xref: /openbmc/linux/drivers/net/ethernet/renesas/ravb_main.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2015 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (mac) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	int num_tx_desc = priv->num_tx_desc;
179 	struct ravb_tx_desc *desc;
180 	int free_num = 0;
181 	int entry;
182 	u32 size;
183 
184 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 		bool txed;
186 
187 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 					     num_tx_desc);
189 		desc = &priv->tx_ring[q][entry];
190 		txed = desc->die_dt == DT_FEMPTY;
191 		if (free_txed_only && !txed)
192 			break;
193 		/* Descriptor type must be checked before all other reads */
194 		dma_rmb();
195 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 		/* Free the original skb. */
197 		if (priv->tx_skb[q][entry / num_tx_desc]) {
198 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 					 size, DMA_TO_DEVICE);
200 			/* Last packet descriptor? */
201 			if (entry % num_tx_desc == num_tx_desc - 1) {
202 				entry /= num_tx_desc;
203 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 				priv->tx_skb[q][entry] = NULL;
205 				if (txed)
206 					stats->tx_packets++;
207 			}
208 			free_num++;
209 		}
210 		if (txed)
211 			stats->tx_bytes += size;
212 		desc->die_dt = DT_EEMPTY;
213 	}
214 	return free_num;
215 }
216 
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 	struct ravb_private *priv = netdev_priv(ndev);
221 	int num_tx_desc = priv->num_tx_desc;
222 	int ring_size;
223 	int i;
224 
225 	if (priv->rx_ring[q]) {
226 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228 
229 			if (!dma_mapping_error(ndev->dev.parent,
230 					       le32_to_cpu(desc->dptr)))
231 				dma_unmap_single(ndev->dev.parent,
232 						 le32_to_cpu(desc->dptr),
233 						 priv->rx_buf_sz,
234 						 DMA_FROM_DEVICE);
235 		}
236 		ring_size = sizeof(struct ravb_ex_rx_desc) *
237 			    (priv->num_rx_ring[q] + 1);
238 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 				  priv->rx_desc_dma[q]);
240 		priv->rx_ring[q] = NULL;
241 	}
242 
243 	if (priv->tx_ring[q]) {
244 		ravb_tx_free(ndev, q, false);
245 
246 		ring_size = sizeof(struct ravb_tx_desc) *
247 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 				  priv->tx_desc_dma[q]);
250 		priv->tx_ring[q] = NULL;
251 	}
252 
253 	/* Free RX skb ringbuffer */
254 	if (priv->rx_skb[q]) {
255 		for (i = 0; i < priv->num_rx_ring[q]; i++)
256 			dev_kfree_skb(priv->rx_skb[q][i]);
257 	}
258 	kfree(priv->rx_skb[q]);
259 	priv->rx_skb[q] = NULL;
260 
261 	/* Free aligned TX buffers */
262 	kfree(priv->tx_align[q]);
263 	priv->tx_align[q] = NULL;
264 
265 	/* Free TX skb ringbuffer.
266 	 * SKBs are freed by ravb_tx_free() call above.
267 	 */
268 	kfree(priv->tx_skb[q]);
269 	priv->tx_skb[q] = NULL;
270 }
271 
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 	struct ravb_private *priv = netdev_priv(ndev);
276 	int num_tx_desc = priv->num_tx_desc;
277 	struct ravb_ex_rx_desc *rx_desc;
278 	struct ravb_tx_desc *tx_desc;
279 	struct ravb_desc *desc;
280 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 			   num_tx_desc;
283 	dma_addr_t dma_addr;
284 	int i;
285 
286 	priv->cur_rx[q] = 0;
287 	priv->cur_tx[q] = 0;
288 	priv->dirty_rx[q] = 0;
289 	priv->dirty_tx[q] = 0;
290 
291 	memset(priv->rx_ring[q], 0, rx_ring_size);
292 	/* Build RX ring buffer */
293 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 		/* RX descriptor */
295 		rx_desc = &priv->rx_ring[q][i];
296 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
297 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 					  priv->rx_buf_sz,
299 					  DMA_FROM_DEVICE);
300 		/* We just set the data size to 0 for a failed mapping which
301 		 * should prevent DMA from happening...
302 		 */
303 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 			rx_desc->ds_cc = cpu_to_le16(0);
305 		rx_desc->dptr = cpu_to_le32(dma_addr);
306 		rx_desc->die_dt = DT_FEMPTY;
307 	}
308 	rx_desc = &priv->rx_ring[q][i];
309 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 	rx_desc->die_dt = DT_LINKFIX; /* type */
311 
312 	memset(priv->tx_ring[q], 0, tx_ring_size);
313 	/* Build TX ring buffer */
314 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 	     i++, tx_desc++) {
316 		tx_desc->die_dt = DT_EEMPTY;
317 		if (num_tx_desc > 1) {
318 			tx_desc++;
319 			tx_desc->die_dt = DT_EEMPTY;
320 		}
321 	}
322 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 	tx_desc->die_dt = DT_LINKFIX; /* type */
324 
325 	/* RX descriptor base address for best effort */
326 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329 
330 	/* TX descriptor base address for best effort */
331 	desc = &priv->desc_bat[q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335 
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 	struct ravb_private *priv = netdev_priv(ndev);
340 	int num_tx_desc = priv->num_tx_desc;
341 	struct sk_buff *skb;
342 	int ring_size;
343 	int i;
344 
345 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
346 		ETH_HLEN + VLAN_HLEN;
347 
348 	/* Allocate RX and TX skb rings */
349 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
350 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
351 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
352 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
353 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
354 		goto error;
355 
356 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
357 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
358 		if (!skb)
359 			goto error;
360 		ravb_set_buffer_align(skb);
361 		priv->rx_skb[q][i] = skb;
362 	}
363 
364 	if (num_tx_desc > 1) {
365 		/* Allocate rings for the aligned buffers */
366 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 					    DPTR_ALIGN - 1, GFP_KERNEL);
368 		if (!priv->tx_align[q])
369 			goto error;
370 	}
371 
372 	/* Allocate all RX descriptors. */
373 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
374 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
375 					      &priv->rx_desc_dma[q],
376 					      GFP_KERNEL);
377 	if (!priv->rx_ring[q])
378 		goto error;
379 
380 	priv->dirty_rx[q] = 0;
381 
382 	/* Allocate all TX descriptors. */
383 	ring_size = sizeof(struct ravb_tx_desc) *
384 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
385 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
386 					      &priv->tx_desc_dma[q],
387 					      GFP_KERNEL);
388 	if (!priv->tx_ring[q])
389 		goto error;
390 
391 	return 0;
392 
393 error:
394 	ravb_ring_free(ndev, q);
395 
396 	return -ENOMEM;
397 }
398 
399 /* E-MAC init function */
400 static void ravb_emac_init(struct net_device *ndev)
401 {
402 	/* Receive frame limit set register */
403 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
404 
405 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
406 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
407 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
408 		   ECMR_TE | ECMR_RE, ECMR);
409 
410 	ravb_set_rate(ndev);
411 
412 	/* Set MAC address */
413 	ravb_write(ndev,
414 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
415 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
416 	ravb_write(ndev,
417 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
418 
419 	/* E-MAC status register clear */
420 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
421 
422 	/* E-MAC interrupt enable register */
423 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
424 }
425 
426 /* Device init function for Ethernet AVB */
427 static int ravb_dmac_init(struct net_device *ndev)
428 {
429 	struct ravb_private *priv = netdev_priv(ndev);
430 	int error;
431 
432 	/* Set CONFIG mode */
433 	error = ravb_config(ndev);
434 	if (error)
435 		return error;
436 
437 	error = ravb_ring_init(ndev, RAVB_BE);
438 	if (error)
439 		return error;
440 	error = ravb_ring_init(ndev, RAVB_NC);
441 	if (error) {
442 		ravb_ring_free(ndev, RAVB_BE);
443 		return error;
444 	}
445 
446 	/* Descriptor format */
447 	ravb_ring_format(ndev, RAVB_BE);
448 	ravb_ring_format(ndev, RAVB_NC);
449 
450 #if defined(__LITTLE_ENDIAN)
451 	ravb_modify(ndev, CCC, CCC_BOC, 0);
452 #else
453 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
454 #endif
455 
456 	/* Set AVB RX */
457 	ravb_write(ndev,
458 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
459 
460 	/* Set FIFO size */
461 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
462 
463 	/* Timestamp enable */
464 	ravb_write(ndev, TCCR_TFEN, TCCR);
465 
466 	/* Interrupt init: */
467 	if (priv->chip_id == RCAR_GEN3) {
468 		/* Clear DIL.DPLx */
469 		ravb_write(ndev, 0, DIL);
470 		/* Set queue specific interrupt */
471 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
472 	}
473 	/* Frame receive */
474 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
475 	/* Disable FIFO full warning */
476 	ravb_write(ndev, 0, RIC1);
477 	/* Receive FIFO full error, descriptor empty */
478 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
479 	/* Frame transmitted, timestamp FIFO updated */
480 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
481 
482 	/* Setting the control will start the AVB-DMAC process. */
483 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
484 
485 	return 0;
486 }
487 
488 static void ravb_get_tx_tstamp(struct net_device *ndev)
489 {
490 	struct ravb_private *priv = netdev_priv(ndev);
491 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
492 	struct skb_shared_hwtstamps shhwtstamps;
493 	struct sk_buff *skb;
494 	struct timespec64 ts;
495 	u16 tag, tfa_tag;
496 	int count;
497 	u32 tfa2;
498 
499 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
500 	while (count--) {
501 		tfa2 = ravb_read(ndev, TFA2);
502 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
503 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
504 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
505 			    ravb_read(ndev, TFA1);
506 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
507 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
508 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
509 					 list) {
510 			skb = ts_skb->skb;
511 			tag = ts_skb->tag;
512 			list_del(&ts_skb->list);
513 			kfree(ts_skb);
514 			if (tag == tfa_tag) {
515 				skb_tstamp_tx(skb, &shhwtstamps);
516 				break;
517 			}
518 		}
519 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
520 	}
521 }
522 
523 static void ravb_rx_csum(struct sk_buff *skb)
524 {
525 	u8 *hw_csum;
526 
527 	/* The hardware checksum is 2 bytes appended to packet data */
528 	if (unlikely(skb->len < 2))
529 		return;
530 	hw_csum = skb_tail_pointer(skb) - 2;
531 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
532 	skb->ip_summed = CHECKSUM_COMPLETE;
533 	skb_trim(skb, skb->len - 2);
534 }
535 
536 /* Packet receive function for Ethernet AVB */
537 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
538 {
539 	struct ravb_private *priv = netdev_priv(ndev);
540 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
541 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
542 			priv->cur_rx[q];
543 	struct net_device_stats *stats = &priv->stats[q];
544 	struct ravb_ex_rx_desc *desc;
545 	struct sk_buff *skb;
546 	dma_addr_t dma_addr;
547 	struct timespec64 ts;
548 	u8  desc_status;
549 	u16 pkt_len;
550 	int limit;
551 
552 	boguscnt = min(boguscnt, *quota);
553 	limit = boguscnt;
554 	desc = &priv->rx_ring[q][entry];
555 	while (desc->die_dt != DT_FEMPTY) {
556 		/* Descriptor type must be checked before all other reads */
557 		dma_rmb();
558 		desc_status = desc->msc;
559 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
560 
561 		if (--boguscnt < 0)
562 			break;
563 
564 		/* We use 0-byte descriptors to mark the DMA mapping errors */
565 		if (!pkt_len)
566 			continue;
567 
568 		if (desc_status & MSC_MC)
569 			stats->multicast++;
570 
571 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
572 				   MSC_CEEF)) {
573 			stats->rx_errors++;
574 			if (desc_status & MSC_CRC)
575 				stats->rx_crc_errors++;
576 			if (desc_status & MSC_RFE)
577 				stats->rx_frame_errors++;
578 			if (desc_status & (MSC_RTLF | MSC_RTSF))
579 				stats->rx_length_errors++;
580 			if (desc_status & MSC_CEEF)
581 				stats->rx_missed_errors++;
582 		} else {
583 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
584 
585 			skb = priv->rx_skb[q][entry];
586 			priv->rx_skb[q][entry] = NULL;
587 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
588 					 priv->rx_buf_sz,
589 					 DMA_FROM_DEVICE);
590 			get_ts &= (q == RAVB_NC) ?
591 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
592 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
593 			if (get_ts) {
594 				struct skb_shared_hwtstamps *shhwtstamps;
595 
596 				shhwtstamps = skb_hwtstamps(skb);
597 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
598 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
599 					     32) | le32_to_cpu(desc->ts_sl);
600 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
601 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
602 			}
603 
604 			skb_put(skb, pkt_len);
605 			skb->protocol = eth_type_trans(skb, ndev);
606 			if (ndev->features & NETIF_F_RXCSUM)
607 				ravb_rx_csum(skb);
608 			napi_gro_receive(&priv->napi[q], skb);
609 			stats->rx_packets++;
610 			stats->rx_bytes += pkt_len;
611 		}
612 
613 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
614 		desc = &priv->rx_ring[q][entry];
615 	}
616 
617 	/* Refill the RX ring buffers. */
618 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
619 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
620 		desc = &priv->rx_ring[q][entry];
621 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
622 
623 		if (!priv->rx_skb[q][entry]) {
624 			skb = netdev_alloc_skb(ndev,
625 					       priv->rx_buf_sz +
626 					       RAVB_ALIGN - 1);
627 			if (!skb)
628 				break;	/* Better luck next round. */
629 			ravb_set_buffer_align(skb);
630 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
631 						  le16_to_cpu(desc->ds_cc),
632 						  DMA_FROM_DEVICE);
633 			skb_checksum_none_assert(skb);
634 			/* We just set the data size to 0 for a failed mapping
635 			 * which should prevent DMA  from happening...
636 			 */
637 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
638 				desc->ds_cc = cpu_to_le16(0);
639 			desc->dptr = cpu_to_le32(dma_addr);
640 			priv->rx_skb[q][entry] = skb;
641 		}
642 		/* Descriptor type must be set after all the above writes */
643 		dma_wmb();
644 		desc->die_dt = DT_FEMPTY;
645 	}
646 
647 	*quota -= limit - (++boguscnt);
648 
649 	return boguscnt <= 0;
650 }
651 
652 static void ravb_rcv_snd_disable(struct net_device *ndev)
653 {
654 	/* Disable TX and RX */
655 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
656 }
657 
658 static void ravb_rcv_snd_enable(struct net_device *ndev)
659 {
660 	/* Enable TX and RX */
661 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
662 }
663 
664 /* function for waiting dma process finished */
665 static int ravb_stop_dma(struct net_device *ndev)
666 {
667 	int error;
668 
669 	/* Wait for stopping the hardware TX process */
670 	error = ravb_wait(ndev, TCCR,
671 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
672 	if (error)
673 		return error;
674 
675 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
676 			  0);
677 	if (error)
678 		return error;
679 
680 	/* Stop the E-MAC's RX/TX processes. */
681 	ravb_rcv_snd_disable(ndev);
682 
683 	/* Wait for stopping the RX DMA process */
684 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
685 	if (error)
686 		return error;
687 
688 	/* Stop AVB-DMAC process */
689 	return ravb_config(ndev);
690 }
691 
692 /* E-MAC interrupt handler */
693 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
694 {
695 	struct ravb_private *priv = netdev_priv(ndev);
696 	u32 ecsr, psr;
697 
698 	ecsr = ravb_read(ndev, ECSR);
699 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
700 
701 	if (ecsr & ECSR_MPD)
702 		pm_wakeup_event(&priv->pdev->dev, 0);
703 	if (ecsr & ECSR_ICD)
704 		ndev->stats.tx_carrier_errors++;
705 	if (ecsr & ECSR_LCHNG) {
706 		/* Link changed */
707 		if (priv->no_avb_link)
708 			return;
709 		psr = ravb_read(ndev, PSR);
710 		if (priv->avb_link_active_low)
711 			psr ^= PSR_LMON;
712 		if (!(psr & PSR_LMON)) {
713 			/* DIsable RX and TX */
714 			ravb_rcv_snd_disable(ndev);
715 		} else {
716 			/* Enable RX and TX */
717 			ravb_rcv_snd_enable(ndev);
718 		}
719 	}
720 }
721 
722 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
723 {
724 	struct net_device *ndev = dev_id;
725 	struct ravb_private *priv = netdev_priv(ndev);
726 
727 	spin_lock(&priv->lock);
728 	ravb_emac_interrupt_unlocked(ndev);
729 	mmiowb();
730 	spin_unlock(&priv->lock);
731 	return IRQ_HANDLED;
732 }
733 
734 /* Error interrupt handler */
735 static void ravb_error_interrupt(struct net_device *ndev)
736 {
737 	struct ravb_private *priv = netdev_priv(ndev);
738 	u32 eis, ris2;
739 
740 	eis = ravb_read(ndev, EIS);
741 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
742 	if (eis & EIS_QFS) {
743 		ris2 = ravb_read(ndev, RIS2);
744 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
745 			   RIS2);
746 
747 		/* Receive Descriptor Empty int */
748 		if (ris2 & RIS2_QFF0)
749 			priv->stats[RAVB_BE].rx_over_errors++;
750 
751 		    /* Receive Descriptor Empty int */
752 		if (ris2 & RIS2_QFF1)
753 			priv->stats[RAVB_NC].rx_over_errors++;
754 
755 		/* Receive FIFO Overflow int */
756 		if (ris2 & RIS2_RFFF)
757 			priv->rx_fifo_errors++;
758 	}
759 }
760 
761 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
762 {
763 	struct ravb_private *priv = netdev_priv(ndev);
764 	u32 ris0 = ravb_read(ndev, RIS0);
765 	u32 ric0 = ravb_read(ndev, RIC0);
766 	u32 tis  = ravb_read(ndev, TIS);
767 	u32 tic  = ravb_read(ndev, TIC);
768 
769 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
770 		if (napi_schedule_prep(&priv->napi[q])) {
771 			/* Mask RX and TX interrupts */
772 			if (priv->chip_id == RCAR_GEN2) {
773 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
774 				ravb_write(ndev, tic & ~BIT(q), TIC);
775 			} else {
776 				ravb_write(ndev, BIT(q), RID0);
777 				ravb_write(ndev, BIT(q), TID);
778 			}
779 			__napi_schedule(&priv->napi[q]);
780 		} else {
781 			netdev_warn(ndev,
782 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
783 				    ris0, ric0);
784 			netdev_warn(ndev,
785 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
786 				    tis, tic);
787 		}
788 		return true;
789 	}
790 	return false;
791 }
792 
793 static bool ravb_timestamp_interrupt(struct net_device *ndev)
794 {
795 	u32 tis = ravb_read(ndev, TIS);
796 
797 	if (tis & TIS_TFUF) {
798 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
799 		ravb_get_tx_tstamp(ndev);
800 		return true;
801 	}
802 	return false;
803 }
804 
805 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
806 {
807 	struct net_device *ndev = dev_id;
808 	struct ravb_private *priv = netdev_priv(ndev);
809 	irqreturn_t result = IRQ_NONE;
810 	u32 iss;
811 
812 	spin_lock(&priv->lock);
813 	/* Get interrupt status */
814 	iss = ravb_read(ndev, ISS);
815 
816 	/* Received and transmitted interrupts */
817 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
818 		int q;
819 
820 		/* Timestamp updated */
821 		if (ravb_timestamp_interrupt(ndev))
822 			result = IRQ_HANDLED;
823 
824 		/* Network control and best effort queue RX/TX */
825 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
826 			if (ravb_queue_interrupt(ndev, q))
827 				result = IRQ_HANDLED;
828 		}
829 	}
830 
831 	/* E-MAC status summary */
832 	if (iss & ISS_MS) {
833 		ravb_emac_interrupt_unlocked(ndev);
834 		result = IRQ_HANDLED;
835 	}
836 
837 	/* Error status summary */
838 	if (iss & ISS_ES) {
839 		ravb_error_interrupt(ndev);
840 		result = IRQ_HANDLED;
841 	}
842 
843 	/* gPTP interrupt status summary */
844 	if (iss & ISS_CGIS) {
845 		ravb_ptp_interrupt(ndev);
846 		result = IRQ_HANDLED;
847 	}
848 
849 	mmiowb();
850 	spin_unlock(&priv->lock);
851 	return result;
852 }
853 
854 /* Timestamp/Error/gPTP interrupt handler */
855 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
856 {
857 	struct net_device *ndev = dev_id;
858 	struct ravb_private *priv = netdev_priv(ndev);
859 	irqreturn_t result = IRQ_NONE;
860 	u32 iss;
861 
862 	spin_lock(&priv->lock);
863 	/* Get interrupt status */
864 	iss = ravb_read(ndev, ISS);
865 
866 	/* Timestamp updated */
867 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
868 		result = IRQ_HANDLED;
869 
870 	/* Error status summary */
871 	if (iss & ISS_ES) {
872 		ravb_error_interrupt(ndev);
873 		result = IRQ_HANDLED;
874 	}
875 
876 	/* gPTP interrupt status summary */
877 	if (iss & ISS_CGIS) {
878 		ravb_ptp_interrupt(ndev);
879 		result = IRQ_HANDLED;
880 	}
881 
882 	mmiowb();
883 	spin_unlock(&priv->lock);
884 	return result;
885 }
886 
887 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
888 {
889 	struct net_device *ndev = dev_id;
890 	struct ravb_private *priv = netdev_priv(ndev);
891 	irqreturn_t result = IRQ_NONE;
892 
893 	spin_lock(&priv->lock);
894 
895 	/* Network control/Best effort queue RX/TX */
896 	if (ravb_queue_interrupt(ndev, q))
897 		result = IRQ_HANDLED;
898 
899 	mmiowb();
900 	spin_unlock(&priv->lock);
901 	return result;
902 }
903 
904 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
905 {
906 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
907 }
908 
909 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
910 {
911 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
912 }
913 
914 static int ravb_poll(struct napi_struct *napi, int budget)
915 {
916 	struct net_device *ndev = napi->dev;
917 	struct ravb_private *priv = netdev_priv(ndev);
918 	unsigned long flags;
919 	int q = napi - priv->napi;
920 	int mask = BIT(q);
921 	int quota = budget;
922 	u32 ris0, tis;
923 
924 	for (;;) {
925 		tis = ravb_read(ndev, TIS);
926 		ris0 = ravb_read(ndev, RIS0);
927 		if (!((ris0 & mask) || (tis & mask)))
928 			break;
929 
930 		/* Processing RX Descriptor Ring */
931 		if (ris0 & mask) {
932 			/* Clear RX interrupt */
933 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
934 			if (ravb_rx(ndev, &quota, q))
935 				goto out;
936 		}
937 		/* Processing TX Descriptor Ring */
938 		if (tis & mask) {
939 			spin_lock_irqsave(&priv->lock, flags);
940 			/* Clear TX interrupt */
941 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
942 			ravb_tx_free(ndev, q, true);
943 			netif_wake_subqueue(ndev, q);
944 			mmiowb();
945 			spin_unlock_irqrestore(&priv->lock, flags);
946 		}
947 	}
948 
949 	napi_complete(napi);
950 
951 	/* Re-enable RX/TX interrupts */
952 	spin_lock_irqsave(&priv->lock, flags);
953 	if (priv->chip_id == RCAR_GEN2) {
954 		ravb_modify(ndev, RIC0, mask, mask);
955 		ravb_modify(ndev, TIC,  mask, mask);
956 	} else {
957 		ravb_write(ndev, mask, RIE0);
958 		ravb_write(ndev, mask, TIE);
959 	}
960 	mmiowb();
961 	spin_unlock_irqrestore(&priv->lock, flags);
962 
963 	/* Receive error message handling */
964 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
965 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
966 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
967 		ndev->stats.rx_over_errors = priv->rx_over_errors;
968 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
969 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
970 out:
971 	return budget - quota;
972 }
973 
974 /* PHY state control function */
975 static void ravb_adjust_link(struct net_device *ndev)
976 {
977 	struct ravb_private *priv = netdev_priv(ndev);
978 	struct phy_device *phydev = ndev->phydev;
979 	bool new_state = false;
980 	unsigned long flags;
981 
982 	spin_lock_irqsave(&priv->lock, flags);
983 
984 	/* Disable TX and RX right over here, if E-MAC change is ignored */
985 	if (priv->no_avb_link)
986 		ravb_rcv_snd_disable(ndev);
987 
988 	if (phydev->link) {
989 		if (phydev->speed != priv->speed) {
990 			new_state = true;
991 			priv->speed = phydev->speed;
992 			ravb_set_rate(ndev);
993 		}
994 		if (!priv->link) {
995 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
996 			new_state = true;
997 			priv->link = phydev->link;
998 		}
999 	} else if (priv->link) {
1000 		new_state = true;
1001 		priv->link = 0;
1002 		priv->speed = 0;
1003 	}
1004 
1005 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1006 	if (priv->no_avb_link && phydev->link)
1007 		ravb_rcv_snd_enable(ndev);
1008 
1009 	mmiowb();
1010 	spin_unlock_irqrestore(&priv->lock, flags);
1011 
1012 	if (new_state && netif_msg_link(priv))
1013 		phy_print_status(phydev);
1014 }
1015 
1016 static const struct soc_device_attribute r8a7795es10[] = {
1017 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1018 	{ /* sentinel */ }
1019 };
1020 
1021 /* PHY init function */
1022 static int ravb_phy_init(struct net_device *ndev)
1023 {
1024 	struct device_node *np = ndev->dev.parent->of_node;
1025 	struct ravb_private *priv = netdev_priv(ndev);
1026 	struct phy_device *phydev;
1027 	struct device_node *pn;
1028 	int err;
1029 
1030 	priv->link = 0;
1031 	priv->speed = 0;
1032 
1033 	/* Try connecting to PHY */
1034 	pn = of_parse_phandle(np, "phy-handle", 0);
1035 	if (!pn) {
1036 		/* In the case of a fixed PHY, the DT node associated
1037 		 * to the PHY is the Ethernet MAC DT node.
1038 		 */
1039 		if (of_phy_is_fixed_link(np)) {
1040 			err = of_phy_register_fixed_link(np);
1041 			if (err)
1042 				return err;
1043 		}
1044 		pn = of_node_get(np);
1045 	}
1046 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1047 				priv->phy_interface);
1048 	of_node_put(pn);
1049 	if (!phydev) {
1050 		netdev_err(ndev, "failed to connect PHY\n");
1051 		err = -ENOENT;
1052 		goto err_deregister_fixed_link;
1053 	}
1054 
1055 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1056 	 * at this time.
1057 	 */
1058 	if (soc_device_match(r8a7795es10)) {
1059 		err = phy_set_max_speed(phydev, SPEED_100);
1060 		if (err) {
1061 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1062 			goto err_phy_disconnect;
1063 		}
1064 
1065 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1066 	}
1067 
1068 	/* 10BASE, Pause and Asym Pause is not supported */
1069 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1070 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1071 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1072 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1073 
1074 	/* Half Duplex is not supported */
1075 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1076 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1077 
1078 	phy_attached_info(phydev);
1079 
1080 	return 0;
1081 
1082 err_phy_disconnect:
1083 	phy_disconnect(phydev);
1084 err_deregister_fixed_link:
1085 	if (of_phy_is_fixed_link(np))
1086 		of_phy_deregister_fixed_link(np);
1087 
1088 	return err;
1089 }
1090 
1091 /* PHY control start function */
1092 static int ravb_phy_start(struct net_device *ndev)
1093 {
1094 	int error;
1095 
1096 	error = ravb_phy_init(ndev);
1097 	if (error)
1098 		return error;
1099 
1100 	phy_start(ndev->phydev);
1101 
1102 	return 0;
1103 }
1104 
1105 static u32 ravb_get_msglevel(struct net_device *ndev)
1106 {
1107 	struct ravb_private *priv = netdev_priv(ndev);
1108 
1109 	return priv->msg_enable;
1110 }
1111 
1112 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1113 {
1114 	struct ravb_private *priv = netdev_priv(ndev);
1115 
1116 	priv->msg_enable = value;
1117 }
1118 
1119 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1120 	"rx_queue_0_current",
1121 	"tx_queue_0_current",
1122 	"rx_queue_0_dirty",
1123 	"tx_queue_0_dirty",
1124 	"rx_queue_0_packets",
1125 	"tx_queue_0_packets",
1126 	"rx_queue_0_bytes",
1127 	"tx_queue_0_bytes",
1128 	"rx_queue_0_mcast_packets",
1129 	"rx_queue_0_errors",
1130 	"rx_queue_0_crc_errors",
1131 	"rx_queue_0_frame_errors",
1132 	"rx_queue_0_length_errors",
1133 	"rx_queue_0_missed_errors",
1134 	"rx_queue_0_over_errors",
1135 
1136 	"rx_queue_1_current",
1137 	"tx_queue_1_current",
1138 	"rx_queue_1_dirty",
1139 	"tx_queue_1_dirty",
1140 	"rx_queue_1_packets",
1141 	"tx_queue_1_packets",
1142 	"rx_queue_1_bytes",
1143 	"tx_queue_1_bytes",
1144 	"rx_queue_1_mcast_packets",
1145 	"rx_queue_1_errors",
1146 	"rx_queue_1_crc_errors",
1147 	"rx_queue_1_frame_errors",
1148 	"rx_queue_1_length_errors",
1149 	"rx_queue_1_missed_errors",
1150 	"rx_queue_1_over_errors",
1151 };
1152 
1153 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1154 
1155 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1156 {
1157 	switch (sset) {
1158 	case ETH_SS_STATS:
1159 		return RAVB_STATS_LEN;
1160 	default:
1161 		return -EOPNOTSUPP;
1162 	}
1163 }
1164 
1165 static void ravb_get_ethtool_stats(struct net_device *ndev,
1166 				   struct ethtool_stats *estats, u64 *data)
1167 {
1168 	struct ravb_private *priv = netdev_priv(ndev);
1169 	int i = 0;
1170 	int q;
1171 
1172 	/* Device-specific stats */
1173 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1174 		struct net_device_stats *stats = &priv->stats[q];
1175 
1176 		data[i++] = priv->cur_rx[q];
1177 		data[i++] = priv->cur_tx[q];
1178 		data[i++] = priv->dirty_rx[q];
1179 		data[i++] = priv->dirty_tx[q];
1180 		data[i++] = stats->rx_packets;
1181 		data[i++] = stats->tx_packets;
1182 		data[i++] = stats->rx_bytes;
1183 		data[i++] = stats->tx_bytes;
1184 		data[i++] = stats->multicast;
1185 		data[i++] = stats->rx_errors;
1186 		data[i++] = stats->rx_crc_errors;
1187 		data[i++] = stats->rx_frame_errors;
1188 		data[i++] = stats->rx_length_errors;
1189 		data[i++] = stats->rx_missed_errors;
1190 		data[i++] = stats->rx_over_errors;
1191 	}
1192 }
1193 
1194 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1195 {
1196 	switch (stringset) {
1197 	case ETH_SS_STATS:
1198 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1199 		break;
1200 	}
1201 }
1202 
1203 static void ravb_get_ringparam(struct net_device *ndev,
1204 			       struct ethtool_ringparam *ring)
1205 {
1206 	struct ravb_private *priv = netdev_priv(ndev);
1207 
1208 	ring->rx_max_pending = BE_RX_RING_MAX;
1209 	ring->tx_max_pending = BE_TX_RING_MAX;
1210 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1211 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1212 }
1213 
1214 static int ravb_set_ringparam(struct net_device *ndev,
1215 			      struct ethtool_ringparam *ring)
1216 {
1217 	struct ravb_private *priv = netdev_priv(ndev);
1218 	int error;
1219 
1220 	if (ring->tx_pending > BE_TX_RING_MAX ||
1221 	    ring->rx_pending > BE_RX_RING_MAX ||
1222 	    ring->tx_pending < BE_TX_RING_MIN ||
1223 	    ring->rx_pending < BE_RX_RING_MIN)
1224 		return -EINVAL;
1225 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1226 		return -EINVAL;
1227 
1228 	if (netif_running(ndev)) {
1229 		netif_device_detach(ndev);
1230 		/* Stop PTP Clock driver */
1231 		if (priv->chip_id == RCAR_GEN2)
1232 			ravb_ptp_stop(ndev);
1233 		/* Wait for DMA stopping */
1234 		error = ravb_stop_dma(ndev);
1235 		if (error) {
1236 			netdev_err(ndev,
1237 				   "cannot set ringparam! Any AVB processes are still running?\n");
1238 			return error;
1239 		}
1240 		synchronize_irq(ndev->irq);
1241 
1242 		/* Free all the skb's in the RX queue and the DMA buffers. */
1243 		ravb_ring_free(ndev, RAVB_BE);
1244 		ravb_ring_free(ndev, RAVB_NC);
1245 	}
1246 
1247 	/* Set new parameters */
1248 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1249 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1250 
1251 	if (netif_running(ndev)) {
1252 		error = ravb_dmac_init(ndev);
1253 		if (error) {
1254 			netdev_err(ndev,
1255 				   "%s: ravb_dmac_init() failed, error %d\n",
1256 				   __func__, error);
1257 			return error;
1258 		}
1259 
1260 		ravb_emac_init(ndev);
1261 
1262 		/* Initialise PTP Clock driver */
1263 		if (priv->chip_id == RCAR_GEN2)
1264 			ravb_ptp_init(ndev, priv->pdev);
1265 
1266 		netif_device_attach(ndev);
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int ravb_get_ts_info(struct net_device *ndev,
1273 			    struct ethtool_ts_info *info)
1274 {
1275 	struct ravb_private *priv = netdev_priv(ndev);
1276 
1277 	info->so_timestamping =
1278 		SOF_TIMESTAMPING_TX_SOFTWARE |
1279 		SOF_TIMESTAMPING_RX_SOFTWARE |
1280 		SOF_TIMESTAMPING_SOFTWARE |
1281 		SOF_TIMESTAMPING_TX_HARDWARE |
1282 		SOF_TIMESTAMPING_RX_HARDWARE |
1283 		SOF_TIMESTAMPING_RAW_HARDWARE;
1284 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1285 	info->rx_filters =
1286 		(1 << HWTSTAMP_FILTER_NONE) |
1287 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1288 		(1 << HWTSTAMP_FILTER_ALL);
1289 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1290 
1291 	return 0;
1292 }
1293 
1294 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1295 {
1296 	struct ravb_private *priv = netdev_priv(ndev);
1297 
1298 	wol->supported = WAKE_MAGIC;
1299 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1300 }
1301 
1302 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1303 {
1304 	struct ravb_private *priv = netdev_priv(ndev);
1305 
1306 	if (wol->wolopts & ~WAKE_MAGIC)
1307 		return -EOPNOTSUPP;
1308 
1309 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1310 
1311 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1312 
1313 	return 0;
1314 }
1315 
1316 static const struct ethtool_ops ravb_ethtool_ops = {
1317 	.nway_reset		= phy_ethtool_nway_reset,
1318 	.get_msglevel		= ravb_get_msglevel,
1319 	.set_msglevel		= ravb_set_msglevel,
1320 	.get_link		= ethtool_op_get_link,
1321 	.get_strings		= ravb_get_strings,
1322 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1323 	.get_sset_count		= ravb_get_sset_count,
1324 	.get_ringparam		= ravb_get_ringparam,
1325 	.set_ringparam		= ravb_set_ringparam,
1326 	.get_ts_info		= ravb_get_ts_info,
1327 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1328 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1329 	.get_wol		= ravb_get_wol,
1330 	.set_wol		= ravb_set_wol,
1331 };
1332 
1333 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1334 				struct net_device *ndev, struct device *dev,
1335 				const char *ch)
1336 {
1337 	char *name;
1338 	int error;
1339 
1340 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1341 	if (!name)
1342 		return -ENOMEM;
1343 	error = request_irq(irq, handler, 0, name, ndev);
1344 	if (error)
1345 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1346 
1347 	return error;
1348 }
1349 
1350 /* Network device open function for Ethernet AVB */
1351 static int ravb_open(struct net_device *ndev)
1352 {
1353 	struct ravb_private *priv = netdev_priv(ndev);
1354 	struct platform_device *pdev = priv->pdev;
1355 	struct device *dev = &pdev->dev;
1356 	int error;
1357 
1358 	napi_enable(&priv->napi[RAVB_BE]);
1359 	napi_enable(&priv->napi[RAVB_NC]);
1360 
1361 	if (priv->chip_id == RCAR_GEN2) {
1362 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1363 				    ndev->name, ndev);
1364 		if (error) {
1365 			netdev_err(ndev, "cannot request IRQ\n");
1366 			goto out_napi_off;
1367 		}
1368 	} else {
1369 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1370 				      dev, "ch22:multi");
1371 		if (error)
1372 			goto out_napi_off;
1373 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1374 				      dev, "ch24:emac");
1375 		if (error)
1376 			goto out_free_irq;
1377 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1378 				      ndev, dev, "ch0:rx_be");
1379 		if (error)
1380 			goto out_free_irq_emac;
1381 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1382 				      ndev, dev, "ch18:tx_be");
1383 		if (error)
1384 			goto out_free_irq_be_rx;
1385 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1386 				      ndev, dev, "ch1:rx_nc");
1387 		if (error)
1388 			goto out_free_irq_be_tx;
1389 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1390 				      ndev, dev, "ch19:tx_nc");
1391 		if (error)
1392 			goto out_free_irq_nc_rx;
1393 	}
1394 
1395 	/* Device init */
1396 	error = ravb_dmac_init(ndev);
1397 	if (error)
1398 		goto out_free_irq_nc_tx;
1399 	ravb_emac_init(ndev);
1400 
1401 	/* Initialise PTP Clock driver */
1402 	if (priv->chip_id == RCAR_GEN2)
1403 		ravb_ptp_init(ndev, priv->pdev);
1404 
1405 	netif_tx_start_all_queues(ndev);
1406 
1407 	/* PHY control start */
1408 	error = ravb_phy_start(ndev);
1409 	if (error)
1410 		goto out_ptp_stop;
1411 
1412 	return 0;
1413 
1414 out_ptp_stop:
1415 	/* Stop PTP Clock driver */
1416 	if (priv->chip_id == RCAR_GEN2)
1417 		ravb_ptp_stop(ndev);
1418 out_free_irq_nc_tx:
1419 	if (priv->chip_id == RCAR_GEN2)
1420 		goto out_free_irq;
1421 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1422 out_free_irq_nc_rx:
1423 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1424 out_free_irq_be_tx:
1425 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1426 out_free_irq_be_rx:
1427 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1428 out_free_irq_emac:
1429 	free_irq(priv->emac_irq, ndev);
1430 out_free_irq:
1431 	free_irq(ndev->irq, ndev);
1432 out_napi_off:
1433 	napi_disable(&priv->napi[RAVB_NC]);
1434 	napi_disable(&priv->napi[RAVB_BE]);
1435 	return error;
1436 }
1437 
1438 /* Timeout function for Ethernet AVB */
1439 static void ravb_tx_timeout(struct net_device *ndev)
1440 {
1441 	struct ravb_private *priv = netdev_priv(ndev);
1442 
1443 	netif_err(priv, tx_err, ndev,
1444 		  "transmit timed out, status %08x, resetting...\n",
1445 		  ravb_read(ndev, ISS));
1446 
1447 	/* tx_errors count up */
1448 	ndev->stats.tx_errors++;
1449 
1450 	schedule_work(&priv->work);
1451 }
1452 
1453 static void ravb_tx_timeout_work(struct work_struct *work)
1454 {
1455 	struct ravb_private *priv = container_of(work, struct ravb_private,
1456 						 work);
1457 	struct net_device *ndev = priv->ndev;
1458 
1459 	netif_tx_stop_all_queues(ndev);
1460 
1461 	/* Stop PTP Clock driver */
1462 	if (priv->chip_id == RCAR_GEN2)
1463 		ravb_ptp_stop(ndev);
1464 
1465 	/* Wait for DMA stopping */
1466 	ravb_stop_dma(ndev);
1467 
1468 	ravb_ring_free(ndev, RAVB_BE);
1469 	ravb_ring_free(ndev, RAVB_NC);
1470 
1471 	/* Device init */
1472 	ravb_dmac_init(ndev);
1473 	ravb_emac_init(ndev);
1474 
1475 	/* Initialise PTP Clock driver */
1476 	if (priv->chip_id == RCAR_GEN2)
1477 		ravb_ptp_init(ndev, priv->pdev);
1478 
1479 	netif_tx_start_all_queues(ndev);
1480 }
1481 
1482 /* Packet transmit function for Ethernet AVB */
1483 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1484 {
1485 	struct ravb_private *priv = netdev_priv(ndev);
1486 	int num_tx_desc = priv->num_tx_desc;
1487 	u16 q = skb_get_queue_mapping(skb);
1488 	struct ravb_tstamp_skb *ts_skb;
1489 	struct ravb_tx_desc *desc;
1490 	unsigned long flags;
1491 	u32 dma_addr;
1492 	void *buffer;
1493 	u32 entry;
1494 	u32 len;
1495 
1496 	spin_lock_irqsave(&priv->lock, flags);
1497 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1498 	    num_tx_desc) {
1499 		netif_err(priv, tx_queued, ndev,
1500 			  "still transmitting with the full ring!\n");
1501 		netif_stop_subqueue(ndev, q);
1502 		spin_unlock_irqrestore(&priv->lock, flags);
1503 		return NETDEV_TX_BUSY;
1504 	}
1505 
1506 	if (skb_put_padto(skb, ETH_ZLEN))
1507 		goto exit;
1508 
1509 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1510 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1511 
1512 	if (num_tx_desc > 1) {
1513 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1514 			 entry / num_tx_desc * DPTR_ALIGN;
1515 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1516 
1517 		/* Zero length DMA descriptors are problematic as they seem
1518 		 * to terminate DMA transfers. Avoid them by simply using a
1519 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1520 		 * DPTR_ALIGN.
1521 		 *
1522 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1523 		 * bytes of data by the call to skb_put_padto() above this
1524 		 * is safe with respect to both the length of the first DMA
1525 		 * descriptor (len) overflowing the available data and the
1526 		 * length of the second DMA descriptor (skb->len - len)
1527 		 * being negative.
1528 		 */
1529 		if (len == 0)
1530 			len = DPTR_ALIGN;
1531 
1532 		memcpy(buffer, skb->data, len);
1533 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1534 					  DMA_TO_DEVICE);
1535 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1536 			goto drop;
1537 
1538 		desc = &priv->tx_ring[q][entry];
1539 		desc->ds_tagl = cpu_to_le16(len);
1540 		desc->dptr = cpu_to_le32(dma_addr);
1541 
1542 		buffer = skb->data + len;
1543 		len = skb->len - len;
1544 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1545 					  DMA_TO_DEVICE);
1546 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1547 			goto unmap;
1548 
1549 		desc++;
1550 	} else {
1551 		desc = &priv->tx_ring[q][entry];
1552 		len = skb->len;
1553 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1554 					  DMA_TO_DEVICE);
1555 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1556 			goto drop;
1557 	}
1558 	desc->ds_tagl = cpu_to_le16(len);
1559 	desc->dptr = cpu_to_le32(dma_addr);
1560 
1561 	/* TX timestamp required */
1562 	if (q == RAVB_NC) {
1563 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1564 		if (!ts_skb) {
1565 			if (num_tx_desc > 1) {
1566 				desc--;
1567 				dma_unmap_single(ndev->dev.parent, dma_addr,
1568 						 len, DMA_TO_DEVICE);
1569 			}
1570 			goto unmap;
1571 		}
1572 		ts_skb->skb = skb;
1573 		ts_skb->tag = priv->ts_skb_tag++;
1574 		priv->ts_skb_tag &= 0x3ff;
1575 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1576 
1577 		/* TAG and timestamp required flag */
1578 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1579 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1580 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1581 	}
1582 
1583 	skb_tx_timestamp(skb);
1584 	/* Descriptor type must be set after all the above writes */
1585 	dma_wmb();
1586 	if (num_tx_desc > 1) {
1587 		desc->die_dt = DT_FEND;
1588 		desc--;
1589 		desc->die_dt = DT_FSTART;
1590 	} else {
1591 		desc->die_dt = DT_FSINGLE;
1592 	}
1593 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1594 
1595 	priv->cur_tx[q] += num_tx_desc;
1596 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1597 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1598 	    !ravb_tx_free(ndev, q, true))
1599 		netif_stop_subqueue(ndev, q);
1600 
1601 exit:
1602 	mmiowb();
1603 	spin_unlock_irqrestore(&priv->lock, flags);
1604 	return NETDEV_TX_OK;
1605 
1606 unmap:
1607 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1608 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1609 drop:
1610 	dev_kfree_skb_any(skb);
1611 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1612 	goto exit;
1613 }
1614 
1615 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1616 			     struct net_device *sb_dev,
1617 			     select_queue_fallback_t fallback)
1618 {
1619 	/* If skb needs TX timestamp, it is handled in network control queue */
1620 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1621 							       RAVB_BE;
1622 
1623 }
1624 
1625 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1626 {
1627 	struct ravb_private *priv = netdev_priv(ndev);
1628 	struct net_device_stats *nstats, *stats0, *stats1;
1629 
1630 	nstats = &ndev->stats;
1631 	stats0 = &priv->stats[RAVB_BE];
1632 	stats1 = &priv->stats[RAVB_NC];
1633 
1634 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1635 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1636 	nstats->collisions += ravb_read(ndev, CDCR);
1637 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1638 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1639 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1640 
1641 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1642 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1643 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1644 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1645 
1646 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1647 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1648 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1649 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1650 	nstats->multicast = stats0->multicast + stats1->multicast;
1651 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1652 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1653 	nstats->rx_frame_errors =
1654 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1655 	nstats->rx_length_errors =
1656 		stats0->rx_length_errors + stats1->rx_length_errors;
1657 	nstats->rx_missed_errors =
1658 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1659 	nstats->rx_over_errors =
1660 		stats0->rx_over_errors + stats1->rx_over_errors;
1661 
1662 	return nstats;
1663 }
1664 
1665 /* Update promiscuous bit */
1666 static void ravb_set_rx_mode(struct net_device *ndev)
1667 {
1668 	struct ravb_private *priv = netdev_priv(ndev);
1669 	unsigned long flags;
1670 
1671 	spin_lock_irqsave(&priv->lock, flags);
1672 	ravb_modify(ndev, ECMR, ECMR_PRM,
1673 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1674 	mmiowb();
1675 	spin_unlock_irqrestore(&priv->lock, flags);
1676 }
1677 
1678 /* Device close function for Ethernet AVB */
1679 static int ravb_close(struct net_device *ndev)
1680 {
1681 	struct device_node *np = ndev->dev.parent->of_node;
1682 	struct ravb_private *priv = netdev_priv(ndev);
1683 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1684 
1685 	netif_tx_stop_all_queues(ndev);
1686 
1687 	/* Disable interrupts by clearing the interrupt masks. */
1688 	ravb_write(ndev, 0, RIC0);
1689 	ravb_write(ndev, 0, RIC2);
1690 	ravb_write(ndev, 0, TIC);
1691 
1692 	/* Stop PTP Clock driver */
1693 	if (priv->chip_id == RCAR_GEN2)
1694 		ravb_ptp_stop(ndev);
1695 
1696 	/* Set the config mode to stop the AVB-DMAC's processes */
1697 	if (ravb_stop_dma(ndev) < 0)
1698 		netdev_err(ndev,
1699 			   "device will be stopped after h/w processes are done.\n");
1700 
1701 	/* Clear the timestamp list */
1702 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1703 		list_del(&ts_skb->list);
1704 		kfree(ts_skb);
1705 	}
1706 
1707 	/* PHY disconnect */
1708 	if (ndev->phydev) {
1709 		phy_stop(ndev->phydev);
1710 		phy_disconnect(ndev->phydev);
1711 		if (of_phy_is_fixed_link(np))
1712 			of_phy_deregister_fixed_link(np);
1713 	}
1714 
1715 	if (priv->chip_id != RCAR_GEN2) {
1716 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1717 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1718 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1719 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1720 		free_irq(priv->emac_irq, ndev);
1721 	}
1722 	free_irq(ndev->irq, ndev);
1723 
1724 	napi_disable(&priv->napi[RAVB_NC]);
1725 	napi_disable(&priv->napi[RAVB_BE]);
1726 
1727 	/* Free all the skb's in the RX queue and the DMA buffers. */
1728 	ravb_ring_free(ndev, RAVB_BE);
1729 	ravb_ring_free(ndev, RAVB_NC);
1730 
1731 	return 0;
1732 }
1733 
1734 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1735 {
1736 	struct ravb_private *priv = netdev_priv(ndev);
1737 	struct hwtstamp_config config;
1738 
1739 	config.flags = 0;
1740 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1741 						HWTSTAMP_TX_OFF;
1742 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1743 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1744 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1745 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1746 	else
1747 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1748 
1749 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1750 		-EFAULT : 0;
1751 }
1752 
1753 /* Control hardware time stamping */
1754 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1755 {
1756 	struct ravb_private *priv = netdev_priv(ndev);
1757 	struct hwtstamp_config config;
1758 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1759 	u32 tstamp_tx_ctrl;
1760 
1761 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1762 		return -EFAULT;
1763 
1764 	/* Reserved for future extensions */
1765 	if (config.flags)
1766 		return -EINVAL;
1767 
1768 	switch (config.tx_type) {
1769 	case HWTSTAMP_TX_OFF:
1770 		tstamp_tx_ctrl = 0;
1771 		break;
1772 	case HWTSTAMP_TX_ON:
1773 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1774 		break;
1775 	default:
1776 		return -ERANGE;
1777 	}
1778 
1779 	switch (config.rx_filter) {
1780 	case HWTSTAMP_FILTER_NONE:
1781 		tstamp_rx_ctrl = 0;
1782 		break;
1783 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1784 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1785 		break;
1786 	default:
1787 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1788 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1789 	}
1790 
1791 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1792 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1793 
1794 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1795 		-EFAULT : 0;
1796 }
1797 
1798 /* ioctl to device function */
1799 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1800 {
1801 	struct phy_device *phydev = ndev->phydev;
1802 
1803 	if (!netif_running(ndev))
1804 		return -EINVAL;
1805 
1806 	if (!phydev)
1807 		return -ENODEV;
1808 
1809 	switch (cmd) {
1810 	case SIOCGHWTSTAMP:
1811 		return ravb_hwtstamp_get(ndev, req);
1812 	case SIOCSHWTSTAMP:
1813 		return ravb_hwtstamp_set(ndev, req);
1814 	}
1815 
1816 	return phy_mii_ioctl(phydev, req, cmd);
1817 }
1818 
1819 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1820 {
1821 	if (netif_running(ndev))
1822 		return -EBUSY;
1823 
1824 	ndev->mtu = new_mtu;
1825 	netdev_update_features(ndev);
1826 
1827 	return 0;
1828 }
1829 
1830 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1831 {
1832 	struct ravb_private *priv = netdev_priv(ndev);
1833 	unsigned long flags;
1834 
1835 	spin_lock_irqsave(&priv->lock, flags);
1836 
1837 	/* Disable TX and RX */
1838 	ravb_rcv_snd_disable(ndev);
1839 
1840 	/* Modify RX Checksum setting */
1841 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1842 
1843 	/* Enable TX and RX */
1844 	ravb_rcv_snd_enable(ndev);
1845 
1846 	spin_unlock_irqrestore(&priv->lock, flags);
1847 }
1848 
1849 static int ravb_set_features(struct net_device *ndev,
1850 			     netdev_features_t features)
1851 {
1852 	netdev_features_t changed = ndev->features ^ features;
1853 
1854 	if (changed & NETIF_F_RXCSUM)
1855 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1856 
1857 	ndev->features = features;
1858 
1859 	return 0;
1860 }
1861 
1862 static const struct net_device_ops ravb_netdev_ops = {
1863 	.ndo_open		= ravb_open,
1864 	.ndo_stop		= ravb_close,
1865 	.ndo_start_xmit		= ravb_start_xmit,
1866 	.ndo_select_queue	= ravb_select_queue,
1867 	.ndo_get_stats		= ravb_get_stats,
1868 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1869 	.ndo_tx_timeout		= ravb_tx_timeout,
1870 	.ndo_do_ioctl		= ravb_do_ioctl,
1871 	.ndo_change_mtu		= ravb_change_mtu,
1872 	.ndo_validate_addr	= eth_validate_addr,
1873 	.ndo_set_mac_address	= eth_mac_addr,
1874 	.ndo_set_features	= ravb_set_features,
1875 };
1876 
1877 /* MDIO bus init function */
1878 static int ravb_mdio_init(struct ravb_private *priv)
1879 {
1880 	struct platform_device *pdev = priv->pdev;
1881 	struct device *dev = &pdev->dev;
1882 	int error;
1883 
1884 	/* Bitbang init */
1885 	priv->mdiobb.ops = &bb_ops;
1886 
1887 	/* MII controller setting */
1888 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1889 	if (!priv->mii_bus)
1890 		return -ENOMEM;
1891 
1892 	/* Hook up MII support for ethtool */
1893 	priv->mii_bus->name = "ravb_mii";
1894 	priv->mii_bus->parent = dev;
1895 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1896 		 pdev->name, pdev->id);
1897 
1898 	/* Register MDIO bus */
1899 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1900 	if (error)
1901 		goto out_free_bus;
1902 
1903 	return 0;
1904 
1905 out_free_bus:
1906 	free_mdio_bitbang(priv->mii_bus);
1907 	return error;
1908 }
1909 
1910 /* MDIO bus release function */
1911 static int ravb_mdio_release(struct ravb_private *priv)
1912 {
1913 	/* Unregister mdio bus */
1914 	mdiobus_unregister(priv->mii_bus);
1915 
1916 	/* Free bitbang info */
1917 	free_mdio_bitbang(priv->mii_bus);
1918 
1919 	return 0;
1920 }
1921 
1922 static const struct of_device_id ravb_match_table[] = {
1923 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1924 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1925 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1926 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1927 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1928 	{ }
1929 };
1930 MODULE_DEVICE_TABLE(of, ravb_match_table);
1931 
1932 static int ravb_set_gti(struct net_device *ndev)
1933 {
1934 	struct ravb_private *priv = netdev_priv(ndev);
1935 	struct device *dev = ndev->dev.parent;
1936 	unsigned long rate;
1937 	uint64_t inc;
1938 
1939 	rate = clk_get_rate(priv->clk);
1940 	if (!rate)
1941 		return -EINVAL;
1942 
1943 	inc = 1000000000ULL << 20;
1944 	do_div(inc, rate);
1945 
1946 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1947 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1948 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1949 		return -EINVAL;
1950 	}
1951 
1952 	ravb_write(ndev, inc, GTI);
1953 
1954 	return 0;
1955 }
1956 
1957 static void ravb_set_config_mode(struct net_device *ndev)
1958 {
1959 	struct ravb_private *priv = netdev_priv(ndev);
1960 
1961 	if (priv->chip_id == RCAR_GEN2) {
1962 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1963 		/* Set CSEL value */
1964 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1965 	} else {
1966 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1967 			    CCC_GAC | CCC_CSEL_HPB);
1968 	}
1969 }
1970 
1971 /* Set tx and rx clock internal delay modes */
1972 static void ravb_set_delay_mode(struct net_device *ndev)
1973 {
1974 	struct ravb_private *priv = netdev_priv(ndev);
1975 	int set = 0;
1976 
1977 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1978 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1979 		set |= APSR_DM_RDM;
1980 
1981 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1982 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1983 		set |= APSR_DM_TDM;
1984 
1985 	ravb_modify(ndev, APSR, APSR_DM, set);
1986 }
1987 
1988 static int ravb_probe(struct platform_device *pdev)
1989 {
1990 	struct device_node *np = pdev->dev.of_node;
1991 	struct ravb_private *priv;
1992 	enum ravb_chip_id chip_id;
1993 	struct net_device *ndev;
1994 	int error, irq, q;
1995 	struct resource *res;
1996 	int i;
1997 
1998 	if (!np) {
1999 		dev_err(&pdev->dev,
2000 			"this driver is required to be instantiated from device tree\n");
2001 		return -EINVAL;
2002 	}
2003 
2004 	/* Get base address */
2005 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2006 	if (!res) {
2007 		dev_err(&pdev->dev, "invalid resource\n");
2008 		return -EINVAL;
2009 	}
2010 
2011 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2012 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2013 	if (!ndev)
2014 		return -ENOMEM;
2015 
2016 	ndev->features = NETIF_F_RXCSUM;
2017 	ndev->hw_features = NETIF_F_RXCSUM;
2018 
2019 	pm_runtime_enable(&pdev->dev);
2020 	pm_runtime_get_sync(&pdev->dev);
2021 
2022 	/* The Ether-specific entries in the device structure. */
2023 	ndev->base_addr = res->start;
2024 
2025 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2026 
2027 	if (chip_id == RCAR_GEN3)
2028 		irq = platform_get_irq_byname(pdev, "ch22");
2029 	else
2030 		irq = platform_get_irq(pdev, 0);
2031 	if (irq < 0) {
2032 		error = irq;
2033 		goto out_release;
2034 	}
2035 	ndev->irq = irq;
2036 
2037 	SET_NETDEV_DEV(ndev, &pdev->dev);
2038 
2039 	priv = netdev_priv(ndev);
2040 	priv->ndev = ndev;
2041 	priv->pdev = pdev;
2042 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2043 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2044 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2045 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2046 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2047 	if (IS_ERR(priv->addr)) {
2048 		error = PTR_ERR(priv->addr);
2049 		goto out_release;
2050 	}
2051 
2052 	spin_lock_init(&priv->lock);
2053 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2054 
2055 	priv->phy_interface = of_get_phy_mode(np);
2056 
2057 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2058 	priv->avb_link_active_low =
2059 		of_property_read_bool(np, "renesas,ether-link-active-low");
2060 
2061 	if (chip_id == RCAR_GEN3) {
2062 		irq = platform_get_irq_byname(pdev, "ch24");
2063 		if (irq < 0) {
2064 			error = irq;
2065 			goto out_release;
2066 		}
2067 		priv->emac_irq = irq;
2068 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2069 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2070 			if (irq < 0) {
2071 				error = irq;
2072 				goto out_release;
2073 			}
2074 			priv->rx_irqs[i] = irq;
2075 		}
2076 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2077 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2078 			if (irq < 0) {
2079 				error = irq;
2080 				goto out_release;
2081 			}
2082 			priv->tx_irqs[i] = irq;
2083 		}
2084 	}
2085 
2086 	priv->chip_id = chip_id;
2087 
2088 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2089 	if (IS_ERR(priv->clk)) {
2090 		error = PTR_ERR(priv->clk);
2091 		goto out_release;
2092 	}
2093 
2094 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2095 	ndev->min_mtu = ETH_MIN_MTU;
2096 
2097 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2098 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2099 
2100 	/* Set function */
2101 	ndev->netdev_ops = &ravb_netdev_ops;
2102 	ndev->ethtool_ops = &ravb_ethtool_ops;
2103 
2104 	/* Set AVB config mode */
2105 	ravb_set_config_mode(ndev);
2106 
2107 	/* Set GTI value */
2108 	error = ravb_set_gti(ndev);
2109 	if (error)
2110 		goto out_release;
2111 
2112 	/* Request GTI loading */
2113 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2114 
2115 	if (priv->chip_id != RCAR_GEN2)
2116 		ravb_set_delay_mode(ndev);
2117 
2118 	/* Allocate descriptor base address table */
2119 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2120 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2121 					    &priv->desc_bat_dma, GFP_KERNEL);
2122 	if (!priv->desc_bat) {
2123 		dev_err(&pdev->dev,
2124 			"Cannot allocate desc base address table (size %d bytes)\n",
2125 			priv->desc_bat_size);
2126 		error = -ENOMEM;
2127 		goto out_release;
2128 	}
2129 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2130 		priv->desc_bat[q].die_dt = DT_EOS;
2131 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2132 
2133 	/* Initialise HW timestamp list */
2134 	INIT_LIST_HEAD(&priv->ts_skb_list);
2135 
2136 	/* Initialise PTP Clock driver */
2137 	if (chip_id != RCAR_GEN2)
2138 		ravb_ptp_init(ndev, pdev);
2139 
2140 	/* Debug message level */
2141 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2142 
2143 	/* Read and set MAC address */
2144 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2145 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2146 		dev_warn(&pdev->dev,
2147 			 "no valid MAC address supplied, using a random one\n");
2148 		eth_hw_addr_random(ndev);
2149 	}
2150 
2151 	/* MDIO bus init */
2152 	error = ravb_mdio_init(priv);
2153 	if (error) {
2154 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2155 		goto out_dma_free;
2156 	}
2157 
2158 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2159 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2160 
2161 	/* Network device register */
2162 	error = register_netdev(ndev);
2163 	if (error)
2164 		goto out_napi_del;
2165 
2166 	device_set_wakeup_capable(&pdev->dev, 1);
2167 
2168 	/* Print device information */
2169 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2170 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2171 
2172 	platform_set_drvdata(pdev, ndev);
2173 
2174 	return 0;
2175 
2176 out_napi_del:
2177 	netif_napi_del(&priv->napi[RAVB_NC]);
2178 	netif_napi_del(&priv->napi[RAVB_BE]);
2179 	ravb_mdio_release(priv);
2180 out_dma_free:
2181 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2182 			  priv->desc_bat_dma);
2183 
2184 	/* Stop PTP Clock driver */
2185 	if (chip_id != RCAR_GEN2)
2186 		ravb_ptp_stop(ndev);
2187 out_release:
2188 	free_netdev(ndev);
2189 
2190 	pm_runtime_put(&pdev->dev);
2191 	pm_runtime_disable(&pdev->dev);
2192 	return error;
2193 }
2194 
2195 static int ravb_remove(struct platform_device *pdev)
2196 {
2197 	struct net_device *ndev = platform_get_drvdata(pdev);
2198 	struct ravb_private *priv = netdev_priv(ndev);
2199 
2200 	/* Stop PTP Clock driver */
2201 	if (priv->chip_id != RCAR_GEN2)
2202 		ravb_ptp_stop(ndev);
2203 
2204 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2205 			  priv->desc_bat_dma);
2206 	/* Set reset mode */
2207 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2208 	pm_runtime_put_sync(&pdev->dev);
2209 	unregister_netdev(ndev);
2210 	netif_napi_del(&priv->napi[RAVB_NC]);
2211 	netif_napi_del(&priv->napi[RAVB_BE]);
2212 	ravb_mdio_release(priv);
2213 	pm_runtime_disable(&pdev->dev);
2214 	free_netdev(ndev);
2215 	platform_set_drvdata(pdev, NULL);
2216 
2217 	return 0;
2218 }
2219 
2220 static int ravb_wol_setup(struct net_device *ndev)
2221 {
2222 	struct ravb_private *priv = netdev_priv(ndev);
2223 
2224 	/* Disable interrupts by clearing the interrupt masks. */
2225 	ravb_write(ndev, 0, RIC0);
2226 	ravb_write(ndev, 0, RIC2);
2227 	ravb_write(ndev, 0, TIC);
2228 
2229 	/* Only allow ECI interrupts */
2230 	synchronize_irq(priv->emac_irq);
2231 	napi_disable(&priv->napi[RAVB_NC]);
2232 	napi_disable(&priv->napi[RAVB_BE]);
2233 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2234 
2235 	/* Enable MagicPacket */
2236 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2237 
2238 	return enable_irq_wake(priv->emac_irq);
2239 }
2240 
2241 static int ravb_wol_restore(struct net_device *ndev)
2242 {
2243 	struct ravb_private *priv = netdev_priv(ndev);
2244 	int ret;
2245 
2246 	napi_enable(&priv->napi[RAVB_NC]);
2247 	napi_enable(&priv->napi[RAVB_BE]);
2248 
2249 	/* Disable MagicPacket */
2250 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2251 
2252 	ret = ravb_close(ndev);
2253 	if (ret < 0)
2254 		return ret;
2255 
2256 	return disable_irq_wake(priv->emac_irq);
2257 }
2258 
2259 static int __maybe_unused ravb_suspend(struct device *dev)
2260 {
2261 	struct net_device *ndev = dev_get_drvdata(dev);
2262 	struct ravb_private *priv = netdev_priv(ndev);
2263 	int ret;
2264 
2265 	if (!netif_running(ndev))
2266 		return 0;
2267 
2268 	netif_device_detach(ndev);
2269 
2270 	if (priv->wol_enabled)
2271 		ret = ravb_wol_setup(ndev);
2272 	else
2273 		ret = ravb_close(ndev);
2274 
2275 	return ret;
2276 }
2277 
2278 static int __maybe_unused ravb_resume(struct device *dev)
2279 {
2280 	struct net_device *ndev = dev_get_drvdata(dev);
2281 	struct ravb_private *priv = netdev_priv(ndev);
2282 	int ret = 0;
2283 
2284 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2285 	if (priv->wol_enabled)
2286 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2287 
2288 	/* All register have been reset to default values.
2289 	 * Restore all registers which where setup at probe time and
2290 	 * reopen device if it was running before system suspended.
2291 	 */
2292 
2293 	/* Set AVB config mode */
2294 	ravb_set_config_mode(ndev);
2295 
2296 	/* Set GTI value */
2297 	ret = ravb_set_gti(ndev);
2298 	if (ret)
2299 		return ret;
2300 
2301 	/* Request GTI loading */
2302 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2303 
2304 	if (priv->chip_id != RCAR_GEN2)
2305 		ravb_set_delay_mode(ndev);
2306 
2307 	/* Restore descriptor base address table */
2308 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2309 
2310 	if (netif_running(ndev)) {
2311 		if (priv->wol_enabled) {
2312 			ret = ravb_wol_restore(ndev);
2313 			if (ret)
2314 				return ret;
2315 		}
2316 		ret = ravb_open(ndev);
2317 		if (ret < 0)
2318 			return ret;
2319 		netif_device_attach(ndev);
2320 	}
2321 
2322 	return ret;
2323 }
2324 
2325 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2326 {
2327 	/* Runtime PM callback shared between ->runtime_suspend()
2328 	 * and ->runtime_resume(). Simply returns success.
2329 	 *
2330 	 * This driver re-initializes all registers after
2331 	 * pm_runtime_get_sync() anyway so there is no need
2332 	 * to save and restore registers here.
2333 	 */
2334 	return 0;
2335 }
2336 
2337 static const struct dev_pm_ops ravb_dev_pm_ops = {
2338 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2339 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2340 };
2341 
2342 static struct platform_driver ravb_driver = {
2343 	.probe		= ravb_probe,
2344 	.remove		= ravb_remove,
2345 	.driver = {
2346 		.name	= "ravb",
2347 		.pm	= &ravb_dev_pm_ops,
2348 		.of_match_table = ravb_match_table,
2349 	},
2350 };
2351 
2352 module_platform_driver(ravb_driver);
2353 
2354 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2355 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2356 MODULE_LICENSE("GPL v2");
2357