1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2015 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_duplex(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
90 }
91 
92 static void ravb_set_rate(struct net_device *ndev)
93 {
94 	struct ravb_private *priv = netdev_priv(ndev);
95 
96 	switch (priv->speed) {
97 	case 100:		/* 100BASE */
98 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
99 		break;
100 	case 1000:		/* 1000BASE */
101 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
102 		break;
103 	}
104 }
105 
106 static void ravb_set_buffer_align(struct sk_buff *skb)
107 {
108 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
109 
110 	if (reserve)
111 		skb_reserve(skb, RAVB_ALIGN - reserve);
112 }
113 
114 /* Get MAC address from the MAC address registers
115  *
116  * Ethernet AVB device doesn't have ROM for MAC address.
117  * This function gets the MAC address that was used by a bootloader.
118  */
119 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
120 {
121 	if (mac) {
122 		ether_addr_copy(ndev->dev_addr, mac);
123 	} else {
124 		u32 mahr = ravb_read(ndev, MAHR);
125 		u32 malr = ravb_read(ndev, MALR);
126 
127 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
128 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
129 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
130 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
131 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
132 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
133 	}
134 }
135 
136 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
137 {
138 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
139 						 mdiobb);
140 
141 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
142 }
143 
144 /* MDC pin control */
145 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
146 {
147 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
148 }
149 
150 /* Data I/O pin control */
151 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
152 {
153 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
154 }
155 
156 /* Set data bit */
157 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
158 {
159 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
160 }
161 
162 /* Get data bit */
163 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
164 {
165 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
166 						 mdiobb);
167 
168 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
169 }
170 
171 /* MDIO bus control struct */
172 static struct mdiobb_ops bb_ops = {
173 	.owner = THIS_MODULE,
174 	.set_mdc = ravb_set_mdc,
175 	.set_mdio_dir = ravb_set_mdio_dir,
176 	.set_mdio_data = ravb_set_mdio_data,
177 	.get_mdio_data = ravb_get_mdio_data,
178 };
179 
180 /* Free TX skb function for AVB-IP */
181 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
182 {
183 	struct ravb_private *priv = netdev_priv(ndev);
184 	struct net_device_stats *stats = &priv->stats[q];
185 	struct ravb_tx_desc *desc;
186 	int free_num = 0;
187 	int entry;
188 	u32 size;
189 
190 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
191 		bool txed;
192 
193 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
194 					     NUM_TX_DESC);
195 		desc = &priv->tx_ring[q][entry];
196 		txed = desc->die_dt == DT_FEMPTY;
197 		if (free_txed_only && !txed)
198 			break;
199 		/* Descriptor type must be checked before all other reads */
200 		dma_rmb();
201 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
202 		/* Free the original skb. */
203 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
204 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
205 					 size, DMA_TO_DEVICE);
206 			/* Last packet descriptor? */
207 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
208 				entry /= NUM_TX_DESC;
209 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
210 				priv->tx_skb[q][entry] = NULL;
211 				if (txed)
212 					stats->tx_packets++;
213 			}
214 			free_num++;
215 		}
216 		if (txed)
217 			stats->tx_bytes += size;
218 		desc->die_dt = DT_EEMPTY;
219 	}
220 	return free_num;
221 }
222 
223 /* Free skb's and DMA buffers for Ethernet AVB */
224 static void ravb_ring_free(struct net_device *ndev, int q)
225 {
226 	struct ravb_private *priv = netdev_priv(ndev);
227 	int ring_size;
228 	int i;
229 
230 	if (priv->rx_ring[q]) {
231 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
232 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
233 
234 			if (!dma_mapping_error(ndev->dev.parent,
235 					       le32_to_cpu(desc->dptr)))
236 				dma_unmap_single(ndev->dev.parent,
237 						 le32_to_cpu(desc->dptr),
238 						 priv->rx_buf_sz,
239 						 DMA_FROM_DEVICE);
240 		}
241 		ring_size = sizeof(struct ravb_ex_rx_desc) *
242 			    (priv->num_rx_ring[q] + 1);
243 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
244 				  priv->rx_desc_dma[q]);
245 		priv->rx_ring[q] = NULL;
246 	}
247 
248 	if (priv->tx_ring[q]) {
249 		ravb_tx_free(ndev, q, false);
250 
251 		ring_size = sizeof(struct ravb_tx_desc) *
252 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
253 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
254 				  priv->tx_desc_dma[q]);
255 		priv->tx_ring[q] = NULL;
256 	}
257 
258 	/* Free RX skb ringbuffer */
259 	if (priv->rx_skb[q]) {
260 		for (i = 0; i < priv->num_rx_ring[q]; i++)
261 			dev_kfree_skb(priv->rx_skb[q][i]);
262 	}
263 	kfree(priv->rx_skb[q]);
264 	priv->rx_skb[q] = NULL;
265 
266 	/* Free aligned TX buffers */
267 	kfree(priv->tx_align[q]);
268 	priv->tx_align[q] = NULL;
269 
270 	/* Free TX skb ringbuffer.
271 	 * SKBs are freed by ravb_tx_free() call above.
272 	 */
273 	kfree(priv->tx_skb[q]);
274 	priv->tx_skb[q] = NULL;
275 }
276 
277 /* Format skb and descriptor buffer for Ethernet AVB */
278 static void ravb_ring_format(struct net_device *ndev, int q)
279 {
280 	struct ravb_private *priv = netdev_priv(ndev);
281 	struct ravb_ex_rx_desc *rx_desc;
282 	struct ravb_tx_desc *tx_desc;
283 	struct ravb_desc *desc;
284 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
285 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
286 			   NUM_TX_DESC;
287 	dma_addr_t dma_addr;
288 	int i;
289 
290 	priv->cur_rx[q] = 0;
291 	priv->cur_tx[q] = 0;
292 	priv->dirty_rx[q] = 0;
293 	priv->dirty_tx[q] = 0;
294 
295 	memset(priv->rx_ring[q], 0, rx_ring_size);
296 	/* Build RX ring buffer */
297 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
298 		/* RX descriptor */
299 		rx_desc = &priv->rx_ring[q][i];
300 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
301 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
302 					  priv->rx_buf_sz,
303 					  DMA_FROM_DEVICE);
304 		/* We just set the data size to 0 for a failed mapping which
305 		 * should prevent DMA from happening...
306 		 */
307 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
308 			rx_desc->ds_cc = cpu_to_le16(0);
309 		rx_desc->dptr = cpu_to_le32(dma_addr);
310 		rx_desc->die_dt = DT_FEMPTY;
311 	}
312 	rx_desc = &priv->rx_ring[q][i];
313 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
314 	rx_desc->die_dt = DT_LINKFIX; /* type */
315 
316 	memset(priv->tx_ring[q], 0, tx_ring_size);
317 	/* Build TX ring buffer */
318 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
319 	     i++, tx_desc++) {
320 		tx_desc->die_dt = DT_EEMPTY;
321 		tx_desc++;
322 		tx_desc->die_dt = DT_EEMPTY;
323 	}
324 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
325 	tx_desc->die_dt = DT_LINKFIX; /* type */
326 
327 	/* RX descriptor base address for best effort */
328 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
329 	desc->die_dt = DT_LINKFIX; /* type */
330 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
331 
332 	/* TX descriptor base address for best effort */
333 	desc = &priv->desc_bat[q];
334 	desc->die_dt = DT_LINKFIX; /* type */
335 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
336 }
337 
338 /* Init skb and descriptor buffer for Ethernet AVB */
339 static int ravb_ring_init(struct net_device *ndev, int q)
340 {
341 	struct ravb_private *priv = netdev_priv(ndev);
342 	struct sk_buff *skb;
343 	int ring_size;
344 	int i;
345 
346 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
347 		ETH_HLEN + VLAN_HLEN;
348 
349 	/* Allocate RX and TX skb rings */
350 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
351 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
352 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
353 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
354 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
355 		goto error;
356 
357 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
358 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
359 		if (!skb)
360 			goto error;
361 		ravb_set_buffer_align(skb);
362 		priv->rx_skb[q][i] = skb;
363 	}
364 
365 	/* Allocate rings for the aligned buffers */
366 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 				    DPTR_ALIGN - 1, GFP_KERNEL);
368 	if (!priv->tx_align[q])
369 		goto error;
370 
371 	/* Allocate all RX descriptors. */
372 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
373 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
374 					      &priv->rx_desc_dma[q],
375 					      GFP_KERNEL);
376 	if (!priv->rx_ring[q])
377 		goto error;
378 
379 	priv->dirty_rx[q] = 0;
380 
381 	/* Allocate all TX descriptors. */
382 	ring_size = sizeof(struct ravb_tx_desc) *
383 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
384 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
385 					      &priv->tx_desc_dma[q],
386 					      GFP_KERNEL);
387 	if (!priv->tx_ring[q])
388 		goto error;
389 
390 	return 0;
391 
392 error:
393 	ravb_ring_free(ndev, q);
394 
395 	return -ENOMEM;
396 }
397 
398 /* E-MAC init function */
399 static void ravb_emac_init(struct net_device *ndev)
400 {
401 	struct ravb_private *priv = netdev_priv(ndev);
402 
403 	/* Receive frame limit set register */
404 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
405 
406 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
407 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
408 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
409 		   ECMR_TE | ECMR_RE, ECMR);
410 
411 	ravb_set_rate(ndev);
412 
413 	/* Set MAC address */
414 	ravb_write(ndev,
415 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
416 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
417 	ravb_write(ndev,
418 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
419 
420 	/* E-MAC status register clear */
421 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
422 
423 	/* E-MAC interrupt enable register */
424 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
425 }
426 
427 /* Device init function for Ethernet AVB */
428 static int ravb_dmac_init(struct net_device *ndev)
429 {
430 	struct ravb_private *priv = netdev_priv(ndev);
431 	int error;
432 
433 	/* Set CONFIG mode */
434 	error = ravb_config(ndev);
435 	if (error)
436 		return error;
437 
438 	error = ravb_ring_init(ndev, RAVB_BE);
439 	if (error)
440 		return error;
441 	error = ravb_ring_init(ndev, RAVB_NC);
442 	if (error) {
443 		ravb_ring_free(ndev, RAVB_BE);
444 		return error;
445 	}
446 
447 	/* Descriptor format */
448 	ravb_ring_format(ndev, RAVB_BE);
449 	ravb_ring_format(ndev, RAVB_NC);
450 
451 #if defined(__LITTLE_ENDIAN)
452 	ravb_modify(ndev, CCC, CCC_BOC, 0);
453 #else
454 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
455 #endif
456 
457 	/* Set AVB RX */
458 	ravb_write(ndev,
459 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
460 
461 	/* Set FIFO size */
462 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
463 
464 	/* Timestamp enable */
465 	ravb_write(ndev, TCCR_TFEN, TCCR);
466 
467 	/* Interrupt init: */
468 	if (priv->chip_id == RCAR_GEN3) {
469 		/* Clear DIL.DPLx */
470 		ravb_write(ndev, 0, DIL);
471 		/* Set queue specific interrupt */
472 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
473 	}
474 	/* Frame receive */
475 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
476 	/* Disable FIFO full warning */
477 	ravb_write(ndev, 0, RIC1);
478 	/* Receive FIFO full error, descriptor empty */
479 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
480 	/* Frame transmitted, timestamp FIFO updated */
481 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
482 
483 	/* Setting the control will start the AVB-DMAC process. */
484 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
485 
486 	return 0;
487 }
488 
489 static void ravb_get_tx_tstamp(struct net_device *ndev)
490 {
491 	struct ravb_private *priv = netdev_priv(ndev);
492 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
493 	struct skb_shared_hwtstamps shhwtstamps;
494 	struct sk_buff *skb;
495 	struct timespec64 ts;
496 	u16 tag, tfa_tag;
497 	int count;
498 	u32 tfa2;
499 
500 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
501 	while (count--) {
502 		tfa2 = ravb_read(ndev, TFA2);
503 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
504 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
505 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
506 			    ravb_read(ndev, TFA1);
507 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
508 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
509 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
510 					 list) {
511 			skb = ts_skb->skb;
512 			tag = ts_skb->tag;
513 			list_del(&ts_skb->list);
514 			kfree(ts_skb);
515 			if (tag == tfa_tag) {
516 				skb_tstamp_tx(skb, &shhwtstamps);
517 				break;
518 			}
519 		}
520 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
521 	}
522 }
523 
524 static void ravb_rx_csum(struct sk_buff *skb)
525 {
526 	u8 *hw_csum;
527 
528 	/* The hardware checksum is 2 bytes appended to packet data */
529 	if (unlikely(skb->len < 2))
530 		return;
531 	hw_csum = skb_tail_pointer(skb) - 2;
532 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
533 	skb->ip_summed = CHECKSUM_COMPLETE;
534 	skb_trim(skb, skb->len - 2);
535 }
536 
537 /* Packet receive function for Ethernet AVB */
538 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
539 {
540 	struct ravb_private *priv = netdev_priv(ndev);
541 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
542 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
543 			priv->cur_rx[q];
544 	struct net_device_stats *stats = &priv->stats[q];
545 	struct ravb_ex_rx_desc *desc;
546 	struct sk_buff *skb;
547 	dma_addr_t dma_addr;
548 	struct timespec64 ts;
549 	u8  desc_status;
550 	u16 pkt_len;
551 	int limit;
552 
553 	boguscnt = min(boguscnt, *quota);
554 	limit = boguscnt;
555 	desc = &priv->rx_ring[q][entry];
556 	while (desc->die_dt != DT_FEMPTY) {
557 		/* Descriptor type must be checked before all other reads */
558 		dma_rmb();
559 		desc_status = desc->msc;
560 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
561 
562 		if (--boguscnt < 0)
563 			break;
564 
565 		/* We use 0-byte descriptors to mark the DMA mapping errors */
566 		if (!pkt_len)
567 			continue;
568 
569 		if (desc_status & MSC_MC)
570 			stats->multicast++;
571 
572 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
573 				   MSC_CEEF)) {
574 			stats->rx_errors++;
575 			if (desc_status & MSC_CRC)
576 				stats->rx_crc_errors++;
577 			if (desc_status & MSC_RFE)
578 				stats->rx_frame_errors++;
579 			if (desc_status & (MSC_RTLF | MSC_RTSF))
580 				stats->rx_length_errors++;
581 			if (desc_status & MSC_CEEF)
582 				stats->rx_missed_errors++;
583 		} else {
584 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
585 
586 			skb = priv->rx_skb[q][entry];
587 			priv->rx_skb[q][entry] = NULL;
588 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
589 					 priv->rx_buf_sz,
590 					 DMA_FROM_DEVICE);
591 			get_ts &= (q == RAVB_NC) ?
592 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
593 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
594 			if (get_ts) {
595 				struct skb_shared_hwtstamps *shhwtstamps;
596 
597 				shhwtstamps = skb_hwtstamps(skb);
598 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
599 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
600 					     32) | le32_to_cpu(desc->ts_sl);
601 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
602 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
603 			}
604 
605 			skb_put(skb, pkt_len);
606 			skb->protocol = eth_type_trans(skb, ndev);
607 			if (ndev->features & NETIF_F_RXCSUM)
608 				ravb_rx_csum(skb);
609 			napi_gro_receive(&priv->napi[q], skb);
610 			stats->rx_packets++;
611 			stats->rx_bytes += pkt_len;
612 		}
613 
614 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
615 		desc = &priv->rx_ring[q][entry];
616 	}
617 
618 	/* Refill the RX ring buffers. */
619 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
620 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
621 		desc = &priv->rx_ring[q][entry];
622 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
623 
624 		if (!priv->rx_skb[q][entry]) {
625 			skb = netdev_alloc_skb(ndev,
626 					       priv->rx_buf_sz +
627 					       RAVB_ALIGN - 1);
628 			if (!skb)
629 				break;	/* Better luck next round. */
630 			ravb_set_buffer_align(skb);
631 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
632 						  le16_to_cpu(desc->ds_cc),
633 						  DMA_FROM_DEVICE);
634 			skb_checksum_none_assert(skb);
635 			/* We just set the data size to 0 for a failed mapping
636 			 * which should prevent DMA  from happening...
637 			 */
638 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
639 				desc->ds_cc = cpu_to_le16(0);
640 			desc->dptr = cpu_to_le32(dma_addr);
641 			priv->rx_skb[q][entry] = skb;
642 		}
643 		/* Descriptor type must be set after all the above writes */
644 		dma_wmb();
645 		desc->die_dt = DT_FEMPTY;
646 	}
647 
648 	*quota -= limit - (++boguscnt);
649 
650 	return boguscnt <= 0;
651 }
652 
653 static void ravb_rcv_snd_disable(struct net_device *ndev)
654 {
655 	/* Disable TX and RX */
656 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
657 }
658 
659 static void ravb_rcv_snd_enable(struct net_device *ndev)
660 {
661 	/* Enable TX and RX */
662 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
663 }
664 
665 /* function for waiting dma process finished */
666 static int ravb_stop_dma(struct net_device *ndev)
667 {
668 	int error;
669 
670 	/* Wait for stopping the hardware TX process */
671 	error = ravb_wait(ndev, TCCR,
672 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
673 	if (error)
674 		return error;
675 
676 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
677 			  0);
678 	if (error)
679 		return error;
680 
681 	/* Stop the E-MAC's RX/TX processes. */
682 	ravb_rcv_snd_disable(ndev);
683 
684 	/* Wait for stopping the RX DMA process */
685 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
686 	if (error)
687 		return error;
688 
689 	/* Stop AVB-DMAC process */
690 	return ravb_config(ndev);
691 }
692 
693 /* E-MAC interrupt handler */
694 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
695 {
696 	struct ravb_private *priv = netdev_priv(ndev);
697 	u32 ecsr, psr;
698 
699 	ecsr = ravb_read(ndev, ECSR);
700 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
701 
702 	if (ecsr & ECSR_MPD)
703 		pm_wakeup_event(&priv->pdev->dev, 0);
704 	if (ecsr & ECSR_ICD)
705 		ndev->stats.tx_carrier_errors++;
706 	if (ecsr & ECSR_LCHNG) {
707 		/* Link changed */
708 		if (priv->no_avb_link)
709 			return;
710 		psr = ravb_read(ndev, PSR);
711 		if (priv->avb_link_active_low)
712 			psr ^= PSR_LMON;
713 		if (!(psr & PSR_LMON)) {
714 			/* DIsable RX and TX */
715 			ravb_rcv_snd_disable(ndev);
716 		} else {
717 			/* Enable RX and TX */
718 			ravb_rcv_snd_enable(ndev);
719 		}
720 	}
721 }
722 
723 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
724 {
725 	struct net_device *ndev = dev_id;
726 	struct ravb_private *priv = netdev_priv(ndev);
727 
728 	spin_lock(&priv->lock);
729 	ravb_emac_interrupt_unlocked(ndev);
730 	mmiowb();
731 	spin_unlock(&priv->lock);
732 	return IRQ_HANDLED;
733 }
734 
735 /* Error interrupt handler */
736 static void ravb_error_interrupt(struct net_device *ndev)
737 {
738 	struct ravb_private *priv = netdev_priv(ndev);
739 	u32 eis, ris2;
740 
741 	eis = ravb_read(ndev, EIS);
742 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
743 	if (eis & EIS_QFS) {
744 		ris2 = ravb_read(ndev, RIS2);
745 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
746 			   RIS2);
747 
748 		/* Receive Descriptor Empty int */
749 		if (ris2 & RIS2_QFF0)
750 			priv->stats[RAVB_BE].rx_over_errors++;
751 
752 		    /* Receive Descriptor Empty int */
753 		if (ris2 & RIS2_QFF1)
754 			priv->stats[RAVB_NC].rx_over_errors++;
755 
756 		/* Receive FIFO Overflow int */
757 		if (ris2 & RIS2_RFFF)
758 			priv->rx_fifo_errors++;
759 	}
760 }
761 
762 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
763 {
764 	struct ravb_private *priv = netdev_priv(ndev);
765 	u32 ris0 = ravb_read(ndev, RIS0);
766 	u32 ric0 = ravb_read(ndev, RIC0);
767 	u32 tis  = ravb_read(ndev, TIS);
768 	u32 tic  = ravb_read(ndev, TIC);
769 
770 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
771 		if (napi_schedule_prep(&priv->napi[q])) {
772 			/* Mask RX and TX interrupts */
773 			if (priv->chip_id == RCAR_GEN2) {
774 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
775 				ravb_write(ndev, tic & ~BIT(q), TIC);
776 			} else {
777 				ravb_write(ndev, BIT(q), RID0);
778 				ravb_write(ndev, BIT(q), TID);
779 			}
780 			__napi_schedule(&priv->napi[q]);
781 		} else {
782 			netdev_warn(ndev,
783 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
784 				    ris0, ric0);
785 			netdev_warn(ndev,
786 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
787 				    tis, tic);
788 		}
789 		return true;
790 	}
791 	return false;
792 }
793 
794 static bool ravb_timestamp_interrupt(struct net_device *ndev)
795 {
796 	u32 tis = ravb_read(ndev, TIS);
797 
798 	if (tis & TIS_TFUF) {
799 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
800 		ravb_get_tx_tstamp(ndev);
801 		return true;
802 	}
803 	return false;
804 }
805 
806 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
807 {
808 	struct net_device *ndev = dev_id;
809 	struct ravb_private *priv = netdev_priv(ndev);
810 	irqreturn_t result = IRQ_NONE;
811 	u32 iss;
812 
813 	spin_lock(&priv->lock);
814 	/* Get interrupt status */
815 	iss = ravb_read(ndev, ISS);
816 
817 	/* Received and transmitted interrupts */
818 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
819 		int q;
820 
821 		/* Timestamp updated */
822 		if (ravb_timestamp_interrupt(ndev))
823 			result = IRQ_HANDLED;
824 
825 		/* Network control and best effort queue RX/TX */
826 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
827 			if (ravb_queue_interrupt(ndev, q))
828 				result = IRQ_HANDLED;
829 		}
830 	}
831 
832 	/* E-MAC status summary */
833 	if (iss & ISS_MS) {
834 		ravb_emac_interrupt_unlocked(ndev);
835 		result = IRQ_HANDLED;
836 	}
837 
838 	/* Error status summary */
839 	if (iss & ISS_ES) {
840 		ravb_error_interrupt(ndev);
841 		result = IRQ_HANDLED;
842 	}
843 
844 	/* gPTP interrupt status summary */
845 	if (iss & ISS_CGIS) {
846 		ravb_ptp_interrupt(ndev);
847 		result = IRQ_HANDLED;
848 	}
849 
850 	mmiowb();
851 	spin_unlock(&priv->lock);
852 	return result;
853 }
854 
855 /* Timestamp/Error/gPTP interrupt handler */
856 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
857 {
858 	struct net_device *ndev = dev_id;
859 	struct ravb_private *priv = netdev_priv(ndev);
860 	irqreturn_t result = IRQ_NONE;
861 	u32 iss;
862 
863 	spin_lock(&priv->lock);
864 	/* Get interrupt status */
865 	iss = ravb_read(ndev, ISS);
866 
867 	/* Timestamp updated */
868 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
869 		result = IRQ_HANDLED;
870 
871 	/* Error status summary */
872 	if (iss & ISS_ES) {
873 		ravb_error_interrupt(ndev);
874 		result = IRQ_HANDLED;
875 	}
876 
877 	/* gPTP interrupt status summary */
878 	if (iss & ISS_CGIS) {
879 		ravb_ptp_interrupt(ndev);
880 		result = IRQ_HANDLED;
881 	}
882 
883 	mmiowb();
884 	spin_unlock(&priv->lock);
885 	return result;
886 }
887 
888 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
889 {
890 	struct net_device *ndev = dev_id;
891 	struct ravb_private *priv = netdev_priv(ndev);
892 	irqreturn_t result = IRQ_NONE;
893 
894 	spin_lock(&priv->lock);
895 
896 	/* Network control/Best effort queue RX/TX */
897 	if (ravb_queue_interrupt(ndev, q))
898 		result = IRQ_HANDLED;
899 
900 	mmiowb();
901 	spin_unlock(&priv->lock);
902 	return result;
903 }
904 
905 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
906 {
907 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
908 }
909 
910 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
911 {
912 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
913 }
914 
915 static int ravb_poll(struct napi_struct *napi, int budget)
916 {
917 	struct net_device *ndev = napi->dev;
918 	struct ravb_private *priv = netdev_priv(ndev);
919 	unsigned long flags;
920 	int q = napi - priv->napi;
921 	int mask = BIT(q);
922 	int quota = budget;
923 	u32 ris0, tis;
924 
925 	for (;;) {
926 		tis = ravb_read(ndev, TIS);
927 		ris0 = ravb_read(ndev, RIS0);
928 		if (!((ris0 & mask) || (tis & mask)))
929 			break;
930 
931 		/* Processing RX Descriptor Ring */
932 		if (ris0 & mask) {
933 			/* Clear RX interrupt */
934 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
935 			if (ravb_rx(ndev, &quota, q))
936 				goto out;
937 		}
938 		/* Processing TX Descriptor Ring */
939 		if (tis & mask) {
940 			spin_lock_irqsave(&priv->lock, flags);
941 			/* Clear TX interrupt */
942 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
943 			ravb_tx_free(ndev, q, true);
944 			netif_wake_subqueue(ndev, q);
945 			mmiowb();
946 			spin_unlock_irqrestore(&priv->lock, flags);
947 		}
948 	}
949 
950 	napi_complete(napi);
951 
952 	/* Re-enable RX/TX interrupts */
953 	spin_lock_irqsave(&priv->lock, flags);
954 	if (priv->chip_id == RCAR_GEN2) {
955 		ravb_modify(ndev, RIC0, mask, mask);
956 		ravb_modify(ndev, TIC,  mask, mask);
957 	} else {
958 		ravb_write(ndev, mask, RIE0);
959 		ravb_write(ndev, mask, TIE);
960 	}
961 	mmiowb();
962 	spin_unlock_irqrestore(&priv->lock, flags);
963 
964 	/* Receive error message handling */
965 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
966 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
967 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
968 		ndev->stats.rx_over_errors = priv->rx_over_errors;
969 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
970 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
971 out:
972 	return budget - quota;
973 }
974 
975 /* PHY state control function */
976 static void ravb_adjust_link(struct net_device *ndev)
977 {
978 	struct ravb_private *priv = netdev_priv(ndev);
979 	struct phy_device *phydev = ndev->phydev;
980 	bool new_state = false;
981 	unsigned long flags;
982 
983 	spin_lock_irqsave(&priv->lock, flags);
984 
985 	/* Disable TX and RX right over here, if E-MAC change is ignored */
986 	if (priv->no_avb_link)
987 		ravb_rcv_snd_disable(ndev);
988 
989 	if (phydev->link) {
990 		if (phydev->duplex != priv->duplex) {
991 			new_state = true;
992 			priv->duplex = phydev->duplex;
993 			ravb_set_duplex(ndev);
994 		}
995 
996 		if (phydev->speed != priv->speed) {
997 			new_state = true;
998 			priv->speed = phydev->speed;
999 			ravb_set_rate(ndev);
1000 		}
1001 		if (!priv->link) {
1002 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1003 			new_state = true;
1004 			priv->link = phydev->link;
1005 		}
1006 	} else if (priv->link) {
1007 		new_state = true;
1008 		priv->link = 0;
1009 		priv->speed = 0;
1010 		priv->duplex = -1;
1011 	}
1012 
1013 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1014 	if (priv->no_avb_link && phydev->link)
1015 		ravb_rcv_snd_enable(ndev);
1016 
1017 	mmiowb();
1018 	spin_unlock_irqrestore(&priv->lock, flags);
1019 
1020 	if (new_state && netif_msg_link(priv))
1021 		phy_print_status(phydev);
1022 }
1023 
1024 static const struct soc_device_attribute r8a7795es10[] = {
1025 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1026 	{ /* sentinel */ }
1027 };
1028 
1029 /* PHY init function */
1030 static int ravb_phy_init(struct net_device *ndev)
1031 {
1032 	struct device_node *np = ndev->dev.parent->of_node;
1033 	struct ravb_private *priv = netdev_priv(ndev);
1034 	struct phy_device *phydev;
1035 	struct device_node *pn;
1036 	int err;
1037 
1038 	priv->link = 0;
1039 	priv->speed = 0;
1040 	priv->duplex = -1;
1041 
1042 	/* Try connecting to PHY */
1043 	pn = of_parse_phandle(np, "phy-handle", 0);
1044 	if (!pn) {
1045 		/* In the case of a fixed PHY, the DT node associated
1046 		 * to the PHY is the Ethernet MAC DT node.
1047 		 */
1048 		if (of_phy_is_fixed_link(np)) {
1049 			err = of_phy_register_fixed_link(np);
1050 			if (err)
1051 				return err;
1052 		}
1053 		pn = of_node_get(np);
1054 	}
1055 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1056 				priv->phy_interface);
1057 	of_node_put(pn);
1058 	if (!phydev) {
1059 		netdev_err(ndev, "failed to connect PHY\n");
1060 		err = -ENOENT;
1061 		goto err_deregister_fixed_link;
1062 	}
1063 
1064 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1065 	 * at this time.
1066 	 */
1067 	if (soc_device_match(r8a7795es10)) {
1068 		err = phy_set_max_speed(phydev, SPEED_100);
1069 		if (err) {
1070 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1071 			goto err_phy_disconnect;
1072 		}
1073 
1074 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1075 	}
1076 
1077 	/* 10BASE is not supported */
1078 	phydev->supported &= ~PHY_10BT_FEATURES;
1079 
1080 	phy_attached_info(phydev);
1081 
1082 	return 0;
1083 
1084 err_phy_disconnect:
1085 	phy_disconnect(phydev);
1086 err_deregister_fixed_link:
1087 	if (of_phy_is_fixed_link(np))
1088 		of_phy_deregister_fixed_link(np);
1089 
1090 	return err;
1091 }
1092 
1093 /* PHY control start function */
1094 static int ravb_phy_start(struct net_device *ndev)
1095 {
1096 	int error;
1097 
1098 	error = ravb_phy_init(ndev);
1099 	if (error)
1100 		return error;
1101 
1102 	phy_start(ndev->phydev);
1103 
1104 	return 0;
1105 }
1106 
1107 static u32 ravb_get_msglevel(struct net_device *ndev)
1108 {
1109 	struct ravb_private *priv = netdev_priv(ndev);
1110 
1111 	return priv->msg_enable;
1112 }
1113 
1114 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1115 {
1116 	struct ravb_private *priv = netdev_priv(ndev);
1117 
1118 	priv->msg_enable = value;
1119 }
1120 
1121 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1122 	"rx_queue_0_current",
1123 	"tx_queue_0_current",
1124 	"rx_queue_0_dirty",
1125 	"tx_queue_0_dirty",
1126 	"rx_queue_0_packets",
1127 	"tx_queue_0_packets",
1128 	"rx_queue_0_bytes",
1129 	"tx_queue_0_bytes",
1130 	"rx_queue_0_mcast_packets",
1131 	"rx_queue_0_errors",
1132 	"rx_queue_0_crc_errors",
1133 	"rx_queue_0_frame_errors",
1134 	"rx_queue_0_length_errors",
1135 	"rx_queue_0_missed_errors",
1136 	"rx_queue_0_over_errors",
1137 
1138 	"rx_queue_1_current",
1139 	"tx_queue_1_current",
1140 	"rx_queue_1_dirty",
1141 	"tx_queue_1_dirty",
1142 	"rx_queue_1_packets",
1143 	"tx_queue_1_packets",
1144 	"rx_queue_1_bytes",
1145 	"tx_queue_1_bytes",
1146 	"rx_queue_1_mcast_packets",
1147 	"rx_queue_1_errors",
1148 	"rx_queue_1_crc_errors",
1149 	"rx_queue_1_frame_errors",
1150 	"rx_queue_1_length_errors",
1151 	"rx_queue_1_missed_errors",
1152 	"rx_queue_1_over_errors",
1153 };
1154 
1155 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1156 
1157 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1158 {
1159 	switch (sset) {
1160 	case ETH_SS_STATS:
1161 		return RAVB_STATS_LEN;
1162 	default:
1163 		return -EOPNOTSUPP;
1164 	}
1165 }
1166 
1167 static void ravb_get_ethtool_stats(struct net_device *ndev,
1168 				   struct ethtool_stats *estats, u64 *data)
1169 {
1170 	struct ravb_private *priv = netdev_priv(ndev);
1171 	int i = 0;
1172 	int q;
1173 
1174 	/* Device-specific stats */
1175 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1176 		struct net_device_stats *stats = &priv->stats[q];
1177 
1178 		data[i++] = priv->cur_rx[q];
1179 		data[i++] = priv->cur_tx[q];
1180 		data[i++] = priv->dirty_rx[q];
1181 		data[i++] = priv->dirty_tx[q];
1182 		data[i++] = stats->rx_packets;
1183 		data[i++] = stats->tx_packets;
1184 		data[i++] = stats->rx_bytes;
1185 		data[i++] = stats->tx_bytes;
1186 		data[i++] = stats->multicast;
1187 		data[i++] = stats->rx_errors;
1188 		data[i++] = stats->rx_crc_errors;
1189 		data[i++] = stats->rx_frame_errors;
1190 		data[i++] = stats->rx_length_errors;
1191 		data[i++] = stats->rx_missed_errors;
1192 		data[i++] = stats->rx_over_errors;
1193 	}
1194 }
1195 
1196 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1197 {
1198 	switch (stringset) {
1199 	case ETH_SS_STATS:
1200 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1201 		break;
1202 	}
1203 }
1204 
1205 static void ravb_get_ringparam(struct net_device *ndev,
1206 			       struct ethtool_ringparam *ring)
1207 {
1208 	struct ravb_private *priv = netdev_priv(ndev);
1209 
1210 	ring->rx_max_pending = BE_RX_RING_MAX;
1211 	ring->tx_max_pending = BE_TX_RING_MAX;
1212 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1213 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1214 }
1215 
1216 static int ravb_set_ringparam(struct net_device *ndev,
1217 			      struct ethtool_ringparam *ring)
1218 {
1219 	struct ravb_private *priv = netdev_priv(ndev);
1220 	int error;
1221 
1222 	if (ring->tx_pending > BE_TX_RING_MAX ||
1223 	    ring->rx_pending > BE_RX_RING_MAX ||
1224 	    ring->tx_pending < BE_TX_RING_MIN ||
1225 	    ring->rx_pending < BE_RX_RING_MIN)
1226 		return -EINVAL;
1227 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1228 		return -EINVAL;
1229 
1230 	if (netif_running(ndev)) {
1231 		netif_device_detach(ndev);
1232 		/* Stop PTP Clock driver */
1233 		if (priv->chip_id == RCAR_GEN2)
1234 			ravb_ptp_stop(ndev);
1235 		/* Wait for DMA stopping */
1236 		error = ravb_stop_dma(ndev);
1237 		if (error) {
1238 			netdev_err(ndev,
1239 				   "cannot set ringparam! Any AVB processes are still running?\n");
1240 			return error;
1241 		}
1242 		synchronize_irq(ndev->irq);
1243 
1244 		/* Free all the skb's in the RX queue and the DMA buffers. */
1245 		ravb_ring_free(ndev, RAVB_BE);
1246 		ravb_ring_free(ndev, RAVB_NC);
1247 	}
1248 
1249 	/* Set new parameters */
1250 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1251 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1252 
1253 	if (netif_running(ndev)) {
1254 		error = ravb_dmac_init(ndev);
1255 		if (error) {
1256 			netdev_err(ndev,
1257 				   "%s: ravb_dmac_init() failed, error %d\n",
1258 				   __func__, error);
1259 			return error;
1260 		}
1261 
1262 		ravb_emac_init(ndev);
1263 
1264 		/* Initialise PTP Clock driver */
1265 		if (priv->chip_id == RCAR_GEN2)
1266 			ravb_ptp_init(ndev, priv->pdev);
1267 
1268 		netif_device_attach(ndev);
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static int ravb_get_ts_info(struct net_device *ndev,
1275 			    struct ethtool_ts_info *info)
1276 {
1277 	struct ravb_private *priv = netdev_priv(ndev);
1278 
1279 	info->so_timestamping =
1280 		SOF_TIMESTAMPING_TX_SOFTWARE |
1281 		SOF_TIMESTAMPING_RX_SOFTWARE |
1282 		SOF_TIMESTAMPING_SOFTWARE |
1283 		SOF_TIMESTAMPING_TX_HARDWARE |
1284 		SOF_TIMESTAMPING_RX_HARDWARE |
1285 		SOF_TIMESTAMPING_RAW_HARDWARE;
1286 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1287 	info->rx_filters =
1288 		(1 << HWTSTAMP_FILTER_NONE) |
1289 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1290 		(1 << HWTSTAMP_FILTER_ALL);
1291 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1292 
1293 	return 0;
1294 }
1295 
1296 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1297 {
1298 	struct ravb_private *priv = netdev_priv(ndev);
1299 
1300 	wol->supported = WAKE_MAGIC;
1301 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1302 }
1303 
1304 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1305 {
1306 	struct ravb_private *priv = netdev_priv(ndev);
1307 
1308 	if (wol->wolopts & ~WAKE_MAGIC)
1309 		return -EOPNOTSUPP;
1310 
1311 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1312 
1313 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1314 
1315 	return 0;
1316 }
1317 
1318 static const struct ethtool_ops ravb_ethtool_ops = {
1319 	.nway_reset		= phy_ethtool_nway_reset,
1320 	.get_msglevel		= ravb_get_msglevel,
1321 	.set_msglevel		= ravb_set_msglevel,
1322 	.get_link		= ethtool_op_get_link,
1323 	.get_strings		= ravb_get_strings,
1324 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1325 	.get_sset_count		= ravb_get_sset_count,
1326 	.get_ringparam		= ravb_get_ringparam,
1327 	.set_ringparam		= ravb_set_ringparam,
1328 	.get_ts_info		= ravb_get_ts_info,
1329 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1330 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1331 	.get_wol		= ravb_get_wol,
1332 	.set_wol		= ravb_set_wol,
1333 };
1334 
1335 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1336 				struct net_device *ndev, struct device *dev,
1337 				const char *ch)
1338 {
1339 	char *name;
1340 	int error;
1341 
1342 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1343 	if (!name)
1344 		return -ENOMEM;
1345 	error = request_irq(irq, handler, 0, name, ndev);
1346 	if (error)
1347 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1348 
1349 	return error;
1350 }
1351 
1352 /* Network device open function for Ethernet AVB */
1353 static int ravb_open(struct net_device *ndev)
1354 {
1355 	struct ravb_private *priv = netdev_priv(ndev);
1356 	struct platform_device *pdev = priv->pdev;
1357 	struct device *dev = &pdev->dev;
1358 	int error;
1359 
1360 	napi_enable(&priv->napi[RAVB_BE]);
1361 	napi_enable(&priv->napi[RAVB_NC]);
1362 
1363 	if (priv->chip_id == RCAR_GEN2) {
1364 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1365 				    ndev->name, ndev);
1366 		if (error) {
1367 			netdev_err(ndev, "cannot request IRQ\n");
1368 			goto out_napi_off;
1369 		}
1370 	} else {
1371 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1372 				      dev, "ch22:multi");
1373 		if (error)
1374 			goto out_napi_off;
1375 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1376 				      dev, "ch24:emac");
1377 		if (error)
1378 			goto out_free_irq;
1379 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1380 				      ndev, dev, "ch0:rx_be");
1381 		if (error)
1382 			goto out_free_irq_emac;
1383 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1384 				      ndev, dev, "ch18:tx_be");
1385 		if (error)
1386 			goto out_free_irq_be_rx;
1387 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1388 				      ndev, dev, "ch1:rx_nc");
1389 		if (error)
1390 			goto out_free_irq_be_tx;
1391 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1392 				      ndev, dev, "ch19:tx_nc");
1393 		if (error)
1394 			goto out_free_irq_nc_rx;
1395 	}
1396 
1397 	/* Device init */
1398 	error = ravb_dmac_init(ndev);
1399 	if (error)
1400 		goto out_free_irq_nc_tx;
1401 	ravb_emac_init(ndev);
1402 
1403 	/* Initialise PTP Clock driver */
1404 	if (priv->chip_id == RCAR_GEN2)
1405 		ravb_ptp_init(ndev, priv->pdev);
1406 
1407 	netif_tx_start_all_queues(ndev);
1408 
1409 	/* PHY control start */
1410 	error = ravb_phy_start(ndev);
1411 	if (error)
1412 		goto out_ptp_stop;
1413 
1414 	return 0;
1415 
1416 out_ptp_stop:
1417 	/* Stop PTP Clock driver */
1418 	if (priv->chip_id == RCAR_GEN2)
1419 		ravb_ptp_stop(ndev);
1420 out_free_irq_nc_tx:
1421 	if (priv->chip_id == RCAR_GEN2)
1422 		goto out_free_irq;
1423 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1424 out_free_irq_nc_rx:
1425 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1426 out_free_irq_be_tx:
1427 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1428 out_free_irq_be_rx:
1429 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1430 out_free_irq_emac:
1431 	free_irq(priv->emac_irq, ndev);
1432 out_free_irq:
1433 	free_irq(ndev->irq, ndev);
1434 out_napi_off:
1435 	napi_disable(&priv->napi[RAVB_NC]);
1436 	napi_disable(&priv->napi[RAVB_BE]);
1437 	return error;
1438 }
1439 
1440 /* Timeout function for Ethernet AVB */
1441 static void ravb_tx_timeout(struct net_device *ndev)
1442 {
1443 	struct ravb_private *priv = netdev_priv(ndev);
1444 
1445 	netif_err(priv, tx_err, ndev,
1446 		  "transmit timed out, status %08x, resetting...\n",
1447 		  ravb_read(ndev, ISS));
1448 
1449 	/* tx_errors count up */
1450 	ndev->stats.tx_errors++;
1451 
1452 	schedule_work(&priv->work);
1453 }
1454 
1455 static void ravb_tx_timeout_work(struct work_struct *work)
1456 {
1457 	struct ravb_private *priv = container_of(work, struct ravb_private,
1458 						 work);
1459 	struct net_device *ndev = priv->ndev;
1460 
1461 	netif_tx_stop_all_queues(ndev);
1462 
1463 	/* Stop PTP Clock driver */
1464 	if (priv->chip_id == RCAR_GEN2)
1465 		ravb_ptp_stop(ndev);
1466 
1467 	/* Wait for DMA stopping */
1468 	ravb_stop_dma(ndev);
1469 
1470 	ravb_ring_free(ndev, RAVB_BE);
1471 	ravb_ring_free(ndev, RAVB_NC);
1472 
1473 	/* Device init */
1474 	ravb_dmac_init(ndev);
1475 	ravb_emac_init(ndev);
1476 
1477 	/* Initialise PTP Clock driver */
1478 	if (priv->chip_id == RCAR_GEN2)
1479 		ravb_ptp_init(ndev, priv->pdev);
1480 
1481 	netif_tx_start_all_queues(ndev);
1482 }
1483 
1484 /* Packet transmit function for Ethernet AVB */
1485 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1486 {
1487 	struct ravb_private *priv = netdev_priv(ndev);
1488 	u16 q = skb_get_queue_mapping(skb);
1489 	struct ravb_tstamp_skb *ts_skb;
1490 	struct ravb_tx_desc *desc;
1491 	unsigned long flags;
1492 	u32 dma_addr;
1493 	void *buffer;
1494 	u32 entry;
1495 	u32 len;
1496 
1497 	spin_lock_irqsave(&priv->lock, flags);
1498 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1499 	    NUM_TX_DESC) {
1500 		netif_err(priv, tx_queued, ndev,
1501 			  "still transmitting with the full ring!\n");
1502 		netif_stop_subqueue(ndev, q);
1503 		spin_unlock_irqrestore(&priv->lock, flags);
1504 		return NETDEV_TX_BUSY;
1505 	}
1506 
1507 	if (skb_put_padto(skb, ETH_ZLEN))
1508 		goto exit;
1509 
1510 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1511 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1512 
1513 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1514 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1515 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1516 	/* Zero length DMA descriptors are problematic as they seem to
1517 	 * terminate DMA transfers. Avoid them by simply using a length of
1518 	 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1519 	 *
1520 	 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1521 	 * data by the call to skb_put_padto() above this is safe with
1522 	 * respect to both the length of the first DMA descriptor (len)
1523 	 * overflowing the available data and the length of the second DMA
1524 	 * descriptor (skb->len - len) being negative.
1525 	 */
1526 	if (len == 0)
1527 		len = DPTR_ALIGN;
1528 
1529 	memcpy(buffer, skb->data, len);
1530 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1531 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1532 		goto drop;
1533 
1534 	desc = &priv->tx_ring[q][entry];
1535 	desc->ds_tagl = cpu_to_le16(len);
1536 	desc->dptr = cpu_to_le32(dma_addr);
1537 
1538 	buffer = skb->data + len;
1539 	len = skb->len - len;
1540 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1541 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1542 		goto unmap;
1543 
1544 	desc++;
1545 	desc->ds_tagl = cpu_to_le16(len);
1546 	desc->dptr = cpu_to_le32(dma_addr);
1547 
1548 	/* TX timestamp required */
1549 	if (q == RAVB_NC) {
1550 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1551 		if (!ts_skb) {
1552 			desc--;
1553 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1554 					 DMA_TO_DEVICE);
1555 			goto unmap;
1556 		}
1557 		ts_skb->skb = skb;
1558 		ts_skb->tag = priv->ts_skb_tag++;
1559 		priv->ts_skb_tag &= 0x3ff;
1560 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1561 
1562 		/* TAG and timestamp required flag */
1563 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1564 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1565 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1566 	}
1567 
1568 	skb_tx_timestamp(skb);
1569 	/* Descriptor type must be set after all the above writes */
1570 	dma_wmb();
1571 	desc->die_dt = DT_FEND;
1572 	desc--;
1573 	desc->die_dt = DT_FSTART;
1574 
1575 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1576 
1577 	priv->cur_tx[q] += NUM_TX_DESC;
1578 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1579 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
1580 	    !ravb_tx_free(ndev, q, true))
1581 		netif_stop_subqueue(ndev, q);
1582 
1583 exit:
1584 	mmiowb();
1585 	spin_unlock_irqrestore(&priv->lock, flags);
1586 	return NETDEV_TX_OK;
1587 
1588 unmap:
1589 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1590 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1591 drop:
1592 	dev_kfree_skb_any(skb);
1593 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1594 	goto exit;
1595 }
1596 
1597 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1598 			     struct net_device *sb_dev,
1599 			     select_queue_fallback_t fallback)
1600 {
1601 	/* If skb needs TX timestamp, it is handled in network control queue */
1602 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1603 							       RAVB_BE;
1604 
1605 }
1606 
1607 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1608 {
1609 	struct ravb_private *priv = netdev_priv(ndev);
1610 	struct net_device_stats *nstats, *stats0, *stats1;
1611 
1612 	nstats = &ndev->stats;
1613 	stats0 = &priv->stats[RAVB_BE];
1614 	stats1 = &priv->stats[RAVB_NC];
1615 
1616 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1617 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1618 	nstats->collisions += ravb_read(ndev, CDCR);
1619 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1620 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1621 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1622 
1623 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1624 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1625 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1626 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1627 
1628 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1629 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1630 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1631 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1632 	nstats->multicast = stats0->multicast + stats1->multicast;
1633 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1634 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1635 	nstats->rx_frame_errors =
1636 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1637 	nstats->rx_length_errors =
1638 		stats0->rx_length_errors + stats1->rx_length_errors;
1639 	nstats->rx_missed_errors =
1640 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1641 	nstats->rx_over_errors =
1642 		stats0->rx_over_errors + stats1->rx_over_errors;
1643 
1644 	return nstats;
1645 }
1646 
1647 /* Update promiscuous bit */
1648 static void ravb_set_rx_mode(struct net_device *ndev)
1649 {
1650 	struct ravb_private *priv = netdev_priv(ndev);
1651 	unsigned long flags;
1652 
1653 	spin_lock_irqsave(&priv->lock, flags);
1654 	ravb_modify(ndev, ECMR, ECMR_PRM,
1655 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1656 	mmiowb();
1657 	spin_unlock_irqrestore(&priv->lock, flags);
1658 }
1659 
1660 /* Device close function for Ethernet AVB */
1661 static int ravb_close(struct net_device *ndev)
1662 {
1663 	struct device_node *np = ndev->dev.parent->of_node;
1664 	struct ravb_private *priv = netdev_priv(ndev);
1665 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1666 
1667 	netif_tx_stop_all_queues(ndev);
1668 
1669 	/* Disable interrupts by clearing the interrupt masks. */
1670 	ravb_write(ndev, 0, RIC0);
1671 	ravb_write(ndev, 0, RIC2);
1672 	ravb_write(ndev, 0, TIC);
1673 
1674 	/* Stop PTP Clock driver */
1675 	if (priv->chip_id == RCAR_GEN2)
1676 		ravb_ptp_stop(ndev);
1677 
1678 	/* Set the config mode to stop the AVB-DMAC's processes */
1679 	if (ravb_stop_dma(ndev) < 0)
1680 		netdev_err(ndev,
1681 			   "device will be stopped after h/w processes are done.\n");
1682 
1683 	/* Clear the timestamp list */
1684 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1685 		list_del(&ts_skb->list);
1686 		kfree(ts_skb);
1687 	}
1688 
1689 	/* PHY disconnect */
1690 	if (ndev->phydev) {
1691 		phy_stop(ndev->phydev);
1692 		phy_disconnect(ndev->phydev);
1693 		if (of_phy_is_fixed_link(np))
1694 			of_phy_deregister_fixed_link(np);
1695 	}
1696 
1697 	if (priv->chip_id != RCAR_GEN2) {
1698 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1699 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1700 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1701 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1702 		free_irq(priv->emac_irq, ndev);
1703 	}
1704 	free_irq(ndev->irq, ndev);
1705 
1706 	napi_disable(&priv->napi[RAVB_NC]);
1707 	napi_disable(&priv->napi[RAVB_BE]);
1708 
1709 	/* Free all the skb's in the RX queue and the DMA buffers. */
1710 	ravb_ring_free(ndev, RAVB_BE);
1711 	ravb_ring_free(ndev, RAVB_NC);
1712 
1713 	return 0;
1714 }
1715 
1716 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1717 {
1718 	struct ravb_private *priv = netdev_priv(ndev);
1719 	struct hwtstamp_config config;
1720 
1721 	config.flags = 0;
1722 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1723 						HWTSTAMP_TX_OFF;
1724 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1725 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1726 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1727 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1728 	else
1729 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1730 
1731 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1732 		-EFAULT : 0;
1733 }
1734 
1735 /* Control hardware time stamping */
1736 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1737 {
1738 	struct ravb_private *priv = netdev_priv(ndev);
1739 	struct hwtstamp_config config;
1740 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1741 	u32 tstamp_tx_ctrl;
1742 
1743 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1744 		return -EFAULT;
1745 
1746 	/* Reserved for future extensions */
1747 	if (config.flags)
1748 		return -EINVAL;
1749 
1750 	switch (config.tx_type) {
1751 	case HWTSTAMP_TX_OFF:
1752 		tstamp_tx_ctrl = 0;
1753 		break;
1754 	case HWTSTAMP_TX_ON:
1755 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1756 		break;
1757 	default:
1758 		return -ERANGE;
1759 	}
1760 
1761 	switch (config.rx_filter) {
1762 	case HWTSTAMP_FILTER_NONE:
1763 		tstamp_rx_ctrl = 0;
1764 		break;
1765 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1766 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1767 		break;
1768 	default:
1769 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1770 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1771 	}
1772 
1773 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1774 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1775 
1776 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1777 		-EFAULT : 0;
1778 }
1779 
1780 /* ioctl to device function */
1781 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1782 {
1783 	struct phy_device *phydev = ndev->phydev;
1784 
1785 	if (!netif_running(ndev))
1786 		return -EINVAL;
1787 
1788 	if (!phydev)
1789 		return -ENODEV;
1790 
1791 	switch (cmd) {
1792 	case SIOCGHWTSTAMP:
1793 		return ravb_hwtstamp_get(ndev, req);
1794 	case SIOCSHWTSTAMP:
1795 		return ravb_hwtstamp_set(ndev, req);
1796 	}
1797 
1798 	return phy_mii_ioctl(phydev, req, cmd);
1799 }
1800 
1801 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1802 {
1803 	if (netif_running(ndev))
1804 		return -EBUSY;
1805 
1806 	ndev->mtu = new_mtu;
1807 	netdev_update_features(ndev);
1808 
1809 	return 0;
1810 }
1811 
1812 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1813 {
1814 	struct ravb_private *priv = netdev_priv(ndev);
1815 	unsigned long flags;
1816 
1817 	spin_lock_irqsave(&priv->lock, flags);
1818 
1819 	/* Disable TX and RX */
1820 	ravb_rcv_snd_disable(ndev);
1821 
1822 	/* Modify RX Checksum setting */
1823 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1824 
1825 	/* Enable TX and RX */
1826 	ravb_rcv_snd_enable(ndev);
1827 
1828 	spin_unlock_irqrestore(&priv->lock, flags);
1829 }
1830 
1831 static int ravb_set_features(struct net_device *ndev,
1832 			     netdev_features_t features)
1833 {
1834 	netdev_features_t changed = ndev->features ^ features;
1835 
1836 	if (changed & NETIF_F_RXCSUM)
1837 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1838 
1839 	ndev->features = features;
1840 
1841 	return 0;
1842 }
1843 
1844 static const struct net_device_ops ravb_netdev_ops = {
1845 	.ndo_open		= ravb_open,
1846 	.ndo_stop		= ravb_close,
1847 	.ndo_start_xmit		= ravb_start_xmit,
1848 	.ndo_select_queue	= ravb_select_queue,
1849 	.ndo_get_stats		= ravb_get_stats,
1850 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1851 	.ndo_tx_timeout		= ravb_tx_timeout,
1852 	.ndo_do_ioctl		= ravb_do_ioctl,
1853 	.ndo_change_mtu		= ravb_change_mtu,
1854 	.ndo_validate_addr	= eth_validate_addr,
1855 	.ndo_set_mac_address	= eth_mac_addr,
1856 	.ndo_set_features	= ravb_set_features,
1857 };
1858 
1859 /* MDIO bus init function */
1860 static int ravb_mdio_init(struct ravb_private *priv)
1861 {
1862 	struct platform_device *pdev = priv->pdev;
1863 	struct device *dev = &pdev->dev;
1864 	int error;
1865 
1866 	/* Bitbang init */
1867 	priv->mdiobb.ops = &bb_ops;
1868 
1869 	/* MII controller setting */
1870 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1871 	if (!priv->mii_bus)
1872 		return -ENOMEM;
1873 
1874 	/* Hook up MII support for ethtool */
1875 	priv->mii_bus->name = "ravb_mii";
1876 	priv->mii_bus->parent = dev;
1877 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1878 		 pdev->name, pdev->id);
1879 
1880 	/* Register MDIO bus */
1881 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1882 	if (error)
1883 		goto out_free_bus;
1884 
1885 	return 0;
1886 
1887 out_free_bus:
1888 	free_mdio_bitbang(priv->mii_bus);
1889 	return error;
1890 }
1891 
1892 /* MDIO bus release function */
1893 static int ravb_mdio_release(struct ravb_private *priv)
1894 {
1895 	/* Unregister mdio bus */
1896 	mdiobus_unregister(priv->mii_bus);
1897 
1898 	/* Free bitbang info */
1899 	free_mdio_bitbang(priv->mii_bus);
1900 
1901 	return 0;
1902 }
1903 
1904 static const struct of_device_id ravb_match_table[] = {
1905 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1906 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1907 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1908 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1909 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1910 	{ }
1911 };
1912 MODULE_DEVICE_TABLE(of, ravb_match_table);
1913 
1914 static int ravb_set_gti(struct net_device *ndev)
1915 {
1916 	struct ravb_private *priv = netdev_priv(ndev);
1917 	struct device *dev = ndev->dev.parent;
1918 	unsigned long rate;
1919 	uint64_t inc;
1920 
1921 	rate = clk_get_rate(priv->clk);
1922 	if (!rate)
1923 		return -EINVAL;
1924 
1925 	inc = 1000000000ULL << 20;
1926 	do_div(inc, rate);
1927 
1928 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1929 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1930 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1931 		return -EINVAL;
1932 	}
1933 
1934 	ravb_write(ndev, inc, GTI);
1935 
1936 	return 0;
1937 }
1938 
1939 static void ravb_set_config_mode(struct net_device *ndev)
1940 {
1941 	struct ravb_private *priv = netdev_priv(ndev);
1942 
1943 	if (priv->chip_id == RCAR_GEN2) {
1944 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1945 		/* Set CSEL value */
1946 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1947 	} else {
1948 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1949 			    CCC_GAC | CCC_CSEL_HPB);
1950 	}
1951 }
1952 
1953 /* Set tx and rx clock internal delay modes */
1954 static void ravb_set_delay_mode(struct net_device *ndev)
1955 {
1956 	struct ravb_private *priv = netdev_priv(ndev);
1957 	int set = 0;
1958 
1959 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1960 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1961 		set |= APSR_DM_RDM;
1962 
1963 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1964 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1965 		set |= APSR_DM_TDM;
1966 
1967 	ravb_modify(ndev, APSR, APSR_DM, set);
1968 }
1969 
1970 static int ravb_probe(struct platform_device *pdev)
1971 {
1972 	struct device_node *np = pdev->dev.of_node;
1973 	struct ravb_private *priv;
1974 	enum ravb_chip_id chip_id;
1975 	struct net_device *ndev;
1976 	int error, irq, q;
1977 	struct resource *res;
1978 	int i;
1979 
1980 	if (!np) {
1981 		dev_err(&pdev->dev,
1982 			"this driver is required to be instantiated from device tree\n");
1983 		return -EINVAL;
1984 	}
1985 
1986 	/* Get base address */
1987 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1988 	if (!res) {
1989 		dev_err(&pdev->dev, "invalid resource\n");
1990 		return -EINVAL;
1991 	}
1992 
1993 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1994 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1995 	if (!ndev)
1996 		return -ENOMEM;
1997 
1998 	ndev->features = NETIF_F_RXCSUM;
1999 	ndev->hw_features = NETIF_F_RXCSUM;
2000 
2001 	pm_runtime_enable(&pdev->dev);
2002 	pm_runtime_get_sync(&pdev->dev);
2003 
2004 	/* The Ether-specific entries in the device structure. */
2005 	ndev->base_addr = res->start;
2006 
2007 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2008 
2009 	if (chip_id == RCAR_GEN3)
2010 		irq = platform_get_irq_byname(pdev, "ch22");
2011 	else
2012 		irq = platform_get_irq(pdev, 0);
2013 	if (irq < 0) {
2014 		error = irq;
2015 		goto out_release;
2016 	}
2017 	ndev->irq = irq;
2018 
2019 	SET_NETDEV_DEV(ndev, &pdev->dev);
2020 
2021 	priv = netdev_priv(ndev);
2022 	priv->ndev = ndev;
2023 	priv->pdev = pdev;
2024 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2025 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2026 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2027 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2028 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2029 	if (IS_ERR(priv->addr)) {
2030 		error = PTR_ERR(priv->addr);
2031 		goto out_release;
2032 	}
2033 
2034 	spin_lock_init(&priv->lock);
2035 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2036 
2037 	priv->phy_interface = of_get_phy_mode(np);
2038 
2039 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2040 	priv->avb_link_active_low =
2041 		of_property_read_bool(np, "renesas,ether-link-active-low");
2042 
2043 	if (chip_id == RCAR_GEN3) {
2044 		irq = platform_get_irq_byname(pdev, "ch24");
2045 		if (irq < 0) {
2046 			error = irq;
2047 			goto out_release;
2048 		}
2049 		priv->emac_irq = irq;
2050 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2051 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2052 			if (irq < 0) {
2053 				error = irq;
2054 				goto out_release;
2055 			}
2056 			priv->rx_irqs[i] = irq;
2057 		}
2058 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2059 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2060 			if (irq < 0) {
2061 				error = irq;
2062 				goto out_release;
2063 			}
2064 			priv->tx_irqs[i] = irq;
2065 		}
2066 	}
2067 
2068 	priv->chip_id = chip_id;
2069 
2070 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2071 	if (IS_ERR(priv->clk)) {
2072 		error = PTR_ERR(priv->clk);
2073 		goto out_release;
2074 	}
2075 
2076 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2077 	ndev->min_mtu = ETH_MIN_MTU;
2078 
2079 	/* Set function */
2080 	ndev->netdev_ops = &ravb_netdev_ops;
2081 	ndev->ethtool_ops = &ravb_ethtool_ops;
2082 
2083 	/* Set AVB config mode */
2084 	ravb_set_config_mode(ndev);
2085 
2086 	/* Set GTI value */
2087 	error = ravb_set_gti(ndev);
2088 	if (error)
2089 		goto out_release;
2090 
2091 	/* Request GTI loading */
2092 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2093 
2094 	if (priv->chip_id != RCAR_GEN2)
2095 		ravb_set_delay_mode(ndev);
2096 
2097 	/* Allocate descriptor base address table */
2098 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2099 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2100 					    &priv->desc_bat_dma, GFP_KERNEL);
2101 	if (!priv->desc_bat) {
2102 		dev_err(&pdev->dev,
2103 			"Cannot allocate desc base address table (size %d bytes)\n",
2104 			priv->desc_bat_size);
2105 		error = -ENOMEM;
2106 		goto out_release;
2107 	}
2108 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2109 		priv->desc_bat[q].die_dt = DT_EOS;
2110 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2111 
2112 	/* Initialise HW timestamp list */
2113 	INIT_LIST_HEAD(&priv->ts_skb_list);
2114 
2115 	/* Initialise PTP Clock driver */
2116 	if (chip_id != RCAR_GEN2)
2117 		ravb_ptp_init(ndev, pdev);
2118 
2119 	/* Debug message level */
2120 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2121 
2122 	/* Read and set MAC address */
2123 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2124 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2125 		dev_warn(&pdev->dev,
2126 			 "no valid MAC address supplied, using a random one\n");
2127 		eth_hw_addr_random(ndev);
2128 	}
2129 
2130 	/* MDIO bus init */
2131 	error = ravb_mdio_init(priv);
2132 	if (error) {
2133 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2134 		goto out_dma_free;
2135 	}
2136 
2137 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2138 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2139 
2140 	/* Network device register */
2141 	error = register_netdev(ndev);
2142 	if (error)
2143 		goto out_napi_del;
2144 
2145 	device_set_wakeup_capable(&pdev->dev, 1);
2146 
2147 	/* Print device information */
2148 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2149 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2150 
2151 	platform_set_drvdata(pdev, ndev);
2152 
2153 	return 0;
2154 
2155 out_napi_del:
2156 	netif_napi_del(&priv->napi[RAVB_NC]);
2157 	netif_napi_del(&priv->napi[RAVB_BE]);
2158 	ravb_mdio_release(priv);
2159 out_dma_free:
2160 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2161 			  priv->desc_bat_dma);
2162 
2163 	/* Stop PTP Clock driver */
2164 	if (chip_id != RCAR_GEN2)
2165 		ravb_ptp_stop(ndev);
2166 out_release:
2167 	free_netdev(ndev);
2168 
2169 	pm_runtime_put(&pdev->dev);
2170 	pm_runtime_disable(&pdev->dev);
2171 	return error;
2172 }
2173 
2174 static int ravb_remove(struct platform_device *pdev)
2175 {
2176 	struct net_device *ndev = platform_get_drvdata(pdev);
2177 	struct ravb_private *priv = netdev_priv(ndev);
2178 
2179 	/* Stop PTP Clock driver */
2180 	if (priv->chip_id != RCAR_GEN2)
2181 		ravb_ptp_stop(ndev);
2182 
2183 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2184 			  priv->desc_bat_dma);
2185 	/* Set reset mode */
2186 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2187 	pm_runtime_put_sync(&pdev->dev);
2188 	unregister_netdev(ndev);
2189 	netif_napi_del(&priv->napi[RAVB_NC]);
2190 	netif_napi_del(&priv->napi[RAVB_BE]);
2191 	ravb_mdio_release(priv);
2192 	pm_runtime_disable(&pdev->dev);
2193 	free_netdev(ndev);
2194 	platform_set_drvdata(pdev, NULL);
2195 
2196 	return 0;
2197 }
2198 
2199 static int ravb_wol_setup(struct net_device *ndev)
2200 {
2201 	struct ravb_private *priv = netdev_priv(ndev);
2202 
2203 	/* Disable interrupts by clearing the interrupt masks. */
2204 	ravb_write(ndev, 0, RIC0);
2205 	ravb_write(ndev, 0, RIC2);
2206 	ravb_write(ndev, 0, TIC);
2207 
2208 	/* Only allow ECI interrupts */
2209 	synchronize_irq(priv->emac_irq);
2210 	napi_disable(&priv->napi[RAVB_NC]);
2211 	napi_disable(&priv->napi[RAVB_BE]);
2212 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2213 
2214 	/* Enable MagicPacket */
2215 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2216 
2217 	return enable_irq_wake(priv->emac_irq);
2218 }
2219 
2220 static int ravb_wol_restore(struct net_device *ndev)
2221 {
2222 	struct ravb_private *priv = netdev_priv(ndev);
2223 	int ret;
2224 
2225 	napi_enable(&priv->napi[RAVB_NC]);
2226 	napi_enable(&priv->napi[RAVB_BE]);
2227 
2228 	/* Disable MagicPacket */
2229 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2230 
2231 	ret = ravb_close(ndev);
2232 	if (ret < 0)
2233 		return ret;
2234 
2235 	return disable_irq_wake(priv->emac_irq);
2236 }
2237 
2238 static int __maybe_unused ravb_suspend(struct device *dev)
2239 {
2240 	struct net_device *ndev = dev_get_drvdata(dev);
2241 	struct ravb_private *priv = netdev_priv(ndev);
2242 	int ret;
2243 
2244 	if (!netif_running(ndev))
2245 		return 0;
2246 
2247 	netif_device_detach(ndev);
2248 
2249 	if (priv->wol_enabled)
2250 		ret = ravb_wol_setup(ndev);
2251 	else
2252 		ret = ravb_close(ndev);
2253 
2254 	return ret;
2255 }
2256 
2257 static int __maybe_unused ravb_resume(struct device *dev)
2258 {
2259 	struct net_device *ndev = dev_get_drvdata(dev);
2260 	struct ravb_private *priv = netdev_priv(ndev);
2261 	int ret = 0;
2262 
2263 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2264 	if (priv->wol_enabled)
2265 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2266 
2267 	/* All register have been reset to default values.
2268 	 * Restore all registers which where setup at probe time and
2269 	 * reopen device if it was running before system suspended.
2270 	 */
2271 
2272 	/* Set AVB config mode */
2273 	ravb_set_config_mode(ndev);
2274 
2275 	/* Set GTI value */
2276 	ret = ravb_set_gti(ndev);
2277 	if (ret)
2278 		return ret;
2279 
2280 	/* Request GTI loading */
2281 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2282 
2283 	if (priv->chip_id != RCAR_GEN2)
2284 		ravb_set_delay_mode(ndev);
2285 
2286 	/* Restore descriptor base address table */
2287 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2288 
2289 	if (netif_running(ndev)) {
2290 		if (priv->wol_enabled) {
2291 			ret = ravb_wol_restore(ndev);
2292 			if (ret)
2293 				return ret;
2294 		}
2295 		ret = ravb_open(ndev);
2296 		if (ret < 0)
2297 			return ret;
2298 		netif_device_attach(ndev);
2299 	}
2300 
2301 	return ret;
2302 }
2303 
2304 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2305 {
2306 	/* Runtime PM callback shared between ->runtime_suspend()
2307 	 * and ->runtime_resume(). Simply returns success.
2308 	 *
2309 	 * This driver re-initializes all registers after
2310 	 * pm_runtime_get_sync() anyway so there is no need
2311 	 * to save and restore registers here.
2312 	 */
2313 	return 0;
2314 }
2315 
2316 static const struct dev_pm_ops ravb_dev_pm_ops = {
2317 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2318 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2319 };
2320 
2321 static struct platform_driver ravb_driver = {
2322 	.probe		= ravb_probe,
2323 	.remove		= ravb_remove,
2324 	.driver = {
2325 		.name	= "ravb",
2326 		.pm	= &ravb_dev_pm_ops,
2327 		.of_match_table = ravb_match_table,
2328 	},
2329 };
2330 
2331 module_platform_driver(ravb_driver);
2332 
2333 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2334 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2335 MODULE_LICENSE("GPL v2");
2336