xref: /openbmc/linux/drivers/net/ethernet/renesas/ravb_main.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 #include <linux/reset.h>
33 #include <linux/math64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_rate_gbeth(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 10:                /* 10BASE */
91 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
92 		break;
93 	case 100:               /* 100BASE */
94 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
95 		break;
96 	case 1000:              /* 1000BASE */
97 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
98 		break;
99 	}
100 }
101 
102 static void ravb_set_rate_rcar(struct net_device *ndev)
103 {
104 	struct ravb_private *priv = netdev_priv(ndev);
105 
106 	switch (priv->speed) {
107 	case 100:		/* 100BASE */
108 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
109 		break;
110 	case 1000:		/* 1000BASE */
111 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
112 		break;
113 	}
114 }
115 
116 static void ravb_set_buffer_align(struct sk_buff *skb)
117 {
118 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
119 
120 	if (reserve)
121 		skb_reserve(skb, RAVB_ALIGN - reserve);
122 }
123 
124 /* Get MAC address from the MAC address registers
125  *
126  * Ethernet AVB device doesn't have ROM for MAC address.
127  * This function gets the MAC address that was used by a bootloader.
128  */
129 static void ravb_read_mac_address(struct device_node *np,
130 				  struct net_device *ndev)
131 {
132 	int ret;
133 
134 	ret = of_get_ethdev_address(np, ndev);
135 	if (ret) {
136 		u32 mahr = ravb_read(ndev, MAHR);
137 		u32 malr = ravb_read(ndev, MALR);
138 		u8 addr[ETH_ALEN];
139 
140 		addr[0] = (mahr >> 24) & 0xFF;
141 		addr[1] = (mahr >> 16) & 0xFF;
142 		addr[2] = (mahr >>  8) & 0xFF;
143 		addr[3] = (mahr >>  0) & 0xFF;
144 		addr[4] = (malr >>  8) & 0xFF;
145 		addr[5] = (malr >>  0) & 0xFF;
146 		eth_hw_addr_set(ndev, addr);
147 	}
148 }
149 
150 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
151 {
152 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
153 						 mdiobb);
154 
155 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
156 }
157 
158 /* MDC pin control */
159 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
160 {
161 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
162 }
163 
164 /* Data I/O pin control */
165 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
166 {
167 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
168 }
169 
170 /* Set data bit */
171 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
172 {
173 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
174 }
175 
176 /* Get data bit */
177 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
178 {
179 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
180 						 mdiobb);
181 
182 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
183 }
184 
185 /* MDIO bus control struct */
186 static const struct mdiobb_ops bb_ops = {
187 	.owner = THIS_MODULE,
188 	.set_mdc = ravb_set_mdc,
189 	.set_mdio_dir = ravb_set_mdio_dir,
190 	.set_mdio_data = ravb_set_mdio_data,
191 	.get_mdio_data = ravb_get_mdio_data,
192 };
193 
194 /* Free TX skb function for AVB-IP */
195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
238 static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 	unsigned int i;
243 
244 	if (!priv->gbeth_rx_ring)
245 		return;
246 
247 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
248 		struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
249 
250 		if (!dma_mapping_error(ndev->dev.parent,
251 				       le32_to_cpu(desc->dptr)))
252 			dma_unmap_single(ndev->dev.parent,
253 					 le32_to_cpu(desc->dptr),
254 					 GBETH_RX_BUFF_MAX,
255 					 DMA_FROM_DEVICE);
256 	}
257 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
258 	dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
259 			  priv->rx_desc_dma[q]);
260 	priv->gbeth_rx_ring = NULL;
261 }
262 
263 static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
264 {
265 	struct ravb_private *priv = netdev_priv(ndev);
266 	unsigned int ring_size;
267 	unsigned int i;
268 
269 	if (!priv->rx_ring[q])
270 		return;
271 
272 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
273 		struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
274 
275 		if (!dma_mapping_error(ndev->dev.parent,
276 				       le32_to_cpu(desc->dptr)))
277 			dma_unmap_single(ndev->dev.parent,
278 					 le32_to_cpu(desc->dptr),
279 					 RX_BUF_SZ,
280 					 DMA_FROM_DEVICE);
281 	}
282 	ring_size = sizeof(struct ravb_ex_rx_desc) *
283 		    (priv->num_rx_ring[q] + 1);
284 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
285 			  priv->rx_desc_dma[q]);
286 	priv->rx_ring[q] = NULL;
287 }
288 
289 /* Free skb's and DMA buffers for Ethernet AVB */
290 static void ravb_ring_free(struct net_device *ndev, int q)
291 {
292 	struct ravb_private *priv = netdev_priv(ndev);
293 	const struct ravb_hw_info *info = priv->info;
294 	unsigned int num_tx_desc = priv->num_tx_desc;
295 	unsigned int ring_size;
296 	unsigned int i;
297 
298 	info->rx_ring_free(ndev, q);
299 
300 	if (priv->tx_ring[q]) {
301 		ravb_tx_free(ndev, q, false);
302 
303 		ring_size = sizeof(struct ravb_tx_desc) *
304 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
305 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
306 				  priv->tx_desc_dma[q]);
307 		priv->tx_ring[q] = NULL;
308 	}
309 
310 	/* Free RX skb ringbuffer */
311 	if (priv->rx_skb[q]) {
312 		for (i = 0; i < priv->num_rx_ring[q]; i++)
313 			dev_kfree_skb(priv->rx_skb[q][i]);
314 	}
315 	kfree(priv->rx_skb[q]);
316 	priv->rx_skb[q] = NULL;
317 
318 	/* Free aligned TX buffers */
319 	kfree(priv->tx_align[q]);
320 	priv->tx_align[q] = NULL;
321 
322 	/* Free TX skb ringbuffer.
323 	 * SKBs are freed by ravb_tx_free() call above.
324 	 */
325 	kfree(priv->tx_skb[q]);
326 	priv->tx_skb[q] = NULL;
327 }
328 
329 static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
330 {
331 	struct ravb_private *priv = netdev_priv(ndev);
332 	struct ravb_rx_desc *rx_desc;
333 	unsigned int rx_ring_size;
334 	dma_addr_t dma_addr;
335 	unsigned int i;
336 
337 	rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
338 	memset(priv->gbeth_rx_ring, 0, rx_ring_size);
339 	/* Build RX ring buffer */
340 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
341 		/* RX descriptor */
342 		rx_desc = &priv->gbeth_rx_ring[i];
343 		rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
344 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
345 					  GBETH_RX_BUFF_MAX,
346 					  DMA_FROM_DEVICE);
347 		/* We just set the data size to 0 for a failed mapping which
348 		 * should prevent DMA from happening...
349 		 */
350 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
351 			rx_desc->ds_cc = cpu_to_le16(0);
352 		rx_desc->dptr = cpu_to_le32(dma_addr);
353 		rx_desc->die_dt = DT_FEMPTY;
354 	}
355 	rx_desc = &priv->gbeth_rx_ring[i];
356 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
357 	rx_desc->die_dt = DT_LINKFIX; /* type */
358 }
359 
360 static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
361 {
362 	struct ravb_private *priv = netdev_priv(ndev);
363 	struct ravb_ex_rx_desc *rx_desc;
364 	unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
365 	dma_addr_t dma_addr;
366 	unsigned int i;
367 
368 	memset(priv->rx_ring[q], 0, rx_ring_size);
369 	/* Build RX ring buffer */
370 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
371 		/* RX descriptor */
372 		rx_desc = &priv->rx_ring[q][i];
373 		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
374 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
375 					  RX_BUF_SZ,
376 					  DMA_FROM_DEVICE);
377 		/* We just set the data size to 0 for a failed mapping which
378 		 * should prevent DMA from happening...
379 		 */
380 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
381 			rx_desc->ds_cc = cpu_to_le16(0);
382 		rx_desc->dptr = cpu_to_le32(dma_addr);
383 		rx_desc->die_dt = DT_FEMPTY;
384 	}
385 	rx_desc = &priv->rx_ring[q][i];
386 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
387 	rx_desc->die_dt = DT_LINKFIX; /* type */
388 }
389 
390 /* Format skb and descriptor buffer for Ethernet AVB */
391 static void ravb_ring_format(struct net_device *ndev, int q)
392 {
393 	struct ravb_private *priv = netdev_priv(ndev);
394 	const struct ravb_hw_info *info = priv->info;
395 	unsigned int num_tx_desc = priv->num_tx_desc;
396 	struct ravb_tx_desc *tx_desc;
397 	struct ravb_desc *desc;
398 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
399 				    num_tx_desc;
400 	unsigned int i;
401 
402 	priv->cur_rx[q] = 0;
403 	priv->cur_tx[q] = 0;
404 	priv->dirty_rx[q] = 0;
405 	priv->dirty_tx[q] = 0;
406 
407 	info->rx_ring_format(ndev, q);
408 
409 	memset(priv->tx_ring[q], 0, tx_ring_size);
410 	/* Build TX ring buffer */
411 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
412 	     i++, tx_desc++) {
413 		tx_desc->die_dt = DT_EEMPTY;
414 		if (num_tx_desc > 1) {
415 			tx_desc++;
416 			tx_desc->die_dt = DT_EEMPTY;
417 		}
418 	}
419 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
420 	tx_desc->die_dt = DT_LINKFIX; /* type */
421 
422 	/* RX descriptor base address for best effort */
423 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
424 	desc->die_dt = DT_LINKFIX; /* type */
425 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
426 
427 	/* TX descriptor base address for best effort */
428 	desc = &priv->desc_bat[q];
429 	desc->die_dt = DT_LINKFIX; /* type */
430 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
431 }
432 
433 static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
434 {
435 	struct ravb_private *priv = netdev_priv(ndev);
436 	unsigned int ring_size;
437 
438 	ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
439 
440 	priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
441 						 &priv->rx_desc_dma[q],
442 						 GFP_KERNEL);
443 	return priv->gbeth_rx_ring;
444 }
445 
446 static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
447 {
448 	struct ravb_private *priv = netdev_priv(ndev);
449 	unsigned int ring_size;
450 
451 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
452 
453 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
454 					      &priv->rx_desc_dma[q],
455 					      GFP_KERNEL);
456 	return priv->rx_ring[q];
457 }
458 
459 /* Init skb and descriptor buffer for Ethernet AVB */
460 static int ravb_ring_init(struct net_device *ndev, int q)
461 {
462 	struct ravb_private *priv = netdev_priv(ndev);
463 	const struct ravb_hw_info *info = priv->info;
464 	unsigned int num_tx_desc = priv->num_tx_desc;
465 	unsigned int ring_size;
466 	struct sk_buff *skb;
467 	unsigned int i;
468 
469 	/* Allocate RX and TX skb rings */
470 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
471 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
472 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
473 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
474 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
475 		goto error;
476 
477 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
478 		skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL);
479 		if (!skb)
480 			goto error;
481 		ravb_set_buffer_align(skb);
482 		priv->rx_skb[q][i] = skb;
483 	}
484 
485 	if (num_tx_desc > 1) {
486 		/* Allocate rings for the aligned buffers */
487 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
488 					    DPTR_ALIGN - 1, GFP_KERNEL);
489 		if (!priv->tx_align[q])
490 			goto error;
491 	}
492 
493 	/* Allocate all RX descriptors. */
494 	if (!info->alloc_rx_desc(ndev, q))
495 		goto error;
496 
497 	priv->dirty_rx[q] = 0;
498 
499 	/* Allocate all TX descriptors. */
500 	ring_size = sizeof(struct ravb_tx_desc) *
501 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
502 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
503 					      &priv->tx_desc_dma[q],
504 					      GFP_KERNEL);
505 	if (!priv->tx_ring[q])
506 		goto error;
507 
508 	return 0;
509 
510 error:
511 	ravb_ring_free(ndev, q);
512 
513 	return -ENOMEM;
514 }
515 
516 static void ravb_emac_init_gbeth(struct net_device *ndev)
517 {
518 	struct ravb_private *priv = netdev_priv(ndev);
519 
520 	/* Receive frame limit set register */
521 	ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
522 
523 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
524 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
525 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
526 			 ECMR_TXF | ECMR_RXF, ECMR);
527 
528 	ravb_set_rate_gbeth(ndev);
529 
530 	/* Set MAC address */
531 	ravb_write(ndev,
532 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
533 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
534 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
535 
536 	/* E-MAC status register clear */
537 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
538 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
539 
540 	/* E-MAC interrupt enable register */
541 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
542 
543 	ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, CXR31_SEL_LINK0);
544 }
545 
546 static void ravb_emac_init_rcar(struct net_device *ndev)
547 {
548 	/* Receive frame limit set register */
549 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
550 
551 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
552 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
553 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
554 		   ECMR_TE | ECMR_RE, ECMR);
555 
556 	ravb_set_rate_rcar(ndev);
557 
558 	/* Set MAC address */
559 	ravb_write(ndev,
560 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
561 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
562 	ravb_write(ndev,
563 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
564 
565 	/* E-MAC status register clear */
566 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
567 
568 	/* E-MAC interrupt enable register */
569 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
570 }
571 
572 /* E-MAC init function */
573 static void ravb_emac_init(struct net_device *ndev)
574 {
575 	struct ravb_private *priv = netdev_priv(ndev);
576 	const struct ravb_hw_info *info = priv->info;
577 
578 	info->emac_init(ndev);
579 }
580 
581 static int ravb_dmac_init_gbeth(struct net_device *ndev)
582 {
583 	int error;
584 
585 	error = ravb_ring_init(ndev, RAVB_BE);
586 	if (error)
587 		return error;
588 
589 	/* Descriptor format */
590 	ravb_ring_format(ndev, RAVB_BE);
591 
592 	/* Set DMAC RX */
593 	ravb_write(ndev, 0x60000000, RCR);
594 
595 	/* Set Max Frame Length (RTC) */
596 	ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
597 
598 	/* Set FIFO size */
599 	ravb_write(ndev, 0x00222200, TGC);
600 
601 	ravb_write(ndev, 0, TCCR);
602 
603 	/* Frame receive */
604 	ravb_write(ndev, RIC0_FRE0, RIC0);
605 	/* Disable FIFO full warning */
606 	ravb_write(ndev, 0x0, RIC1);
607 	/* Receive FIFO full error, descriptor empty */
608 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
609 
610 	ravb_write(ndev, TIC_FTE0, TIC);
611 
612 	return 0;
613 }
614 
615 static int ravb_dmac_init_rcar(struct net_device *ndev)
616 {
617 	struct ravb_private *priv = netdev_priv(ndev);
618 	const struct ravb_hw_info *info = priv->info;
619 	int error;
620 
621 	error = ravb_ring_init(ndev, RAVB_BE);
622 	if (error)
623 		return error;
624 	error = ravb_ring_init(ndev, RAVB_NC);
625 	if (error) {
626 		ravb_ring_free(ndev, RAVB_BE);
627 		return error;
628 	}
629 
630 	/* Descriptor format */
631 	ravb_ring_format(ndev, RAVB_BE);
632 	ravb_ring_format(ndev, RAVB_NC);
633 
634 	/* Set AVB RX */
635 	ravb_write(ndev,
636 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
637 
638 	/* Set FIFO size */
639 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
640 
641 	/* Timestamp enable */
642 	ravb_write(ndev, TCCR_TFEN, TCCR);
643 
644 	/* Interrupt init: */
645 	if (info->multi_irqs) {
646 		/* Clear DIL.DPLx */
647 		ravb_write(ndev, 0, DIL);
648 		/* Set queue specific interrupt */
649 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
650 	}
651 	/* Frame receive */
652 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
653 	/* Disable FIFO full warning */
654 	ravb_write(ndev, 0, RIC1);
655 	/* Receive FIFO full error, descriptor empty */
656 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
657 	/* Frame transmitted, timestamp FIFO updated */
658 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
659 
660 	return 0;
661 }
662 
663 /* Device init function for Ethernet AVB */
664 static int ravb_dmac_init(struct net_device *ndev)
665 {
666 	struct ravb_private *priv = netdev_priv(ndev);
667 	const struct ravb_hw_info *info = priv->info;
668 	int error;
669 
670 	/* Set CONFIG mode */
671 	error = ravb_config(ndev);
672 	if (error)
673 		return error;
674 
675 	error = info->dmac_init(ndev);
676 	if (error)
677 		return error;
678 
679 	/* Setting the control will start the AVB-DMAC process. */
680 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
681 
682 	return 0;
683 }
684 
685 static void ravb_get_tx_tstamp(struct net_device *ndev)
686 {
687 	struct ravb_private *priv = netdev_priv(ndev);
688 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
689 	struct skb_shared_hwtstamps shhwtstamps;
690 	struct sk_buff *skb;
691 	struct timespec64 ts;
692 	u16 tag, tfa_tag;
693 	int count;
694 	u32 tfa2;
695 
696 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
697 	while (count--) {
698 		tfa2 = ravb_read(ndev, TFA2);
699 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
700 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
701 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
702 			    ravb_read(ndev, TFA1);
703 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
704 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
705 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
706 					 list) {
707 			skb = ts_skb->skb;
708 			tag = ts_skb->tag;
709 			list_del(&ts_skb->list);
710 			kfree(ts_skb);
711 			if (tag == tfa_tag) {
712 				skb_tstamp_tx(skb, &shhwtstamps);
713 				dev_consume_skb_any(skb);
714 				break;
715 			} else {
716 				dev_kfree_skb_any(skb);
717 			}
718 		}
719 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
720 	}
721 }
722 
723 static void ravb_rx_csum(struct sk_buff *skb)
724 {
725 	u8 *hw_csum;
726 
727 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
728 	 * appended to packet data
729 	 */
730 	if (unlikely(skb->len < sizeof(__sum16)))
731 		return;
732 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
733 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
734 	skb->ip_summed = CHECKSUM_COMPLETE;
735 	skb_trim(skb, skb->len - sizeof(__sum16));
736 }
737 
738 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
739 					  struct ravb_rx_desc *desc)
740 {
741 	struct ravb_private *priv = netdev_priv(ndev);
742 	struct sk_buff *skb;
743 
744 	skb = priv->rx_skb[RAVB_BE][entry];
745 	priv->rx_skb[RAVB_BE][entry] = NULL;
746 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
747 			 ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
748 
749 	return skb;
750 }
751 
752 /* Packet receive function for Gigabit Ethernet */
753 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
754 {
755 	struct ravb_private *priv = netdev_priv(ndev);
756 	const struct ravb_hw_info *info = priv->info;
757 	struct net_device_stats *stats;
758 	struct ravb_rx_desc *desc;
759 	struct sk_buff *skb;
760 	dma_addr_t dma_addr;
761 	u8  desc_status;
762 	int boguscnt;
763 	u16 pkt_len;
764 	u8  die_dt;
765 	int entry;
766 	int limit;
767 
768 	entry = priv->cur_rx[q] % priv->num_rx_ring[q];
769 	boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
770 	stats = &priv->stats[q];
771 
772 	boguscnt = min(boguscnt, *quota);
773 	limit = boguscnt;
774 	desc = &priv->gbeth_rx_ring[entry];
775 	while (desc->die_dt != DT_FEMPTY) {
776 		/* Descriptor type must be checked before all other reads */
777 		dma_rmb();
778 		desc_status = desc->msc;
779 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
780 
781 		if (--boguscnt < 0)
782 			break;
783 
784 		/* We use 0-byte descriptors to mark the DMA mapping errors */
785 		if (!pkt_len)
786 			continue;
787 
788 		if (desc_status & MSC_MC)
789 			stats->multicast++;
790 
791 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
792 			stats->rx_errors++;
793 			if (desc_status & MSC_CRC)
794 				stats->rx_crc_errors++;
795 			if (desc_status & MSC_RFE)
796 				stats->rx_frame_errors++;
797 			if (desc_status & (MSC_RTLF | MSC_RTSF))
798 				stats->rx_length_errors++;
799 			if (desc_status & MSC_CEEF)
800 				stats->rx_missed_errors++;
801 		} else {
802 			die_dt = desc->die_dt & 0xF0;
803 			switch (die_dt) {
804 			case DT_FSINGLE:
805 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
806 				skb_put(skb, pkt_len);
807 				skb->protocol = eth_type_trans(skb, ndev);
808 				napi_gro_receive(&priv->napi[q], skb);
809 				stats->rx_packets++;
810 				stats->rx_bytes += pkt_len;
811 				break;
812 			case DT_FSTART:
813 				priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
814 				skb_put(priv->rx_1st_skb, pkt_len);
815 				break;
816 			case DT_FMID:
817 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
818 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
819 							       priv->rx_1st_skb->len,
820 							       skb->data,
821 							       pkt_len);
822 				skb_put(priv->rx_1st_skb, pkt_len);
823 				dev_kfree_skb(skb);
824 				break;
825 			case DT_FEND:
826 				skb = ravb_get_skb_gbeth(ndev, entry, desc);
827 				skb_copy_to_linear_data_offset(priv->rx_1st_skb,
828 							       priv->rx_1st_skb->len,
829 							       skb->data,
830 							       pkt_len);
831 				skb_put(priv->rx_1st_skb, pkt_len);
832 				dev_kfree_skb(skb);
833 				priv->rx_1st_skb->protocol =
834 					eth_type_trans(priv->rx_1st_skb, ndev);
835 				napi_gro_receive(&priv->napi[q],
836 						 priv->rx_1st_skb);
837 				stats->rx_packets++;
838 				stats->rx_bytes += priv->rx_1st_skb->len;
839 				break;
840 			}
841 		}
842 
843 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
844 		desc = &priv->gbeth_rx_ring[entry];
845 	}
846 
847 	/* Refill the RX ring buffers. */
848 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
849 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
850 		desc = &priv->gbeth_rx_ring[entry];
851 		desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
852 
853 		if (!priv->rx_skb[q][entry]) {
854 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
855 			if (!skb)
856 				break;
857 			ravb_set_buffer_align(skb);
858 			dma_addr = dma_map_single(ndev->dev.parent,
859 						  skb->data,
860 						  GBETH_RX_BUFF_MAX,
861 						  DMA_FROM_DEVICE);
862 			skb_checksum_none_assert(skb);
863 			/* We just set the data size to 0 for a failed mapping
864 			 * which should prevent DMA  from happening...
865 			 */
866 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
867 				desc->ds_cc = cpu_to_le16(0);
868 			desc->dptr = cpu_to_le32(dma_addr);
869 			priv->rx_skb[q][entry] = skb;
870 		}
871 		/* Descriptor type must be set after all the above writes */
872 		dma_wmb();
873 		desc->die_dt = DT_FEMPTY;
874 	}
875 
876 	*quota -= limit - (++boguscnt);
877 
878 	return boguscnt <= 0;
879 }
880 
881 /* Packet receive function for Ethernet AVB */
882 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
883 {
884 	struct ravb_private *priv = netdev_priv(ndev);
885 	const struct ravb_hw_info *info = priv->info;
886 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
887 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
888 			priv->cur_rx[q];
889 	struct net_device_stats *stats = &priv->stats[q];
890 	struct ravb_ex_rx_desc *desc;
891 	struct sk_buff *skb;
892 	dma_addr_t dma_addr;
893 	struct timespec64 ts;
894 	u8  desc_status;
895 	u16 pkt_len;
896 	int limit;
897 
898 	boguscnt = min(boguscnt, *quota);
899 	limit = boguscnt;
900 	desc = &priv->rx_ring[q][entry];
901 	while (desc->die_dt != DT_FEMPTY) {
902 		/* Descriptor type must be checked before all other reads */
903 		dma_rmb();
904 		desc_status = desc->msc;
905 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
906 
907 		if (--boguscnt < 0)
908 			break;
909 
910 		/* We use 0-byte descriptors to mark the DMA mapping errors */
911 		if (!pkt_len)
912 			continue;
913 
914 		if (desc_status & MSC_MC)
915 			stats->multicast++;
916 
917 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
918 				   MSC_CEEF)) {
919 			stats->rx_errors++;
920 			if (desc_status & MSC_CRC)
921 				stats->rx_crc_errors++;
922 			if (desc_status & MSC_RFE)
923 				stats->rx_frame_errors++;
924 			if (desc_status & (MSC_RTLF | MSC_RTSF))
925 				stats->rx_length_errors++;
926 			if (desc_status & MSC_CEEF)
927 				stats->rx_missed_errors++;
928 		} else {
929 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
930 
931 			skb = priv->rx_skb[q][entry];
932 			priv->rx_skb[q][entry] = NULL;
933 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
934 					 RX_BUF_SZ,
935 					 DMA_FROM_DEVICE);
936 			get_ts &= (q == RAVB_NC) ?
937 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
938 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
939 			if (get_ts) {
940 				struct skb_shared_hwtstamps *shhwtstamps;
941 
942 				shhwtstamps = skb_hwtstamps(skb);
943 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
944 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
945 					     32) | le32_to_cpu(desc->ts_sl);
946 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
947 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
948 			}
949 
950 			skb_put(skb, pkt_len);
951 			skb->protocol = eth_type_trans(skb, ndev);
952 			if (ndev->features & NETIF_F_RXCSUM)
953 				ravb_rx_csum(skb);
954 			napi_gro_receive(&priv->napi[q], skb);
955 			stats->rx_packets++;
956 			stats->rx_bytes += pkt_len;
957 		}
958 
959 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
960 		desc = &priv->rx_ring[q][entry];
961 	}
962 
963 	/* Refill the RX ring buffers. */
964 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
965 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
966 		desc = &priv->rx_ring[q][entry];
967 		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
968 
969 		if (!priv->rx_skb[q][entry]) {
970 			skb = netdev_alloc_skb(ndev, info->max_rx_len);
971 			if (!skb)
972 				break;	/* Better luck next round. */
973 			ravb_set_buffer_align(skb);
974 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
975 						  le16_to_cpu(desc->ds_cc),
976 						  DMA_FROM_DEVICE);
977 			skb_checksum_none_assert(skb);
978 			/* We just set the data size to 0 for a failed mapping
979 			 * which should prevent DMA  from happening...
980 			 */
981 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
982 				desc->ds_cc = cpu_to_le16(0);
983 			desc->dptr = cpu_to_le32(dma_addr);
984 			priv->rx_skb[q][entry] = skb;
985 		}
986 		/* Descriptor type must be set after all the above writes */
987 		dma_wmb();
988 		desc->die_dt = DT_FEMPTY;
989 	}
990 
991 	*quota -= limit - (++boguscnt);
992 
993 	return boguscnt <= 0;
994 }
995 
996 /* Packet receive function for Ethernet AVB */
997 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
998 {
999 	struct ravb_private *priv = netdev_priv(ndev);
1000 	const struct ravb_hw_info *info = priv->info;
1001 
1002 	return info->receive(ndev, quota, q);
1003 }
1004 
1005 static void ravb_rcv_snd_disable(struct net_device *ndev)
1006 {
1007 	/* Disable TX and RX */
1008 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1009 }
1010 
1011 static void ravb_rcv_snd_enable(struct net_device *ndev)
1012 {
1013 	/* Enable TX and RX */
1014 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1015 }
1016 
1017 /* function for waiting dma process finished */
1018 static int ravb_stop_dma(struct net_device *ndev)
1019 {
1020 	struct ravb_private *priv = netdev_priv(ndev);
1021 	const struct ravb_hw_info *info = priv->info;
1022 	int error;
1023 
1024 	/* Wait for stopping the hardware TX process */
1025 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1026 
1027 	if (error)
1028 		return error;
1029 
1030 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1031 			  0);
1032 	if (error)
1033 		return error;
1034 
1035 	/* Stop the E-MAC's RX/TX processes. */
1036 	ravb_rcv_snd_disable(ndev);
1037 
1038 	/* Wait for stopping the RX DMA process */
1039 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1040 	if (error)
1041 		return error;
1042 
1043 	/* Stop AVB-DMAC process */
1044 	return ravb_config(ndev);
1045 }
1046 
1047 /* E-MAC interrupt handler */
1048 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1049 {
1050 	struct ravb_private *priv = netdev_priv(ndev);
1051 	u32 ecsr, psr;
1052 
1053 	ecsr = ravb_read(ndev, ECSR);
1054 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1055 
1056 	if (ecsr & ECSR_MPD)
1057 		pm_wakeup_event(&priv->pdev->dev, 0);
1058 	if (ecsr & ECSR_ICD)
1059 		ndev->stats.tx_carrier_errors++;
1060 	if (ecsr & ECSR_LCHNG) {
1061 		/* Link changed */
1062 		if (priv->no_avb_link)
1063 			return;
1064 		psr = ravb_read(ndev, PSR);
1065 		if (priv->avb_link_active_low)
1066 			psr ^= PSR_LMON;
1067 		if (!(psr & PSR_LMON)) {
1068 			/* DIsable RX and TX */
1069 			ravb_rcv_snd_disable(ndev);
1070 		} else {
1071 			/* Enable RX and TX */
1072 			ravb_rcv_snd_enable(ndev);
1073 		}
1074 	}
1075 }
1076 
1077 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1078 {
1079 	struct net_device *ndev = dev_id;
1080 	struct ravb_private *priv = netdev_priv(ndev);
1081 
1082 	spin_lock(&priv->lock);
1083 	ravb_emac_interrupt_unlocked(ndev);
1084 	spin_unlock(&priv->lock);
1085 	return IRQ_HANDLED;
1086 }
1087 
1088 /* Error interrupt handler */
1089 static void ravb_error_interrupt(struct net_device *ndev)
1090 {
1091 	struct ravb_private *priv = netdev_priv(ndev);
1092 	u32 eis, ris2;
1093 
1094 	eis = ravb_read(ndev, EIS);
1095 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1096 	if (eis & EIS_QFS) {
1097 		ris2 = ravb_read(ndev, RIS2);
1098 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
1099 			   RIS2);
1100 
1101 		/* Receive Descriptor Empty int */
1102 		if (ris2 & RIS2_QFF0)
1103 			priv->stats[RAVB_BE].rx_over_errors++;
1104 
1105 		    /* Receive Descriptor Empty int */
1106 		if (ris2 & RIS2_QFF1)
1107 			priv->stats[RAVB_NC].rx_over_errors++;
1108 
1109 		/* Receive FIFO Overflow int */
1110 		if (ris2 & RIS2_RFFF)
1111 			priv->rx_fifo_errors++;
1112 	}
1113 }
1114 
1115 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1116 {
1117 	struct ravb_private *priv = netdev_priv(ndev);
1118 	const struct ravb_hw_info *info = priv->info;
1119 	u32 ris0 = ravb_read(ndev, RIS0);
1120 	u32 ric0 = ravb_read(ndev, RIC0);
1121 	u32 tis  = ravb_read(ndev, TIS);
1122 	u32 tic  = ravb_read(ndev, TIC);
1123 
1124 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1125 		if (napi_schedule_prep(&priv->napi[q])) {
1126 			/* Mask RX and TX interrupts */
1127 			if (!info->multi_irqs) {
1128 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1129 				ravb_write(ndev, tic & ~BIT(q), TIC);
1130 			} else {
1131 				ravb_write(ndev, BIT(q), RID0);
1132 				ravb_write(ndev, BIT(q), TID);
1133 			}
1134 			__napi_schedule(&priv->napi[q]);
1135 		} else {
1136 			netdev_warn(ndev,
1137 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1138 				    ris0, ric0);
1139 			netdev_warn(ndev,
1140 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1141 				    tis, tic);
1142 		}
1143 		return true;
1144 	}
1145 	return false;
1146 }
1147 
1148 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1149 {
1150 	u32 tis = ravb_read(ndev, TIS);
1151 
1152 	if (tis & TIS_TFUF) {
1153 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1154 		ravb_get_tx_tstamp(ndev);
1155 		return true;
1156 	}
1157 	return false;
1158 }
1159 
1160 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1161 {
1162 	struct net_device *ndev = dev_id;
1163 	struct ravb_private *priv = netdev_priv(ndev);
1164 	const struct ravb_hw_info *info = priv->info;
1165 	irqreturn_t result = IRQ_NONE;
1166 	u32 iss;
1167 
1168 	spin_lock(&priv->lock);
1169 	/* Get interrupt status */
1170 	iss = ravb_read(ndev, ISS);
1171 
1172 	/* Received and transmitted interrupts */
1173 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1174 		int q;
1175 
1176 		/* Timestamp updated */
1177 		if (ravb_timestamp_interrupt(ndev))
1178 			result = IRQ_HANDLED;
1179 
1180 		/* Network control and best effort queue RX/TX */
1181 		if (info->nc_queues) {
1182 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1183 				if (ravb_queue_interrupt(ndev, q))
1184 					result = IRQ_HANDLED;
1185 			}
1186 		} else {
1187 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1188 				result = IRQ_HANDLED;
1189 		}
1190 	}
1191 
1192 	/* E-MAC status summary */
1193 	if (iss & ISS_MS) {
1194 		ravb_emac_interrupt_unlocked(ndev);
1195 		result = IRQ_HANDLED;
1196 	}
1197 
1198 	/* Error status summary */
1199 	if (iss & ISS_ES) {
1200 		ravb_error_interrupt(ndev);
1201 		result = IRQ_HANDLED;
1202 	}
1203 
1204 	/* gPTP interrupt status summary */
1205 	if (iss & ISS_CGIS) {
1206 		ravb_ptp_interrupt(ndev);
1207 		result = IRQ_HANDLED;
1208 	}
1209 
1210 	spin_unlock(&priv->lock);
1211 	return result;
1212 }
1213 
1214 /* Timestamp/Error/gPTP interrupt handler */
1215 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1216 {
1217 	struct net_device *ndev = dev_id;
1218 	struct ravb_private *priv = netdev_priv(ndev);
1219 	irqreturn_t result = IRQ_NONE;
1220 	u32 iss;
1221 
1222 	spin_lock(&priv->lock);
1223 	/* Get interrupt status */
1224 	iss = ravb_read(ndev, ISS);
1225 
1226 	/* Timestamp updated */
1227 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1228 		result = IRQ_HANDLED;
1229 
1230 	/* Error status summary */
1231 	if (iss & ISS_ES) {
1232 		ravb_error_interrupt(ndev);
1233 		result = IRQ_HANDLED;
1234 	}
1235 
1236 	/* gPTP interrupt status summary */
1237 	if (iss & ISS_CGIS) {
1238 		ravb_ptp_interrupt(ndev);
1239 		result = IRQ_HANDLED;
1240 	}
1241 
1242 	spin_unlock(&priv->lock);
1243 	return result;
1244 }
1245 
1246 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1247 {
1248 	struct net_device *ndev = dev_id;
1249 	struct ravb_private *priv = netdev_priv(ndev);
1250 	irqreturn_t result = IRQ_NONE;
1251 
1252 	spin_lock(&priv->lock);
1253 
1254 	/* Network control/Best effort queue RX/TX */
1255 	if (ravb_queue_interrupt(ndev, q))
1256 		result = IRQ_HANDLED;
1257 
1258 	spin_unlock(&priv->lock);
1259 	return result;
1260 }
1261 
1262 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1263 {
1264 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1265 }
1266 
1267 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1268 {
1269 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1270 }
1271 
1272 static int ravb_poll(struct napi_struct *napi, int budget)
1273 {
1274 	struct net_device *ndev = napi->dev;
1275 	struct ravb_private *priv = netdev_priv(ndev);
1276 	const struct ravb_hw_info *info = priv->info;
1277 	bool gptp = info->gptp || info->ccc_gac;
1278 	struct ravb_rx_desc *desc;
1279 	unsigned long flags;
1280 	int q = napi - priv->napi;
1281 	int mask = BIT(q);
1282 	int quota = budget;
1283 	unsigned int entry;
1284 
1285 	if (!gptp) {
1286 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
1287 		desc = &priv->gbeth_rx_ring[entry];
1288 	}
1289 	/* Processing RX Descriptor Ring */
1290 	/* Clear RX interrupt */
1291 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1292 	if (gptp || desc->die_dt != DT_FEMPTY) {
1293 		if (ravb_rx(ndev, &quota, q))
1294 			goto out;
1295 	}
1296 
1297 	/* Processing TX Descriptor Ring */
1298 	spin_lock_irqsave(&priv->lock, flags);
1299 	/* Clear TX interrupt */
1300 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1301 	ravb_tx_free(ndev, q, true);
1302 	netif_wake_subqueue(ndev, q);
1303 	spin_unlock_irqrestore(&priv->lock, flags);
1304 
1305 	napi_complete(napi);
1306 
1307 	/* Re-enable RX/TX interrupts */
1308 	spin_lock_irqsave(&priv->lock, flags);
1309 	if (!info->multi_irqs) {
1310 		ravb_modify(ndev, RIC0, mask, mask);
1311 		ravb_modify(ndev, TIC,  mask, mask);
1312 	} else {
1313 		ravb_write(ndev, mask, RIE0);
1314 		ravb_write(ndev, mask, TIE);
1315 	}
1316 	spin_unlock_irqrestore(&priv->lock, flags);
1317 
1318 	/* Receive error message handling */
1319 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1320 	if (info->nc_queues)
1321 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1322 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1323 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1324 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1325 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1326 out:
1327 	return budget - quota;
1328 }
1329 
1330 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1331 {
1332 	struct ravb_private *priv = netdev_priv(ndev);
1333 
1334 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1335 }
1336 
1337 /* PHY state control function */
1338 static void ravb_adjust_link(struct net_device *ndev)
1339 {
1340 	struct ravb_private *priv = netdev_priv(ndev);
1341 	const struct ravb_hw_info *info = priv->info;
1342 	struct phy_device *phydev = ndev->phydev;
1343 	bool new_state = false;
1344 	unsigned long flags;
1345 
1346 	spin_lock_irqsave(&priv->lock, flags);
1347 
1348 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1349 	if (priv->no_avb_link)
1350 		ravb_rcv_snd_disable(ndev);
1351 
1352 	if (phydev->link) {
1353 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1354 			new_state = true;
1355 			priv->duplex = phydev->duplex;
1356 			ravb_set_duplex_gbeth(ndev);
1357 		}
1358 
1359 		if (phydev->speed != priv->speed) {
1360 			new_state = true;
1361 			priv->speed = phydev->speed;
1362 			info->set_rate(ndev);
1363 		}
1364 		if (!priv->link) {
1365 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1366 			new_state = true;
1367 			priv->link = phydev->link;
1368 		}
1369 	} else if (priv->link) {
1370 		new_state = true;
1371 		priv->link = 0;
1372 		priv->speed = 0;
1373 		if (info->half_duplex)
1374 			priv->duplex = -1;
1375 	}
1376 
1377 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1378 	if (priv->no_avb_link && phydev->link)
1379 		ravb_rcv_snd_enable(ndev);
1380 
1381 	spin_unlock_irqrestore(&priv->lock, flags);
1382 
1383 	if (new_state && netif_msg_link(priv))
1384 		phy_print_status(phydev);
1385 }
1386 
1387 static const struct soc_device_attribute r8a7795es10[] = {
1388 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1389 	{ /* sentinel */ }
1390 };
1391 
1392 /* PHY init function */
1393 static int ravb_phy_init(struct net_device *ndev)
1394 {
1395 	struct device_node *np = ndev->dev.parent->of_node;
1396 	struct ravb_private *priv = netdev_priv(ndev);
1397 	const struct ravb_hw_info *info = priv->info;
1398 	struct phy_device *phydev;
1399 	struct device_node *pn;
1400 	phy_interface_t iface;
1401 	int err;
1402 
1403 	priv->link = 0;
1404 	priv->speed = 0;
1405 	priv->duplex = -1;
1406 
1407 	/* Try connecting to PHY */
1408 	pn = of_parse_phandle(np, "phy-handle", 0);
1409 	if (!pn) {
1410 		/* In the case of a fixed PHY, the DT node associated
1411 		 * to the PHY is the Ethernet MAC DT node.
1412 		 */
1413 		if (of_phy_is_fixed_link(np)) {
1414 			err = of_phy_register_fixed_link(np);
1415 			if (err)
1416 				return err;
1417 		}
1418 		pn = of_node_get(np);
1419 	}
1420 
1421 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1422 				     : priv->phy_interface;
1423 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1424 	of_node_put(pn);
1425 	if (!phydev) {
1426 		netdev_err(ndev, "failed to connect PHY\n");
1427 		err = -ENOENT;
1428 		goto err_deregister_fixed_link;
1429 	}
1430 
1431 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1432 	 * at this time.
1433 	 */
1434 	if (soc_device_match(r8a7795es10)) {
1435 		phy_set_max_speed(phydev, SPEED_100);
1436 
1437 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1438 	}
1439 
1440 	if (!info->half_duplex) {
1441 		/* 10BASE, Pause and Asym Pause is not supported */
1442 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1443 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1444 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1445 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1446 
1447 		/* Half Duplex is not supported */
1448 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1449 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1450 	}
1451 
1452 	phy_attached_info(phydev);
1453 
1454 	return 0;
1455 
1456 err_deregister_fixed_link:
1457 	if (of_phy_is_fixed_link(np))
1458 		of_phy_deregister_fixed_link(np);
1459 
1460 	return err;
1461 }
1462 
1463 /* PHY control start function */
1464 static int ravb_phy_start(struct net_device *ndev)
1465 {
1466 	int error;
1467 
1468 	error = ravb_phy_init(ndev);
1469 	if (error)
1470 		return error;
1471 
1472 	phy_start(ndev->phydev);
1473 
1474 	return 0;
1475 }
1476 
1477 static u32 ravb_get_msglevel(struct net_device *ndev)
1478 {
1479 	struct ravb_private *priv = netdev_priv(ndev);
1480 
1481 	return priv->msg_enable;
1482 }
1483 
1484 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1485 {
1486 	struct ravb_private *priv = netdev_priv(ndev);
1487 
1488 	priv->msg_enable = value;
1489 }
1490 
1491 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1492 	"rx_queue_0_current",
1493 	"tx_queue_0_current",
1494 	"rx_queue_0_dirty",
1495 	"tx_queue_0_dirty",
1496 	"rx_queue_0_packets",
1497 	"tx_queue_0_packets",
1498 	"rx_queue_0_bytes",
1499 	"tx_queue_0_bytes",
1500 	"rx_queue_0_mcast_packets",
1501 	"rx_queue_0_errors",
1502 	"rx_queue_0_crc_errors",
1503 	"rx_queue_0_frame_errors",
1504 	"rx_queue_0_length_errors",
1505 	"rx_queue_0_csum_offload_errors",
1506 	"rx_queue_0_over_errors",
1507 };
1508 
1509 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1510 	"rx_queue_0_current",
1511 	"tx_queue_0_current",
1512 	"rx_queue_0_dirty",
1513 	"tx_queue_0_dirty",
1514 	"rx_queue_0_packets",
1515 	"tx_queue_0_packets",
1516 	"rx_queue_0_bytes",
1517 	"tx_queue_0_bytes",
1518 	"rx_queue_0_mcast_packets",
1519 	"rx_queue_0_errors",
1520 	"rx_queue_0_crc_errors",
1521 	"rx_queue_0_frame_errors",
1522 	"rx_queue_0_length_errors",
1523 	"rx_queue_0_missed_errors",
1524 	"rx_queue_0_over_errors",
1525 
1526 	"rx_queue_1_current",
1527 	"tx_queue_1_current",
1528 	"rx_queue_1_dirty",
1529 	"tx_queue_1_dirty",
1530 	"rx_queue_1_packets",
1531 	"tx_queue_1_packets",
1532 	"rx_queue_1_bytes",
1533 	"tx_queue_1_bytes",
1534 	"rx_queue_1_mcast_packets",
1535 	"rx_queue_1_errors",
1536 	"rx_queue_1_crc_errors",
1537 	"rx_queue_1_frame_errors",
1538 	"rx_queue_1_length_errors",
1539 	"rx_queue_1_missed_errors",
1540 	"rx_queue_1_over_errors",
1541 };
1542 
1543 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1544 {
1545 	struct ravb_private *priv = netdev_priv(netdev);
1546 	const struct ravb_hw_info *info = priv->info;
1547 
1548 	switch (sset) {
1549 	case ETH_SS_STATS:
1550 		return info->stats_len;
1551 	default:
1552 		return -EOPNOTSUPP;
1553 	}
1554 }
1555 
1556 static void ravb_get_ethtool_stats(struct net_device *ndev,
1557 				   struct ethtool_stats *estats, u64 *data)
1558 {
1559 	struct ravb_private *priv = netdev_priv(ndev);
1560 	const struct ravb_hw_info *info = priv->info;
1561 	int num_rx_q;
1562 	int i = 0;
1563 	int q;
1564 
1565 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1566 	/* Device-specific stats */
1567 	for (q = RAVB_BE; q < num_rx_q; q++) {
1568 		struct net_device_stats *stats = &priv->stats[q];
1569 
1570 		data[i++] = priv->cur_rx[q];
1571 		data[i++] = priv->cur_tx[q];
1572 		data[i++] = priv->dirty_rx[q];
1573 		data[i++] = priv->dirty_tx[q];
1574 		data[i++] = stats->rx_packets;
1575 		data[i++] = stats->tx_packets;
1576 		data[i++] = stats->rx_bytes;
1577 		data[i++] = stats->tx_bytes;
1578 		data[i++] = stats->multicast;
1579 		data[i++] = stats->rx_errors;
1580 		data[i++] = stats->rx_crc_errors;
1581 		data[i++] = stats->rx_frame_errors;
1582 		data[i++] = stats->rx_length_errors;
1583 		data[i++] = stats->rx_missed_errors;
1584 		data[i++] = stats->rx_over_errors;
1585 	}
1586 }
1587 
1588 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1589 {
1590 	struct ravb_private *priv = netdev_priv(ndev);
1591 	const struct ravb_hw_info *info = priv->info;
1592 
1593 	switch (stringset) {
1594 	case ETH_SS_STATS:
1595 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1596 		break;
1597 	}
1598 }
1599 
1600 static void ravb_get_ringparam(struct net_device *ndev,
1601 			       struct ethtool_ringparam *ring,
1602 			       struct kernel_ethtool_ringparam *kernel_ring,
1603 			       struct netlink_ext_ack *extack)
1604 {
1605 	struct ravb_private *priv = netdev_priv(ndev);
1606 
1607 	ring->rx_max_pending = BE_RX_RING_MAX;
1608 	ring->tx_max_pending = BE_TX_RING_MAX;
1609 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1610 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1611 }
1612 
1613 static int ravb_set_ringparam(struct net_device *ndev,
1614 			      struct ethtool_ringparam *ring,
1615 			      struct kernel_ethtool_ringparam *kernel_ring,
1616 			      struct netlink_ext_ack *extack)
1617 {
1618 	struct ravb_private *priv = netdev_priv(ndev);
1619 	const struct ravb_hw_info *info = priv->info;
1620 	int error;
1621 
1622 	if (ring->tx_pending > BE_TX_RING_MAX ||
1623 	    ring->rx_pending > BE_RX_RING_MAX ||
1624 	    ring->tx_pending < BE_TX_RING_MIN ||
1625 	    ring->rx_pending < BE_RX_RING_MIN)
1626 		return -EINVAL;
1627 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1628 		return -EINVAL;
1629 
1630 	if (netif_running(ndev)) {
1631 		netif_device_detach(ndev);
1632 		/* Stop PTP Clock driver */
1633 		if (info->gptp)
1634 			ravb_ptp_stop(ndev);
1635 		/* Wait for DMA stopping */
1636 		error = ravb_stop_dma(ndev);
1637 		if (error) {
1638 			netdev_err(ndev,
1639 				   "cannot set ringparam! Any AVB processes are still running?\n");
1640 			return error;
1641 		}
1642 		synchronize_irq(ndev->irq);
1643 
1644 		/* Free all the skb's in the RX queue and the DMA buffers. */
1645 		ravb_ring_free(ndev, RAVB_BE);
1646 		if (info->nc_queues)
1647 			ravb_ring_free(ndev, RAVB_NC);
1648 	}
1649 
1650 	/* Set new parameters */
1651 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1652 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1653 
1654 	if (netif_running(ndev)) {
1655 		error = ravb_dmac_init(ndev);
1656 		if (error) {
1657 			netdev_err(ndev,
1658 				   "%s: ravb_dmac_init() failed, error %d\n",
1659 				   __func__, error);
1660 			return error;
1661 		}
1662 
1663 		ravb_emac_init(ndev);
1664 
1665 		/* Initialise PTP Clock driver */
1666 		if (info->gptp)
1667 			ravb_ptp_init(ndev, priv->pdev);
1668 
1669 		netif_device_attach(ndev);
1670 	}
1671 
1672 	return 0;
1673 }
1674 
1675 static int ravb_get_ts_info(struct net_device *ndev,
1676 			    struct ethtool_ts_info *info)
1677 {
1678 	struct ravb_private *priv = netdev_priv(ndev);
1679 	const struct ravb_hw_info *hw_info = priv->info;
1680 
1681 	info->so_timestamping =
1682 		SOF_TIMESTAMPING_TX_SOFTWARE |
1683 		SOF_TIMESTAMPING_RX_SOFTWARE |
1684 		SOF_TIMESTAMPING_SOFTWARE |
1685 		SOF_TIMESTAMPING_TX_HARDWARE |
1686 		SOF_TIMESTAMPING_RX_HARDWARE |
1687 		SOF_TIMESTAMPING_RAW_HARDWARE;
1688 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1689 	info->rx_filters =
1690 		(1 << HWTSTAMP_FILTER_NONE) |
1691 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1692 		(1 << HWTSTAMP_FILTER_ALL);
1693 	if (hw_info->gptp || hw_info->ccc_gac)
1694 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1695 
1696 	return 0;
1697 }
1698 
1699 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1700 {
1701 	struct ravb_private *priv = netdev_priv(ndev);
1702 
1703 	wol->supported = WAKE_MAGIC;
1704 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1705 }
1706 
1707 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1708 {
1709 	struct ravb_private *priv = netdev_priv(ndev);
1710 	const struct ravb_hw_info *info = priv->info;
1711 
1712 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1713 		return -EOPNOTSUPP;
1714 
1715 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1716 
1717 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1718 
1719 	return 0;
1720 }
1721 
1722 static const struct ethtool_ops ravb_ethtool_ops = {
1723 	.nway_reset		= phy_ethtool_nway_reset,
1724 	.get_msglevel		= ravb_get_msglevel,
1725 	.set_msglevel		= ravb_set_msglevel,
1726 	.get_link		= ethtool_op_get_link,
1727 	.get_strings		= ravb_get_strings,
1728 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1729 	.get_sset_count		= ravb_get_sset_count,
1730 	.get_ringparam		= ravb_get_ringparam,
1731 	.set_ringparam		= ravb_set_ringparam,
1732 	.get_ts_info		= ravb_get_ts_info,
1733 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1734 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1735 	.get_wol		= ravb_get_wol,
1736 	.set_wol		= ravb_set_wol,
1737 };
1738 
1739 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1740 				struct net_device *ndev, struct device *dev,
1741 				const char *ch)
1742 {
1743 	char *name;
1744 	int error;
1745 
1746 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1747 	if (!name)
1748 		return -ENOMEM;
1749 	error = request_irq(irq, handler, 0, name, ndev);
1750 	if (error)
1751 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1752 
1753 	return error;
1754 }
1755 
1756 /* Network device open function for Ethernet AVB */
1757 static int ravb_open(struct net_device *ndev)
1758 {
1759 	struct ravb_private *priv = netdev_priv(ndev);
1760 	const struct ravb_hw_info *info = priv->info;
1761 	struct platform_device *pdev = priv->pdev;
1762 	struct device *dev = &pdev->dev;
1763 	int error;
1764 
1765 	napi_enable(&priv->napi[RAVB_BE]);
1766 	if (info->nc_queues)
1767 		napi_enable(&priv->napi[RAVB_NC]);
1768 
1769 	if (!info->multi_irqs) {
1770 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1771 				    ndev->name, ndev);
1772 		if (error) {
1773 			netdev_err(ndev, "cannot request IRQ\n");
1774 			goto out_napi_off;
1775 		}
1776 	} else {
1777 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1778 				      dev, "ch22:multi");
1779 		if (error)
1780 			goto out_napi_off;
1781 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1782 				      dev, "ch24:emac");
1783 		if (error)
1784 			goto out_free_irq;
1785 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1786 				      ndev, dev, "ch0:rx_be");
1787 		if (error)
1788 			goto out_free_irq_emac;
1789 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1790 				      ndev, dev, "ch18:tx_be");
1791 		if (error)
1792 			goto out_free_irq_be_rx;
1793 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1794 				      ndev, dev, "ch1:rx_nc");
1795 		if (error)
1796 			goto out_free_irq_be_tx;
1797 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1798 				      ndev, dev, "ch19:tx_nc");
1799 		if (error)
1800 			goto out_free_irq_nc_rx;
1801 	}
1802 
1803 	/* Device init */
1804 	error = ravb_dmac_init(ndev);
1805 	if (error)
1806 		goto out_free_irq_nc_tx;
1807 	ravb_emac_init(ndev);
1808 
1809 	/* Initialise PTP Clock driver */
1810 	if (info->gptp)
1811 		ravb_ptp_init(ndev, priv->pdev);
1812 
1813 	netif_tx_start_all_queues(ndev);
1814 
1815 	/* PHY control start */
1816 	error = ravb_phy_start(ndev);
1817 	if (error)
1818 		goto out_ptp_stop;
1819 
1820 	return 0;
1821 
1822 out_ptp_stop:
1823 	/* Stop PTP Clock driver */
1824 	if (info->gptp)
1825 		ravb_ptp_stop(ndev);
1826 out_free_irq_nc_tx:
1827 	if (!info->multi_irqs)
1828 		goto out_free_irq;
1829 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1830 out_free_irq_nc_rx:
1831 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1832 out_free_irq_be_tx:
1833 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1834 out_free_irq_be_rx:
1835 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1836 out_free_irq_emac:
1837 	free_irq(priv->emac_irq, ndev);
1838 out_free_irq:
1839 	free_irq(ndev->irq, ndev);
1840 out_napi_off:
1841 	if (info->nc_queues)
1842 		napi_disable(&priv->napi[RAVB_NC]);
1843 	napi_disable(&priv->napi[RAVB_BE]);
1844 	return error;
1845 }
1846 
1847 /* Timeout function for Ethernet AVB */
1848 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1849 {
1850 	struct ravb_private *priv = netdev_priv(ndev);
1851 
1852 	netif_err(priv, tx_err, ndev,
1853 		  "transmit timed out, status %08x, resetting...\n",
1854 		  ravb_read(ndev, ISS));
1855 
1856 	/* tx_errors count up */
1857 	ndev->stats.tx_errors++;
1858 
1859 	schedule_work(&priv->work);
1860 }
1861 
1862 static void ravb_tx_timeout_work(struct work_struct *work)
1863 {
1864 	struct ravb_private *priv = container_of(work, struct ravb_private,
1865 						 work);
1866 	const struct ravb_hw_info *info = priv->info;
1867 	struct net_device *ndev = priv->ndev;
1868 	int error;
1869 
1870 	netif_tx_stop_all_queues(ndev);
1871 
1872 	/* Stop PTP Clock driver */
1873 	if (info->gptp)
1874 		ravb_ptp_stop(ndev);
1875 
1876 	/* Wait for DMA stopping */
1877 	if (ravb_stop_dma(ndev)) {
1878 		/* If ravb_stop_dma() fails, the hardware is still operating
1879 		 * for TX and/or RX. So, this should not call the following
1880 		 * functions because ravb_dmac_init() is possible to fail too.
1881 		 * Also, this should not retry ravb_stop_dma() again and again
1882 		 * here because it's possible to wait forever. So, this just
1883 		 * re-enables the TX and RX and skip the following
1884 		 * re-initialization procedure.
1885 		 */
1886 		ravb_rcv_snd_enable(ndev);
1887 		goto out;
1888 	}
1889 
1890 	ravb_ring_free(ndev, RAVB_BE);
1891 	if (info->nc_queues)
1892 		ravb_ring_free(ndev, RAVB_NC);
1893 
1894 	/* Device init */
1895 	error = ravb_dmac_init(ndev);
1896 	if (error) {
1897 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1898 		 * should return here to avoid re-enabling the TX and RX in
1899 		 * ravb_emac_init().
1900 		 */
1901 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1902 			   __func__, error);
1903 		return;
1904 	}
1905 	ravb_emac_init(ndev);
1906 
1907 out:
1908 	/* Initialise PTP Clock driver */
1909 	if (info->gptp)
1910 		ravb_ptp_init(ndev, priv->pdev);
1911 
1912 	netif_tx_start_all_queues(ndev);
1913 }
1914 
1915 /* Packet transmit function for Ethernet AVB */
1916 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1917 {
1918 	struct ravb_private *priv = netdev_priv(ndev);
1919 	const struct ravb_hw_info *info = priv->info;
1920 	unsigned int num_tx_desc = priv->num_tx_desc;
1921 	u16 q = skb_get_queue_mapping(skb);
1922 	struct ravb_tstamp_skb *ts_skb;
1923 	struct ravb_tx_desc *desc;
1924 	unsigned long flags;
1925 	u32 dma_addr;
1926 	void *buffer;
1927 	u32 entry;
1928 	u32 len;
1929 
1930 	spin_lock_irqsave(&priv->lock, flags);
1931 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1932 	    num_tx_desc) {
1933 		netif_err(priv, tx_queued, ndev,
1934 			  "still transmitting with the full ring!\n");
1935 		netif_stop_subqueue(ndev, q);
1936 		spin_unlock_irqrestore(&priv->lock, flags);
1937 		return NETDEV_TX_BUSY;
1938 	}
1939 
1940 	if (skb_put_padto(skb, ETH_ZLEN))
1941 		goto exit;
1942 
1943 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1944 	priv->tx_skb[q][entry / num_tx_desc] = skb;
1945 
1946 	if (num_tx_desc > 1) {
1947 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1948 			 entry / num_tx_desc * DPTR_ALIGN;
1949 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1950 
1951 		/* Zero length DMA descriptors are problematic as they seem
1952 		 * to terminate DMA transfers. Avoid them by simply using a
1953 		 * length of DPTR_ALIGN (4) when skb data is aligned to
1954 		 * DPTR_ALIGN.
1955 		 *
1956 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1957 		 * bytes of data by the call to skb_put_padto() above this
1958 		 * is safe with respect to both the length of the first DMA
1959 		 * descriptor (len) overflowing the available data and the
1960 		 * length of the second DMA descriptor (skb->len - len)
1961 		 * being negative.
1962 		 */
1963 		if (len == 0)
1964 			len = DPTR_ALIGN;
1965 
1966 		memcpy(buffer, skb->data, len);
1967 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1968 					  DMA_TO_DEVICE);
1969 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1970 			goto drop;
1971 
1972 		desc = &priv->tx_ring[q][entry];
1973 		desc->ds_tagl = cpu_to_le16(len);
1974 		desc->dptr = cpu_to_le32(dma_addr);
1975 
1976 		buffer = skb->data + len;
1977 		len = skb->len - len;
1978 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1979 					  DMA_TO_DEVICE);
1980 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1981 			goto unmap;
1982 
1983 		desc++;
1984 	} else {
1985 		desc = &priv->tx_ring[q][entry];
1986 		len = skb->len;
1987 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1988 					  DMA_TO_DEVICE);
1989 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1990 			goto drop;
1991 	}
1992 	desc->ds_tagl = cpu_to_le16(len);
1993 	desc->dptr = cpu_to_le32(dma_addr);
1994 
1995 	/* TX timestamp required */
1996 	if (info->gptp || info->ccc_gac) {
1997 		if (q == RAVB_NC) {
1998 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1999 			if (!ts_skb) {
2000 				if (num_tx_desc > 1) {
2001 					desc--;
2002 					dma_unmap_single(ndev->dev.parent, dma_addr,
2003 							 len, DMA_TO_DEVICE);
2004 				}
2005 				goto unmap;
2006 			}
2007 			ts_skb->skb = skb_get(skb);
2008 			ts_skb->tag = priv->ts_skb_tag++;
2009 			priv->ts_skb_tag &= 0x3ff;
2010 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2011 
2012 			/* TAG and timestamp required flag */
2013 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2014 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2015 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2016 		}
2017 
2018 		skb_tx_timestamp(skb);
2019 	}
2020 	/* Descriptor type must be set after all the above writes */
2021 	dma_wmb();
2022 	if (num_tx_desc > 1) {
2023 		desc->die_dt = DT_FEND;
2024 		desc--;
2025 		desc->die_dt = DT_FSTART;
2026 	} else {
2027 		desc->die_dt = DT_FSINGLE;
2028 	}
2029 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2030 
2031 	priv->cur_tx[q] += num_tx_desc;
2032 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2033 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2034 	    !ravb_tx_free(ndev, q, true))
2035 		netif_stop_subqueue(ndev, q);
2036 
2037 exit:
2038 	spin_unlock_irqrestore(&priv->lock, flags);
2039 	return NETDEV_TX_OK;
2040 
2041 unmap:
2042 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2043 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2044 drop:
2045 	dev_kfree_skb_any(skb);
2046 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2047 	goto exit;
2048 }
2049 
2050 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2051 			     struct net_device *sb_dev)
2052 {
2053 	/* If skb needs TX timestamp, it is handled in network control queue */
2054 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2055 							       RAVB_BE;
2056 
2057 }
2058 
2059 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2060 {
2061 	struct ravb_private *priv = netdev_priv(ndev);
2062 	const struct ravb_hw_info *info = priv->info;
2063 	struct net_device_stats *nstats, *stats0, *stats1;
2064 
2065 	nstats = &ndev->stats;
2066 	stats0 = &priv->stats[RAVB_BE];
2067 
2068 	if (info->tx_counters) {
2069 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2070 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2071 	}
2072 
2073 	if (info->carrier_counters) {
2074 		nstats->collisions += ravb_read(ndev, CXR41);
2075 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2076 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2077 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2078 	}
2079 
2080 	nstats->rx_packets = stats0->rx_packets;
2081 	nstats->tx_packets = stats0->tx_packets;
2082 	nstats->rx_bytes = stats0->rx_bytes;
2083 	nstats->tx_bytes = stats0->tx_bytes;
2084 	nstats->multicast = stats0->multicast;
2085 	nstats->rx_errors = stats0->rx_errors;
2086 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2087 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2088 	nstats->rx_length_errors = stats0->rx_length_errors;
2089 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2090 	nstats->rx_over_errors = stats0->rx_over_errors;
2091 	if (info->nc_queues) {
2092 		stats1 = &priv->stats[RAVB_NC];
2093 
2094 		nstats->rx_packets += stats1->rx_packets;
2095 		nstats->tx_packets += stats1->tx_packets;
2096 		nstats->rx_bytes += stats1->rx_bytes;
2097 		nstats->tx_bytes += stats1->tx_bytes;
2098 		nstats->multicast += stats1->multicast;
2099 		nstats->rx_errors += stats1->rx_errors;
2100 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2101 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2102 		nstats->rx_length_errors += stats1->rx_length_errors;
2103 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2104 		nstats->rx_over_errors += stats1->rx_over_errors;
2105 	}
2106 
2107 	return nstats;
2108 }
2109 
2110 /* Update promiscuous bit */
2111 static void ravb_set_rx_mode(struct net_device *ndev)
2112 {
2113 	struct ravb_private *priv = netdev_priv(ndev);
2114 	unsigned long flags;
2115 
2116 	spin_lock_irqsave(&priv->lock, flags);
2117 	ravb_modify(ndev, ECMR, ECMR_PRM,
2118 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2119 	spin_unlock_irqrestore(&priv->lock, flags);
2120 }
2121 
2122 /* Device close function for Ethernet AVB */
2123 static int ravb_close(struct net_device *ndev)
2124 {
2125 	struct device_node *np = ndev->dev.parent->of_node;
2126 	struct ravb_private *priv = netdev_priv(ndev);
2127 	const struct ravb_hw_info *info = priv->info;
2128 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2129 
2130 	netif_tx_stop_all_queues(ndev);
2131 
2132 	/* Disable interrupts by clearing the interrupt masks. */
2133 	ravb_write(ndev, 0, RIC0);
2134 	ravb_write(ndev, 0, RIC2);
2135 	ravb_write(ndev, 0, TIC);
2136 
2137 	/* Stop PTP Clock driver */
2138 	if (info->gptp)
2139 		ravb_ptp_stop(ndev);
2140 
2141 	/* Set the config mode to stop the AVB-DMAC's processes */
2142 	if (ravb_stop_dma(ndev) < 0)
2143 		netdev_err(ndev,
2144 			   "device will be stopped after h/w processes are done.\n");
2145 
2146 	/* Clear the timestamp list */
2147 	if (info->gptp || info->ccc_gac) {
2148 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2149 			list_del(&ts_skb->list);
2150 			kfree_skb(ts_skb->skb);
2151 			kfree(ts_skb);
2152 		}
2153 	}
2154 
2155 	/* PHY disconnect */
2156 	if (ndev->phydev) {
2157 		phy_stop(ndev->phydev);
2158 		phy_disconnect(ndev->phydev);
2159 		if (of_phy_is_fixed_link(np))
2160 			of_phy_deregister_fixed_link(np);
2161 	}
2162 
2163 	if (info->multi_irqs) {
2164 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
2165 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
2166 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
2167 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
2168 		free_irq(priv->emac_irq, ndev);
2169 	}
2170 	free_irq(ndev->irq, ndev);
2171 
2172 	if (info->nc_queues)
2173 		napi_disable(&priv->napi[RAVB_NC]);
2174 	napi_disable(&priv->napi[RAVB_BE]);
2175 
2176 	/* Free all the skb's in the RX queue and the DMA buffers. */
2177 	ravb_ring_free(ndev, RAVB_BE);
2178 	if (info->nc_queues)
2179 		ravb_ring_free(ndev, RAVB_NC);
2180 
2181 	return 0;
2182 }
2183 
2184 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2185 {
2186 	struct ravb_private *priv = netdev_priv(ndev);
2187 	struct hwtstamp_config config;
2188 
2189 	config.flags = 0;
2190 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2191 						HWTSTAMP_TX_OFF;
2192 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2193 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2194 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2195 		break;
2196 	case RAVB_RXTSTAMP_TYPE_ALL:
2197 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2198 		break;
2199 	default:
2200 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2201 	}
2202 
2203 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2204 		-EFAULT : 0;
2205 }
2206 
2207 /* Control hardware time stamping */
2208 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2209 {
2210 	struct ravb_private *priv = netdev_priv(ndev);
2211 	struct hwtstamp_config config;
2212 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2213 	u32 tstamp_tx_ctrl;
2214 
2215 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2216 		return -EFAULT;
2217 
2218 	switch (config.tx_type) {
2219 	case HWTSTAMP_TX_OFF:
2220 		tstamp_tx_ctrl = 0;
2221 		break;
2222 	case HWTSTAMP_TX_ON:
2223 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2224 		break;
2225 	default:
2226 		return -ERANGE;
2227 	}
2228 
2229 	switch (config.rx_filter) {
2230 	case HWTSTAMP_FILTER_NONE:
2231 		tstamp_rx_ctrl = 0;
2232 		break;
2233 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2234 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2235 		break;
2236 	default:
2237 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2238 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2239 	}
2240 
2241 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2242 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2243 
2244 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2245 		-EFAULT : 0;
2246 }
2247 
2248 /* ioctl to device function */
2249 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2250 {
2251 	struct phy_device *phydev = ndev->phydev;
2252 
2253 	if (!netif_running(ndev))
2254 		return -EINVAL;
2255 
2256 	if (!phydev)
2257 		return -ENODEV;
2258 
2259 	switch (cmd) {
2260 	case SIOCGHWTSTAMP:
2261 		return ravb_hwtstamp_get(ndev, req);
2262 	case SIOCSHWTSTAMP:
2263 		return ravb_hwtstamp_set(ndev, req);
2264 	}
2265 
2266 	return phy_mii_ioctl(phydev, req, cmd);
2267 }
2268 
2269 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2270 {
2271 	struct ravb_private *priv = netdev_priv(ndev);
2272 
2273 	ndev->mtu = new_mtu;
2274 
2275 	if (netif_running(ndev)) {
2276 		synchronize_irq(priv->emac_irq);
2277 		ravb_emac_init(ndev);
2278 	}
2279 
2280 	netdev_update_features(ndev);
2281 
2282 	return 0;
2283 }
2284 
2285 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2286 {
2287 	struct ravb_private *priv = netdev_priv(ndev);
2288 	unsigned long flags;
2289 
2290 	spin_lock_irqsave(&priv->lock, flags);
2291 
2292 	/* Disable TX and RX */
2293 	ravb_rcv_snd_disable(ndev);
2294 
2295 	/* Modify RX Checksum setting */
2296 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2297 
2298 	/* Enable TX and RX */
2299 	ravb_rcv_snd_enable(ndev);
2300 
2301 	spin_unlock_irqrestore(&priv->lock, flags);
2302 }
2303 
2304 static int ravb_set_features_gbeth(struct net_device *ndev,
2305 				   netdev_features_t features)
2306 {
2307 	/* Place holder */
2308 	return 0;
2309 }
2310 
2311 static int ravb_set_features_rcar(struct net_device *ndev,
2312 				  netdev_features_t features)
2313 {
2314 	netdev_features_t changed = ndev->features ^ features;
2315 
2316 	if (changed & NETIF_F_RXCSUM)
2317 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2318 
2319 	ndev->features = features;
2320 
2321 	return 0;
2322 }
2323 
2324 static int ravb_set_features(struct net_device *ndev,
2325 			     netdev_features_t features)
2326 {
2327 	struct ravb_private *priv = netdev_priv(ndev);
2328 	const struct ravb_hw_info *info = priv->info;
2329 
2330 	return info->set_feature(ndev, features);
2331 }
2332 
2333 static const struct net_device_ops ravb_netdev_ops = {
2334 	.ndo_open		= ravb_open,
2335 	.ndo_stop		= ravb_close,
2336 	.ndo_start_xmit		= ravb_start_xmit,
2337 	.ndo_select_queue	= ravb_select_queue,
2338 	.ndo_get_stats		= ravb_get_stats,
2339 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2340 	.ndo_tx_timeout		= ravb_tx_timeout,
2341 	.ndo_eth_ioctl		= ravb_do_ioctl,
2342 	.ndo_change_mtu		= ravb_change_mtu,
2343 	.ndo_validate_addr	= eth_validate_addr,
2344 	.ndo_set_mac_address	= eth_mac_addr,
2345 	.ndo_set_features	= ravb_set_features,
2346 };
2347 
2348 /* MDIO bus init function */
2349 static int ravb_mdio_init(struct ravb_private *priv)
2350 {
2351 	struct platform_device *pdev = priv->pdev;
2352 	struct device *dev = &pdev->dev;
2353 	int error;
2354 
2355 	/* Bitbang init */
2356 	priv->mdiobb.ops = &bb_ops;
2357 
2358 	/* MII controller setting */
2359 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2360 	if (!priv->mii_bus)
2361 		return -ENOMEM;
2362 
2363 	/* Hook up MII support for ethtool */
2364 	priv->mii_bus->name = "ravb_mii";
2365 	priv->mii_bus->parent = dev;
2366 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2367 		 pdev->name, pdev->id);
2368 
2369 	/* Register MDIO bus */
2370 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2371 	if (error)
2372 		goto out_free_bus;
2373 
2374 	return 0;
2375 
2376 out_free_bus:
2377 	free_mdio_bitbang(priv->mii_bus);
2378 	return error;
2379 }
2380 
2381 /* MDIO bus release function */
2382 static int ravb_mdio_release(struct ravb_private *priv)
2383 {
2384 	/* Unregister mdio bus */
2385 	mdiobus_unregister(priv->mii_bus);
2386 
2387 	/* Free bitbang info */
2388 	free_mdio_bitbang(priv->mii_bus);
2389 
2390 	return 0;
2391 }
2392 
2393 static const struct ravb_hw_info ravb_gen3_hw_info = {
2394 	.rx_ring_free = ravb_rx_ring_free_rcar,
2395 	.rx_ring_format = ravb_rx_ring_format_rcar,
2396 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2397 	.receive = ravb_rx_rcar,
2398 	.set_rate = ravb_set_rate_rcar,
2399 	.set_feature = ravb_set_features_rcar,
2400 	.dmac_init = ravb_dmac_init_rcar,
2401 	.emac_init = ravb_emac_init_rcar,
2402 	.gstrings_stats = ravb_gstrings_stats,
2403 	.gstrings_size = sizeof(ravb_gstrings_stats),
2404 	.net_hw_features = NETIF_F_RXCSUM,
2405 	.net_features = NETIF_F_RXCSUM,
2406 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2407 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2408 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2409 	.rx_max_buf_size = SZ_2K,
2410 	.internal_delay = 1,
2411 	.tx_counters = 1,
2412 	.multi_irqs = 1,
2413 	.ccc_gac = 1,
2414 	.nc_queues = 1,
2415 	.magic_pkt = 1,
2416 };
2417 
2418 static const struct ravb_hw_info ravb_gen2_hw_info = {
2419 	.rx_ring_free = ravb_rx_ring_free_rcar,
2420 	.rx_ring_format = ravb_rx_ring_format_rcar,
2421 	.alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2422 	.receive = ravb_rx_rcar,
2423 	.set_rate = ravb_set_rate_rcar,
2424 	.set_feature = ravb_set_features_rcar,
2425 	.dmac_init = ravb_dmac_init_rcar,
2426 	.emac_init = ravb_emac_init_rcar,
2427 	.gstrings_stats = ravb_gstrings_stats,
2428 	.gstrings_size = sizeof(ravb_gstrings_stats),
2429 	.net_hw_features = NETIF_F_RXCSUM,
2430 	.net_features = NETIF_F_RXCSUM,
2431 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2432 	.max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2433 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2434 	.rx_max_buf_size = SZ_2K,
2435 	.aligned_tx = 1,
2436 	.gptp = 1,
2437 	.nc_queues = 1,
2438 	.magic_pkt = 1,
2439 };
2440 
2441 static const struct ravb_hw_info gbeth_hw_info = {
2442 	.rx_ring_free = ravb_rx_ring_free_gbeth,
2443 	.rx_ring_format = ravb_rx_ring_format_gbeth,
2444 	.alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
2445 	.receive = ravb_rx_gbeth,
2446 	.set_rate = ravb_set_rate_gbeth,
2447 	.set_feature = ravb_set_features_gbeth,
2448 	.dmac_init = ravb_dmac_init_gbeth,
2449 	.emac_init = ravb_emac_init_gbeth,
2450 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2451 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2452 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2453 	.max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
2454 	.tccr_mask = TCCR_TSRQ0,
2455 	.rx_max_buf_size = SZ_8K,
2456 	.aligned_tx = 1,
2457 	.tx_counters = 1,
2458 	.carrier_counters = 1,
2459 	.half_duplex = 1,
2460 };
2461 
2462 static const struct of_device_id ravb_match_table[] = {
2463 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2464 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2465 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2466 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2467 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2468 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2469 	{ }
2470 };
2471 MODULE_DEVICE_TABLE(of, ravb_match_table);
2472 
2473 static int ravb_set_gti(struct net_device *ndev)
2474 {
2475 	struct ravb_private *priv = netdev_priv(ndev);
2476 	struct device *dev = ndev->dev.parent;
2477 	unsigned long rate;
2478 	uint64_t inc;
2479 
2480 	rate = clk_get_rate(priv->clk);
2481 	if (!rate)
2482 		return -EINVAL;
2483 
2484 	inc = div64_ul(1000000000ULL << 20, rate);
2485 
2486 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
2487 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
2488 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
2489 		return -EINVAL;
2490 	}
2491 
2492 	ravb_write(ndev, inc, GTI);
2493 
2494 	return 0;
2495 }
2496 
2497 static void ravb_set_config_mode(struct net_device *ndev)
2498 {
2499 	struct ravb_private *priv = netdev_priv(ndev);
2500 	const struct ravb_hw_info *info = priv->info;
2501 
2502 	if (info->gptp) {
2503 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2504 		/* Set CSEL value */
2505 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2506 	} else if (info->ccc_gac) {
2507 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
2508 			    CCC_GAC | CCC_CSEL_HPB);
2509 	} else {
2510 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2511 	}
2512 }
2513 
2514 /* Set tx and rx clock internal delay modes */
2515 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
2516 {
2517 	struct ravb_private *priv = netdev_priv(ndev);
2518 	bool explicit_delay = false;
2519 	u32 delay;
2520 
2521 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2522 		/* Valid values are 0 and 1800, according to DT bindings */
2523 		priv->rxcidm = !!delay;
2524 		explicit_delay = true;
2525 	}
2526 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2527 		/* Valid values are 0 and 2000, according to DT bindings */
2528 		priv->txcidm = !!delay;
2529 		explicit_delay = true;
2530 	}
2531 
2532 	if (explicit_delay)
2533 		return;
2534 
2535 	/* Fall back to legacy rgmii-*id behavior */
2536 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2537 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2538 		priv->rxcidm = 1;
2539 		priv->rgmii_override = 1;
2540 	}
2541 
2542 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2543 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2544 		priv->txcidm = 1;
2545 		priv->rgmii_override = 1;
2546 	}
2547 }
2548 
2549 static void ravb_set_delay_mode(struct net_device *ndev)
2550 {
2551 	struct ravb_private *priv = netdev_priv(ndev);
2552 	u32 set = 0;
2553 
2554 	if (priv->rxcidm)
2555 		set |= APSR_RDM;
2556 	if (priv->txcidm)
2557 		set |= APSR_TDM;
2558 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2559 }
2560 
2561 static int ravb_probe(struct platform_device *pdev)
2562 {
2563 	struct device_node *np = pdev->dev.of_node;
2564 	const struct ravb_hw_info *info;
2565 	struct reset_control *rstc;
2566 	struct ravb_private *priv;
2567 	struct net_device *ndev;
2568 	int error, irq, q;
2569 	struct resource *res;
2570 	int i;
2571 
2572 	if (!np) {
2573 		dev_err(&pdev->dev,
2574 			"this driver is required to be instantiated from device tree\n");
2575 		return -EINVAL;
2576 	}
2577 
2578 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2579 	if (IS_ERR(rstc))
2580 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2581 				     "failed to get cpg reset\n");
2582 
2583 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2584 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2585 	if (!ndev)
2586 		return -ENOMEM;
2587 
2588 	info = of_device_get_match_data(&pdev->dev);
2589 
2590 	ndev->features = info->net_features;
2591 	ndev->hw_features = info->net_hw_features;
2592 
2593 	reset_control_deassert(rstc);
2594 	pm_runtime_enable(&pdev->dev);
2595 	pm_runtime_get_sync(&pdev->dev);
2596 
2597 	if (info->multi_irqs)
2598 		irq = platform_get_irq_byname(pdev, "ch22");
2599 	else
2600 		irq = platform_get_irq(pdev, 0);
2601 	if (irq < 0) {
2602 		error = irq;
2603 		goto out_release;
2604 	}
2605 	ndev->irq = irq;
2606 
2607 	SET_NETDEV_DEV(ndev, &pdev->dev);
2608 
2609 	priv = netdev_priv(ndev);
2610 	priv->info = info;
2611 	priv->rstc = rstc;
2612 	priv->ndev = ndev;
2613 	priv->pdev = pdev;
2614 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2615 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2616 	if (info->nc_queues) {
2617 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2618 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2619 	}
2620 
2621 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2622 	if (IS_ERR(priv->addr)) {
2623 		error = PTR_ERR(priv->addr);
2624 		goto out_release;
2625 	}
2626 
2627 	/* The Ether-specific entries in the device structure. */
2628 	ndev->base_addr = res->start;
2629 
2630 	spin_lock_init(&priv->lock);
2631 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2632 
2633 	error = of_get_phy_mode(np, &priv->phy_interface);
2634 	if (error && error != -ENODEV)
2635 		goto out_release;
2636 
2637 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2638 	priv->avb_link_active_low =
2639 		of_property_read_bool(np, "renesas,ether-link-active-low");
2640 
2641 	if (info->multi_irqs) {
2642 		irq = platform_get_irq_byname(pdev, "ch24");
2643 		if (irq < 0) {
2644 			error = irq;
2645 			goto out_release;
2646 		}
2647 		priv->emac_irq = irq;
2648 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2649 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2650 			if (irq < 0) {
2651 				error = irq;
2652 				goto out_release;
2653 			}
2654 			priv->rx_irqs[i] = irq;
2655 		}
2656 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2657 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2658 			if (irq < 0) {
2659 				error = irq;
2660 				goto out_release;
2661 			}
2662 			priv->tx_irqs[i] = irq;
2663 		}
2664 	}
2665 
2666 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2667 	if (IS_ERR(priv->clk)) {
2668 		error = PTR_ERR(priv->clk);
2669 		goto out_release;
2670 	}
2671 
2672 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2673 	if (IS_ERR(priv->refclk)) {
2674 		error = PTR_ERR(priv->refclk);
2675 		goto out_release;
2676 	}
2677 	clk_prepare_enable(priv->refclk);
2678 
2679 	ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2680 	ndev->min_mtu = ETH_MIN_MTU;
2681 
2682 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2683 	 * Use two descriptor to handle such situation. First descriptor to
2684 	 * handle aligned data buffer and second descriptor to handle the
2685 	 * overflow data because of alignment.
2686 	 */
2687 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2688 
2689 	/* Set function */
2690 	ndev->netdev_ops = &ravb_netdev_ops;
2691 	ndev->ethtool_ops = &ravb_ethtool_ops;
2692 
2693 	/* Set AVB config mode */
2694 	ravb_set_config_mode(ndev);
2695 
2696 	if (info->gptp || info->ccc_gac) {
2697 		/* Set GTI value */
2698 		error = ravb_set_gti(ndev);
2699 		if (error)
2700 			goto out_disable_refclk;
2701 
2702 		/* Request GTI loading */
2703 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2704 	}
2705 
2706 	if (info->internal_delay) {
2707 		ravb_parse_delay_mode(np, ndev);
2708 		ravb_set_delay_mode(ndev);
2709 	}
2710 
2711 	/* Allocate descriptor base address table */
2712 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2713 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2714 					    &priv->desc_bat_dma, GFP_KERNEL);
2715 	if (!priv->desc_bat) {
2716 		dev_err(&pdev->dev,
2717 			"Cannot allocate desc base address table (size %d bytes)\n",
2718 			priv->desc_bat_size);
2719 		error = -ENOMEM;
2720 		goto out_disable_refclk;
2721 	}
2722 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2723 		priv->desc_bat[q].die_dt = DT_EOS;
2724 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2725 
2726 	/* Initialise HW timestamp list */
2727 	INIT_LIST_HEAD(&priv->ts_skb_list);
2728 
2729 	/* Initialise PTP Clock driver */
2730 	if (info->ccc_gac)
2731 		ravb_ptp_init(ndev, pdev);
2732 
2733 	/* Debug message level */
2734 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2735 
2736 	/* Read and set MAC address */
2737 	ravb_read_mac_address(np, ndev);
2738 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2739 		dev_warn(&pdev->dev,
2740 			 "no valid MAC address supplied, using a random one\n");
2741 		eth_hw_addr_random(ndev);
2742 	}
2743 
2744 	/* MDIO bus init */
2745 	error = ravb_mdio_init(priv);
2746 	if (error) {
2747 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2748 		goto out_dma_free;
2749 	}
2750 
2751 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2752 	if (info->nc_queues)
2753 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2754 
2755 	/* Network device register */
2756 	error = register_netdev(ndev);
2757 	if (error)
2758 		goto out_napi_del;
2759 
2760 	device_set_wakeup_capable(&pdev->dev, 1);
2761 
2762 	/* Print device information */
2763 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2764 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2765 
2766 	platform_set_drvdata(pdev, ndev);
2767 
2768 	return 0;
2769 
2770 out_napi_del:
2771 	if (info->nc_queues)
2772 		netif_napi_del(&priv->napi[RAVB_NC]);
2773 
2774 	netif_napi_del(&priv->napi[RAVB_BE]);
2775 	ravb_mdio_release(priv);
2776 out_dma_free:
2777 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2778 			  priv->desc_bat_dma);
2779 
2780 	/* Stop PTP Clock driver */
2781 	if (info->ccc_gac)
2782 		ravb_ptp_stop(ndev);
2783 out_disable_refclk:
2784 	clk_disable_unprepare(priv->refclk);
2785 out_release:
2786 	free_netdev(ndev);
2787 
2788 	pm_runtime_put(&pdev->dev);
2789 	pm_runtime_disable(&pdev->dev);
2790 	reset_control_assert(rstc);
2791 	return error;
2792 }
2793 
2794 static int ravb_remove(struct platform_device *pdev)
2795 {
2796 	struct net_device *ndev = platform_get_drvdata(pdev);
2797 	struct ravb_private *priv = netdev_priv(ndev);
2798 	const struct ravb_hw_info *info = priv->info;
2799 
2800 	/* Stop PTP Clock driver */
2801 	if (info->ccc_gac)
2802 		ravb_ptp_stop(ndev);
2803 
2804 	clk_disable_unprepare(priv->refclk);
2805 
2806 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2807 			  priv->desc_bat_dma);
2808 	/* Set reset mode */
2809 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2810 	pm_runtime_put_sync(&pdev->dev);
2811 	unregister_netdev(ndev);
2812 	if (info->nc_queues)
2813 		netif_napi_del(&priv->napi[RAVB_NC]);
2814 	netif_napi_del(&priv->napi[RAVB_BE]);
2815 	ravb_mdio_release(priv);
2816 	pm_runtime_disable(&pdev->dev);
2817 	reset_control_assert(priv->rstc);
2818 	free_netdev(ndev);
2819 	platform_set_drvdata(pdev, NULL);
2820 
2821 	return 0;
2822 }
2823 
2824 static int ravb_wol_setup(struct net_device *ndev)
2825 {
2826 	struct ravb_private *priv = netdev_priv(ndev);
2827 	const struct ravb_hw_info *info = priv->info;
2828 
2829 	/* Disable interrupts by clearing the interrupt masks. */
2830 	ravb_write(ndev, 0, RIC0);
2831 	ravb_write(ndev, 0, RIC2);
2832 	ravb_write(ndev, 0, TIC);
2833 
2834 	/* Only allow ECI interrupts */
2835 	synchronize_irq(priv->emac_irq);
2836 	if (info->nc_queues)
2837 		napi_disable(&priv->napi[RAVB_NC]);
2838 	napi_disable(&priv->napi[RAVB_BE]);
2839 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2840 
2841 	/* Enable MagicPacket */
2842 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2843 
2844 	return enable_irq_wake(priv->emac_irq);
2845 }
2846 
2847 static int ravb_wol_restore(struct net_device *ndev)
2848 {
2849 	struct ravb_private *priv = netdev_priv(ndev);
2850 	const struct ravb_hw_info *info = priv->info;
2851 
2852 	if (info->nc_queues)
2853 		napi_enable(&priv->napi[RAVB_NC]);
2854 	napi_enable(&priv->napi[RAVB_BE]);
2855 
2856 	/* Disable MagicPacket */
2857 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2858 
2859 	ravb_close(ndev);
2860 
2861 	return disable_irq_wake(priv->emac_irq);
2862 }
2863 
2864 static int __maybe_unused ravb_suspend(struct device *dev)
2865 {
2866 	struct net_device *ndev = dev_get_drvdata(dev);
2867 	struct ravb_private *priv = netdev_priv(ndev);
2868 	int ret;
2869 
2870 	if (!netif_running(ndev))
2871 		return 0;
2872 
2873 	netif_device_detach(ndev);
2874 
2875 	if (priv->wol_enabled)
2876 		ret = ravb_wol_setup(ndev);
2877 	else
2878 		ret = ravb_close(ndev);
2879 
2880 	return ret;
2881 }
2882 
2883 static int __maybe_unused ravb_resume(struct device *dev)
2884 {
2885 	struct net_device *ndev = dev_get_drvdata(dev);
2886 	struct ravb_private *priv = netdev_priv(ndev);
2887 	const struct ravb_hw_info *info = priv->info;
2888 	int ret = 0;
2889 
2890 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2891 	if (priv->wol_enabled)
2892 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2893 
2894 	/* All register have been reset to default values.
2895 	 * Restore all registers which where setup at probe time and
2896 	 * reopen device if it was running before system suspended.
2897 	 */
2898 
2899 	/* Set AVB config mode */
2900 	ravb_set_config_mode(ndev);
2901 
2902 	if (info->gptp || info->ccc_gac) {
2903 		/* Set GTI value */
2904 		ret = ravb_set_gti(ndev);
2905 		if (ret)
2906 			return ret;
2907 
2908 		/* Request GTI loading */
2909 		ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2910 	}
2911 
2912 	if (info->internal_delay)
2913 		ravb_set_delay_mode(ndev);
2914 
2915 	/* Restore descriptor base address table */
2916 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2917 
2918 	if (netif_running(ndev)) {
2919 		if (priv->wol_enabled) {
2920 			ret = ravb_wol_restore(ndev);
2921 			if (ret)
2922 				return ret;
2923 		}
2924 		ret = ravb_open(ndev);
2925 		if (ret < 0)
2926 			return ret;
2927 		netif_device_attach(ndev);
2928 	}
2929 
2930 	return ret;
2931 }
2932 
2933 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2934 {
2935 	/* Runtime PM callback shared between ->runtime_suspend()
2936 	 * and ->runtime_resume(). Simply returns success.
2937 	 *
2938 	 * This driver re-initializes all registers after
2939 	 * pm_runtime_get_sync() anyway so there is no need
2940 	 * to save and restore registers here.
2941 	 */
2942 	return 0;
2943 }
2944 
2945 static const struct dev_pm_ops ravb_dev_pm_ops = {
2946 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2947 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2948 };
2949 
2950 static struct platform_driver ravb_driver = {
2951 	.probe		= ravb_probe,
2952 	.remove		= ravb_remove,
2953 	.driver = {
2954 		.name	= "ravb",
2955 		.pm	= &ravb_dev_pm_ops,
2956 		.of_match_table = ravb_match_table,
2957 	},
2958 };
2959 
2960 module_platform_driver(ravb_driver);
2961 
2962 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2963 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2964 MODULE_LICENSE("GPL v2");
2965