xref: /openbmc/linux/drivers/net/ethernet/renesas/ravb_main.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (!IS_ERR(mac)) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static const struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	int num_tx_desc = priv->num_tx_desc;
179 	struct ravb_tx_desc *desc;
180 	int free_num = 0;
181 	int entry;
182 	u32 size;
183 
184 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 		bool txed;
186 
187 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 					     num_tx_desc);
189 		desc = &priv->tx_ring[q][entry];
190 		txed = desc->die_dt == DT_FEMPTY;
191 		if (free_txed_only && !txed)
192 			break;
193 		/* Descriptor type must be checked before all other reads */
194 		dma_rmb();
195 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 		/* Free the original skb. */
197 		if (priv->tx_skb[q][entry / num_tx_desc]) {
198 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 					 size, DMA_TO_DEVICE);
200 			/* Last packet descriptor? */
201 			if (entry % num_tx_desc == num_tx_desc - 1) {
202 				entry /= num_tx_desc;
203 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 				priv->tx_skb[q][entry] = NULL;
205 				if (txed)
206 					stats->tx_packets++;
207 			}
208 			free_num++;
209 		}
210 		if (txed)
211 			stats->tx_bytes += size;
212 		desc->die_dt = DT_EEMPTY;
213 	}
214 	return free_num;
215 }
216 
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 	struct ravb_private *priv = netdev_priv(ndev);
221 	int num_tx_desc = priv->num_tx_desc;
222 	int ring_size;
223 	int i;
224 
225 	if (priv->rx_ring[q]) {
226 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228 
229 			if (!dma_mapping_error(ndev->dev.parent,
230 					       le32_to_cpu(desc->dptr)))
231 				dma_unmap_single(ndev->dev.parent,
232 						 le32_to_cpu(desc->dptr),
233 						 RX_BUF_SZ,
234 						 DMA_FROM_DEVICE);
235 		}
236 		ring_size = sizeof(struct ravb_ex_rx_desc) *
237 			    (priv->num_rx_ring[q] + 1);
238 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 				  priv->rx_desc_dma[q]);
240 		priv->rx_ring[q] = NULL;
241 	}
242 
243 	if (priv->tx_ring[q]) {
244 		ravb_tx_free(ndev, q, false);
245 
246 		ring_size = sizeof(struct ravb_tx_desc) *
247 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 				  priv->tx_desc_dma[q]);
250 		priv->tx_ring[q] = NULL;
251 	}
252 
253 	/* Free RX skb ringbuffer */
254 	if (priv->rx_skb[q]) {
255 		for (i = 0; i < priv->num_rx_ring[q]; i++)
256 			dev_kfree_skb(priv->rx_skb[q][i]);
257 	}
258 	kfree(priv->rx_skb[q]);
259 	priv->rx_skb[q] = NULL;
260 
261 	/* Free aligned TX buffers */
262 	kfree(priv->tx_align[q]);
263 	priv->tx_align[q] = NULL;
264 
265 	/* Free TX skb ringbuffer.
266 	 * SKBs are freed by ravb_tx_free() call above.
267 	 */
268 	kfree(priv->tx_skb[q]);
269 	priv->tx_skb[q] = NULL;
270 }
271 
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 	struct ravb_private *priv = netdev_priv(ndev);
276 	int num_tx_desc = priv->num_tx_desc;
277 	struct ravb_ex_rx_desc *rx_desc;
278 	struct ravb_tx_desc *tx_desc;
279 	struct ravb_desc *desc;
280 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 			   num_tx_desc;
283 	dma_addr_t dma_addr;
284 	int i;
285 
286 	priv->cur_rx[q] = 0;
287 	priv->cur_tx[q] = 0;
288 	priv->dirty_rx[q] = 0;
289 	priv->dirty_tx[q] = 0;
290 
291 	memset(priv->rx_ring[q], 0, rx_ring_size);
292 	/* Build RX ring buffer */
293 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 		/* RX descriptor */
295 		rx_desc = &priv->rx_ring[q][i];
296 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
297 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 					  RX_BUF_SZ,
299 					  DMA_FROM_DEVICE);
300 		/* We just set the data size to 0 for a failed mapping which
301 		 * should prevent DMA from happening...
302 		 */
303 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 			rx_desc->ds_cc = cpu_to_le16(0);
305 		rx_desc->dptr = cpu_to_le32(dma_addr);
306 		rx_desc->die_dt = DT_FEMPTY;
307 	}
308 	rx_desc = &priv->rx_ring[q][i];
309 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 	rx_desc->die_dt = DT_LINKFIX; /* type */
311 
312 	memset(priv->tx_ring[q], 0, tx_ring_size);
313 	/* Build TX ring buffer */
314 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 	     i++, tx_desc++) {
316 		tx_desc->die_dt = DT_EEMPTY;
317 		if (num_tx_desc > 1) {
318 			tx_desc++;
319 			tx_desc->die_dt = DT_EEMPTY;
320 		}
321 	}
322 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 	tx_desc->die_dt = DT_LINKFIX; /* type */
324 
325 	/* RX descriptor base address for best effort */
326 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329 
330 	/* TX descriptor base address for best effort */
331 	desc = &priv->desc_bat[q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335 
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 	struct ravb_private *priv = netdev_priv(ndev);
340 	int num_tx_desc = priv->num_tx_desc;
341 	struct sk_buff *skb;
342 	int ring_size;
343 	int i;
344 
345 	/* Allocate RX and TX skb rings */
346 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
347 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
348 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
349 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
350 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
351 		goto error;
352 
353 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
354 		skb = netdev_alloc_skb(ndev, RX_BUF_SZ + RAVB_ALIGN - 1);
355 		if (!skb)
356 			goto error;
357 		ravb_set_buffer_align(skb);
358 		priv->rx_skb[q][i] = skb;
359 	}
360 
361 	if (num_tx_desc > 1) {
362 		/* Allocate rings for the aligned buffers */
363 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
364 					    DPTR_ALIGN - 1, GFP_KERNEL);
365 		if (!priv->tx_align[q])
366 			goto error;
367 	}
368 
369 	/* Allocate all RX descriptors. */
370 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
371 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
372 					      &priv->rx_desc_dma[q],
373 					      GFP_KERNEL);
374 	if (!priv->rx_ring[q])
375 		goto error;
376 
377 	priv->dirty_rx[q] = 0;
378 
379 	/* Allocate all TX descriptors. */
380 	ring_size = sizeof(struct ravb_tx_desc) *
381 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
382 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
383 					      &priv->tx_desc_dma[q],
384 					      GFP_KERNEL);
385 	if (!priv->tx_ring[q])
386 		goto error;
387 
388 	return 0;
389 
390 error:
391 	ravb_ring_free(ndev, q);
392 
393 	return -ENOMEM;
394 }
395 
396 /* E-MAC init function */
397 static void ravb_emac_init(struct net_device *ndev)
398 {
399 	/* Receive frame limit set register */
400 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
401 
402 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
403 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
404 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
405 		   ECMR_TE | ECMR_RE, ECMR);
406 
407 	ravb_set_rate(ndev);
408 
409 	/* Set MAC address */
410 	ravb_write(ndev,
411 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
412 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
413 	ravb_write(ndev,
414 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
415 
416 	/* E-MAC status register clear */
417 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
418 
419 	/* E-MAC interrupt enable register */
420 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
421 }
422 
423 /* Device init function for Ethernet AVB */
424 static int ravb_dmac_init(struct net_device *ndev)
425 {
426 	struct ravb_private *priv = netdev_priv(ndev);
427 	int error;
428 
429 	/* Set CONFIG mode */
430 	error = ravb_config(ndev);
431 	if (error)
432 		return error;
433 
434 	error = ravb_ring_init(ndev, RAVB_BE);
435 	if (error)
436 		return error;
437 	error = ravb_ring_init(ndev, RAVB_NC);
438 	if (error) {
439 		ravb_ring_free(ndev, RAVB_BE);
440 		return error;
441 	}
442 
443 	/* Descriptor format */
444 	ravb_ring_format(ndev, RAVB_BE);
445 	ravb_ring_format(ndev, RAVB_NC);
446 
447 	/* Set AVB RX */
448 	ravb_write(ndev,
449 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
450 
451 	/* Set FIFO size */
452 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
453 
454 	/* Timestamp enable */
455 	ravb_write(ndev, TCCR_TFEN, TCCR);
456 
457 	/* Interrupt init: */
458 	if (priv->chip_id == RCAR_GEN3) {
459 		/* Clear DIL.DPLx */
460 		ravb_write(ndev, 0, DIL);
461 		/* Set queue specific interrupt */
462 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
463 	}
464 	/* Frame receive */
465 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
466 	/* Disable FIFO full warning */
467 	ravb_write(ndev, 0, RIC1);
468 	/* Receive FIFO full error, descriptor empty */
469 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
470 	/* Frame transmitted, timestamp FIFO updated */
471 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
472 
473 	/* Setting the control will start the AVB-DMAC process. */
474 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
475 
476 	return 0;
477 }
478 
479 static void ravb_get_tx_tstamp(struct net_device *ndev)
480 {
481 	struct ravb_private *priv = netdev_priv(ndev);
482 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
483 	struct skb_shared_hwtstamps shhwtstamps;
484 	struct sk_buff *skb;
485 	struct timespec64 ts;
486 	u16 tag, tfa_tag;
487 	int count;
488 	u32 tfa2;
489 
490 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
491 	while (count--) {
492 		tfa2 = ravb_read(ndev, TFA2);
493 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
494 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
495 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
496 			    ravb_read(ndev, TFA1);
497 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
498 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
499 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
500 					 list) {
501 			skb = ts_skb->skb;
502 			tag = ts_skb->tag;
503 			list_del(&ts_skb->list);
504 			kfree(ts_skb);
505 			if (tag == tfa_tag) {
506 				skb_tstamp_tx(skb, &shhwtstamps);
507 				dev_consume_skb_any(skb);
508 				break;
509 			} else {
510 				dev_kfree_skb_any(skb);
511 			}
512 		}
513 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
514 	}
515 }
516 
517 static void ravb_rx_csum(struct sk_buff *skb)
518 {
519 	u8 *hw_csum;
520 
521 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
522 	 * appended to packet data
523 	 */
524 	if (unlikely(skb->len < sizeof(__sum16)))
525 		return;
526 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
527 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
528 	skb->ip_summed = CHECKSUM_COMPLETE;
529 	skb_trim(skb, skb->len - sizeof(__sum16));
530 }
531 
532 /* Packet receive function for Ethernet AVB */
533 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
534 {
535 	struct ravb_private *priv = netdev_priv(ndev);
536 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
537 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
538 			priv->cur_rx[q];
539 	struct net_device_stats *stats = &priv->stats[q];
540 	struct ravb_ex_rx_desc *desc;
541 	struct sk_buff *skb;
542 	dma_addr_t dma_addr;
543 	struct timespec64 ts;
544 	u8  desc_status;
545 	u16 pkt_len;
546 	int limit;
547 
548 	boguscnt = min(boguscnt, *quota);
549 	limit = boguscnt;
550 	desc = &priv->rx_ring[q][entry];
551 	while (desc->die_dt != DT_FEMPTY) {
552 		/* Descriptor type must be checked before all other reads */
553 		dma_rmb();
554 		desc_status = desc->msc;
555 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
556 
557 		if (--boguscnt < 0)
558 			break;
559 
560 		/* We use 0-byte descriptors to mark the DMA mapping errors */
561 		if (!pkt_len)
562 			continue;
563 
564 		if (desc_status & MSC_MC)
565 			stats->multicast++;
566 
567 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
568 				   MSC_CEEF)) {
569 			stats->rx_errors++;
570 			if (desc_status & MSC_CRC)
571 				stats->rx_crc_errors++;
572 			if (desc_status & MSC_RFE)
573 				stats->rx_frame_errors++;
574 			if (desc_status & (MSC_RTLF | MSC_RTSF))
575 				stats->rx_length_errors++;
576 			if (desc_status & MSC_CEEF)
577 				stats->rx_missed_errors++;
578 		} else {
579 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
580 
581 			skb = priv->rx_skb[q][entry];
582 			priv->rx_skb[q][entry] = NULL;
583 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
584 					 RX_BUF_SZ,
585 					 DMA_FROM_DEVICE);
586 			get_ts &= (q == RAVB_NC) ?
587 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
588 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
589 			if (get_ts) {
590 				struct skb_shared_hwtstamps *shhwtstamps;
591 
592 				shhwtstamps = skb_hwtstamps(skb);
593 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
594 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
595 					     32) | le32_to_cpu(desc->ts_sl);
596 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
597 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
598 			}
599 
600 			skb_put(skb, pkt_len);
601 			skb->protocol = eth_type_trans(skb, ndev);
602 			if (ndev->features & NETIF_F_RXCSUM)
603 				ravb_rx_csum(skb);
604 			napi_gro_receive(&priv->napi[q], skb);
605 			stats->rx_packets++;
606 			stats->rx_bytes += pkt_len;
607 		}
608 
609 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
610 		desc = &priv->rx_ring[q][entry];
611 	}
612 
613 	/* Refill the RX ring buffers. */
614 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
615 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
616 		desc = &priv->rx_ring[q][entry];
617 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
618 
619 		if (!priv->rx_skb[q][entry]) {
620 			skb = netdev_alloc_skb(ndev,
621 					       RX_BUF_SZ +
622 					       RAVB_ALIGN - 1);
623 			if (!skb)
624 				break;	/* Better luck next round. */
625 			ravb_set_buffer_align(skb);
626 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
627 						  le16_to_cpu(desc->ds_cc),
628 						  DMA_FROM_DEVICE);
629 			skb_checksum_none_assert(skb);
630 			/* We just set the data size to 0 for a failed mapping
631 			 * which should prevent DMA  from happening...
632 			 */
633 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
634 				desc->ds_cc = cpu_to_le16(0);
635 			desc->dptr = cpu_to_le32(dma_addr);
636 			priv->rx_skb[q][entry] = skb;
637 		}
638 		/* Descriptor type must be set after all the above writes */
639 		dma_wmb();
640 		desc->die_dt = DT_FEMPTY;
641 	}
642 
643 	*quota -= limit - (++boguscnt);
644 
645 	return boguscnt <= 0;
646 }
647 
648 static void ravb_rcv_snd_disable(struct net_device *ndev)
649 {
650 	/* Disable TX and RX */
651 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
652 }
653 
654 static void ravb_rcv_snd_enable(struct net_device *ndev)
655 {
656 	/* Enable TX and RX */
657 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
658 }
659 
660 /* function for waiting dma process finished */
661 static int ravb_stop_dma(struct net_device *ndev)
662 {
663 	int error;
664 
665 	/* Wait for stopping the hardware TX process */
666 	error = ravb_wait(ndev, TCCR,
667 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
668 	if (error)
669 		return error;
670 
671 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
672 			  0);
673 	if (error)
674 		return error;
675 
676 	/* Stop the E-MAC's RX/TX processes. */
677 	ravb_rcv_snd_disable(ndev);
678 
679 	/* Wait for stopping the RX DMA process */
680 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
681 	if (error)
682 		return error;
683 
684 	/* Stop AVB-DMAC process */
685 	return ravb_config(ndev);
686 }
687 
688 /* E-MAC interrupt handler */
689 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
690 {
691 	struct ravb_private *priv = netdev_priv(ndev);
692 	u32 ecsr, psr;
693 
694 	ecsr = ravb_read(ndev, ECSR);
695 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
696 
697 	if (ecsr & ECSR_MPD)
698 		pm_wakeup_event(&priv->pdev->dev, 0);
699 	if (ecsr & ECSR_ICD)
700 		ndev->stats.tx_carrier_errors++;
701 	if (ecsr & ECSR_LCHNG) {
702 		/* Link changed */
703 		if (priv->no_avb_link)
704 			return;
705 		psr = ravb_read(ndev, PSR);
706 		if (priv->avb_link_active_low)
707 			psr ^= PSR_LMON;
708 		if (!(psr & PSR_LMON)) {
709 			/* DIsable RX and TX */
710 			ravb_rcv_snd_disable(ndev);
711 		} else {
712 			/* Enable RX and TX */
713 			ravb_rcv_snd_enable(ndev);
714 		}
715 	}
716 }
717 
718 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
719 {
720 	struct net_device *ndev = dev_id;
721 	struct ravb_private *priv = netdev_priv(ndev);
722 
723 	spin_lock(&priv->lock);
724 	ravb_emac_interrupt_unlocked(ndev);
725 	spin_unlock(&priv->lock);
726 	return IRQ_HANDLED;
727 }
728 
729 /* Error interrupt handler */
730 static void ravb_error_interrupt(struct net_device *ndev)
731 {
732 	struct ravb_private *priv = netdev_priv(ndev);
733 	u32 eis, ris2;
734 
735 	eis = ravb_read(ndev, EIS);
736 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
737 	if (eis & EIS_QFS) {
738 		ris2 = ravb_read(ndev, RIS2);
739 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
740 			   RIS2);
741 
742 		/* Receive Descriptor Empty int */
743 		if (ris2 & RIS2_QFF0)
744 			priv->stats[RAVB_BE].rx_over_errors++;
745 
746 		    /* Receive Descriptor Empty int */
747 		if (ris2 & RIS2_QFF1)
748 			priv->stats[RAVB_NC].rx_over_errors++;
749 
750 		/* Receive FIFO Overflow int */
751 		if (ris2 & RIS2_RFFF)
752 			priv->rx_fifo_errors++;
753 	}
754 }
755 
756 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
757 {
758 	struct ravb_private *priv = netdev_priv(ndev);
759 	u32 ris0 = ravb_read(ndev, RIS0);
760 	u32 ric0 = ravb_read(ndev, RIC0);
761 	u32 tis  = ravb_read(ndev, TIS);
762 	u32 tic  = ravb_read(ndev, TIC);
763 
764 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
765 		if (napi_schedule_prep(&priv->napi[q])) {
766 			/* Mask RX and TX interrupts */
767 			if (priv->chip_id == RCAR_GEN2) {
768 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
769 				ravb_write(ndev, tic & ~BIT(q), TIC);
770 			} else {
771 				ravb_write(ndev, BIT(q), RID0);
772 				ravb_write(ndev, BIT(q), TID);
773 			}
774 			__napi_schedule(&priv->napi[q]);
775 		} else {
776 			netdev_warn(ndev,
777 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
778 				    ris0, ric0);
779 			netdev_warn(ndev,
780 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
781 				    tis, tic);
782 		}
783 		return true;
784 	}
785 	return false;
786 }
787 
788 static bool ravb_timestamp_interrupt(struct net_device *ndev)
789 {
790 	u32 tis = ravb_read(ndev, TIS);
791 
792 	if (tis & TIS_TFUF) {
793 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
794 		ravb_get_tx_tstamp(ndev);
795 		return true;
796 	}
797 	return false;
798 }
799 
800 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
801 {
802 	struct net_device *ndev = dev_id;
803 	struct ravb_private *priv = netdev_priv(ndev);
804 	irqreturn_t result = IRQ_NONE;
805 	u32 iss;
806 
807 	spin_lock(&priv->lock);
808 	/* Get interrupt status */
809 	iss = ravb_read(ndev, ISS);
810 
811 	/* Received and transmitted interrupts */
812 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
813 		int q;
814 
815 		/* Timestamp updated */
816 		if (ravb_timestamp_interrupt(ndev))
817 			result = IRQ_HANDLED;
818 
819 		/* Network control and best effort queue RX/TX */
820 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
821 			if (ravb_queue_interrupt(ndev, q))
822 				result = IRQ_HANDLED;
823 		}
824 	}
825 
826 	/* E-MAC status summary */
827 	if (iss & ISS_MS) {
828 		ravb_emac_interrupt_unlocked(ndev);
829 		result = IRQ_HANDLED;
830 	}
831 
832 	/* Error status summary */
833 	if (iss & ISS_ES) {
834 		ravb_error_interrupt(ndev);
835 		result = IRQ_HANDLED;
836 	}
837 
838 	/* gPTP interrupt status summary */
839 	if (iss & ISS_CGIS) {
840 		ravb_ptp_interrupt(ndev);
841 		result = IRQ_HANDLED;
842 	}
843 
844 	spin_unlock(&priv->lock);
845 	return result;
846 }
847 
848 /* Timestamp/Error/gPTP interrupt handler */
849 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
850 {
851 	struct net_device *ndev = dev_id;
852 	struct ravb_private *priv = netdev_priv(ndev);
853 	irqreturn_t result = IRQ_NONE;
854 	u32 iss;
855 
856 	spin_lock(&priv->lock);
857 	/* Get interrupt status */
858 	iss = ravb_read(ndev, ISS);
859 
860 	/* Timestamp updated */
861 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
862 		result = IRQ_HANDLED;
863 
864 	/* Error status summary */
865 	if (iss & ISS_ES) {
866 		ravb_error_interrupt(ndev);
867 		result = IRQ_HANDLED;
868 	}
869 
870 	/* gPTP interrupt status summary */
871 	if (iss & ISS_CGIS) {
872 		ravb_ptp_interrupt(ndev);
873 		result = IRQ_HANDLED;
874 	}
875 
876 	spin_unlock(&priv->lock);
877 	return result;
878 }
879 
880 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
881 {
882 	struct net_device *ndev = dev_id;
883 	struct ravb_private *priv = netdev_priv(ndev);
884 	irqreturn_t result = IRQ_NONE;
885 
886 	spin_lock(&priv->lock);
887 
888 	/* Network control/Best effort queue RX/TX */
889 	if (ravb_queue_interrupt(ndev, q))
890 		result = IRQ_HANDLED;
891 
892 	spin_unlock(&priv->lock);
893 	return result;
894 }
895 
896 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
897 {
898 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
899 }
900 
901 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
902 {
903 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
904 }
905 
906 static int ravb_poll(struct napi_struct *napi, int budget)
907 {
908 	struct net_device *ndev = napi->dev;
909 	struct ravb_private *priv = netdev_priv(ndev);
910 	unsigned long flags;
911 	int q = napi - priv->napi;
912 	int mask = BIT(q);
913 	int quota = budget;
914 	u32 ris0, tis;
915 
916 	for (;;) {
917 		tis = ravb_read(ndev, TIS);
918 		ris0 = ravb_read(ndev, RIS0);
919 		if (!((ris0 & mask) || (tis & mask)))
920 			break;
921 
922 		/* Processing RX Descriptor Ring */
923 		if (ris0 & mask) {
924 			/* Clear RX interrupt */
925 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
926 			if (ravb_rx(ndev, &quota, q))
927 				goto out;
928 		}
929 		/* Processing TX Descriptor Ring */
930 		if (tis & mask) {
931 			spin_lock_irqsave(&priv->lock, flags);
932 			/* Clear TX interrupt */
933 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
934 			ravb_tx_free(ndev, q, true);
935 			netif_wake_subqueue(ndev, q);
936 			spin_unlock_irqrestore(&priv->lock, flags);
937 		}
938 	}
939 
940 	napi_complete(napi);
941 
942 	/* Re-enable RX/TX interrupts */
943 	spin_lock_irqsave(&priv->lock, flags);
944 	if (priv->chip_id == RCAR_GEN2) {
945 		ravb_modify(ndev, RIC0, mask, mask);
946 		ravb_modify(ndev, TIC,  mask, mask);
947 	} else {
948 		ravb_write(ndev, mask, RIE0);
949 		ravb_write(ndev, mask, TIE);
950 	}
951 	spin_unlock_irqrestore(&priv->lock, flags);
952 
953 	/* Receive error message handling */
954 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
955 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
956 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
957 		ndev->stats.rx_over_errors = priv->rx_over_errors;
958 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
959 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
960 out:
961 	return budget - quota;
962 }
963 
964 /* PHY state control function */
965 static void ravb_adjust_link(struct net_device *ndev)
966 {
967 	struct ravb_private *priv = netdev_priv(ndev);
968 	struct phy_device *phydev = ndev->phydev;
969 	bool new_state = false;
970 	unsigned long flags;
971 
972 	spin_lock_irqsave(&priv->lock, flags);
973 
974 	/* Disable TX and RX right over here, if E-MAC change is ignored */
975 	if (priv->no_avb_link)
976 		ravb_rcv_snd_disable(ndev);
977 
978 	if (phydev->link) {
979 		if (phydev->speed != priv->speed) {
980 			new_state = true;
981 			priv->speed = phydev->speed;
982 			ravb_set_rate(ndev);
983 		}
984 		if (!priv->link) {
985 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
986 			new_state = true;
987 			priv->link = phydev->link;
988 		}
989 	} else if (priv->link) {
990 		new_state = true;
991 		priv->link = 0;
992 		priv->speed = 0;
993 	}
994 
995 	/* Enable TX and RX right over here, if E-MAC change is ignored */
996 	if (priv->no_avb_link && phydev->link)
997 		ravb_rcv_snd_enable(ndev);
998 
999 	spin_unlock_irqrestore(&priv->lock, flags);
1000 
1001 	if (new_state && netif_msg_link(priv))
1002 		phy_print_status(phydev);
1003 }
1004 
1005 static const struct soc_device_attribute r8a7795es10[] = {
1006 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1007 	{ /* sentinel */ }
1008 };
1009 
1010 /* PHY init function */
1011 static int ravb_phy_init(struct net_device *ndev)
1012 {
1013 	struct device_node *np = ndev->dev.parent->of_node;
1014 	struct ravb_private *priv = netdev_priv(ndev);
1015 	struct phy_device *phydev;
1016 	struct device_node *pn;
1017 	phy_interface_t iface;
1018 	int err;
1019 
1020 	priv->link = 0;
1021 	priv->speed = 0;
1022 
1023 	/* Try connecting to PHY */
1024 	pn = of_parse_phandle(np, "phy-handle", 0);
1025 	if (!pn) {
1026 		/* In the case of a fixed PHY, the DT node associated
1027 		 * to the PHY is the Ethernet MAC DT node.
1028 		 */
1029 		if (of_phy_is_fixed_link(np)) {
1030 			err = of_phy_register_fixed_link(np);
1031 			if (err)
1032 				return err;
1033 		}
1034 		pn = of_node_get(np);
1035 	}
1036 
1037 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1038 				     : priv->phy_interface;
1039 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1040 	of_node_put(pn);
1041 	if (!phydev) {
1042 		netdev_err(ndev, "failed to connect PHY\n");
1043 		err = -ENOENT;
1044 		goto err_deregister_fixed_link;
1045 	}
1046 
1047 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1048 	 * at this time.
1049 	 */
1050 	if (soc_device_match(r8a7795es10)) {
1051 		err = phy_set_max_speed(phydev, SPEED_100);
1052 		if (err) {
1053 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1054 			goto err_phy_disconnect;
1055 		}
1056 
1057 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1058 	}
1059 
1060 	/* 10BASE, Pause and Asym Pause is not supported */
1061 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1062 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1063 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1064 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1065 
1066 	/* Half Duplex is not supported */
1067 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1068 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1069 
1070 	phy_attached_info(phydev);
1071 
1072 	return 0;
1073 
1074 err_phy_disconnect:
1075 	phy_disconnect(phydev);
1076 err_deregister_fixed_link:
1077 	if (of_phy_is_fixed_link(np))
1078 		of_phy_deregister_fixed_link(np);
1079 
1080 	return err;
1081 }
1082 
1083 /* PHY control start function */
1084 static int ravb_phy_start(struct net_device *ndev)
1085 {
1086 	int error;
1087 
1088 	error = ravb_phy_init(ndev);
1089 	if (error)
1090 		return error;
1091 
1092 	phy_start(ndev->phydev);
1093 
1094 	return 0;
1095 }
1096 
1097 static u32 ravb_get_msglevel(struct net_device *ndev)
1098 {
1099 	struct ravb_private *priv = netdev_priv(ndev);
1100 
1101 	return priv->msg_enable;
1102 }
1103 
1104 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1105 {
1106 	struct ravb_private *priv = netdev_priv(ndev);
1107 
1108 	priv->msg_enable = value;
1109 }
1110 
1111 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1112 	"rx_queue_0_current",
1113 	"tx_queue_0_current",
1114 	"rx_queue_0_dirty",
1115 	"tx_queue_0_dirty",
1116 	"rx_queue_0_packets",
1117 	"tx_queue_0_packets",
1118 	"rx_queue_0_bytes",
1119 	"tx_queue_0_bytes",
1120 	"rx_queue_0_mcast_packets",
1121 	"rx_queue_0_errors",
1122 	"rx_queue_0_crc_errors",
1123 	"rx_queue_0_frame_errors",
1124 	"rx_queue_0_length_errors",
1125 	"rx_queue_0_missed_errors",
1126 	"rx_queue_0_over_errors",
1127 
1128 	"rx_queue_1_current",
1129 	"tx_queue_1_current",
1130 	"rx_queue_1_dirty",
1131 	"tx_queue_1_dirty",
1132 	"rx_queue_1_packets",
1133 	"tx_queue_1_packets",
1134 	"rx_queue_1_bytes",
1135 	"tx_queue_1_bytes",
1136 	"rx_queue_1_mcast_packets",
1137 	"rx_queue_1_errors",
1138 	"rx_queue_1_crc_errors",
1139 	"rx_queue_1_frame_errors",
1140 	"rx_queue_1_length_errors",
1141 	"rx_queue_1_missed_errors",
1142 	"rx_queue_1_over_errors",
1143 };
1144 
1145 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1146 
1147 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1148 {
1149 	switch (sset) {
1150 	case ETH_SS_STATS:
1151 		return RAVB_STATS_LEN;
1152 	default:
1153 		return -EOPNOTSUPP;
1154 	}
1155 }
1156 
1157 static void ravb_get_ethtool_stats(struct net_device *ndev,
1158 				   struct ethtool_stats *estats, u64 *data)
1159 {
1160 	struct ravb_private *priv = netdev_priv(ndev);
1161 	int i = 0;
1162 	int q;
1163 
1164 	/* Device-specific stats */
1165 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1166 		struct net_device_stats *stats = &priv->stats[q];
1167 
1168 		data[i++] = priv->cur_rx[q];
1169 		data[i++] = priv->cur_tx[q];
1170 		data[i++] = priv->dirty_rx[q];
1171 		data[i++] = priv->dirty_tx[q];
1172 		data[i++] = stats->rx_packets;
1173 		data[i++] = stats->tx_packets;
1174 		data[i++] = stats->rx_bytes;
1175 		data[i++] = stats->tx_bytes;
1176 		data[i++] = stats->multicast;
1177 		data[i++] = stats->rx_errors;
1178 		data[i++] = stats->rx_crc_errors;
1179 		data[i++] = stats->rx_frame_errors;
1180 		data[i++] = stats->rx_length_errors;
1181 		data[i++] = stats->rx_missed_errors;
1182 		data[i++] = stats->rx_over_errors;
1183 	}
1184 }
1185 
1186 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1187 {
1188 	switch (stringset) {
1189 	case ETH_SS_STATS:
1190 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1191 		break;
1192 	}
1193 }
1194 
1195 static void ravb_get_ringparam(struct net_device *ndev,
1196 			       struct ethtool_ringparam *ring)
1197 {
1198 	struct ravb_private *priv = netdev_priv(ndev);
1199 
1200 	ring->rx_max_pending = BE_RX_RING_MAX;
1201 	ring->tx_max_pending = BE_TX_RING_MAX;
1202 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1203 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1204 }
1205 
1206 static int ravb_set_ringparam(struct net_device *ndev,
1207 			      struct ethtool_ringparam *ring)
1208 {
1209 	struct ravb_private *priv = netdev_priv(ndev);
1210 	int error;
1211 
1212 	if (ring->tx_pending > BE_TX_RING_MAX ||
1213 	    ring->rx_pending > BE_RX_RING_MAX ||
1214 	    ring->tx_pending < BE_TX_RING_MIN ||
1215 	    ring->rx_pending < BE_RX_RING_MIN)
1216 		return -EINVAL;
1217 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1218 		return -EINVAL;
1219 
1220 	if (netif_running(ndev)) {
1221 		netif_device_detach(ndev);
1222 		/* Stop PTP Clock driver */
1223 		if (priv->chip_id == RCAR_GEN2)
1224 			ravb_ptp_stop(ndev);
1225 		/* Wait for DMA stopping */
1226 		error = ravb_stop_dma(ndev);
1227 		if (error) {
1228 			netdev_err(ndev,
1229 				   "cannot set ringparam! Any AVB processes are still running?\n");
1230 			return error;
1231 		}
1232 		synchronize_irq(ndev->irq);
1233 
1234 		/* Free all the skb's in the RX queue and the DMA buffers. */
1235 		ravb_ring_free(ndev, RAVB_BE);
1236 		ravb_ring_free(ndev, RAVB_NC);
1237 	}
1238 
1239 	/* Set new parameters */
1240 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1241 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1242 
1243 	if (netif_running(ndev)) {
1244 		error = ravb_dmac_init(ndev);
1245 		if (error) {
1246 			netdev_err(ndev,
1247 				   "%s: ravb_dmac_init() failed, error %d\n",
1248 				   __func__, error);
1249 			return error;
1250 		}
1251 
1252 		ravb_emac_init(ndev);
1253 
1254 		/* Initialise PTP Clock driver */
1255 		if (priv->chip_id == RCAR_GEN2)
1256 			ravb_ptp_init(ndev, priv->pdev);
1257 
1258 		netif_device_attach(ndev);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 static int ravb_get_ts_info(struct net_device *ndev,
1265 			    struct ethtool_ts_info *info)
1266 {
1267 	struct ravb_private *priv = netdev_priv(ndev);
1268 
1269 	info->so_timestamping =
1270 		SOF_TIMESTAMPING_TX_SOFTWARE |
1271 		SOF_TIMESTAMPING_RX_SOFTWARE |
1272 		SOF_TIMESTAMPING_SOFTWARE |
1273 		SOF_TIMESTAMPING_TX_HARDWARE |
1274 		SOF_TIMESTAMPING_RX_HARDWARE |
1275 		SOF_TIMESTAMPING_RAW_HARDWARE;
1276 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1277 	info->rx_filters =
1278 		(1 << HWTSTAMP_FILTER_NONE) |
1279 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1280 		(1 << HWTSTAMP_FILTER_ALL);
1281 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1282 
1283 	return 0;
1284 }
1285 
1286 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1287 {
1288 	struct ravb_private *priv = netdev_priv(ndev);
1289 
1290 	wol->supported = WAKE_MAGIC;
1291 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1292 }
1293 
1294 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1295 {
1296 	struct ravb_private *priv = netdev_priv(ndev);
1297 
1298 	if (wol->wolopts & ~WAKE_MAGIC)
1299 		return -EOPNOTSUPP;
1300 
1301 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1302 
1303 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1304 
1305 	return 0;
1306 }
1307 
1308 static const struct ethtool_ops ravb_ethtool_ops = {
1309 	.nway_reset		= phy_ethtool_nway_reset,
1310 	.get_msglevel		= ravb_get_msglevel,
1311 	.set_msglevel		= ravb_set_msglevel,
1312 	.get_link		= ethtool_op_get_link,
1313 	.get_strings		= ravb_get_strings,
1314 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1315 	.get_sset_count		= ravb_get_sset_count,
1316 	.get_ringparam		= ravb_get_ringparam,
1317 	.set_ringparam		= ravb_set_ringparam,
1318 	.get_ts_info		= ravb_get_ts_info,
1319 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1320 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1321 	.get_wol		= ravb_get_wol,
1322 	.set_wol		= ravb_set_wol,
1323 };
1324 
1325 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1326 				struct net_device *ndev, struct device *dev,
1327 				const char *ch)
1328 {
1329 	char *name;
1330 	int error;
1331 
1332 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1333 	if (!name)
1334 		return -ENOMEM;
1335 	error = request_irq(irq, handler, 0, name, ndev);
1336 	if (error)
1337 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1338 
1339 	return error;
1340 }
1341 
1342 /* Network device open function for Ethernet AVB */
1343 static int ravb_open(struct net_device *ndev)
1344 {
1345 	struct ravb_private *priv = netdev_priv(ndev);
1346 	struct platform_device *pdev = priv->pdev;
1347 	struct device *dev = &pdev->dev;
1348 	int error;
1349 
1350 	napi_enable(&priv->napi[RAVB_BE]);
1351 	napi_enable(&priv->napi[RAVB_NC]);
1352 
1353 	if (priv->chip_id == RCAR_GEN2) {
1354 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1355 				    ndev->name, ndev);
1356 		if (error) {
1357 			netdev_err(ndev, "cannot request IRQ\n");
1358 			goto out_napi_off;
1359 		}
1360 	} else {
1361 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1362 				      dev, "ch22:multi");
1363 		if (error)
1364 			goto out_napi_off;
1365 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1366 				      dev, "ch24:emac");
1367 		if (error)
1368 			goto out_free_irq;
1369 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1370 				      ndev, dev, "ch0:rx_be");
1371 		if (error)
1372 			goto out_free_irq_emac;
1373 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1374 				      ndev, dev, "ch18:tx_be");
1375 		if (error)
1376 			goto out_free_irq_be_rx;
1377 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1378 				      ndev, dev, "ch1:rx_nc");
1379 		if (error)
1380 			goto out_free_irq_be_tx;
1381 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1382 				      ndev, dev, "ch19:tx_nc");
1383 		if (error)
1384 			goto out_free_irq_nc_rx;
1385 	}
1386 
1387 	/* Device init */
1388 	error = ravb_dmac_init(ndev);
1389 	if (error)
1390 		goto out_free_irq_nc_tx;
1391 	ravb_emac_init(ndev);
1392 
1393 	/* Initialise PTP Clock driver */
1394 	if (priv->chip_id == RCAR_GEN2)
1395 		ravb_ptp_init(ndev, priv->pdev);
1396 
1397 	netif_tx_start_all_queues(ndev);
1398 
1399 	/* PHY control start */
1400 	error = ravb_phy_start(ndev);
1401 	if (error)
1402 		goto out_ptp_stop;
1403 
1404 	return 0;
1405 
1406 out_ptp_stop:
1407 	/* Stop PTP Clock driver */
1408 	if (priv->chip_id == RCAR_GEN2)
1409 		ravb_ptp_stop(ndev);
1410 out_free_irq_nc_tx:
1411 	if (priv->chip_id == RCAR_GEN2)
1412 		goto out_free_irq;
1413 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1414 out_free_irq_nc_rx:
1415 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1416 out_free_irq_be_tx:
1417 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1418 out_free_irq_be_rx:
1419 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1420 out_free_irq_emac:
1421 	free_irq(priv->emac_irq, ndev);
1422 out_free_irq:
1423 	free_irq(ndev->irq, ndev);
1424 out_napi_off:
1425 	napi_disable(&priv->napi[RAVB_NC]);
1426 	napi_disable(&priv->napi[RAVB_BE]);
1427 	return error;
1428 }
1429 
1430 /* Timeout function for Ethernet AVB */
1431 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1432 {
1433 	struct ravb_private *priv = netdev_priv(ndev);
1434 
1435 	netif_err(priv, tx_err, ndev,
1436 		  "transmit timed out, status %08x, resetting...\n",
1437 		  ravb_read(ndev, ISS));
1438 
1439 	/* tx_errors count up */
1440 	ndev->stats.tx_errors++;
1441 
1442 	schedule_work(&priv->work);
1443 }
1444 
1445 static void ravb_tx_timeout_work(struct work_struct *work)
1446 {
1447 	struct ravb_private *priv = container_of(work, struct ravb_private,
1448 						 work);
1449 	struct net_device *ndev = priv->ndev;
1450 	int error;
1451 
1452 	netif_tx_stop_all_queues(ndev);
1453 
1454 	/* Stop PTP Clock driver */
1455 	if (priv->chip_id == RCAR_GEN2)
1456 		ravb_ptp_stop(ndev);
1457 
1458 	/* Wait for DMA stopping */
1459 	if (ravb_stop_dma(ndev)) {
1460 		/* If ravb_stop_dma() fails, the hardware is still operating
1461 		 * for TX and/or RX. So, this should not call the following
1462 		 * functions because ravb_dmac_init() is possible to fail too.
1463 		 * Also, this should not retry ravb_stop_dma() again and again
1464 		 * here because it's possible to wait forever. So, this just
1465 		 * re-enables the TX and RX and skip the following
1466 		 * re-initialization procedure.
1467 		 */
1468 		ravb_rcv_snd_enable(ndev);
1469 		goto out;
1470 	}
1471 
1472 	ravb_ring_free(ndev, RAVB_BE);
1473 	ravb_ring_free(ndev, RAVB_NC);
1474 
1475 	/* Device init */
1476 	error = ravb_dmac_init(ndev);
1477 	if (error) {
1478 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1479 		 * should return here to avoid re-enabling the TX and RX in
1480 		 * ravb_emac_init().
1481 		 */
1482 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1483 			   __func__, error);
1484 		return;
1485 	}
1486 	ravb_emac_init(ndev);
1487 
1488 out:
1489 	/* Initialise PTP Clock driver */
1490 	if (priv->chip_id == RCAR_GEN2)
1491 		ravb_ptp_init(ndev, priv->pdev);
1492 
1493 	netif_tx_start_all_queues(ndev);
1494 }
1495 
1496 /* Packet transmit function for Ethernet AVB */
1497 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1498 {
1499 	struct ravb_private *priv = netdev_priv(ndev);
1500 	int num_tx_desc = priv->num_tx_desc;
1501 	u16 q = skb_get_queue_mapping(skb);
1502 	struct ravb_tstamp_skb *ts_skb;
1503 	struct ravb_tx_desc *desc;
1504 	unsigned long flags;
1505 	u32 dma_addr;
1506 	void *buffer;
1507 	u32 entry;
1508 	u32 len;
1509 
1510 	spin_lock_irqsave(&priv->lock, flags);
1511 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1512 	    num_tx_desc) {
1513 		netif_err(priv, tx_queued, ndev,
1514 			  "still transmitting with the full ring!\n");
1515 		netif_stop_subqueue(ndev, q);
1516 		spin_unlock_irqrestore(&priv->lock, flags);
1517 		return NETDEV_TX_BUSY;
1518 	}
1519 
1520 	if (skb_put_padto(skb, ETH_ZLEN))
1521 		goto exit;
1522 
1523 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1524 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1525 
1526 	if (num_tx_desc > 1) {
1527 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1528 			 entry / num_tx_desc * DPTR_ALIGN;
1529 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1530 
1531 		/* Zero length DMA descriptors are problematic as they seem
1532 		 * to terminate DMA transfers. Avoid them by simply using a
1533 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1534 		 * DPTR_ALIGN.
1535 		 *
1536 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1537 		 * bytes of data by the call to skb_put_padto() above this
1538 		 * is safe with respect to both the length of the first DMA
1539 		 * descriptor (len) overflowing the available data and the
1540 		 * length of the second DMA descriptor (skb->len - len)
1541 		 * being negative.
1542 		 */
1543 		if (len == 0)
1544 			len = DPTR_ALIGN;
1545 
1546 		memcpy(buffer, skb->data, len);
1547 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1548 					  DMA_TO_DEVICE);
1549 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1550 			goto drop;
1551 
1552 		desc = &priv->tx_ring[q][entry];
1553 		desc->ds_tagl = cpu_to_le16(len);
1554 		desc->dptr = cpu_to_le32(dma_addr);
1555 
1556 		buffer = skb->data + len;
1557 		len = skb->len - len;
1558 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1559 					  DMA_TO_DEVICE);
1560 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1561 			goto unmap;
1562 
1563 		desc++;
1564 	} else {
1565 		desc = &priv->tx_ring[q][entry];
1566 		len = skb->len;
1567 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1568 					  DMA_TO_DEVICE);
1569 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1570 			goto drop;
1571 	}
1572 	desc->ds_tagl = cpu_to_le16(len);
1573 	desc->dptr = cpu_to_le32(dma_addr);
1574 
1575 	/* TX timestamp required */
1576 	if (q == RAVB_NC) {
1577 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1578 		if (!ts_skb) {
1579 			if (num_tx_desc > 1) {
1580 				desc--;
1581 				dma_unmap_single(ndev->dev.parent, dma_addr,
1582 						 len, DMA_TO_DEVICE);
1583 			}
1584 			goto unmap;
1585 		}
1586 		ts_skb->skb = skb_get(skb);
1587 		ts_skb->tag = priv->ts_skb_tag++;
1588 		priv->ts_skb_tag &= 0x3ff;
1589 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1590 
1591 		/* TAG and timestamp required flag */
1592 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1593 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1594 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1595 	}
1596 
1597 	skb_tx_timestamp(skb);
1598 	/* Descriptor type must be set after all the above writes */
1599 	dma_wmb();
1600 	if (num_tx_desc > 1) {
1601 		desc->die_dt = DT_FEND;
1602 		desc--;
1603 		desc->die_dt = DT_FSTART;
1604 	} else {
1605 		desc->die_dt = DT_FSINGLE;
1606 	}
1607 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1608 
1609 	priv->cur_tx[q] += num_tx_desc;
1610 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1611 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1612 	    !ravb_tx_free(ndev, q, true))
1613 		netif_stop_subqueue(ndev, q);
1614 
1615 exit:
1616 	spin_unlock_irqrestore(&priv->lock, flags);
1617 	return NETDEV_TX_OK;
1618 
1619 unmap:
1620 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1621 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1622 drop:
1623 	dev_kfree_skb_any(skb);
1624 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1625 	goto exit;
1626 }
1627 
1628 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1629 			     struct net_device *sb_dev)
1630 {
1631 	/* If skb needs TX timestamp, it is handled in network control queue */
1632 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1633 							       RAVB_BE;
1634 
1635 }
1636 
1637 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1638 {
1639 	struct ravb_private *priv = netdev_priv(ndev);
1640 	struct net_device_stats *nstats, *stats0, *stats1;
1641 
1642 	nstats = &ndev->stats;
1643 	stats0 = &priv->stats[RAVB_BE];
1644 	stats1 = &priv->stats[RAVB_NC];
1645 
1646 	if (priv->chip_id == RCAR_GEN3) {
1647 		nstats->tx_dropped += ravb_read(ndev, TROCR);
1648 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1649 	}
1650 
1651 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1652 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1653 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1654 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1655 	nstats->multicast = stats0->multicast + stats1->multicast;
1656 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1657 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1658 	nstats->rx_frame_errors =
1659 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1660 	nstats->rx_length_errors =
1661 		stats0->rx_length_errors + stats1->rx_length_errors;
1662 	nstats->rx_missed_errors =
1663 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1664 	nstats->rx_over_errors =
1665 		stats0->rx_over_errors + stats1->rx_over_errors;
1666 
1667 	return nstats;
1668 }
1669 
1670 /* Update promiscuous bit */
1671 static void ravb_set_rx_mode(struct net_device *ndev)
1672 {
1673 	struct ravb_private *priv = netdev_priv(ndev);
1674 	unsigned long flags;
1675 
1676 	spin_lock_irqsave(&priv->lock, flags);
1677 	ravb_modify(ndev, ECMR, ECMR_PRM,
1678 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1679 	spin_unlock_irqrestore(&priv->lock, flags);
1680 }
1681 
1682 /* Device close function for Ethernet AVB */
1683 static int ravb_close(struct net_device *ndev)
1684 {
1685 	struct device_node *np = ndev->dev.parent->of_node;
1686 	struct ravb_private *priv = netdev_priv(ndev);
1687 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1688 
1689 	netif_tx_stop_all_queues(ndev);
1690 
1691 	/* Disable interrupts by clearing the interrupt masks. */
1692 	ravb_write(ndev, 0, RIC0);
1693 	ravb_write(ndev, 0, RIC2);
1694 	ravb_write(ndev, 0, TIC);
1695 
1696 	/* Stop PTP Clock driver */
1697 	if (priv->chip_id == RCAR_GEN2)
1698 		ravb_ptp_stop(ndev);
1699 
1700 	/* Set the config mode to stop the AVB-DMAC's processes */
1701 	if (ravb_stop_dma(ndev) < 0)
1702 		netdev_err(ndev,
1703 			   "device will be stopped after h/w processes are done.\n");
1704 
1705 	/* Clear the timestamp list */
1706 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1707 		list_del(&ts_skb->list);
1708 		kfree_skb(ts_skb->skb);
1709 		kfree(ts_skb);
1710 	}
1711 
1712 	/* PHY disconnect */
1713 	if (ndev->phydev) {
1714 		phy_stop(ndev->phydev);
1715 		phy_disconnect(ndev->phydev);
1716 		if (of_phy_is_fixed_link(np))
1717 			of_phy_deregister_fixed_link(np);
1718 	}
1719 
1720 	if (priv->chip_id != RCAR_GEN2) {
1721 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1722 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1723 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1724 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1725 		free_irq(priv->emac_irq, ndev);
1726 	}
1727 	free_irq(ndev->irq, ndev);
1728 
1729 	napi_disable(&priv->napi[RAVB_NC]);
1730 	napi_disable(&priv->napi[RAVB_BE]);
1731 
1732 	/* Free all the skb's in the RX queue and the DMA buffers. */
1733 	ravb_ring_free(ndev, RAVB_BE);
1734 	ravb_ring_free(ndev, RAVB_NC);
1735 
1736 	return 0;
1737 }
1738 
1739 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1740 {
1741 	struct ravb_private *priv = netdev_priv(ndev);
1742 	struct hwtstamp_config config;
1743 
1744 	config.flags = 0;
1745 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1746 						HWTSTAMP_TX_OFF;
1747 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
1748 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
1749 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1750 		break;
1751 	case RAVB_RXTSTAMP_TYPE_ALL:
1752 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1753 		break;
1754 	default:
1755 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1756 	}
1757 
1758 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1759 		-EFAULT : 0;
1760 }
1761 
1762 /* Control hardware time stamping */
1763 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1764 {
1765 	struct ravb_private *priv = netdev_priv(ndev);
1766 	struct hwtstamp_config config;
1767 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1768 	u32 tstamp_tx_ctrl;
1769 
1770 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1771 		return -EFAULT;
1772 
1773 	/* Reserved for future extensions */
1774 	if (config.flags)
1775 		return -EINVAL;
1776 
1777 	switch (config.tx_type) {
1778 	case HWTSTAMP_TX_OFF:
1779 		tstamp_tx_ctrl = 0;
1780 		break;
1781 	case HWTSTAMP_TX_ON:
1782 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1783 		break;
1784 	default:
1785 		return -ERANGE;
1786 	}
1787 
1788 	switch (config.rx_filter) {
1789 	case HWTSTAMP_FILTER_NONE:
1790 		tstamp_rx_ctrl = 0;
1791 		break;
1792 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1793 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1794 		break;
1795 	default:
1796 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1797 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1798 	}
1799 
1800 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1801 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1802 
1803 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1804 		-EFAULT : 0;
1805 }
1806 
1807 /* ioctl to device function */
1808 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1809 {
1810 	struct phy_device *phydev = ndev->phydev;
1811 
1812 	if (!netif_running(ndev))
1813 		return -EINVAL;
1814 
1815 	if (!phydev)
1816 		return -ENODEV;
1817 
1818 	switch (cmd) {
1819 	case SIOCGHWTSTAMP:
1820 		return ravb_hwtstamp_get(ndev, req);
1821 	case SIOCSHWTSTAMP:
1822 		return ravb_hwtstamp_set(ndev, req);
1823 	}
1824 
1825 	return phy_mii_ioctl(phydev, req, cmd);
1826 }
1827 
1828 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1829 {
1830 	struct ravb_private *priv = netdev_priv(ndev);
1831 
1832 	ndev->mtu = new_mtu;
1833 
1834 	if (netif_running(ndev)) {
1835 		synchronize_irq(priv->emac_irq);
1836 		ravb_emac_init(ndev);
1837 	}
1838 
1839 	netdev_update_features(ndev);
1840 
1841 	return 0;
1842 }
1843 
1844 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1845 {
1846 	struct ravb_private *priv = netdev_priv(ndev);
1847 	unsigned long flags;
1848 
1849 	spin_lock_irqsave(&priv->lock, flags);
1850 
1851 	/* Disable TX and RX */
1852 	ravb_rcv_snd_disable(ndev);
1853 
1854 	/* Modify RX Checksum setting */
1855 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1856 
1857 	/* Enable TX and RX */
1858 	ravb_rcv_snd_enable(ndev);
1859 
1860 	spin_unlock_irqrestore(&priv->lock, flags);
1861 }
1862 
1863 static int ravb_set_features(struct net_device *ndev,
1864 			     netdev_features_t features)
1865 {
1866 	netdev_features_t changed = ndev->features ^ features;
1867 
1868 	if (changed & NETIF_F_RXCSUM)
1869 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1870 
1871 	ndev->features = features;
1872 
1873 	return 0;
1874 }
1875 
1876 static const struct net_device_ops ravb_netdev_ops = {
1877 	.ndo_open		= ravb_open,
1878 	.ndo_stop		= ravb_close,
1879 	.ndo_start_xmit		= ravb_start_xmit,
1880 	.ndo_select_queue	= ravb_select_queue,
1881 	.ndo_get_stats		= ravb_get_stats,
1882 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1883 	.ndo_tx_timeout		= ravb_tx_timeout,
1884 	.ndo_do_ioctl		= ravb_do_ioctl,
1885 	.ndo_change_mtu		= ravb_change_mtu,
1886 	.ndo_validate_addr	= eth_validate_addr,
1887 	.ndo_set_mac_address	= eth_mac_addr,
1888 	.ndo_set_features	= ravb_set_features,
1889 };
1890 
1891 /* MDIO bus init function */
1892 static int ravb_mdio_init(struct ravb_private *priv)
1893 {
1894 	struct platform_device *pdev = priv->pdev;
1895 	struct device *dev = &pdev->dev;
1896 	int error;
1897 
1898 	/* Bitbang init */
1899 	priv->mdiobb.ops = &bb_ops;
1900 
1901 	/* MII controller setting */
1902 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1903 	if (!priv->mii_bus)
1904 		return -ENOMEM;
1905 
1906 	/* Hook up MII support for ethtool */
1907 	priv->mii_bus->name = "ravb_mii";
1908 	priv->mii_bus->parent = dev;
1909 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1910 		 pdev->name, pdev->id);
1911 
1912 	/* Register MDIO bus */
1913 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1914 	if (error)
1915 		goto out_free_bus;
1916 
1917 	return 0;
1918 
1919 out_free_bus:
1920 	free_mdio_bitbang(priv->mii_bus);
1921 	return error;
1922 }
1923 
1924 /* MDIO bus release function */
1925 static int ravb_mdio_release(struct ravb_private *priv)
1926 {
1927 	/* Unregister mdio bus */
1928 	mdiobus_unregister(priv->mii_bus);
1929 
1930 	/* Free bitbang info */
1931 	free_mdio_bitbang(priv->mii_bus);
1932 
1933 	return 0;
1934 }
1935 
1936 static const struct of_device_id ravb_match_table[] = {
1937 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1938 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1939 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1940 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1941 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1942 	{ }
1943 };
1944 MODULE_DEVICE_TABLE(of, ravb_match_table);
1945 
1946 static int ravb_set_gti(struct net_device *ndev)
1947 {
1948 	struct ravb_private *priv = netdev_priv(ndev);
1949 	struct device *dev = ndev->dev.parent;
1950 	unsigned long rate;
1951 	uint64_t inc;
1952 
1953 	rate = clk_get_rate(priv->clk);
1954 	if (!rate)
1955 		return -EINVAL;
1956 
1957 	inc = 1000000000ULL << 20;
1958 	do_div(inc, rate);
1959 
1960 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1961 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1962 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1963 		return -EINVAL;
1964 	}
1965 
1966 	ravb_write(ndev, inc, GTI);
1967 
1968 	return 0;
1969 }
1970 
1971 static void ravb_set_config_mode(struct net_device *ndev)
1972 {
1973 	struct ravb_private *priv = netdev_priv(ndev);
1974 
1975 	if (priv->chip_id == RCAR_GEN2) {
1976 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1977 		/* Set CSEL value */
1978 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1979 	} else {
1980 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1981 			    CCC_GAC | CCC_CSEL_HPB);
1982 	}
1983 }
1984 
1985 static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1986 	{ .soc_id = "r8a774c0" },
1987 	{ .soc_id = "r8a77990" },
1988 	{ .soc_id = "r8a77995" },
1989 	{ /* sentinel */ }
1990 };
1991 
1992 /* Set tx and rx clock internal delay modes */
1993 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1994 {
1995 	struct ravb_private *priv = netdev_priv(ndev);
1996 	bool explicit_delay = false;
1997 	u32 delay;
1998 
1999 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2000 		/* Valid values are 0 and 1800, according to DT bindings */
2001 		priv->rxcidm = !!delay;
2002 		explicit_delay = true;
2003 	}
2004 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2005 		/* Valid values are 0 and 2000, according to DT bindings */
2006 		priv->txcidm = !!delay;
2007 		explicit_delay = true;
2008 	}
2009 
2010 	if (explicit_delay)
2011 		return;
2012 
2013 	/* Fall back to legacy rgmii-*id behavior */
2014 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2015 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2016 		priv->rxcidm = 1;
2017 		priv->rgmii_override = 1;
2018 	}
2019 
2020 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2021 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2022 		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
2023 			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
2024 			  phy_modes(priv->phy_interface))) {
2025 			priv->txcidm = 1;
2026 			priv->rgmii_override = 1;
2027 		}
2028 	}
2029 }
2030 
2031 static void ravb_set_delay_mode(struct net_device *ndev)
2032 {
2033 	struct ravb_private *priv = netdev_priv(ndev);
2034 	u32 set = 0;
2035 
2036 	if (priv->rxcidm)
2037 		set |= APSR_RDM;
2038 	if (priv->txcidm)
2039 		set |= APSR_TDM;
2040 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2041 }
2042 
2043 static int ravb_probe(struct platform_device *pdev)
2044 {
2045 	struct device_node *np = pdev->dev.of_node;
2046 	struct ravb_private *priv;
2047 	enum ravb_chip_id chip_id;
2048 	struct net_device *ndev;
2049 	int error, irq, q;
2050 	struct resource *res;
2051 	int i;
2052 
2053 	if (!np) {
2054 		dev_err(&pdev->dev,
2055 			"this driver is required to be instantiated from device tree\n");
2056 		return -EINVAL;
2057 	}
2058 
2059 	/* Get base address */
2060 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2061 	if (!res) {
2062 		dev_err(&pdev->dev, "invalid resource\n");
2063 		return -EINVAL;
2064 	}
2065 
2066 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2067 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2068 	if (!ndev)
2069 		return -ENOMEM;
2070 
2071 	ndev->features = NETIF_F_RXCSUM;
2072 	ndev->hw_features = NETIF_F_RXCSUM;
2073 
2074 	pm_runtime_enable(&pdev->dev);
2075 	pm_runtime_get_sync(&pdev->dev);
2076 
2077 	/* The Ether-specific entries in the device structure. */
2078 	ndev->base_addr = res->start;
2079 
2080 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2081 
2082 	if (chip_id == RCAR_GEN3)
2083 		irq = platform_get_irq_byname(pdev, "ch22");
2084 	else
2085 		irq = platform_get_irq(pdev, 0);
2086 	if (irq < 0) {
2087 		error = irq;
2088 		goto out_release;
2089 	}
2090 	ndev->irq = irq;
2091 
2092 	SET_NETDEV_DEV(ndev, &pdev->dev);
2093 
2094 	priv = netdev_priv(ndev);
2095 	priv->ndev = ndev;
2096 	priv->pdev = pdev;
2097 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2098 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2099 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2100 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2101 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2102 	if (IS_ERR(priv->addr)) {
2103 		error = PTR_ERR(priv->addr);
2104 		goto out_release;
2105 	}
2106 
2107 	spin_lock_init(&priv->lock);
2108 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2109 
2110 	error = of_get_phy_mode(np, &priv->phy_interface);
2111 	if (error && error != -ENODEV)
2112 		goto out_release;
2113 
2114 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2115 	priv->avb_link_active_low =
2116 		of_property_read_bool(np, "renesas,ether-link-active-low");
2117 
2118 	if (chip_id == RCAR_GEN3) {
2119 		irq = platform_get_irq_byname(pdev, "ch24");
2120 		if (irq < 0) {
2121 			error = irq;
2122 			goto out_release;
2123 		}
2124 		priv->emac_irq = irq;
2125 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2126 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2127 			if (irq < 0) {
2128 				error = irq;
2129 				goto out_release;
2130 			}
2131 			priv->rx_irqs[i] = irq;
2132 		}
2133 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2134 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2135 			if (irq < 0) {
2136 				error = irq;
2137 				goto out_release;
2138 			}
2139 			priv->tx_irqs[i] = irq;
2140 		}
2141 	}
2142 
2143 	priv->chip_id = chip_id;
2144 
2145 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2146 	if (IS_ERR(priv->clk)) {
2147 		error = PTR_ERR(priv->clk);
2148 		goto out_release;
2149 	}
2150 
2151 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2152 	ndev->min_mtu = ETH_MIN_MTU;
2153 
2154 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2155 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2156 
2157 	/* Set function */
2158 	ndev->netdev_ops = &ravb_netdev_ops;
2159 	ndev->ethtool_ops = &ravb_ethtool_ops;
2160 
2161 	/* Set AVB config mode */
2162 	ravb_set_config_mode(ndev);
2163 
2164 	/* Set GTI value */
2165 	error = ravb_set_gti(ndev);
2166 	if (error)
2167 		goto out_release;
2168 
2169 	/* Request GTI loading */
2170 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2171 
2172 	if (priv->chip_id != RCAR_GEN2) {
2173 		ravb_parse_delay_mode(np, ndev);
2174 		ravb_set_delay_mode(ndev);
2175 	}
2176 
2177 	/* Allocate descriptor base address table */
2178 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2179 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2180 					    &priv->desc_bat_dma, GFP_KERNEL);
2181 	if (!priv->desc_bat) {
2182 		dev_err(&pdev->dev,
2183 			"Cannot allocate desc base address table (size %d bytes)\n",
2184 			priv->desc_bat_size);
2185 		error = -ENOMEM;
2186 		goto out_release;
2187 	}
2188 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2189 		priv->desc_bat[q].die_dt = DT_EOS;
2190 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2191 
2192 	/* Initialise HW timestamp list */
2193 	INIT_LIST_HEAD(&priv->ts_skb_list);
2194 
2195 	/* Initialise PTP Clock driver */
2196 	if (chip_id != RCAR_GEN2)
2197 		ravb_ptp_init(ndev, pdev);
2198 
2199 	/* Debug message level */
2200 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2201 
2202 	/* Read and set MAC address */
2203 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2204 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2205 		dev_warn(&pdev->dev,
2206 			 "no valid MAC address supplied, using a random one\n");
2207 		eth_hw_addr_random(ndev);
2208 	}
2209 
2210 	/* MDIO bus init */
2211 	error = ravb_mdio_init(priv);
2212 	if (error) {
2213 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2214 		goto out_dma_free;
2215 	}
2216 
2217 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2218 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2219 
2220 	/* Network device register */
2221 	error = register_netdev(ndev);
2222 	if (error)
2223 		goto out_napi_del;
2224 
2225 	device_set_wakeup_capable(&pdev->dev, 1);
2226 
2227 	/* Print device information */
2228 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2229 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2230 
2231 	platform_set_drvdata(pdev, ndev);
2232 
2233 	return 0;
2234 
2235 out_napi_del:
2236 	netif_napi_del(&priv->napi[RAVB_NC]);
2237 	netif_napi_del(&priv->napi[RAVB_BE]);
2238 	ravb_mdio_release(priv);
2239 out_dma_free:
2240 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2241 			  priv->desc_bat_dma);
2242 
2243 	/* Stop PTP Clock driver */
2244 	if (chip_id != RCAR_GEN2)
2245 		ravb_ptp_stop(ndev);
2246 out_release:
2247 	free_netdev(ndev);
2248 
2249 	pm_runtime_put(&pdev->dev);
2250 	pm_runtime_disable(&pdev->dev);
2251 	return error;
2252 }
2253 
2254 static int ravb_remove(struct platform_device *pdev)
2255 {
2256 	struct net_device *ndev = platform_get_drvdata(pdev);
2257 	struct ravb_private *priv = netdev_priv(ndev);
2258 
2259 	/* Stop PTP Clock driver */
2260 	if (priv->chip_id != RCAR_GEN2)
2261 		ravb_ptp_stop(ndev);
2262 
2263 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2264 			  priv->desc_bat_dma);
2265 	/* Set reset mode */
2266 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2267 	pm_runtime_put_sync(&pdev->dev);
2268 	unregister_netdev(ndev);
2269 	netif_napi_del(&priv->napi[RAVB_NC]);
2270 	netif_napi_del(&priv->napi[RAVB_BE]);
2271 	ravb_mdio_release(priv);
2272 	pm_runtime_disable(&pdev->dev);
2273 	free_netdev(ndev);
2274 	platform_set_drvdata(pdev, NULL);
2275 
2276 	return 0;
2277 }
2278 
2279 static int ravb_wol_setup(struct net_device *ndev)
2280 {
2281 	struct ravb_private *priv = netdev_priv(ndev);
2282 
2283 	/* Disable interrupts by clearing the interrupt masks. */
2284 	ravb_write(ndev, 0, RIC0);
2285 	ravb_write(ndev, 0, RIC2);
2286 	ravb_write(ndev, 0, TIC);
2287 
2288 	/* Only allow ECI interrupts */
2289 	synchronize_irq(priv->emac_irq);
2290 	napi_disable(&priv->napi[RAVB_NC]);
2291 	napi_disable(&priv->napi[RAVB_BE]);
2292 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2293 
2294 	/* Enable MagicPacket */
2295 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2296 
2297 	return enable_irq_wake(priv->emac_irq);
2298 }
2299 
2300 static int ravb_wol_restore(struct net_device *ndev)
2301 {
2302 	struct ravb_private *priv = netdev_priv(ndev);
2303 	int ret;
2304 
2305 	napi_enable(&priv->napi[RAVB_NC]);
2306 	napi_enable(&priv->napi[RAVB_BE]);
2307 
2308 	/* Disable MagicPacket */
2309 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2310 
2311 	ret = ravb_close(ndev);
2312 	if (ret < 0)
2313 		return ret;
2314 
2315 	return disable_irq_wake(priv->emac_irq);
2316 }
2317 
2318 static int __maybe_unused ravb_suspend(struct device *dev)
2319 {
2320 	struct net_device *ndev = dev_get_drvdata(dev);
2321 	struct ravb_private *priv = netdev_priv(ndev);
2322 	int ret;
2323 
2324 	if (!netif_running(ndev))
2325 		return 0;
2326 
2327 	netif_device_detach(ndev);
2328 
2329 	if (priv->wol_enabled)
2330 		ret = ravb_wol_setup(ndev);
2331 	else
2332 		ret = ravb_close(ndev);
2333 
2334 	return ret;
2335 }
2336 
2337 static int __maybe_unused ravb_resume(struct device *dev)
2338 {
2339 	struct net_device *ndev = dev_get_drvdata(dev);
2340 	struct ravb_private *priv = netdev_priv(ndev);
2341 	int ret = 0;
2342 
2343 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2344 	if (priv->wol_enabled)
2345 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2346 
2347 	/* All register have been reset to default values.
2348 	 * Restore all registers which where setup at probe time and
2349 	 * reopen device if it was running before system suspended.
2350 	 */
2351 
2352 	/* Set AVB config mode */
2353 	ravb_set_config_mode(ndev);
2354 
2355 	/* Set GTI value */
2356 	ret = ravb_set_gti(ndev);
2357 	if (ret)
2358 		return ret;
2359 
2360 	/* Request GTI loading */
2361 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2362 
2363 	if (priv->chip_id != RCAR_GEN2)
2364 		ravb_set_delay_mode(ndev);
2365 
2366 	/* Restore descriptor base address table */
2367 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2368 
2369 	if (netif_running(ndev)) {
2370 		if (priv->wol_enabled) {
2371 			ret = ravb_wol_restore(ndev);
2372 			if (ret)
2373 				return ret;
2374 		}
2375 		ret = ravb_open(ndev);
2376 		if (ret < 0)
2377 			return ret;
2378 		netif_device_attach(ndev);
2379 	}
2380 
2381 	return ret;
2382 }
2383 
2384 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2385 {
2386 	/* Runtime PM callback shared between ->runtime_suspend()
2387 	 * and ->runtime_resume(). Simply returns success.
2388 	 *
2389 	 * This driver re-initializes all registers after
2390 	 * pm_runtime_get_sync() anyway so there is no need
2391 	 * to save and restore registers here.
2392 	 */
2393 	return 0;
2394 }
2395 
2396 static const struct dev_pm_ops ravb_dev_pm_ops = {
2397 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2398 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2399 };
2400 
2401 static struct platform_driver ravb_driver = {
2402 	.probe		= ravb_probe,
2403 	.remove		= ravb_remove,
2404 	.driver = {
2405 		.name	= "ravb",
2406 		.pm	= &ravb_dev_pm_ops,
2407 		.of_match_table = ravb_match_table,
2408 	},
2409 };
2410 
2411 module_platform_driver(ravb_driver);
2412 
2413 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2414 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2415 MODULE_LICENSE("GPL v2");
2416