1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (!IS_ERR(mac)) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static const struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	int num_tx_desc = priv->num_tx_desc;
179 	struct ravb_tx_desc *desc;
180 	int free_num = 0;
181 	int entry;
182 	u32 size;
183 
184 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 		bool txed;
186 
187 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 					     num_tx_desc);
189 		desc = &priv->tx_ring[q][entry];
190 		txed = desc->die_dt == DT_FEMPTY;
191 		if (free_txed_only && !txed)
192 			break;
193 		/* Descriptor type must be checked before all other reads */
194 		dma_rmb();
195 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 		/* Free the original skb. */
197 		if (priv->tx_skb[q][entry / num_tx_desc]) {
198 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 					 size, DMA_TO_DEVICE);
200 			/* Last packet descriptor? */
201 			if (entry % num_tx_desc == num_tx_desc - 1) {
202 				entry /= num_tx_desc;
203 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 				priv->tx_skb[q][entry] = NULL;
205 				if (txed)
206 					stats->tx_packets++;
207 			}
208 			free_num++;
209 		}
210 		if (txed)
211 			stats->tx_bytes += size;
212 		desc->die_dt = DT_EEMPTY;
213 	}
214 	return free_num;
215 }
216 
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 	struct ravb_private *priv = netdev_priv(ndev);
221 	int num_tx_desc = priv->num_tx_desc;
222 	int ring_size;
223 	int i;
224 
225 	if (priv->rx_ring[q]) {
226 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228 
229 			if (!dma_mapping_error(ndev->dev.parent,
230 					       le32_to_cpu(desc->dptr)))
231 				dma_unmap_single(ndev->dev.parent,
232 						 le32_to_cpu(desc->dptr),
233 						 RX_BUF_SZ,
234 						 DMA_FROM_DEVICE);
235 		}
236 		ring_size = sizeof(struct ravb_ex_rx_desc) *
237 			    (priv->num_rx_ring[q] + 1);
238 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 				  priv->rx_desc_dma[q]);
240 		priv->rx_ring[q] = NULL;
241 	}
242 
243 	if (priv->tx_ring[q]) {
244 		ravb_tx_free(ndev, q, false);
245 
246 		ring_size = sizeof(struct ravb_tx_desc) *
247 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
248 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 				  priv->tx_desc_dma[q]);
250 		priv->tx_ring[q] = NULL;
251 	}
252 
253 	/* Free RX skb ringbuffer */
254 	if (priv->rx_skb[q]) {
255 		for (i = 0; i < priv->num_rx_ring[q]; i++)
256 			dev_kfree_skb(priv->rx_skb[q][i]);
257 	}
258 	kfree(priv->rx_skb[q]);
259 	priv->rx_skb[q] = NULL;
260 
261 	/* Free aligned TX buffers */
262 	kfree(priv->tx_align[q]);
263 	priv->tx_align[q] = NULL;
264 
265 	/* Free TX skb ringbuffer.
266 	 * SKBs are freed by ravb_tx_free() call above.
267 	 */
268 	kfree(priv->tx_skb[q]);
269 	priv->tx_skb[q] = NULL;
270 }
271 
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 	struct ravb_private *priv = netdev_priv(ndev);
276 	int num_tx_desc = priv->num_tx_desc;
277 	struct ravb_ex_rx_desc *rx_desc;
278 	struct ravb_tx_desc *tx_desc;
279 	struct ravb_desc *desc;
280 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 			   num_tx_desc;
283 	dma_addr_t dma_addr;
284 	int i;
285 
286 	priv->cur_rx[q] = 0;
287 	priv->cur_tx[q] = 0;
288 	priv->dirty_rx[q] = 0;
289 	priv->dirty_tx[q] = 0;
290 
291 	memset(priv->rx_ring[q], 0, rx_ring_size);
292 	/* Build RX ring buffer */
293 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 		/* RX descriptor */
295 		rx_desc = &priv->rx_ring[q][i];
296 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
297 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 					  RX_BUF_SZ,
299 					  DMA_FROM_DEVICE);
300 		/* We just set the data size to 0 for a failed mapping which
301 		 * should prevent DMA from happening...
302 		 */
303 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 			rx_desc->ds_cc = cpu_to_le16(0);
305 		rx_desc->dptr = cpu_to_le32(dma_addr);
306 		rx_desc->die_dt = DT_FEMPTY;
307 	}
308 	rx_desc = &priv->rx_ring[q][i];
309 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 	rx_desc->die_dt = DT_LINKFIX; /* type */
311 
312 	memset(priv->tx_ring[q], 0, tx_ring_size);
313 	/* Build TX ring buffer */
314 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 	     i++, tx_desc++) {
316 		tx_desc->die_dt = DT_EEMPTY;
317 		if (num_tx_desc > 1) {
318 			tx_desc++;
319 			tx_desc->die_dt = DT_EEMPTY;
320 		}
321 	}
322 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 	tx_desc->die_dt = DT_LINKFIX; /* type */
324 
325 	/* RX descriptor base address for best effort */
326 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329 
330 	/* TX descriptor base address for best effort */
331 	desc = &priv->desc_bat[q];
332 	desc->die_dt = DT_LINKFIX; /* type */
333 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335 
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 	struct ravb_private *priv = netdev_priv(ndev);
340 	int num_tx_desc = priv->num_tx_desc;
341 	struct sk_buff *skb;
342 	int ring_size;
343 	int i;
344 
345 	/* Allocate RX and TX skb rings */
346 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
347 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
348 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
349 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
350 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
351 		goto error;
352 
353 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
354 		skb = netdev_alloc_skb(ndev, RX_BUF_SZ + RAVB_ALIGN - 1);
355 		if (!skb)
356 			goto error;
357 		ravb_set_buffer_align(skb);
358 		priv->rx_skb[q][i] = skb;
359 	}
360 
361 	if (num_tx_desc > 1) {
362 		/* Allocate rings for the aligned buffers */
363 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
364 					    DPTR_ALIGN - 1, GFP_KERNEL);
365 		if (!priv->tx_align[q])
366 			goto error;
367 	}
368 
369 	/* Allocate all RX descriptors. */
370 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
371 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
372 					      &priv->rx_desc_dma[q],
373 					      GFP_KERNEL);
374 	if (!priv->rx_ring[q])
375 		goto error;
376 
377 	priv->dirty_rx[q] = 0;
378 
379 	/* Allocate all TX descriptors. */
380 	ring_size = sizeof(struct ravb_tx_desc) *
381 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
382 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
383 					      &priv->tx_desc_dma[q],
384 					      GFP_KERNEL);
385 	if (!priv->tx_ring[q])
386 		goto error;
387 
388 	return 0;
389 
390 error:
391 	ravb_ring_free(ndev, q);
392 
393 	return -ENOMEM;
394 }
395 
396 /* E-MAC init function */
397 static void ravb_emac_init(struct net_device *ndev)
398 {
399 	/* Receive frame limit set register */
400 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
401 
402 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
403 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
404 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
405 		   ECMR_TE | ECMR_RE, ECMR);
406 
407 	ravb_set_rate(ndev);
408 
409 	/* Set MAC address */
410 	ravb_write(ndev,
411 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
412 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
413 	ravb_write(ndev,
414 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
415 
416 	/* E-MAC status register clear */
417 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
418 
419 	/* E-MAC interrupt enable register */
420 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
421 }
422 
423 /* Device init function for Ethernet AVB */
424 static int ravb_dmac_init(struct net_device *ndev)
425 {
426 	struct ravb_private *priv = netdev_priv(ndev);
427 	int error;
428 
429 	/* Set CONFIG mode */
430 	error = ravb_config(ndev);
431 	if (error)
432 		return error;
433 
434 	error = ravb_ring_init(ndev, RAVB_BE);
435 	if (error)
436 		return error;
437 	error = ravb_ring_init(ndev, RAVB_NC);
438 	if (error) {
439 		ravb_ring_free(ndev, RAVB_BE);
440 		return error;
441 	}
442 
443 	/* Descriptor format */
444 	ravb_ring_format(ndev, RAVB_BE);
445 	ravb_ring_format(ndev, RAVB_NC);
446 
447 	/* Set AVB RX */
448 	ravb_write(ndev,
449 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
450 
451 	/* Set FIFO size */
452 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
453 
454 	/* Timestamp enable */
455 	ravb_write(ndev, TCCR_TFEN, TCCR);
456 
457 	/* Interrupt init: */
458 	if (priv->chip_id == RCAR_GEN3) {
459 		/* Clear DIL.DPLx */
460 		ravb_write(ndev, 0, DIL);
461 		/* Set queue specific interrupt */
462 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
463 	}
464 	/* Frame receive */
465 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
466 	/* Disable FIFO full warning */
467 	ravb_write(ndev, 0, RIC1);
468 	/* Receive FIFO full error, descriptor empty */
469 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
470 	/* Frame transmitted, timestamp FIFO updated */
471 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
472 
473 	/* Setting the control will start the AVB-DMAC process. */
474 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
475 
476 	return 0;
477 }
478 
479 static void ravb_get_tx_tstamp(struct net_device *ndev)
480 {
481 	struct ravb_private *priv = netdev_priv(ndev);
482 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
483 	struct skb_shared_hwtstamps shhwtstamps;
484 	struct sk_buff *skb;
485 	struct timespec64 ts;
486 	u16 tag, tfa_tag;
487 	int count;
488 	u32 tfa2;
489 
490 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
491 	while (count--) {
492 		tfa2 = ravb_read(ndev, TFA2);
493 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
494 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
495 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
496 			    ravb_read(ndev, TFA1);
497 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
498 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
499 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
500 					 list) {
501 			skb = ts_skb->skb;
502 			tag = ts_skb->tag;
503 			list_del(&ts_skb->list);
504 			kfree(ts_skb);
505 			if (tag == tfa_tag) {
506 				skb_tstamp_tx(skb, &shhwtstamps);
507 				dev_consume_skb_any(skb);
508 				break;
509 			} else {
510 				dev_kfree_skb_any(skb);
511 			}
512 		}
513 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
514 	}
515 }
516 
517 static void ravb_rx_csum(struct sk_buff *skb)
518 {
519 	u8 *hw_csum;
520 
521 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
522 	 * appended to packet data
523 	 */
524 	if (unlikely(skb->len < sizeof(__sum16)))
525 		return;
526 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
527 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
528 	skb->ip_summed = CHECKSUM_COMPLETE;
529 	skb_trim(skb, skb->len - sizeof(__sum16));
530 }
531 
532 /* Packet receive function for Ethernet AVB */
533 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
534 {
535 	struct ravb_private *priv = netdev_priv(ndev);
536 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
537 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
538 			priv->cur_rx[q];
539 	struct net_device_stats *stats = &priv->stats[q];
540 	struct ravb_ex_rx_desc *desc;
541 	struct sk_buff *skb;
542 	dma_addr_t dma_addr;
543 	struct timespec64 ts;
544 	u8  desc_status;
545 	u16 pkt_len;
546 	int limit;
547 
548 	boguscnt = min(boguscnt, *quota);
549 	limit = boguscnt;
550 	desc = &priv->rx_ring[q][entry];
551 	while (desc->die_dt != DT_FEMPTY) {
552 		/* Descriptor type must be checked before all other reads */
553 		dma_rmb();
554 		desc_status = desc->msc;
555 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
556 
557 		if (--boguscnt < 0)
558 			break;
559 
560 		/* We use 0-byte descriptors to mark the DMA mapping errors */
561 		if (!pkt_len)
562 			continue;
563 
564 		if (desc_status & MSC_MC)
565 			stats->multicast++;
566 
567 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
568 				   MSC_CEEF)) {
569 			stats->rx_errors++;
570 			if (desc_status & MSC_CRC)
571 				stats->rx_crc_errors++;
572 			if (desc_status & MSC_RFE)
573 				stats->rx_frame_errors++;
574 			if (desc_status & (MSC_RTLF | MSC_RTSF))
575 				stats->rx_length_errors++;
576 			if (desc_status & MSC_CEEF)
577 				stats->rx_missed_errors++;
578 		} else {
579 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
580 
581 			skb = priv->rx_skb[q][entry];
582 			priv->rx_skb[q][entry] = NULL;
583 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
584 					 RX_BUF_SZ,
585 					 DMA_FROM_DEVICE);
586 			get_ts &= (q == RAVB_NC) ?
587 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
588 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
589 			if (get_ts) {
590 				struct skb_shared_hwtstamps *shhwtstamps;
591 
592 				shhwtstamps = skb_hwtstamps(skb);
593 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
594 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
595 					     32) | le32_to_cpu(desc->ts_sl);
596 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
597 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
598 			}
599 
600 			skb_put(skb, pkt_len);
601 			skb->protocol = eth_type_trans(skb, ndev);
602 			if (ndev->features & NETIF_F_RXCSUM)
603 				ravb_rx_csum(skb);
604 			napi_gro_receive(&priv->napi[q], skb);
605 			stats->rx_packets++;
606 			stats->rx_bytes += pkt_len;
607 		}
608 
609 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
610 		desc = &priv->rx_ring[q][entry];
611 	}
612 
613 	/* Refill the RX ring buffers. */
614 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
615 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
616 		desc = &priv->rx_ring[q][entry];
617 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
618 
619 		if (!priv->rx_skb[q][entry]) {
620 			skb = netdev_alloc_skb(ndev,
621 					       RX_BUF_SZ +
622 					       RAVB_ALIGN - 1);
623 			if (!skb)
624 				break;	/* Better luck next round. */
625 			ravb_set_buffer_align(skb);
626 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
627 						  le16_to_cpu(desc->ds_cc),
628 						  DMA_FROM_DEVICE);
629 			skb_checksum_none_assert(skb);
630 			/* We just set the data size to 0 for a failed mapping
631 			 * which should prevent DMA  from happening...
632 			 */
633 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
634 				desc->ds_cc = cpu_to_le16(0);
635 			desc->dptr = cpu_to_le32(dma_addr);
636 			priv->rx_skb[q][entry] = skb;
637 		}
638 		/* Descriptor type must be set after all the above writes */
639 		dma_wmb();
640 		desc->die_dt = DT_FEMPTY;
641 	}
642 
643 	*quota -= limit - (++boguscnt);
644 
645 	return boguscnt <= 0;
646 }
647 
648 static void ravb_rcv_snd_disable(struct net_device *ndev)
649 {
650 	/* Disable TX and RX */
651 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
652 }
653 
654 static void ravb_rcv_snd_enable(struct net_device *ndev)
655 {
656 	/* Enable TX and RX */
657 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
658 }
659 
660 /* function for waiting dma process finished */
661 static int ravb_stop_dma(struct net_device *ndev)
662 {
663 	int error;
664 
665 	/* Wait for stopping the hardware TX process */
666 	error = ravb_wait(ndev, TCCR,
667 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
668 	if (error)
669 		return error;
670 
671 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
672 			  0);
673 	if (error)
674 		return error;
675 
676 	/* Stop the E-MAC's RX/TX processes. */
677 	ravb_rcv_snd_disable(ndev);
678 
679 	/* Wait for stopping the RX DMA process */
680 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
681 	if (error)
682 		return error;
683 
684 	/* Stop AVB-DMAC process */
685 	return ravb_config(ndev);
686 }
687 
688 /* E-MAC interrupt handler */
689 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
690 {
691 	struct ravb_private *priv = netdev_priv(ndev);
692 	u32 ecsr, psr;
693 
694 	ecsr = ravb_read(ndev, ECSR);
695 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
696 
697 	if (ecsr & ECSR_MPD)
698 		pm_wakeup_event(&priv->pdev->dev, 0);
699 	if (ecsr & ECSR_ICD)
700 		ndev->stats.tx_carrier_errors++;
701 	if (ecsr & ECSR_LCHNG) {
702 		/* Link changed */
703 		if (priv->no_avb_link)
704 			return;
705 		psr = ravb_read(ndev, PSR);
706 		if (priv->avb_link_active_low)
707 			psr ^= PSR_LMON;
708 		if (!(psr & PSR_LMON)) {
709 			/* DIsable RX and TX */
710 			ravb_rcv_snd_disable(ndev);
711 		} else {
712 			/* Enable RX and TX */
713 			ravb_rcv_snd_enable(ndev);
714 		}
715 	}
716 }
717 
718 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
719 {
720 	struct net_device *ndev = dev_id;
721 	struct ravb_private *priv = netdev_priv(ndev);
722 
723 	spin_lock(&priv->lock);
724 	ravb_emac_interrupt_unlocked(ndev);
725 	spin_unlock(&priv->lock);
726 	return IRQ_HANDLED;
727 }
728 
729 /* Error interrupt handler */
730 static void ravb_error_interrupt(struct net_device *ndev)
731 {
732 	struct ravb_private *priv = netdev_priv(ndev);
733 	u32 eis, ris2;
734 
735 	eis = ravb_read(ndev, EIS);
736 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
737 	if (eis & EIS_QFS) {
738 		ris2 = ravb_read(ndev, RIS2);
739 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
740 			   RIS2);
741 
742 		/* Receive Descriptor Empty int */
743 		if (ris2 & RIS2_QFF0)
744 			priv->stats[RAVB_BE].rx_over_errors++;
745 
746 		    /* Receive Descriptor Empty int */
747 		if (ris2 & RIS2_QFF1)
748 			priv->stats[RAVB_NC].rx_over_errors++;
749 
750 		/* Receive FIFO Overflow int */
751 		if (ris2 & RIS2_RFFF)
752 			priv->rx_fifo_errors++;
753 	}
754 }
755 
756 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
757 {
758 	struct ravb_private *priv = netdev_priv(ndev);
759 	u32 ris0 = ravb_read(ndev, RIS0);
760 	u32 ric0 = ravb_read(ndev, RIC0);
761 	u32 tis  = ravb_read(ndev, TIS);
762 	u32 tic  = ravb_read(ndev, TIC);
763 
764 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
765 		if (napi_schedule_prep(&priv->napi[q])) {
766 			/* Mask RX and TX interrupts */
767 			if (priv->chip_id == RCAR_GEN2) {
768 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
769 				ravb_write(ndev, tic & ~BIT(q), TIC);
770 			} else {
771 				ravb_write(ndev, BIT(q), RID0);
772 				ravb_write(ndev, BIT(q), TID);
773 			}
774 			__napi_schedule(&priv->napi[q]);
775 		} else {
776 			netdev_warn(ndev,
777 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
778 				    ris0, ric0);
779 			netdev_warn(ndev,
780 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
781 				    tis, tic);
782 		}
783 		return true;
784 	}
785 	return false;
786 }
787 
788 static bool ravb_timestamp_interrupt(struct net_device *ndev)
789 {
790 	u32 tis = ravb_read(ndev, TIS);
791 
792 	if (tis & TIS_TFUF) {
793 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
794 		ravb_get_tx_tstamp(ndev);
795 		return true;
796 	}
797 	return false;
798 }
799 
800 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
801 {
802 	struct net_device *ndev = dev_id;
803 	struct ravb_private *priv = netdev_priv(ndev);
804 	irqreturn_t result = IRQ_NONE;
805 	u32 iss;
806 
807 	spin_lock(&priv->lock);
808 	/* Get interrupt status */
809 	iss = ravb_read(ndev, ISS);
810 
811 	/* Received and transmitted interrupts */
812 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
813 		int q;
814 
815 		/* Timestamp updated */
816 		if (ravb_timestamp_interrupt(ndev))
817 			result = IRQ_HANDLED;
818 
819 		/* Network control and best effort queue RX/TX */
820 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
821 			if (ravb_queue_interrupt(ndev, q))
822 				result = IRQ_HANDLED;
823 		}
824 	}
825 
826 	/* E-MAC status summary */
827 	if (iss & ISS_MS) {
828 		ravb_emac_interrupt_unlocked(ndev);
829 		result = IRQ_HANDLED;
830 	}
831 
832 	/* Error status summary */
833 	if (iss & ISS_ES) {
834 		ravb_error_interrupt(ndev);
835 		result = IRQ_HANDLED;
836 	}
837 
838 	/* gPTP interrupt status summary */
839 	if (iss & ISS_CGIS) {
840 		ravb_ptp_interrupt(ndev);
841 		result = IRQ_HANDLED;
842 	}
843 
844 	spin_unlock(&priv->lock);
845 	return result;
846 }
847 
848 /* Timestamp/Error/gPTP interrupt handler */
849 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
850 {
851 	struct net_device *ndev = dev_id;
852 	struct ravb_private *priv = netdev_priv(ndev);
853 	irqreturn_t result = IRQ_NONE;
854 	u32 iss;
855 
856 	spin_lock(&priv->lock);
857 	/* Get interrupt status */
858 	iss = ravb_read(ndev, ISS);
859 
860 	/* Timestamp updated */
861 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
862 		result = IRQ_HANDLED;
863 
864 	/* Error status summary */
865 	if (iss & ISS_ES) {
866 		ravb_error_interrupt(ndev);
867 		result = IRQ_HANDLED;
868 	}
869 
870 	/* gPTP interrupt status summary */
871 	if (iss & ISS_CGIS) {
872 		ravb_ptp_interrupt(ndev);
873 		result = IRQ_HANDLED;
874 	}
875 
876 	spin_unlock(&priv->lock);
877 	return result;
878 }
879 
880 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
881 {
882 	struct net_device *ndev = dev_id;
883 	struct ravb_private *priv = netdev_priv(ndev);
884 	irqreturn_t result = IRQ_NONE;
885 
886 	spin_lock(&priv->lock);
887 
888 	/* Network control/Best effort queue RX/TX */
889 	if (ravb_queue_interrupt(ndev, q))
890 		result = IRQ_HANDLED;
891 
892 	spin_unlock(&priv->lock);
893 	return result;
894 }
895 
896 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
897 {
898 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
899 }
900 
901 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
902 {
903 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
904 }
905 
906 static int ravb_poll(struct napi_struct *napi, int budget)
907 {
908 	struct net_device *ndev = napi->dev;
909 	struct ravb_private *priv = netdev_priv(ndev);
910 	unsigned long flags;
911 	int q = napi - priv->napi;
912 	int mask = BIT(q);
913 	int quota = budget;
914 
915 	/* Processing RX Descriptor Ring */
916 	/* Clear RX interrupt */
917 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
918 	if (ravb_rx(ndev, &quota, q))
919 		goto out;
920 
921 	/* Processing RX Descriptor Ring */
922 	spin_lock_irqsave(&priv->lock, flags);
923 	/* Clear TX interrupt */
924 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
925 	ravb_tx_free(ndev, q, true);
926 	netif_wake_subqueue(ndev, q);
927 	spin_unlock_irqrestore(&priv->lock, flags);
928 
929 	napi_complete(napi);
930 
931 	/* Re-enable RX/TX interrupts */
932 	spin_lock_irqsave(&priv->lock, flags);
933 	if (priv->chip_id == RCAR_GEN2) {
934 		ravb_modify(ndev, RIC0, mask, mask);
935 		ravb_modify(ndev, TIC,  mask, mask);
936 	} else {
937 		ravb_write(ndev, mask, RIE0);
938 		ravb_write(ndev, mask, TIE);
939 	}
940 	spin_unlock_irqrestore(&priv->lock, flags);
941 
942 	/* Receive error message handling */
943 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
944 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
945 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
946 		ndev->stats.rx_over_errors = priv->rx_over_errors;
947 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
948 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
949 out:
950 	return budget - quota;
951 }
952 
953 /* PHY state control function */
954 static void ravb_adjust_link(struct net_device *ndev)
955 {
956 	struct ravb_private *priv = netdev_priv(ndev);
957 	struct phy_device *phydev = ndev->phydev;
958 	bool new_state = false;
959 	unsigned long flags;
960 
961 	spin_lock_irqsave(&priv->lock, flags);
962 
963 	/* Disable TX and RX right over here, if E-MAC change is ignored */
964 	if (priv->no_avb_link)
965 		ravb_rcv_snd_disable(ndev);
966 
967 	if (phydev->link) {
968 		if (phydev->speed != priv->speed) {
969 			new_state = true;
970 			priv->speed = phydev->speed;
971 			ravb_set_rate(ndev);
972 		}
973 		if (!priv->link) {
974 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
975 			new_state = true;
976 			priv->link = phydev->link;
977 		}
978 	} else if (priv->link) {
979 		new_state = true;
980 		priv->link = 0;
981 		priv->speed = 0;
982 	}
983 
984 	/* Enable TX and RX right over here, if E-MAC change is ignored */
985 	if (priv->no_avb_link && phydev->link)
986 		ravb_rcv_snd_enable(ndev);
987 
988 	spin_unlock_irqrestore(&priv->lock, flags);
989 
990 	if (new_state && netif_msg_link(priv))
991 		phy_print_status(phydev);
992 }
993 
994 static const struct soc_device_attribute r8a7795es10[] = {
995 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
996 	{ /* sentinel */ }
997 };
998 
999 /* PHY init function */
1000 static int ravb_phy_init(struct net_device *ndev)
1001 {
1002 	struct device_node *np = ndev->dev.parent->of_node;
1003 	struct ravb_private *priv = netdev_priv(ndev);
1004 	struct phy_device *phydev;
1005 	struct device_node *pn;
1006 	phy_interface_t iface;
1007 	int err;
1008 
1009 	priv->link = 0;
1010 	priv->speed = 0;
1011 
1012 	/* Try connecting to PHY */
1013 	pn = of_parse_phandle(np, "phy-handle", 0);
1014 	if (!pn) {
1015 		/* In the case of a fixed PHY, the DT node associated
1016 		 * to the PHY is the Ethernet MAC DT node.
1017 		 */
1018 		if (of_phy_is_fixed_link(np)) {
1019 			err = of_phy_register_fixed_link(np);
1020 			if (err)
1021 				return err;
1022 		}
1023 		pn = of_node_get(np);
1024 	}
1025 
1026 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1027 				     : priv->phy_interface;
1028 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1029 	of_node_put(pn);
1030 	if (!phydev) {
1031 		netdev_err(ndev, "failed to connect PHY\n");
1032 		err = -ENOENT;
1033 		goto err_deregister_fixed_link;
1034 	}
1035 
1036 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1037 	 * at this time.
1038 	 */
1039 	if (soc_device_match(r8a7795es10)) {
1040 		err = phy_set_max_speed(phydev, SPEED_100);
1041 		if (err) {
1042 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1043 			goto err_phy_disconnect;
1044 		}
1045 
1046 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1047 	}
1048 
1049 	/* 10BASE, Pause and Asym Pause is not supported */
1050 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1051 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1052 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1053 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1054 
1055 	/* Half Duplex is not supported */
1056 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1057 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1058 
1059 	phy_attached_info(phydev);
1060 
1061 	return 0;
1062 
1063 err_phy_disconnect:
1064 	phy_disconnect(phydev);
1065 err_deregister_fixed_link:
1066 	if (of_phy_is_fixed_link(np))
1067 		of_phy_deregister_fixed_link(np);
1068 
1069 	return err;
1070 }
1071 
1072 /* PHY control start function */
1073 static int ravb_phy_start(struct net_device *ndev)
1074 {
1075 	int error;
1076 
1077 	error = ravb_phy_init(ndev);
1078 	if (error)
1079 		return error;
1080 
1081 	phy_start(ndev->phydev);
1082 
1083 	return 0;
1084 }
1085 
1086 static u32 ravb_get_msglevel(struct net_device *ndev)
1087 {
1088 	struct ravb_private *priv = netdev_priv(ndev);
1089 
1090 	return priv->msg_enable;
1091 }
1092 
1093 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1094 {
1095 	struct ravb_private *priv = netdev_priv(ndev);
1096 
1097 	priv->msg_enable = value;
1098 }
1099 
1100 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1101 	"rx_queue_0_current",
1102 	"tx_queue_0_current",
1103 	"rx_queue_0_dirty",
1104 	"tx_queue_0_dirty",
1105 	"rx_queue_0_packets",
1106 	"tx_queue_0_packets",
1107 	"rx_queue_0_bytes",
1108 	"tx_queue_0_bytes",
1109 	"rx_queue_0_mcast_packets",
1110 	"rx_queue_0_errors",
1111 	"rx_queue_0_crc_errors",
1112 	"rx_queue_0_frame_errors",
1113 	"rx_queue_0_length_errors",
1114 	"rx_queue_0_missed_errors",
1115 	"rx_queue_0_over_errors",
1116 
1117 	"rx_queue_1_current",
1118 	"tx_queue_1_current",
1119 	"rx_queue_1_dirty",
1120 	"tx_queue_1_dirty",
1121 	"rx_queue_1_packets",
1122 	"tx_queue_1_packets",
1123 	"rx_queue_1_bytes",
1124 	"tx_queue_1_bytes",
1125 	"rx_queue_1_mcast_packets",
1126 	"rx_queue_1_errors",
1127 	"rx_queue_1_crc_errors",
1128 	"rx_queue_1_frame_errors",
1129 	"rx_queue_1_length_errors",
1130 	"rx_queue_1_missed_errors",
1131 	"rx_queue_1_over_errors",
1132 };
1133 
1134 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1135 
1136 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1137 {
1138 	switch (sset) {
1139 	case ETH_SS_STATS:
1140 		return RAVB_STATS_LEN;
1141 	default:
1142 		return -EOPNOTSUPP;
1143 	}
1144 }
1145 
1146 static void ravb_get_ethtool_stats(struct net_device *ndev,
1147 				   struct ethtool_stats *estats, u64 *data)
1148 {
1149 	struct ravb_private *priv = netdev_priv(ndev);
1150 	int i = 0;
1151 	int q;
1152 
1153 	/* Device-specific stats */
1154 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1155 		struct net_device_stats *stats = &priv->stats[q];
1156 
1157 		data[i++] = priv->cur_rx[q];
1158 		data[i++] = priv->cur_tx[q];
1159 		data[i++] = priv->dirty_rx[q];
1160 		data[i++] = priv->dirty_tx[q];
1161 		data[i++] = stats->rx_packets;
1162 		data[i++] = stats->tx_packets;
1163 		data[i++] = stats->rx_bytes;
1164 		data[i++] = stats->tx_bytes;
1165 		data[i++] = stats->multicast;
1166 		data[i++] = stats->rx_errors;
1167 		data[i++] = stats->rx_crc_errors;
1168 		data[i++] = stats->rx_frame_errors;
1169 		data[i++] = stats->rx_length_errors;
1170 		data[i++] = stats->rx_missed_errors;
1171 		data[i++] = stats->rx_over_errors;
1172 	}
1173 }
1174 
1175 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1176 {
1177 	switch (stringset) {
1178 	case ETH_SS_STATS:
1179 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1180 		break;
1181 	}
1182 }
1183 
1184 static void ravb_get_ringparam(struct net_device *ndev,
1185 			       struct ethtool_ringparam *ring)
1186 {
1187 	struct ravb_private *priv = netdev_priv(ndev);
1188 
1189 	ring->rx_max_pending = BE_RX_RING_MAX;
1190 	ring->tx_max_pending = BE_TX_RING_MAX;
1191 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1192 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1193 }
1194 
1195 static int ravb_set_ringparam(struct net_device *ndev,
1196 			      struct ethtool_ringparam *ring)
1197 {
1198 	struct ravb_private *priv = netdev_priv(ndev);
1199 	int error;
1200 
1201 	if (ring->tx_pending > BE_TX_RING_MAX ||
1202 	    ring->rx_pending > BE_RX_RING_MAX ||
1203 	    ring->tx_pending < BE_TX_RING_MIN ||
1204 	    ring->rx_pending < BE_RX_RING_MIN)
1205 		return -EINVAL;
1206 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1207 		return -EINVAL;
1208 
1209 	if (netif_running(ndev)) {
1210 		netif_device_detach(ndev);
1211 		/* Stop PTP Clock driver */
1212 		if (priv->chip_id == RCAR_GEN2)
1213 			ravb_ptp_stop(ndev);
1214 		/* Wait for DMA stopping */
1215 		error = ravb_stop_dma(ndev);
1216 		if (error) {
1217 			netdev_err(ndev,
1218 				   "cannot set ringparam! Any AVB processes are still running?\n");
1219 			return error;
1220 		}
1221 		synchronize_irq(ndev->irq);
1222 
1223 		/* Free all the skb's in the RX queue and the DMA buffers. */
1224 		ravb_ring_free(ndev, RAVB_BE);
1225 		ravb_ring_free(ndev, RAVB_NC);
1226 	}
1227 
1228 	/* Set new parameters */
1229 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1230 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1231 
1232 	if (netif_running(ndev)) {
1233 		error = ravb_dmac_init(ndev);
1234 		if (error) {
1235 			netdev_err(ndev,
1236 				   "%s: ravb_dmac_init() failed, error %d\n",
1237 				   __func__, error);
1238 			return error;
1239 		}
1240 
1241 		ravb_emac_init(ndev);
1242 
1243 		/* Initialise PTP Clock driver */
1244 		if (priv->chip_id == RCAR_GEN2)
1245 			ravb_ptp_init(ndev, priv->pdev);
1246 
1247 		netif_device_attach(ndev);
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int ravb_get_ts_info(struct net_device *ndev,
1254 			    struct ethtool_ts_info *info)
1255 {
1256 	struct ravb_private *priv = netdev_priv(ndev);
1257 
1258 	info->so_timestamping =
1259 		SOF_TIMESTAMPING_TX_SOFTWARE |
1260 		SOF_TIMESTAMPING_RX_SOFTWARE |
1261 		SOF_TIMESTAMPING_SOFTWARE |
1262 		SOF_TIMESTAMPING_TX_HARDWARE |
1263 		SOF_TIMESTAMPING_RX_HARDWARE |
1264 		SOF_TIMESTAMPING_RAW_HARDWARE;
1265 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1266 	info->rx_filters =
1267 		(1 << HWTSTAMP_FILTER_NONE) |
1268 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1269 		(1 << HWTSTAMP_FILTER_ALL);
1270 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1271 
1272 	return 0;
1273 }
1274 
1275 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1276 {
1277 	struct ravb_private *priv = netdev_priv(ndev);
1278 
1279 	wol->supported = WAKE_MAGIC;
1280 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1281 }
1282 
1283 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1284 {
1285 	struct ravb_private *priv = netdev_priv(ndev);
1286 
1287 	if (wol->wolopts & ~WAKE_MAGIC)
1288 		return -EOPNOTSUPP;
1289 
1290 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1291 
1292 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1293 
1294 	return 0;
1295 }
1296 
1297 static const struct ethtool_ops ravb_ethtool_ops = {
1298 	.nway_reset		= phy_ethtool_nway_reset,
1299 	.get_msglevel		= ravb_get_msglevel,
1300 	.set_msglevel		= ravb_set_msglevel,
1301 	.get_link		= ethtool_op_get_link,
1302 	.get_strings		= ravb_get_strings,
1303 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1304 	.get_sset_count		= ravb_get_sset_count,
1305 	.get_ringparam		= ravb_get_ringparam,
1306 	.set_ringparam		= ravb_set_ringparam,
1307 	.get_ts_info		= ravb_get_ts_info,
1308 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1309 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1310 	.get_wol		= ravb_get_wol,
1311 	.set_wol		= ravb_set_wol,
1312 };
1313 
1314 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1315 				struct net_device *ndev, struct device *dev,
1316 				const char *ch)
1317 {
1318 	char *name;
1319 	int error;
1320 
1321 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1322 	if (!name)
1323 		return -ENOMEM;
1324 	error = request_irq(irq, handler, 0, name, ndev);
1325 	if (error)
1326 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1327 
1328 	return error;
1329 }
1330 
1331 /* Network device open function for Ethernet AVB */
1332 static int ravb_open(struct net_device *ndev)
1333 {
1334 	struct ravb_private *priv = netdev_priv(ndev);
1335 	struct platform_device *pdev = priv->pdev;
1336 	struct device *dev = &pdev->dev;
1337 	int error;
1338 
1339 	napi_enable(&priv->napi[RAVB_BE]);
1340 	napi_enable(&priv->napi[RAVB_NC]);
1341 
1342 	if (priv->chip_id == RCAR_GEN2) {
1343 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1344 				    ndev->name, ndev);
1345 		if (error) {
1346 			netdev_err(ndev, "cannot request IRQ\n");
1347 			goto out_napi_off;
1348 		}
1349 	} else {
1350 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1351 				      dev, "ch22:multi");
1352 		if (error)
1353 			goto out_napi_off;
1354 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1355 				      dev, "ch24:emac");
1356 		if (error)
1357 			goto out_free_irq;
1358 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1359 				      ndev, dev, "ch0:rx_be");
1360 		if (error)
1361 			goto out_free_irq_emac;
1362 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1363 				      ndev, dev, "ch18:tx_be");
1364 		if (error)
1365 			goto out_free_irq_be_rx;
1366 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1367 				      ndev, dev, "ch1:rx_nc");
1368 		if (error)
1369 			goto out_free_irq_be_tx;
1370 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1371 				      ndev, dev, "ch19:tx_nc");
1372 		if (error)
1373 			goto out_free_irq_nc_rx;
1374 	}
1375 
1376 	/* Device init */
1377 	error = ravb_dmac_init(ndev);
1378 	if (error)
1379 		goto out_free_irq_nc_tx;
1380 	ravb_emac_init(ndev);
1381 
1382 	/* Initialise PTP Clock driver */
1383 	if (priv->chip_id == RCAR_GEN2)
1384 		ravb_ptp_init(ndev, priv->pdev);
1385 
1386 	netif_tx_start_all_queues(ndev);
1387 
1388 	/* PHY control start */
1389 	error = ravb_phy_start(ndev);
1390 	if (error)
1391 		goto out_ptp_stop;
1392 
1393 	return 0;
1394 
1395 out_ptp_stop:
1396 	/* Stop PTP Clock driver */
1397 	if (priv->chip_id == RCAR_GEN2)
1398 		ravb_ptp_stop(ndev);
1399 out_free_irq_nc_tx:
1400 	if (priv->chip_id == RCAR_GEN2)
1401 		goto out_free_irq;
1402 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1403 out_free_irq_nc_rx:
1404 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1405 out_free_irq_be_tx:
1406 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1407 out_free_irq_be_rx:
1408 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1409 out_free_irq_emac:
1410 	free_irq(priv->emac_irq, ndev);
1411 out_free_irq:
1412 	free_irq(ndev->irq, ndev);
1413 out_napi_off:
1414 	napi_disable(&priv->napi[RAVB_NC]);
1415 	napi_disable(&priv->napi[RAVB_BE]);
1416 	return error;
1417 }
1418 
1419 /* Timeout function for Ethernet AVB */
1420 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1421 {
1422 	struct ravb_private *priv = netdev_priv(ndev);
1423 
1424 	netif_err(priv, tx_err, ndev,
1425 		  "transmit timed out, status %08x, resetting...\n",
1426 		  ravb_read(ndev, ISS));
1427 
1428 	/* tx_errors count up */
1429 	ndev->stats.tx_errors++;
1430 
1431 	schedule_work(&priv->work);
1432 }
1433 
1434 static void ravb_tx_timeout_work(struct work_struct *work)
1435 {
1436 	struct ravb_private *priv = container_of(work, struct ravb_private,
1437 						 work);
1438 	struct net_device *ndev = priv->ndev;
1439 	int error;
1440 
1441 	netif_tx_stop_all_queues(ndev);
1442 
1443 	/* Stop PTP Clock driver */
1444 	if (priv->chip_id == RCAR_GEN2)
1445 		ravb_ptp_stop(ndev);
1446 
1447 	/* Wait for DMA stopping */
1448 	if (ravb_stop_dma(ndev)) {
1449 		/* If ravb_stop_dma() fails, the hardware is still operating
1450 		 * for TX and/or RX. So, this should not call the following
1451 		 * functions because ravb_dmac_init() is possible to fail too.
1452 		 * Also, this should not retry ravb_stop_dma() again and again
1453 		 * here because it's possible to wait forever. So, this just
1454 		 * re-enables the TX and RX and skip the following
1455 		 * re-initialization procedure.
1456 		 */
1457 		ravb_rcv_snd_enable(ndev);
1458 		goto out;
1459 	}
1460 
1461 	ravb_ring_free(ndev, RAVB_BE);
1462 	ravb_ring_free(ndev, RAVB_NC);
1463 
1464 	/* Device init */
1465 	error = ravb_dmac_init(ndev);
1466 	if (error) {
1467 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1468 		 * should return here to avoid re-enabling the TX and RX in
1469 		 * ravb_emac_init().
1470 		 */
1471 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1472 			   __func__, error);
1473 		return;
1474 	}
1475 	ravb_emac_init(ndev);
1476 
1477 out:
1478 	/* Initialise PTP Clock driver */
1479 	if (priv->chip_id == RCAR_GEN2)
1480 		ravb_ptp_init(ndev, priv->pdev);
1481 
1482 	netif_tx_start_all_queues(ndev);
1483 }
1484 
1485 /* Packet transmit function for Ethernet AVB */
1486 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1487 {
1488 	struct ravb_private *priv = netdev_priv(ndev);
1489 	int num_tx_desc = priv->num_tx_desc;
1490 	u16 q = skb_get_queue_mapping(skb);
1491 	struct ravb_tstamp_skb *ts_skb;
1492 	struct ravb_tx_desc *desc;
1493 	unsigned long flags;
1494 	u32 dma_addr;
1495 	void *buffer;
1496 	u32 entry;
1497 	u32 len;
1498 
1499 	spin_lock_irqsave(&priv->lock, flags);
1500 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1501 	    num_tx_desc) {
1502 		netif_err(priv, tx_queued, ndev,
1503 			  "still transmitting with the full ring!\n");
1504 		netif_stop_subqueue(ndev, q);
1505 		spin_unlock_irqrestore(&priv->lock, flags);
1506 		return NETDEV_TX_BUSY;
1507 	}
1508 
1509 	if (skb_put_padto(skb, ETH_ZLEN))
1510 		goto exit;
1511 
1512 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1513 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1514 
1515 	if (num_tx_desc > 1) {
1516 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1517 			 entry / num_tx_desc * DPTR_ALIGN;
1518 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1519 
1520 		/* Zero length DMA descriptors are problematic as they seem
1521 		 * to terminate DMA transfers. Avoid them by simply using a
1522 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1523 		 * DPTR_ALIGN.
1524 		 *
1525 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1526 		 * bytes of data by the call to skb_put_padto() above this
1527 		 * is safe with respect to both the length of the first DMA
1528 		 * descriptor (len) overflowing the available data and the
1529 		 * length of the second DMA descriptor (skb->len - len)
1530 		 * being negative.
1531 		 */
1532 		if (len == 0)
1533 			len = DPTR_ALIGN;
1534 
1535 		memcpy(buffer, skb->data, len);
1536 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1537 					  DMA_TO_DEVICE);
1538 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1539 			goto drop;
1540 
1541 		desc = &priv->tx_ring[q][entry];
1542 		desc->ds_tagl = cpu_to_le16(len);
1543 		desc->dptr = cpu_to_le32(dma_addr);
1544 
1545 		buffer = skb->data + len;
1546 		len = skb->len - len;
1547 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1548 					  DMA_TO_DEVICE);
1549 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1550 			goto unmap;
1551 
1552 		desc++;
1553 	} else {
1554 		desc = &priv->tx_ring[q][entry];
1555 		len = skb->len;
1556 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1557 					  DMA_TO_DEVICE);
1558 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1559 			goto drop;
1560 	}
1561 	desc->ds_tagl = cpu_to_le16(len);
1562 	desc->dptr = cpu_to_le32(dma_addr);
1563 
1564 	/* TX timestamp required */
1565 	if (q == RAVB_NC) {
1566 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1567 		if (!ts_skb) {
1568 			if (num_tx_desc > 1) {
1569 				desc--;
1570 				dma_unmap_single(ndev->dev.parent, dma_addr,
1571 						 len, DMA_TO_DEVICE);
1572 			}
1573 			goto unmap;
1574 		}
1575 		ts_skb->skb = skb_get(skb);
1576 		ts_skb->tag = priv->ts_skb_tag++;
1577 		priv->ts_skb_tag &= 0x3ff;
1578 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1579 
1580 		/* TAG and timestamp required flag */
1581 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1582 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1583 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1584 	}
1585 
1586 	skb_tx_timestamp(skb);
1587 	/* Descriptor type must be set after all the above writes */
1588 	dma_wmb();
1589 	if (num_tx_desc > 1) {
1590 		desc->die_dt = DT_FEND;
1591 		desc--;
1592 		desc->die_dt = DT_FSTART;
1593 	} else {
1594 		desc->die_dt = DT_FSINGLE;
1595 	}
1596 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1597 
1598 	priv->cur_tx[q] += num_tx_desc;
1599 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1600 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1601 	    !ravb_tx_free(ndev, q, true))
1602 		netif_stop_subqueue(ndev, q);
1603 
1604 exit:
1605 	spin_unlock_irqrestore(&priv->lock, flags);
1606 	return NETDEV_TX_OK;
1607 
1608 unmap:
1609 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1610 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1611 drop:
1612 	dev_kfree_skb_any(skb);
1613 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1614 	goto exit;
1615 }
1616 
1617 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1618 			     struct net_device *sb_dev)
1619 {
1620 	/* If skb needs TX timestamp, it is handled in network control queue */
1621 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1622 							       RAVB_BE;
1623 
1624 }
1625 
1626 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1627 {
1628 	struct ravb_private *priv = netdev_priv(ndev);
1629 	struct net_device_stats *nstats, *stats0, *stats1;
1630 
1631 	nstats = &ndev->stats;
1632 	stats0 = &priv->stats[RAVB_BE];
1633 	stats1 = &priv->stats[RAVB_NC];
1634 
1635 	if (priv->chip_id == RCAR_GEN3) {
1636 		nstats->tx_dropped += ravb_read(ndev, TROCR);
1637 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1638 	}
1639 
1640 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1641 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1642 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1643 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1644 	nstats->multicast = stats0->multicast + stats1->multicast;
1645 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1646 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1647 	nstats->rx_frame_errors =
1648 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1649 	nstats->rx_length_errors =
1650 		stats0->rx_length_errors + stats1->rx_length_errors;
1651 	nstats->rx_missed_errors =
1652 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1653 	nstats->rx_over_errors =
1654 		stats0->rx_over_errors + stats1->rx_over_errors;
1655 
1656 	return nstats;
1657 }
1658 
1659 /* Update promiscuous bit */
1660 static void ravb_set_rx_mode(struct net_device *ndev)
1661 {
1662 	struct ravb_private *priv = netdev_priv(ndev);
1663 	unsigned long flags;
1664 
1665 	spin_lock_irqsave(&priv->lock, flags);
1666 	ravb_modify(ndev, ECMR, ECMR_PRM,
1667 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1668 	spin_unlock_irqrestore(&priv->lock, flags);
1669 }
1670 
1671 /* Device close function for Ethernet AVB */
1672 static int ravb_close(struct net_device *ndev)
1673 {
1674 	struct device_node *np = ndev->dev.parent->of_node;
1675 	struct ravb_private *priv = netdev_priv(ndev);
1676 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1677 
1678 	netif_tx_stop_all_queues(ndev);
1679 
1680 	/* Disable interrupts by clearing the interrupt masks. */
1681 	ravb_write(ndev, 0, RIC0);
1682 	ravb_write(ndev, 0, RIC2);
1683 	ravb_write(ndev, 0, TIC);
1684 
1685 	/* Stop PTP Clock driver */
1686 	if (priv->chip_id == RCAR_GEN2)
1687 		ravb_ptp_stop(ndev);
1688 
1689 	/* Set the config mode to stop the AVB-DMAC's processes */
1690 	if (ravb_stop_dma(ndev) < 0)
1691 		netdev_err(ndev,
1692 			   "device will be stopped after h/w processes are done.\n");
1693 
1694 	/* Clear the timestamp list */
1695 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1696 		list_del(&ts_skb->list);
1697 		kfree_skb(ts_skb->skb);
1698 		kfree(ts_skb);
1699 	}
1700 
1701 	/* PHY disconnect */
1702 	if (ndev->phydev) {
1703 		phy_stop(ndev->phydev);
1704 		phy_disconnect(ndev->phydev);
1705 		if (of_phy_is_fixed_link(np))
1706 			of_phy_deregister_fixed_link(np);
1707 	}
1708 
1709 	if (priv->chip_id != RCAR_GEN2) {
1710 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1711 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1712 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1713 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1714 		free_irq(priv->emac_irq, ndev);
1715 	}
1716 	free_irq(ndev->irq, ndev);
1717 
1718 	napi_disable(&priv->napi[RAVB_NC]);
1719 	napi_disable(&priv->napi[RAVB_BE]);
1720 
1721 	/* Free all the skb's in the RX queue and the DMA buffers. */
1722 	ravb_ring_free(ndev, RAVB_BE);
1723 	ravb_ring_free(ndev, RAVB_NC);
1724 
1725 	return 0;
1726 }
1727 
1728 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1729 {
1730 	struct ravb_private *priv = netdev_priv(ndev);
1731 	struct hwtstamp_config config;
1732 
1733 	config.flags = 0;
1734 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1735 						HWTSTAMP_TX_OFF;
1736 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
1737 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
1738 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1739 		break;
1740 	case RAVB_RXTSTAMP_TYPE_ALL:
1741 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1742 		break;
1743 	default:
1744 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1745 	}
1746 
1747 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1748 		-EFAULT : 0;
1749 }
1750 
1751 /* Control hardware time stamping */
1752 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1753 {
1754 	struct ravb_private *priv = netdev_priv(ndev);
1755 	struct hwtstamp_config config;
1756 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1757 	u32 tstamp_tx_ctrl;
1758 
1759 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1760 		return -EFAULT;
1761 
1762 	/* Reserved for future extensions */
1763 	if (config.flags)
1764 		return -EINVAL;
1765 
1766 	switch (config.tx_type) {
1767 	case HWTSTAMP_TX_OFF:
1768 		tstamp_tx_ctrl = 0;
1769 		break;
1770 	case HWTSTAMP_TX_ON:
1771 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1772 		break;
1773 	default:
1774 		return -ERANGE;
1775 	}
1776 
1777 	switch (config.rx_filter) {
1778 	case HWTSTAMP_FILTER_NONE:
1779 		tstamp_rx_ctrl = 0;
1780 		break;
1781 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1782 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1783 		break;
1784 	default:
1785 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1786 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1787 	}
1788 
1789 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1790 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1791 
1792 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1793 		-EFAULT : 0;
1794 }
1795 
1796 /* ioctl to device function */
1797 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1798 {
1799 	struct phy_device *phydev = ndev->phydev;
1800 
1801 	if (!netif_running(ndev))
1802 		return -EINVAL;
1803 
1804 	if (!phydev)
1805 		return -ENODEV;
1806 
1807 	switch (cmd) {
1808 	case SIOCGHWTSTAMP:
1809 		return ravb_hwtstamp_get(ndev, req);
1810 	case SIOCSHWTSTAMP:
1811 		return ravb_hwtstamp_set(ndev, req);
1812 	}
1813 
1814 	return phy_mii_ioctl(phydev, req, cmd);
1815 }
1816 
1817 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1818 {
1819 	struct ravb_private *priv = netdev_priv(ndev);
1820 
1821 	ndev->mtu = new_mtu;
1822 
1823 	if (netif_running(ndev)) {
1824 		synchronize_irq(priv->emac_irq);
1825 		ravb_emac_init(ndev);
1826 	}
1827 
1828 	netdev_update_features(ndev);
1829 
1830 	return 0;
1831 }
1832 
1833 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1834 {
1835 	struct ravb_private *priv = netdev_priv(ndev);
1836 	unsigned long flags;
1837 
1838 	spin_lock_irqsave(&priv->lock, flags);
1839 
1840 	/* Disable TX and RX */
1841 	ravb_rcv_snd_disable(ndev);
1842 
1843 	/* Modify RX Checksum setting */
1844 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1845 
1846 	/* Enable TX and RX */
1847 	ravb_rcv_snd_enable(ndev);
1848 
1849 	spin_unlock_irqrestore(&priv->lock, flags);
1850 }
1851 
1852 static int ravb_set_features(struct net_device *ndev,
1853 			     netdev_features_t features)
1854 {
1855 	netdev_features_t changed = ndev->features ^ features;
1856 
1857 	if (changed & NETIF_F_RXCSUM)
1858 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1859 
1860 	ndev->features = features;
1861 
1862 	return 0;
1863 }
1864 
1865 static const struct net_device_ops ravb_netdev_ops = {
1866 	.ndo_open		= ravb_open,
1867 	.ndo_stop		= ravb_close,
1868 	.ndo_start_xmit		= ravb_start_xmit,
1869 	.ndo_select_queue	= ravb_select_queue,
1870 	.ndo_get_stats		= ravb_get_stats,
1871 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1872 	.ndo_tx_timeout		= ravb_tx_timeout,
1873 	.ndo_do_ioctl		= ravb_do_ioctl,
1874 	.ndo_change_mtu		= ravb_change_mtu,
1875 	.ndo_validate_addr	= eth_validate_addr,
1876 	.ndo_set_mac_address	= eth_mac_addr,
1877 	.ndo_set_features	= ravb_set_features,
1878 };
1879 
1880 /* MDIO bus init function */
1881 static int ravb_mdio_init(struct ravb_private *priv)
1882 {
1883 	struct platform_device *pdev = priv->pdev;
1884 	struct device *dev = &pdev->dev;
1885 	int error;
1886 
1887 	/* Bitbang init */
1888 	priv->mdiobb.ops = &bb_ops;
1889 
1890 	/* MII controller setting */
1891 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1892 	if (!priv->mii_bus)
1893 		return -ENOMEM;
1894 
1895 	/* Hook up MII support for ethtool */
1896 	priv->mii_bus->name = "ravb_mii";
1897 	priv->mii_bus->parent = dev;
1898 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1899 		 pdev->name, pdev->id);
1900 
1901 	/* Register MDIO bus */
1902 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1903 	if (error)
1904 		goto out_free_bus;
1905 
1906 	return 0;
1907 
1908 out_free_bus:
1909 	free_mdio_bitbang(priv->mii_bus);
1910 	return error;
1911 }
1912 
1913 /* MDIO bus release function */
1914 static int ravb_mdio_release(struct ravb_private *priv)
1915 {
1916 	/* Unregister mdio bus */
1917 	mdiobus_unregister(priv->mii_bus);
1918 
1919 	/* Free bitbang info */
1920 	free_mdio_bitbang(priv->mii_bus);
1921 
1922 	return 0;
1923 }
1924 
1925 static const struct of_device_id ravb_match_table[] = {
1926 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1927 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1928 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1929 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1930 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1931 	{ }
1932 };
1933 MODULE_DEVICE_TABLE(of, ravb_match_table);
1934 
1935 static int ravb_set_gti(struct net_device *ndev)
1936 {
1937 	struct ravb_private *priv = netdev_priv(ndev);
1938 	struct device *dev = ndev->dev.parent;
1939 	unsigned long rate;
1940 	uint64_t inc;
1941 
1942 	rate = clk_get_rate(priv->clk);
1943 	if (!rate)
1944 		return -EINVAL;
1945 
1946 	inc = 1000000000ULL << 20;
1947 	do_div(inc, rate);
1948 
1949 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1950 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1951 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1952 		return -EINVAL;
1953 	}
1954 
1955 	ravb_write(ndev, inc, GTI);
1956 
1957 	return 0;
1958 }
1959 
1960 static void ravb_set_config_mode(struct net_device *ndev)
1961 {
1962 	struct ravb_private *priv = netdev_priv(ndev);
1963 
1964 	if (priv->chip_id == RCAR_GEN2) {
1965 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1966 		/* Set CSEL value */
1967 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1968 	} else {
1969 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1970 			    CCC_GAC | CCC_CSEL_HPB);
1971 	}
1972 }
1973 
1974 static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1975 	{ .soc_id = "r8a774c0" },
1976 	{ .soc_id = "r8a77990" },
1977 	{ .soc_id = "r8a77995" },
1978 	{ /* sentinel */ }
1979 };
1980 
1981 /* Set tx and rx clock internal delay modes */
1982 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1983 {
1984 	struct ravb_private *priv = netdev_priv(ndev);
1985 	bool explicit_delay = false;
1986 	u32 delay;
1987 
1988 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1989 		/* Valid values are 0 and 1800, according to DT bindings */
1990 		priv->rxcidm = !!delay;
1991 		explicit_delay = true;
1992 	}
1993 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1994 		/* Valid values are 0 and 2000, according to DT bindings */
1995 		priv->txcidm = !!delay;
1996 		explicit_delay = true;
1997 	}
1998 
1999 	if (explicit_delay)
2000 		return;
2001 
2002 	/* Fall back to legacy rgmii-*id behavior */
2003 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2004 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2005 		priv->rxcidm = 1;
2006 		priv->rgmii_override = 1;
2007 	}
2008 
2009 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2010 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2011 		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
2012 			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
2013 			  phy_modes(priv->phy_interface))) {
2014 			priv->txcidm = 1;
2015 			priv->rgmii_override = 1;
2016 		}
2017 	}
2018 }
2019 
2020 static void ravb_set_delay_mode(struct net_device *ndev)
2021 {
2022 	struct ravb_private *priv = netdev_priv(ndev);
2023 	u32 set = 0;
2024 
2025 	if (priv->rxcidm)
2026 		set |= APSR_RDM;
2027 	if (priv->txcidm)
2028 		set |= APSR_TDM;
2029 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2030 }
2031 
2032 static int ravb_probe(struct platform_device *pdev)
2033 {
2034 	struct device_node *np = pdev->dev.of_node;
2035 	struct ravb_private *priv;
2036 	enum ravb_chip_id chip_id;
2037 	struct net_device *ndev;
2038 	int error, irq, q;
2039 	struct resource *res;
2040 	int i;
2041 
2042 	if (!np) {
2043 		dev_err(&pdev->dev,
2044 			"this driver is required to be instantiated from device tree\n");
2045 		return -EINVAL;
2046 	}
2047 
2048 	/* Get base address */
2049 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2050 	if (!res) {
2051 		dev_err(&pdev->dev, "invalid resource\n");
2052 		return -EINVAL;
2053 	}
2054 
2055 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2056 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2057 	if (!ndev)
2058 		return -ENOMEM;
2059 
2060 	ndev->features = NETIF_F_RXCSUM;
2061 	ndev->hw_features = NETIF_F_RXCSUM;
2062 
2063 	pm_runtime_enable(&pdev->dev);
2064 	pm_runtime_get_sync(&pdev->dev);
2065 
2066 	/* The Ether-specific entries in the device structure. */
2067 	ndev->base_addr = res->start;
2068 
2069 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2070 
2071 	if (chip_id == RCAR_GEN3)
2072 		irq = platform_get_irq_byname(pdev, "ch22");
2073 	else
2074 		irq = platform_get_irq(pdev, 0);
2075 	if (irq < 0) {
2076 		error = irq;
2077 		goto out_release;
2078 	}
2079 	ndev->irq = irq;
2080 
2081 	SET_NETDEV_DEV(ndev, &pdev->dev);
2082 
2083 	priv = netdev_priv(ndev);
2084 	priv->ndev = ndev;
2085 	priv->pdev = pdev;
2086 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2087 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2088 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2089 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2090 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2091 	if (IS_ERR(priv->addr)) {
2092 		error = PTR_ERR(priv->addr);
2093 		goto out_release;
2094 	}
2095 
2096 	spin_lock_init(&priv->lock);
2097 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2098 
2099 	error = of_get_phy_mode(np, &priv->phy_interface);
2100 	if (error && error != -ENODEV)
2101 		goto out_release;
2102 
2103 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2104 	priv->avb_link_active_low =
2105 		of_property_read_bool(np, "renesas,ether-link-active-low");
2106 
2107 	if (chip_id == RCAR_GEN3) {
2108 		irq = platform_get_irq_byname(pdev, "ch24");
2109 		if (irq < 0) {
2110 			error = irq;
2111 			goto out_release;
2112 		}
2113 		priv->emac_irq = irq;
2114 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2115 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2116 			if (irq < 0) {
2117 				error = irq;
2118 				goto out_release;
2119 			}
2120 			priv->rx_irqs[i] = irq;
2121 		}
2122 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2123 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2124 			if (irq < 0) {
2125 				error = irq;
2126 				goto out_release;
2127 			}
2128 			priv->tx_irqs[i] = irq;
2129 		}
2130 	}
2131 
2132 	priv->chip_id = chip_id;
2133 
2134 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2135 	if (IS_ERR(priv->clk)) {
2136 		error = PTR_ERR(priv->clk);
2137 		goto out_release;
2138 	}
2139 
2140 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2141 	ndev->min_mtu = ETH_MIN_MTU;
2142 
2143 	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2144 		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2145 
2146 	/* Set function */
2147 	ndev->netdev_ops = &ravb_netdev_ops;
2148 	ndev->ethtool_ops = &ravb_ethtool_ops;
2149 
2150 	/* Set AVB config mode */
2151 	ravb_set_config_mode(ndev);
2152 
2153 	/* Set GTI value */
2154 	error = ravb_set_gti(ndev);
2155 	if (error)
2156 		goto out_release;
2157 
2158 	/* Request GTI loading */
2159 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2160 
2161 	if (priv->chip_id != RCAR_GEN2) {
2162 		ravb_parse_delay_mode(np, ndev);
2163 		ravb_set_delay_mode(ndev);
2164 	}
2165 
2166 	/* Allocate descriptor base address table */
2167 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2168 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2169 					    &priv->desc_bat_dma, GFP_KERNEL);
2170 	if (!priv->desc_bat) {
2171 		dev_err(&pdev->dev,
2172 			"Cannot allocate desc base address table (size %d bytes)\n",
2173 			priv->desc_bat_size);
2174 		error = -ENOMEM;
2175 		goto out_release;
2176 	}
2177 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2178 		priv->desc_bat[q].die_dt = DT_EOS;
2179 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2180 
2181 	/* Initialise HW timestamp list */
2182 	INIT_LIST_HEAD(&priv->ts_skb_list);
2183 
2184 	/* Initialise PTP Clock driver */
2185 	if (chip_id != RCAR_GEN2)
2186 		ravb_ptp_init(ndev, pdev);
2187 
2188 	/* Debug message level */
2189 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2190 
2191 	/* Read and set MAC address */
2192 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2193 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2194 		dev_warn(&pdev->dev,
2195 			 "no valid MAC address supplied, using a random one\n");
2196 		eth_hw_addr_random(ndev);
2197 	}
2198 
2199 	/* MDIO bus init */
2200 	error = ravb_mdio_init(priv);
2201 	if (error) {
2202 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2203 		goto out_dma_free;
2204 	}
2205 
2206 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2207 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2208 
2209 	/* Network device register */
2210 	error = register_netdev(ndev);
2211 	if (error)
2212 		goto out_napi_del;
2213 
2214 	device_set_wakeup_capable(&pdev->dev, 1);
2215 
2216 	/* Print device information */
2217 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2218 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2219 
2220 	platform_set_drvdata(pdev, ndev);
2221 
2222 	return 0;
2223 
2224 out_napi_del:
2225 	netif_napi_del(&priv->napi[RAVB_NC]);
2226 	netif_napi_del(&priv->napi[RAVB_BE]);
2227 	ravb_mdio_release(priv);
2228 out_dma_free:
2229 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2230 			  priv->desc_bat_dma);
2231 
2232 	/* Stop PTP Clock driver */
2233 	if (chip_id != RCAR_GEN2)
2234 		ravb_ptp_stop(ndev);
2235 out_release:
2236 	free_netdev(ndev);
2237 
2238 	pm_runtime_put(&pdev->dev);
2239 	pm_runtime_disable(&pdev->dev);
2240 	return error;
2241 }
2242 
2243 static int ravb_remove(struct platform_device *pdev)
2244 {
2245 	struct net_device *ndev = platform_get_drvdata(pdev);
2246 	struct ravb_private *priv = netdev_priv(ndev);
2247 
2248 	/* Stop PTP Clock driver */
2249 	if (priv->chip_id != RCAR_GEN2)
2250 		ravb_ptp_stop(ndev);
2251 
2252 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2253 			  priv->desc_bat_dma);
2254 	/* Set reset mode */
2255 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2256 	pm_runtime_put_sync(&pdev->dev);
2257 	unregister_netdev(ndev);
2258 	netif_napi_del(&priv->napi[RAVB_NC]);
2259 	netif_napi_del(&priv->napi[RAVB_BE]);
2260 	ravb_mdio_release(priv);
2261 	pm_runtime_disable(&pdev->dev);
2262 	free_netdev(ndev);
2263 	platform_set_drvdata(pdev, NULL);
2264 
2265 	return 0;
2266 }
2267 
2268 static int ravb_wol_setup(struct net_device *ndev)
2269 {
2270 	struct ravb_private *priv = netdev_priv(ndev);
2271 
2272 	/* Disable interrupts by clearing the interrupt masks. */
2273 	ravb_write(ndev, 0, RIC0);
2274 	ravb_write(ndev, 0, RIC2);
2275 	ravb_write(ndev, 0, TIC);
2276 
2277 	/* Only allow ECI interrupts */
2278 	synchronize_irq(priv->emac_irq);
2279 	napi_disable(&priv->napi[RAVB_NC]);
2280 	napi_disable(&priv->napi[RAVB_BE]);
2281 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2282 
2283 	/* Enable MagicPacket */
2284 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2285 
2286 	return enable_irq_wake(priv->emac_irq);
2287 }
2288 
2289 static int ravb_wol_restore(struct net_device *ndev)
2290 {
2291 	struct ravb_private *priv = netdev_priv(ndev);
2292 	int ret;
2293 
2294 	napi_enable(&priv->napi[RAVB_NC]);
2295 	napi_enable(&priv->napi[RAVB_BE]);
2296 
2297 	/* Disable MagicPacket */
2298 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2299 
2300 	ret = ravb_close(ndev);
2301 	if (ret < 0)
2302 		return ret;
2303 
2304 	return disable_irq_wake(priv->emac_irq);
2305 }
2306 
2307 static int __maybe_unused ravb_suspend(struct device *dev)
2308 {
2309 	struct net_device *ndev = dev_get_drvdata(dev);
2310 	struct ravb_private *priv = netdev_priv(ndev);
2311 	int ret;
2312 
2313 	if (!netif_running(ndev))
2314 		return 0;
2315 
2316 	netif_device_detach(ndev);
2317 
2318 	if (priv->wol_enabled)
2319 		ret = ravb_wol_setup(ndev);
2320 	else
2321 		ret = ravb_close(ndev);
2322 
2323 	return ret;
2324 }
2325 
2326 static int __maybe_unused ravb_resume(struct device *dev)
2327 {
2328 	struct net_device *ndev = dev_get_drvdata(dev);
2329 	struct ravb_private *priv = netdev_priv(ndev);
2330 	int ret = 0;
2331 
2332 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2333 	if (priv->wol_enabled)
2334 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2335 
2336 	/* All register have been reset to default values.
2337 	 * Restore all registers which where setup at probe time and
2338 	 * reopen device if it was running before system suspended.
2339 	 */
2340 
2341 	/* Set AVB config mode */
2342 	ravb_set_config_mode(ndev);
2343 
2344 	/* Set GTI value */
2345 	ret = ravb_set_gti(ndev);
2346 	if (ret)
2347 		return ret;
2348 
2349 	/* Request GTI loading */
2350 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2351 
2352 	if (priv->chip_id != RCAR_GEN2)
2353 		ravb_set_delay_mode(ndev);
2354 
2355 	/* Restore descriptor base address table */
2356 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2357 
2358 	if (netif_running(ndev)) {
2359 		if (priv->wol_enabled) {
2360 			ret = ravb_wol_restore(ndev);
2361 			if (ret)
2362 				return ret;
2363 		}
2364 		ret = ravb_open(ndev);
2365 		if (ret < 0)
2366 			return ret;
2367 		netif_device_attach(ndev);
2368 	}
2369 
2370 	return ret;
2371 }
2372 
2373 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2374 {
2375 	/* Runtime PM callback shared between ->runtime_suspend()
2376 	 * and ->runtime_resume(). Simply returns success.
2377 	 *
2378 	 * This driver re-initializes all registers after
2379 	 * pm_runtime_get_sync() anyway so there is no need
2380 	 * to save and restore registers here.
2381 	 */
2382 	return 0;
2383 }
2384 
2385 static const struct dev_pm_ops ravb_dev_pm_ops = {
2386 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2387 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2388 };
2389 
2390 static struct platform_driver ravb_driver = {
2391 	.probe		= ravb_probe,
2392 	.remove		= ravb_remove,
2393 	.driver = {
2394 		.name	= "ravb",
2395 		.pm	= &ravb_dev_pm_ops,
2396 		.of_match_table = ravb_match_table,
2397 	},
2398 };
2399 
2400 module_platform_driver(ravb_driver);
2401 
2402 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2403 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2404 MODULE_LICENSE("GPL v2");
2405