1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include <asm/div64.h>
36 
37 #include "ravb.h"
38 
39 #define RAVB_DEF_MSG_ENABLE \
40 		(NETIF_MSG_LINK	  | \
41 		 NETIF_MSG_TIMER  | \
42 		 NETIF_MSG_RX_ERR | \
43 		 NETIF_MSG_TX_ERR)
44 
45 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
46 		 u32 set)
47 {
48 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
49 }
50 
51 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
52 {
53 	int i;
54 
55 	for (i = 0; i < 10000; i++) {
56 		if ((ravb_read(ndev, reg) & mask) == value)
57 			return 0;
58 		udelay(10);
59 	}
60 	return -ETIMEDOUT;
61 }
62 
63 static int ravb_config(struct net_device *ndev)
64 {
65 	int error;
66 
67 	/* Set config mode */
68 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
69 	/* Check if the operating mode is changed to the config mode */
70 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
71 	if (error)
72 		netdev_err(ndev, "failed to switch device to config mode\n");
73 
74 	return error;
75 }
76 
77 static void ravb_set_duplex(struct net_device *ndev)
78 {
79 	struct ravb_private *priv = netdev_priv(ndev);
80 
81 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
82 }
83 
84 static void ravb_set_rate(struct net_device *ndev)
85 {
86 	struct ravb_private *priv = netdev_priv(ndev);
87 
88 	switch (priv->speed) {
89 	case 100:		/* 100BASE */
90 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
91 		break;
92 	case 1000:		/* 1000BASE */
93 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
94 		break;
95 	}
96 }
97 
98 static void ravb_set_buffer_align(struct sk_buff *skb)
99 {
100 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
101 
102 	if (reserve)
103 		skb_reserve(skb, RAVB_ALIGN - reserve);
104 }
105 
106 /* Get MAC address from the MAC address registers
107  *
108  * Ethernet AVB device doesn't have ROM for MAC address.
109  * This function gets the MAC address that was used by a bootloader.
110  */
111 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
112 {
113 	if (mac) {
114 		ether_addr_copy(ndev->dev_addr, mac);
115 	} else {
116 		u32 mahr = ravb_read(ndev, MAHR);
117 		u32 malr = ravb_read(ndev, MALR);
118 
119 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
120 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
121 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
122 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
123 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
124 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
125 	}
126 }
127 
128 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
129 {
130 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
131 						 mdiobb);
132 
133 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
134 }
135 
136 /* MDC pin control */
137 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
138 {
139 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
140 }
141 
142 /* Data I/O pin control */
143 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
144 {
145 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
146 }
147 
148 /* Set data bit */
149 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
150 {
151 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
152 }
153 
154 /* Get data bit */
155 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
156 {
157 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
158 						 mdiobb);
159 
160 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
161 }
162 
163 /* MDIO bus control struct */
164 static struct mdiobb_ops bb_ops = {
165 	.owner = THIS_MODULE,
166 	.set_mdc = ravb_set_mdc,
167 	.set_mdio_dir = ravb_set_mdio_dir,
168 	.set_mdio_data = ravb_set_mdio_data,
169 	.get_mdio_data = ravb_get_mdio_data,
170 };
171 
172 /* Free skb's and DMA buffers for Ethernet AVB */
173 static void ravb_ring_free(struct net_device *ndev, int q)
174 {
175 	struct ravb_private *priv = netdev_priv(ndev);
176 	int ring_size;
177 	int i;
178 
179 	/* Free RX skb ringbuffer */
180 	if (priv->rx_skb[q]) {
181 		for (i = 0; i < priv->num_rx_ring[q]; i++)
182 			dev_kfree_skb(priv->rx_skb[q][i]);
183 	}
184 	kfree(priv->rx_skb[q]);
185 	priv->rx_skb[q] = NULL;
186 
187 	/* Free TX skb ringbuffer */
188 	if (priv->tx_skb[q]) {
189 		for (i = 0; i < priv->num_tx_ring[q]; i++)
190 			dev_kfree_skb(priv->tx_skb[q][i]);
191 	}
192 	kfree(priv->tx_skb[q]);
193 	priv->tx_skb[q] = NULL;
194 
195 	/* Free aligned TX buffers */
196 	kfree(priv->tx_align[q]);
197 	priv->tx_align[q] = NULL;
198 
199 	if (priv->rx_ring[q]) {
200 		ring_size = sizeof(struct ravb_ex_rx_desc) *
201 			    (priv->num_rx_ring[q] + 1);
202 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
203 				  priv->rx_desc_dma[q]);
204 		priv->rx_ring[q] = NULL;
205 	}
206 
207 	if (priv->tx_ring[q]) {
208 		ring_size = sizeof(struct ravb_tx_desc) *
209 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
210 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
211 				  priv->tx_desc_dma[q]);
212 		priv->tx_ring[q] = NULL;
213 	}
214 }
215 
216 /* Format skb and descriptor buffer for Ethernet AVB */
217 static void ravb_ring_format(struct net_device *ndev, int q)
218 {
219 	struct ravb_private *priv = netdev_priv(ndev);
220 	struct ravb_ex_rx_desc *rx_desc;
221 	struct ravb_tx_desc *tx_desc;
222 	struct ravb_desc *desc;
223 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
224 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
225 			   NUM_TX_DESC;
226 	dma_addr_t dma_addr;
227 	int i;
228 
229 	priv->cur_rx[q] = 0;
230 	priv->cur_tx[q] = 0;
231 	priv->dirty_rx[q] = 0;
232 	priv->dirty_tx[q] = 0;
233 
234 	memset(priv->rx_ring[q], 0, rx_ring_size);
235 	/* Build RX ring buffer */
236 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
237 		/* RX descriptor */
238 		rx_desc = &priv->rx_ring[q][i];
239 		/* The size of the buffer should be on 16-byte boundary. */
240 		rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
241 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
242 					  ALIGN(PKT_BUF_SZ, 16),
243 					  DMA_FROM_DEVICE);
244 		/* We just set the data size to 0 for a failed mapping which
245 		 * should prevent DMA from happening...
246 		 */
247 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
248 			rx_desc->ds_cc = cpu_to_le16(0);
249 		rx_desc->dptr = cpu_to_le32(dma_addr);
250 		rx_desc->die_dt = DT_FEMPTY;
251 	}
252 	rx_desc = &priv->rx_ring[q][i];
253 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
254 	rx_desc->die_dt = DT_LINKFIX; /* type */
255 
256 	memset(priv->tx_ring[q], 0, tx_ring_size);
257 	/* Build TX ring buffer */
258 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
259 	     i++, tx_desc++) {
260 		tx_desc->die_dt = DT_EEMPTY;
261 		tx_desc++;
262 		tx_desc->die_dt = DT_EEMPTY;
263 	}
264 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
265 	tx_desc->die_dt = DT_LINKFIX; /* type */
266 
267 	/* RX descriptor base address for best effort */
268 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
269 	desc->die_dt = DT_LINKFIX; /* type */
270 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
271 
272 	/* TX descriptor base address for best effort */
273 	desc = &priv->desc_bat[q];
274 	desc->die_dt = DT_LINKFIX; /* type */
275 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
276 }
277 
278 /* Init skb and descriptor buffer for Ethernet AVB */
279 static int ravb_ring_init(struct net_device *ndev, int q)
280 {
281 	struct ravb_private *priv = netdev_priv(ndev);
282 	struct sk_buff *skb;
283 	int ring_size;
284 	int i;
285 
286 	/* Allocate RX and TX skb rings */
287 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
288 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
289 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
290 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
291 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
292 		goto error;
293 
294 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
295 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
296 		if (!skb)
297 			goto error;
298 		ravb_set_buffer_align(skb);
299 		priv->rx_skb[q][i] = skb;
300 	}
301 
302 	/* Allocate rings for the aligned buffers */
303 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
304 				    DPTR_ALIGN - 1, GFP_KERNEL);
305 	if (!priv->tx_align[q])
306 		goto error;
307 
308 	/* Allocate all RX descriptors. */
309 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
310 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
311 					      &priv->rx_desc_dma[q],
312 					      GFP_KERNEL);
313 	if (!priv->rx_ring[q])
314 		goto error;
315 
316 	priv->dirty_rx[q] = 0;
317 
318 	/* Allocate all TX descriptors. */
319 	ring_size = sizeof(struct ravb_tx_desc) *
320 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
321 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
322 					      &priv->tx_desc_dma[q],
323 					      GFP_KERNEL);
324 	if (!priv->tx_ring[q])
325 		goto error;
326 
327 	return 0;
328 
329 error:
330 	ravb_ring_free(ndev, q);
331 
332 	return -ENOMEM;
333 }
334 
335 /* E-MAC init function */
336 static void ravb_emac_init(struct net_device *ndev)
337 {
338 	struct ravb_private *priv = netdev_priv(ndev);
339 
340 	/* Receive frame limit set register */
341 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
342 
343 	/* PAUSE prohibition */
344 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
345 		   ECMR_TE | ECMR_RE, ECMR);
346 
347 	ravb_set_rate(ndev);
348 
349 	/* Set MAC address */
350 	ravb_write(ndev,
351 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
352 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
353 	ravb_write(ndev,
354 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
355 
356 	ravb_write(ndev, 1, MPR);
357 
358 	/* E-MAC status register clear */
359 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
360 
361 	/* E-MAC interrupt enable register */
362 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
363 }
364 
365 /* Device init function for Ethernet AVB */
366 static int ravb_dmac_init(struct net_device *ndev)
367 {
368 	int error;
369 
370 	/* Set CONFIG mode */
371 	error = ravb_config(ndev);
372 	if (error)
373 		return error;
374 
375 	error = ravb_ring_init(ndev, RAVB_BE);
376 	if (error)
377 		return error;
378 	error = ravb_ring_init(ndev, RAVB_NC);
379 	if (error) {
380 		ravb_ring_free(ndev, RAVB_BE);
381 		return error;
382 	}
383 
384 	/* Descriptor format */
385 	ravb_ring_format(ndev, RAVB_BE);
386 	ravb_ring_format(ndev, RAVB_NC);
387 
388 #if defined(__LITTLE_ENDIAN)
389 	ravb_modify(ndev, CCC, CCC_BOC, 0);
390 #else
391 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
392 #endif
393 
394 	/* Set AVB RX */
395 	ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
396 
397 	/* Set FIFO size */
398 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
399 
400 	/* Timestamp enable */
401 	ravb_write(ndev, TCCR_TFEN, TCCR);
402 
403 	/* Interrupt init: */
404 	/* Frame receive */
405 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
406 	/* Disable FIFO full warning */
407 	ravb_write(ndev, 0, RIC1);
408 	/* Receive FIFO full error, descriptor empty */
409 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
410 	/* Frame transmitted, timestamp FIFO updated */
411 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
412 
413 	/* Setting the control will start the AVB-DMAC process. */
414 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
415 
416 	return 0;
417 }
418 
419 /* Free TX skb function for AVB-IP */
420 static int ravb_tx_free(struct net_device *ndev, int q)
421 {
422 	struct ravb_private *priv = netdev_priv(ndev);
423 	struct net_device_stats *stats = &priv->stats[q];
424 	struct ravb_tx_desc *desc;
425 	int free_num = 0;
426 	int entry;
427 	u32 size;
428 
429 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
430 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
431 					     NUM_TX_DESC);
432 		desc = &priv->tx_ring[q][entry];
433 		if (desc->die_dt != DT_FEMPTY)
434 			break;
435 		/* Descriptor type must be checked before all other reads */
436 		dma_rmb();
437 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
438 		/* Free the original skb. */
439 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
440 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
441 					 size, DMA_TO_DEVICE);
442 			/* Last packet descriptor? */
443 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
444 				entry /= NUM_TX_DESC;
445 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
446 				priv->tx_skb[q][entry] = NULL;
447 				stats->tx_packets++;
448 			}
449 			free_num++;
450 		}
451 		stats->tx_bytes += size;
452 		desc->die_dt = DT_EEMPTY;
453 	}
454 	return free_num;
455 }
456 
457 static void ravb_get_tx_tstamp(struct net_device *ndev)
458 {
459 	struct ravb_private *priv = netdev_priv(ndev);
460 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
461 	struct skb_shared_hwtstamps shhwtstamps;
462 	struct sk_buff *skb;
463 	struct timespec64 ts;
464 	u16 tag, tfa_tag;
465 	int count;
466 	u32 tfa2;
467 
468 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
469 	while (count--) {
470 		tfa2 = ravb_read(ndev, TFA2);
471 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
472 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
473 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
474 			    ravb_read(ndev, TFA1);
475 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
476 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
477 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
478 					 list) {
479 			skb = ts_skb->skb;
480 			tag = ts_skb->tag;
481 			list_del(&ts_skb->list);
482 			kfree(ts_skb);
483 			if (tag == tfa_tag) {
484 				skb_tstamp_tx(skb, &shhwtstamps);
485 				break;
486 			}
487 		}
488 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
489 	}
490 }
491 
492 /* Packet receive function for Ethernet AVB */
493 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
494 {
495 	struct ravb_private *priv = netdev_priv(ndev);
496 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
497 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
498 			priv->cur_rx[q];
499 	struct net_device_stats *stats = &priv->stats[q];
500 	struct ravb_ex_rx_desc *desc;
501 	struct sk_buff *skb;
502 	dma_addr_t dma_addr;
503 	struct timespec64 ts;
504 	u8  desc_status;
505 	u16 pkt_len;
506 	int limit;
507 
508 	boguscnt = min(boguscnt, *quota);
509 	limit = boguscnt;
510 	desc = &priv->rx_ring[q][entry];
511 	while (desc->die_dt != DT_FEMPTY) {
512 		/* Descriptor type must be checked before all other reads */
513 		dma_rmb();
514 		desc_status = desc->msc;
515 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
516 
517 		if (--boguscnt < 0)
518 			break;
519 
520 		/* We use 0-byte descriptors to mark the DMA mapping errors */
521 		if (!pkt_len)
522 			continue;
523 
524 		if (desc_status & MSC_MC)
525 			stats->multicast++;
526 
527 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
528 				   MSC_CEEF)) {
529 			stats->rx_errors++;
530 			if (desc_status & MSC_CRC)
531 				stats->rx_crc_errors++;
532 			if (desc_status & MSC_RFE)
533 				stats->rx_frame_errors++;
534 			if (desc_status & (MSC_RTLF | MSC_RTSF))
535 				stats->rx_length_errors++;
536 			if (desc_status & MSC_CEEF)
537 				stats->rx_missed_errors++;
538 		} else {
539 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
540 
541 			skb = priv->rx_skb[q][entry];
542 			priv->rx_skb[q][entry] = NULL;
543 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
544 					 ALIGN(PKT_BUF_SZ, 16),
545 					 DMA_FROM_DEVICE);
546 			get_ts &= (q == RAVB_NC) ?
547 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
548 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
549 			if (get_ts) {
550 				struct skb_shared_hwtstamps *shhwtstamps;
551 
552 				shhwtstamps = skb_hwtstamps(skb);
553 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
554 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
555 					     32) | le32_to_cpu(desc->ts_sl);
556 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
557 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
558 			}
559 			skb_put(skb, pkt_len);
560 			skb->protocol = eth_type_trans(skb, ndev);
561 			napi_gro_receive(&priv->napi[q], skb);
562 			stats->rx_packets++;
563 			stats->rx_bytes += pkt_len;
564 		}
565 
566 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
567 		desc = &priv->rx_ring[q][entry];
568 	}
569 
570 	/* Refill the RX ring buffers. */
571 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
572 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
573 		desc = &priv->rx_ring[q][entry];
574 		/* The size of the buffer should be on 16-byte boundary. */
575 		desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
576 
577 		if (!priv->rx_skb[q][entry]) {
578 			skb = netdev_alloc_skb(ndev,
579 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
580 			if (!skb)
581 				break;	/* Better luck next round. */
582 			ravb_set_buffer_align(skb);
583 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
584 						  le16_to_cpu(desc->ds_cc),
585 						  DMA_FROM_DEVICE);
586 			skb_checksum_none_assert(skb);
587 			/* We just set the data size to 0 for a failed mapping
588 			 * which should prevent DMA  from happening...
589 			 */
590 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
591 				desc->ds_cc = cpu_to_le16(0);
592 			desc->dptr = cpu_to_le32(dma_addr);
593 			priv->rx_skb[q][entry] = skb;
594 		}
595 		/* Descriptor type must be set after all the above writes */
596 		dma_wmb();
597 		desc->die_dt = DT_FEMPTY;
598 	}
599 
600 	*quota -= limit - (++boguscnt);
601 
602 	return boguscnt <= 0;
603 }
604 
605 static void ravb_rcv_snd_disable(struct net_device *ndev)
606 {
607 	/* Disable TX and RX */
608 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
609 }
610 
611 static void ravb_rcv_snd_enable(struct net_device *ndev)
612 {
613 	/* Enable TX and RX */
614 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
615 }
616 
617 /* function for waiting dma process finished */
618 static int ravb_stop_dma(struct net_device *ndev)
619 {
620 	int error;
621 
622 	/* Wait for stopping the hardware TX process */
623 	error = ravb_wait(ndev, TCCR,
624 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
625 	if (error)
626 		return error;
627 
628 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
629 			  0);
630 	if (error)
631 		return error;
632 
633 	/* Stop the E-MAC's RX/TX processes. */
634 	ravb_rcv_snd_disable(ndev);
635 
636 	/* Wait for stopping the RX DMA process */
637 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
638 	if (error)
639 		return error;
640 
641 	/* Stop AVB-DMAC process */
642 	return ravb_config(ndev);
643 }
644 
645 /* E-MAC interrupt handler */
646 static void ravb_emac_interrupt(struct net_device *ndev)
647 {
648 	struct ravb_private *priv = netdev_priv(ndev);
649 	u32 ecsr, psr;
650 
651 	ecsr = ravb_read(ndev, ECSR);
652 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
653 	if (ecsr & ECSR_ICD)
654 		ndev->stats.tx_carrier_errors++;
655 	if (ecsr & ECSR_LCHNG) {
656 		/* Link changed */
657 		if (priv->no_avb_link)
658 			return;
659 		psr = ravb_read(ndev, PSR);
660 		if (priv->avb_link_active_low)
661 			psr ^= PSR_LMON;
662 		if (!(psr & PSR_LMON)) {
663 			/* DIsable RX and TX */
664 			ravb_rcv_snd_disable(ndev);
665 		} else {
666 			/* Enable RX and TX */
667 			ravb_rcv_snd_enable(ndev);
668 		}
669 	}
670 }
671 
672 /* Error interrupt handler */
673 static void ravb_error_interrupt(struct net_device *ndev)
674 {
675 	struct ravb_private *priv = netdev_priv(ndev);
676 	u32 eis, ris2;
677 
678 	eis = ravb_read(ndev, EIS);
679 	ravb_write(ndev, ~EIS_QFS, EIS);
680 	if (eis & EIS_QFS) {
681 		ris2 = ravb_read(ndev, RIS2);
682 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
683 
684 		/* Receive Descriptor Empty int */
685 		if (ris2 & RIS2_QFF0)
686 			priv->stats[RAVB_BE].rx_over_errors++;
687 
688 		    /* Receive Descriptor Empty int */
689 		if (ris2 & RIS2_QFF1)
690 			priv->stats[RAVB_NC].rx_over_errors++;
691 
692 		/* Receive FIFO Overflow int */
693 		if (ris2 & RIS2_RFFF)
694 			priv->rx_fifo_errors++;
695 	}
696 }
697 
698 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
699 {
700 	struct net_device *ndev = dev_id;
701 	struct ravb_private *priv = netdev_priv(ndev);
702 	irqreturn_t result = IRQ_NONE;
703 	u32 iss;
704 
705 	spin_lock(&priv->lock);
706 	/* Get interrupt status */
707 	iss = ravb_read(ndev, ISS);
708 
709 	/* Received and transmitted interrupts */
710 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
711 		u32 ris0 = ravb_read(ndev, RIS0);
712 		u32 ric0 = ravb_read(ndev, RIC0);
713 		u32 tis  = ravb_read(ndev, TIS);
714 		u32 tic  = ravb_read(ndev, TIC);
715 		int q;
716 
717 		/* Timestamp updated */
718 		if (tis & TIS_TFUF) {
719 			ravb_write(ndev, ~TIS_TFUF, TIS);
720 			ravb_get_tx_tstamp(ndev);
721 			result = IRQ_HANDLED;
722 		}
723 
724 		/* Network control and best effort queue RX/TX */
725 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
726 			if (((ris0 & ric0) & BIT(q)) ||
727 			    ((tis  & tic)  & BIT(q))) {
728 				if (napi_schedule_prep(&priv->napi[q])) {
729 					/* Mask RX and TX interrupts */
730 					ric0 &= ~BIT(q);
731 					tic &= ~BIT(q);
732 					ravb_write(ndev, ric0, RIC0);
733 					ravb_write(ndev, tic, TIC);
734 					__napi_schedule(&priv->napi[q]);
735 				} else {
736 					netdev_warn(ndev,
737 						    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
738 						    ris0, ric0);
739 					netdev_warn(ndev,
740 						    "                    tx status 0x%08x, tx mask 0x%08x.\n",
741 						    tis, tic);
742 				}
743 				result = IRQ_HANDLED;
744 			}
745 		}
746 	}
747 
748 	/* E-MAC status summary */
749 	if (iss & ISS_MS) {
750 		ravb_emac_interrupt(ndev);
751 		result = IRQ_HANDLED;
752 	}
753 
754 	/* Error status summary */
755 	if (iss & ISS_ES) {
756 		ravb_error_interrupt(ndev);
757 		result = IRQ_HANDLED;
758 	}
759 
760 	if ((iss & ISS_CGIS) && ravb_ptp_interrupt(ndev) == IRQ_HANDLED)
761 		result = IRQ_HANDLED;
762 
763 	mmiowb();
764 	spin_unlock(&priv->lock);
765 	return result;
766 }
767 
768 static int ravb_poll(struct napi_struct *napi, int budget)
769 {
770 	struct net_device *ndev = napi->dev;
771 	struct ravb_private *priv = netdev_priv(ndev);
772 	unsigned long flags;
773 	int q = napi - priv->napi;
774 	int mask = BIT(q);
775 	int quota = budget;
776 	u32 ris0, tis;
777 
778 	for (;;) {
779 		tis = ravb_read(ndev, TIS);
780 		ris0 = ravb_read(ndev, RIS0);
781 		if (!((ris0 & mask) || (tis & mask)))
782 			break;
783 
784 		/* Processing RX Descriptor Ring */
785 		if (ris0 & mask) {
786 			/* Clear RX interrupt */
787 			ravb_write(ndev, ~mask, RIS0);
788 			if (ravb_rx(ndev, &quota, q))
789 				goto out;
790 		}
791 		/* Processing TX Descriptor Ring */
792 		if (tis & mask) {
793 			spin_lock_irqsave(&priv->lock, flags);
794 			/* Clear TX interrupt */
795 			ravb_write(ndev, ~mask, TIS);
796 			ravb_tx_free(ndev, q);
797 			netif_wake_subqueue(ndev, q);
798 			mmiowb();
799 			spin_unlock_irqrestore(&priv->lock, flags);
800 		}
801 	}
802 
803 	napi_complete(napi);
804 
805 	/* Re-enable RX/TX interrupts */
806 	spin_lock_irqsave(&priv->lock, flags);
807 	ravb_modify(ndev, RIC0, mask, mask);
808 	ravb_modify(ndev, TIC,  mask, mask);
809 	mmiowb();
810 	spin_unlock_irqrestore(&priv->lock, flags);
811 
812 	/* Receive error message handling */
813 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
814 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
815 	if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
816 		ndev->stats.rx_over_errors = priv->rx_over_errors;
817 		netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
818 	}
819 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
820 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
821 		netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
822 	}
823 out:
824 	return budget - quota;
825 }
826 
827 /* PHY state control function */
828 static void ravb_adjust_link(struct net_device *ndev)
829 {
830 	struct ravb_private *priv = netdev_priv(ndev);
831 	struct phy_device *phydev = priv->phydev;
832 	bool new_state = false;
833 
834 	if (phydev->link) {
835 		if (phydev->duplex != priv->duplex) {
836 			new_state = true;
837 			priv->duplex = phydev->duplex;
838 			ravb_set_duplex(ndev);
839 		}
840 
841 		if (phydev->speed != priv->speed) {
842 			new_state = true;
843 			priv->speed = phydev->speed;
844 			ravb_set_rate(ndev);
845 		}
846 		if (!priv->link) {
847 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
848 			new_state = true;
849 			priv->link = phydev->link;
850 			if (priv->no_avb_link)
851 				ravb_rcv_snd_enable(ndev);
852 		}
853 	} else if (priv->link) {
854 		new_state = true;
855 		priv->link = 0;
856 		priv->speed = 0;
857 		priv->duplex = -1;
858 		if (priv->no_avb_link)
859 			ravb_rcv_snd_disable(ndev);
860 	}
861 
862 	if (new_state && netif_msg_link(priv))
863 		phy_print_status(phydev);
864 }
865 
866 /* PHY init function */
867 static int ravb_phy_init(struct net_device *ndev)
868 {
869 	struct device_node *np = ndev->dev.parent->of_node;
870 	struct ravb_private *priv = netdev_priv(ndev);
871 	struct phy_device *phydev;
872 	struct device_node *pn;
873 	int err;
874 
875 	priv->link = 0;
876 	priv->speed = 0;
877 	priv->duplex = -1;
878 
879 	/* Try connecting to PHY */
880 	pn = of_parse_phandle(np, "phy-handle", 0);
881 	if (!pn) {
882 		/* In the case of a fixed PHY, the DT node associated
883 		 * to the PHY is the Ethernet MAC DT node.
884 		 */
885 		if (of_phy_is_fixed_link(np)) {
886 			err = of_phy_register_fixed_link(np);
887 			if (err)
888 				return err;
889 		}
890 		pn = of_node_get(np);
891 	}
892 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
893 				priv->phy_interface);
894 	if (!phydev) {
895 		netdev_err(ndev, "failed to connect PHY\n");
896 		return -ENOENT;
897 	}
898 
899 	/* This driver only support 10/100Mbit speeds on Gen3
900 	 * at this time.
901 	 */
902 	if (priv->chip_id == RCAR_GEN3) {
903 		int err;
904 
905 		err = phy_set_max_speed(phydev, SPEED_100);
906 		if (err) {
907 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
908 			phy_disconnect(phydev);
909 			return err;
910 		}
911 
912 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
913 	}
914 
915 	/* 10BASE is not supported */
916 	phydev->supported &= ~PHY_10BT_FEATURES;
917 
918 	phy_attached_info(phydev);
919 
920 	priv->phydev = phydev;
921 
922 	return 0;
923 }
924 
925 /* PHY control start function */
926 static int ravb_phy_start(struct net_device *ndev)
927 {
928 	struct ravb_private *priv = netdev_priv(ndev);
929 	int error;
930 
931 	error = ravb_phy_init(ndev);
932 	if (error)
933 		return error;
934 
935 	phy_start(priv->phydev);
936 
937 	return 0;
938 }
939 
940 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
941 {
942 	struct ravb_private *priv = netdev_priv(ndev);
943 	int error = -ENODEV;
944 	unsigned long flags;
945 
946 	if (priv->phydev) {
947 		spin_lock_irqsave(&priv->lock, flags);
948 		error = phy_ethtool_gset(priv->phydev, ecmd);
949 		spin_unlock_irqrestore(&priv->lock, flags);
950 	}
951 
952 	return error;
953 }
954 
955 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
956 {
957 	struct ravb_private *priv = netdev_priv(ndev);
958 	unsigned long flags;
959 	int error;
960 
961 	if (!priv->phydev)
962 		return -ENODEV;
963 
964 	spin_lock_irqsave(&priv->lock, flags);
965 
966 	/* Disable TX and RX */
967 	ravb_rcv_snd_disable(ndev);
968 
969 	error = phy_ethtool_sset(priv->phydev, ecmd);
970 	if (error)
971 		goto error_exit;
972 
973 	if (ecmd->duplex == DUPLEX_FULL)
974 		priv->duplex = 1;
975 	else
976 		priv->duplex = 0;
977 
978 	ravb_set_duplex(ndev);
979 
980 error_exit:
981 	mdelay(1);
982 
983 	/* Enable TX and RX */
984 	ravb_rcv_snd_enable(ndev);
985 
986 	mmiowb();
987 	spin_unlock_irqrestore(&priv->lock, flags);
988 
989 	return error;
990 }
991 
992 static int ravb_nway_reset(struct net_device *ndev)
993 {
994 	struct ravb_private *priv = netdev_priv(ndev);
995 	int error = -ENODEV;
996 	unsigned long flags;
997 
998 	if (priv->phydev) {
999 		spin_lock_irqsave(&priv->lock, flags);
1000 		error = phy_start_aneg(priv->phydev);
1001 		spin_unlock_irqrestore(&priv->lock, flags);
1002 	}
1003 
1004 	return error;
1005 }
1006 
1007 static u32 ravb_get_msglevel(struct net_device *ndev)
1008 {
1009 	struct ravb_private *priv = netdev_priv(ndev);
1010 
1011 	return priv->msg_enable;
1012 }
1013 
1014 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1015 {
1016 	struct ravb_private *priv = netdev_priv(ndev);
1017 
1018 	priv->msg_enable = value;
1019 }
1020 
1021 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1022 	"rx_queue_0_current",
1023 	"tx_queue_0_current",
1024 	"rx_queue_0_dirty",
1025 	"tx_queue_0_dirty",
1026 	"rx_queue_0_packets",
1027 	"tx_queue_0_packets",
1028 	"rx_queue_0_bytes",
1029 	"tx_queue_0_bytes",
1030 	"rx_queue_0_mcast_packets",
1031 	"rx_queue_0_errors",
1032 	"rx_queue_0_crc_errors",
1033 	"rx_queue_0_frame_errors",
1034 	"rx_queue_0_length_errors",
1035 	"rx_queue_0_missed_errors",
1036 	"rx_queue_0_over_errors",
1037 
1038 	"rx_queue_1_current",
1039 	"tx_queue_1_current",
1040 	"rx_queue_1_dirty",
1041 	"tx_queue_1_dirty",
1042 	"rx_queue_1_packets",
1043 	"tx_queue_1_packets",
1044 	"rx_queue_1_bytes",
1045 	"tx_queue_1_bytes",
1046 	"rx_queue_1_mcast_packets",
1047 	"rx_queue_1_errors",
1048 	"rx_queue_1_crc_errors",
1049 	"rx_queue_1_frame_errors",
1050 	"rx_queue_1_length_errors",
1051 	"rx_queue_1_missed_errors",
1052 	"rx_queue_1_over_errors",
1053 };
1054 
1055 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1056 
1057 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1058 {
1059 	switch (sset) {
1060 	case ETH_SS_STATS:
1061 		return RAVB_STATS_LEN;
1062 	default:
1063 		return -EOPNOTSUPP;
1064 	}
1065 }
1066 
1067 static void ravb_get_ethtool_stats(struct net_device *ndev,
1068 				   struct ethtool_stats *stats, u64 *data)
1069 {
1070 	struct ravb_private *priv = netdev_priv(ndev);
1071 	int i = 0;
1072 	int q;
1073 
1074 	/* Device-specific stats */
1075 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1076 		struct net_device_stats *stats = &priv->stats[q];
1077 
1078 		data[i++] = priv->cur_rx[q];
1079 		data[i++] = priv->cur_tx[q];
1080 		data[i++] = priv->dirty_rx[q];
1081 		data[i++] = priv->dirty_tx[q];
1082 		data[i++] = stats->rx_packets;
1083 		data[i++] = stats->tx_packets;
1084 		data[i++] = stats->rx_bytes;
1085 		data[i++] = stats->tx_bytes;
1086 		data[i++] = stats->multicast;
1087 		data[i++] = stats->rx_errors;
1088 		data[i++] = stats->rx_crc_errors;
1089 		data[i++] = stats->rx_frame_errors;
1090 		data[i++] = stats->rx_length_errors;
1091 		data[i++] = stats->rx_missed_errors;
1092 		data[i++] = stats->rx_over_errors;
1093 	}
1094 }
1095 
1096 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1097 {
1098 	switch (stringset) {
1099 	case ETH_SS_STATS:
1100 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1101 		break;
1102 	}
1103 }
1104 
1105 static void ravb_get_ringparam(struct net_device *ndev,
1106 			       struct ethtool_ringparam *ring)
1107 {
1108 	struct ravb_private *priv = netdev_priv(ndev);
1109 
1110 	ring->rx_max_pending = BE_RX_RING_MAX;
1111 	ring->tx_max_pending = BE_TX_RING_MAX;
1112 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1113 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1114 }
1115 
1116 static int ravb_set_ringparam(struct net_device *ndev,
1117 			      struct ethtool_ringparam *ring)
1118 {
1119 	struct ravb_private *priv = netdev_priv(ndev);
1120 	int error;
1121 
1122 	if (ring->tx_pending > BE_TX_RING_MAX ||
1123 	    ring->rx_pending > BE_RX_RING_MAX ||
1124 	    ring->tx_pending < BE_TX_RING_MIN ||
1125 	    ring->rx_pending < BE_RX_RING_MIN)
1126 		return -EINVAL;
1127 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1128 		return -EINVAL;
1129 
1130 	if (netif_running(ndev)) {
1131 		netif_device_detach(ndev);
1132 		/* Stop PTP Clock driver */
1133 		if (priv->chip_id == RCAR_GEN2)
1134 			ravb_ptp_stop(ndev);
1135 		/* Wait for DMA stopping */
1136 		error = ravb_stop_dma(ndev);
1137 		if (error) {
1138 			netdev_err(ndev,
1139 				   "cannot set ringparam! Any AVB processes are still running?\n");
1140 			return error;
1141 		}
1142 		synchronize_irq(ndev->irq);
1143 
1144 		/* Free all the skb's in the RX queue and the DMA buffers. */
1145 		ravb_ring_free(ndev, RAVB_BE);
1146 		ravb_ring_free(ndev, RAVB_NC);
1147 	}
1148 
1149 	/* Set new parameters */
1150 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1151 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1152 
1153 	if (netif_running(ndev)) {
1154 		error = ravb_dmac_init(ndev);
1155 		if (error) {
1156 			netdev_err(ndev,
1157 				   "%s: ravb_dmac_init() failed, error %d\n",
1158 				   __func__, error);
1159 			return error;
1160 		}
1161 
1162 		ravb_emac_init(ndev);
1163 
1164 		/* Initialise PTP Clock driver */
1165 		if (priv->chip_id == RCAR_GEN2)
1166 			ravb_ptp_init(ndev, priv->pdev);
1167 
1168 		netif_device_attach(ndev);
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static int ravb_get_ts_info(struct net_device *ndev,
1175 			    struct ethtool_ts_info *info)
1176 {
1177 	struct ravb_private *priv = netdev_priv(ndev);
1178 
1179 	info->so_timestamping =
1180 		SOF_TIMESTAMPING_TX_SOFTWARE |
1181 		SOF_TIMESTAMPING_RX_SOFTWARE |
1182 		SOF_TIMESTAMPING_SOFTWARE |
1183 		SOF_TIMESTAMPING_TX_HARDWARE |
1184 		SOF_TIMESTAMPING_RX_HARDWARE |
1185 		SOF_TIMESTAMPING_RAW_HARDWARE;
1186 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1187 	info->rx_filters =
1188 		(1 << HWTSTAMP_FILTER_NONE) |
1189 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1190 		(1 << HWTSTAMP_FILTER_ALL);
1191 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1192 
1193 	return 0;
1194 }
1195 
1196 static const struct ethtool_ops ravb_ethtool_ops = {
1197 	.get_settings		= ravb_get_settings,
1198 	.set_settings		= ravb_set_settings,
1199 	.nway_reset		= ravb_nway_reset,
1200 	.get_msglevel		= ravb_get_msglevel,
1201 	.set_msglevel		= ravb_set_msglevel,
1202 	.get_link		= ethtool_op_get_link,
1203 	.get_strings		= ravb_get_strings,
1204 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1205 	.get_sset_count		= ravb_get_sset_count,
1206 	.get_ringparam		= ravb_get_ringparam,
1207 	.set_ringparam		= ravb_set_ringparam,
1208 	.get_ts_info		= ravb_get_ts_info,
1209 };
1210 
1211 /* Network device open function for Ethernet AVB */
1212 static int ravb_open(struct net_device *ndev)
1213 {
1214 	struct ravb_private *priv = netdev_priv(ndev);
1215 	int error;
1216 
1217 	napi_enable(&priv->napi[RAVB_BE]);
1218 	napi_enable(&priv->napi[RAVB_NC]);
1219 
1220 	error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
1221 			    ndev);
1222 	if (error) {
1223 		netdev_err(ndev, "cannot request IRQ\n");
1224 		goto out_napi_off;
1225 	}
1226 
1227 	if (priv->chip_id == RCAR_GEN3) {
1228 		error = request_irq(priv->emac_irq, ravb_interrupt,
1229 				    IRQF_SHARED, ndev->name, ndev);
1230 		if (error) {
1231 			netdev_err(ndev, "cannot request IRQ\n");
1232 			goto out_free_irq;
1233 		}
1234 	}
1235 
1236 	/* Device init */
1237 	error = ravb_dmac_init(ndev);
1238 	if (error)
1239 		goto out_free_irq2;
1240 	ravb_emac_init(ndev);
1241 
1242 	/* Initialise PTP Clock driver */
1243 	if (priv->chip_id == RCAR_GEN2)
1244 		ravb_ptp_init(ndev, priv->pdev);
1245 
1246 	netif_tx_start_all_queues(ndev);
1247 
1248 	/* PHY control start */
1249 	error = ravb_phy_start(ndev);
1250 	if (error)
1251 		goto out_ptp_stop;
1252 
1253 	return 0;
1254 
1255 out_ptp_stop:
1256 	/* Stop PTP Clock driver */
1257 	if (priv->chip_id == RCAR_GEN2)
1258 		ravb_ptp_stop(ndev);
1259 out_free_irq2:
1260 	if (priv->chip_id == RCAR_GEN3)
1261 		free_irq(priv->emac_irq, ndev);
1262 out_free_irq:
1263 	free_irq(ndev->irq, ndev);
1264 out_napi_off:
1265 	napi_disable(&priv->napi[RAVB_NC]);
1266 	napi_disable(&priv->napi[RAVB_BE]);
1267 	return error;
1268 }
1269 
1270 /* Timeout function for Ethernet AVB */
1271 static void ravb_tx_timeout(struct net_device *ndev)
1272 {
1273 	struct ravb_private *priv = netdev_priv(ndev);
1274 
1275 	netif_err(priv, tx_err, ndev,
1276 		  "transmit timed out, status %08x, resetting...\n",
1277 		  ravb_read(ndev, ISS));
1278 
1279 	/* tx_errors count up */
1280 	ndev->stats.tx_errors++;
1281 
1282 	schedule_work(&priv->work);
1283 }
1284 
1285 static void ravb_tx_timeout_work(struct work_struct *work)
1286 {
1287 	struct ravb_private *priv = container_of(work, struct ravb_private,
1288 						 work);
1289 	struct net_device *ndev = priv->ndev;
1290 
1291 	netif_tx_stop_all_queues(ndev);
1292 
1293 	/* Stop PTP Clock driver */
1294 	if (priv->chip_id == RCAR_GEN2)
1295 		ravb_ptp_stop(ndev);
1296 
1297 	/* Wait for DMA stopping */
1298 	ravb_stop_dma(ndev);
1299 
1300 	ravb_ring_free(ndev, RAVB_BE);
1301 	ravb_ring_free(ndev, RAVB_NC);
1302 
1303 	/* Device init */
1304 	ravb_dmac_init(ndev);
1305 	ravb_emac_init(ndev);
1306 
1307 	/* Initialise PTP Clock driver */
1308 	if (priv->chip_id == RCAR_GEN2)
1309 		ravb_ptp_init(ndev, priv->pdev);
1310 
1311 	netif_tx_start_all_queues(ndev);
1312 }
1313 
1314 /* Packet transmit function for Ethernet AVB */
1315 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1316 {
1317 	struct ravb_private *priv = netdev_priv(ndev);
1318 	u16 q = skb_get_queue_mapping(skb);
1319 	struct ravb_tstamp_skb *ts_skb;
1320 	struct ravb_tx_desc *desc;
1321 	unsigned long flags;
1322 	u32 dma_addr;
1323 	void *buffer;
1324 	u32 entry;
1325 	u32 len;
1326 
1327 	spin_lock_irqsave(&priv->lock, flags);
1328 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1329 	    NUM_TX_DESC) {
1330 		netif_err(priv, tx_queued, ndev,
1331 			  "still transmitting with the full ring!\n");
1332 		netif_stop_subqueue(ndev, q);
1333 		spin_unlock_irqrestore(&priv->lock, flags);
1334 		return NETDEV_TX_BUSY;
1335 	}
1336 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1337 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1338 
1339 	if (skb_put_padto(skb, ETH_ZLEN))
1340 		goto drop;
1341 
1342 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1343 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1344 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1345 	memcpy(buffer, skb->data, len);
1346 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1347 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1348 		goto drop;
1349 
1350 	desc = &priv->tx_ring[q][entry];
1351 	desc->ds_tagl = cpu_to_le16(len);
1352 	desc->dptr = cpu_to_le32(dma_addr);
1353 
1354 	buffer = skb->data + len;
1355 	len = skb->len - len;
1356 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1357 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1358 		goto unmap;
1359 
1360 	desc++;
1361 	desc->ds_tagl = cpu_to_le16(len);
1362 	desc->dptr = cpu_to_le32(dma_addr);
1363 
1364 	/* TX timestamp required */
1365 	if (q == RAVB_NC) {
1366 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1367 		if (!ts_skb) {
1368 			desc--;
1369 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1370 					 DMA_TO_DEVICE);
1371 			goto unmap;
1372 		}
1373 		ts_skb->skb = skb;
1374 		ts_skb->tag = priv->ts_skb_tag++;
1375 		priv->ts_skb_tag &= 0x3ff;
1376 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1377 
1378 		/* TAG and timestamp required flag */
1379 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1380 		skb_tx_timestamp(skb);
1381 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1382 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1383 	}
1384 
1385 	/* Descriptor type must be set after all the above writes */
1386 	dma_wmb();
1387 	desc->die_dt = DT_FEND;
1388 	desc--;
1389 	desc->die_dt = DT_FSTART;
1390 
1391 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1392 
1393 	priv->cur_tx[q] += NUM_TX_DESC;
1394 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1395 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1396 		netif_stop_subqueue(ndev, q);
1397 
1398 exit:
1399 	mmiowb();
1400 	spin_unlock_irqrestore(&priv->lock, flags);
1401 	return NETDEV_TX_OK;
1402 
1403 unmap:
1404 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1405 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1406 drop:
1407 	dev_kfree_skb_any(skb);
1408 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1409 	goto exit;
1410 }
1411 
1412 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1413 			     void *accel_priv, select_queue_fallback_t fallback)
1414 {
1415 	/* If skb needs TX timestamp, it is handled in network control queue */
1416 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1417 							       RAVB_BE;
1418 
1419 }
1420 
1421 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1422 {
1423 	struct ravb_private *priv = netdev_priv(ndev);
1424 	struct net_device_stats *nstats, *stats0, *stats1;
1425 
1426 	nstats = &ndev->stats;
1427 	stats0 = &priv->stats[RAVB_BE];
1428 	stats1 = &priv->stats[RAVB_NC];
1429 
1430 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1431 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1432 	nstats->collisions += ravb_read(ndev, CDCR);
1433 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1434 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1435 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1436 
1437 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1438 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1439 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1440 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1441 
1442 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1443 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1444 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1445 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1446 	nstats->multicast = stats0->multicast + stats1->multicast;
1447 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1448 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1449 	nstats->rx_frame_errors =
1450 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1451 	nstats->rx_length_errors =
1452 		stats0->rx_length_errors + stats1->rx_length_errors;
1453 	nstats->rx_missed_errors =
1454 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1455 	nstats->rx_over_errors =
1456 		stats0->rx_over_errors + stats1->rx_over_errors;
1457 
1458 	return nstats;
1459 }
1460 
1461 /* Update promiscuous bit */
1462 static void ravb_set_rx_mode(struct net_device *ndev)
1463 {
1464 	struct ravb_private *priv = netdev_priv(ndev);
1465 	unsigned long flags;
1466 
1467 	spin_lock_irqsave(&priv->lock, flags);
1468 	ravb_modify(ndev, ECMR, ECMR_PRM,
1469 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1470 	mmiowb();
1471 	spin_unlock_irqrestore(&priv->lock, flags);
1472 }
1473 
1474 /* Device close function for Ethernet AVB */
1475 static int ravb_close(struct net_device *ndev)
1476 {
1477 	struct ravb_private *priv = netdev_priv(ndev);
1478 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1479 
1480 	netif_tx_stop_all_queues(ndev);
1481 
1482 	/* Disable interrupts by clearing the interrupt masks. */
1483 	ravb_write(ndev, 0, RIC0);
1484 	ravb_write(ndev, 0, RIC2);
1485 	ravb_write(ndev, 0, TIC);
1486 
1487 	/* Stop PTP Clock driver */
1488 	if (priv->chip_id == RCAR_GEN2)
1489 		ravb_ptp_stop(ndev);
1490 
1491 	/* Set the config mode to stop the AVB-DMAC's processes */
1492 	if (ravb_stop_dma(ndev) < 0)
1493 		netdev_err(ndev,
1494 			   "device will be stopped after h/w processes are done.\n");
1495 
1496 	/* Clear the timestamp list */
1497 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1498 		list_del(&ts_skb->list);
1499 		kfree(ts_skb);
1500 	}
1501 
1502 	/* PHY disconnect */
1503 	if (priv->phydev) {
1504 		phy_stop(priv->phydev);
1505 		phy_disconnect(priv->phydev);
1506 		priv->phydev = NULL;
1507 	}
1508 
1509 	free_irq(ndev->irq, ndev);
1510 
1511 	napi_disable(&priv->napi[RAVB_NC]);
1512 	napi_disable(&priv->napi[RAVB_BE]);
1513 
1514 	/* Free all the skb's in the RX queue and the DMA buffers. */
1515 	ravb_ring_free(ndev, RAVB_BE);
1516 	ravb_ring_free(ndev, RAVB_NC);
1517 
1518 	return 0;
1519 }
1520 
1521 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1522 {
1523 	struct ravb_private *priv = netdev_priv(ndev);
1524 	struct hwtstamp_config config;
1525 
1526 	config.flags = 0;
1527 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1528 						HWTSTAMP_TX_OFF;
1529 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1530 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1531 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1532 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1533 	else
1534 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1535 
1536 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1537 		-EFAULT : 0;
1538 }
1539 
1540 /* Control hardware time stamping */
1541 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1542 {
1543 	struct ravb_private *priv = netdev_priv(ndev);
1544 	struct hwtstamp_config config;
1545 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1546 	u32 tstamp_tx_ctrl;
1547 
1548 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1549 		return -EFAULT;
1550 
1551 	/* Reserved for future extensions */
1552 	if (config.flags)
1553 		return -EINVAL;
1554 
1555 	switch (config.tx_type) {
1556 	case HWTSTAMP_TX_OFF:
1557 		tstamp_tx_ctrl = 0;
1558 		break;
1559 	case HWTSTAMP_TX_ON:
1560 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1561 		break;
1562 	default:
1563 		return -ERANGE;
1564 	}
1565 
1566 	switch (config.rx_filter) {
1567 	case HWTSTAMP_FILTER_NONE:
1568 		tstamp_rx_ctrl = 0;
1569 		break;
1570 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1571 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1572 		break;
1573 	default:
1574 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1575 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1576 	}
1577 
1578 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1579 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1580 
1581 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1582 		-EFAULT : 0;
1583 }
1584 
1585 /* ioctl to device function */
1586 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1587 {
1588 	struct ravb_private *priv = netdev_priv(ndev);
1589 	struct phy_device *phydev = priv->phydev;
1590 
1591 	if (!netif_running(ndev))
1592 		return -EINVAL;
1593 
1594 	if (!phydev)
1595 		return -ENODEV;
1596 
1597 	switch (cmd) {
1598 	case SIOCGHWTSTAMP:
1599 		return ravb_hwtstamp_get(ndev, req);
1600 	case SIOCSHWTSTAMP:
1601 		return ravb_hwtstamp_set(ndev, req);
1602 	}
1603 
1604 	return phy_mii_ioctl(phydev, req, cmd);
1605 }
1606 
1607 static const struct net_device_ops ravb_netdev_ops = {
1608 	.ndo_open		= ravb_open,
1609 	.ndo_stop		= ravb_close,
1610 	.ndo_start_xmit		= ravb_start_xmit,
1611 	.ndo_select_queue	= ravb_select_queue,
1612 	.ndo_get_stats		= ravb_get_stats,
1613 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1614 	.ndo_tx_timeout		= ravb_tx_timeout,
1615 	.ndo_do_ioctl		= ravb_do_ioctl,
1616 	.ndo_validate_addr	= eth_validate_addr,
1617 	.ndo_set_mac_address	= eth_mac_addr,
1618 	.ndo_change_mtu		= eth_change_mtu,
1619 };
1620 
1621 /* MDIO bus init function */
1622 static int ravb_mdio_init(struct ravb_private *priv)
1623 {
1624 	struct platform_device *pdev = priv->pdev;
1625 	struct device *dev = &pdev->dev;
1626 	int error;
1627 
1628 	/* Bitbang init */
1629 	priv->mdiobb.ops = &bb_ops;
1630 
1631 	/* MII controller setting */
1632 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1633 	if (!priv->mii_bus)
1634 		return -ENOMEM;
1635 
1636 	/* Hook up MII support for ethtool */
1637 	priv->mii_bus->name = "ravb_mii";
1638 	priv->mii_bus->parent = dev;
1639 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1640 		 pdev->name, pdev->id);
1641 
1642 	/* Register MDIO bus */
1643 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1644 	if (error)
1645 		goto out_free_bus;
1646 
1647 	return 0;
1648 
1649 out_free_bus:
1650 	free_mdio_bitbang(priv->mii_bus);
1651 	return error;
1652 }
1653 
1654 /* MDIO bus release function */
1655 static int ravb_mdio_release(struct ravb_private *priv)
1656 {
1657 	/* Unregister mdio bus */
1658 	mdiobus_unregister(priv->mii_bus);
1659 
1660 	/* Free bitbang info */
1661 	free_mdio_bitbang(priv->mii_bus);
1662 
1663 	return 0;
1664 }
1665 
1666 static const struct of_device_id ravb_match_table[] = {
1667 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1668 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1669 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1670 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1671 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1672 	{ }
1673 };
1674 MODULE_DEVICE_TABLE(of, ravb_match_table);
1675 
1676 static int ravb_set_gti(struct net_device *ndev)
1677 {
1678 
1679 	struct device *dev = ndev->dev.parent;
1680 	struct device_node *np = dev->of_node;
1681 	unsigned long rate;
1682 	struct clk *clk;
1683 	uint64_t inc;
1684 
1685 	clk = of_clk_get(np, 0);
1686 	if (IS_ERR(clk)) {
1687 		dev_err(dev, "could not get clock\n");
1688 		return PTR_ERR(clk);
1689 	}
1690 
1691 	rate = clk_get_rate(clk);
1692 	clk_put(clk);
1693 
1694 	inc = 1000000000ULL << 20;
1695 	do_div(inc, rate);
1696 
1697 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1698 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1699 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1700 		return -EINVAL;
1701 	}
1702 
1703 	ravb_write(ndev, inc, GTI);
1704 
1705 	return 0;
1706 }
1707 
1708 static int ravb_probe(struct platform_device *pdev)
1709 {
1710 	struct device_node *np = pdev->dev.of_node;
1711 	struct ravb_private *priv;
1712 	enum ravb_chip_id chip_id;
1713 	struct net_device *ndev;
1714 	int error, irq, q;
1715 	struct resource *res;
1716 
1717 	if (!np) {
1718 		dev_err(&pdev->dev,
1719 			"this driver is required to be instantiated from device tree\n");
1720 		return -EINVAL;
1721 	}
1722 
1723 	/* Get base address */
1724 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1725 	if (!res) {
1726 		dev_err(&pdev->dev, "invalid resource\n");
1727 		return -EINVAL;
1728 	}
1729 
1730 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1731 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1732 	if (!ndev)
1733 		return -ENOMEM;
1734 
1735 	pm_runtime_enable(&pdev->dev);
1736 	pm_runtime_get_sync(&pdev->dev);
1737 
1738 	/* The Ether-specific entries in the device structure. */
1739 	ndev->base_addr = res->start;
1740 	ndev->dma = -1;
1741 
1742 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1743 
1744 	if (chip_id == RCAR_GEN3)
1745 		irq = platform_get_irq_byname(pdev, "ch22");
1746 	else
1747 		irq = platform_get_irq(pdev, 0);
1748 	if (irq < 0) {
1749 		error = irq;
1750 		goto out_release;
1751 	}
1752 	ndev->irq = irq;
1753 
1754 	SET_NETDEV_DEV(ndev, &pdev->dev);
1755 
1756 	priv = netdev_priv(ndev);
1757 	priv->ndev = ndev;
1758 	priv->pdev = pdev;
1759 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1760 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1761 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1762 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1763 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1764 	if (IS_ERR(priv->addr)) {
1765 		error = PTR_ERR(priv->addr);
1766 		goto out_release;
1767 	}
1768 
1769 	spin_lock_init(&priv->lock);
1770 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1771 
1772 	priv->phy_interface = of_get_phy_mode(np);
1773 
1774 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1775 	priv->avb_link_active_low =
1776 		of_property_read_bool(np, "renesas,ether-link-active-low");
1777 
1778 	if (chip_id == RCAR_GEN3) {
1779 		irq = platform_get_irq_byname(pdev, "ch24");
1780 		if (irq < 0) {
1781 			error = irq;
1782 			goto out_release;
1783 		}
1784 		priv->emac_irq = irq;
1785 	}
1786 
1787 	priv->chip_id = chip_id;
1788 
1789 	/* Set function */
1790 	ndev->netdev_ops = &ravb_netdev_ops;
1791 	ndev->ethtool_ops = &ravb_ethtool_ops;
1792 
1793 	/* Set AVB config mode */
1794 	if (chip_id == RCAR_GEN2) {
1795 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1796 		/* Set CSEL value */
1797 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1798 	} else {
1799 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1800 			    CCC_GAC | CCC_CSEL_HPB);
1801 	}
1802 
1803 	/* Set GTI value */
1804 	error = ravb_set_gti(ndev);
1805 	if (error)
1806 		goto out_release;
1807 
1808 	/* Request GTI loading */
1809 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1810 
1811 	/* Allocate descriptor base address table */
1812 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
1813 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
1814 					    &priv->desc_bat_dma, GFP_KERNEL);
1815 	if (!priv->desc_bat) {
1816 		dev_err(&pdev->dev,
1817 			"Cannot allocate desc base address table (size %d bytes)\n",
1818 			priv->desc_bat_size);
1819 		error = -ENOMEM;
1820 		goto out_release;
1821 	}
1822 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
1823 		priv->desc_bat[q].die_dt = DT_EOS;
1824 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1825 
1826 	/* Initialise HW timestamp list */
1827 	INIT_LIST_HEAD(&priv->ts_skb_list);
1828 
1829 	/* Initialise PTP Clock driver */
1830 	if (chip_id != RCAR_GEN2)
1831 		ravb_ptp_init(ndev, pdev);
1832 
1833 	/* Debug message level */
1834 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
1835 
1836 	/* Read and set MAC address */
1837 	ravb_read_mac_address(ndev, of_get_mac_address(np));
1838 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1839 		dev_warn(&pdev->dev,
1840 			 "no valid MAC address supplied, using a random one\n");
1841 		eth_hw_addr_random(ndev);
1842 	}
1843 
1844 	/* MDIO bus init */
1845 	error = ravb_mdio_init(priv);
1846 	if (error) {
1847 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
1848 		goto out_dma_free;
1849 	}
1850 
1851 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
1852 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
1853 
1854 	/* Network device register */
1855 	error = register_netdev(ndev);
1856 	if (error)
1857 		goto out_napi_del;
1858 
1859 	/* Print device information */
1860 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
1861 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1862 
1863 	platform_set_drvdata(pdev, ndev);
1864 
1865 	return 0;
1866 
1867 out_napi_del:
1868 	netif_napi_del(&priv->napi[RAVB_NC]);
1869 	netif_napi_del(&priv->napi[RAVB_BE]);
1870 	ravb_mdio_release(priv);
1871 out_dma_free:
1872 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1873 			  priv->desc_bat_dma);
1874 
1875 	/* Stop PTP Clock driver */
1876 	if (chip_id != RCAR_GEN2)
1877 		ravb_ptp_stop(ndev);
1878 out_release:
1879 	if (ndev)
1880 		free_netdev(ndev);
1881 
1882 	pm_runtime_put(&pdev->dev);
1883 	pm_runtime_disable(&pdev->dev);
1884 	return error;
1885 }
1886 
1887 static int ravb_remove(struct platform_device *pdev)
1888 {
1889 	struct net_device *ndev = platform_get_drvdata(pdev);
1890 	struct ravb_private *priv = netdev_priv(ndev);
1891 
1892 	/* Stop PTP Clock driver */
1893 	if (priv->chip_id != RCAR_GEN2)
1894 		ravb_ptp_stop(ndev);
1895 
1896 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1897 			  priv->desc_bat_dma);
1898 	/* Set reset mode */
1899 	ravb_write(ndev, CCC_OPC_RESET, CCC);
1900 	pm_runtime_put_sync(&pdev->dev);
1901 	unregister_netdev(ndev);
1902 	netif_napi_del(&priv->napi[RAVB_NC]);
1903 	netif_napi_del(&priv->napi[RAVB_BE]);
1904 	ravb_mdio_release(priv);
1905 	pm_runtime_disable(&pdev->dev);
1906 	free_netdev(ndev);
1907 	platform_set_drvdata(pdev, NULL);
1908 
1909 	return 0;
1910 }
1911 
1912 #ifdef CONFIG_PM
1913 static int ravb_runtime_nop(struct device *dev)
1914 {
1915 	/* Runtime PM callback shared between ->runtime_suspend()
1916 	 * and ->runtime_resume(). Simply returns success.
1917 	 *
1918 	 * This driver re-initializes all registers after
1919 	 * pm_runtime_get_sync() anyway so there is no need
1920 	 * to save and restore registers here.
1921 	 */
1922 	return 0;
1923 }
1924 
1925 static const struct dev_pm_ops ravb_dev_pm_ops = {
1926 	.runtime_suspend = ravb_runtime_nop,
1927 	.runtime_resume = ravb_runtime_nop,
1928 };
1929 
1930 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
1931 #else
1932 #define RAVB_PM_OPS NULL
1933 #endif
1934 
1935 static struct platform_driver ravb_driver = {
1936 	.probe		= ravb_probe,
1937 	.remove		= ravb_remove,
1938 	.driver = {
1939 		.name	= "ravb",
1940 		.pm	= RAVB_PM_OPS,
1941 		.of_match_table = ravb_match_table,
1942 	},
1943 };
1944 
1945 module_platform_driver(ravb_driver);
1946 
1947 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
1948 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
1949 MODULE_LICENSE("GPL v2");
1950