1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include <asm/div64.h>
36 
37 #include "ravb.h"
38 
39 #define RAVB_DEF_MSG_ENABLE \
40 		(NETIF_MSG_LINK	  | \
41 		 NETIF_MSG_TIMER  | \
42 		 NETIF_MSG_RX_ERR | \
43 		 NETIF_MSG_TX_ERR)
44 
45 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
46 {
47 	int i;
48 
49 	for (i = 0; i < 10000; i++) {
50 		if ((ravb_read(ndev, reg) & mask) == value)
51 			return 0;
52 		udelay(10);
53 	}
54 	return -ETIMEDOUT;
55 }
56 
57 static int ravb_config(struct net_device *ndev)
58 {
59 	int error;
60 
61 	/* Set config mode */
62 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
63 		   CCC);
64 	/* Check if the operating mode is changed to the config mode */
65 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
66 	if (error)
67 		netdev_err(ndev, "failed to switch device to config mode\n");
68 
69 	return error;
70 }
71 
72 static void ravb_set_duplex(struct net_device *ndev)
73 {
74 	struct ravb_private *priv = netdev_priv(ndev);
75 	u32 ecmr = ravb_read(ndev, ECMR);
76 
77 	if (priv->duplex)	/* Full */
78 		ecmr |=  ECMR_DM;
79 	else			/* Half */
80 		ecmr &= ~ECMR_DM;
81 	ravb_write(ndev, ecmr, ECMR);
82 }
83 
84 static void ravb_set_rate(struct net_device *ndev)
85 {
86 	struct ravb_private *priv = netdev_priv(ndev);
87 
88 	switch (priv->speed) {
89 	case 100:		/* 100BASE */
90 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
91 		break;
92 	case 1000:		/* 1000BASE */
93 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
94 		break;
95 	default:
96 		break;
97 	}
98 }
99 
100 static void ravb_set_buffer_align(struct sk_buff *skb)
101 {
102 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
103 
104 	if (reserve)
105 		skb_reserve(skb, RAVB_ALIGN - reserve);
106 }
107 
108 /* Get MAC address from the MAC address registers
109  *
110  * Ethernet AVB device doesn't have ROM for MAC address.
111  * This function gets the MAC address that was used by a bootloader.
112  */
113 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
114 {
115 	if (mac) {
116 		ether_addr_copy(ndev->dev_addr, mac);
117 	} else {
118 		u32 mahr = ravb_read(ndev, MAHR);
119 		u32 malr = ravb_read(ndev, MALR);
120 
121 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
122 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
123 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
124 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
125 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
126 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
127 	}
128 }
129 
130 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
131 {
132 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
133 						 mdiobb);
134 	u32 pir = ravb_read(priv->ndev, PIR);
135 
136 	if (set)
137 		pir |=  mask;
138 	else
139 		pir &= ~mask;
140 	ravb_write(priv->ndev, pir, PIR);
141 }
142 
143 /* MDC pin control */
144 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
147 }
148 
149 /* Data I/O pin control */
150 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
153 }
154 
155 /* Set data bit */
156 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
157 {
158 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
159 }
160 
161 /* Get data bit */
162 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
163 {
164 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
165 						 mdiobb);
166 
167 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
168 }
169 
170 /* MDIO bus control struct */
171 static struct mdiobb_ops bb_ops = {
172 	.owner = THIS_MODULE,
173 	.set_mdc = ravb_set_mdc,
174 	.set_mdio_dir = ravb_set_mdio_dir,
175 	.set_mdio_data = ravb_set_mdio_data,
176 	.get_mdio_data = ravb_get_mdio_data,
177 };
178 
179 /* Free skb's and DMA buffers for Ethernet AVB */
180 static void ravb_ring_free(struct net_device *ndev, int q)
181 {
182 	struct ravb_private *priv = netdev_priv(ndev);
183 	int ring_size;
184 	int i;
185 
186 	/* Free RX skb ringbuffer */
187 	if (priv->rx_skb[q]) {
188 		for (i = 0; i < priv->num_rx_ring[q]; i++)
189 			dev_kfree_skb(priv->rx_skb[q][i]);
190 	}
191 	kfree(priv->rx_skb[q]);
192 	priv->rx_skb[q] = NULL;
193 
194 	/* Free TX skb ringbuffer */
195 	if (priv->tx_skb[q]) {
196 		for (i = 0; i < priv->num_tx_ring[q]; i++)
197 			dev_kfree_skb(priv->tx_skb[q][i]);
198 	}
199 	kfree(priv->tx_skb[q]);
200 	priv->tx_skb[q] = NULL;
201 
202 	/* Free aligned TX buffers */
203 	kfree(priv->tx_align[q]);
204 	priv->tx_align[q] = NULL;
205 
206 	if (priv->rx_ring[q]) {
207 		ring_size = sizeof(struct ravb_ex_rx_desc) *
208 			    (priv->num_rx_ring[q] + 1);
209 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
210 				  priv->rx_desc_dma[q]);
211 		priv->rx_ring[q] = NULL;
212 	}
213 
214 	if (priv->tx_ring[q]) {
215 		ring_size = sizeof(struct ravb_tx_desc) *
216 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
217 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
218 				  priv->tx_desc_dma[q]);
219 		priv->tx_ring[q] = NULL;
220 	}
221 }
222 
223 /* Format skb and descriptor buffer for Ethernet AVB */
224 static void ravb_ring_format(struct net_device *ndev, int q)
225 {
226 	struct ravb_private *priv = netdev_priv(ndev);
227 	struct ravb_ex_rx_desc *rx_desc;
228 	struct ravb_tx_desc *tx_desc;
229 	struct ravb_desc *desc;
230 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
231 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
232 			   NUM_TX_DESC;
233 	dma_addr_t dma_addr;
234 	int i;
235 
236 	priv->cur_rx[q] = 0;
237 	priv->cur_tx[q] = 0;
238 	priv->dirty_rx[q] = 0;
239 	priv->dirty_tx[q] = 0;
240 
241 	memset(priv->rx_ring[q], 0, rx_ring_size);
242 	/* Build RX ring buffer */
243 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
244 		/* RX descriptor */
245 		rx_desc = &priv->rx_ring[q][i];
246 		/* The size of the buffer should be on 16-byte boundary. */
247 		rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
248 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
249 					  ALIGN(PKT_BUF_SZ, 16),
250 					  DMA_FROM_DEVICE);
251 		/* We just set the data size to 0 for a failed mapping which
252 		 * should prevent DMA from happening...
253 		 */
254 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
255 			rx_desc->ds_cc = cpu_to_le16(0);
256 		rx_desc->dptr = cpu_to_le32(dma_addr);
257 		rx_desc->die_dt = DT_FEMPTY;
258 	}
259 	rx_desc = &priv->rx_ring[q][i];
260 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
261 	rx_desc->die_dt = DT_LINKFIX; /* type */
262 
263 	memset(priv->tx_ring[q], 0, tx_ring_size);
264 	/* Build TX ring buffer */
265 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
266 	     i++, tx_desc++) {
267 		tx_desc->die_dt = DT_EEMPTY;
268 		tx_desc++;
269 		tx_desc->die_dt = DT_EEMPTY;
270 	}
271 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
272 	tx_desc->die_dt = DT_LINKFIX; /* type */
273 
274 	/* RX descriptor base address for best effort */
275 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
276 	desc->die_dt = DT_LINKFIX; /* type */
277 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
278 
279 	/* TX descriptor base address for best effort */
280 	desc = &priv->desc_bat[q];
281 	desc->die_dt = DT_LINKFIX; /* type */
282 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
283 }
284 
285 /* Init skb and descriptor buffer for Ethernet AVB */
286 static int ravb_ring_init(struct net_device *ndev, int q)
287 {
288 	struct ravb_private *priv = netdev_priv(ndev);
289 	struct sk_buff *skb;
290 	int ring_size;
291 	int i;
292 
293 	/* Allocate RX and TX skb rings */
294 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
295 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
296 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
297 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
298 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
299 		goto error;
300 
301 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
302 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
303 		if (!skb)
304 			goto error;
305 		ravb_set_buffer_align(skb);
306 		priv->rx_skb[q][i] = skb;
307 	}
308 
309 	/* Allocate rings for the aligned buffers */
310 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
311 				    DPTR_ALIGN - 1, GFP_KERNEL);
312 	if (!priv->tx_align[q])
313 		goto error;
314 
315 	/* Allocate all RX descriptors. */
316 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
317 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
318 					      &priv->rx_desc_dma[q],
319 					      GFP_KERNEL);
320 	if (!priv->rx_ring[q])
321 		goto error;
322 
323 	priv->dirty_rx[q] = 0;
324 
325 	/* Allocate all TX descriptors. */
326 	ring_size = sizeof(struct ravb_tx_desc) *
327 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
328 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
329 					      &priv->tx_desc_dma[q],
330 					      GFP_KERNEL);
331 	if (!priv->tx_ring[q])
332 		goto error;
333 
334 	return 0;
335 
336 error:
337 	ravb_ring_free(ndev, q);
338 
339 	return -ENOMEM;
340 }
341 
342 /* E-MAC init function */
343 static void ravb_emac_init(struct net_device *ndev)
344 {
345 	struct ravb_private *priv = netdev_priv(ndev);
346 
347 	/* Receive frame limit set register */
348 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
349 
350 	/* PAUSE prohibition */
351 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
352 		   ECMR_TE | ECMR_RE, ECMR);
353 
354 	ravb_set_rate(ndev);
355 
356 	/* Set MAC address */
357 	ravb_write(ndev,
358 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
359 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
360 	ravb_write(ndev,
361 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
362 
363 	ravb_write(ndev, 1, MPR);
364 
365 	/* E-MAC status register clear */
366 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
367 
368 	/* E-MAC interrupt enable register */
369 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
370 }
371 
372 /* Device init function for Ethernet AVB */
373 static int ravb_dmac_init(struct net_device *ndev)
374 {
375 	int error;
376 
377 	/* Set CONFIG mode */
378 	error = ravb_config(ndev);
379 	if (error)
380 		return error;
381 
382 	error = ravb_ring_init(ndev, RAVB_BE);
383 	if (error)
384 		return error;
385 	error = ravb_ring_init(ndev, RAVB_NC);
386 	if (error) {
387 		ravb_ring_free(ndev, RAVB_BE);
388 		return error;
389 	}
390 
391 	/* Descriptor format */
392 	ravb_ring_format(ndev, RAVB_BE);
393 	ravb_ring_format(ndev, RAVB_NC);
394 
395 #if defined(__LITTLE_ENDIAN)
396 	ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC);
397 #else
398 	ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC);
399 #endif
400 
401 	/* Set AVB RX */
402 	ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
403 
404 	/* Set FIFO size */
405 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
406 
407 	/* Timestamp enable */
408 	ravb_write(ndev, TCCR_TFEN, TCCR);
409 
410 	/* Interrupt init: */
411 	/* Frame receive */
412 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
413 	/* Disable FIFO full warning */
414 	ravb_write(ndev, 0, RIC1);
415 	/* Receive FIFO full error, descriptor empty */
416 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
417 	/* Frame transmitted, timestamp FIFO updated */
418 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
419 
420 	/* Setting the control will start the AVB-DMAC process. */
421 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION,
422 		   CCC);
423 
424 	return 0;
425 }
426 
427 /* Free TX skb function for AVB-IP */
428 static int ravb_tx_free(struct net_device *ndev, int q)
429 {
430 	struct ravb_private *priv = netdev_priv(ndev);
431 	struct net_device_stats *stats = &priv->stats[q];
432 	struct ravb_tx_desc *desc;
433 	int free_num = 0;
434 	int entry;
435 	u32 size;
436 
437 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
438 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
439 					     NUM_TX_DESC);
440 		desc = &priv->tx_ring[q][entry];
441 		if (desc->die_dt != DT_FEMPTY)
442 			break;
443 		/* Descriptor type must be checked before all other reads */
444 		dma_rmb();
445 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
446 		/* Free the original skb. */
447 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
448 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
449 					 size, DMA_TO_DEVICE);
450 			/* Last packet descriptor? */
451 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
452 				entry /= NUM_TX_DESC;
453 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
454 				priv->tx_skb[q][entry] = NULL;
455 				stats->tx_packets++;
456 			}
457 			free_num++;
458 		}
459 		stats->tx_bytes += size;
460 		desc->die_dt = DT_EEMPTY;
461 	}
462 	return free_num;
463 }
464 
465 static void ravb_get_tx_tstamp(struct net_device *ndev)
466 {
467 	struct ravb_private *priv = netdev_priv(ndev);
468 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
469 	struct skb_shared_hwtstamps shhwtstamps;
470 	struct sk_buff *skb;
471 	struct timespec64 ts;
472 	u16 tag, tfa_tag;
473 	int count;
474 	u32 tfa2;
475 
476 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
477 	while (count--) {
478 		tfa2 = ravb_read(ndev, TFA2);
479 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
480 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
481 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
482 			    ravb_read(ndev, TFA1);
483 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
484 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
485 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
486 					 list) {
487 			skb = ts_skb->skb;
488 			tag = ts_skb->tag;
489 			list_del(&ts_skb->list);
490 			kfree(ts_skb);
491 			if (tag == tfa_tag) {
492 				skb_tstamp_tx(skb, &shhwtstamps);
493 				break;
494 			}
495 		}
496 		ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR);
497 	}
498 }
499 
500 /* Packet receive function for Ethernet AVB */
501 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
502 {
503 	struct ravb_private *priv = netdev_priv(ndev);
504 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
505 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
506 			priv->cur_rx[q];
507 	struct net_device_stats *stats = &priv->stats[q];
508 	struct ravb_ex_rx_desc *desc;
509 	struct sk_buff *skb;
510 	dma_addr_t dma_addr;
511 	struct timespec64 ts;
512 	u8  desc_status;
513 	u16 pkt_len;
514 	int limit;
515 
516 	boguscnt = min(boguscnt, *quota);
517 	limit = boguscnt;
518 	desc = &priv->rx_ring[q][entry];
519 	while (desc->die_dt != DT_FEMPTY) {
520 		/* Descriptor type must be checked before all other reads */
521 		dma_rmb();
522 		desc_status = desc->msc;
523 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
524 
525 		if (--boguscnt < 0)
526 			break;
527 
528 		/* We use 0-byte descriptors to mark the DMA mapping errors */
529 		if (!pkt_len)
530 			continue;
531 
532 		if (desc_status & MSC_MC)
533 			stats->multicast++;
534 
535 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
536 				   MSC_CEEF)) {
537 			stats->rx_errors++;
538 			if (desc_status & MSC_CRC)
539 				stats->rx_crc_errors++;
540 			if (desc_status & MSC_RFE)
541 				stats->rx_frame_errors++;
542 			if (desc_status & (MSC_RTLF | MSC_RTSF))
543 				stats->rx_length_errors++;
544 			if (desc_status & MSC_CEEF)
545 				stats->rx_missed_errors++;
546 		} else {
547 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
548 
549 			skb = priv->rx_skb[q][entry];
550 			priv->rx_skb[q][entry] = NULL;
551 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
552 					 ALIGN(PKT_BUF_SZ, 16),
553 					 DMA_FROM_DEVICE);
554 			get_ts &= (q == RAVB_NC) ?
555 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
556 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
557 			if (get_ts) {
558 				struct skb_shared_hwtstamps *shhwtstamps;
559 
560 				shhwtstamps = skb_hwtstamps(skb);
561 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
562 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
563 					     32) | le32_to_cpu(desc->ts_sl);
564 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
565 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
566 			}
567 			skb_put(skb, pkt_len);
568 			skb->protocol = eth_type_trans(skb, ndev);
569 			napi_gro_receive(&priv->napi[q], skb);
570 			stats->rx_packets++;
571 			stats->rx_bytes += pkt_len;
572 		}
573 
574 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
575 		desc = &priv->rx_ring[q][entry];
576 	}
577 
578 	/* Refill the RX ring buffers. */
579 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
580 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
581 		desc = &priv->rx_ring[q][entry];
582 		/* The size of the buffer should be on 16-byte boundary. */
583 		desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
584 
585 		if (!priv->rx_skb[q][entry]) {
586 			skb = netdev_alloc_skb(ndev,
587 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
588 			if (!skb)
589 				break;	/* Better luck next round. */
590 			ravb_set_buffer_align(skb);
591 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
592 						  le16_to_cpu(desc->ds_cc),
593 						  DMA_FROM_DEVICE);
594 			skb_checksum_none_assert(skb);
595 			/* We just set the data size to 0 for a failed mapping
596 			 * which should prevent DMA  from happening...
597 			 */
598 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
599 				desc->ds_cc = cpu_to_le16(0);
600 			desc->dptr = cpu_to_le32(dma_addr);
601 			priv->rx_skb[q][entry] = skb;
602 		}
603 		/* Descriptor type must be set after all the above writes */
604 		dma_wmb();
605 		desc->die_dt = DT_FEMPTY;
606 	}
607 
608 	*quota -= limit - (++boguscnt);
609 
610 	return boguscnt <= 0;
611 }
612 
613 static void ravb_rcv_snd_disable(struct net_device *ndev)
614 {
615 	/* Disable TX and RX */
616 	ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR);
617 }
618 
619 static void ravb_rcv_snd_enable(struct net_device *ndev)
620 {
621 	/* Enable TX and RX */
622 	ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR);
623 }
624 
625 /* function for waiting dma process finished */
626 static int ravb_stop_dma(struct net_device *ndev)
627 {
628 	int error;
629 
630 	/* Wait for stopping the hardware TX process */
631 	error = ravb_wait(ndev, TCCR,
632 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
633 	if (error)
634 		return error;
635 
636 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
637 			  0);
638 	if (error)
639 		return error;
640 
641 	/* Stop the E-MAC's RX/TX processes. */
642 	ravb_rcv_snd_disable(ndev);
643 
644 	/* Wait for stopping the RX DMA process */
645 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
646 	if (error)
647 		return error;
648 
649 	/* Stop AVB-DMAC process */
650 	return ravb_config(ndev);
651 }
652 
653 /* E-MAC interrupt handler */
654 static void ravb_emac_interrupt(struct net_device *ndev)
655 {
656 	struct ravb_private *priv = netdev_priv(ndev);
657 	u32 ecsr, psr;
658 
659 	ecsr = ravb_read(ndev, ECSR);
660 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
661 	if (ecsr & ECSR_ICD)
662 		ndev->stats.tx_carrier_errors++;
663 	if (ecsr & ECSR_LCHNG) {
664 		/* Link changed */
665 		if (priv->no_avb_link)
666 			return;
667 		psr = ravb_read(ndev, PSR);
668 		if (priv->avb_link_active_low)
669 			psr ^= PSR_LMON;
670 		if (!(psr & PSR_LMON)) {
671 			/* DIsable RX and TX */
672 			ravb_rcv_snd_disable(ndev);
673 		} else {
674 			/* Enable RX and TX */
675 			ravb_rcv_snd_enable(ndev);
676 		}
677 	}
678 }
679 
680 /* Error interrupt handler */
681 static void ravb_error_interrupt(struct net_device *ndev)
682 {
683 	struct ravb_private *priv = netdev_priv(ndev);
684 	u32 eis, ris2;
685 
686 	eis = ravb_read(ndev, EIS);
687 	ravb_write(ndev, ~EIS_QFS, EIS);
688 	if (eis & EIS_QFS) {
689 		ris2 = ravb_read(ndev, RIS2);
690 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
691 
692 		/* Receive Descriptor Empty int */
693 		if (ris2 & RIS2_QFF0)
694 			priv->stats[RAVB_BE].rx_over_errors++;
695 
696 		    /* Receive Descriptor Empty int */
697 		if (ris2 & RIS2_QFF1)
698 			priv->stats[RAVB_NC].rx_over_errors++;
699 
700 		/* Receive FIFO Overflow int */
701 		if (ris2 & RIS2_RFFF)
702 			priv->rx_fifo_errors++;
703 	}
704 }
705 
706 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
707 {
708 	struct net_device *ndev = dev_id;
709 	struct ravb_private *priv = netdev_priv(ndev);
710 	irqreturn_t result = IRQ_NONE;
711 	u32 iss;
712 
713 	spin_lock(&priv->lock);
714 	/* Get interrupt status */
715 	iss = ravb_read(ndev, ISS);
716 
717 	/* Received and transmitted interrupts */
718 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
719 		u32 ris0 = ravb_read(ndev, RIS0);
720 		u32 ric0 = ravb_read(ndev, RIC0);
721 		u32 tis  = ravb_read(ndev, TIS);
722 		u32 tic  = ravb_read(ndev, TIC);
723 		int q;
724 
725 		/* Timestamp updated */
726 		if (tis & TIS_TFUF) {
727 			ravb_write(ndev, ~TIS_TFUF, TIS);
728 			ravb_get_tx_tstamp(ndev);
729 			result = IRQ_HANDLED;
730 		}
731 
732 		/* Network control and best effort queue RX/TX */
733 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
734 			if (((ris0 & ric0) & BIT(q)) ||
735 			    ((tis  & tic)  & BIT(q))) {
736 				if (napi_schedule_prep(&priv->napi[q])) {
737 					/* Mask RX and TX interrupts */
738 					ric0 &= ~BIT(q);
739 					tic &= ~BIT(q);
740 					ravb_write(ndev, ric0, RIC0);
741 					ravb_write(ndev, tic, TIC);
742 					__napi_schedule(&priv->napi[q]);
743 				} else {
744 					netdev_warn(ndev,
745 						    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
746 						    ris0, ric0);
747 					netdev_warn(ndev,
748 						    "                    tx status 0x%08x, tx mask 0x%08x.\n",
749 						    tis, tic);
750 				}
751 				result = IRQ_HANDLED;
752 			}
753 		}
754 	}
755 
756 	/* E-MAC status summary */
757 	if (iss & ISS_MS) {
758 		ravb_emac_interrupt(ndev);
759 		result = IRQ_HANDLED;
760 	}
761 
762 	/* Error status summary */
763 	if (iss & ISS_ES) {
764 		ravb_error_interrupt(ndev);
765 		result = IRQ_HANDLED;
766 	}
767 
768 	if (iss & ISS_CGIS)
769 		result = ravb_ptp_interrupt(ndev);
770 
771 	mmiowb();
772 	spin_unlock(&priv->lock);
773 	return result;
774 }
775 
776 static int ravb_poll(struct napi_struct *napi, int budget)
777 {
778 	struct net_device *ndev = napi->dev;
779 	struct ravb_private *priv = netdev_priv(ndev);
780 	unsigned long flags;
781 	int q = napi - priv->napi;
782 	int mask = BIT(q);
783 	int quota = budget;
784 	u32 ris0, tis;
785 
786 	for (;;) {
787 		tis = ravb_read(ndev, TIS);
788 		ris0 = ravb_read(ndev, RIS0);
789 		if (!((ris0 & mask) || (tis & mask)))
790 			break;
791 
792 		/* Processing RX Descriptor Ring */
793 		if (ris0 & mask) {
794 			/* Clear RX interrupt */
795 			ravb_write(ndev, ~mask, RIS0);
796 			if (ravb_rx(ndev, &quota, q))
797 				goto out;
798 		}
799 		/* Processing TX Descriptor Ring */
800 		if (tis & mask) {
801 			spin_lock_irqsave(&priv->lock, flags);
802 			/* Clear TX interrupt */
803 			ravb_write(ndev, ~mask, TIS);
804 			ravb_tx_free(ndev, q);
805 			netif_wake_subqueue(ndev, q);
806 			mmiowb();
807 			spin_unlock_irqrestore(&priv->lock, flags);
808 		}
809 	}
810 
811 	napi_complete(napi);
812 
813 	/* Re-enable RX/TX interrupts */
814 	spin_lock_irqsave(&priv->lock, flags);
815 	ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0);
816 	ravb_write(ndev, ravb_read(ndev, TIC)  | mask,  TIC);
817 	mmiowb();
818 	spin_unlock_irqrestore(&priv->lock, flags);
819 
820 	/* Receive error message handling */
821 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
822 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
823 	if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
824 		ndev->stats.rx_over_errors = priv->rx_over_errors;
825 		netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
826 	}
827 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
828 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
829 		netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
830 	}
831 out:
832 	return budget - quota;
833 }
834 
835 /* PHY state control function */
836 static void ravb_adjust_link(struct net_device *ndev)
837 {
838 	struct ravb_private *priv = netdev_priv(ndev);
839 	struct phy_device *phydev = priv->phydev;
840 	bool new_state = false;
841 
842 	if (phydev->link) {
843 		if (phydev->duplex != priv->duplex) {
844 			new_state = true;
845 			priv->duplex = phydev->duplex;
846 			ravb_set_duplex(ndev);
847 		}
848 
849 		if (phydev->speed != priv->speed) {
850 			new_state = true;
851 			priv->speed = phydev->speed;
852 			ravb_set_rate(ndev);
853 		}
854 		if (!priv->link) {
855 			ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF,
856 				   ECMR);
857 			new_state = true;
858 			priv->link = phydev->link;
859 			if (priv->no_avb_link)
860 				ravb_rcv_snd_enable(ndev);
861 		}
862 	} else if (priv->link) {
863 		new_state = true;
864 		priv->link = 0;
865 		priv->speed = 0;
866 		priv->duplex = -1;
867 		if (priv->no_avb_link)
868 			ravb_rcv_snd_disable(ndev);
869 	}
870 
871 	if (new_state && netif_msg_link(priv))
872 		phy_print_status(phydev);
873 }
874 
875 /* PHY init function */
876 static int ravb_phy_init(struct net_device *ndev)
877 {
878 	struct device_node *np = ndev->dev.parent->of_node;
879 	struct ravb_private *priv = netdev_priv(ndev);
880 	struct phy_device *phydev;
881 	struct device_node *pn;
882 	int err;
883 
884 	priv->link = 0;
885 	priv->speed = 0;
886 	priv->duplex = -1;
887 
888 	/* Try connecting to PHY */
889 	pn = of_parse_phandle(np, "phy-handle", 0);
890 	if (!pn) {
891 		/* In the case of a fixed PHY, the DT node associated
892 		 * to the PHY is the Ethernet MAC DT node.
893 		 */
894 		if (of_phy_is_fixed_link(np)) {
895 			err = of_phy_register_fixed_link(np);
896 			if (err)
897 				return err;
898 		}
899 		pn = of_node_get(np);
900 	}
901 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
902 				priv->phy_interface);
903 	if (!phydev) {
904 		netdev_err(ndev, "failed to connect PHY\n");
905 		return -ENOENT;
906 	}
907 
908 	/* This driver only support 10/100Mbit speeds on Gen3
909 	 * at this time.
910 	 */
911 	if (priv->chip_id == RCAR_GEN3) {
912 		int err;
913 
914 		err = phy_set_max_speed(phydev, SPEED_100);
915 		if (err) {
916 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
917 			phy_disconnect(phydev);
918 			return err;
919 		}
920 
921 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
922 	}
923 
924 	/* 10BASE is not supported */
925 	phydev->supported &= ~PHY_10BT_FEATURES;
926 
927 	phy_attached_info(phydev);
928 
929 	priv->phydev = phydev;
930 
931 	return 0;
932 }
933 
934 /* PHY control start function */
935 static int ravb_phy_start(struct net_device *ndev)
936 {
937 	struct ravb_private *priv = netdev_priv(ndev);
938 	int error;
939 
940 	error = ravb_phy_init(ndev);
941 	if (error)
942 		return error;
943 
944 	phy_start(priv->phydev);
945 
946 	return 0;
947 }
948 
949 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
950 {
951 	struct ravb_private *priv = netdev_priv(ndev);
952 	int error = -ENODEV;
953 	unsigned long flags;
954 
955 	if (priv->phydev) {
956 		spin_lock_irqsave(&priv->lock, flags);
957 		error = phy_ethtool_gset(priv->phydev, ecmd);
958 		spin_unlock_irqrestore(&priv->lock, flags);
959 	}
960 
961 	return error;
962 }
963 
964 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
965 {
966 	struct ravb_private *priv = netdev_priv(ndev);
967 	unsigned long flags;
968 	int error;
969 
970 	if (!priv->phydev)
971 		return -ENODEV;
972 
973 	spin_lock_irqsave(&priv->lock, flags);
974 
975 	/* Disable TX and RX */
976 	ravb_rcv_snd_disable(ndev);
977 
978 	error = phy_ethtool_sset(priv->phydev, ecmd);
979 	if (error)
980 		goto error_exit;
981 
982 	if (ecmd->duplex == DUPLEX_FULL)
983 		priv->duplex = 1;
984 	else
985 		priv->duplex = 0;
986 
987 	ravb_set_duplex(ndev);
988 
989 error_exit:
990 	mdelay(1);
991 
992 	/* Enable TX and RX */
993 	ravb_rcv_snd_enable(ndev);
994 
995 	mmiowb();
996 	spin_unlock_irqrestore(&priv->lock, flags);
997 
998 	return error;
999 }
1000 
1001 static int ravb_nway_reset(struct net_device *ndev)
1002 {
1003 	struct ravb_private *priv = netdev_priv(ndev);
1004 	int error = -ENODEV;
1005 	unsigned long flags;
1006 
1007 	if (priv->phydev) {
1008 		spin_lock_irqsave(&priv->lock, flags);
1009 		error = phy_start_aneg(priv->phydev);
1010 		spin_unlock_irqrestore(&priv->lock, flags);
1011 	}
1012 
1013 	return error;
1014 }
1015 
1016 static u32 ravb_get_msglevel(struct net_device *ndev)
1017 {
1018 	struct ravb_private *priv = netdev_priv(ndev);
1019 
1020 	return priv->msg_enable;
1021 }
1022 
1023 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1024 {
1025 	struct ravb_private *priv = netdev_priv(ndev);
1026 
1027 	priv->msg_enable = value;
1028 }
1029 
1030 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1031 	"rx_queue_0_current",
1032 	"tx_queue_0_current",
1033 	"rx_queue_0_dirty",
1034 	"tx_queue_0_dirty",
1035 	"rx_queue_0_packets",
1036 	"tx_queue_0_packets",
1037 	"rx_queue_0_bytes",
1038 	"tx_queue_0_bytes",
1039 	"rx_queue_0_mcast_packets",
1040 	"rx_queue_0_errors",
1041 	"rx_queue_0_crc_errors",
1042 	"rx_queue_0_frame_errors",
1043 	"rx_queue_0_length_errors",
1044 	"rx_queue_0_missed_errors",
1045 	"rx_queue_0_over_errors",
1046 
1047 	"rx_queue_1_current",
1048 	"tx_queue_1_current",
1049 	"rx_queue_1_dirty",
1050 	"tx_queue_1_dirty",
1051 	"rx_queue_1_packets",
1052 	"tx_queue_1_packets",
1053 	"rx_queue_1_bytes",
1054 	"tx_queue_1_bytes",
1055 	"rx_queue_1_mcast_packets",
1056 	"rx_queue_1_errors",
1057 	"rx_queue_1_crc_errors",
1058 	"rx_queue_1_frame_errors",
1059 	"rx_queue_1_length_errors",
1060 	"rx_queue_1_missed_errors",
1061 	"rx_queue_1_over_errors",
1062 };
1063 
1064 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1065 
1066 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1067 {
1068 	switch (sset) {
1069 	case ETH_SS_STATS:
1070 		return RAVB_STATS_LEN;
1071 	default:
1072 		return -EOPNOTSUPP;
1073 	}
1074 }
1075 
1076 static void ravb_get_ethtool_stats(struct net_device *ndev,
1077 				   struct ethtool_stats *stats, u64 *data)
1078 {
1079 	struct ravb_private *priv = netdev_priv(ndev);
1080 	int i = 0;
1081 	int q;
1082 
1083 	/* Device-specific stats */
1084 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1085 		struct net_device_stats *stats = &priv->stats[q];
1086 
1087 		data[i++] = priv->cur_rx[q];
1088 		data[i++] = priv->cur_tx[q];
1089 		data[i++] = priv->dirty_rx[q];
1090 		data[i++] = priv->dirty_tx[q];
1091 		data[i++] = stats->rx_packets;
1092 		data[i++] = stats->tx_packets;
1093 		data[i++] = stats->rx_bytes;
1094 		data[i++] = stats->tx_bytes;
1095 		data[i++] = stats->multicast;
1096 		data[i++] = stats->rx_errors;
1097 		data[i++] = stats->rx_crc_errors;
1098 		data[i++] = stats->rx_frame_errors;
1099 		data[i++] = stats->rx_length_errors;
1100 		data[i++] = stats->rx_missed_errors;
1101 		data[i++] = stats->rx_over_errors;
1102 	}
1103 }
1104 
1105 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1106 {
1107 	switch (stringset) {
1108 	case ETH_SS_STATS:
1109 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1110 		break;
1111 	}
1112 }
1113 
1114 static void ravb_get_ringparam(struct net_device *ndev,
1115 			       struct ethtool_ringparam *ring)
1116 {
1117 	struct ravb_private *priv = netdev_priv(ndev);
1118 
1119 	ring->rx_max_pending = BE_RX_RING_MAX;
1120 	ring->tx_max_pending = BE_TX_RING_MAX;
1121 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1122 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1123 }
1124 
1125 static int ravb_set_ringparam(struct net_device *ndev,
1126 			      struct ethtool_ringparam *ring)
1127 {
1128 	struct ravb_private *priv = netdev_priv(ndev);
1129 	int error;
1130 
1131 	if (ring->tx_pending > BE_TX_RING_MAX ||
1132 	    ring->rx_pending > BE_RX_RING_MAX ||
1133 	    ring->tx_pending < BE_TX_RING_MIN ||
1134 	    ring->rx_pending < BE_RX_RING_MIN)
1135 		return -EINVAL;
1136 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1137 		return -EINVAL;
1138 
1139 	if (netif_running(ndev)) {
1140 		netif_device_detach(ndev);
1141 		/* Stop PTP Clock driver */
1142 		ravb_ptp_stop(ndev);
1143 		/* Wait for DMA stopping */
1144 		error = ravb_stop_dma(ndev);
1145 		if (error) {
1146 			netdev_err(ndev,
1147 				   "cannot set ringparam! Any AVB processes are still running?\n");
1148 			return error;
1149 		}
1150 		synchronize_irq(ndev->irq);
1151 
1152 		/* Free all the skb's in the RX queue and the DMA buffers. */
1153 		ravb_ring_free(ndev, RAVB_BE);
1154 		ravb_ring_free(ndev, RAVB_NC);
1155 	}
1156 
1157 	/* Set new parameters */
1158 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1159 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1160 
1161 	if (netif_running(ndev)) {
1162 		error = ravb_dmac_init(ndev);
1163 		if (error) {
1164 			netdev_err(ndev,
1165 				   "%s: ravb_dmac_init() failed, error %d\n",
1166 				   __func__, error);
1167 			return error;
1168 		}
1169 
1170 		ravb_emac_init(ndev);
1171 
1172 		/* Initialise PTP Clock driver */
1173 		ravb_ptp_init(ndev, priv->pdev);
1174 
1175 		netif_device_attach(ndev);
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static int ravb_get_ts_info(struct net_device *ndev,
1182 			    struct ethtool_ts_info *info)
1183 {
1184 	struct ravb_private *priv = netdev_priv(ndev);
1185 
1186 	info->so_timestamping =
1187 		SOF_TIMESTAMPING_TX_SOFTWARE |
1188 		SOF_TIMESTAMPING_RX_SOFTWARE |
1189 		SOF_TIMESTAMPING_SOFTWARE |
1190 		SOF_TIMESTAMPING_TX_HARDWARE |
1191 		SOF_TIMESTAMPING_RX_HARDWARE |
1192 		SOF_TIMESTAMPING_RAW_HARDWARE;
1193 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1194 	info->rx_filters =
1195 		(1 << HWTSTAMP_FILTER_NONE) |
1196 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1197 		(1 << HWTSTAMP_FILTER_ALL);
1198 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1199 
1200 	return 0;
1201 }
1202 
1203 static const struct ethtool_ops ravb_ethtool_ops = {
1204 	.get_settings		= ravb_get_settings,
1205 	.set_settings		= ravb_set_settings,
1206 	.nway_reset		= ravb_nway_reset,
1207 	.get_msglevel		= ravb_get_msglevel,
1208 	.set_msglevel		= ravb_set_msglevel,
1209 	.get_link		= ethtool_op_get_link,
1210 	.get_strings		= ravb_get_strings,
1211 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1212 	.get_sset_count		= ravb_get_sset_count,
1213 	.get_ringparam		= ravb_get_ringparam,
1214 	.set_ringparam		= ravb_set_ringparam,
1215 	.get_ts_info		= ravb_get_ts_info,
1216 };
1217 
1218 /* Network device open function for Ethernet AVB */
1219 static int ravb_open(struct net_device *ndev)
1220 {
1221 	struct ravb_private *priv = netdev_priv(ndev);
1222 	int error;
1223 
1224 	napi_enable(&priv->napi[RAVB_BE]);
1225 	napi_enable(&priv->napi[RAVB_NC]);
1226 
1227 	error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
1228 			    ndev);
1229 	if (error) {
1230 		netdev_err(ndev, "cannot request IRQ\n");
1231 		goto out_napi_off;
1232 	}
1233 
1234 	if (priv->chip_id == RCAR_GEN3) {
1235 		error = request_irq(priv->emac_irq, ravb_interrupt,
1236 				    IRQF_SHARED, ndev->name, ndev);
1237 		if (error) {
1238 			netdev_err(ndev, "cannot request IRQ\n");
1239 			goto out_free_irq;
1240 		}
1241 	}
1242 
1243 	/* Device init */
1244 	error = ravb_dmac_init(ndev);
1245 	if (error)
1246 		goto out_free_irq2;
1247 	ravb_emac_init(ndev);
1248 
1249 	/* Initialise PTP Clock driver */
1250 	if (priv->chip_id == RCAR_GEN2)
1251 		ravb_ptp_init(ndev, priv->pdev);
1252 
1253 	netif_tx_start_all_queues(ndev);
1254 
1255 	/* PHY control start */
1256 	error = ravb_phy_start(ndev);
1257 	if (error)
1258 		goto out_ptp_stop;
1259 
1260 	return 0;
1261 
1262 out_ptp_stop:
1263 	/* Stop PTP Clock driver */
1264 	if (priv->chip_id == RCAR_GEN2)
1265 		ravb_ptp_stop(ndev);
1266 out_free_irq2:
1267 	if (priv->chip_id == RCAR_GEN3)
1268 		free_irq(priv->emac_irq, ndev);
1269 out_free_irq:
1270 	free_irq(ndev->irq, ndev);
1271 out_napi_off:
1272 	napi_disable(&priv->napi[RAVB_NC]);
1273 	napi_disable(&priv->napi[RAVB_BE]);
1274 	return error;
1275 }
1276 
1277 /* Timeout function for Ethernet AVB */
1278 static void ravb_tx_timeout(struct net_device *ndev)
1279 {
1280 	struct ravb_private *priv = netdev_priv(ndev);
1281 
1282 	netif_err(priv, tx_err, ndev,
1283 		  "transmit timed out, status %08x, resetting...\n",
1284 		  ravb_read(ndev, ISS));
1285 
1286 	/* tx_errors count up */
1287 	ndev->stats.tx_errors++;
1288 
1289 	schedule_work(&priv->work);
1290 }
1291 
1292 static void ravb_tx_timeout_work(struct work_struct *work)
1293 {
1294 	struct ravb_private *priv = container_of(work, struct ravb_private,
1295 						 work);
1296 	struct net_device *ndev = priv->ndev;
1297 
1298 	netif_tx_stop_all_queues(ndev);
1299 
1300 	/* Stop PTP Clock driver */
1301 	ravb_ptp_stop(ndev);
1302 
1303 	/* Wait for DMA stopping */
1304 	ravb_stop_dma(ndev);
1305 
1306 	ravb_ring_free(ndev, RAVB_BE);
1307 	ravb_ring_free(ndev, RAVB_NC);
1308 
1309 	/* Device init */
1310 	ravb_dmac_init(ndev);
1311 	ravb_emac_init(ndev);
1312 
1313 	/* Initialise PTP Clock driver */
1314 	ravb_ptp_init(ndev, priv->pdev);
1315 
1316 	netif_tx_start_all_queues(ndev);
1317 }
1318 
1319 /* Packet transmit function for Ethernet AVB */
1320 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1321 {
1322 	struct ravb_private *priv = netdev_priv(ndev);
1323 	u16 q = skb_get_queue_mapping(skb);
1324 	struct ravb_tstamp_skb *ts_skb;
1325 	struct ravb_tx_desc *desc;
1326 	unsigned long flags;
1327 	u32 dma_addr;
1328 	void *buffer;
1329 	u32 entry;
1330 	u32 len;
1331 
1332 	spin_lock_irqsave(&priv->lock, flags);
1333 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1334 	    NUM_TX_DESC) {
1335 		netif_err(priv, tx_queued, ndev,
1336 			  "still transmitting with the full ring!\n");
1337 		netif_stop_subqueue(ndev, q);
1338 		spin_unlock_irqrestore(&priv->lock, flags);
1339 		return NETDEV_TX_BUSY;
1340 	}
1341 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1342 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1343 
1344 	if (skb_put_padto(skb, ETH_ZLEN))
1345 		goto drop;
1346 
1347 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1348 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1349 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1350 	memcpy(buffer, skb->data, len);
1351 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1352 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1353 		goto drop;
1354 
1355 	desc = &priv->tx_ring[q][entry];
1356 	desc->ds_tagl = cpu_to_le16(len);
1357 	desc->dptr = cpu_to_le32(dma_addr);
1358 
1359 	buffer = skb->data + len;
1360 	len = skb->len - len;
1361 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1362 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1363 		goto unmap;
1364 
1365 	desc++;
1366 	desc->ds_tagl = cpu_to_le16(len);
1367 	desc->dptr = cpu_to_le32(dma_addr);
1368 
1369 	/* TX timestamp required */
1370 	if (q == RAVB_NC) {
1371 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1372 		if (!ts_skb) {
1373 			desc--;
1374 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1375 					 DMA_TO_DEVICE);
1376 			goto unmap;
1377 		}
1378 		ts_skb->skb = skb;
1379 		ts_skb->tag = priv->ts_skb_tag++;
1380 		priv->ts_skb_tag &= 0x3ff;
1381 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1382 
1383 		/* TAG and timestamp required flag */
1384 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1385 		skb_tx_timestamp(skb);
1386 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1387 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1388 	}
1389 
1390 	/* Descriptor type must be set after all the above writes */
1391 	dma_wmb();
1392 	desc->die_dt = DT_FEND;
1393 	desc--;
1394 	desc->die_dt = DT_FSTART;
1395 
1396 	ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR);
1397 
1398 	priv->cur_tx[q] += NUM_TX_DESC;
1399 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1400 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1401 		netif_stop_subqueue(ndev, q);
1402 
1403 exit:
1404 	mmiowb();
1405 	spin_unlock_irqrestore(&priv->lock, flags);
1406 	return NETDEV_TX_OK;
1407 
1408 unmap:
1409 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1410 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1411 drop:
1412 	dev_kfree_skb_any(skb);
1413 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1414 	goto exit;
1415 }
1416 
1417 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1418 			     void *accel_priv, select_queue_fallback_t fallback)
1419 {
1420 	/* If skb needs TX timestamp, it is handled in network control queue */
1421 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1422 							       RAVB_BE;
1423 
1424 }
1425 
1426 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1427 {
1428 	struct ravb_private *priv = netdev_priv(ndev);
1429 	struct net_device_stats *nstats, *stats0, *stats1;
1430 
1431 	nstats = &ndev->stats;
1432 	stats0 = &priv->stats[RAVB_BE];
1433 	stats1 = &priv->stats[RAVB_NC];
1434 
1435 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1436 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1437 	nstats->collisions += ravb_read(ndev, CDCR);
1438 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1439 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1440 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1441 
1442 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1443 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1444 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1445 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1446 
1447 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1448 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1449 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1450 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1451 	nstats->multicast = stats0->multicast + stats1->multicast;
1452 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1453 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1454 	nstats->rx_frame_errors =
1455 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1456 	nstats->rx_length_errors =
1457 		stats0->rx_length_errors + stats1->rx_length_errors;
1458 	nstats->rx_missed_errors =
1459 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1460 	nstats->rx_over_errors =
1461 		stats0->rx_over_errors + stats1->rx_over_errors;
1462 
1463 	return nstats;
1464 }
1465 
1466 /* Update promiscuous bit */
1467 static void ravb_set_rx_mode(struct net_device *ndev)
1468 {
1469 	struct ravb_private *priv = netdev_priv(ndev);
1470 	unsigned long flags;
1471 	u32 ecmr;
1472 
1473 	spin_lock_irqsave(&priv->lock, flags);
1474 	ecmr = ravb_read(ndev, ECMR);
1475 	if (ndev->flags & IFF_PROMISC)
1476 		ecmr |=  ECMR_PRM;
1477 	else
1478 		ecmr &= ~ECMR_PRM;
1479 	ravb_write(ndev, ecmr, ECMR);
1480 	mmiowb();
1481 	spin_unlock_irqrestore(&priv->lock, flags);
1482 }
1483 
1484 /* Device close function for Ethernet AVB */
1485 static int ravb_close(struct net_device *ndev)
1486 {
1487 	struct ravb_private *priv = netdev_priv(ndev);
1488 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1489 
1490 	netif_tx_stop_all_queues(ndev);
1491 
1492 	/* Disable interrupts by clearing the interrupt masks. */
1493 	ravb_write(ndev, 0, RIC0);
1494 	ravb_write(ndev, 0, RIC2);
1495 	ravb_write(ndev, 0, TIC);
1496 
1497 	/* Stop PTP Clock driver */
1498 	if (priv->chip_id == RCAR_GEN2)
1499 		ravb_ptp_stop(ndev);
1500 
1501 	/* Set the config mode to stop the AVB-DMAC's processes */
1502 	if (ravb_stop_dma(ndev) < 0)
1503 		netdev_err(ndev,
1504 			   "device will be stopped after h/w processes are done.\n");
1505 
1506 	/* Clear the timestamp list */
1507 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1508 		list_del(&ts_skb->list);
1509 		kfree(ts_skb);
1510 	}
1511 
1512 	/* PHY disconnect */
1513 	if (priv->phydev) {
1514 		phy_stop(priv->phydev);
1515 		phy_disconnect(priv->phydev);
1516 		priv->phydev = NULL;
1517 	}
1518 
1519 	free_irq(ndev->irq, ndev);
1520 
1521 	napi_disable(&priv->napi[RAVB_NC]);
1522 	napi_disable(&priv->napi[RAVB_BE]);
1523 
1524 	/* Free all the skb's in the RX queue and the DMA buffers. */
1525 	ravb_ring_free(ndev, RAVB_BE);
1526 	ravb_ring_free(ndev, RAVB_NC);
1527 
1528 	return 0;
1529 }
1530 
1531 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1532 {
1533 	struct ravb_private *priv = netdev_priv(ndev);
1534 	struct hwtstamp_config config;
1535 
1536 	config.flags = 0;
1537 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1538 						HWTSTAMP_TX_OFF;
1539 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1540 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1541 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1542 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1543 	else
1544 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1545 
1546 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1547 		-EFAULT : 0;
1548 }
1549 
1550 /* Control hardware time stamping */
1551 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1552 {
1553 	struct ravb_private *priv = netdev_priv(ndev);
1554 	struct hwtstamp_config config;
1555 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1556 	u32 tstamp_tx_ctrl;
1557 
1558 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1559 		return -EFAULT;
1560 
1561 	/* Reserved for future extensions */
1562 	if (config.flags)
1563 		return -EINVAL;
1564 
1565 	switch (config.tx_type) {
1566 	case HWTSTAMP_TX_OFF:
1567 		tstamp_tx_ctrl = 0;
1568 		break;
1569 	case HWTSTAMP_TX_ON:
1570 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1571 		break;
1572 	default:
1573 		return -ERANGE;
1574 	}
1575 
1576 	switch (config.rx_filter) {
1577 	case HWTSTAMP_FILTER_NONE:
1578 		tstamp_rx_ctrl = 0;
1579 		break;
1580 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1581 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1582 		break;
1583 	default:
1584 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1585 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1586 	}
1587 
1588 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1589 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1590 
1591 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1592 		-EFAULT : 0;
1593 }
1594 
1595 /* ioctl to device function */
1596 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1597 {
1598 	struct ravb_private *priv = netdev_priv(ndev);
1599 	struct phy_device *phydev = priv->phydev;
1600 
1601 	if (!netif_running(ndev))
1602 		return -EINVAL;
1603 
1604 	if (!phydev)
1605 		return -ENODEV;
1606 
1607 	switch (cmd) {
1608 	case SIOCGHWTSTAMP:
1609 		return ravb_hwtstamp_get(ndev, req);
1610 	case SIOCSHWTSTAMP:
1611 		return ravb_hwtstamp_set(ndev, req);
1612 	}
1613 
1614 	return phy_mii_ioctl(phydev, req, cmd);
1615 }
1616 
1617 static const struct net_device_ops ravb_netdev_ops = {
1618 	.ndo_open		= ravb_open,
1619 	.ndo_stop		= ravb_close,
1620 	.ndo_start_xmit		= ravb_start_xmit,
1621 	.ndo_select_queue	= ravb_select_queue,
1622 	.ndo_get_stats		= ravb_get_stats,
1623 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1624 	.ndo_tx_timeout		= ravb_tx_timeout,
1625 	.ndo_do_ioctl		= ravb_do_ioctl,
1626 	.ndo_validate_addr	= eth_validate_addr,
1627 	.ndo_set_mac_address	= eth_mac_addr,
1628 	.ndo_change_mtu		= eth_change_mtu,
1629 };
1630 
1631 /* MDIO bus init function */
1632 static int ravb_mdio_init(struct ravb_private *priv)
1633 {
1634 	struct platform_device *pdev = priv->pdev;
1635 	struct device *dev = &pdev->dev;
1636 	int error;
1637 
1638 	/* Bitbang init */
1639 	priv->mdiobb.ops = &bb_ops;
1640 
1641 	/* MII controller setting */
1642 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1643 	if (!priv->mii_bus)
1644 		return -ENOMEM;
1645 
1646 	/* Hook up MII support for ethtool */
1647 	priv->mii_bus->name = "ravb_mii";
1648 	priv->mii_bus->parent = dev;
1649 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1650 		 pdev->name, pdev->id);
1651 
1652 	/* Register MDIO bus */
1653 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1654 	if (error)
1655 		goto out_free_bus;
1656 
1657 	return 0;
1658 
1659 out_free_bus:
1660 	free_mdio_bitbang(priv->mii_bus);
1661 	return error;
1662 }
1663 
1664 /* MDIO bus release function */
1665 static int ravb_mdio_release(struct ravb_private *priv)
1666 {
1667 	/* Unregister mdio bus */
1668 	mdiobus_unregister(priv->mii_bus);
1669 
1670 	/* Free bitbang info */
1671 	free_mdio_bitbang(priv->mii_bus);
1672 
1673 	return 0;
1674 }
1675 
1676 static const struct of_device_id ravb_match_table[] = {
1677 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1678 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1679 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1680 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1681 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1682 	{ }
1683 };
1684 MODULE_DEVICE_TABLE(of, ravb_match_table);
1685 
1686 static int ravb_set_gti(struct net_device *ndev)
1687 {
1688 
1689 	struct device *dev = ndev->dev.parent;
1690 	struct device_node *np = dev->of_node;
1691 	unsigned long rate;
1692 	struct clk *clk;
1693 	uint64_t inc;
1694 
1695 	clk = of_clk_get(np, 0);
1696 	if (IS_ERR(clk)) {
1697 		dev_err(dev, "could not get clock\n");
1698 		return PTR_ERR(clk);
1699 	}
1700 
1701 	rate = clk_get_rate(clk);
1702 	clk_put(clk);
1703 
1704 	inc = 1000000000ULL << 20;
1705 	do_div(inc, rate);
1706 
1707 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1708 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1709 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1710 		return -EINVAL;
1711 	}
1712 
1713 	ravb_write(ndev, inc, GTI);
1714 
1715 	return 0;
1716 }
1717 
1718 static int ravb_probe(struct platform_device *pdev)
1719 {
1720 	struct device_node *np = pdev->dev.of_node;
1721 	const struct of_device_id *match;
1722 	struct ravb_private *priv;
1723 	enum ravb_chip_id chip_id;
1724 	struct net_device *ndev;
1725 	int error, irq, q;
1726 	struct resource *res;
1727 
1728 	if (!np) {
1729 		dev_err(&pdev->dev,
1730 			"this driver is required to be instantiated from device tree\n");
1731 		return -EINVAL;
1732 	}
1733 
1734 	/* Get base address */
1735 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1736 	if (!res) {
1737 		dev_err(&pdev->dev, "invalid resource\n");
1738 		return -EINVAL;
1739 	}
1740 
1741 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1742 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1743 	if (!ndev)
1744 		return -ENOMEM;
1745 
1746 	pm_runtime_enable(&pdev->dev);
1747 	pm_runtime_get_sync(&pdev->dev);
1748 
1749 	/* The Ether-specific entries in the device structure. */
1750 	ndev->base_addr = res->start;
1751 	ndev->dma = -1;
1752 
1753 	match = of_match_device(of_match_ptr(ravb_match_table), &pdev->dev);
1754 	chip_id = (enum ravb_chip_id)match->data;
1755 
1756 	if (chip_id == RCAR_GEN3)
1757 		irq = platform_get_irq_byname(pdev, "ch22");
1758 	else
1759 		irq = platform_get_irq(pdev, 0);
1760 	if (irq < 0) {
1761 		error = irq;
1762 		goto out_release;
1763 	}
1764 	ndev->irq = irq;
1765 
1766 	SET_NETDEV_DEV(ndev, &pdev->dev);
1767 
1768 	priv = netdev_priv(ndev);
1769 	priv->ndev = ndev;
1770 	priv->pdev = pdev;
1771 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1772 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1773 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1774 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1775 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1776 	if (IS_ERR(priv->addr)) {
1777 		error = PTR_ERR(priv->addr);
1778 		goto out_release;
1779 	}
1780 
1781 	spin_lock_init(&priv->lock);
1782 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1783 
1784 	priv->phy_interface = of_get_phy_mode(np);
1785 
1786 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1787 	priv->avb_link_active_low =
1788 		of_property_read_bool(np, "renesas,ether-link-active-low");
1789 
1790 	if (chip_id == RCAR_GEN3) {
1791 		irq = platform_get_irq_byname(pdev, "ch24");
1792 		if (irq < 0) {
1793 			error = irq;
1794 			goto out_release;
1795 		}
1796 		priv->emac_irq = irq;
1797 	}
1798 
1799 	priv->chip_id = chip_id;
1800 
1801 	/* Set function */
1802 	ndev->netdev_ops = &ravb_netdev_ops;
1803 	ndev->ethtool_ops = &ravb_ethtool_ops;
1804 
1805 	/* Set AVB config mode */
1806 	if (chip_id == RCAR_GEN2) {
1807 		ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) |
1808 			   CCC_OPC_CONFIG, CCC);
1809 		/* Set CSEL value */
1810 		ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) |
1811 			   CCC_CSEL_HPB, CCC);
1812 	} else {
1813 		ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) |
1814 			   CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB, CCC);
1815 	}
1816 
1817 	/* Set CSEL value */
1818 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB,
1819 		   CCC);
1820 
1821 	/* Set GTI value */
1822 	error = ravb_set_gti(ndev);
1823 	if (error)
1824 		goto out_release;
1825 
1826 	/* Request GTI loading */
1827 	ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR);
1828 
1829 	/* Allocate descriptor base address table */
1830 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
1831 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
1832 					    &priv->desc_bat_dma, GFP_KERNEL);
1833 	if (!priv->desc_bat) {
1834 		dev_err(&pdev->dev,
1835 			"Cannot allocate desc base address table (size %d bytes)\n",
1836 			priv->desc_bat_size);
1837 		error = -ENOMEM;
1838 		goto out_release;
1839 	}
1840 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
1841 		priv->desc_bat[q].die_dt = DT_EOS;
1842 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1843 
1844 	/* Initialise HW timestamp list */
1845 	INIT_LIST_HEAD(&priv->ts_skb_list);
1846 
1847 	/* Initialise PTP Clock driver */
1848 	if (chip_id != RCAR_GEN2)
1849 		ravb_ptp_init(ndev, pdev);
1850 
1851 	/* Debug message level */
1852 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
1853 
1854 	/* Read and set MAC address */
1855 	ravb_read_mac_address(ndev, of_get_mac_address(np));
1856 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1857 		dev_warn(&pdev->dev,
1858 			 "no valid MAC address supplied, using a random one\n");
1859 		eth_hw_addr_random(ndev);
1860 	}
1861 
1862 	/* MDIO bus init */
1863 	error = ravb_mdio_init(priv);
1864 	if (error) {
1865 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
1866 		goto out_dma_free;
1867 	}
1868 
1869 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
1870 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
1871 
1872 	/* Network device register */
1873 	error = register_netdev(ndev);
1874 	if (error)
1875 		goto out_napi_del;
1876 
1877 	/* Print device information */
1878 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
1879 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1880 
1881 	platform_set_drvdata(pdev, ndev);
1882 
1883 	return 0;
1884 
1885 out_napi_del:
1886 	netif_napi_del(&priv->napi[RAVB_NC]);
1887 	netif_napi_del(&priv->napi[RAVB_BE]);
1888 	ravb_mdio_release(priv);
1889 out_dma_free:
1890 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1891 			  priv->desc_bat_dma);
1892 
1893 	/* Stop PTP Clock driver */
1894 	if (chip_id != RCAR_GEN2)
1895 		ravb_ptp_stop(ndev);
1896 out_release:
1897 	if (ndev)
1898 		free_netdev(ndev);
1899 
1900 	pm_runtime_put(&pdev->dev);
1901 	pm_runtime_disable(&pdev->dev);
1902 	return error;
1903 }
1904 
1905 static int ravb_remove(struct platform_device *pdev)
1906 {
1907 	struct net_device *ndev = platform_get_drvdata(pdev);
1908 	struct ravb_private *priv = netdev_priv(ndev);
1909 
1910 	/* Stop PTP Clock driver */
1911 	if (priv->chip_id != RCAR_GEN2)
1912 		ravb_ptp_stop(ndev);
1913 
1914 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1915 			  priv->desc_bat_dma);
1916 	/* Set reset mode */
1917 	ravb_write(ndev, CCC_OPC_RESET, CCC);
1918 	pm_runtime_put_sync(&pdev->dev);
1919 	unregister_netdev(ndev);
1920 	netif_napi_del(&priv->napi[RAVB_NC]);
1921 	netif_napi_del(&priv->napi[RAVB_BE]);
1922 	ravb_mdio_release(priv);
1923 	pm_runtime_disable(&pdev->dev);
1924 	free_netdev(ndev);
1925 	platform_set_drvdata(pdev, NULL);
1926 
1927 	return 0;
1928 }
1929 
1930 #ifdef CONFIG_PM
1931 static int ravb_runtime_nop(struct device *dev)
1932 {
1933 	/* Runtime PM callback shared between ->runtime_suspend()
1934 	 * and ->runtime_resume(). Simply returns success.
1935 	 *
1936 	 * This driver re-initializes all registers after
1937 	 * pm_runtime_get_sync() anyway so there is no need
1938 	 * to save and restore registers here.
1939 	 */
1940 	return 0;
1941 }
1942 
1943 static const struct dev_pm_ops ravb_dev_pm_ops = {
1944 	.runtime_suspend = ravb_runtime_nop,
1945 	.runtime_resume = ravb_runtime_nop,
1946 };
1947 
1948 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
1949 #else
1950 #define RAVB_PM_OPS NULL
1951 #endif
1952 
1953 static struct platform_driver ravb_driver = {
1954 	.probe		= ravb_probe,
1955 	.remove		= ravb_remove,
1956 	.driver = {
1957 		.name	= "ravb",
1958 		.pm	= RAVB_PM_OPS,
1959 		.of_match_table = ravb_match_table,
1960 	},
1961 };
1962 
1963 module_platform_driver(ravb_driver);
1964 
1965 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
1966 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
1967 MODULE_LICENSE("GPL v2");
1968