1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 #include <linux/reset.h>
33 
34 #include <asm/div64.h>
35 
36 #include "ravb.h"
37 
38 #define RAVB_DEF_MSG_ENABLE \
39 		(NETIF_MSG_LINK	  | \
40 		 NETIF_MSG_TIMER  | \
41 		 NETIF_MSG_RX_ERR | \
42 		 NETIF_MSG_TX_ERR)
43 
44 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
45 	"ch0", /* RAVB_BE */
46 	"ch1", /* RAVB_NC */
47 };
48 
49 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
50 	"ch18", /* RAVB_BE */
51 	"ch19", /* RAVB_NC */
52 };
53 
54 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
55 		 u32 set)
56 {
57 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
58 }
59 
60 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
61 {
62 	int i;
63 
64 	for (i = 0; i < 10000; i++) {
65 		if ((ravb_read(ndev, reg) & mask) == value)
66 			return 0;
67 		udelay(10);
68 	}
69 	return -ETIMEDOUT;
70 }
71 
72 static int ravb_config(struct net_device *ndev)
73 {
74 	int error;
75 
76 	/* Set config mode */
77 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
78 	/* Check if the operating mode is changed to the config mode */
79 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
80 	if (error)
81 		netdev_err(ndev, "failed to switch device to config mode\n");
82 
83 	return error;
84 }
85 
86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 	struct ravb_private *priv = netdev_priv(ndev);
89 
90 	switch (priv->speed) {
91 	case 10:                /* 10BASE */
92 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 		break;
94 	case 100:               /* 100BASE */
95 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 		break;
97 	case 1000:              /* 1000BASE */
98 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 		break;
100 	}
101 }
102 
103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 	struct ravb_private *priv = netdev_priv(ndev);
106 
107 	switch (priv->speed) {
108 	case 100:		/* 100BASE */
109 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 		break;
111 	case 1000:		/* 1000BASE */
112 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 		break;
114 	}
115 }
116 
117 static void ravb_set_buffer_align(struct sk_buff *skb)
118 {
119 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
120 
121 	if (reserve)
122 		skb_reserve(skb, RAVB_ALIGN - reserve);
123 }
124 
125 /* Get MAC address from the MAC address registers
126  *
127  * Ethernet AVB device doesn't have ROM for MAC address.
128  * This function gets the MAC address that was used by a bootloader.
129  */
130 static void ravb_read_mac_address(struct device_node *np,
131 				  struct net_device *ndev)
132 {
133 	int ret;
134 
135 	ret = of_get_ethdev_address(np, ndev);
136 	if (ret) {
137 		u32 mahr = ravb_read(ndev, MAHR);
138 		u32 malr = ravb_read(ndev, MALR);
139 
140 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
141 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
142 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
143 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
144 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
145 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
146 	}
147 }
148 
149 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
150 {
151 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
152 						 mdiobb);
153 
154 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
155 }
156 
157 /* MDC pin control */
158 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
159 {
160 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
161 }
162 
163 /* Data I/O pin control */
164 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
165 {
166 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
167 }
168 
169 /* Set data bit */
170 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
171 {
172 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
173 }
174 
175 /* Get data bit */
176 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
177 {
178 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
179 						 mdiobb);
180 
181 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
182 }
183 
184 /* MDIO bus control struct */
185 static const struct mdiobb_ops bb_ops = {
186 	.owner = THIS_MODULE,
187 	.set_mdc = ravb_set_mdc,
188 	.set_mdio_dir = ravb_set_mdio_dir,
189 	.set_mdio_data = ravb_set_mdio_data,
190 	.get_mdio_data = ravb_get_mdio_data,
191 };
192 
193 /* Free TX skb function for AVB-IP */
194 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
195 {
196 	struct ravb_private *priv = netdev_priv(ndev);
197 	struct net_device_stats *stats = &priv->stats[q];
198 	unsigned int num_tx_desc = priv->num_tx_desc;
199 	struct ravb_tx_desc *desc;
200 	unsigned int entry;
201 	int free_num = 0;
202 	u32 size;
203 
204 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
205 		bool txed;
206 
207 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
208 					     num_tx_desc);
209 		desc = &priv->tx_ring[q][entry];
210 		txed = desc->die_dt == DT_FEMPTY;
211 		if (free_txed_only && !txed)
212 			break;
213 		/* Descriptor type must be checked before all other reads */
214 		dma_rmb();
215 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
216 		/* Free the original skb. */
217 		if (priv->tx_skb[q][entry / num_tx_desc]) {
218 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
219 					 size, DMA_TO_DEVICE);
220 			/* Last packet descriptor? */
221 			if (entry % num_tx_desc == num_tx_desc - 1) {
222 				entry /= num_tx_desc;
223 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
224 				priv->tx_skb[q][entry] = NULL;
225 				if (txed)
226 					stats->tx_packets++;
227 			}
228 			free_num++;
229 		}
230 		if (txed)
231 			stats->tx_bytes += size;
232 		desc->die_dt = DT_EEMPTY;
233 	}
234 	return free_num;
235 }
236 
237 static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
238 {
239 	struct ravb_private *priv = netdev_priv(ndev);
240 	unsigned int ring_size;
241 	unsigned int i;
242 
243 	if (!priv->gbeth_rx_ring)
244 		return;
245 
246 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
247 		struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
248 
249 		if (!dma_mapping_error(ndev->dev.parent,
250 				       le32_to_cpu(desc->dptr)))
251 			dma_unmap_single(ndev->dev.parent,
252 					 le32_to_cpu(desc->dptr),
253 					 GBETH_RX_BUFF_MAX,
254 					 DMA_FROM_DEVICE);
255 	}
256 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
257 	dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
258 			  priv->rx_desc_dma[q]);
259 	priv->gbeth_rx_ring = NULL;
260 }
261 
262 static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
263 {
264 	struct ravb_private *priv = netdev_priv(ndev);
265 	unsigned int ring_size;
266 	unsigned int i;
267 
268 	if (!priv->rx_ring[q])
269 		return;
270 
271 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
272 		struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
273 
274 		if (!dma_mapping_error(ndev->dev.parent,
275 				       le32_to_cpu(desc->dptr)))
276 			dma_unmap_single(ndev->dev.parent,
277 					 le32_to_cpu(desc->dptr),
278 					 RX_BUF_SZ,
279 					 DMA_FROM_DEVICE);
280 	}
281 	ring_size = sizeof(struct ravb_ex_rx_desc) *
282 		    (priv->num_rx_ring[q] + 1);
283 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
284 			  priv->rx_desc_dma[q]);
285 	priv->rx_ring[q] = NULL;
286 }
287 
288 /* Free skb's and DMA buffers for Ethernet AVB */
289 static void ravb_ring_free(struct net_device *ndev, int q)
290 {
291 	struct ravb_private *priv = netdev_priv(ndev);
292 	const struct ravb_hw_info *info = priv->info;
293 	unsigned int num_tx_desc = priv->num_tx_desc;
294 	unsigned int ring_size;
295 	unsigned int i;
296 
297 	info->rx_ring_free(ndev, q);
298 
299 	if (priv->tx_ring[q]) {
300 		ravb_tx_free(ndev, q, false);
301 
302 		ring_size = sizeof(struct ravb_tx_desc) *
303 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
304 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
305 				  priv->tx_desc_dma[q]);
306 		priv->tx_ring[q] = NULL;
307 	}
308 
309 	/* Free RX skb ringbuffer */
310 	if (priv->rx_skb[q]) {
311 		for (i = 0; i < priv->num_rx_ring[q]; i++)
312 			dev_kfree_skb(priv->rx_skb[q][i]);
313 	}
314 	kfree(priv->rx_skb[q]);
315 	priv->rx_skb[q] = NULL;
316 
317 	/* Free aligned TX buffers */
318 	kfree(priv->tx_align[q]);
319 	priv->tx_align[q] = NULL;
320 
321 	/* Free TX skb ringbuffer.
322 	 * SKBs are freed by ravb_tx_free() call above.
323 	 */
324 	kfree(priv->tx_skb[q]);
325 	priv->tx_skb[q] = NULL;
326 }
327 
328 static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
329 {
330 	struct ravb_private *priv = netdev_priv(ndev);
331 	struct ravb_rx_desc *rx_desc;
332 	unsigned int rx_ring_size;
333 	dma_addr_t dma_addr;
334 	unsigned int i;
335 
336 	rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
337 	memset(priv->gbeth_rx_ring, 0, rx_ring_size);
338 	/* Build RX ring buffer */
339 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
340 		/* RX descriptor */
341 		rx_desc = &priv->gbeth_rx_ring[i];
342 		rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
343 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
344 					  GBETH_RX_BUFF_MAX,
345 					  DMA_FROM_DEVICE);
346 		/* We just set the data size to 0 for a failed mapping which
347 		 * should prevent DMA from happening...
348 		 */
349 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
350 			rx_desc->ds_cc = cpu_to_le16(0);
351 		rx_desc->dptr = cpu_to_le32(dma_addr);
352 		rx_desc->die_dt = DT_FEMPTY;
353 	}
354 	rx_desc = &priv->gbeth_rx_ring[i];
355 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
356 	rx_desc->die_dt = DT_LINKFIX; /* type */
357 }
358 
359 static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
360 {
361 	struct ravb_private *priv = netdev_priv(ndev);
362 	struct ravb_ex_rx_desc *rx_desc;
363 	unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
364 	dma_addr_t dma_addr;
365 	unsigned int i;
366 
367 	memset(priv->rx_ring[q], 0, rx_ring_size);
368 	/* Build RX ring buffer */
369 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
370 		/* RX descriptor */
371 		rx_desc = &priv->rx_ring[q][i];
372 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
373 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
374 					  RX_BUF_SZ,
375 					  DMA_FROM_DEVICE);
376 		/* We just set the data size to 0 for a failed mapping which
377 		 * should prevent DMA from happening...
378 		 */
379 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
380 			rx_desc->ds_cc = cpu_to_le16(0);
381 		rx_desc->dptr = cpu_to_le32(dma_addr);
382 		rx_desc->die_dt = DT_FEMPTY;
383 	}
384 	rx_desc = &priv->rx_ring[q][i];
385 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
386 	rx_desc->die_dt = DT_LINKFIX; /* type */
387 }
388 
389 /* Format skb and descriptor buffer for Ethernet AVB */
390 static void ravb_ring_format(struct net_device *ndev, int q)
391 {
392 	struct ravb_private *priv = netdev_priv(ndev);
393 	const struct ravb_hw_info *info = priv->info;
394 	unsigned int num_tx_desc = priv->num_tx_desc;
395 	struct ravb_tx_desc *tx_desc;
396 	struct ravb_desc *desc;
397 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
398 				    num_tx_desc;
399 	unsigned int i;
400 
401 	priv->cur_rx[q] = 0;
402 	priv->cur_tx[q] = 0;
403 	priv->dirty_rx[q] = 0;
404 	priv->dirty_tx[q] = 0;
405 
406 	info->rx_ring_format(ndev, q);
407 
408 	memset(priv->tx_ring[q], 0, tx_ring_size);
409 	/* Build TX ring buffer */
410 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
411 	     i++, tx_desc++) {
412 		tx_desc->die_dt = DT_EEMPTY;
413 		if (num_tx_desc > 1) {
414 			tx_desc++;
415 			tx_desc->die_dt = DT_EEMPTY;
416 		}
417 	}
418 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
419 	tx_desc->die_dt = DT_LINKFIX; /* type */
420 
421 	/* RX descriptor base address for best effort */
422 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
423 	desc->die_dt = DT_LINKFIX; /* type */
424 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
425 
426 	/* TX descriptor base address for best effort */
427 	desc = &priv->desc_bat[q];
428 	desc->die_dt = DT_LINKFIX; /* type */
429 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
430 }
431 
432 static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
433 {
434 	struct ravb_private *priv = netdev_priv(ndev);
435 	unsigned int ring_size;
436 
437 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
438 
439 	priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
440 						 &priv->rx_desc_dma[q],
441 						 GFP_KERNEL);
442 	return priv->gbeth_rx_ring;
443 }
444 
445 static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
446 {
447 	struct ravb_private *priv = netdev_priv(ndev);
448 	unsigned int ring_size;
449 
450 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
451 
452 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
453 					      &priv->rx_desc_dma[q],
454 					      GFP_KERNEL);
455 	return priv->rx_ring[q];
456 }
457 
458 /* Init skb and descriptor buffer for Ethernet AVB */
459 static int ravb_ring_init(struct net_device *ndev, int q)
460 {
461 	struct ravb_private *priv = netdev_priv(ndev);
462 	const struct ravb_hw_info *info = priv->info;
463 	unsigned int num_tx_desc = priv->num_tx_desc;
464 	unsigned int ring_size;
465 	struct sk_buff *skb;
466 	unsigned int i;
467 
468 	/* Allocate RX and TX skb rings */
469 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
470 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
471 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
472 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
473 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
474 		goto error;
475 
476 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
477 		skb = netdev_alloc_skb(ndev, info->max_rx_len);
478 		if (!skb)
479 			goto error;
480 		ravb_set_buffer_align(skb);
481 		priv->rx_skb[q][i] = skb;
482 	}
483 
484 	if (num_tx_desc > 1) {
485 		/* Allocate rings for the aligned buffers */
486 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
487 					    DPTR_ALIGN - 1, GFP_KERNEL);
488 		if (!priv->tx_align[q])
489 			goto error;
490 	}
491 
492 	/* Allocate all RX descriptors. */
493 	if (!info->alloc_rx_desc(ndev, q))
494 		goto error;
495 
496 	priv->dirty_rx[q] = 0;
497 
498 	/* Allocate all TX descriptors. */
499 	ring_size = sizeof(struct ravb_tx_desc) *
500 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
501 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
502 					      &priv->tx_desc_dma[q],
503 					      GFP_KERNEL);
504 	if (!priv->tx_ring[q])
505 		goto error;
506 
507 	return 0;
508 
509 error:
510 	ravb_ring_free(ndev, q);
511 
512 	return -ENOMEM;
513 }
514 
515 static void ravb_emac_init_gbeth(struct net_device *ndev)
516 {
517 	struct ravb_private *priv = netdev_priv(ndev);
518 
519 	/* Receive frame limit set register */
520 	ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
521 
522 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
523 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
524 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
525 			 ECMR_TXF | ECMR_RXF, ECMR);
526 
527 	ravb_set_rate_gbeth(ndev);
528 
529 	/* Set MAC address */
530 	ravb_write(ndev,
531 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
532 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
533 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
534 
535 	/* E-MAC status register clear */
536 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
537 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
538 
539 	/* E-MAC interrupt enable register */
540 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
541 
542 	ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, CXR31_SEL_LINK0);
543 }
544 
545 static void ravb_emac_init_rcar(struct net_device *ndev)
546 {
547 	/* Receive frame limit set register */
548 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
549 
550 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
551 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
552 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
553 		   ECMR_TE | ECMR_RE, ECMR);
554 
555 	ravb_set_rate_rcar(ndev);
556 
557 	/* Set MAC address */
558 	ravb_write(ndev,
559 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
560 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
561 	ravb_write(ndev,
562 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
563 
564 	/* E-MAC status register clear */
565 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
566 
567 	/* E-MAC interrupt enable register */
568 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
569 }
570 
571 /* E-MAC init function */
572 static void ravb_emac_init(struct net_device *ndev)
573 {
574 	struct ravb_private *priv = netdev_priv(ndev);
575 	const struct ravb_hw_info *info = priv->info;
576 
577 	info->emac_init(ndev);
578 }
579 
580 static int ravb_dmac_init_gbeth(struct net_device *ndev)
581 {
582 	int error;
583 
584 	error = ravb_ring_init(ndev, RAVB_BE);
585 	if (error)
586 		return error;
587 
588 	/* Descriptor format */
589 	ravb_ring_format(ndev, RAVB_BE);
590 
591 	/* Set DMAC RX */
592 	ravb_write(ndev, 0x60000000, RCR);
593 
594 	/* Set Max Frame Length (RTC) */
595 	ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
596 
597 	/* Set FIFO size */
598 	ravb_write(ndev, 0x00222200, TGC);
599 
600 	ravb_write(ndev, 0, TCCR);
601 
602 	/* Frame receive */
603 	ravb_write(ndev, RIC0_FRE0, RIC0);
604 	/* Disable FIFO full warning */
605 	ravb_write(ndev, 0x0, RIC1);
606 	/* Receive FIFO full error, descriptor empty */
607 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
608 
609 	ravb_write(ndev, TIC_FTE0, TIC);
610 
611 	return 0;
612 }
613 
614 static int ravb_dmac_init_rcar(struct net_device *ndev)
615 {
616 	struct ravb_private *priv = netdev_priv(ndev);
617 	const struct ravb_hw_info *info = priv->info;
618 	int error;
619 
620 	error = ravb_ring_init(ndev, RAVB_BE);
621 	if (error)
622 		return error;
623 	error = ravb_ring_init(ndev, RAVB_NC);
624 	if (error) {
625 		ravb_ring_free(ndev, RAVB_BE);
626 		return error;
627 	}
628 
629 	/* Descriptor format */
630 	ravb_ring_format(ndev, RAVB_BE);
631 	ravb_ring_format(ndev, RAVB_NC);
632 
633 	/* Set AVB RX */
634 	ravb_write(ndev,
635 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
636 
637 	/* Set FIFO size */
638 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
639 
640 	/* Timestamp enable */
641 	ravb_write(ndev, TCCR_TFEN, TCCR);
642 
643 	/* Interrupt init: */
644 	if (info->multi_irqs) {
645 		/* Clear DIL.DPLx */
646 		ravb_write(ndev, 0, DIL);
647 		/* Set queue specific interrupt */
648 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
649 	}
650 	/* Frame receive */
651 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
652 	/* Disable FIFO full warning */
653 	ravb_write(ndev, 0, RIC1);
654 	/* Receive FIFO full error, descriptor empty */
655 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
656 	/* Frame transmitted, timestamp FIFO updated */
657 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
658 
659 	return 0;
660 }
661 
662 /* Device init function for Ethernet AVB */
663 static int ravb_dmac_init(struct net_device *ndev)
664 {
665 	struct ravb_private *priv = netdev_priv(ndev);
666 	const struct ravb_hw_info *info = priv->info;
667 	int error;
668 
669 	/* Set CONFIG mode */
670 	error = ravb_config(ndev);
671 	if (error)
672 		return error;
673 
674 	error = info->dmac_init(ndev);
675 	if (error)
676 		return error;
677 
678 	/* Setting the control will start the AVB-DMAC process. */
679 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
680 
681 	return 0;
682 }
683 
684 static void ravb_get_tx_tstamp(struct net_device *ndev)
685 {
686 	struct ravb_private *priv = netdev_priv(ndev);
687 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
688 	struct skb_shared_hwtstamps shhwtstamps;
689 	struct sk_buff *skb;
690 	struct timespec64 ts;
691 	u16 tag, tfa_tag;
692 	int count;
693 	u32 tfa2;
694 
695 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
696 	while (count--) {
697 		tfa2 = ravb_read(ndev, TFA2);
698 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
699 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
700 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
701 			    ravb_read(ndev, TFA1);
702 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
703 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
704 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
705 					 list) {
706 			skb = ts_skb->skb;
707 			tag = ts_skb->tag;
708 			list_del(&ts_skb->list);
709 			kfree(ts_skb);
710 			if (tag == tfa_tag) {
711 				skb_tstamp_tx(skb, &shhwtstamps);
712 				dev_consume_skb_any(skb);
713 				break;
714 			} else {
715 				dev_kfree_skb_any(skb);
716 			}
717 		}
718 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
719 	}
720 }
721 
722 static void ravb_rx_csum(struct sk_buff *skb)
723 {
724 	u8 *hw_csum;
725 
726 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
727 	 * appended to packet data
728 	 */
729 	if (unlikely(skb->len < sizeof(__sum16)))
730 		return;
731 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
732 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
733 	skb->ip_summed = CHECKSUM_COMPLETE;
734 	skb_trim(skb, skb->len - sizeof(__sum16));
735 }
736 
737 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
738 					  struct ravb_rx_desc *desc)
739 {
740 	struct ravb_private *priv = netdev_priv(ndev);
741 	struct sk_buff *skb;
742 
743 	skb = priv->rx_skb[RAVB_BE][entry];
744 	priv->rx_skb[RAVB_BE][entry] = NULL;
745 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
746 			 ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
747 
748 	return skb;
749 }
750 
751 /* Packet receive function for Gigabit Ethernet */
752 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
753 {
754 	struct ravb_private *priv = netdev_priv(ndev);
755 	const struct ravb_hw_info *info = priv->info;
756 	struct net_device_stats *stats;
757 	struct ravb_rx_desc *desc;
758 	struct sk_buff *skb;
759 	dma_addr_t dma_addr;
760 	u8  desc_status;
761 	int boguscnt;
762 	u16 pkt_len;
763 	u8  die_dt;
764 	int entry;
765 	int limit;
766 
767 	entry = priv->cur_rx[q] % priv->num_rx_ring[q];
768 	boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
769 	stats = &priv->stats[q];
770 
771 	boguscnt = min(boguscnt, *quota);
772 	limit = boguscnt;
773 	desc = &priv->gbeth_rx_ring[entry];
774 	while (desc->die_dt != DT_FEMPTY) {
775 		/* Descriptor type must be checked before all other reads */
776 		dma_rmb();
777 		desc_status = desc->msc;
778 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
779 
780 		if (--boguscnt < 0)
781 			break;
782 
783 		/* We use 0-byte descriptors to mark the DMA mapping errors */
784 		if (!pkt_len)
785 			continue;
786 
787 		if (desc_status & MSC_MC)
788 			stats->multicast++;
789 
790 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
791 			stats->rx_errors++;
792 			if (desc_status & MSC_CRC)
793 				stats->rx_crc_errors++;
794 			if (desc_status & MSC_RFE)
795 				stats->rx_frame_errors++;
796 			if (desc_status & (MSC_RTLF | MSC_RTSF))
797 				stats->rx_length_errors++;
798 			if (desc_status & MSC_CEEF)
799 				stats->rx_missed_errors++;
800 		} else {
801 			die_dt = desc->die_dt & 0xF0;
802 			switch (die_dt) {
803 			case DT_FSINGLE:
804 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
805 				skb_put(skb, pkt_len);
806 				skb->protocol = eth_type_trans(skb, ndev);
807 				napi_gro_receive(&priv->napi[q], skb);
808 				stats->rx_packets++;
809 				stats->rx_bytes += pkt_len;
810 				break;
811 			case DT_FSTART:
812 				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
813 				skb_put(priv->rx_1st_skb, pkt_len);
814 				break;
815 			case DT_FMID:
816 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
817 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
818 							       priv->rx_1st_skb->len,
819 							       skb->data,
820 							       pkt_len);
821 				skb_put(priv->rx_1st_skb, pkt_len);
822 				dev_kfree_skb(skb);
823 				break;
824 			case DT_FEND:
825 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
826 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
827 							       priv->rx_1st_skb->len,
828 							       skb->data,
829 							       pkt_len);
830 				skb_put(priv->rx_1st_skb, pkt_len);
831 				dev_kfree_skb(skb);
832 				priv->rx_1st_skb->protocol =
833 					eth_type_trans(priv->rx_1st_skb, ndev);
834 				napi_gro_receive(&priv->napi[q],
835 						 priv->rx_1st_skb);
836 				stats->rx_packets++;
837 				stats->rx_bytes += priv->rx_1st_skb->len;
838 				break;
839 			}
840 		}
841 
842 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
843 		desc = &priv->gbeth_rx_ring[entry];
844 	}
845 
846 	/* Refill the RX ring buffers. */
847 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
848 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
849 		desc = &priv->gbeth_rx_ring[entry];
850 		desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
851 
852 		if (!priv->rx_skb[q][entry]) {
853 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
854 			if (!skb)
855 				break;
856 			ravb_set_buffer_align(skb);
857 			dma_addr = dma_map_single(ndev->dev.parent,
858 						  skb->data,
859 						  GBETH_RX_BUFF_MAX,
860 						  DMA_FROM_DEVICE);
861 			skb_checksum_none_assert(skb);
862 			/* We just set the data size to 0 for a failed mapping
863 			 * which should prevent DMA  from happening...
864 			 */
865 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
866 				desc->ds_cc = cpu_to_le16(0);
867 			desc->dptr = cpu_to_le32(dma_addr);
868 			priv->rx_skb[q][entry] = skb;
869 		}
870 		/* Descriptor type must be set after all the above writes */
871 		dma_wmb();
872 		desc->die_dt = DT_FEMPTY;
873 	}
874 
875 	*quota -= limit - (++boguscnt);
876 
877 	return boguscnt <= 0;
878 }
879 
880 /* Packet receive function for Ethernet AVB */
881 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
882 {
883 	struct ravb_private *priv = netdev_priv(ndev);
884 	const struct ravb_hw_info *info = priv->info;
885 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
886 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
887 			priv->cur_rx[q];
888 	struct net_device_stats *stats = &priv->stats[q];
889 	struct ravb_ex_rx_desc *desc;
890 	struct sk_buff *skb;
891 	dma_addr_t dma_addr;
892 	struct timespec64 ts;
893 	u8  desc_status;
894 	u16 pkt_len;
895 	int limit;
896 
897 	boguscnt = min(boguscnt, *quota);
898 	limit = boguscnt;
899 	desc = &priv->rx_ring[q][entry];
900 	while (desc->die_dt != DT_FEMPTY) {
901 		/* Descriptor type must be checked before all other reads */
902 		dma_rmb();
903 		desc_status = desc->msc;
904 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
905 
906 		if (--boguscnt < 0)
907 			break;
908 
909 		/* We use 0-byte descriptors to mark the DMA mapping errors */
910 		if (!pkt_len)
911 			continue;
912 
913 		if (desc_status & MSC_MC)
914 			stats->multicast++;
915 
916 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
917 				   MSC_CEEF)) {
918 			stats->rx_errors++;
919 			if (desc_status & MSC_CRC)
920 				stats->rx_crc_errors++;
921 			if (desc_status & MSC_RFE)
922 				stats->rx_frame_errors++;
923 			if (desc_status & (MSC_RTLF | MSC_RTSF))
924 				stats->rx_length_errors++;
925 			if (desc_status & MSC_CEEF)
926 				stats->rx_missed_errors++;
927 		} else {
928 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
929 
930 			skb = priv->rx_skb[q][entry];
931 			priv->rx_skb[q][entry] = NULL;
932 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
933 					 RX_BUF_SZ,
934 					 DMA_FROM_DEVICE);
935 			get_ts &= (q == RAVB_NC) ?
936 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
937 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
938 			if (get_ts) {
939 				struct skb_shared_hwtstamps *shhwtstamps;
940 
941 				shhwtstamps = skb_hwtstamps(skb);
942 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
943 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
944 					     32) | le32_to_cpu(desc->ts_sl);
945 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
946 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
947 			}
948 
949 			skb_put(skb, pkt_len);
950 			skb->protocol = eth_type_trans(skb, ndev);
951 			if (ndev->features & NETIF_F_RXCSUM)
952 				ravb_rx_csum(skb);
953 			napi_gro_receive(&priv->napi[q], skb);
954 			stats->rx_packets++;
955 			stats->rx_bytes += pkt_len;
956 		}
957 
958 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
959 		desc = &priv->rx_ring[q][entry];
960 	}
961 
962 	/* Refill the RX ring buffers. */
963 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
964 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
965 		desc = &priv->rx_ring[q][entry];
966 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
967 
968 		if (!priv->rx_skb[q][entry]) {
969 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
970 			if (!skb)
971 				break;	/* Better luck next round. */
972 			ravb_set_buffer_align(skb);
973 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
974 						  le16_to_cpu(desc->ds_cc),
975 						  DMA_FROM_DEVICE);
976 			skb_checksum_none_assert(skb);
977 			/* We just set the data size to 0 for a failed mapping
978 			 * which should prevent DMA  from happening...
979 			 */
980 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
981 				desc->ds_cc = cpu_to_le16(0);
982 			desc->dptr = cpu_to_le32(dma_addr);
983 			priv->rx_skb[q][entry] = skb;
984 		}
985 		/* Descriptor type must be set after all the above writes */
986 		dma_wmb();
987 		desc->die_dt = DT_FEMPTY;
988 	}
989 
990 	*quota -= limit - (++boguscnt);
991 
992 	return boguscnt <= 0;
993 }
994 
995 /* Packet receive function for Ethernet AVB */
996 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
997 {
998 	struct ravb_private *priv = netdev_priv(ndev);
999 	const struct ravb_hw_info *info = priv->info;
1000 
1001 	return info->receive(ndev, quota, q);
1002 }
1003 
1004 static void ravb_rcv_snd_disable(struct net_device *ndev)
1005 {
1006 	/* Disable TX and RX */
1007 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1008 }
1009 
1010 static void ravb_rcv_snd_enable(struct net_device *ndev)
1011 {
1012 	/* Enable TX and RX */
1013 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1014 }
1015 
1016 /* function for waiting dma process finished */
1017 static int ravb_stop_dma(struct net_device *ndev)
1018 {
1019 	struct ravb_private *priv = netdev_priv(ndev);
1020 	const struct ravb_hw_info *info = priv->info;
1021 	int error;
1022 
1023 	/* Wait for stopping the hardware TX process */
1024 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1025 
1026 	if (error)
1027 		return error;
1028 
1029 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1030 			  0);
1031 	if (error)
1032 		return error;
1033 
1034 	/* Stop the E-MAC's RX/TX processes. */
1035 	ravb_rcv_snd_disable(ndev);
1036 
1037 	/* Wait for stopping the RX DMA process */
1038 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1039 	if (error)
1040 		return error;
1041 
1042 	/* Stop AVB-DMAC process */
1043 	return ravb_config(ndev);
1044 }
1045 
1046 /* E-MAC interrupt handler */
1047 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1048 {
1049 	struct ravb_private *priv = netdev_priv(ndev);
1050 	u32 ecsr, psr;
1051 
1052 	ecsr = ravb_read(ndev, ECSR);
1053 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1054 
1055 	if (ecsr & ECSR_MPD)
1056 		pm_wakeup_event(&priv->pdev->dev, 0);
1057 	if (ecsr & ECSR_ICD)
1058 		ndev->stats.tx_carrier_errors++;
1059 	if (ecsr & ECSR_LCHNG) {
1060 		/* Link changed */
1061 		if (priv->no_avb_link)
1062 			return;
1063 		psr = ravb_read(ndev, PSR);
1064 		if (priv->avb_link_active_low)
1065 			psr ^= PSR_LMON;
1066 		if (!(psr & PSR_LMON)) {
1067 			/* DIsable RX and TX */
1068 			ravb_rcv_snd_disable(ndev);
1069 		} else {
1070 			/* Enable RX and TX */
1071 			ravb_rcv_snd_enable(ndev);
1072 		}
1073 	}
1074 }
1075 
1076 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1077 {
1078 	struct net_device *ndev = dev_id;
1079 	struct ravb_private *priv = netdev_priv(ndev);
1080 
1081 	spin_lock(&priv->lock);
1082 	ravb_emac_interrupt_unlocked(ndev);
1083 	spin_unlock(&priv->lock);
1084 	return IRQ_HANDLED;
1085 }
1086 
1087 /* Error interrupt handler */
1088 static void ravb_error_interrupt(struct net_device *ndev)
1089 {
1090 	struct ravb_private *priv = netdev_priv(ndev);
1091 	u32 eis, ris2;
1092 
1093 	eis = ravb_read(ndev, EIS);
1094 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1095 	if (eis & EIS_QFS) {
1096 		ris2 = ravb_read(ndev, RIS2);
1097 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
1098 			   RIS2);
1099 
1100 		/* Receive Descriptor Empty int */
1101 		if (ris2 & RIS2_QFF0)
1102 			priv->stats[RAVB_BE].rx_over_errors++;
1103 
1104 		    /* Receive Descriptor Empty int */
1105 		if (ris2 & RIS2_QFF1)
1106 			priv->stats[RAVB_NC].rx_over_errors++;
1107 
1108 		/* Receive FIFO Overflow int */
1109 		if (ris2 & RIS2_RFFF)
1110 			priv->rx_fifo_errors++;
1111 	}
1112 }
1113 
1114 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1115 {
1116 	struct ravb_private *priv = netdev_priv(ndev);
1117 	const struct ravb_hw_info *info = priv->info;
1118 	u32 ris0 = ravb_read(ndev, RIS0);
1119 	u32 ric0 = ravb_read(ndev, RIC0);
1120 	u32 tis  = ravb_read(ndev, TIS);
1121 	u32 tic  = ravb_read(ndev, TIC);
1122 
1123 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1124 		if (napi_schedule_prep(&priv->napi[q])) {
1125 			/* Mask RX and TX interrupts */
1126 			if (!info->multi_irqs) {
1127 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1128 				ravb_write(ndev, tic & ~BIT(q), TIC);
1129 			} else {
1130 				ravb_write(ndev, BIT(q), RID0);
1131 				ravb_write(ndev, BIT(q), TID);
1132 			}
1133 			__napi_schedule(&priv->napi[q]);
1134 		} else {
1135 			netdev_warn(ndev,
1136 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1137 				    ris0, ric0);
1138 			netdev_warn(ndev,
1139 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1140 				    tis, tic);
1141 		}
1142 		return true;
1143 	}
1144 	return false;
1145 }
1146 
1147 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1148 {
1149 	u32 tis = ravb_read(ndev, TIS);
1150 
1151 	if (tis & TIS_TFUF) {
1152 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1153 		ravb_get_tx_tstamp(ndev);
1154 		return true;
1155 	}
1156 	return false;
1157 }
1158 
1159 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1160 {
1161 	struct net_device *ndev = dev_id;
1162 	struct ravb_private *priv = netdev_priv(ndev);
1163 	const struct ravb_hw_info *info = priv->info;
1164 	irqreturn_t result = IRQ_NONE;
1165 	u32 iss;
1166 
1167 	spin_lock(&priv->lock);
1168 	/* Get interrupt status */
1169 	iss = ravb_read(ndev, ISS);
1170 
1171 	/* Received and transmitted interrupts */
1172 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1173 		int q;
1174 
1175 		/* Timestamp updated */
1176 		if (ravb_timestamp_interrupt(ndev))
1177 			result = IRQ_HANDLED;
1178 
1179 		/* Network control and best effort queue RX/TX */
1180 		if (info->nc_queues) {
1181 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1182 				if (ravb_queue_interrupt(ndev, q))
1183 					result = IRQ_HANDLED;
1184 			}
1185 		} else {
1186 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1187 				result = IRQ_HANDLED;
1188 		}
1189 	}
1190 
1191 	/* E-MAC status summary */
1192 	if (iss & ISS_MS) {
1193 		ravb_emac_interrupt_unlocked(ndev);
1194 		result = IRQ_HANDLED;
1195 	}
1196 
1197 	/* Error status summary */
1198 	if (iss & ISS_ES) {
1199 		ravb_error_interrupt(ndev);
1200 		result = IRQ_HANDLED;
1201 	}
1202 
1203 	/* gPTP interrupt status summary */
1204 	if (iss & ISS_CGIS) {
1205 		ravb_ptp_interrupt(ndev);
1206 		result = IRQ_HANDLED;
1207 	}
1208 
1209 	spin_unlock(&priv->lock);
1210 	return result;
1211 }
1212 
1213 /* Timestamp/Error/gPTP interrupt handler */
1214 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1215 {
1216 	struct net_device *ndev = dev_id;
1217 	struct ravb_private *priv = netdev_priv(ndev);
1218 	irqreturn_t result = IRQ_NONE;
1219 	u32 iss;
1220 
1221 	spin_lock(&priv->lock);
1222 	/* Get interrupt status */
1223 	iss = ravb_read(ndev, ISS);
1224 
1225 	/* Timestamp updated */
1226 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1227 		result = IRQ_HANDLED;
1228 
1229 	/* Error status summary */
1230 	if (iss & ISS_ES) {
1231 		ravb_error_interrupt(ndev);
1232 		result = IRQ_HANDLED;
1233 	}
1234 
1235 	/* gPTP interrupt status summary */
1236 	if (iss & ISS_CGIS) {
1237 		ravb_ptp_interrupt(ndev);
1238 		result = IRQ_HANDLED;
1239 	}
1240 
1241 	spin_unlock(&priv->lock);
1242 	return result;
1243 }
1244 
1245 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1246 {
1247 	struct net_device *ndev = dev_id;
1248 	struct ravb_private *priv = netdev_priv(ndev);
1249 	irqreturn_t result = IRQ_NONE;
1250 
1251 	spin_lock(&priv->lock);
1252 
1253 	/* Network control/Best effort queue RX/TX */
1254 	if (ravb_queue_interrupt(ndev, q))
1255 		result = IRQ_HANDLED;
1256 
1257 	spin_unlock(&priv->lock);
1258 	return result;
1259 }
1260 
1261 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1262 {
1263 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1264 }
1265 
1266 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1267 {
1268 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1269 }
1270 
1271 static int ravb_poll(struct napi_struct *napi, int budget)
1272 {
1273 	struct net_device *ndev = napi->dev;
1274 	struct ravb_private *priv = netdev_priv(ndev);
1275 	const struct ravb_hw_info *info = priv->info;
1276 	bool gptp = info->gptp || info->ccc_gac;
1277 	struct ravb_rx_desc *desc;
1278 	unsigned long flags;
1279 	int q = napi - priv->napi;
1280 	int mask = BIT(q);
1281 	int quota = budget;
1282 	unsigned int entry;
1283 
1284 	if (!gptp) {
1285 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
1286 		desc = &priv->gbeth_rx_ring[entry];
1287 	}
1288 	/* Processing RX Descriptor Ring */
1289 	/* Clear RX interrupt */
1290 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1291 	if (gptp || desc->die_dt != DT_FEMPTY) {
1292 		if (ravb_rx(ndev, &quota, q))
1293 			goto out;
1294 	}
1295 
1296 	/* Processing TX Descriptor Ring */
1297 	spin_lock_irqsave(&priv->lock, flags);
1298 	/* Clear TX interrupt */
1299 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1300 	ravb_tx_free(ndev, q, true);
1301 	netif_wake_subqueue(ndev, q);
1302 	spin_unlock_irqrestore(&priv->lock, flags);
1303 
1304 	napi_complete(napi);
1305 
1306 	/* Re-enable RX/TX interrupts */
1307 	spin_lock_irqsave(&priv->lock, flags);
1308 	if (!info->multi_irqs) {
1309 		ravb_modify(ndev, RIC0, mask, mask);
1310 		ravb_modify(ndev, TIC,  mask, mask);
1311 	} else {
1312 		ravb_write(ndev, mask, RIE0);
1313 		ravb_write(ndev, mask, TIE);
1314 	}
1315 	spin_unlock_irqrestore(&priv->lock, flags);
1316 
1317 	/* Receive error message handling */
1318 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1319 	if (info->nc_queues)
1320 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1321 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1322 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1323 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1324 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1325 out:
1326 	return budget - quota;
1327 }
1328 
1329 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1330 {
1331 	struct ravb_private *priv = netdev_priv(ndev);
1332 
1333 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1334 }
1335 
1336 /* PHY state control function */
1337 static void ravb_adjust_link(struct net_device *ndev)
1338 {
1339 	struct ravb_private *priv = netdev_priv(ndev);
1340 	const struct ravb_hw_info *info = priv->info;
1341 	struct phy_device *phydev = ndev->phydev;
1342 	bool new_state = false;
1343 	unsigned long flags;
1344 
1345 	spin_lock_irqsave(&priv->lock, flags);
1346 
1347 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1348 	if (priv->no_avb_link)
1349 		ravb_rcv_snd_disable(ndev);
1350 
1351 	if (phydev->link) {
1352 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1353 			new_state = true;
1354 			priv->duplex = phydev->duplex;
1355 			ravb_set_duplex_gbeth(ndev);
1356 		}
1357 
1358 		if (phydev->speed != priv->speed) {
1359 			new_state = true;
1360 			priv->speed = phydev->speed;
1361 			info->set_rate(ndev);
1362 		}
1363 		if (!priv->link) {
1364 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1365 			new_state = true;
1366 			priv->link = phydev->link;
1367 		}
1368 	} else if (priv->link) {
1369 		new_state = true;
1370 		priv->link = 0;
1371 		priv->speed = 0;
1372 		if (info->half_duplex)
1373 			priv->duplex = -1;
1374 	}
1375 
1376 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1377 	if (priv->no_avb_link && phydev->link)
1378 		ravb_rcv_snd_enable(ndev);
1379 
1380 	spin_unlock_irqrestore(&priv->lock, flags);
1381 
1382 	if (new_state && netif_msg_link(priv))
1383 		phy_print_status(phydev);
1384 }
1385 
1386 static const struct soc_device_attribute r8a7795es10[] = {
1387 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1388 	{ /* sentinel */ }
1389 };
1390 
1391 /* PHY init function */
1392 static int ravb_phy_init(struct net_device *ndev)
1393 {
1394 	struct device_node *np = ndev->dev.parent->of_node;
1395 	struct ravb_private *priv = netdev_priv(ndev);
1396 	const struct ravb_hw_info *info = priv->info;
1397 	struct phy_device *phydev;
1398 	struct device_node *pn;
1399 	phy_interface_t iface;
1400 	int err;
1401 
1402 	priv->link = 0;
1403 	priv->speed = 0;
1404 	priv->duplex = -1;
1405 
1406 	/* Try connecting to PHY */
1407 	pn = of_parse_phandle(np, "phy-handle", 0);
1408 	if (!pn) {
1409 		/* In the case of a fixed PHY, the DT node associated
1410 		 * to the PHY is the Ethernet MAC DT node.
1411 		 */
1412 		if (of_phy_is_fixed_link(np)) {
1413 			err = of_phy_register_fixed_link(np);
1414 			if (err)
1415 				return err;
1416 		}
1417 		pn = of_node_get(np);
1418 	}
1419 
1420 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1421 				     : priv->phy_interface;
1422 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1423 	of_node_put(pn);
1424 	if (!phydev) {
1425 		netdev_err(ndev, "failed to connect PHY\n");
1426 		err = -ENOENT;
1427 		goto err_deregister_fixed_link;
1428 	}
1429 
1430 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1431 	 * at this time.
1432 	 */
1433 	if (soc_device_match(r8a7795es10)) {
1434 		err = phy_set_max_speed(phydev, SPEED_100);
1435 		if (err) {
1436 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1437 			goto err_phy_disconnect;
1438 		}
1439 
1440 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1441 	}
1442 
1443 	if (!info->half_duplex) {
1444 		/* 10BASE, Pause and Asym Pause is not supported */
1445 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1446 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1447 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1448 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1449 
1450 		/* Half Duplex is not supported */
1451 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1452 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1453 	}
1454 
1455 	phy_attached_info(phydev);
1456 
1457 	return 0;
1458 
1459 err_phy_disconnect:
1460 	phy_disconnect(phydev);
1461 err_deregister_fixed_link:
1462 	if (of_phy_is_fixed_link(np))
1463 		of_phy_deregister_fixed_link(np);
1464 
1465 	return err;
1466 }
1467 
1468 /* PHY control start function */
1469 static int ravb_phy_start(struct net_device *ndev)
1470 {
1471 	int error;
1472 
1473 	error = ravb_phy_init(ndev);
1474 	if (error)
1475 		return error;
1476 
1477 	phy_start(ndev->phydev);
1478 
1479 	return 0;
1480 }
1481 
1482 static u32 ravb_get_msglevel(struct net_device *ndev)
1483 {
1484 	struct ravb_private *priv = netdev_priv(ndev);
1485 
1486 	return priv->msg_enable;
1487 }
1488 
1489 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1490 {
1491 	struct ravb_private *priv = netdev_priv(ndev);
1492 
1493 	priv->msg_enable = value;
1494 }
1495 
1496 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1497 	"rx_queue_0_current",
1498 	"tx_queue_0_current",
1499 	"rx_queue_0_dirty",
1500 	"tx_queue_0_dirty",
1501 	"rx_queue_0_packets",
1502 	"tx_queue_0_packets",
1503 	"rx_queue_0_bytes",
1504 	"tx_queue_0_bytes",
1505 	"rx_queue_0_mcast_packets",
1506 	"rx_queue_0_errors",
1507 	"rx_queue_0_crc_errors",
1508 	"rx_queue_0_frame_errors",
1509 	"rx_queue_0_length_errors",
1510 	"rx_queue_0_csum_offload_errors",
1511 	"rx_queue_0_over_errors",
1512 };
1513 
1514 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1515 	"rx_queue_0_current",
1516 	"tx_queue_0_current",
1517 	"rx_queue_0_dirty",
1518 	"tx_queue_0_dirty",
1519 	"rx_queue_0_packets",
1520 	"tx_queue_0_packets",
1521 	"rx_queue_0_bytes",
1522 	"tx_queue_0_bytes",
1523 	"rx_queue_0_mcast_packets",
1524 	"rx_queue_0_errors",
1525 	"rx_queue_0_crc_errors",
1526 	"rx_queue_0_frame_errors",
1527 	"rx_queue_0_length_errors",
1528 	"rx_queue_0_missed_errors",
1529 	"rx_queue_0_over_errors",
1530 
1531 	"rx_queue_1_current",
1532 	"tx_queue_1_current",
1533 	"rx_queue_1_dirty",
1534 	"tx_queue_1_dirty",
1535 	"rx_queue_1_packets",
1536 	"tx_queue_1_packets",
1537 	"rx_queue_1_bytes",
1538 	"tx_queue_1_bytes",
1539 	"rx_queue_1_mcast_packets",
1540 	"rx_queue_1_errors",
1541 	"rx_queue_1_crc_errors",
1542 	"rx_queue_1_frame_errors",
1543 	"rx_queue_1_length_errors",
1544 	"rx_queue_1_missed_errors",
1545 	"rx_queue_1_over_errors",
1546 };
1547 
1548 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1549 {
1550 	struct ravb_private *priv = netdev_priv(netdev);
1551 	const struct ravb_hw_info *info = priv->info;
1552 
1553 	switch (sset) {
1554 	case ETH_SS_STATS:
1555 		return info->stats_len;
1556 	default:
1557 		return -EOPNOTSUPP;
1558 	}
1559 }
1560 
1561 static void ravb_get_ethtool_stats(struct net_device *ndev,
1562 				   struct ethtool_stats *estats, u64 *data)
1563 {
1564 	struct ravb_private *priv = netdev_priv(ndev);
1565 	const struct ravb_hw_info *info = priv->info;
1566 	int num_rx_q;
1567 	int i = 0;
1568 	int q;
1569 
1570 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1571 	/* Device-specific stats */
1572 	for (q = RAVB_BE; q < num_rx_q; q++) {
1573 		struct net_device_stats *stats = &priv->stats[q];
1574 
1575 		data[i++] = priv->cur_rx[q];
1576 		data[i++] = priv->cur_tx[q];
1577 		data[i++] = priv->dirty_rx[q];
1578 		data[i++] = priv->dirty_tx[q];
1579 		data[i++] = stats->rx_packets;
1580 		data[i++] = stats->tx_packets;
1581 		data[i++] = stats->rx_bytes;
1582 		data[i++] = stats->tx_bytes;
1583 		data[i++] = stats->multicast;
1584 		data[i++] = stats->rx_errors;
1585 		data[i++] = stats->rx_crc_errors;
1586 		data[i++] = stats->rx_frame_errors;
1587 		data[i++] = stats->rx_length_errors;
1588 		data[i++] = stats->rx_missed_errors;
1589 		data[i++] = stats->rx_over_errors;
1590 	}
1591 }
1592 
1593 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1594 {
1595 	struct ravb_private *priv = netdev_priv(ndev);
1596 	const struct ravb_hw_info *info = priv->info;
1597 
1598 	switch (stringset) {
1599 	case ETH_SS_STATS:
1600 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1601 		break;
1602 	}
1603 }
1604 
1605 static void ravb_get_ringparam(struct net_device *ndev,
1606 			       struct ethtool_ringparam *ring)
1607 {
1608 	struct ravb_private *priv = netdev_priv(ndev);
1609 
1610 	ring->rx_max_pending = BE_RX_RING_MAX;
1611 	ring->tx_max_pending = BE_TX_RING_MAX;
1612 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1613 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1614 }
1615 
1616 static int ravb_set_ringparam(struct net_device *ndev,
1617 			      struct ethtool_ringparam *ring)
1618 {
1619 	struct ravb_private *priv = netdev_priv(ndev);
1620 	const struct ravb_hw_info *info = priv->info;
1621 	int error;
1622 
1623 	if (ring->tx_pending > BE_TX_RING_MAX ||
1624 	    ring->rx_pending > BE_RX_RING_MAX ||
1625 	    ring->tx_pending < BE_TX_RING_MIN ||
1626 	    ring->rx_pending < BE_RX_RING_MIN)
1627 		return -EINVAL;
1628 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1629 		return -EINVAL;
1630 
1631 	if (netif_running(ndev)) {
1632 		netif_device_detach(ndev);
1633 		/* Stop PTP Clock driver */
1634 		if (info->gptp)
1635 			ravb_ptp_stop(ndev);
1636 		/* Wait for DMA stopping */
1637 		error = ravb_stop_dma(ndev);
1638 		if (error) {
1639 			netdev_err(ndev,
1640 				   "cannot set ringparam! Any AVB processes are still running?\n");
1641 			return error;
1642 		}
1643 		synchronize_irq(ndev->irq);
1644 
1645 		/* Free all the skb's in the RX queue and the DMA buffers. */
1646 		ravb_ring_free(ndev, RAVB_BE);
1647 		if (info->nc_queues)
1648 			ravb_ring_free(ndev, RAVB_NC);
1649 	}
1650 
1651 	/* Set new parameters */
1652 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1653 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1654 
1655 	if (netif_running(ndev)) {
1656 		error = ravb_dmac_init(ndev);
1657 		if (error) {
1658 			netdev_err(ndev,
1659 				   "%s: ravb_dmac_init() failed, error %d\n",
1660 				   __func__, error);
1661 			return error;
1662 		}
1663 
1664 		ravb_emac_init(ndev);
1665 
1666 		/* Initialise PTP Clock driver */
1667 		if (info->gptp)
1668 			ravb_ptp_init(ndev, priv->pdev);
1669 
1670 		netif_device_attach(ndev);
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static int ravb_get_ts_info(struct net_device *ndev,
1677 			    struct ethtool_ts_info *info)
1678 {
1679 	struct ravb_private *priv = netdev_priv(ndev);
1680 	const struct ravb_hw_info *hw_info = priv->info;
1681 
1682 	info->so_timestamping =
1683 		SOF_TIMESTAMPING_TX_SOFTWARE |
1684 		SOF_TIMESTAMPING_RX_SOFTWARE |
1685 		SOF_TIMESTAMPING_SOFTWARE |
1686 		SOF_TIMESTAMPING_TX_HARDWARE |
1687 		SOF_TIMESTAMPING_RX_HARDWARE |
1688 		SOF_TIMESTAMPING_RAW_HARDWARE;
1689 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1690 	info->rx_filters =
1691 		(1 << HWTSTAMP_FILTER_NONE) |
1692 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1693 		(1 << HWTSTAMP_FILTER_ALL);
1694 	if (hw_info->gptp || hw_info->ccc_gac)
1695 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1696 
1697 	return 0;
1698 }
1699 
1700 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1701 {
1702 	struct ravb_private *priv = netdev_priv(ndev);
1703 
1704 	wol->supported = WAKE_MAGIC;
1705 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1706 }
1707 
1708 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1709 {
1710 	struct ravb_private *priv = netdev_priv(ndev);
1711 	const struct ravb_hw_info *info = priv->info;
1712 
1713 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1714 		return -EOPNOTSUPP;
1715 
1716 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1717 
1718 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1719 
1720 	return 0;
1721 }
1722 
1723 static const struct ethtool_ops ravb_ethtool_ops = {
1724 	.nway_reset		= phy_ethtool_nway_reset,
1725 	.get_msglevel		= ravb_get_msglevel,
1726 	.set_msglevel		= ravb_set_msglevel,
1727 	.get_link		= ethtool_op_get_link,
1728 	.get_strings		= ravb_get_strings,
1729 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1730 	.get_sset_count		= ravb_get_sset_count,
1731 	.get_ringparam		= ravb_get_ringparam,
1732 	.set_ringparam		= ravb_set_ringparam,
1733 	.get_ts_info		= ravb_get_ts_info,
1734 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1735 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1736 	.get_wol		= ravb_get_wol,
1737 	.set_wol		= ravb_set_wol,
1738 };
1739 
1740 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1741 				struct net_device *ndev, struct device *dev,
1742 				const char *ch)
1743 {
1744 	char *name;
1745 	int error;
1746 
1747 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1748 	if (!name)
1749 		return -ENOMEM;
1750 	error = request_irq(irq, handler, 0, name, ndev);
1751 	if (error)
1752 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1753 
1754 	return error;
1755 }
1756 
1757 /* Network device open function for Ethernet AVB */
1758 static int ravb_open(struct net_device *ndev)
1759 {
1760 	struct ravb_private *priv = netdev_priv(ndev);
1761 	const struct ravb_hw_info *info = priv->info;
1762 	struct platform_device *pdev = priv->pdev;
1763 	struct device *dev = &pdev->dev;
1764 	int error;
1765 
1766 	napi_enable(&priv->napi[RAVB_BE]);
1767 	if (info->nc_queues)
1768 		napi_enable(&priv->napi[RAVB_NC]);
1769 
1770 	if (!info->multi_irqs) {
1771 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1772 				    ndev->name, ndev);
1773 		if (error) {
1774 			netdev_err(ndev, "cannot request IRQ\n");
1775 			goto out_napi_off;
1776 		}
1777 	} else {
1778 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1779 				      dev, "ch22:multi");
1780 		if (error)
1781 			goto out_napi_off;
1782 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1783 				      dev, "ch24:emac");
1784 		if (error)
1785 			goto out_free_irq;
1786 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1787 				      ndev, dev, "ch0:rx_be");
1788 		if (error)
1789 			goto out_free_irq_emac;
1790 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1791 				      ndev, dev, "ch18:tx_be");
1792 		if (error)
1793 			goto out_free_irq_be_rx;
1794 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1795 				      ndev, dev, "ch1:rx_nc");
1796 		if (error)
1797 			goto out_free_irq_be_tx;
1798 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1799 				      ndev, dev, "ch19:tx_nc");
1800 		if (error)
1801 			goto out_free_irq_nc_rx;
1802 	}
1803 
1804 	/* Device init */
1805 	error = ravb_dmac_init(ndev);
1806 	if (error)
1807 		goto out_free_irq_nc_tx;
1808 	ravb_emac_init(ndev);
1809 
1810 	/* Initialise PTP Clock driver */
1811 	if (info->gptp)
1812 		ravb_ptp_init(ndev, priv->pdev);
1813 
1814 	netif_tx_start_all_queues(ndev);
1815 
1816 	/* PHY control start */
1817 	error = ravb_phy_start(ndev);
1818 	if (error)
1819 		goto out_ptp_stop;
1820 
1821 	return 0;
1822 
1823 out_ptp_stop:
1824 	/* Stop PTP Clock driver */
1825 	if (info->gptp)
1826 		ravb_ptp_stop(ndev);
1827 out_free_irq_nc_tx:
1828 	if (!info->multi_irqs)
1829 		goto out_free_irq;
1830 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1831 out_free_irq_nc_rx:
1832 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1833 out_free_irq_be_tx:
1834 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1835 out_free_irq_be_rx:
1836 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1837 out_free_irq_emac:
1838 	free_irq(priv->emac_irq, ndev);
1839 out_free_irq:
1840 	free_irq(ndev->irq, ndev);
1841 out_napi_off:
1842 	if (info->nc_queues)
1843 		napi_disable(&priv->napi[RAVB_NC]);
1844 	napi_disable(&priv->napi[RAVB_BE]);
1845 	return error;
1846 }
1847 
1848 /* Timeout function for Ethernet AVB */
1849 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1850 {
1851 	struct ravb_private *priv = netdev_priv(ndev);
1852 
1853 	netif_err(priv, tx_err, ndev,
1854 		  "transmit timed out, status %08x, resetting...\n",
1855 		  ravb_read(ndev, ISS));
1856 
1857 	/* tx_errors count up */
1858 	ndev->stats.tx_errors++;
1859 
1860 	schedule_work(&priv->work);
1861 }
1862 
1863 static void ravb_tx_timeout_work(struct work_struct *work)
1864 {
1865 	struct ravb_private *priv = container_of(work, struct ravb_private,
1866 						 work);
1867 	const struct ravb_hw_info *info = priv->info;
1868 	struct net_device *ndev = priv->ndev;
1869 	int error;
1870 
1871 	netif_tx_stop_all_queues(ndev);
1872 
1873 	/* Stop PTP Clock driver */
1874 	if (info->gptp)
1875 		ravb_ptp_stop(ndev);
1876 
1877 	/* Wait for DMA stopping */
1878 	if (ravb_stop_dma(ndev)) {
1879 		/* If ravb_stop_dma() fails, the hardware is still operating
1880 		 * for TX and/or RX. So, this should not call the following
1881 		 * functions because ravb_dmac_init() is possible to fail too.
1882 		 * Also, this should not retry ravb_stop_dma() again and again
1883 		 * here because it's possible to wait forever. So, this just
1884 		 * re-enables the TX and RX and skip the following
1885 		 * re-initialization procedure.
1886 		 */
1887 		ravb_rcv_snd_enable(ndev);
1888 		goto out;
1889 	}
1890 
1891 	ravb_ring_free(ndev, RAVB_BE);
1892 	if (info->nc_queues)
1893 		ravb_ring_free(ndev, RAVB_NC);
1894 
1895 	/* Device init */
1896 	error = ravb_dmac_init(ndev);
1897 	if (error) {
1898 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1899 		 * should return here to avoid re-enabling the TX and RX in
1900 		 * ravb_emac_init().
1901 		 */
1902 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1903 			   __func__, error);
1904 		return;
1905 	}
1906 	ravb_emac_init(ndev);
1907 
1908 out:
1909 	/* Initialise PTP Clock driver */
1910 	if (info->gptp)
1911 		ravb_ptp_init(ndev, priv->pdev);
1912 
1913 	netif_tx_start_all_queues(ndev);
1914 }
1915 
1916 /* Packet transmit function for Ethernet AVB */
1917 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1918 {
1919 	struct ravb_private *priv = netdev_priv(ndev);
1920 	const struct ravb_hw_info *info = priv->info;
1921 	unsigned int num_tx_desc = priv->num_tx_desc;
1922 	u16 q = skb_get_queue_mapping(skb);
1923 	struct ravb_tstamp_skb *ts_skb;
1924 	struct ravb_tx_desc *desc;
1925 	unsigned long flags;
1926 	u32 dma_addr;
1927 	void *buffer;
1928 	u32 entry;
1929 	u32 len;
1930 
1931 	spin_lock_irqsave(&priv->lock, flags);
1932 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1933 	    num_tx_desc) {
1934 		netif_err(priv, tx_queued, ndev,
1935 			  "still transmitting with the full ring!\n");
1936 		netif_stop_subqueue(ndev, q);
1937 		spin_unlock_irqrestore(&priv->lock, flags);
1938 		return NETDEV_TX_BUSY;
1939 	}
1940 
1941 	if (skb_put_padto(skb, ETH_ZLEN))
1942 		goto exit;
1943 
1944 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1945 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1946 
1947 	if (num_tx_desc > 1) {
1948 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1949 			 entry / num_tx_desc * DPTR_ALIGN;
1950 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1951 
1952 		/* Zero length DMA descriptors are problematic as they seem
1953 		 * to terminate DMA transfers. Avoid them by simply using a
1954 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1955 		 * DPTR_ALIGN.
1956 		 *
1957 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1958 		 * bytes of data by the call to skb_put_padto() above this
1959 		 * is safe with respect to both the length of the first DMA
1960 		 * descriptor (len) overflowing the available data and the
1961 		 * length of the second DMA descriptor (skb->len - len)
1962 		 * being negative.
1963 		 */
1964 		if (len == 0)
1965 			len = DPTR_ALIGN;
1966 
1967 		memcpy(buffer, skb->data, len);
1968 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1969 					  DMA_TO_DEVICE);
1970 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1971 			goto drop;
1972 
1973 		desc = &priv->tx_ring[q][entry];
1974 		desc->ds_tagl = cpu_to_le16(len);
1975 		desc->dptr = cpu_to_le32(dma_addr);
1976 
1977 		buffer = skb->data + len;
1978 		len = skb->len - len;
1979 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1980 					  DMA_TO_DEVICE);
1981 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1982 			goto unmap;
1983 
1984 		desc++;
1985 	} else {
1986 		desc = &priv->tx_ring[q][entry];
1987 		len = skb->len;
1988 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1989 					  DMA_TO_DEVICE);
1990 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1991 			goto drop;
1992 	}
1993 	desc->ds_tagl = cpu_to_le16(len);
1994 	desc->dptr = cpu_to_le32(dma_addr);
1995 
1996 	/* TX timestamp required */
1997 	if (info->gptp || info->ccc_gac) {
1998 		if (q == RAVB_NC) {
1999 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2000 			if (!ts_skb) {
2001 				if (num_tx_desc > 1) {
2002 					desc--;
2003 					dma_unmap_single(ndev->dev.parent, dma_addr,
2004 							 len, DMA_TO_DEVICE);
2005 				}
2006 				goto unmap;
2007 			}
2008 			ts_skb->skb = skb_get(skb);
2009 			ts_skb->tag = priv->ts_skb_tag++;
2010 			priv->ts_skb_tag &= 0x3ff;
2011 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2012 
2013 			/* TAG and timestamp required flag */
2014 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2015 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2016 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2017 		}
2018 
2019 		skb_tx_timestamp(skb);
2020 	}
2021 	/* Descriptor type must be set after all the above writes */
2022 	dma_wmb();
2023 	if (num_tx_desc > 1) {
2024 		desc->die_dt = DT_FEND;
2025 		desc--;
2026 		desc->die_dt = DT_FSTART;
2027 	} else {
2028 		desc->die_dt = DT_FSINGLE;
2029 	}
2030 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2031 
2032 	priv->cur_tx[q] += num_tx_desc;
2033 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2034 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2035 	    !ravb_tx_free(ndev, q, true))
2036 		netif_stop_subqueue(ndev, q);
2037 
2038 exit:
2039 	spin_unlock_irqrestore(&priv->lock, flags);
2040 	return NETDEV_TX_OK;
2041 
2042 unmap:
2043 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2044 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2045 drop:
2046 	dev_kfree_skb_any(skb);
2047 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2048 	goto exit;
2049 }
2050 
2051 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2052 			     struct net_device *sb_dev)
2053 {
2054 	/* If skb needs TX timestamp, it is handled in network control queue */
2055 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2056 							       RAVB_BE;
2057 
2058 }
2059 
2060 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2061 {
2062 	struct ravb_private *priv = netdev_priv(ndev);
2063 	const struct ravb_hw_info *info = priv->info;
2064 	struct net_device_stats *nstats, *stats0, *stats1;
2065 
2066 	nstats = &ndev->stats;
2067 	stats0 = &priv->stats[RAVB_BE];
2068 
2069 	if (info->tx_counters) {
2070 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2071 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2072 	}
2073 
2074 	if (info->carrier_counters) {
2075 		nstats->collisions += ravb_read(ndev, CXR41);
2076 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2077 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2078 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2079 	}
2080 
2081 	nstats->rx_packets = stats0->rx_packets;
2082 	nstats->tx_packets = stats0->tx_packets;
2083 	nstats->rx_bytes = stats0->rx_bytes;
2084 	nstats->tx_bytes = stats0->tx_bytes;
2085 	nstats->multicast = stats0->multicast;
2086 	nstats->rx_errors = stats0->rx_errors;
2087 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2088 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2089 	nstats->rx_length_errors = stats0->rx_length_errors;
2090 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2091 	nstats->rx_over_errors = stats0->rx_over_errors;
2092 	if (info->nc_queues) {
2093 		stats1 = &priv->stats[RAVB_NC];
2094 
2095 		nstats->rx_packets += stats1->rx_packets;
2096 		nstats->tx_packets += stats1->tx_packets;
2097 		nstats->rx_bytes += stats1->rx_bytes;
2098 		nstats->tx_bytes += stats1->tx_bytes;
2099 		nstats->multicast += stats1->multicast;
2100 		nstats->rx_errors += stats1->rx_errors;
2101 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2102 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2103 		nstats->rx_length_errors += stats1->rx_length_errors;
2104 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2105 		nstats->rx_over_errors += stats1->rx_over_errors;
2106 	}
2107 
2108 	return nstats;
2109 }
2110 
2111 /* Update promiscuous bit */
2112 static void ravb_set_rx_mode(struct net_device *ndev)
2113 {
2114 	struct ravb_private *priv = netdev_priv(ndev);
2115 	unsigned long flags;
2116 
2117 	spin_lock_irqsave(&priv->lock, flags);
2118 	ravb_modify(ndev, ECMR, ECMR_PRM,
2119 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2120 	spin_unlock_irqrestore(&priv->lock, flags);
2121 }
2122 
2123 /* Device close function for Ethernet AVB */
2124 static int ravb_close(struct net_device *ndev)
2125 {
2126 	struct device_node *np = ndev->dev.parent->of_node;
2127 	struct ravb_private *priv = netdev_priv(ndev);
2128 	const struct ravb_hw_info *info = priv->info;
2129 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2130 
2131 	netif_tx_stop_all_queues(ndev);
2132 
2133 	/* Disable interrupts by clearing the interrupt masks. */
2134 	ravb_write(ndev, 0, RIC0);
2135 	ravb_write(ndev, 0, RIC2);
2136 	ravb_write(ndev, 0, TIC);
2137 
2138 	/* Stop PTP Clock driver */
2139 	if (info->gptp)
2140 		ravb_ptp_stop(ndev);
2141 
2142 	/* Set the config mode to stop the AVB-DMAC's processes */
2143 	if (ravb_stop_dma(ndev) < 0)
2144 		netdev_err(ndev,
2145 			   "device will be stopped after h/w processes are done.\n");
2146 
2147 	/* Clear the timestamp list */
2148 	if (info->gptp || info->ccc_gac) {
2149 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2150 			list_del(&ts_skb->list);
2151 			kfree_skb(ts_skb->skb);
2152 			kfree(ts_skb);
2153 		}
2154 	}
2155 
2156 	/* PHY disconnect */
2157 	if (ndev->phydev) {
2158 		phy_stop(ndev->phydev);
2159 		phy_disconnect(ndev->phydev);
2160 		if (of_phy_is_fixed_link(np))
2161 			of_phy_deregister_fixed_link(np);
2162 	}
2163 
2164 	if (info->multi_irqs) {
2165 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
2166 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
2167 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
2168 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
2169 		free_irq(priv->emac_irq, ndev);
2170 	}
2171 	free_irq(ndev->irq, ndev);
2172 
2173 	if (info->nc_queues)
2174 		napi_disable(&priv->napi[RAVB_NC]);
2175 	napi_disable(&priv->napi[RAVB_BE]);
2176 
2177 	/* Free all the skb's in the RX queue and the DMA buffers. */
2178 	ravb_ring_free(ndev, RAVB_BE);
2179 	if (info->nc_queues)
2180 		ravb_ring_free(ndev, RAVB_NC);
2181 
2182 	return 0;
2183 }
2184 
2185 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2186 {
2187 	struct ravb_private *priv = netdev_priv(ndev);
2188 	struct hwtstamp_config config;
2189 
2190 	config.flags = 0;
2191 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2192 						HWTSTAMP_TX_OFF;
2193 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2194 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2195 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2196 		break;
2197 	case RAVB_RXTSTAMP_TYPE_ALL:
2198 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2199 		break;
2200 	default:
2201 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2202 	}
2203 
2204 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2205 		-EFAULT : 0;
2206 }
2207 
2208 /* Control hardware time stamping */
2209 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2210 {
2211 	struct ravb_private *priv = netdev_priv(ndev);
2212 	struct hwtstamp_config config;
2213 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2214 	u32 tstamp_tx_ctrl;
2215 
2216 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2217 		return -EFAULT;
2218 
2219 	/* Reserved for future extensions */
2220 	if (config.flags)
2221 		return -EINVAL;
2222 
2223 	switch (config.tx_type) {
2224 	case HWTSTAMP_TX_OFF:
2225 		tstamp_tx_ctrl = 0;
2226 		break;
2227 	case HWTSTAMP_TX_ON:
2228 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2229 		break;
2230 	default:
2231 		return -ERANGE;
2232 	}
2233 
2234 	switch (config.rx_filter) {
2235 	case HWTSTAMP_FILTER_NONE:
2236 		tstamp_rx_ctrl = 0;
2237 		break;
2238 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2239 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2240 		break;
2241 	default:
2242 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2243 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2244 	}
2245 
2246 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2247 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2248 
2249 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2250 		-EFAULT : 0;
2251 }
2252 
2253 /* ioctl to device function */
2254 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2255 {
2256 	struct phy_device *phydev = ndev->phydev;
2257 
2258 	if (!netif_running(ndev))
2259 		return -EINVAL;
2260 
2261 	if (!phydev)
2262 		return -ENODEV;
2263 
2264 	switch (cmd) {
2265 	case SIOCGHWTSTAMP:
2266 		return ravb_hwtstamp_get(ndev, req);
2267 	case SIOCSHWTSTAMP:
2268 		return ravb_hwtstamp_set(ndev, req);
2269 	}
2270 
2271 	return phy_mii_ioctl(phydev, req, cmd);
2272 }
2273 
2274 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2275 {
2276 	struct ravb_private *priv = netdev_priv(ndev);
2277 
2278 	ndev->mtu = new_mtu;
2279 
2280 	if (netif_running(ndev)) {
2281 		synchronize_irq(priv->emac_irq);
2282 		ravb_emac_init(ndev);
2283 	}
2284 
2285 	netdev_update_features(ndev);
2286 
2287 	return 0;
2288 }
2289 
2290 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2291 {
2292 	struct ravb_private *priv = netdev_priv(ndev);
2293 	unsigned long flags;
2294 
2295 	spin_lock_irqsave(&priv->lock, flags);
2296 
2297 	/* Disable TX and RX */
2298 	ravb_rcv_snd_disable(ndev);
2299 
2300 	/* Modify RX Checksum setting */
2301 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2302 
2303 	/* Enable TX and RX */
2304 	ravb_rcv_snd_enable(ndev);
2305 
2306 	spin_unlock_irqrestore(&priv->lock, flags);
2307 }
2308 
2309 static int ravb_set_features_gbeth(struct net_device *ndev,
2310 				   netdev_features_t features)
2311 {
2312 	/* Place holder */
2313 	return 0;
2314 }
2315 
2316 static int ravb_set_features_rcar(struct net_device *ndev,
2317 				  netdev_features_t features)
2318 {
2319 	netdev_features_t changed = ndev->features ^ features;
2320 
2321 	if (changed & NETIF_F_RXCSUM)
2322 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2323 
2324 	ndev->features = features;
2325 
2326 	return 0;
2327 }
2328 
2329 static int ravb_set_features(struct net_device *ndev,
2330 			     netdev_features_t features)
2331 {
2332 	struct ravb_private *priv = netdev_priv(ndev);
2333 	const struct ravb_hw_info *info = priv->info;
2334 
2335 	return info->set_feature(ndev, features);
2336 }
2337 
2338 static const struct net_device_ops ravb_netdev_ops = {
2339 	.ndo_open		= ravb_open,
2340 	.ndo_stop		= ravb_close,
2341 	.ndo_start_xmit		= ravb_start_xmit,
2342 	.ndo_select_queue	= ravb_select_queue,
2343 	.ndo_get_stats		= ravb_get_stats,
2344 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2345 	.ndo_tx_timeout		= ravb_tx_timeout,
2346 	.ndo_eth_ioctl		= ravb_do_ioctl,
2347 	.ndo_change_mtu		= ravb_change_mtu,
2348 	.ndo_validate_addr	= eth_validate_addr,
2349 	.ndo_set_mac_address	= eth_mac_addr,
2350 	.ndo_set_features	= ravb_set_features,
2351 };
2352 
2353 /* MDIO bus init function */
2354 static int ravb_mdio_init(struct ravb_private *priv)
2355 {
2356 	struct platform_device *pdev = priv->pdev;
2357 	struct device *dev = &pdev->dev;
2358 	int error;
2359 
2360 	/* Bitbang init */
2361 	priv->mdiobb.ops = &bb_ops;
2362 
2363 	/* MII controller setting */
2364 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2365 	if (!priv->mii_bus)
2366 		return -ENOMEM;
2367 
2368 	/* Hook up MII support for ethtool */
2369 	priv->mii_bus->name = "ravb_mii";
2370 	priv->mii_bus->parent = dev;
2371 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2372 		 pdev->name, pdev->id);
2373 
2374 	/* Register MDIO bus */
2375 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2376 	if (error)
2377 		goto out_free_bus;
2378 
2379 	return 0;
2380 
2381 out_free_bus:
2382 	free_mdio_bitbang(priv->mii_bus);
2383 	return error;
2384 }
2385 
2386 /* MDIO bus release function */
2387 static int ravb_mdio_release(struct ravb_private *priv)
2388 {
2389 	/* Unregister mdio bus */
2390 	mdiobus_unregister(priv->mii_bus);
2391 
2392 	/* Free bitbang info */
2393 	free_mdio_bitbang(priv->mii_bus);
2394 
2395 	return 0;
2396 }
2397 
2398 static const struct ravb_hw_info ravb_gen3_hw_info = {
2399 	.rx_ring_free = ravb_rx_ring_free_rcar,
2400 	.rx_ring_format = ravb_rx_ring_format_rcar,
2401 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2402 	.receive = ravb_rx_rcar,
2403 	.set_rate = ravb_set_rate_rcar,
2404 	.set_feature = ravb_set_features_rcar,
2405 	.dmac_init = ravb_dmac_init_rcar,
2406 	.emac_init = ravb_emac_init_rcar,
2407 	.gstrings_stats = ravb_gstrings_stats,
2408 	.gstrings_size = sizeof(ravb_gstrings_stats),
2409 	.net_hw_features = NETIF_F_RXCSUM,
2410 	.net_features = NETIF_F_RXCSUM,
2411 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2412 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2413 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2414 	.rx_max_buf_size = SZ_2K,
2415 	.internal_delay = 1,
2416 	.tx_counters = 1,
2417 	.multi_irqs = 1,
2418 	.ccc_gac = 1,
2419 	.nc_queues = 1,
2420 	.magic_pkt = 1,
2421 };
2422 
2423 static const struct ravb_hw_info ravb_gen2_hw_info = {
2424 	.rx_ring_free = ravb_rx_ring_free_rcar,
2425 	.rx_ring_format = ravb_rx_ring_format_rcar,
2426 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2427 	.receive = ravb_rx_rcar,
2428 	.set_rate = ravb_set_rate_rcar,
2429 	.set_feature = ravb_set_features_rcar,
2430 	.dmac_init = ravb_dmac_init_rcar,
2431 	.emac_init = ravb_emac_init_rcar,
2432 	.gstrings_stats = ravb_gstrings_stats,
2433 	.gstrings_size = sizeof(ravb_gstrings_stats),
2434 	.net_hw_features = NETIF_F_RXCSUM,
2435 	.net_features = NETIF_F_RXCSUM,
2436 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2437 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2438 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2439 	.rx_max_buf_size = SZ_2K,
2440 	.aligned_tx = 1,
2441 	.gptp = 1,
2442 	.nc_queues = 1,
2443 	.magic_pkt = 1,
2444 };
2445 
2446 static const struct ravb_hw_info gbeth_hw_info = {
2447 	.rx_ring_free = ravb_rx_ring_free_gbeth,
2448 	.rx_ring_format = ravb_rx_ring_format_gbeth,
2449 	.alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
2450 	.receive = ravb_rx_gbeth,
2451 	.set_rate = ravb_set_rate_gbeth,
2452 	.set_feature = ravb_set_features_gbeth,
2453 	.dmac_init = ravb_dmac_init_gbeth,
2454 	.emac_init = ravb_emac_init_gbeth,
2455 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2456 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2457 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2458 	.max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
2459 	.tccr_mask = TCCR_TSRQ0,
2460 	.rx_max_buf_size = SZ_8K,
2461 	.aligned_tx = 1,
2462 	.tx_counters = 1,
2463 	.carrier_counters = 1,
2464 	.half_duplex = 1,
2465 };
2466 
2467 static const struct of_device_id ravb_match_table[] = {
2468 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2469 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2470 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2471 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2472 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2473 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2474 	{ }
2475 };
2476 MODULE_DEVICE_TABLE(of, ravb_match_table);
2477 
2478 static int ravb_set_gti(struct net_device *ndev)
2479 {
2480 	struct ravb_private *priv = netdev_priv(ndev);
2481 	struct device *dev = ndev->dev.parent;
2482 	unsigned long rate;
2483 	uint64_t inc;
2484 
2485 	rate = clk_get_rate(priv->clk);
2486 	if (!rate)
2487 		return -EINVAL;
2488 
2489 	inc = 1000000000ULL << 20;
2490 	do_div(inc, rate);
2491 
2492 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
2493 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
2494 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
2495 		return -EINVAL;
2496 	}
2497 
2498 	ravb_write(ndev, inc, GTI);
2499 
2500 	return 0;
2501 }
2502 
2503 static void ravb_set_config_mode(struct net_device *ndev)
2504 {
2505 	struct ravb_private *priv = netdev_priv(ndev);
2506 	const struct ravb_hw_info *info = priv->info;
2507 
2508 	if (info->gptp) {
2509 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2510 		/* Set CSEL value */
2511 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2512 	} else if (info->ccc_gac) {
2513 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
2514 			    CCC_GAC | CCC_CSEL_HPB);
2515 	} else {
2516 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2517 	}
2518 }
2519 
2520 /* Set tx and rx clock internal delay modes */
2521 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
2522 {
2523 	struct ravb_private *priv = netdev_priv(ndev);
2524 	bool explicit_delay = false;
2525 	u32 delay;
2526 
2527 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2528 		/* Valid values are 0 and 1800, according to DT bindings */
2529 		priv->rxcidm = !!delay;
2530 		explicit_delay = true;
2531 	}
2532 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2533 		/* Valid values are 0 and 2000, according to DT bindings */
2534 		priv->txcidm = !!delay;
2535 		explicit_delay = true;
2536 	}
2537 
2538 	if (explicit_delay)
2539 		return;
2540 
2541 	/* Fall back to legacy rgmii-*id behavior */
2542 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2543 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2544 		priv->rxcidm = 1;
2545 		priv->rgmii_override = 1;
2546 	}
2547 
2548 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2549 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2550 		priv->txcidm = 1;
2551 		priv->rgmii_override = 1;
2552 	}
2553 }
2554 
2555 static void ravb_set_delay_mode(struct net_device *ndev)
2556 {
2557 	struct ravb_private *priv = netdev_priv(ndev);
2558 	u32 set = 0;
2559 
2560 	if (priv->rxcidm)
2561 		set |= APSR_RDM;
2562 	if (priv->txcidm)
2563 		set |= APSR_TDM;
2564 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2565 }
2566 
2567 static int ravb_probe(struct platform_device *pdev)
2568 {
2569 	struct device_node *np = pdev->dev.of_node;
2570 	const struct ravb_hw_info *info;
2571 	struct reset_control *rstc;
2572 	struct ravb_private *priv;
2573 	struct net_device *ndev;
2574 	int error, irq, q;
2575 	struct resource *res;
2576 	int i;
2577 
2578 	if (!np) {
2579 		dev_err(&pdev->dev,
2580 			"this driver is required to be instantiated from device tree\n");
2581 		return -EINVAL;
2582 	}
2583 
2584 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2585 	if (IS_ERR(rstc))
2586 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2587 				     "failed to get cpg reset\n");
2588 
2589 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2590 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2591 	if (!ndev)
2592 		return -ENOMEM;
2593 
2594 	info = of_device_get_match_data(&pdev->dev);
2595 
2596 	ndev->features = info->net_features;
2597 	ndev->hw_features = info->net_hw_features;
2598 
2599 	reset_control_deassert(rstc);
2600 	pm_runtime_enable(&pdev->dev);
2601 	pm_runtime_get_sync(&pdev->dev);
2602 
2603 	if (info->multi_irqs)
2604 		irq = platform_get_irq_byname(pdev, "ch22");
2605 	else
2606 		irq = platform_get_irq(pdev, 0);
2607 	if (irq < 0) {
2608 		error = irq;
2609 		goto out_release;
2610 	}
2611 	ndev->irq = irq;
2612 
2613 	SET_NETDEV_DEV(ndev, &pdev->dev);
2614 
2615 	priv = netdev_priv(ndev);
2616 	priv->info = info;
2617 	priv->rstc = rstc;
2618 	priv->ndev = ndev;
2619 	priv->pdev = pdev;
2620 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2621 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2622 	if (info->nc_queues) {
2623 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2624 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2625 	}
2626 
2627 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2628 	if (IS_ERR(priv->addr)) {
2629 		error = PTR_ERR(priv->addr);
2630 		goto out_release;
2631 	}
2632 
2633 	/* The Ether-specific entries in the device structure. */
2634 	ndev->base_addr = res->start;
2635 
2636 	spin_lock_init(&priv->lock);
2637 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2638 
2639 	error = of_get_phy_mode(np, &priv->phy_interface);
2640 	if (error && error != -ENODEV)
2641 		goto out_release;
2642 
2643 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2644 	priv->avb_link_active_low =
2645 		of_property_read_bool(np, "renesas,ether-link-active-low");
2646 
2647 	if (info->multi_irqs) {
2648 		irq = platform_get_irq_byname(pdev, "ch24");
2649 		if (irq < 0) {
2650 			error = irq;
2651 			goto out_release;
2652 		}
2653 		priv->emac_irq = irq;
2654 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2655 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2656 			if (irq < 0) {
2657 				error = irq;
2658 				goto out_release;
2659 			}
2660 			priv->rx_irqs[i] = irq;
2661 		}
2662 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2663 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2664 			if (irq < 0) {
2665 				error = irq;
2666 				goto out_release;
2667 			}
2668 			priv->tx_irqs[i] = irq;
2669 		}
2670 	}
2671 
2672 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2673 	if (IS_ERR(priv->clk)) {
2674 		error = PTR_ERR(priv->clk);
2675 		goto out_release;
2676 	}
2677 
2678 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2679 	if (IS_ERR(priv->refclk)) {
2680 		error = PTR_ERR(priv->refclk);
2681 		goto out_release;
2682 	}
2683 	clk_prepare_enable(priv->refclk);
2684 
2685 	ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2686 	ndev->min_mtu = ETH_MIN_MTU;
2687 
2688 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2689 	 * Use two descriptor to handle such situation. First descriptor to
2690 	 * handle aligned data buffer and second descriptor to handle the
2691 	 * overflow data because of alignment.
2692 	 */
2693 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2694 
2695 	/* Set function */
2696 	ndev->netdev_ops = &ravb_netdev_ops;
2697 	ndev->ethtool_ops = &ravb_ethtool_ops;
2698 
2699 	/* Set AVB config mode */
2700 	ravb_set_config_mode(ndev);
2701 
2702 	if (info->gptp || info->ccc_gac) {
2703 		/* Set GTI value */
2704 		error = ravb_set_gti(ndev);
2705 		if (error)
2706 			goto out_disable_refclk;
2707 
2708 		/* Request GTI loading */
2709 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2710 	}
2711 
2712 	if (info->internal_delay) {
2713 		ravb_parse_delay_mode(np, ndev);
2714 		ravb_set_delay_mode(ndev);
2715 	}
2716 
2717 	/* Allocate descriptor base address table */
2718 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2719 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2720 					    &priv->desc_bat_dma, GFP_KERNEL);
2721 	if (!priv->desc_bat) {
2722 		dev_err(&pdev->dev,
2723 			"Cannot allocate desc base address table (size %d bytes)\n",
2724 			priv->desc_bat_size);
2725 		error = -ENOMEM;
2726 		goto out_disable_refclk;
2727 	}
2728 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2729 		priv->desc_bat[q].die_dt = DT_EOS;
2730 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2731 
2732 	/* Initialise HW timestamp list */
2733 	INIT_LIST_HEAD(&priv->ts_skb_list);
2734 
2735 	/* Initialise PTP Clock driver */
2736 	if (info->ccc_gac)
2737 		ravb_ptp_init(ndev, pdev);
2738 
2739 	/* Debug message level */
2740 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2741 
2742 	/* Read and set MAC address */
2743 	ravb_read_mac_address(np, ndev);
2744 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2745 		dev_warn(&pdev->dev,
2746 			 "no valid MAC address supplied, using a random one\n");
2747 		eth_hw_addr_random(ndev);
2748 	}
2749 
2750 	/* MDIO bus init */
2751 	error = ravb_mdio_init(priv);
2752 	if (error) {
2753 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2754 		goto out_dma_free;
2755 	}
2756 
2757 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2758 	if (info->nc_queues)
2759 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2760 
2761 	/* Network device register */
2762 	error = register_netdev(ndev);
2763 	if (error)
2764 		goto out_napi_del;
2765 
2766 	device_set_wakeup_capable(&pdev->dev, 1);
2767 
2768 	/* Print device information */
2769 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2770 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2771 
2772 	platform_set_drvdata(pdev, ndev);
2773 
2774 	return 0;
2775 
2776 out_napi_del:
2777 	if (info->nc_queues)
2778 		netif_napi_del(&priv->napi[RAVB_NC]);
2779 
2780 	netif_napi_del(&priv->napi[RAVB_BE]);
2781 	ravb_mdio_release(priv);
2782 out_dma_free:
2783 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2784 			  priv->desc_bat_dma);
2785 
2786 	/* Stop PTP Clock driver */
2787 	if (info->ccc_gac)
2788 		ravb_ptp_stop(ndev);
2789 out_disable_refclk:
2790 	clk_disable_unprepare(priv->refclk);
2791 out_release:
2792 	free_netdev(ndev);
2793 
2794 	pm_runtime_put(&pdev->dev);
2795 	pm_runtime_disable(&pdev->dev);
2796 	reset_control_assert(rstc);
2797 	return error;
2798 }
2799 
2800 static int ravb_remove(struct platform_device *pdev)
2801 {
2802 	struct net_device *ndev = platform_get_drvdata(pdev);
2803 	struct ravb_private *priv = netdev_priv(ndev);
2804 	const struct ravb_hw_info *info = priv->info;
2805 
2806 	/* Stop PTP Clock driver */
2807 	if (info->ccc_gac)
2808 		ravb_ptp_stop(ndev);
2809 
2810 	clk_disable_unprepare(priv->refclk);
2811 
2812 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2813 			  priv->desc_bat_dma);
2814 	/* Set reset mode */
2815 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2816 	pm_runtime_put_sync(&pdev->dev);
2817 	unregister_netdev(ndev);
2818 	if (info->nc_queues)
2819 		netif_napi_del(&priv->napi[RAVB_NC]);
2820 	netif_napi_del(&priv->napi[RAVB_BE]);
2821 	ravb_mdio_release(priv);
2822 	pm_runtime_disable(&pdev->dev);
2823 	reset_control_assert(priv->rstc);
2824 	free_netdev(ndev);
2825 	platform_set_drvdata(pdev, NULL);
2826 
2827 	return 0;
2828 }
2829 
2830 static int ravb_wol_setup(struct net_device *ndev)
2831 {
2832 	struct ravb_private *priv = netdev_priv(ndev);
2833 	const struct ravb_hw_info *info = priv->info;
2834 
2835 	/* Disable interrupts by clearing the interrupt masks. */
2836 	ravb_write(ndev, 0, RIC0);
2837 	ravb_write(ndev, 0, RIC2);
2838 	ravb_write(ndev, 0, TIC);
2839 
2840 	/* Only allow ECI interrupts */
2841 	synchronize_irq(priv->emac_irq);
2842 	if (info->nc_queues)
2843 		napi_disable(&priv->napi[RAVB_NC]);
2844 	napi_disable(&priv->napi[RAVB_BE]);
2845 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2846 
2847 	/* Enable MagicPacket */
2848 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2849 
2850 	return enable_irq_wake(priv->emac_irq);
2851 }
2852 
2853 static int ravb_wol_restore(struct net_device *ndev)
2854 {
2855 	struct ravb_private *priv = netdev_priv(ndev);
2856 	const struct ravb_hw_info *info = priv->info;
2857 	int ret;
2858 
2859 	if (info->nc_queues)
2860 		napi_enable(&priv->napi[RAVB_NC]);
2861 	napi_enable(&priv->napi[RAVB_BE]);
2862 
2863 	/* Disable MagicPacket */
2864 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2865 
2866 	ret = ravb_close(ndev);
2867 	if (ret < 0)
2868 		return ret;
2869 
2870 	return disable_irq_wake(priv->emac_irq);
2871 }
2872 
2873 static int __maybe_unused ravb_suspend(struct device *dev)
2874 {
2875 	struct net_device *ndev = dev_get_drvdata(dev);
2876 	struct ravb_private *priv = netdev_priv(ndev);
2877 	int ret;
2878 
2879 	if (!netif_running(ndev))
2880 		return 0;
2881 
2882 	netif_device_detach(ndev);
2883 
2884 	if (priv->wol_enabled)
2885 		ret = ravb_wol_setup(ndev);
2886 	else
2887 		ret = ravb_close(ndev);
2888 
2889 	return ret;
2890 }
2891 
2892 static int __maybe_unused ravb_resume(struct device *dev)
2893 {
2894 	struct net_device *ndev = dev_get_drvdata(dev);
2895 	struct ravb_private *priv = netdev_priv(ndev);
2896 	const struct ravb_hw_info *info = priv->info;
2897 	int ret = 0;
2898 
2899 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2900 	if (priv->wol_enabled)
2901 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2902 
2903 	/* All register have been reset to default values.
2904 	 * Restore all registers which where setup at probe time and
2905 	 * reopen device if it was running before system suspended.
2906 	 */
2907 
2908 	/* Set AVB config mode */
2909 	ravb_set_config_mode(ndev);
2910 
2911 	if (info->gptp || info->ccc_gac) {
2912 		/* Set GTI value */
2913 		ret = ravb_set_gti(ndev);
2914 		if (ret)
2915 			return ret;
2916 
2917 		/* Request GTI loading */
2918 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2919 	}
2920 
2921 	if (info->internal_delay)
2922 		ravb_set_delay_mode(ndev);
2923 
2924 	/* Restore descriptor base address table */
2925 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2926 
2927 	if (netif_running(ndev)) {
2928 		if (priv->wol_enabled) {
2929 			ret = ravb_wol_restore(ndev);
2930 			if (ret)
2931 				return ret;
2932 		}
2933 		ret = ravb_open(ndev);
2934 		if (ret < 0)
2935 			return ret;
2936 		netif_device_attach(ndev);
2937 	}
2938 
2939 	return ret;
2940 }
2941 
2942 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2943 {
2944 	/* Runtime PM callback shared between ->runtime_suspend()
2945 	 * and ->runtime_resume(). Simply returns success.
2946 	 *
2947 	 * This driver re-initializes all registers after
2948 	 * pm_runtime_get_sync() anyway so there is no need
2949 	 * to save and restore registers here.
2950 	 */
2951 	return 0;
2952 }
2953 
2954 static const struct dev_pm_ops ravb_dev_pm_ops = {
2955 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2956 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2957 };
2958 
2959 static struct platform_driver ravb_driver = {
2960 	.probe		= ravb_probe,
2961 	.remove		= ravb_remove,
2962 	.driver = {
2963 		.name	= "ravb",
2964 		.pm	= &ravb_dev_pm_ops,
2965 		.of_match_table = ravb_match_table,
2966 	},
2967 };
2968 
2969 module_platform_driver(ravb_driver);
2970 
2971 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2972 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2973 MODULE_LICENSE("GPL v2");
2974