xref: /openbmc/linux/drivers/net/ethernet/renesas/ravb_main.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2015 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_duplex(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
90 }
91 
92 static void ravb_set_rate(struct net_device *ndev)
93 {
94 	struct ravb_private *priv = netdev_priv(ndev);
95 
96 	switch (priv->speed) {
97 	case 100:		/* 100BASE */
98 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
99 		break;
100 	case 1000:		/* 1000BASE */
101 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
102 		break;
103 	}
104 }
105 
106 static void ravb_set_buffer_align(struct sk_buff *skb)
107 {
108 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
109 
110 	if (reserve)
111 		skb_reserve(skb, RAVB_ALIGN - reserve);
112 }
113 
114 /* Get MAC address from the MAC address registers
115  *
116  * Ethernet AVB device doesn't have ROM for MAC address.
117  * This function gets the MAC address that was used by a bootloader.
118  */
119 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
120 {
121 	if (mac) {
122 		ether_addr_copy(ndev->dev_addr, mac);
123 	} else {
124 		u32 mahr = ravb_read(ndev, MAHR);
125 		u32 malr = ravb_read(ndev, MALR);
126 
127 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
128 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
129 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
130 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
131 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
132 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
133 	}
134 }
135 
136 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
137 {
138 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
139 						 mdiobb);
140 
141 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
142 }
143 
144 /* MDC pin control */
145 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
146 {
147 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
148 }
149 
150 /* Data I/O pin control */
151 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
152 {
153 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
154 }
155 
156 /* Set data bit */
157 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
158 {
159 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
160 }
161 
162 /* Get data bit */
163 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
164 {
165 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
166 						 mdiobb);
167 
168 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
169 }
170 
171 /* MDIO bus control struct */
172 static struct mdiobb_ops bb_ops = {
173 	.owner = THIS_MODULE,
174 	.set_mdc = ravb_set_mdc,
175 	.set_mdio_dir = ravb_set_mdio_dir,
176 	.set_mdio_data = ravb_set_mdio_data,
177 	.get_mdio_data = ravb_get_mdio_data,
178 };
179 
180 /* Free TX skb function for AVB-IP */
181 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
182 {
183 	struct ravb_private *priv = netdev_priv(ndev);
184 	struct net_device_stats *stats = &priv->stats[q];
185 	int num_tx_desc = priv->num_tx_desc;
186 	struct ravb_tx_desc *desc;
187 	int free_num = 0;
188 	int entry;
189 	u32 size;
190 
191 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
192 		bool txed;
193 
194 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
195 					     num_tx_desc);
196 		desc = &priv->tx_ring[q][entry];
197 		txed = desc->die_dt == DT_FEMPTY;
198 		if (free_txed_only && !txed)
199 			break;
200 		/* Descriptor type must be checked before all other reads */
201 		dma_rmb();
202 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
203 		/* Free the original skb. */
204 		if (priv->tx_skb[q][entry / num_tx_desc]) {
205 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
206 					 size, DMA_TO_DEVICE);
207 			/* Last packet descriptor? */
208 			if (entry % num_tx_desc == num_tx_desc - 1) {
209 				entry /= num_tx_desc;
210 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
211 				priv->tx_skb[q][entry] = NULL;
212 				if (txed)
213 					stats->tx_packets++;
214 			}
215 			free_num++;
216 		}
217 		if (txed)
218 			stats->tx_bytes += size;
219 		desc->die_dt = DT_EEMPTY;
220 	}
221 	return free_num;
222 }
223 
224 /* Free skb's and DMA buffers for Ethernet AVB */
225 static void ravb_ring_free(struct net_device *ndev, int q)
226 {
227 	struct ravb_private *priv = netdev_priv(ndev);
228 	int num_tx_desc = priv->num_tx_desc;
229 	int ring_size;
230 	int i;
231 
232 	if (priv->rx_ring[q]) {
233 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
234 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
235 
236 			if (!dma_mapping_error(ndev->dev.parent,
237 					       le32_to_cpu(desc->dptr)))
238 				dma_unmap_single(ndev->dev.parent,
239 						 le32_to_cpu(desc->dptr),
240 						 priv->rx_buf_sz,
241 						 DMA_FROM_DEVICE);
242 		}
243 		ring_size = sizeof(struct ravb_ex_rx_desc) *
244 			    (priv->num_rx_ring[q] + 1);
245 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
246 				  priv->rx_desc_dma[q]);
247 		priv->rx_ring[q] = NULL;
248 	}
249 
250 	if (priv->tx_ring[q]) {
251 		ravb_tx_free(ndev, q, false);
252 
253 		ring_size = sizeof(struct ravb_tx_desc) *
254 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
255 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
256 				  priv->tx_desc_dma[q]);
257 		priv->tx_ring[q] = NULL;
258 	}
259 
260 	/* Free RX skb ringbuffer */
261 	if (priv->rx_skb[q]) {
262 		for (i = 0; i < priv->num_rx_ring[q]; i++)
263 			dev_kfree_skb(priv->rx_skb[q][i]);
264 	}
265 	kfree(priv->rx_skb[q]);
266 	priv->rx_skb[q] = NULL;
267 
268 	/* Free aligned TX buffers */
269 	kfree(priv->tx_align[q]);
270 	priv->tx_align[q] = NULL;
271 
272 	/* Free TX skb ringbuffer.
273 	 * SKBs are freed by ravb_tx_free() call above.
274 	 */
275 	kfree(priv->tx_skb[q]);
276 	priv->tx_skb[q] = NULL;
277 }
278 
279 /* Format skb and descriptor buffer for Ethernet AVB */
280 static void ravb_ring_format(struct net_device *ndev, int q)
281 {
282 	struct ravb_private *priv = netdev_priv(ndev);
283 	int num_tx_desc = priv->num_tx_desc;
284 	struct ravb_ex_rx_desc *rx_desc;
285 	struct ravb_tx_desc *tx_desc;
286 	struct ravb_desc *desc;
287 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
288 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
289 			   num_tx_desc;
290 	dma_addr_t dma_addr;
291 	int i;
292 
293 	priv->cur_rx[q] = 0;
294 	priv->cur_tx[q] = 0;
295 	priv->dirty_rx[q] = 0;
296 	priv->dirty_tx[q] = 0;
297 
298 	memset(priv->rx_ring[q], 0, rx_ring_size);
299 	/* Build RX ring buffer */
300 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
301 		/* RX descriptor */
302 		rx_desc = &priv->rx_ring[q][i];
303 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
304 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
305 					  priv->rx_buf_sz,
306 					  DMA_FROM_DEVICE);
307 		/* We just set the data size to 0 for a failed mapping which
308 		 * should prevent DMA from happening...
309 		 */
310 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
311 			rx_desc->ds_cc = cpu_to_le16(0);
312 		rx_desc->dptr = cpu_to_le32(dma_addr);
313 		rx_desc->die_dt = DT_FEMPTY;
314 	}
315 	rx_desc = &priv->rx_ring[q][i];
316 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
317 	rx_desc->die_dt = DT_LINKFIX; /* type */
318 
319 	memset(priv->tx_ring[q], 0, tx_ring_size);
320 	/* Build TX ring buffer */
321 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
322 	     i++, tx_desc++) {
323 		tx_desc->die_dt = DT_EEMPTY;
324 		if (num_tx_desc > 1) {
325 			tx_desc++;
326 			tx_desc->die_dt = DT_EEMPTY;
327 		}
328 	}
329 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
330 	tx_desc->die_dt = DT_LINKFIX; /* type */
331 
332 	/* RX descriptor base address for best effort */
333 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
334 	desc->die_dt = DT_LINKFIX; /* type */
335 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
336 
337 	/* TX descriptor base address for best effort */
338 	desc = &priv->desc_bat[q];
339 	desc->die_dt = DT_LINKFIX; /* type */
340 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
341 }
342 
343 /* Init skb and descriptor buffer for Ethernet AVB */
344 static int ravb_ring_init(struct net_device *ndev, int q)
345 {
346 	struct ravb_private *priv = netdev_priv(ndev);
347 	int num_tx_desc = priv->num_tx_desc;
348 	struct sk_buff *skb;
349 	int ring_size;
350 	int i;
351 
352 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
353 		ETH_HLEN + VLAN_HLEN;
354 
355 	/* Allocate RX and TX skb rings */
356 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
357 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
358 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
359 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
360 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
361 		goto error;
362 
363 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
364 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
365 		if (!skb)
366 			goto error;
367 		ravb_set_buffer_align(skb);
368 		priv->rx_skb[q][i] = skb;
369 	}
370 
371 	if (num_tx_desc > 1) {
372 		/* Allocate rings for the aligned buffers */
373 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
374 					    DPTR_ALIGN - 1, GFP_KERNEL);
375 		if (!priv->tx_align[q])
376 			goto error;
377 	}
378 
379 	/* Allocate all RX descriptors. */
380 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
381 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
382 					      &priv->rx_desc_dma[q],
383 					      GFP_KERNEL);
384 	if (!priv->rx_ring[q])
385 		goto error;
386 
387 	priv->dirty_rx[q] = 0;
388 
389 	/* Allocate all TX descriptors. */
390 	ring_size = sizeof(struct ravb_tx_desc) *
391 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
392 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
393 					      &priv->tx_desc_dma[q],
394 					      GFP_KERNEL);
395 	if (!priv->tx_ring[q])
396 		goto error;
397 
398 	return 0;
399 
400 error:
401 	ravb_ring_free(ndev, q);
402 
403 	return -ENOMEM;
404 }
405 
406 /* E-MAC init function */
407 static void ravb_emac_init(struct net_device *ndev)
408 {
409 	struct ravb_private *priv = netdev_priv(ndev);
410 
411 	/* Receive frame limit set register */
412 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
413 
414 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
415 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
416 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
417 		   ECMR_TE | ECMR_RE, ECMR);
418 
419 	ravb_set_rate(ndev);
420 
421 	/* Set MAC address */
422 	ravb_write(ndev,
423 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
424 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
425 	ravb_write(ndev,
426 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
427 
428 	/* E-MAC status register clear */
429 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
430 
431 	/* E-MAC interrupt enable register */
432 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
433 }
434 
435 /* Device init function for Ethernet AVB */
436 static int ravb_dmac_init(struct net_device *ndev)
437 {
438 	struct ravb_private *priv = netdev_priv(ndev);
439 	int error;
440 
441 	/* Set CONFIG mode */
442 	error = ravb_config(ndev);
443 	if (error)
444 		return error;
445 
446 	error = ravb_ring_init(ndev, RAVB_BE);
447 	if (error)
448 		return error;
449 	error = ravb_ring_init(ndev, RAVB_NC);
450 	if (error) {
451 		ravb_ring_free(ndev, RAVB_BE);
452 		return error;
453 	}
454 
455 	/* Descriptor format */
456 	ravb_ring_format(ndev, RAVB_BE);
457 	ravb_ring_format(ndev, RAVB_NC);
458 
459 #if defined(__LITTLE_ENDIAN)
460 	ravb_modify(ndev, CCC, CCC_BOC, 0);
461 #else
462 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
463 #endif
464 
465 	/* Set AVB RX */
466 	ravb_write(ndev,
467 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
468 
469 	/* Set FIFO size */
470 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
471 
472 	/* Timestamp enable */
473 	ravb_write(ndev, TCCR_TFEN, TCCR);
474 
475 	/* Interrupt init: */
476 	if (priv->chip_id == RCAR_GEN3) {
477 		/* Clear DIL.DPLx */
478 		ravb_write(ndev, 0, DIL);
479 		/* Set queue specific interrupt */
480 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
481 	}
482 	/* Frame receive */
483 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
484 	/* Disable FIFO full warning */
485 	ravb_write(ndev, 0, RIC1);
486 	/* Receive FIFO full error, descriptor empty */
487 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
488 	/* Frame transmitted, timestamp FIFO updated */
489 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
490 
491 	/* Setting the control will start the AVB-DMAC process. */
492 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
493 
494 	return 0;
495 }
496 
497 static void ravb_get_tx_tstamp(struct net_device *ndev)
498 {
499 	struct ravb_private *priv = netdev_priv(ndev);
500 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
501 	struct skb_shared_hwtstamps shhwtstamps;
502 	struct sk_buff *skb;
503 	struct timespec64 ts;
504 	u16 tag, tfa_tag;
505 	int count;
506 	u32 tfa2;
507 
508 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
509 	while (count--) {
510 		tfa2 = ravb_read(ndev, TFA2);
511 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
512 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
513 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
514 			    ravb_read(ndev, TFA1);
515 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
516 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
517 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
518 					 list) {
519 			skb = ts_skb->skb;
520 			tag = ts_skb->tag;
521 			list_del(&ts_skb->list);
522 			kfree(ts_skb);
523 			if (tag == tfa_tag) {
524 				skb_tstamp_tx(skb, &shhwtstamps);
525 				break;
526 			}
527 		}
528 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
529 	}
530 }
531 
532 static void ravb_rx_csum(struct sk_buff *skb)
533 {
534 	u8 *hw_csum;
535 
536 	/* The hardware checksum is 2 bytes appended to packet data */
537 	if (unlikely(skb->len < 2))
538 		return;
539 	hw_csum = skb_tail_pointer(skb) - 2;
540 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
541 	skb->ip_summed = CHECKSUM_COMPLETE;
542 	skb_trim(skb, skb->len - 2);
543 }
544 
545 /* Packet receive function for Ethernet AVB */
546 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
547 {
548 	struct ravb_private *priv = netdev_priv(ndev);
549 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
550 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
551 			priv->cur_rx[q];
552 	struct net_device_stats *stats = &priv->stats[q];
553 	struct ravb_ex_rx_desc *desc;
554 	struct sk_buff *skb;
555 	dma_addr_t dma_addr;
556 	struct timespec64 ts;
557 	u8  desc_status;
558 	u16 pkt_len;
559 	int limit;
560 
561 	boguscnt = min(boguscnt, *quota);
562 	limit = boguscnt;
563 	desc = &priv->rx_ring[q][entry];
564 	while (desc->die_dt != DT_FEMPTY) {
565 		/* Descriptor type must be checked before all other reads */
566 		dma_rmb();
567 		desc_status = desc->msc;
568 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
569 
570 		if (--boguscnt < 0)
571 			break;
572 
573 		/* We use 0-byte descriptors to mark the DMA mapping errors */
574 		if (!pkt_len)
575 			continue;
576 
577 		if (desc_status & MSC_MC)
578 			stats->multicast++;
579 
580 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
581 				   MSC_CEEF)) {
582 			stats->rx_errors++;
583 			if (desc_status & MSC_CRC)
584 				stats->rx_crc_errors++;
585 			if (desc_status & MSC_RFE)
586 				stats->rx_frame_errors++;
587 			if (desc_status & (MSC_RTLF | MSC_RTSF))
588 				stats->rx_length_errors++;
589 			if (desc_status & MSC_CEEF)
590 				stats->rx_missed_errors++;
591 		} else {
592 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
593 
594 			skb = priv->rx_skb[q][entry];
595 			priv->rx_skb[q][entry] = NULL;
596 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
597 					 priv->rx_buf_sz,
598 					 DMA_FROM_DEVICE);
599 			get_ts &= (q == RAVB_NC) ?
600 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
601 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
602 			if (get_ts) {
603 				struct skb_shared_hwtstamps *shhwtstamps;
604 
605 				shhwtstamps = skb_hwtstamps(skb);
606 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
607 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
608 					     32) | le32_to_cpu(desc->ts_sl);
609 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
610 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
611 			}
612 
613 			skb_put(skb, pkt_len);
614 			skb->protocol = eth_type_trans(skb, ndev);
615 			if (ndev->features & NETIF_F_RXCSUM)
616 				ravb_rx_csum(skb);
617 			napi_gro_receive(&priv->napi[q], skb);
618 			stats->rx_packets++;
619 			stats->rx_bytes += pkt_len;
620 		}
621 
622 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
623 		desc = &priv->rx_ring[q][entry];
624 	}
625 
626 	/* Refill the RX ring buffers. */
627 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
628 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
629 		desc = &priv->rx_ring[q][entry];
630 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
631 
632 		if (!priv->rx_skb[q][entry]) {
633 			skb = netdev_alloc_skb(ndev,
634 					       priv->rx_buf_sz +
635 					       RAVB_ALIGN - 1);
636 			if (!skb)
637 				break;	/* Better luck next round. */
638 			ravb_set_buffer_align(skb);
639 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
640 						  le16_to_cpu(desc->ds_cc),
641 						  DMA_FROM_DEVICE);
642 			skb_checksum_none_assert(skb);
643 			/* We just set the data size to 0 for a failed mapping
644 			 * which should prevent DMA  from happening...
645 			 */
646 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
647 				desc->ds_cc = cpu_to_le16(0);
648 			desc->dptr = cpu_to_le32(dma_addr);
649 			priv->rx_skb[q][entry] = skb;
650 		}
651 		/* Descriptor type must be set after all the above writes */
652 		dma_wmb();
653 		desc->die_dt = DT_FEMPTY;
654 	}
655 
656 	*quota -= limit - (++boguscnt);
657 
658 	return boguscnt <= 0;
659 }
660 
661 static void ravb_rcv_snd_disable(struct net_device *ndev)
662 {
663 	/* Disable TX and RX */
664 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
665 }
666 
667 static void ravb_rcv_snd_enable(struct net_device *ndev)
668 {
669 	/* Enable TX and RX */
670 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
671 }
672 
673 /* function for waiting dma process finished */
674 static int ravb_stop_dma(struct net_device *ndev)
675 {
676 	int error;
677 
678 	/* Wait for stopping the hardware TX process */
679 	error = ravb_wait(ndev, TCCR,
680 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
681 	if (error)
682 		return error;
683 
684 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
685 			  0);
686 	if (error)
687 		return error;
688 
689 	/* Stop the E-MAC's RX/TX processes. */
690 	ravb_rcv_snd_disable(ndev);
691 
692 	/* Wait for stopping the RX DMA process */
693 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
694 	if (error)
695 		return error;
696 
697 	/* Stop AVB-DMAC process */
698 	return ravb_config(ndev);
699 }
700 
701 /* E-MAC interrupt handler */
702 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
703 {
704 	struct ravb_private *priv = netdev_priv(ndev);
705 	u32 ecsr, psr;
706 
707 	ecsr = ravb_read(ndev, ECSR);
708 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
709 
710 	if (ecsr & ECSR_MPD)
711 		pm_wakeup_event(&priv->pdev->dev, 0);
712 	if (ecsr & ECSR_ICD)
713 		ndev->stats.tx_carrier_errors++;
714 	if (ecsr & ECSR_LCHNG) {
715 		/* Link changed */
716 		if (priv->no_avb_link)
717 			return;
718 		psr = ravb_read(ndev, PSR);
719 		if (priv->avb_link_active_low)
720 			psr ^= PSR_LMON;
721 		if (!(psr & PSR_LMON)) {
722 			/* DIsable RX and TX */
723 			ravb_rcv_snd_disable(ndev);
724 		} else {
725 			/* Enable RX and TX */
726 			ravb_rcv_snd_enable(ndev);
727 		}
728 	}
729 }
730 
731 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
732 {
733 	struct net_device *ndev = dev_id;
734 	struct ravb_private *priv = netdev_priv(ndev);
735 
736 	spin_lock(&priv->lock);
737 	ravb_emac_interrupt_unlocked(ndev);
738 	mmiowb();
739 	spin_unlock(&priv->lock);
740 	return IRQ_HANDLED;
741 }
742 
743 /* Error interrupt handler */
744 static void ravb_error_interrupt(struct net_device *ndev)
745 {
746 	struct ravb_private *priv = netdev_priv(ndev);
747 	u32 eis, ris2;
748 
749 	eis = ravb_read(ndev, EIS);
750 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
751 	if (eis & EIS_QFS) {
752 		ris2 = ravb_read(ndev, RIS2);
753 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
754 			   RIS2);
755 
756 		/* Receive Descriptor Empty int */
757 		if (ris2 & RIS2_QFF0)
758 			priv->stats[RAVB_BE].rx_over_errors++;
759 
760 		    /* Receive Descriptor Empty int */
761 		if (ris2 & RIS2_QFF1)
762 			priv->stats[RAVB_NC].rx_over_errors++;
763 
764 		/* Receive FIFO Overflow int */
765 		if (ris2 & RIS2_RFFF)
766 			priv->rx_fifo_errors++;
767 	}
768 }
769 
770 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
771 {
772 	struct ravb_private *priv = netdev_priv(ndev);
773 	u32 ris0 = ravb_read(ndev, RIS0);
774 	u32 ric0 = ravb_read(ndev, RIC0);
775 	u32 tis  = ravb_read(ndev, TIS);
776 	u32 tic  = ravb_read(ndev, TIC);
777 
778 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
779 		if (napi_schedule_prep(&priv->napi[q])) {
780 			/* Mask RX and TX interrupts */
781 			if (priv->chip_id == RCAR_GEN2) {
782 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
783 				ravb_write(ndev, tic & ~BIT(q), TIC);
784 			} else {
785 				ravb_write(ndev, BIT(q), RID0);
786 				ravb_write(ndev, BIT(q), TID);
787 			}
788 			__napi_schedule(&priv->napi[q]);
789 		} else {
790 			netdev_warn(ndev,
791 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
792 				    ris0, ric0);
793 			netdev_warn(ndev,
794 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
795 				    tis, tic);
796 		}
797 		return true;
798 	}
799 	return false;
800 }
801 
802 static bool ravb_timestamp_interrupt(struct net_device *ndev)
803 {
804 	u32 tis = ravb_read(ndev, TIS);
805 
806 	if (tis & TIS_TFUF) {
807 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
808 		ravb_get_tx_tstamp(ndev);
809 		return true;
810 	}
811 	return false;
812 }
813 
814 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
815 {
816 	struct net_device *ndev = dev_id;
817 	struct ravb_private *priv = netdev_priv(ndev);
818 	irqreturn_t result = IRQ_NONE;
819 	u32 iss;
820 
821 	spin_lock(&priv->lock);
822 	/* Get interrupt status */
823 	iss = ravb_read(ndev, ISS);
824 
825 	/* Received and transmitted interrupts */
826 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
827 		int q;
828 
829 		/* Timestamp updated */
830 		if (ravb_timestamp_interrupt(ndev))
831 			result = IRQ_HANDLED;
832 
833 		/* Network control and best effort queue RX/TX */
834 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
835 			if (ravb_queue_interrupt(ndev, q))
836 				result = IRQ_HANDLED;
837 		}
838 	}
839 
840 	/* E-MAC status summary */
841 	if (iss & ISS_MS) {
842 		ravb_emac_interrupt_unlocked(ndev);
843 		result = IRQ_HANDLED;
844 	}
845 
846 	/* Error status summary */
847 	if (iss & ISS_ES) {
848 		ravb_error_interrupt(ndev);
849 		result = IRQ_HANDLED;
850 	}
851 
852 	/* gPTP interrupt status summary */
853 	if (iss & ISS_CGIS) {
854 		ravb_ptp_interrupt(ndev);
855 		result = IRQ_HANDLED;
856 	}
857 
858 	mmiowb();
859 	spin_unlock(&priv->lock);
860 	return result;
861 }
862 
863 /* Timestamp/Error/gPTP interrupt handler */
864 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
865 {
866 	struct net_device *ndev = dev_id;
867 	struct ravb_private *priv = netdev_priv(ndev);
868 	irqreturn_t result = IRQ_NONE;
869 	u32 iss;
870 
871 	spin_lock(&priv->lock);
872 	/* Get interrupt status */
873 	iss = ravb_read(ndev, ISS);
874 
875 	/* Timestamp updated */
876 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
877 		result = IRQ_HANDLED;
878 
879 	/* Error status summary */
880 	if (iss & ISS_ES) {
881 		ravb_error_interrupt(ndev);
882 		result = IRQ_HANDLED;
883 	}
884 
885 	/* gPTP interrupt status summary */
886 	if (iss & ISS_CGIS) {
887 		ravb_ptp_interrupt(ndev);
888 		result = IRQ_HANDLED;
889 	}
890 
891 	mmiowb();
892 	spin_unlock(&priv->lock);
893 	return result;
894 }
895 
896 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
897 {
898 	struct net_device *ndev = dev_id;
899 	struct ravb_private *priv = netdev_priv(ndev);
900 	irqreturn_t result = IRQ_NONE;
901 
902 	spin_lock(&priv->lock);
903 
904 	/* Network control/Best effort queue RX/TX */
905 	if (ravb_queue_interrupt(ndev, q))
906 		result = IRQ_HANDLED;
907 
908 	mmiowb();
909 	spin_unlock(&priv->lock);
910 	return result;
911 }
912 
913 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
914 {
915 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
916 }
917 
918 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
919 {
920 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
921 }
922 
923 static int ravb_poll(struct napi_struct *napi, int budget)
924 {
925 	struct net_device *ndev = napi->dev;
926 	struct ravb_private *priv = netdev_priv(ndev);
927 	unsigned long flags;
928 	int q = napi - priv->napi;
929 	int mask = BIT(q);
930 	int quota = budget;
931 	u32 ris0, tis;
932 
933 	for (;;) {
934 		tis = ravb_read(ndev, TIS);
935 		ris0 = ravb_read(ndev, RIS0);
936 		if (!((ris0 & mask) || (tis & mask)))
937 			break;
938 
939 		/* Processing RX Descriptor Ring */
940 		if (ris0 & mask) {
941 			/* Clear RX interrupt */
942 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
943 			if (ravb_rx(ndev, &quota, q))
944 				goto out;
945 		}
946 		/* Processing TX Descriptor Ring */
947 		if (tis & mask) {
948 			spin_lock_irqsave(&priv->lock, flags);
949 			/* Clear TX interrupt */
950 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
951 			ravb_tx_free(ndev, q, true);
952 			netif_wake_subqueue(ndev, q);
953 			mmiowb();
954 			spin_unlock_irqrestore(&priv->lock, flags);
955 		}
956 	}
957 
958 	napi_complete(napi);
959 
960 	/* Re-enable RX/TX interrupts */
961 	spin_lock_irqsave(&priv->lock, flags);
962 	if (priv->chip_id == RCAR_GEN2) {
963 		ravb_modify(ndev, RIC0, mask, mask);
964 		ravb_modify(ndev, TIC,  mask, mask);
965 	} else {
966 		ravb_write(ndev, mask, RIE0);
967 		ravb_write(ndev, mask, TIE);
968 	}
969 	mmiowb();
970 	spin_unlock_irqrestore(&priv->lock, flags);
971 
972 	/* Receive error message handling */
973 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
974 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
975 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
976 		ndev->stats.rx_over_errors = priv->rx_over_errors;
977 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
978 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
979 out:
980 	return budget - quota;
981 }
982 
983 /* PHY state control function */
984 static void ravb_adjust_link(struct net_device *ndev)
985 {
986 	struct ravb_private *priv = netdev_priv(ndev);
987 	struct phy_device *phydev = ndev->phydev;
988 	bool new_state = false;
989 	unsigned long flags;
990 
991 	spin_lock_irqsave(&priv->lock, flags);
992 
993 	/* Disable TX and RX right over here, if E-MAC change is ignored */
994 	if (priv->no_avb_link)
995 		ravb_rcv_snd_disable(ndev);
996 
997 	if (phydev->link) {
998 		if (phydev->duplex != priv->duplex) {
999 			new_state = true;
1000 			priv->duplex = phydev->duplex;
1001 			ravb_set_duplex(ndev);
1002 		}
1003 
1004 		if (phydev->speed != priv->speed) {
1005 			new_state = true;
1006 			priv->speed = phydev->speed;
1007 			ravb_set_rate(ndev);
1008 		}
1009 		if (!priv->link) {
1010 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1011 			new_state = true;
1012 			priv->link = phydev->link;
1013 		}
1014 	} else if (priv->link) {
1015 		new_state = true;
1016 		priv->link = 0;
1017 		priv->speed = 0;
1018 		priv->duplex = -1;
1019 	}
1020 
1021 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1022 	if (priv->no_avb_link && phydev->link)
1023 		ravb_rcv_snd_enable(ndev);
1024 
1025 	mmiowb();
1026 	spin_unlock_irqrestore(&priv->lock, flags);
1027 
1028 	if (new_state && netif_msg_link(priv))
1029 		phy_print_status(phydev);
1030 }
1031 
1032 static const struct soc_device_attribute r8a7795es10[] = {
1033 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1034 	{ /* sentinel */ }
1035 };
1036 
1037 /* PHY init function */
1038 static int ravb_phy_init(struct net_device *ndev)
1039 {
1040 	struct device_node *np = ndev->dev.parent->of_node;
1041 	struct ravb_private *priv = netdev_priv(ndev);
1042 	struct phy_device *phydev;
1043 	struct device_node *pn;
1044 	int err;
1045 
1046 	priv->link = 0;
1047 	priv->speed = 0;
1048 	priv->duplex = -1;
1049 
1050 	/* Try connecting to PHY */
1051 	pn = of_parse_phandle(np, "phy-handle", 0);
1052 	if (!pn) {
1053 		/* In the case of a fixed PHY, the DT node associated
1054 		 * to the PHY is the Ethernet MAC DT node.
1055 		 */
1056 		if (of_phy_is_fixed_link(np)) {
1057 			err = of_phy_register_fixed_link(np);
1058 			if (err)
1059 				return err;
1060 		}
1061 		pn = of_node_get(np);
1062 	}
1063 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1064 				priv->phy_interface);
1065 	of_node_put(pn);
1066 	if (!phydev) {
1067 		netdev_err(ndev, "failed to connect PHY\n");
1068 		err = -ENOENT;
1069 		goto err_deregister_fixed_link;
1070 	}
1071 
1072 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1073 	 * at this time.
1074 	 */
1075 	if (soc_device_match(r8a7795es10)) {
1076 		err = phy_set_max_speed(phydev, SPEED_100);
1077 		if (err) {
1078 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1079 			goto err_phy_disconnect;
1080 		}
1081 
1082 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1083 	}
1084 
1085 	/* 10BASE, Pause and Asym Pause is not supported */
1086 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1087 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1088 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1089 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1090 
1091 	phy_attached_info(phydev);
1092 
1093 	return 0;
1094 
1095 err_phy_disconnect:
1096 	phy_disconnect(phydev);
1097 err_deregister_fixed_link:
1098 	if (of_phy_is_fixed_link(np))
1099 		of_phy_deregister_fixed_link(np);
1100 
1101 	return err;
1102 }
1103 
1104 /* PHY control start function */
1105 static int ravb_phy_start(struct net_device *ndev)
1106 {
1107 	int error;
1108 
1109 	error = ravb_phy_init(ndev);
1110 	if (error)
1111 		return error;
1112 
1113 	phy_start(ndev->phydev);
1114 
1115 	return 0;
1116 }
1117 
1118 static u32 ravb_get_msglevel(struct net_device *ndev)
1119 {
1120 	struct ravb_private *priv = netdev_priv(ndev);
1121 
1122 	return priv->msg_enable;
1123 }
1124 
1125 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1126 {
1127 	struct ravb_private *priv = netdev_priv(ndev);
1128 
1129 	priv->msg_enable = value;
1130 }
1131 
1132 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1133 	"rx_queue_0_current",
1134 	"tx_queue_0_current",
1135 	"rx_queue_0_dirty",
1136 	"tx_queue_0_dirty",
1137 	"rx_queue_0_packets",
1138 	"tx_queue_0_packets",
1139 	"rx_queue_0_bytes",
1140 	"tx_queue_0_bytes",
1141 	"rx_queue_0_mcast_packets",
1142 	"rx_queue_0_errors",
1143 	"rx_queue_0_crc_errors",
1144 	"rx_queue_0_frame_errors",
1145 	"rx_queue_0_length_errors",
1146 	"rx_queue_0_missed_errors",
1147 	"rx_queue_0_over_errors",
1148 
1149 	"rx_queue_1_current",
1150 	"tx_queue_1_current",
1151 	"rx_queue_1_dirty",
1152 	"tx_queue_1_dirty",
1153 	"rx_queue_1_packets",
1154 	"tx_queue_1_packets",
1155 	"rx_queue_1_bytes",
1156 	"tx_queue_1_bytes",
1157 	"rx_queue_1_mcast_packets",
1158 	"rx_queue_1_errors",
1159 	"rx_queue_1_crc_errors",
1160 	"rx_queue_1_frame_errors",
1161 	"rx_queue_1_length_errors",
1162 	"rx_queue_1_missed_errors",
1163 	"rx_queue_1_over_errors",
1164 };
1165 
1166 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1167 
1168 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1169 {
1170 	switch (sset) {
1171 	case ETH_SS_STATS:
1172 		return RAVB_STATS_LEN;
1173 	default:
1174 		return -EOPNOTSUPP;
1175 	}
1176 }
1177 
1178 static void ravb_get_ethtool_stats(struct net_device *ndev,
1179 				   struct ethtool_stats *estats, u64 *data)
1180 {
1181 	struct ravb_private *priv = netdev_priv(ndev);
1182 	int i = 0;
1183 	int q;
1184 
1185 	/* Device-specific stats */
1186 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1187 		struct net_device_stats *stats = &priv->stats[q];
1188 
1189 		data[i++] = priv->cur_rx[q];
1190 		data[i++] = priv->cur_tx[q];
1191 		data[i++] = priv->dirty_rx[q];
1192 		data[i++] = priv->dirty_tx[q];
1193 		data[i++] = stats->rx_packets;
1194 		data[i++] = stats->tx_packets;
1195 		data[i++] = stats->rx_bytes;
1196 		data[i++] = stats->tx_bytes;
1197 		data[i++] = stats->multicast;
1198 		data[i++] = stats->rx_errors;
1199 		data[i++] = stats->rx_crc_errors;
1200 		data[i++] = stats->rx_frame_errors;
1201 		data[i++] = stats->rx_length_errors;
1202 		data[i++] = stats->rx_missed_errors;
1203 		data[i++] = stats->rx_over_errors;
1204 	}
1205 }
1206 
1207 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1208 {
1209 	switch (stringset) {
1210 	case ETH_SS_STATS:
1211 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1212 		break;
1213 	}
1214 }
1215 
1216 static void ravb_get_ringparam(struct net_device *ndev,
1217 			       struct ethtool_ringparam *ring)
1218 {
1219 	struct ravb_private *priv = netdev_priv(ndev);
1220 
1221 	ring->rx_max_pending = BE_RX_RING_MAX;
1222 	ring->tx_max_pending = BE_TX_RING_MAX;
1223 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1224 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1225 }
1226 
1227 static int ravb_set_ringparam(struct net_device *ndev,
1228 			      struct ethtool_ringparam *ring)
1229 {
1230 	struct ravb_private *priv = netdev_priv(ndev);
1231 	int error;
1232 
1233 	if (ring->tx_pending > BE_TX_RING_MAX ||
1234 	    ring->rx_pending > BE_RX_RING_MAX ||
1235 	    ring->tx_pending < BE_TX_RING_MIN ||
1236 	    ring->rx_pending < BE_RX_RING_MIN)
1237 		return -EINVAL;
1238 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1239 		return -EINVAL;
1240 
1241 	if (netif_running(ndev)) {
1242 		netif_device_detach(ndev);
1243 		/* Stop PTP Clock driver */
1244 		if (priv->chip_id == RCAR_GEN2)
1245 			ravb_ptp_stop(ndev);
1246 		/* Wait for DMA stopping */
1247 		error = ravb_stop_dma(ndev);
1248 		if (error) {
1249 			netdev_err(ndev,
1250 				   "cannot set ringparam! Any AVB processes are still running?\n");
1251 			return error;
1252 		}
1253 		synchronize_irq(ndev->irq);
1254 
1255 		/* Free all the skb's in the RX queue and the DMA buffers. */
1256 		ravb_ring_free(ndev, RAVB_BE);
1257 		ravb_ring_free(ndev, RAVB_NC);
1258 	}
1259 
1260 	/* Set new parameters */
1261 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1262 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1263 
1264 	if (netif_running(ndev)) {
1265 		error = ravb_dmac_init(ndev);
1266 		if (error) {
1267 			netdev_err(ndev,
1268 				   "%s: ravb_dmac_init() failed, error %d\n",
1269 				   __func__, error);
1270 			return error;
1271 		}
1272 
1273 		ravb_emac_init(ndev);
1274 
1275 		/* Initialise PTP Clock driver */
1276 		if (priv->chip_id == RCAR_GEN2)
1277 			ravb_ptp_init(ndev, priv->pdev);
1278 
1279 		netif_device_attach(ndev);
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 static int ravb_get_ts_info(struct net_device *ndev,
1286 			    struct ethtool_ts_info *info)
1287 {
1288 	struct ravb_private *priv = netdev_priv(ndev);
1289 
1290 	info->so_timestamping =
1291 		SOF_TIMESTAMPING_TX_SOFTWARE |
1292 		SOF_TIMESTAMPING_RX_SOFTWARE |
1293 		SOF_TIMESTAMPING_SOFTWARE |
1294 		SOF_TIMESTAMPING_TX_HARDWARE |
1295 		SOF_TIMESTAMPING_RX_HARDWARE |
1296 		SOF_TIMESTAMPING_RAW_HARDWARE;
1297 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1298 	info->rx_filters =
1299 		(1 << HWTSTAMP_FILTER_NONE) |
1300 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1301 		(1 << HWTSTAMP_FILTER_ALL);
1302 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1303 
1304 	return 0;
1305 }
1306 
1307 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1308 {
1309 	struct ravb_private *priv = netdev_priv(ndev);
1310 
1311 	wol->supported = WAKE_MAGIC;
1312 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1313 }
1314 
1315 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1316 {
1317 	struct ravb_private *priv = netdev_priv(ndev);
1318 
1319 	if (wol->wolopts & ~WAKE_MAGIC)
1320 		return -EOPNOTSUPP;
1321 
1322 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1323 
1324 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1325 
1326 	return 0;
1327 }
1328 
1329 static const struct ethtool_ops ravb_ethtool_ops = {
1330 	.nway_reset		= phy_ethtool_nway_reset,
1331 	.get_msglevel		= ravb_get_msglevel,
1332 	.set_msglevel		= ravb_set_msglevel,
1333 	.get_link		= ethtool_op_get_link,
1334 	.get_strings		= ravb_get_strings,
1335 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1336 	.get_sset_count		= ravb_get_sset_count,
1337 	.get_ringparam		= ravb_get_ringparam,
1338 	.set_ringparam		= ravb_set_ringparam,
1339 	.get_ts_info		= ravb_get_ts_info,
1340 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1341 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1342 	.get_wol		= ravb_get_wol,
1343 	.set_wol		= ravb_set_wol,
1344 };
1345 
1346 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1347 				struct net_device *ndev, struct device *dev,
1348 				const char *ch)
1349 {
1350 	char *name;
1351 	int error;
1352 
1353 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1354 	if (!name)
1355 		return -ENOMEM;
1356 	error = request_irq(irq, handler, 0, name, ndev);
1357 	if (error)
1358 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1359 
1360 	return error;
1361 }
1362 
1363 /* Network device open function for Ethernet AVB */
1364 static int ravb_open(struct net_device *ndev)
1365 {
1366 	struct ravb_private *priv = netdev_priv(ndev);
1367 	struct platform_device *pdev = priv->pdev;
1368 	struct device *dev = &pdev->dev;
1369 	int error;
1370 
1371 	napi_enable(&priv->napi[RAVB_BE]);
1372 	napi_enable(&priv->napi[RAVB_NC]);
1373 
1374 	if (priv->chip_id == RCAR_GEN2) {
1375 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1376 				    ndev->name, ndev);
1377 		if (error) {
1378 			netdev_err(ndev, "cannot request IRQ\n");
1379 			goto out_napi_off;
1380 		}
1381 	} else {
1382 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1383 				      dev, "ch22:multi");
1384 		if (error)
1385 			goto out_napi_off;
1386 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1387 				      dev, "ch24:emac");
1388 		if (error)
1389 			goto out_free_irq;
1390 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1391 				      ndev, dev, "ch0:rx_be");
1392 		if (error)
1393 			goto out_free_irq_emac;
1394 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1395 				      ndev, dev, "ch18:tx_be");
1396 		if (error)
1397 			goto out_free_irq_be_rx;
1398 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1399 				      ndev, dev, "ch1:rx_nc");
1400 		if (error)
1401 			goto out_free_irq_be_tx;
1402 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1403 				      ndev, dev, "ch19:tx_nc");
1404 		if (error)
1405 			goto out_free_irq_nc_rx;
1406 	}
1407 
1408 	/* Device init */
1409 	error = ravb_dmac_init(ndev);
1410 	if (error)
1411 		goto out_free_irq_nc_tx;
1412 	ravb_emac_init(ndev);
1413 
1414 	/* Initialise PTP Clock driver */
1415 	if (priv->chip_id == RCAR_GEN2)
1416 		ravb_ptp_init(ndev, priv->pdev);
1417 
1418 	netif_tx_start_all_queues(ndev);
1419 
1420 	/* PHY control start */
1421 	error = ravb_phy_start(ndev);
1422 	if (error)
1423 		goto out_ptp_stop;
1424 
1425 	return 0;
1426 
1427 out_ptp_stop:
1428 	/* Stop PTP Clock driver */
1429 	if (priv->chip_id == RCAR_GEN2)
1430 		ravb_ptp_stop(ndev);
1431 out_free_irq_nc_tx:
1432 	if (priv->chip_id == RCAR_GEN2)
1433 		goto out_free_irq;
1434 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1435 out_free_irq_nc_rx:
1436 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1437 out_free_irq_be_tx:
1438 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1439 out_free_irq_be_rx:
1440 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1441 out_free_irq_emac:
1442 	free_irq(priv->emac_irq, ndev);
1443 out_free_irq:
1444 	free_irq(ndev->irq, ndev);
1445 out_napi_off:
1446 	napi_disable(&priv->napi[RAVB_NC]);
1447 	napi_disable(&priv->napi[RAVB_BE]);
1448 	return error;
1449 }
1450 
1451 /* Timeout function for Ethernet AVB */
1452 static void ravb_tx_timeout(struct net_device *ndev)
1453 {
1454 	struct ravb_private *priv = netdev_priv(ndev);
1455 
1456 	netif_err(priv, tx_err, ndev,
1457 		  "transmit timed out, status %08x, resetting...\n",
1458 		  ravb_read(ndev, ISS));
1459 
1460 	/* tx_errors count up */
1461 	ndev->stats.tx_errors++;
1462 
1463 	schedule_work(&priv->work);
1464 }
1465 
1466 static void ravb_tx_timeout_work(struct work_struct *work)
1467 {
1468 	struct ravb_private *priv = container_of(work, struct ravb_private,
1469 						 work);
1470 	struct net_device *ndev = priv->ndev;
1471 
1472 	netif_tx_stop_all_queues(ndev);
1473 
1474 	/* Stop PTP Clock driver */
1475 	if (priv->chip_id == RCAR_GEN2)
1476 		ravb_ptp_stop(ndev);
1477 
1478 	/* Wait for DMA stopping */
1479 	ravb_stop_dma(ndev);
1480 
1481 	ravb_ring_free(ndev, RAVB_BE);
1482 	ravb_ring_free(ndev, RAVB_NC);
1483 
1484 	/* Device init */
1485 	ravb_dmac_init(ndev);
1486 	ravb_emac_init(ndev);
1487 
1488 	/* Initialise PTP Clock driver */
1489 	if (priv->chip_id == RCAR_GEN2)
1490 		ravb_ptp_init(ndev, priv->pdev);
1491 
1492 	netif_tx_start_all_queues(ndev);
1493 }
1494 
1495 /* Packet transmit function for Ethernet AVB */
1496 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1497 {
1498 	struct ravb_private *priv = netdev_priv(ndev);
1499 	int num_tx_desc = priv->num_tx_desc;
1500 	u16 q = skb_get_queue_mapping(skb);
1501 	struct ravb_tstamp_skb *ts_skb;
1502 	struct ravb_tx_desc *desc;
1503 	unsigned long flags;
1504 	u32 dma_addr;
1505 	void *buffer;
1506 	u32 entry;
1507 	u32 len;
1508 
1509 	spin_lock_irqsave(&priv->lock, flags);
1510 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1511 	    num_tx_desc) {
1512 		netif_err(priv, tx_queued, ndev,
1513 			  "still transmitting with the full ring!\n");
1514 		netif_stop_subqueue(ndev, q);
1515 		spin_unlock_irqrestore(&priv->lock, flags);
1516 		return NETDEV_TX_BUSY;
1517 	}
1518 
1519 	if (skb_put_padto(skb, ETH_ZLEN))
1520 		goto exit;
1521 
1522 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1523 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1524 
1525 	if (num_tx_desc > 1) {
1526 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1527 			 entry / num_tx_desc * DPTR_ALIGN;
1528 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1529 
1530 		/* Zero length DMA descriptors are problematic as they seem
1531 		 * to terminate DMA transfers. Avoid them by simply using a
1532 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1533 		 * DPTR_ALIGN.
1534 		 *
1535 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1536 		 * bytes of data by the call to skb_put_padto() above this
1537 		 * is safe with respect to both the length of the first DMA
1538 		 * descriptor (len) overflowing the available data and the
1539 		 * length of the second DMA descriptor (skb->len - len)
1540 		 * being negative.
1541 		 */
1542 		if (len == 0)
1543 			len = DPTR_ALIGN;
1544 
1545 		memcpy(buffer, skb->data, len);
1546 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1547 					  DMA_TO_DEVICE);
1548 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1549 			goto drop;
1550 
1551 		desc = &priv->tx_ring[q][entry];
1552 		desc->ds_tagl = cpu_to_le16(len);
1553 		desc->dptr = cpu_to_le32(dma_addr);
1554 
1555 		buffer = skb->data + len;
1556 		len = skb->len - len;
1557 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1558 					  DMA_TO_DEVICE);
1559 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1560 			goto unmap;
1561 
1562 		desc++;
1563 	} else {
1564 		desc = &priv->tx_ring[q][entry];
1565 		len = skb->len;
1566 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1567 					  DMA_TO_DEVICE);
1568 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1569 			goto drop;
1570 	}
1571 	desc->ds_tagl = cpu_to_le16(len);
1572 	desc->dptr = cpu_to_le32(dma_addr);
1573 
1574 	/* TX timestamp required */
1575 	if (q == RAVB_NC) {
1576 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1577 		if (!ts_skb) {
1578 			if (num_tx_desc > 1) {
1579 				desc--;
1580 				dma_unmap_single(ndev->dev.parent, dma_addr,
1581 						 len, DMA_TO_DEVICE);
1582 			}
1583 			goto unmap;
1584 		}
1585 		ts_skb->skb = skb;
1586 		ts_skb->tag = priv->ts_skb_tag++;
1587 		priv->ts_skb_tag &= 0x3ff;
1588 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1589 
1590 		/* TAG and timestamp required flag */
1591 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1592 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1593 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1594 	}
1595 
1596 	skb_tx_timestamp(skb);
1597 	/* Descriptor type must be set after all the above writes */
1598 	dma_wmb();
1599 	if (num_tx_desc > 1) {
1600 		desc->die_dt = DT_FEND;
1601 		desc--;
1602 		desc->die_dt = DT_FSTART;
1603 	} else {
1604 		desc->die_dt = DT_FSINGLE;
1605 	}
1606 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1607 
1608 	priv->cur_tx[q] += num_tx_desc;
1609 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1610 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1611 	    !ravb_tx_free(ndev, q, true))
1612 		netif_stop_subqueue(ndev, q);
1613 
1614 exit:
1615 	mmiowb();
1616 	spin_unlock_irqrestore(&priv->lock, flags);
1617 	return NETDEV_TX_OK;
1618 
1619 unmap:
1620 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1621 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1622 drop:
1623 	dev_kfree_skb_any(skb);
1624 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1625 	goto exit;
1626 }
1627 
1628 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1629 			     struct net_device *sb_dev,
1630 			     select_queue_fallback_t fallback)
1631 {
1632 	/* If skb needs TX timestamp, it is handled in network control queue */
1633 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1634 							       RAVB_BE;
1635 
1636 }
1637 
1638 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1639 {
1640 	struct ravb_private *priv = netdev_priv(ndev);
1641 	struct net_device_stats *nstats, *stats0, *stats1;
1642 
1643 	nstats = &ndev->stats;
1644 	stats0 = &priv->stats[RAVB_BE];
1645 	stats1 = &priv->stats[RAVB_NC];
1646 
1647 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1648 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1649 	nstats->collisions += ravb_read(ndev, CDCR);
1650 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1651 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1652 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1653 
1654 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1655 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1656 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1657 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1658 
1659 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1660 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1661 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1662 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1663 	nstats->multicast = stats0->multicast + stats1->multicast;
1664 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1665 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1666 	nstats->rx_frame_errors =
1667 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1668 	nstats->rx_length_errors =
1669 		stats0->rx_length_errors + stats1->rx_length_errors;
1670 	nstats->rx_missed_errors =
1671 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1672 	nstats->rx_over_errors =
1673 		stats0->rx_over_errors + stats1->rx_over_errors;
1674 
1675 	return nstats;
1676 }
1677 
1678 /* Update promiscuous bit */
1679 static void ravb_set_rx_mode(struct net_device *ndev)
1680 {
1681 	struct ravb_private *priv = netdev_priv(ndev);
1682 	unsigned long flags;
1683 
1684 	spin_lock_irqsave(&priv->lock, flags);
1685 	ravb_modify(ndev, ECMR, ECMR_PRM,
1686 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1687 	mmiowb();
1688 	spin_unlock_irqrestore(&priv->lock, flags);
1689 }
1690 
1691 /* Device close function for Ethernet AVB */
1692 static int ravb_close(struct net_device *ndev)
1693 {
1694 	struct device_node *np = ndev->dev.parent->of_node;
1695 	struct ravb_private *priv = netdev_priv(ndev);
1696 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1697 
1698 	netif_tx_stop_all_queues(ndev);
1699 
1700 	/* Disable interrupts by clearing the interrupt masks. */
1701 	ravb_write(ndev, 0, RIC0);
1702 	ravb_write(ndev, 0, RIC2);
1703 	ravb_write(ndev, 0, TIC);
1704 
1705 	/* Stop PTP Clock driver */
1706 	if (priv->chip_id == RCAR_GEN2)
1707 		ravb_ptp_stop(ndev);
1708 
1709 	/* Set the config mode to stop the AVB-DMAC's processes */
1710 	if (ravb_stop_dma(ndev) < 0)
1711 		netdev_err(ndev,
1712 			   "device will be stopped after h/w processes are done.\n");
1713 
1714 	/* Clear the timestamp list */
1715 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1716 		list_del(&ts_skb->list);
1717 		kfree(ts_skb);
1718 	}
1719 
1720 	/* PHY disconnect */
1721 	if (ndev->phydev) {
1722 		phy_stop(ndev->phydev);
1723 		phy_disconnect(ndev->phydev);
1724 		if (of_phy_is_fixed_link(np))
1725 			of_phy_deregister_fixed_link(np);
1726 	}
1727 
1728 	if (priv->chip_id != RCAR_GEN2) {
1729 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1730 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1731 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1732 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1733 		free_irq(priv->emac_irq, ndev);
1734 	}
1735 	free_irq(ndev->irq, ndev);
1736 
1737 	napi_disable(&priv->napi[RAVB_NC]);
1738 	napi_disable(&priv->napi[RAVB_BE]);
1739 
1740 	/* Free all the skb's in the RX queue and the DMA buffers. */
1741 	ravb_ring_free(ndev, RAVB_BE);
1742 	ravb_ring_free(ndev, RAVB_NC);
1743 
1744 	return 0;
1745 }
1746 
1747 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1748 {
1749 	struct ravb_private *priv = netdev_priv(ndev);
1750 	struct hwtstamp_config config;
1751 
1752 	config.flags = 0;
1753 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1754 						HWTSTAMP_TX_OFF;
1755 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1756 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1757 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1758 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1759 	else
1760 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1761 
1762 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1763 		-EFAULT : 0;
1764 }
1765 
1766 /* Control hardware time stamping */
1767 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1768 {
1769 	struct ravb_private *priv = netdev_priv(ndev);
1770 	struct hwtstamp_config config;
1771 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1772 	u32 tstamp_tx_ctrl;
1773 
1774 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1775 		return -EFAULT;
1776 
1777 	/* Reserved for future extensions */
1778 	if (config.flags)
1779 		return -EINVAL;
1780 
1781 	switch (config.tx_type) {
1782 	case HWTSTAMP_TX_OFF:
1783 		tstamp_tx_ctrl = 0;
1784 		break;
1785 	case HWTSTAMP_TX_ON:
1786 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1787 		break;
1788 	default:
1789 		return -ERANGE;
1790 	}
1791 
1792 	switch (config.rx_filter) {
1793 	case HWTSTAMP_FILTER_NONE:
1794 		tstamp_rx_ctrl = 0;
1795 		break;
1796 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1797 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1798 		break;
1799 	default:
1800 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1801 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1802 	}
1803 
1804 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1805 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1806 
1807 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1808 		-EFAULT : 0;
1809 }
1810 
1811 /* ioctl to device function */
1812 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1813 {
1814 	struct phy_device *phydev = ndev->phydev;
1815 
1816 	if (!netif_running(ndev))
1817 		return -EINVAL;
1818 
1819 	if (!phydev)
1820 		return -ENODEV;
1821 
1822 	switch (cmd) {
1823 	case SIOCGHWTSTAMP:
1824 		return ravb_hwtstamp_get(ndev, req);
1825 	case SIOCSHWTSTAMP:
1826 		return ravb_hwtstamp_set(ndev, req);
1827 	}
1828 
1829 	return phy_mii_ioctl(phydev, req, cmd);
1830 }
1831 
1832 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1833 {
1834 	if (netif_running(ndev))
1835 		return -EBUSY;
1836 
1837 	ndev->mtu = new_mtu;
1838 	netdev_update_features(ndev);
1839 
1840 	return 0;
1841 }
1842 
1843 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1844 {
1845 	struct ravb_private *priv = netdev_priv(ndev);
1846 	unsigned long flags;
1847 
1848 	spin_lock_irqsave(&priv->lock, flags);
1849 
1850 	/* Disable TX and RX */
1851 	ravb_rcv_snd_disable(ndev);
1852 
1853 	/* Modify RX Checksum setting */
1854 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1855 
1856 	/* Enable TX and RX */
1857 	ravb_rcv_snd_enable(ndev);
1858 
1859 	spin_unlock_irqrestore(&priv->lock, flags);
1860 }
1861 
1862 static int ravb_set_features(struct net_device *ndev,
1863 			     netdev_features_t features)
1864 {
1865 	netdev_features_t changed = ndev->features ^ features;
1866 
1867 	if (changed & NETIF_F_RXCSUM)
1868 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1869 
1870 	ndev->features = features;
1871 
1872 	return 0;
1873 }
1874 
1875 static const struct net_device_ops ravb_netdev_ops = {
1876 	.ndo_open		= ravb_open,
1877 	.ndo_stop		= ravb_close,
1878 	.ndo_start_xmit		= ravb_start_xmit,
1879 	.ndo_select_queue	= ravb_select_queue,
1880 	.ndo_get_stats		= ravb_get_stats,
1881 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1882 	.ndo_tx_timeout		= ravb_tx_timeout,
1883 	.ndo_do_ioctl		= ravb_do_ioctl,
1884 	.ndo_change_mtu		= ravb_change_mtu,
1885 	.ndo_validate_addr	= eth_validate_addr,
1886 	.ndo_set_mac_address	= eth_mac_addr,
1887 	.ndo_set_features	= ravb_set_features,
1888 };
1889 
1890 /* MDIO bus init function */
1891 static int ravb_mdio_init(struct ravb_private *priv)
1892 {
1893 	struct platform_device *pdev = priv->pdev;
1894 	struct device *dev = &pdev->dev;
1895 	int error;
1896 
1897 	/* Bitbang init */
1898 	priv->mdiobb.ops = &bb_ops;
1899 
1900 	/* MII controller setting */
1901 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1902 	if (!priv->mii_bus)
1903 		return -ENOMEM;
1904 
1905 	/* Hook up MII support for ethtool */
1906 	priv->mii_bus->name = "ravb_mii";
1907 	priv->mii_bus->parent = dev;
1908 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1909 		 pdev->name, pdev->id);
1910 
1911 	/* Register MDIO bus */
1912 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1913 	if (error)
1914 		goto out_free_bus;
1915 
1916 	return 0;
1917 
1918 out_free_bus:
1919 	free_mdio_bitbang(priv->mii_bus);
1920 	return error;
1921 }
1922 
1923 /* MDIO bus release function */
1924 static int ravb_mdio_release(struct ravb_private *priv)
1925 {
1926 	/* Unregister mdio bus */
1927 	mdiobus_unregister(priv->mii_bus);
1928 
1929 	/* Free bitbang info */
1930 	free_mdio_bitbang(priv->mii_bus);
1931 
1932 	return 0;
1933 }
1934 
1935 static const struct of_device_id ravb_match_table[] = {
1936 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1937 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1938 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1939 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1940 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1941 	{ }
1942 };
1943 MODULE_DEVICE_TABLE(of, ravb_match_table);
1944 
1945 static int ravb_set_gti(struct net_device *ndev)
1946 {
1947 	struct ravb_private *priv = netdev_priv(ndev);
1948 	struct device *dev = ndev->dev.parent;
1949 	unsigned long rate;
1950 	uint64_t inc;
1951 
1952 	rate = clk_get_rate(priv->clk);
1953 	if (!rate)
1954 		return -EINVAL;
1955 
1956 	inc = 1000000000ULL << 20;
1957 	do_div(inc, rate);
1958 
1959 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1960 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1961 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1962 		return -EINVAL;
1963 	}
1964 
1965 	ravb_write(ndev, inc, GTI);
1966 
1967 	return 0;
1968 }
1969 
1970 static void ravb_set_config_mode(struct net_device *ndev)
1971 {
1972 	struct ravb_private *priv = netdev_priv(ndev);
1973 
1974 	if (priv->chip_id == RCAR_GEN2) {
1975 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1976 		/* Set CSEL value */
1977 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1978 	} else {
1979 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1980 			    CCC_GAC | CCC_CSEL_HPB);
1981 	}
1982 }
1983 
1984 /* Set tx and rx clock internal delay modes */
1985 static void ravb_set_delay_mode(struct net_device *ndev)
1986 {
1987 	struct ravb_private *priv = netdev_priv(ndev);
1988 	int set = 0;
1989 
1990 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1991 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1992 		set |= APSR_DM_RDM;
1993 
1994 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1995 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1996 		set |= APSR_DM_TDM;
1997 
1998 	ravb_modify(ndev, APSR, APSR_DM, set);
1999 }
2000 
2001 static int ravb_probe(struct platform_device *pdev)
2002 {
2003 	struct device_node *np = pdev->dev.of_node;
2004 	struct ravb_private *priv;
2005 	enum ravb_chip_id chip_id;
2006 	struct net_device *ndev;
2007 	int error, irq, q;
2008 	struct resource *res;
2009 	int i;
2010 
2011 	if (!np) {
2012 		dev_err(&pdev->dev,
2013 			"this driver is required to be instantiated from device tree\n");
2014 		return -EINVAL;
2015 	}
2016 
2017 	/* Get base address */
2018 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2019 	if (!res) {
2020 		dev_err(&pdev->dev, "invalid resource\n");
2021 		return -EINVAL;
2022 	}
2023 
2024 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2025 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2026 	if (!ndev)
2027 		return -ENOMEM;
2028 
2029 	ndev->features = NETIF_F_RXCSUM;
2030 	ndev->hw_features = NETIF_F_RXCSUM;
2031 
2032 	pm_runtime_enable(&pdev->dev);
2033 	pm_runtime_get_sync(&pdev->dev);
2034 
2035 	/* The Ether-specific entries in the device structure. */
2036 	ndev->base_addr = res->start;
2037 
2038 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2039 
2040 	if (chip_id == RCAR_GEN3)
2041 		irq = platform_get_irq_byname(pdev, "ch22");
2042 	else
2043 		irq = platform_get_irq(pdev, 0);
2044 	if (irq < 0) {
2045 		error = irq;
2046 		goto out_release;
2047 	}
2048 	ndev->irq = irq;
2049 
2050 	SET_NETDEV_DEV(ndev, &pdev->dev);
2051 
2052 	priv = netdev_priv(ndev);
2053 	priv->ndev = ndev;
2054 	priv->pdev = pdev;
2055 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2056 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2057 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2058 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2059 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2060 	if (IS_ERR(priv->addr)) {
2061 		error = PTR_ERR(priv->addr);
2062 		goto out_release;
2063 	}
2064 
2065 	spin_lock_init(&priv->lock);
2066 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2067 
2068 	priv->phy_interface = of_get_phy_mode(np);
2069 
2070 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2071 	priv->avb_link_active_low =
2072 		of_property_read_bool(np, "renesas,ether-link-active-low");
2073 
2074 	if (chip_id == RCAR_GEN3) {
2075 		irq = platform_get_irq_byname(pdev, "ch24");
2076 		if (irq < 0) {
2077 			error = irq;
2078 			goto out_release;
2079 		}
2080 		priv->emac_irq = irq;
2081 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2082 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2083 			if (irq < 0) {
2084 				error = irq;
2085 				goto out_release;
2086 			}
2087 			priv->rx_irqs[i] = irq;
2088 		}
2089 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2090 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2091 			if (irq < 0) {
2092 				error = irq;
2093 				goto out_release;
2094 			}
2095 			priv->tx_irqs[i] = irq;
2096 		}
2097 	}
2098 
2099 	priv->chip_id = chip_id;
2100 
2101 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2102 	if (IS_ERR(priv->clk)) {
2103 		error = PTR_ERR(priv->clk);
2104 		goto out_release;
2105 	}
2106 
2107 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2108 	ndev->min_mtu = ETH_MIN_MTU;
2109 
2110 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2111 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2112 
2113 	/* Set function */
2114 	ndev->netdev_ops = &ravb_netdev_ops;
2115 	ndev->ethtool_ops = &ravb_ethtool_ops;
2116 
2117 	/* Set AVB config mode */
2118 	ravb_set_config_mode(ndev);
2119 
2120 	/* Set GTI value */
2121 	error = ravb_set_gti(ndev);
2122 	if (error)
2123 		goto out_release;
2124 
2125 	/* Request GTI loading */
2126 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2127 
2128 	if (priv->chip_id != RCAR_GEN2)
2129 		ravb_set_delay_mode(ndev);
2130 
2131 	/* Allocate descriptor base address table */
2132 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2133 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2134 					    &priv->desc_bat_dma, GFP_KERNEL);
2135 	if (!priv->desc_bat) {
2136 		dev_err(&pdev->dev,
2137 			"Cannot allocate desc base address table (size %d bytes)\n",
2138 			priv->desc_bat_size);
2139 		error = -ENOMEM;
2140 		goto out_release;
2141 	}
2142 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2143 		priv->desc_bat[q].die_dt = DT_EOS;
2144 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2145 
2146 	/* Initialise HW timestamp list */
2147 	INIT_LIST_HEAD(&priv->ts_skb_list);
2148 
2149 	/* Initialise PTP Clock driver */
2150 	if (chip_id != RCAR_GEN2)
2151 		ravb_ptp_init(ndev, pdev);
2152 
2153 	/* Debug message level */
2154 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2155 
2156 	/* Read and set MAC address */
2157 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2158 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2159 		dev_warn(&pdev->dev,
2160 			 "no valid MAC address supplied, using a random one\n");
2161 		eth_hw_addr_random(ndev);
2162 	}
2163 
2164 	/* MDIO bus init */
2165 	error = ravb_mdio_init(priv);
2166 	if (error) {
2167 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2168 		goto out_dma_free;
2169 	}
2170 
2171 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2172 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2173 
2174 	/* Network device register */
2175 	error = register_netdev(ndev);
2176 	if (error)
2177 		goto out_napi_del;
2178 
2179 	device_set_wakeup_capable(&pdev->dev, 1);
2180 
2181 	/* Print device information */
2182 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2183 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2184 
2185 	platform_set_drvdata(pdev, ndev);
2186 
2187 	return 0;
2188 
2189 out_napi_del:
2190 	netif_napi_del(&priv->napi[RAVB_NC]);
2191 	netif_napi_del(&priv->napi[RAVB_BE]);
2192 	ravb_mdio_release(priv);
2193 out_dma_free:
2194 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2195 			  priv->desc_bat_dma);
2196 
2197 	/* Stop PTP Clock driver */
2198 	if (chip_id != RCAR_GEN2)
2199 		ravb_ptp_stop(ndev);
2200 out_release:
2201 	free_netdev(ndev);
2202 
2203 	pm_runtime_put(&pdev->dev);
2204 	pm_runtime_disable(&pdev->dev);
2205 	return error;
2206 }
2207 
2208 static int ravb_remove(struct platform_device *pdev)
2209 {
2210 	struct net_device *ndev = platform_get_drvdata(pdev);
2211 	struct ravb_private *priv = netdev_priv(ndev);
2212 
2213 	/* Stop PTP Clock driver */
2214 	if (priv->chip_id != RCAR_GEN2)
2215 		ravb_ptp_stop(ndev);
2216 
2217 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2218 			  priv->desc_bat_dma);
2219 	/* Set reset mode */
2220 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2221 	pm_runtime_put_sync(&pdev->dev);
2222 	unregister_netdev(ndev);
2223 	netif_napi_del(&priv->napi[RAVB_NC]);
2224 	netif_napi_del(&priv->napi[RAVB_BE]);
2225 	ravb_mdio_release(priv);
2226 	pm_runtime_disable(&pdev->dev);
2227 	free_netdev(ndev);
2228 	platform_set_drvdata(pdev, NULL);
2229 
2230 	return 0;
2231 }
2232 
2233 static int ravb_wol_setup(struct net_device *ndev)
2234 {
2235 	struct ravb_private *priv = netdev_priv(ndev);
2236 
2237 	/* Disable interrupts by clearing the interrupt masks. */
2238 	ravb_write(ndev, 0, RIC0);
2239 	ravb_write(ndev, 0, RIC2);
2240 	ravb_write(ndev, 0, TIC);
2241 
2242 	/* Only allow ECI interrupts */
2243 	synchronize_irq(priv->emac_irq);
2244 	napi_disable(&priv->napi[RAVB_NC]);
2245 	napi_disable(&priv->napi[RAVB_BE]);
2246 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2247 
2248 	/* Enable MagicPacket */
2249 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2250 
2251 	return enable_irq_wake(priv->emac_irq);
2252 }
2253 
2254 static int ravb_wol_restore(struct net_device *ndev)
2255 {
2256 	struct ravb_private *priv = netdev_priv(ndev);
2257 	int ret;
2258 
2259 	napi_enable(&priv->napi[RAVB_NC]);
2260 	napi_enable(&priv->napi[RAVB_BE]);
2261 
2262 	/* Disable MagicPacket */
2263 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2264 
2265 	ret = ravb_close(ndev);
2266 	if (ret < 0)
2267 		return ret;
2268 
2269 	return disable_irq_wake(priv->emac_irq);
2270 }
2271 
2272 static int __maybe_unused ravb_suspend(struct device *dev)
2273 {
2274 	struct net_device *ndev = dev_get_drvdata(dev);
2275 	struct ravb_private *priv = netdev_priv(ndev);
2276 	int ret;
2277 
2278 	if (!netif_running(ndev))
2279 		return 0;
2280 
2281 	netif_device_detach(ndev);
2282 
2283 	if (priv->wol_enabled)
2284 		ret = ravb_wol_setup(ndev);
2285 	else
2286 		ret = ravb_close(ndev);
2287 
2288 	return ret;
2289 }
2290 
2291 static int __maybe_unused ravb_resume(struct device *dev)
2292 {
2293 	struct net_device *ndev = dev_get_drvdata(dev);
2294 	struct ravb_private *priv = netdev_priv(ndev);
2295 	int ret = 0;
2296 
2297 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2298 	if (priv->wol_enabled)
2299 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2300 
2301 	/* All register have been reset to default values.
2302 	 * Restore all registers which where setup at probe time and
2303 	 * reopen device if it was running before system suspended.
2304 	 */
2305 
2306 	/* Set AVB config mode */
2307 	ravb_set_config_mode(ndev);
2308 
2309 	/* Set GTI value */
2310 	ret = ravb_set_gti(ndev);
2311 	if (ret)
2312 		return ret;
2313 
2314 	/* Request GTI loading */
2315 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2316 
2317 	if (priv->chip_id != RCAR_GEN2)
2318 		ravb_set_delay_mode(ndev);
2319 
2320 	/* Restore descriptor base address table */
2321 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2322 
2323 	if (netif_running(ndev)) {
2324 		if (priv->wol_enabled) {
2325 			ret = ravb_wol_restore(ndev);
2326 			if (ret)
2327 				return ret;
2328 		}
2329 		ret = ravb_open(ndev);
2330 		if (ret < 0)
2331 			return ret;
2332 		netif_device_attach(ndev);
2333 	}
2334 
2335 	return ret;
2336 }
2337 
2338 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2339 {
2340 	/* Runtime PM callback shared between ->runtime_suspend()
2341 	 * and ->runtime_resume(). Simply returns success.
2342 	 *
2343 	 * This driver re-initializes all registers after
2344 	 * pm_runtime_get_sync() anyway so there is no need
2345 	 * to save and restore registers here.
2346 	 */
2347 	return 0;
2348 }
2349 
2350 static const struct dev_pm_ops ravb_dev_pm_ops = {
2351 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2352 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2353 };
2354 
2355 static struct platform_driver ravb_driver = {
2356 	.probe		= ravb_probe,
2357 	.remove		= ravb_remove,
2358 	.driver = {
2359 		.name	= "ravb",
2360 		.pm	= &ravb_dev_pm_ops,
2361 		.of_match_table = ravb_match_table,
2362 	},
2363 };
2364 
2365 module_platform_driver(ravb_driver);
2366 
2367 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2368 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2369 MODULE_LICENSE("GPL v2");
2370