298 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
299 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
300 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
301 		goto error;
302 
303 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
304 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
305 		if (!skb)
306 			goto error;
307 		ravb_set_buffer_align(skb);
308 		priv->rx_skb[q][i] = skb;
309 	}
310 
311 	/* Allocate rings for the aligned buffers */
312 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
313 				    DPTR_ALIGN - 1, GFP_KERNEL);
314 	if (!priv->tx_align[q])
315 		goto error;
316 
317 	/* Allocate all RX descriptors. */
318 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
319 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
320 					      &priv->rx_desc_dma[q],
321 					      GFP_KERNEL);
322 	if (!priv->rx_ring[q])
323 		goto error;
324 
325 	priv->dirty_rx[q] = 0;
326 
327 	/* Allocate all TX descriptors. */
328 	ring_size = sizeof(struct ravb_tx_desc) *
329 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
330 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
331 					      &priv->tx_desc_dma[q],
332 					      GFP_KERNEL);
333 	if (!priv->tx_ring[q])
334 		goto error;
335 
336 	return 0;
337 
338 error:
339 	ravb_ring_free(ndev, q);
340 
341 	return -ENOMEM;
342 }
343 
344 /* E-MAC init function */
345 static void ravb_emac_init(struct net_device *ndev)
346 {
347 	struct ravb_private *priv = netdev_priv(ndev);
348 
349 	/* Receive frame limit set register */
350 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
351 
352 	/* PAUSE prohibition */
353 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
354 		   ECMR_TE | ECMR_RE, ECMR);
355 
356 	ravb_set_rate(ndev);
357 
358 	/* Set MAC address */
359 	ravb_write(ndev,
360 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
361 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
362 	ravb_write(ndev,
363 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
364 
365 	/* E-MAC status register clear */
366 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
367 
368 	/* E-MAC interrupt enable register */
369 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
370 }
371 
372 /* Device init function for Ethernet AVB */
373 static int ravb_dmac_init(struct net_device *ndev)
374 {
375 	struct ravb_private *priv = netdev_priv(ndev);
376 	int error;
377 
378 	/* Set CONFIG mode */
379 	error = ravb_config(ndev);
380 	if (error)
381 		return error;
382 
383 	error = ravb_ring_init(ndev, RAVB_BE);
384 	if (error)
385 		return error;
386 	error = ravb_ring_init(ndev, RAVB_NC);
387 	if (error) {
388 		ravb_ring_free(ndev, RAVB_BE);
389 		return error;
390 	}
391 
392 	/* Descriptor format */
393 	ravb_ring_format(ndev, RAVB_BE);
394 	ravb_ring_format(ndev, RAVB_NC);
395 
396 #if defined(__LITTLE_ENDIAN)
397 	ravb_modify(ndev, CCC, CCC_BOC, 0);
398 #else
399 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
400 #endif
401 
402 	/* Set AVB RX */
403 	ravb_write(ndev,
404 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
405 
406 	/* Set FIFO size */
407 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
408 
409 	/* Timestamp enable */
410 	ravb_write(ndev, TCCR_TFEN, TCCR);
411 
412 	/* Interrupt init: */
413 	if (priv->chip_id == RCAR_GEN3) {
414 		/* Clear DIL.DPLx */
415 		ravb_write(ndev, 0, DIL);
416 		/* Set queue specific interrupt */
417 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
418 	}
419 	/* Frame receive */
420 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
421 	/* Disable FIFO full warning */
422 	ravb_write(ndev, 0, RIC1);
423 	/* Receive FIFO full error, descriptor empty */
424 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
425 	/* Frame transmitted, timestamp FIFO updated */
426 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
427 
428 	/* Setting the control will start the AVB-DMAC process. */
429 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
430 
431 	return 0;
432 }
433 
434 /* Free TX skb function for AVB-IP */
435 static int ravb_tx_free(struct net_device *ndev, int q)
436 {
437 	struct ravb_private *priv = netdev_priv(ndev);
438 	struct net_device_stats *stats = &priv->stats[q];
439 	struct ravb_tx_desc *desc;
440 	int free_num = 0;
441 	int entry;
442 	u32 size;
443 
444 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
445 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
446 					     NUM_TX_DESC);
447 		desc = &priv->tx_ring[q][entry];
448 		if (desc->die_dt != DT_FEMPTY)
449 			break;
450 		/* Descriptor type must be checked before all other reads */
451 		dma_rmb();
452 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
453 		/* Free the original skb. */
454 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
455 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
456 					 size, DMA_TO_DEVICE);
457 			/* Last packet descriptor? */
458 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
459 				entry /= NUM_TX_DESC;
460 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
461 				priv->tx_skb[q][entry] = NULL;
462 				stats->tx_packets++;
463 			}
464 			free_num++;
465 		}
466 		stats->tx_bytes += size;
467 		desc->die_dt = DT_EEMPTY;
468 	}
469 	return free_num;
470 }
471 
472 static void ravb_get_tx_tstamp(struct net_device *ndev)
473 {
474 	struct ravb_private *priv = netdev_priv(ndev);
475 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
476 	struct skb_shared_hwtstamps shhwtstamps;
477 	struct sk_buff *skb;
478 	struct timespec64 ts;
479 	u16 tag, tfa_tag;
480 	int count;
481 	u32 tfa2;
482 
483 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
484 	while (count--) {
485 		tfa2 = ravb_read(ndev, TFA2);
486 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
487 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
488 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
489 			    ravb_read(ndev, TFA1);
490 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
491 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
492 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
493 					 list) {
494 			skb = ts_skb->skb;
495 			tag = ts_skb->tag;
496 			list_del(&ts_skb->list);
497 			kfree(ts_skb);
498 			if (tag == tfa_tag) {
499 				skb_tstamp_tx(skb, &shhwtstamps);
500 				break;
501 			}
502 		}
503 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
504 	}
505 }
506 
507 /* Packet receive function for Ethernet AVB */
508 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
509 {
510 	struct ravb_private *priv = netdev_priv(ndev);
511 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
512 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
513 			priv->cur_rx[q];
514 	struct net_device_stats *stats = &priv->stats[q];
515 	struct ravb_ex_rx_desc *desc;
516 	struct sk_buff *skb;
517 	dma_addr_t dma_addr;
518 	struct timespec64 ts;
519 	u8  desc_status;
520 	u16 pkt_len;
521 	int limit;
522 
523 	boguscnt = min(boguscnt, *quota);
524 	limit = boguscnt;
525 	desc = &priv->rx_ring[q][entry];
526 	while (desc->die_dt != DT_FEMPTY) {
527 		/* Descriptor type must be checked before all other reads */
528 		dma_rmb();
529 		desc_status = desc->msc;
530 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
531 
532 		if (--boguscnt < 0)
533 			break;
534 
535 		/* We use 0-byte descriptors to mark the DMA mapping errors */
536 		if (!pkt_len)
537 			continue;
538 
539 		if (desc_status & MSC_MC)
540 			stats->multicast++;
541 
542 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
543 				   MSC_CEEF)) {
544 			stats->rx_errors++;
545 			if (desc_status & MSC_CRC)
546 				stats->rx_crc_errors++;
547 			if (desc_status & MSC_RFE)
548 				stats->rx_frame_errors++;
549 			if (desc_status & (MSC_RTLF | MSC_RTSF))
550 				stats->rx_length_errors++;
551 			if (desc_status & MSC_CEEF)
552 				stats->rx_missed_errors++;
553 		} else {
554 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
555 
556 			skb = priv->rx_skb[q][entry];
557 			priv->rx_skb[q][entry] = NULL;
558 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
559 					 PKT_BUF_SZ,
560 					 DMA_FROM_DEVICE);
561 			get_ts &= (q == RAVB_NC) ?
562 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
563 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
564 			if (get_ts) {
565 				struct skb_shared_hwtstamps *shhwtstamps;
566 
567 				shhwtstamps = skb_hwtstamps(skb);
568 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
569 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
570 					     32) | le32_to_cpu(desc->ts_sl);
571 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
572 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
573 			}
574 			skb_put(skb, pkt_len);
575 			skb->protocol = eth_type_trans(skb, ndev);
576 			napi_gro_receive(&priv->napi[q], skb);
577 			stats->rx_packets++;
578 			stats->rx_bytes += pkt_len;
579 		}
580 
581 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
582 		desc = &priv->rx_ring[q][entry];
583 	}
584 
585 	/* Refill the RX ring buffers. */
586 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
587 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
588 		desc = &priv->rx_ring[q][entry];
589 		desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
590 
591 		if (!priv->rx_skb[q][entry]) {
592 			skb = netdev_alloc_skb(ndev,
593 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
594 			if (!skb)
595 				break;	/* Better luck next round. */
596 			ravb_set_buffer_align(skb);
597 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
598 						  le16_to_cpu(desc->ds_cc),
599 						  DMA_FROM_DEVICE);
600 			skb_checksum_none_assert(skb);
601 			/* We just set the data size to 0 for a failed mapping
602 			 * which should prevent DMA  from happening...
603 			 */
604 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
605 				desc->ds_cc = cpu_to_le16(0);
606 			desc->dptr = cpu_to_le32(dma_addr);
607 			priv->rx_skb[q][entry] = skb;
608 		}
609 		/* Descriptor type must be set after all the above writes */
610 		dma_wmb();
611 		desc->die_dt = DT_FEMPTY;
612 	}
613 
614 	*quota -= limit - (++boguscnt);
615 
616 	return boguscnt <= 0;
617 }
618 
619 static void ravb_rcv_snd_disable(struct net_device *ndev)
620 {
621 	/* Disable TX and RX */
622 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
623 }
624 
625 static void ravb_rcv_snd_enable(struct net_device *ndev)
626 {
627 	/* Enable TX and RX */
628 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
629 }
630 
631 /* function for waiting dma process finished */
632 static int ravb_stop_dma(struct net_device *ndev)
633 {
634 	int error;
635 
636 	/* Wait for stopping the hardware TX process */
637 	error = ravb_wait(ndev, TCCR,
638 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
639 	if (error)
640 		return error;
641 
642 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
643 			  0);
644 	if (error)
645 		return error;
646 
647 	/* Stop the E-MAC's RX/TX processes. */
648 	ravb_rcv_snd_disable(ndev);
649 
650 	/* Wait for stopping the RX DMA process */
651 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
652 	if (error)
653 		return error;
654 
655 	/* Stop AVB-DMAC process */
656 	return ravb_config(ndev);
657 }
658 
659 /* E-MAC interrupt handler */
660 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
661 {
662 	struct ravb_private *priv = netdev_priv(ndev);
663 	u32 ecsr, psr;
664 
665 	ecsr = ravb_read(ndev, ECSR);
666 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
667 	if (ecsr & ECSR_ICD)
668 		ndev->stats.tx_carrier_errors++;
669 	if (ecsr & ECSR_LCHNG) {
670 		/* Link changed */
671 		if (priv->no_avb_link)
672 			return;
673 		psr = ravb_read(ndev, PSR);
674 		if (priv->avb_link_active_low)
675 			psr ^= PSR_LMON;
676 		if (!(psr & PSR_LMON)) {
677 			/* DIsable RX and TX */
678 			ravb_rcv_snd_disable(ndev);
679 		} else {
680 			/* Enable RX and TX */
681 			ravb_rcv_snd_enable(ndev);
682 		}
683 	}
684 }
685 
686 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
687 {
688 	struct net_device *ndev = dev_id;
689 	struct ravb_private *priv = netdev_priv(ndev);
690 
691 	spin_lock(&priv->lock);
692 	ravb_emac_interrupt_unlocked(ndev);
693 	mmiowb();
694 	spin_unlock(&priv->lock);
695 	return IRQ_HANDLED;
696 }
697 
698 /* Error interrupt handler */
699 static void ravb_error_interrupt(struct net_device *ndev)
700 {
701 	struct ravb_private *priv = netdev_priv(ndev);
702 	u32 eis, ris2;
703 
704 	eis = ravb_read(ndev, EIS);
705 	ravb_write(ndev, ~EIS_QFS, EIS);
706 	if (eis & EIS_QFS) {
707 		ris2 = ravb_read(ndev, RIS2);
708 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
709 
710 		/* Receive Descriptor Empty int */
711 		if (ris2 & RIS2_QFF0)
712 			priv->stats[RAVB_BE].rx_over_errors++;
713 
714 		    /* Receive Descriptor Empty int */
715 		if (ris2 & RIS2_QFF1)
716 			priv->stats[RAVB_NC].rx_over_errors++;
717 
718 		/* Receive FIFO Overflow int */
719 		if (ris2 & RIS2_RFFF)
720 			priv->rx_fifo_errors++;
721 	}
722 }
723 
724 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
725 {
726 	struct ravb_private *priv = netdev_priv(ndev);
727 	u32 ris0 = ravb_read(ndev, RIS0);
728 	u32 ric0 = ravb_read(ndev, RIC0);
729 	u32 tis  = ravb_read(ndev, TIS);
730 	u32 tic  = ravb_read(ndev, TIC);
731 
732 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
733 		if (napi_schedule_prep(&priv->napi[q])) {
734 			/* Mask RX and TX interrupts */
735 			if (priv->chip_id == RCAR_GEN2) {
736 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
737 				ravb_write(ndev, tic & ~BIT(q), TIC);
738 			} else {
739 				ravb_write(ndev, BIT(q), RID0);
740 				ravb_write(ndev, BIT(q), TID);
741 			}
742 			__napi_schedule(&priv->napi[q]);
743 		} else {
744 			netdev_warn(ndev,
745 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
746 				    ris0, ric0);
747 			netdev_warn(ndev,
748 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
749 				    tis, tic);
750 		}
751 		return true;
752 	}
753 	return false;
754 }
755 
756 static bool ravb_timestamp_interrupt(struct net_device *ndev)
757 {
758 	u32 tis = ravb_read(ndev, TIS);
759 
760 	if (tis & TIS_TFUF) {
761 		ravb_write(ndev, ~TIS_TFUF, TIS);
762 		ravb_get_tx_tstamp(ndev);
763 		return true;
764 	}
765 	return false;
766 }
767 
768 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
769 {
770 	struct net_device *ndev = dev_id;
771 	struct ravb_private *priv = netdev_priv(ndev);
772 	irqreturn_t result = IRQ_NONE;
773 	u32 iss;
774 
775 	spin_lock(&priv->lock);
776 	/* Get interrupt status */
777 	iss = ravb_read(ndev, ISS);
778 
779 	/* Received and transmitted interrupts */
780 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
781 		int q;
782 
783 		/* Timestamp updated */
784 		if (ravb_timestamp_interrupt(ndev))
785 			result = IRQ_HANDLED;
786 
787 		/* Network control and best effort queue RX/TX */
788 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
789 			if (ravb_queue_interrupt(ndev, q))
790 				result = IRQ_HANDLED;
791 		}
792 	}
793 
794 	/* E-MAC status summary */
795 	if (iss & ISS_MS) {
796 		ravb_emac_interrupt_unlocked(ndev);
797 		result = IRQ_HANDLED;
798 	}
799 
800 	/* Error status summary */
801 	if (iss & ISS_ES) {
802 		ravb_error_interrupt(ndev);
803 		result = IRQ_HANDLED;
804 	}
805 
806 	/* gPTP interrupt status summary */
807 	if (iss & ISS_CGIS) {
808 		ravb_ptp_interrupt(ndev);
809 		result = IRQ_HANDLED;
810 	}
811 
812 	mmiowb();
813 	spin_unlock(&priv->lock);
814 	return result;
815 }
816 
817 /* Timestamp/Error/gPTP interrupt handler */
818 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
819 {
820 	struct net_device *ndev = dev_id;
821 	struct ravb_private *priv = netdev_priv(ndev);
822 	irqreturn_t result = IRQ_NONE;
823 	u32 iss;
824 
825 	spin_lock(&priv->lock);
826 	/* Get interrupt status */
827 	iss = ravb_read(ndev, ISS);
828 
829 	/* Timestamp updated */
830 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
831 		result = IRQ_HANDLED;
832 
833 	/* Error status summary */
834 	if (iss & ISS_ES) {
835 		ravb_error_interrupt(ndev);
836 		result = IRQ_HANDLED;
837 	}
838 
839 	/* gPTP interrupt status summary */
840 	if (iss & ISS_CGIS) {
841 		ravb_ptp_interrupt(ndev);
842 		result = IRQ_HANDLED;
843 	}
844 
845 	mmiowb();
846 	spin_unlock(&priv->lock);
847 	return result;
848 }
849 
850 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
851 {
852 	struct net_device *ndev = dev_id;
853 	struct ravb_private *priv = netdev_priv(ndev);
854 	irqreturn_t result = IRQ_NONE;
855 
856 	spin_lock(&priv->lock);
857 
858 	/* Network control/Best effort queue RX/TX */
859 	if (ravb_queue_interrupt(ndev, q))
860 		result = IRQ_HANDLED;
861 
862 	mmiowb();
863 	spin_unlock(&priv->lock);
864 	return result;
865 }
866 
867 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
868 {
869 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
870 }
871 
872 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
873 {
874 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
875 }
876 
877 static int ravb_poll(struct napi_struct *napi, int budget)
878 {
879 	struct net_device *ndev = napi->dev;
880 	struct ravb_private *priv = netdev_priv(ndev);
881 	unsigned long flags;
882 	int q = napi - priv->napi;
883 	int mask = BIT(q);
884 	int quota = budget;
885 	u32 ris0, tis;
886 
887 	for (;;) {
888 		tis = ravb_read(ndev, TIS);
889 		ris0 = ravb_read(ndev, RIS0);
890 		if (!((ris0 & mask) || (tis & mask)))
891 			break;
892 
893 		/* Processing RX Descriptor Ring */
894 		if (ris0 & mask) {
895 			/* Clear RX interrupt */
896 			ravb_write(ndev, ~mask, RIS0);
897 			if (ravb_rx(ndev, &quota, q))
898 				goto out;
899 		}
900 		/* Processing TX Descriptor Ring */
901 		if (tis & mask) {
902 			spin_lock_irqsave(&priv->lock, flags);
903 			/* Clear TX interrupt */
904 			ravb_write(ndev, ~mask, TIS);
905 			ravb_tx_free(ndev, q);
906 			netif_wake_subqueue(ndev, q);
907 			mmiowb();
908 			spin_unlock_irqrestore(&priv->lock, flags);
909 		}
910 	}
911 
912 	napi_complete(napi);
913 
914 	/* Re-enable RX/TX interrupts */
915 	spin_lock_irqsave(&priv->lock, flags);
916 	if (priv->chip_id == RCAR_GEN2) {
917 		ravb_modify(ndev, RIC0, mask, mask);
918 		ravb_modify(ndev, TIC,  mask, mask);
919 	} else {
920 		ravb_write(ndev, mask, RIE0);
921 		ravb_write(ndev, mask, TIE);
922 	}
923 	mmiowb();
924 	spin_unlock_irqrestore(&priv->lock, flags);
925 
926 	/* Receive error message handling */
927 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
928 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
929 	if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
930 		ndev->stats.rx_over_errors = priv->rx_over_errors;
931 		netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
932 	}
933 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
934 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
935 		netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
936 	}
937 out:
938 	return budget - quota;
939 }
940 
941 /* PHY state control function */
942 static void ravb_adjust_link(struct net_device *ndev)
943 {
944 	struct ravb_private *priv = netdev_priv(ndev);
945 	struct phy_device *phydev = priv->phydev;
946 	bool new_state = false;
947 
948 	if (phydev->link) {
949 		if (phydev->duplex != priv->duplex) {
950 			new_state = true;
951 			priv->duplex = phydev->duplex;
952 			ravb_set_duplex(ndev);
953 		}
954 
955 		if (phydev->speed != priv->speed) {
956 			new_state = true;
957 			priv->speed = phydev->speed;
958 			ravb_set_rate(ndev);
959 		}
960 		if (!priv->link) {
961 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
962 			new_state = true;
963 			priv->link = phydev->link;
964 			if (priv->no_avb_link)
965 				ravb_rcv_snd_enable(ndev);
966 		}
967 	} else if (priv->link) {
968 		new_state = true;
969 		priv->link = 0;
970 		priv->speed = 0;
971 		priv->duplex = -1;
972 		if (priv->no_avb_link)
973 			ravb_rcv_snd_disable(ndev);
974 	}
975 
976 	if (new_state && netif_msg_link(priv))
977 		phy_print_status(phydev);
978 }
979 
980 /* PHY init function */
981 static int ravb_phy_init(struct net_device *ndev)
982 {
983 	struct device_node *np = ndev->dev.parent->of_node;
984 	struct ravb_private *priv = netdev_priv(ndev);
985 	struct phy_device *phydev;
986 	struct device_node *pn;
987 	int err;
988 
989 	priv->link = 0;
990 	priv->speed = 0;
991 	priv->duplex = -1;
992 
993 	/* Try connecting to PHY */
994 	pn = of_parse_phandle(np, "phy-handle", 0);
995 	if (!pn) {
996 		/* In the case of a fixed PHY, the DT node associated
997 		 * to the PHY is the Ethernet MAC DT node.
998 		 */
999 		if (of_phy_is_fixed_link(np)) {
1000 			err = of_phy_register_fixed_link(np);
1001 			if (err)
1002 				return err;
1003 		}
1004 		pn = of_node_get(np);
1005 	}
1006 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1007 				priv->phy_interface);
1008 	of_node_put(pn);
1009 	if (!phydev) {
1010 		netdev_err(ndev, "failed to connect PHY\n");
1011 		return -ENOENT;
1012 	}
1013 
1014 	/* This driver only support 10/100Mbit speeds on Gen3
1015 	 * at this time.
1016 	 */
1017 	if (priv->chip_id == RCAR_GEN3) {
1018 		int err;
1019 
1020 		err = phy_set_max_speed(phydev, SPEED_100);
1021 		if (err) {
1022 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1023 			phy_disconnect(phydev);
1024 			return err;
1025 		}
1026 
1027 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1028 	}
1029 
1030 	/* 10BASE is not supported */
1031 	phydev->supported &= ~PHY_10BT_FEATURES;
1032 
1033 	phy_attached_info(phydev);
1034 
1035 	priv->phydev = phydev;
1036 
1037 	return 0;
1038 }
1039 
1040 /* PHY control start function */
1041 static int ravb_phy_start(struct net_device *ndev)
1042 {
1043 	struct ravb_private *priv = netdev_priv(ndev);
1044 	int error;
1045 
1046 	error = ravb_phy_init(ndev);
1047 	if (error)
1048 		return error;
1049 
1050 	phy_start(priv->phydev);
1051 
1052 	return 0;
1053 }
1054 
1055 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1056 {
1057 	struct ravb_private *priv = netdev_priv(ndev);
1058 	int error = -ENODEV;
1059 	unsigned long flags;
1060 
1061 	if (priv->phydev) {
1062 		spin_lock_irqsave(&priv->lock, flags);
1063 		error = phy_ethtool_gset(priv->phydev, ecmd);
1064 		spin_unlock_irqrestore(&priv->lock, flags);
1065 	}
1066 
1067 	return error;
1068 }
1069 
1070 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1071 {
1072 	struct ravb_private *priv = netdev_priv(ndev);
1073 	unsigned long flags;
1074 	int error;
1075 
1076 	if (!priv->phydev)
1077 		return -ENODEV;
1078 
1079 	spin_lock_irqsave(&priv->lock, flags);
1080 
1081 	/* Disable TX and RX */
1082 	ravb_rcv_snd_disable(ndev);
1083 
1084 	error = phy_ethtool_sset(priv->phydev, ecmd);
1085 	if (error)
1086 		goto error_exit;
1087 
1088 	if (ecmd->duplex == DUPLEX_FULL)
1089 		priv->duplex = 1;
1090 	else
1091 		priv->duplex = 0;
1092 
1093 	ravb_set_duplex(ndev);
1094 
1095 error_exit:
1096 	mdelay(1);
1097 
1098 	/* Enable TX and RX */
1099 	ravb_rcv_snd_enable(ndev);
1100 
1101 	mmiowb();
1102 	spin_unlock_irqrestore(&priv->lock, flags);
1103 
1104 	return error;
1105 }
1106 
1107 static int ravb_nway_reset(struct net_device *ndev)
1108 {
1109 	struct ravb_private *priv = netdev_priv(ndev);
1110 	int error = -ENODEV;
1111 	unsigned long flags;
1112 
1113 	if (priv->phydev) {
1114 		spin_lock_irqsave(&priv->lock, flags);
1115 		error = phy_start_aneg(priv->phydev);
1116 		spin_unlock_irqrestore(&priv->lock, flags);
1117 	}
1118 
1119 	return error;
1120 }
1121 
1122 static u32 ravb_get_msglevel(struct net_device *ndev)
1123 {
1124 	struct ravb_private *priv = netdev_priv(ndev);
1125 
1126 	return priv->msg_enable;
1127 }
1128 
1129 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1130 {
1131 	struct ravb_private *priv = netdev_priv(ndev);
1132 
1133 	priv->msg_enable = value;
1134 }
1135 
1136 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1137 	"rx_queue_0_current",
1138 	"tx_queue_0_current",
1139 	"rx_queue_0_dirty",
1140 	"tx_queue_0_dirty",
1141 	"rx_queue_0_packets",
1142 	"tx_queue_0_packets",
1143 	"rx_queue_0_bytes",
1144 	"tx_queue_0_bytes",
1145 	"rx_queue_0_mcast_packets",
1146 	"rx_queue_0_errors",
1147 	"rx_queue_0_crc_errors",
1148 	"rx_queue_0_frame_errors",
1149 	"rx_queue_0_length_errors",
1150 	"rx_queue_0_missed_errors",
1151 	"rx_queue_0_over_errors",
1152 
1153 	"rx_queue_1_current",
1154 	"tx_queue_1_current",
1155 	"rx_queue_1_dirty",
1156 	"tx_queue_1_dirty",
1157 	"rx_queue_1_packets",
1158 	"tx_queue_1_packets",
1159 	"rx_queue_1_bytes",
1160 	"tx_queue_1_bytes",
1161 	"rx_queue_1_mcast_packets",
1162 	"rx_queue_1_errors",
1163 	"rx_queue_1_crc_errors",
1164 	"rx_queue_1_frame_errors",
1165 	"rx_queue_1_length_errors",
1166 	"rx_queue_1_missed_errors",
1167 	"rx_queue_1_over_errors",
1168 };
1169 
1170 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1171 
1172 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1173 {
1174 	switch (sset) {
1175 	case ETH_SS_STATS:
1176 		return RAVB_STATS_LEN;
1177 	default:
1178 		return -EOPNOTSUPP;
1179 	}
1180 }
1181 
1182 static void ravb_get_ethtool_stats(struct net_device *ndev,
1183 				   struct ethtool_stats *stats, u64 *data)
1184 {
1185 	struct ravb_private *priv = netdev_priv(ndev);
1186 	int i = 0;
1187 	int q;
1188 
1189 	/* Device-specific stats */
1190 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1191 		struct net_device_stats *stats = &priv->stats[q];
1192 
1193 		data[i++] = priv->cur_rx[q];
1194 		data[i++] = priv->cur_tx[q];
1195 		data[i++] = priv->dirty_rx[q];
1196 		data[i++] = priv->dirty_tx[q];
1197 		data[i++] = stats->rx_packets;
1198 		data[i++] = stats->tx_packets;
1199 		data[i++] = stats->rx_bytes;
1200 		data[i++] = stats->tx_bytes;
1201 		data[i++] = stats->multicast;
1202 		data[i++] = stats->rx_errors;
1203 		data[i++] = stats->rx_crc_errors;
1204 		data[i++] = stats->rx_frame_errors;
1205 		data[i++] = stats->rx_length_errors;
1206 		data[i++] = stats->rx_missed_errors;
1207 		data[i++] = stats->rx_over_errors;
1208 	}
1209 }
1210 
1211 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1212 {
1213 	switch (stringset) {
1214 	case ETH_SS_STATS:
1215 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1216 		break;
1217 	}
1218 }
1219 
1220 static void ravb_get_ringparam(struct net_device *ndev,
1221 			       struct ethtool_ringparam *ring)
1222 {
1223 	struct ravb_private *priv = netdev_priv(ndev);
1224 
1225 	ring->rx_max_pending = BE_RX_RING_MAX;
1226 	ring->tx_max_pending = BE_TX_RING_MAX;
1227 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1228 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1229 }
1230 
1231 static int ravb_set_ringparam(struct net_device *ndev,
1232 			      struct ethtool_ringparam *ring)
1233 {
1234 	struct ravb_private *priv = netdev_priv(ndev);
1235 	int error;
1236 
1237 	if (ring->tx_pending > BE_TX_RING_MAX ||
1238 	    ring->rx_pending > BE_RX_RING_MAX ||
1239 	    ring->tx_pending < BE_TX_RING_MIN ||
1240 	    ring->rx_pending < BE_RX_RING_MIN)
1241 		return -EINVAL;
1242 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1243 		return -EINVAL;
1244 
1245 	if (netif_running(ndev)) {
1246 		netif_device_detach(ndev);
1247 		/* Stop PTP Clock driver */
1248 		if (priv->chip_id == RCAR_GEN2)
1249 			ravb_ptp_stop(ndev);
1250 		/* Wait for DMA stopping */
1251 		error = ravb_stop_dma(ndev);
1252 		if (error) {
1253 			netdev_err(ndev,
1254 				   "cannot set ringparam! Any AVB processes are still running?\n");
1255 			return error;
1256 		}
1257 		synchronize_irq(ndev->irq);
1258 
1259 		/* Free all the skb's in the RX queue and the DMA buffers. */
1260 		ravb_ring_free(ndev, RAVB_BE);
1261 		ravb_ring_free(ndev, RAVB_NC);
1262 	}
1263 
1264 	/* Set new parameters */
1265 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1266 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1267 
1268 	if (netif_running(ndev)) {
1269 		error = ravb_dmac_init(ndev);
1270 		if (error) {
1271 			netdev_err(ndev,
1272 				   "%s: ravb_dmac_init() failed, error %d\n",
1273 				   __func__, error);
1274 			return error;
1275 		}
1276 
1277 		ravb_emac_init(ndev);
1278 
1279 		/* Initialise PTP Clock driver */
1280 		if (priv->chip_id == RCAR_GEN2)
1281 			ravb_ptp_init(ndev, priv->pdev);
1282 
1283 		netif_device_attach(ndev);
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int ravb_get_ts_info(struct net_device *ndev,
1290 			    struct ethtool_ts_info *info)
1291 {
1292 	struct ravb_private *priv = netdev_priv(ndev);
1293 
1294 	info->so_timestamping =
1295 		SOF_TIMESTAMPING_TX_SOFTWARE |
1296 		SOF_TIMESTAMPING_RX_SOFTWARE |
1297 		SOF_TIMESTAMPING_SOFTWARE |
1298 		SOF_TIMESTAMPING_TX_HARDWARE |
1299 		SOF_TIMESTAMPING_RX_HARDWARE |
1300 		SOF_TIMESTAMPING_RAW_HARDWARE;
1301 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1302 	info->rx_filters =
1303 		(1 << HWTSTAMP_FILTER_NONE) |
1304 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1305 		(1 << HWTSTAMP_FILTER_ALL);
1306 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1307 
1308 	return 0;
1309 }
1310 
1311 static const struct ethtool_ops ravb_ethtool_ops = {
1312 	.get_settings		= ravb_get_settings,
1313 	.set_settings		= ravb_set_settings,
1314 	.nway_reset		= ravb_nway_reset,
1315 	.get_msglevel		= ravb_get_msglevel,
1316 	.set_msglevel		= ravb_set_msglevel,
1317 	.get_link		= ethtool_op_get_link,
1318 	.get_strings		= ravb_get_strings,
1319 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1320 	.get_sset_count		= ravb_get_sset_count,
1321 	.get_ringparam		= ravb_get_ringparam,
1322 	.set_ringparam		= ravb_set_ringparam,
1323 	.get_ts_info		= ravb_get_ts_info,
1324 };
1325 
1326 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1327 				struct net_device *ndev, struct device *dev,
1328 				const char *ch)
1329 {
1330 	char *name;
1331 	int error;
1332 
1333 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1334 	if (!name)
1335 		return -ENOMEM;
1336 	error = request_irq(irq, handler, 0, name, ndev);
1337 	if (error)
1338 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1339 
1340 	return error;
1341 }
1342 
1343 /* Network device open function for Ethernet AVB */
1344 static int ravb_open(struct net_device *ndev)
1345 {
1346 	struct ravb_private *priv = netdev_priv(ndev);
1347 	struct platform_device *pdev = priv->pdev;
1348 	struct device *dev = &pdev->dev;
1349 	int error;
1350 
1351 	napi_enable(&priv->napi[RAVB_BE]);
1352 	napi_enable(&priv->napi[RAVB_NC]);
1353 
1354 	if (priv->chip_id == RCAR_GEN2) {
1355 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1356 				    ndev->name, ndev);
1357 		if (error) {
1358 			netdev_err(ndev, "cannot request IRQ\n");
1359 			goto out_napi_off;
1360 		}
1361 	} else {
1362 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1363 				      dev, "ch22:multi");
1364 		if (error)
1365 			goto out_napi_off;
1366 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1367 				      dev, "ch24:emac");
1368 		if (error)
1369 			goto out_free_irq;
1370 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1371 				      ndev, dev, "ch0:rx_be");
1372 		if (error)
1373 			goto out_free_irq_emac;
1374 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1375 				      ndev, dev, "ch18:tx_be");
1376 		if (error)
1377 			goto out_free_irq_be_rx;
1378 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1379 				      ndev, dev, "ch1:rx_nc");
1380 		if (error)
1381 			goto out_free_irq_be_tx;
1382 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1383 				      ndev, dev, "ch19:tx_nc");
1384 		if (error)
1385 			goto out_free_irq_nc_rx;
1386 	}
1387 
1388 	/* Device init */
1389 	error = ravb_dmac_init(ndev);
1390 	if (error)
1391 		goto out_free_irq_nc_tx;
1392 	ravb_emac_init(ndev);
1393 
1394 	/* Initialise PTP Clock driver */
1395 	if (priv->chip_id == RCAR_GEN2)
1396 		ravb_ptp_init(ndev, priv->pdev);
1397 
1398 	netif_tx_start_all_queues(ndev);
1399 
1400 	/* PHY control start */
1401 	error = ravb_phy_start(ndev);
1402 	if (error)
1403 		goto out_ptp_stop;
1404 
1405 	return 0;
1406 
1407 out_ptp_stop:
1408 	/* Stop PTP Clock driver */
1409 	if (priv->chip_id == RCAR_GEN2)
1410 		ravb_ptp_stop(ndev);
1411 out_free_irq_nc_tx:
1412 	if (priv->chip_id == RCAR_GEN2)
1413 		goto out_free_irq;
1414 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1415 out_free_irq_nc_rx:
1416 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1417 out_free_irq_be_tx:
1418 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1419 out_free_irq_be_rx:
1420 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1421 out_free_irq_emac:
1422 	free_irq(priv->emac_irq, ndev);
1423 out_free_irq:
1424 	free_irq(ndev->irq, ndev);
1425 out_napi_off:
1426 	napi_disable(&priv->napi[RAVB_NC]);
1427 	napi_disable(&priv->napi[RAVB_BE]);
1428 	return error;
1429 }
1430 
1431 /* Timeout function for Ethernet AVB */
1432 static void ravb_tx_timeout(struct net_device *ndev)
1433 {
1434 	struct ravb_private *priv = netdev_priv(ndev);
1435 
1436 	netif_err(priv, tx_err, ndev,
1437 		  "transmit timed out, status %08x, resetting...\n",
1438 		  ravb_read(ndev, ISS));
1439 
1440 	/* tx_errors count up */
1441 	ndev->stats.tx_errors++;
1442 
1443 	schedule_work(&priv->work);
1444 }
1445 
1446 static void ravb_tx_timeout_work(struct work_struct *work)
1447 {
1448 	struct ravb_private *priv = container_of(work, struct ravb_private,
1449 						 work);
1450 	struct net_device *ndev = priv->ndev;
1451 
1452 	netif_tx_stop_all_queues(ndev);
1453 
1454 	/* Stop PTP Clock driver */
1455 	if (priv->chip_id == RCAR_GEN2)
1456 		ravb_ptp_stop(ndev);
1457 
1458 	/* Wait for DMA stopping */
1459 	ravb_stop_dma(ndev);
1460 
1461 	ravb_ring_free(ndev, RAVB_BE);
1462 	ravb_ring_free(ndev, RAVB_NC);
1463 
1464 	/* Device init */
1465 	ravb_dmac_init(ndev);
1466 	ravb_emac_init(ndev);
1467 
1468 	/* Initialise PTP Clock driver */
1469 	if (priv->chip_id == RCAR_GEN2)
1470 		ravb_ptp_init(ndev, priv->pdev);
1471 
1472 	netif_tx_start_all_queues(ndev);
1473 }
1474 
1475 /* Packet transmit function for Ethernet AVB */
1476 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1477 {
1478 	struct ravb_private *priv = netdev_priv(ndev);
1479 	u16 q = skb_get_queue_mapping(skb);
1480 	struct ravb_tstamp_skb *ts_skb;
1481 	struct ravb_tx_desc *desc;
1482 	unsigned long flags;
1483 	u32 dma_addr;
1484 	void *buffer;
1485 	u32 entry;
1486 	u32 len;
1487 
1488 	spin_lock_irqsave(&priv->lock, flags);
1489 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1490 	    NUM_TX_DESC) {
1491 		netif_err(priv, tx_queued, ndev,
1492 			  "still transmitting with the full ring!\n");
1493 		netif_stop_subqueue(ndev, q);
1494 		spin_unlock_irqrestore(&priv->lock, flags);
1495 		return NETDEV_TX_BUSY;
1496 	}
1497 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1498 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1499 
1500 	if (skb_put_padto(skb, ETH_ZLEN))
1501 		goto drop;
1502 
1503 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1504 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1505 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1506 	memcpy(buffer, skb->data, len);
1507 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1508 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1509 		goto drop;
1510 
1511 	desc = &priv->tx_ring[q][entry];
1512 	desc->ds_tagl = cpu_to_le16(len);
1513 	desc->dptr = cpu_to_le32(dma_addr);
1514 
1515 	buffer = skb->data + len;
1516 	len = skb->len - len;
1517 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1518 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1519 		goto unmap;
1520 
1521 	desc++;
1522 	desc->ds_tagl = cpu_to_le16(len);
1523 	desc->dptr = cpu_to_le32(dma_addr);
1524 
1525 	/* TX timestamp required */
1526 	if (q == RAVB_NC) {
1527 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1528 		if (!ts_skb) {
1529 			desc--;
1530 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1531 					 DMA_TO_DEVICE);
1532 			goto unmap;
1533 		}
1534 		ts_skb->skb = skb;
1535 		ts_skb->tag = priv->ts_skb_tag++;
1536 		priv->ts_skb_tag &= 0x3ff;
1537 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1538 
1539 		/* TAG and timestamp required flag */
1540 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1541 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1542 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1543 	}
1544 
1545 	skb_tx_timestamp(skb);
1546 	/* Descriptor type must be set after all the above writes */
1547 	dma_wmb();
1548 	desc->die_dt = DT_FEND;
1549 	desc--;
1550 	desc->die_dt = DT_FSTART;
1551 
1552 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1553 
1554 	priv->cur_tx[q] += NUM_TX_DESC;
1555 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1556 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1557 		netif_stop_subqueue(ndev, q);
1558 
1559 exit:
1560 	mmiowb();
1561 	spin_unlock_irqrestore(&priv->lock, flags);
1562 	return NETDEV_TX_OK;
1563 
1564 unmap:
1565 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1566 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1567 drop:
1568 	dev_kfree_skb_any(skb);
1569 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1570 	goto exit;
1571 }
1572 
1573 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1574 			     void *accel_priv, select_queue_fallback_t fallback)
1575 {
1576 	/* If skb needs TX timestamp, it is handled in network control queue */
1577 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1578 							       RAVB_BE;
1579 
1580 }
1581 
1582 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1583 {
1584 	struct ravb_private *priv = netdev_priv(ndev);
1585 	struct net_device_stats *nstats, *stats0, *stats1;
1586 
1587 	nstats = &ndev->stats;
1588 	stats0 = &priv->stats[RAVB_BE];
1589 	stats1 = &priv->stats[RAVB_NC];
1590 
1591 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1592 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1593 	nstats->collisions += ravb_read(ndev, CDCR);
1594 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1595 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1596 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1597 
1598 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1599 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1600 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1601 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1602 
1603 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1604 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1605 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1606 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1607 	nstats->multicast = stats0->multicast + stats1->multicast;
1608 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1609 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1610 	nstats->rx_frame_errors =
1611 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1612 	nstats->rx_length_errors =
1613 		stats0->rx_length_errors + stats1->rx_length_errors;
1614 	nstats->rx_missed_errors =
1615 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1616 	nstats->rx_over_errors =
1617 		stats0->rx_over_errors + stats1->rx_over_errors;
1618 
1619 	return nstats;
1620 }
1621 
1622 /* Update promiscuous bit */
1623 static void ravb_set_rx_mode(struct net_device *ndev)
1624 {
1625 	struct ravb_private *priv = netdev_priv(ndev);
1626 	unsigned long flags;
1627 
1628 	spin_lock_irqsave(&priv->lock, flags);
1629 	ravb_modify(ndev, ECMR, ECMR_PRM,
1630 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1631 	mmiowb();
1632 	spin_unlock_irqrestore(&priv->lock, flags);
1633 }
1634 
1635 /* Device close function for Ethernet AVB */
1636 static int ravb_close(struct net_device *ndev)
1637 {
1638 	struct ravb_private *priv = netdev_priv(ndev);
1639 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1640 
1641 	netif_tx_stop_all_queues(ndev);
1642 
1643 	/* Disable interrupts by clearing the interrupt masks. */
1644 	ravb_write(ndev, 0, RIC0);
1645 	ravb_write(ndev, 0, RIC2);
1646 	ravb_write(ndev, 0, TIC);
1647 
1648 	/* Stop PTP Clock driver */
1649 	if (priv->chip_id == RCAR_GEN2)
1650 		ravb_ptp_stop(ndev);
1651 
1652 	/* Set the config mode to stop the AVB-DMAC's processes */
1653 	if (ravb_stop_dma(ndev) < 0)
1654 		netdev_err(ndev,
1655 			   "device will be stopped after h/w processes are done.\n");
1656 
1657 	/* Clear the timestamp list */
1658 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1659 		list_del(&ts_skb->list);
1660 		kfree(ts_skb);
1661 	}
1662 
1663 	/* PHY disconnect */
1664 	if (priv->phydev) {
1665 		phy_stop(priv->phydev);
1666 		phy_disconnect(priv->phydev);
1667 		priv->phydev = NULL;
1668 	}
1669 
1670 	if (priv->chip_id != RCAR_GEN2) {
1671 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1672 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1673 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1674 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1675 		free_irq(priv->emac_irq, ndev);
1676 	}
1677 	free_irq(ndev->irq, ndev);
1678 
1679 	napi_disable(&priv->napi[RAVB_NC]);
1680 	napi_disable(&priv->napi[RAVB_BE]);
1681 
1682 	/* Free all the skb's in the RX queue and the DMA buffers. */
1683 	ravb_ring_free(ndev, RAVB_BE);
1684 	ravb_ring_free(ndev, RAVB_NC);
1685 
1686 	return 0;
1687 }
1688 
1689 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1690 {
1691 	struct ravb_private *priv = netdev_priv(ndev);
1692 	struct hwtstamp_config config;
1693 
1694 	config.flags = 0;
1695 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1696 						HWTSTAMP_TX_OFF;
1697 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1698 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1699 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1700 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1701 	else
1702 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1703 
1704 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1705 		-EFAULT : 0;
1706 }
1707 
1708 /* Control hardware time stamping */
1709 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1710 {
1711 	struct ravb_private *priv = netdev_priv(ndev);
1712 	struct hwtstamp_config config;
1713 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1714 	u32 tstamp_tx_ctrl;
1715 
1716 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1717 		return -EFAULT;
1718 
1719 	/* Reserved for future extensions */
1720 	if (config.flags)
1721 		return -EINVAL;
1722 
1723 	switch (config.tx_type) {
1724 	case HWTSTAMP_TX_OFF:
1725 		tstamp_tx_ctrl = 0;
1726 		break;
1727 	case HWTSTAMP_TX_ON:
1728 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1729 		break;
1730 	default:
1731 		return -ERANGE;
1732 	}
1733 
1734 	switch (config.rx_filter) {
1735 	case HWTSTAMP_FILTER_NONE:
1736 		tstamp_rx_ctrl = 0;
1737 		break;
1738 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1739 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1740 		break;
1741 	default:
1742 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1743 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1744 	}
1745 
1746 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1747 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1748 
1749 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1750 		-EFAULT : 0;
1751 }
1752 
1753 /* ioctl to device function */
1754 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1755 {
1756 	struct ravb_private *priv = netdev_priv(ndev);
1757 	struct phy_device *phydev = priv->phydev;
1758 
1759 	if (!netif_running(ndev))
1760 		return -EINVAL;
1761 
1762 	if (!phydev)
1763 		return -ENODEV;
1764 
1765 	switch (cmd) {
1766 	case SIOCGHWTSTAMP:
1767 		return ravb_hwtstamp_get(ndev, req);
1768 	case SIOCSHWTSTAMP:
1769 		return ravb_hwtstamp_set(ndev, req);
1770 	}
1771 
1772 	return phy_mii_ioctl(phydev, req, cmd);
1773 }
1774 
1775 static const struct net_device_ops ravb_netdev_ops = {
1776 	.ndo_open		= ravb_open,
1777 	.ndo_stop		= ravb_close,
1778 	.ndo_start_xmit		= ravb_start_xmit,
1779 	.ndo_select_queue	= ravb_select_queue,
1780 	.ndo_get_stats		= ravb_get_stats,
1781 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1782 	.ndo_tx_timeout		= ravb_tx_timeout,
1783 	.ndo_do_ioctl		= ravb_do_ioctl,
1784 	.ndo_validate_addr	= eth_validate_addr,
1785 	.ndo_set_mac_address	= eth_mac_addr,
1786 	.ndo_change_mtu		= eth_change_mtu,
1787 };
1788 
1789 /* MDIO bus init function */
1790 static int ravb_mdio_init(struct ravb_private *priv)
1791 {
1792 	struct platform_device *pdev = priv->pdev;
1793 	struct device *dev = &pdev->dev;
1794 	int error;
1795 
1796 	/* Bitbang init */
1797 	priv->mdiobb.ops = &bb_ops;
1798 
1799 	/* MII controller setting */
1800 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1801 	if (!priv->mii_bus)
1802 		return -ENOMEM;
1803 
1804 	/* Hook up MII support for ethtool */
1805 	priv->mii_bus->name = "ravb_mii";
1806 	priv->mii_bus->parent = dev;
1807 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1808 		 pdev->name, pdev->id);
1809 
1810 	/* Register MDIO bus */
1811 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1812 	if (error)
1813 		goto out_free_bus;
1814 
1815 	return 0;
1816 
1817 out_free_bus:
1818 	free_mdio_bitbang(priv->mii_bus);
1819 	return error;
1820 }
1821 
1822 /* MDIO bus release function */
1823 static int ravb_mdio_release(struct ravb_private *priv)
1824 {
1825 	/* Unregister mdio bus */
1826 	mdiobus_unregister(priv->mii_bus);
1827 
1828 	/* Free bitbang info */
1829 	free_mdio_bitbang(priv->mii_bus);
1830 
1831 	return 0;
1832 }
1833 
1834 static const struct of_device_id ravb_match_table[] = {
1835 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1836 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1837 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1838 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1839 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1840 	{ }
1841 };
1842 MODULE_DEVICE_TABLE(of, ravb_match_table);
1843 
1844 static int ravb_set_gti(struct net_device *ndev)
1845 {
1846 
1847 	struct device *dev = ndev->dev.parent;
1848 	struct device_node *np = dev->of_node;
1849 	unsigned long rate;
1850 	struct clk *clk;
1851 	uint64_t inc;
1852 
1853 	clk = of_clk_get(np, 0);
1854 	if (IS_ERR(clk)) {
1855 		dev_err(dev, "could not get clock\n");
1856 		return PTR_ERR(clk);
1857 	}
1858 
1859 	rate = clk_get_rate(clk);
1860 	clk_put(clk);
1861 
1862 	if (!rate)
1863 		return -EINVAL;
1864 
1865 	inc = 1000000000ULL << 20;
1866 	do_div(inc, rate);
1867 
1868 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1869 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1870 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1871 		return -EINVAL;
1872 	}
1873 
1874 	ravb_write(ndev, inc, GTI);
1875 
1876 	return 0;
1877 }
1878 
1879 static int ravb_probe(struct platform_device *pdev)
1880 {
1881 	struct device_node *np = pdev->dev.of_node;
1882 	struct ravb_private *priv;
1883 	enum ravb_chip_id chip_id;
1884 	struct net_device *ndev;
1885 	int error, irq, q;
1886 	struct resource *res;
1887 	int i;
1888 
1889 	if (!np) {
1890 		dev_err(&pdev->dev,
1891 			"this driver is required to be instantiated from device tree\n");
1892 		return -EINVAL;
1893 	}
1894 
1895 	/* Get base address */
1896 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1897 	if (!res) {
1898 		dev_err(&pdev->dev, "invalid resource\n");
1899 		return -EINVAL;
1900 	}
1901 
1902 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1903 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1904 	if (!ndev)
1905 		return -ENOMEM;
1906 
1907 	pm_runtime_enable(&pdev->dev);
1908 	pm_runtime_get_sync(&pdev->dev);
1909 
1910 	/* The Ether-specific entries in the device structure. */
1911 	ndev->base_addr = res->start;
1912 
1913 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1914 
1915 	if (chip_id == RCAR_GEN3)
1916 		irq = platform_get_irq_byname(pdev, "ch22");
1917 	else
1918 		irq = platform_get_irq(pdev, 0);
1919 	if (irq < 0) {
1920 		error = irq;
1921 		goto out_release;
1922 	}
1923 	ndev->irq = irq;
1924 
1925 	SET_NETDEV_DEV(ndev, &pdev->dev);
1926 
1927 	priv = netdev_priv(ndev);
1928 	priv->ndev = ndev;
1929 	priv->pdev = pdev;
1930 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1931 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1932 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1933 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1934 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1935 	if (IS_ERR(priv->addr)) {
1936 		error = PTR_ERR(priv->addr);
1937 		goto out_release;
1938 	}
1939 
1940 	spin_lock_init(&priv->lock);
1941 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1942 
1943 	priv->phy_interface = of_get_phy_mode(np);
1944 
1945 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1946 	priv->avb_link_active_low =
1947 		of_property_read_bool(np, "renesas,ether-link-active-low");
1948 
1949 	if (chip_id == RCAR_GEN3) {
1950 		irq = platform_get_irq_byname(pdev, "ch24");
1951 		if (irq < 0) {
1952 			error = irq;
1953 			goto out_release;
1954 		}
1955 		priv->emac_irq = irq;
1956 		for (i = 0; i < NUM_RX_QUEUE; i++) {
1957 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
1958 			if (irq < 0) {
1959 				error = irq;
1960 				goto out_release;
1961 			}
1962 			priv->rx_irqs[i] = irq;
1963 		}
1964 		for (i = 0; i < NUM_TX_QUEUE; i++) {
1965 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
1966 			if (irq < 0) {
1967 				error = irq;
1968 				goto out_release;
1969 			}
1970 			priv->tx_irqs[i] = irq;
1971 		}
1972 	}
1973 
1974 	priv->chip_id = chip_id;
1975 
1976 	/* Set function */
1977 	ndev->netdev_ops = &ravb_netdev_ops;
1978 	ndev->ethtool_ops = &ravb_ethtool_ops;
1979 
1980 	/* Set AVB config mode */
1981 	if (chip_id == RCAR_GEN2) {
1982 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1983 		/* Set CSEL value */
1984 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1985 	} else {
1986 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1987 			    CCC_GAC | CCC_CSEL_HPB);
1988 	}
1989 
1990 	/* Set GTI value */
1991 	error = ravb_set_gti(ndev);
1992 	if (error)
1993 		goto out_release;
1994 
1995 	/* Request GTI loading */
1996 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1997 
1998 	/* Allocate descriptor base address table */
1999 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2000 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2001 					    &priv->desc_bat_dma, GFP_KERNEL);
2002 	if (!priv->desc_bat) {
2003 		dev_err(&pdev->dev,
2004 			"Cannot allocate desc base address table (size %d bytes)\n",
2005 			priv->desc_bat_size);
2006 		error = -ENOMEM;
2007 		goto out_release;
2008 	}
2009 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2010 		priv->desc_bat[q].die_dt = DT_EOS;
2011 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2012 
2013 	/* Initialise HW timestamp list */
2014 	INIT_LIST_HEAD(&priv->ts_skb_list);
2015 
2016 	/* Initialise PTP Clock driver */
2017 	if (chip_id != RCAR_GEN2)
2018 		ravb_ptp_init(ndev, pdev);
2019 
2020 	/* Debug message level */
2021 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2022 
2023 	/* Read and set MAC address */
2024 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2025 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2026 		dev_warn(&pdev->dev,
2027 			 "no valid MAC address supplied, using a random one\n");
2028 		eth_hw_addr_random(ndev);
2029 	}
2030 
2031 	/* MDIO bus init */
2032 	error = ravb_mdio_init(priv);
2033 	if (error) {
2034 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2035 		goto out_dma_free;
2036 	}
2037 
2038 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2039 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2040 
2041 	/* Network device register */
2042 	error = register_netdev(ndev);
2043 	if (error)
2044 		goto out_napi_del;
2045 
2046 	/* Print device information */
2047 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2048 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2049 
2050 	platform_set_drvdata(pdev, ndev);
2051 
2052 	return 0;
2053 
2054 out_napi_del:
2055 	netif_napi_del(&priv->napi[RAVB_NC]);
2056 	netif_napi_del(&priv->napi[RAVB_BE]);
2057 	ravb_mdio_release(priv);
2058 out_dma_free:
2059 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2060 			  priv->desc_bat_dma);
2061 
2062 	/* Stop PTP Clock driver */
2063 	if (chip_id != RCAR_GEN2)
2064 		ravb_ptp_stop(ndev);
2065 out_release:
2066 	if (ndev)
2067 		free_netdev(ndev);
2068 
2069 	pm_runtime_put(&pdev->dev);
2070 	pm_runtime_disable(&pdev->dev);
2071 	return error;
2072 }
2073 
2074 static int ravb_remove(struct platform_device *pdev)
2075 {
2076 	struct net_device *ndev = platform_get_drvdata(pdev);
2077 	struct ravb_private *priv = netdev_priv(ndev);
2078 
2079 	/* Stop PTP Clock driver */
2080 	if (priv->chip_id != RCAR_GEN2)
2081 		ravb_ptp_stop(ndev);
2082 
2083 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2084 			  priv->desc_bat_dma);
2085 	/* Set reset mode */
2086 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2087 	pm_runtime_put_sync(&pdev->dev);
2088 	unregister_netdev(ndev);
2089 	netif_napi_del(&priv->napi[RAVB_NC]);
2090 	netif_napi_del(&priv->napi[RAVB_BE]);
2091 	ravb_mdio_release(priv);
2092 	pm_runtime_disable(&pdev->dev);
2093 	free_netdev(ndev);
2094 	platform_set_drvdata(pdev, NULL);
2095 
2096 	return 0;
2097 }
2098 
2099 #ifdef CONFIG_PM
2100 static int ravb_runtime_nop(struct device *dev)
2101 {
2102 	/* Runtime PM callback shared between ->runtime_suspend()
2103 	 * and ->runtime_resume(). Simply returns success.
2104 	 *
2105 	 * This driver re-initializes all registers after
2106 	 * pm_runtime_get_sync() anyway so there is no need
2107 	 * to save and restore registers here.
2108 	 */
2109 	return 0;
2110 }
2111 
2112 static const struct dev_pm_ops ravb_dev_pm_ops = {
2113 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2114 };
2115 
2116 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
2117 #else
2118 #define RAVB_PM_OPS NULL
2119 #endif
2120 
2121 static struct platform_driver ravb_driver = {
2122 	.probe		= ravb_probe,
2123 	.remove		= ravb_remove,
2124 	.driver = {
2125 		.name	= "ravb",
2126 		.pm	= RAVB_PM_OPS,
2127 		.of_match_table = ravb_match_table,
2128 	},
2129 };
2130 
2131 module_platform_driver(ravb_driver);
2132 
2133 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2134 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2135 MODULE_LICENSE("GPL v2");
2136