1 /* Renesas Ethernet AVB device driver 2 * 3 * Copyright (C) 2014-2015 Renesas Electronics Corporation 4 * Copyright (C) 2015 Renesas Solutions Corp. 5 * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com> 6 * 7 * Based on the SuperH Ethernet driver 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License version 2, 11 * as published by the Free Software Foundation. 12 */ 13 14 #include <linux/cache.h> 15 #include <linux/clk.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/err.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ethtool.h> 21 #include <linux/if_vlan.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/net_tstamp.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_irq.h> 29 #include <linux/of_mdio.h> 30 #include <linux/of_net.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/slab.h> 33 #include <linux/spinlock.h> 34 35 #include "ravb.h" 36 37 #define RAVB_DEF_MSG_ENABLE \ 38 (NETIF_MSG_LINK | \ 39 NETIF_MSG_TIMER | \ 40 NETIF_MSG_RX_ERR | \ 41 NETIF_MSG_TX_ERR) 42 43 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value) 44 { 45 int i; 46 47 for (i = 0; i < 10000; i++) { 48 if ((ravb_read(ndev, reg) & mask) == value) 49 return 0; 50 udelay(10); 51 } 52 return -ETIMEDOUT; 53 } 54 55 static int ravb_config(struct net_device *ndev) 56 { 57 int error; 58 59 /* Set config mode */ 60 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG, 61 CCC); 62 /* Check if the operating mode is changed to the config mode */ 63 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG); 64 if (error) 65 netdev_err(ndev, "failed to switch device to config mode\n"); 66 67 return error; 68 } 69 70 static void ravb_set_duplex(struct net_device *ndev) 71 { 72 struct ravb_private *priv = netdev_priv(ndev); 73 u32 ecmr = ravb_read(ndev, ECMR); 74 75 if (priv->duplex) /* Full */ 76 ecmr |= ECMR_DM; 77 else /* Half */ 78 ecmr &= ~ECMR_DM; 79 ravb_write(ndev, ecmr, ECMR); 80 } 81 82 static void ravb_set_rate(struct net_device *ndev) 83 { 84 struct ravb_private *priv = netdev_priv(ndev); 85 86 switch (priv->speed) { 87 case 100: /* 100BASE */ 88 ravb_write(ndev, GECMR_SPEED_100, GECMR); 89 break; 90 case 1000: /* 1000BASE */ 91 ravb_write(ndev, GECMR_SPEED_1000, GECMR); 92 break; 93 default: 94 break; 95 } 96 } 97 98 static void ravb_set_buffer_align(struct sk_buff *skb) 99 { 100 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1); 101 102 if (reserve) 103 skb_reserve(skb, RAVB_ALIGN - reserve); 104 } 105 106 /* Get MAC address from the MAC address registers 107 * 108 * Ethernet AVB device doesn't have ROM for MAC address. 109 * This function gets the MAC address that was used by a bootloader. 110 */ 111 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac) 112 { 113 if (mac) { 114 ether_addr_copy(ndev->dev_addr, mac); 115 } else { 116 ndev->dev_addr[0] = (ravb_read(ndev, MAHR) >> 24); 117 ndev->dev_addr[1] = (ravb_read(ndev, MAHR) >> 16) & 0xFF; 118 ndev->dev_addr[2] = (ravb_read(ndev, MAHR) >> 8) & 0xFF; 119 ndev->dev_addr[3] = (ravb_read(ndev, MAHR) >> 0) & 0xFF; 120 ndev->dev_addr[4] = (ravb_read(ndev, MALR) >> 8) & 0xFF; 121 ndev->dev_addr[5] = (ravb_read(ndev, MALR) >> 0) & 0xFF; 122 } 123 } 124 125 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) 126 { 127 struct ravb_private *priv = container_of(ctrl, struct ravb_private, 128 mdiobb); 129 u32 pir = ravb_read(priv->ndev, PIR); 130 131 if (set) 132 pir |= mask; 133 else 134 pir &= ~mask; 135 ravb_write(priv->ndev, pir, PIR); 136 } 137 138 /* MDC pin control */ 139 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level) 140 { 141 ravb_mdio_ctrl(ctrl, PIR_MDC, level); 142 } 143 144 /* Data I/O pin control */ 145 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output) 146 { 147 ravb_mdio_ctrl(ctrl, PIR_MMD, output); 148 } 149 150 /* Set data bit */ 151 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value) 152 { 153 ravb_mdio_ctrl(ctrl, PIR_MDO, value); 154 } 155 156 /* Get data bit */ 157 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl) 158 { 159 struct ravb_private *priv = container_of(ctrl, struct ravb_private, 160 mdiobb); 161 162 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0; 163 } 164 165 /* MDIO bus control struct */ 166 static struct mdiobb_ops bb_ops = { 167 .owner = THIS_MODULE, 168 .set_mdc = ravb_set_mdc, 169 .set_mdio_dir = ravb_set_mdio_dir, 170 .set_mdio_data = ravb_set_mdio_data, 171 .get_mdio_data = ravb_get_mdio_data, 172 }; 173 174 /* Free skb's and DMA buffers for Ethernet AVB */ 175 static void ravb_ring_free(struct net_device *ndev, int q) 176 { 177 struct ravb_private *priv = netdev_priv(ndev); 178 int ring_size; 179 int i; 180 181 /* Free RX skb ringbuffer */ 182 if (priv->rx_skb[q]) { 183 for (i = 0; i < priv->num_rx_ring[q]; i++) 184 dev_kfree_skb(priv->rx_skb[q][i]); 185 } 186 kfree(priv->rx_skb[q]); 187 priv->rx_skb[q] = NULL; 188 189 /* Free TX skb ringbuffer */ 190 if (priv->tx_skb[q]) { 191 for (i = 0; i < priv->num_tx_ring[q]; i++) 192 dev_kfree_skb(priv->tx_skb[q][i]); 193 } 194 kfree(priv->tx_skb[q]); 195 priv->tx_skb[q] = NULL; 196 197 /* Free aligned TX buffers */ 198 kfree(priv->tx_align[q]); 199 priv->tx_align[q] = NULL; 200 201 if (priv->rx_ring[q]) { 202 ring_size = sizeof(struct ravb_ex_rx_desc) * 203 (priv->num_rx_ring[q] + 1); 204 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q], 205 priv->rx_desc_dma[q]); 206 priv->rx_ring[q] = NULL; 207 } 208 209 if (priv->tx_ring[q]) { 210 ring_size = sizeof(struct ravb_tx_desc) * 211 (priv->num_tx_ring[q] * NUM_TX_DESC + 1); 212 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q], 213 priv->tx_desc_dma[q]); 214 priv->tx_ring[q] = NULL; 215 } 216 } 217 218 /* Format skb and descriptor buffer for Ethernet AVB */ 219 static void ravb_ring_format(struct net_device *ndev, int q) 220 { 221 struct ravb_private *priv = netdev_priv(ndev); 222 struct ravb_ex_rx_desc *rx_desc; 223 struct ravb_tx_desc *tx_desc; 224 struct ravb_desc *desc; 225 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q]; 226 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] * 227 NUM_TX_DESC; 228 dma_addr_t dma_addr; 229 int i; 230 231 priv->cur_rx[q] = 0; 232 priv->cur_tx[q] = 0; 233 priv->dirty_rx[q] = 0; 234 priv->dirty_tx[q] = 0; 235 236 memset(priv->rx_ring[q], 0, rx_ring_size); 237 /* Build RX ring buffer */ 238 for (i = 0; i < priv->num_rx_ring[q]; i++) { 239 /* RX descriptor */ 240 rx_desc = &priv->rx_ring[q][i]; 241 /* The size of the buffer should be on 16-byte boundary. */ 242 rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16)); 243 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data, 244 ALIGN(PKT_BUF_SZ, 16), 245 DMA_FROM_DEVICE); 246 /* We just set the data size to 0 for a failed mapping which 247 * should prevent DMA from happening... 248 */ 249 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 250 rx_desc->ds_cc = cpu_to_le16(0); 251 rx_desc->dptr = cpu_to_le32(dma_addr); 252 rx_desc->die_dt = DT_FEMPTY; 253 } 254 rx_desc = &priv->rx_ring[q][i]; 255 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); 256 rx_desc->die_dt = DT_LINKFIX; /* type */ 257 258 memset(priv->tx_ring[q], 0, tx_ring_size); 259 /* Build TX ring buffer */ 260 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q]; 261 i++, tx_desc++) { 262 tx_desc->die_dt = DT_EEMPTY; 263 tx_desc++; 264 tx_desc->die_dt = DT_EEMPTY; 265 } 266 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]); 267 tx_desc->die_dt = DT_LINKFIX; /* type */ 268 269 /* RX descriptor base address for best effort */ 270 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q]; 271 desc->die_dt = DT_LINKFIX; /* type */ 272 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]); 273 274 /* TX descriptor base address for best effort */ 275 desc = &priv->desc_bat[q]; 276 desc->die_dt = DT_LINKFIX; /* type */ 277 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]); 278 } 279 280 /* Init skb and descriptor buffer for Ethernet AVB */ 281 static int ravb_ring_init(struct net_device *ndev, int q) 282 { 283 struct ravb_private *priv = netdev_priv(ndev); 284 struct sk_buff *skb; 285 int ring_size; 286 int i; 287 288 /* Allocate RX and TX skb rings */ 289 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q], 290 sizeof(*priv->rx_skb[q]), GFP_KERNEL); 291 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q], 292 sizeof(*priv->tx_skb[q]), GFP_KERNEL); 293 if (!priv->rx_skb[q] || !priv->tx_skb[q]) 294 goto error; 295 296 for (i = 0; i < priv->num_rx_ring[q]; i++) { 297 skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1); 298 if (!skb) 299 goto error; 300 ravb_set_buffer_align(skb); 301 priv->rx_skb[q][i] = skb; 302 } 303 304 /* Allocate rings for the aligned buffers */ 305 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] + 306 DPTR_ALIGN - 1, GFP_KERNEL); 307 if (!priv->tx_align[q]) 308 goto error; 309 310 /* Allocate all RX descriptors. */ 311 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1); 312 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size, 313 &priv->rx_desc_dma[q], 314 GFP_KERNEL); 315 if (!priv->rx_ring[q]) 316 goto error; 317 318 priv->dirty_rx[q] = 0; 319 320 /* Allocate all TX descriptors. */ 321 ring_size = sizeof(struct ravb_tx_desc) * 322 (priv->num_tx_ring[q] * NUM_TX_DESC + 1); 323 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size, 324 &priv->tx_desc_dma[q], 325 GFP_KERNEL); 326 if (!priv->tx_ring[q]) 327 goto error; 328 329 return 0; 330 331 error: 332 ravb_ring_free(ndev, q); 333 334 return -ENOMEM; 335 } 336 337 /* E-MAC init function */ 338 static void ravb_emac_init(struct net_device *ndev) 339 { 340 struct ravb_private *priv = netdev_priv(ndev); 341 u32 ecmr; 342 343 /* Receive frame limit set register */ 344 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR); 345 346 /* PAUSE prohibition */ 347 ecmr = ravb_read(ndev, ECMR); 348 ecmr &= ECMR_DM; 349 ecmr |= ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE; 350 ravb_write(ndev, ecmr, ECMR); 351 352 ravb_set_rate(ndev); 353 354 /* Set MAC address */ 355 ravb_write(ndev, 356 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 357 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 358 ravb_write(ndev, 359 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 360 361 ravb_write(ndev, 1, MPR); 362 363 /* E-MAC status register clear */ 364 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR); 365 366 /* E-MAC interrupt enable register */ 367 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR); 368 } 369 370 /* Device init function for Ethernet AVB */ 371 static int ravb_dmac_init(struct net_device *ndev) 372 { 373 int error; 374 375 /* Set CONFIG mode */ 376 error = ravb_config(ndev); 377 if (error) 378 return error; 379 380 error = ravb_ring_init(ndev, RAVB_BE); 381 if (error) 382 return error; 383 error = ravb_ring_init(ndev, RAVB_NC); 384 if (error) { 385 ravb_ring_free(ndev, RAVB_BE); 386 return error; 387 } 388 389 /* Descriptor format */ 390 ravb_ring_format(ndev, RAVB_BE); 391 ravb_ring_format(ndev, RAVB_NC); 392 393 #if defined(__LITTLE_ENDIAN) 394 ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC); 395 #else 396 ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC); 397 #endif 398 399 /* Set AVB RX */ 400 ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR); 401 402 /* Set FIFO size */ 403 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC); 404 405 /* Timestamp enable */ 406 ravb_write(ndev, TCCR_TFEN, TCCR); 407 408 /* Interrupt enable: */ 409 /* Frame receive */ 410 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0); 411 /* Receive FIFO full error, descriptor empty */ 412 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2); 413 /* Frame transmitted, timestamp FIFO updated */ 414 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC); 415 416 /* Setting the control will start the AVB-DMAC process. */ 417 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION, 418 CCC); 419 420 return 0; 421 } 422 423 /* Free TX skb function for AVB-IP */ 424 static int ravb_tx_free(struct net_device *ndev, int q) 425 { 426 struct ravb_private *priv = netdev_priv(ndev); 427 struct net_device_stats *stats = &priv->stats[q]; 428 struct ravb_tx_desc *desc; 429 int free_num = 0; 430 int entry; 431 u32 size; 432 433 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) { 434 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] * 435 NUM_TX_DESC); 436 desc = &priv->tx_ring[q][entry]; 437 if (desc->die_dt != DT_FEMPTY) 438 break; 439 /* Descriptor type must be checked before all other reads */ 440 dma_rmb(); 441 size = le16_to_cpu(desc->ds_tagl) & TX_DS; 442 /* Free the original skb. */ 443 if (priv->tx_skb[q][entry / NUM_TX_DESC]) { 444 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), 445 size, DMA_TO_DEVICE); 446 /* Last packet descriptor? */ 447 if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) { 448 entry /= NUM_TX_DESC; 449 dev_kfree_skb_any(priv->tx_skb[q][entry]); 450 priv->tx_skb[q][entry] = NULL; 451 stats->tx_packets++; 452 } 453 free_num++; 454 } 455 stats->tx_bytes += size; 456 desc->die_dt = DT_EEMPTY; 457 } 458 return free_num; 459 } 460 461 static void ravb_get_tx_tstamp(struct net_device *ndev) 462 { 463 struct ravb_private *priv = netdev_priv(ndev); 464 struct ravb_tstamp_skb *ts_skb, *ts_skb2; 465 struct skb_shared_hwtstamps shhwtstamps; 466 struct sk_buff *skb; 467 struct timespec64 ts; 468 u16 tag, tfa_tag; 469 int count; 470 u32 tfa2; 471 472 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8; 473 while (count--) { 474 tfa2 = ravb_read(ndev, TFA2); 475 tfa_tag = (tfa2 & TFA2_TST) >> 16; 476 ts.tv_nsec = (u64)ravb_read(ndev, TFA0); 477 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) | 478 ravb_read(ndev, TFA1); 479 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 480 shhwtstamps.hwtstamp = timespec64_to_ktime(ts); 481 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, 482 list) { 483 skb = ts_skb->skb; 484 tag = ts_skb->tag; 485 list_del(&ts_skb->list); 486 kfree(ts_skb); 487 if (tag == tfa_tag) { 488 skb_tstamp_tx(skb, &shhwtstamps); 489 break; 490 } 491 } 492 ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR); 493 } 494 } 495 496 /* Packet receive function for Ethernet AVB */ 497 static bool ravb_rx(struct net_device *ndev, int *quota, int q) 498 { 499 struct ravb_private *priv = netdev_priv(ndev); 500 int entry = priv->cur_rx[q] % priv->num_rx_ring[q]; 501 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) - 502 priv->cur_rx[q]; 503 struct net_device_stats *stats = &priv->stats[q]; 504 struct ravb_ex_rx_desc *desc; 505 struct sk_buff *skb; 506 dma_addr_t dma_addr; 507 struct timespec64 ts; 508 u8 desc_status; 509 u16 pkt_len; 510 int limit; 511 512 boguscnt = min(boguscnt, *quota); 513 limit = boguscnt; 514 desc = &priv->rx_ring[q][entry]; 515 while (desc->die_dt != DT_FEMPTY) { 516 /* Descriptor type must be checked before all other reads */ 517 dma_rmb(); 518 desc_status = desc->msc; 519 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS; 520 521 if (--boguscnt < 0) 522 break; 523 524 /* We use 0-byte descriptors to mark the DMA mapping errors */ 525 if (!pkt_len) 526 continue; 527 528 if (desc_status & MSC_MC) 529 stats->multicast++; 530 531 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | 532 MSC_CEEF)) { 533 stats->rx_errors++; 534 if (desc_status & MSC_CRC) 535 stats->rx_crc_errors++; 536 if (desc_status & MSC_RFE) 537 stats->rx_frame_errors++; 538 if (desc_status & (MSC_RTLF | MSC_RTSF)) 539 stats->rx_length_errors++; 540 if (desc_status & MSC_CEEF) 541 stats->rx_missed_errors++; 542 } else { 543 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE; 544 545 skb = priv->rx_skb[q][entry]; 546 priv->rx_skb[q][entry] = NULL; 547 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), 548 ALIGN(PKT_BUF_SZ, 16), 549 DMA_FROM_DEVICE); 550 get_ts &= (q == RAVB_NC) ? 551 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT : 552 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT; 553 if (get_ts) { 554 struct skb_shared_hwtstamps *shhwtstamps; 555 556 shhwtstamps = skb_hwtstamps(skb); 557 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 558 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) << 559 32) | le32_to_cpu(desc->ts_sl); 560 ts.tv_nsec = le32_to_cpu(desc->ts_n); 561 shhwtstamps->hwtstamp = timespec64_to_ktime(ts); 562 } 563 skb_put(skb, pkt_len); 564 skb->protocol = eth_type_trans(skb, ndev); 565 napi_gro_receive(&priv->napi[q], skb); 566 stats->rx_packets++; 567 stats->rx_bytes += pkt_len; 568 } 569 570 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q]; 571 desc = &priv->rx_ring[q][entry]; 572 } 573 574 /* Refill the RX ring buffers. */ 575 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) { 576 entry = priv->dirty_rx[q] % priv->num_rx_ring[q]; 577 desc = &priv->rx_ring[q][entry]; 578 /* The size of the buffer should be on 16-byte boundary. */ 579 desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16)); 580 581 if (!priv->rx_skb[q][entry]) { 582 skb = netdev_alloc_skb(ndev, 583 PKT_BUF_SZ + RAVB_ALIGN - 1); 584 if (!skb) 585 break; /* Better luck next round. */ 586 ravb_set_buffer_align(skb); 587 dma_addr = dma_map_single(ndev->dev.parent, skb->data, 588 le16_to_cpu(desc->ds_cc), 589 DMA_FROM_DEVICE); 590 skb_checksum_none_assert(skb); 591 /* We just set the data size to 0 for a failed mapping 592 * which should prevent DMA from happening... 593 */ 594 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 595 desc->ds_cc = cpu_to_le16(0); 596 desc->dptr = cpu_to_le32(dma_addr); 597 priv->rx_skb[q][entry] = skb; 598 } 599 /* Descriptor type must be set after all the above writes */ 600 dma_wmb(); 601 desc->die_dt = DT_FEMPTY; 602 } 603 604 *quota -= limit - (++boguscnt); 605 606 return boguscnt <= 0; 607 } 608 609 static void ravb_rcv_snd_disable(struct net_device *ndev) 610 { 611 /* Disable TX and RX */ 612 ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR); 613 } 614 615 static void ravb_rcv_snd_enable(struct net_device *ndev) 616 { 617 /* Enable TX and RX */ 618 ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR); 619 } 620 621 /* function for waiting dma process finished */ 622 static int ravb_stop_dma(struct net_device *ndev) 623 { 624 int error; 625 626 /* Wait for stopping the hardware TX process */ 627 error = ravb_wait(ndev, TCCR, 628 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0); 629 if (error) 630 return error; 631 632 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3, 633 0); 634 if (error) 635 return error; 636 637 /* Stop the E-MAC's RX/TX processes. */ 638 ravb_rcv_snd_disable(ndev); 639 640 /* Wait for stopping the RX DMA process */ 641 error = ravb_wait(ndev, CSR, CSR_RPO, 0); 642 if (error) 643 return error; 644 645 /* Stop AVB-DMAC process */ 646 return ravb_config(ndev); 647 } 648 649 /* E-MAC interrupt handler */ 650 static void ravb_emac_interrupt(struct net_device *ndev) 651 { 652 struct ravb_private *priv = netdev_priv(ndev); 653 u32 ecsr, psr; 654 655 ecsr = ravb_read(ndev, ECSR); 656 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */ 657 if (ecsr & ECSR_ICD) 658 ndev->stats.tx_carrier_errors++; 659 if (ecsr & ECSR_LCHNG) { 660 /* Link changed */ 661 if (priv->no_avb_link) 662 return; 663 psr = ravb_read(ndev, PSR); 664 if (priv->avb_link_active_low) 665 psr ^= PSR_LMON; 666 if (!(psr & PSR_LMON)) { 667 /* DIsable RX and TX */ 668 ravb_rcv_snd_disable(ndev); 669 } else { 670 /* Enable RX and TX */ 671 ravb_rcv_snd_enable(ndev); 672 } 673 } 674 } 675 676 /* Error interrupt handler */ 677 static void ravb_error_interrupt(struct net_device *ndev) 678 { 679 struct ravb_private *priv = netdev_priv(ndev); 680 u32 eis, ris2; 681 682 eis = ravb_read(ndev, EIS); 683 ravb_write(ndev, ~EIS_QFS, EIS); 684 if (eis & EIS_QFS) { 685 ris2 = ravb_read(ndev, RIS2); 686 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2); 687 688 /* Receive Descriptor Empty int */ 689 if (ris2 & RIS2_QFF0) 690 priv->stats[RAVB_BE].rx_over_errors++; 691 692 /* Receive Descriptor Empty int */ 693 if (ris2 & RIS2_QFF1) 694 priv->stats[RAVB_NC].rx_over_errors++; 695 696 /* Receive FIFO Overflow int */ 697 if (ris2 & RIS2_RFFF) 698 priv->rx_fifo_errors++; 699 } 700 } 701 702 static irqreturn_t ravb_interrupt(int irq, void *dev_id) 703 { 704 struct net_device *ndev = dev_id; 705 struct ravb_private *priv = netdev_priv(ndev); 706 irqreturn_t result = IRQ_NONE; 707 u32 iss; 708 709 spin_lock(&priv->lock); 710 /* Get interrupt status */ 711 iss = ravb_read(ndev, ISS); 712 713 /* Received and transmitted interrupts */ 714 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) { 715 u32 ris0 = ravb_read(ndev, RIS0); 716 u32 ric0 = ravb_read(ndev, RIC0); 717 u32 tis = ravb_read(ndev, TIS); 718 u32 tic = ravb_read(ndev, TIC); 719 int q; 720 721 /* Timestamp updated */ 722 if (tis & TIS_TFUF) { 723 ravb_write(ndev, ~TIS_TFUF, TIS); 724 ravb_get_tx_tstamp(ndev); 725 result = IRQ_HANDLED; 726 } 727 728 /* Network control and best effort queue RX/TX */ 729 for (q = RAVB_NC; q >= RAVB_BE; q--) { 730 if (((ris0 & ric0) & BIT(q)) || 731 ((tis & tic) & BIT(q))) { 732 if (napi_schedule_prep(&priv->napi[q])) { 733 /* Mask RX and TX interrupts */ 734 ric0 &= ~BIT(q); 735 tic &= ~BIT(q); 736 ravb_write(ndev, ric0, RIC0); 737 ravb_write(ndev, tic, TIC); 738 __napi_schedule(&priv->napi[q]); 739 } else { 740 netdev_warn(ndev, 741 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n", 742 ris0, ric0); 743 netdev_warn(ndev, 744 " tx status 0x%08x, tx mask 0x%08x.\n", 745 tis, tic); 746 } 747 result = IRQ_HANDLED; 748 } 749 } 750 } 751 752 /* E-MAC status summary */ 753 if (iss & ISS_MS) { 754 ravb_emac_interrupt(ndev); 755 result = IRQ_HANDLED; 756 } 757 758 /* Error status summary */ 759 if (iss & ISS_ES) { 760 ravb_error_interrupt(ndev); 761 result = IRQ_HANDLED; 762 } 763 764 if (iss & ISS_CGIS) 765 result = ravb_ptp_interrupt(ndev); 766 767 mmiowb(); 768 spin_unlock(&priv->lock); 769 return result; 770 } 771 772 static int ravb_poll(struct napi_struct *napi, int budget) 773 { 774 struct net_device *ndev = napi->dev; 775 struct ravb_private *priv = netdev_priv(ndev); 776 unsigned long flags; 777 int q = napi - priv->napi; 778 int mask = BIT(q); 779 int quota = budget; 780 u32 ris0, tis; 781 782 for (;;) { 783 tis = ravb_read(ndev, TIS); 784 ris0 = ravb_read(ndev, RIS0); 785 if (!((ris0 & mask) || (tis & mask))) 786 break; 787 788 /* Processing RX Descriptor Ring */ 789 if (ris0 & mask) { 790 /* Clear RX interrupt */ 791 ravb_write(ndev, ~mask, RIS0); 792 if (ravb_rx(ndev, "a, q)) 793 goto out; 794 } 795 /* Processing TX Descriptor Ring */ 796 if (tis & mask) { 797 spin_lock_irqsave(&priv->lock, flags); 798 /* Clear TX interrupt */ 799 ravb_write(ndev, ~mask, TIS); 800 ravb_tx_free(ndev, q); 801 netif_wake_subqueue(ndev, q); 802 mmiowb(); 803 spin_unlock_irqrestore(&priv->lock, flags); 804 } 805 } 806 807 napi_complete(napi); 808 809 /* Re-enable RX/TX interrupts */ 810 spin_lock_irqsave(&priv->lock, flags); 811 ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0); 812 ravb_write(ndev, ravb_read(ndev, TIC) | mask, TIC); 813 mmiowb(); 814 spin_unlock_irqrestore(&priv->lock, flags); 815 816 /* Receive error message handling */ 817 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors; 818 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors; 819 if (priv->rx_over_errors != ndev->stats.rx_over_errors) { 820 ndev->stats.rx_over_errors = priv->rx_over_errors; 821 netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n"); 822 } 823 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) { 824 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors; 825 netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n"); 826 } 827 out: 828 return budget - quota; 829 } 830 831 /* PHY state control function */ 832 static void ravb_adjust_link(struct net_device *ndev) 833 { 834 struct ravb_private *priv = netdev_priv(ndev); 835 struct phy_device *phydev = priv->phydev; 836 bool new_state = false; 837 838 if (phydev->link) { 839 if (phydev->duplex != priv->duplex) { 840 new_state = true; 841 priv->duplex = phydev->duplex; 842 ravb_set_duplex(ndev); 843 } 844 845 if (phydev->speed != priv->speed) { 846 new_state = true; 847 priv->speed = phydev->speed; 848 ravb_set_rate(ndev); 849 } 850 if (!priv->link) { 851 ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF, 852 ECMR); 853 new_state = true; 854 priv->link = phydev->link; 855 if (priv->no_avb_link) 856 ravb_rcv_snd_enable(ndev); 857 } 858 } else if (priv->link) { 859 new_state = true; 860 priv->link = 0; 861 priv->speed = 0; 862 priv->duplex = -1; 863 if (priv->no_avb_link) 864 ravb_rcv_snd_disable(ndev); 865 } 866 867 if (new_state && netif_msg_link(priv)) 868 phy_print_status(phydev); 869 } 870 871 /* PHY init function */ 872 static int ravb_phy_init(struct net_device *ndev) 873 { 874 struct device_node *np = ndev->dev.parent->of_node; 875 struct ravb_private *priv = netdev_priv(ndev); 876 struct phy_device *phydev; 877 struct device_node *pn; 878 879 priv->link = 0; 880 priv->speed = 0; 881 priv->duplex = -1; 882 883 /* Try connecting to PHY */ 884 pn = of_parse_phandle(np, "phy-handle", 0); 885 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, 886 priv->phy_interface); 887 if (!phydev) { 888 netdev_err(ndev, "failed to connect PHY\n"); 889 return -ENOENT; 890 } 891 892 /* This driver only support 10/100Mbit speeds on Gen3 893 * at this time. 894 */ 895 if (priv->chip_id == RCAR_GEN3) { 896 int err; 897 898 err = phy_set_max_speed(phydev, SPEED_100); 899 if (err) { 900 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n"); 901 phy_disconnect(phydev); 902 return err; 903 } 904 905 netdev_info(ndev, "limited PHY to 100Mbit/s\n"); 906 } 907 908 /* 10BASE is not supported */ 909 phydev->supported &= ~PHY_10BT_FEATURES; 910 911 netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n", 912 phydev->addr, phydev->irq, phydev->drv->name); 913 914 priv->phydev = phydev; 915 916 return 0; 917 } 918 919 /* PHY control start function */ 920 static int ravb_phy_start(struct net_device *ndev) 921 { 922 struct ravb_private *priv = netdev_priv(ndev); 923 int error; 924 925 error = ravb_phy_init(ndev); 926 if (error) 927 return error; 928 929 phy_start(priv->phydev); 930 931 return 0; 932 } 933 934 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 935 { 936 struct ravb_private *priv = netdev_priv(ndev); 937 int error = -ENODEV; 938 unsigned long flags; 939 940 if (priv->phydev) { 941 spin_lock_irqsave(&priv->lock, flags); 942 error = phy_ethtool_gset(priv->phydev, ecmd); 943 spin_unlock_irqrestore(&priv->lock, flags); 944 } 945 946 return error; 947 } 948 949 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd) 950 { 951 struct ravb_private *priv = netdev_priv(ndev); 952 unsigned long flags; 953 int error; 954 955 if (!priv->phydev) 956 return -ENODEV; 957 958 spin_lock_irqsave(&priv->lock, flags); 959 960 /* Disable TX and RX */ 961 ravb_rcv_snd_disable(ndev); 962 963 error = phy_ethtool_sset(priv->phydev, ecmd); 964 if (error) 965 goto error_exit; 966 967 if (ecmd->duplex == DUPLEX_FULL) 968 priv->duplex = 1; 969 else 970 priv->duplex = 0; 971 972 ravb_set_duplex(ndev); 973 974 error_exit: 975 mdelay(1); 976 977 /* Enable TX and RX */ 978 ravb_rcv_snd_enable(ndev); 979 980 mmiowb(); 981 spin_unlock_irqrestore(&priv->lock, flags); 982 983 return error; 984 } 985 986 static int ravb_nway_reset(struct net_device *ndev) 987 { 988 struct ravb_private *priv = netdev_priv(ndev); 989 int error = -ENODEV; 990 unsigned long flags; 991 992 if (priv->phydev) { 993 spin_lock_irqsave(&priv->lock, flags); 994 error = phy_start_aneg(priv->phydev); 995 spin_unlock_irqrestore(&priv->lock, flags); 996 } 997 998 return error; 999 } 1000 1001 static u32 ravb_get_msglevel(struct net_device *ndev) 1002 { 1003 struct ravb_private *priv = netdev_priv(ndev); 1004 1005 return priv->msg_enable; 1006 } 1007 1008 static void ravb_set_msglevel(struct net_device *ndev, u32 value) 1009 { 1010 struct ravb_private *priv = netdev_priv(ndev); 1011 1012 priv->msg_enable = value; 1013 } 1014 1015 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = { 1016 "rx_queue_0_current", 1017 "tx_queue_0_current", 1018 "rx_queue_0_dirty", 1019 "tx_queue_0_dirty", 1020 "rx_queue_0_packets", 1021 "tx_queue_0_packets", 1022 "rx_queue_0_bytes", 1023 "tx_queue_0_bytes", 1024 "rx_queue_0_mcast_packets", 1025 "rx_queue_0_errors", 1026 "rx_queue_0_crc_errors", 1027 "rx_queue_0_frame_errors", 1028 "rx_queue_0_length_errors", 1029 "rx_queue_0_missed_errors", 1030 "rx_queue_0_over_errors", 1031 1032 "rx_queue_1_current", 1033 "tx_queue_1_current", 1034 "rx_queue_1_dirty", 1035 "tx_queue_1_dirty", 1036 "rx_queue_1_packets", 1037 "tx_queue_1_packets", 1038 "rx_queue_1_bytes", 1039 "tx_queue_1_bytes", 1040 "rx_queue_1_mcast_packets", 1041 "rx_queue_1_errors", 1042 "rx_queue_1_crc_errors", 1043 "rx_queue_1_frame_errors", 1044 "rx_queue_1_length_errors", 1045 "rx_queue_1_missed_errors", 1046 "rx_queue_1_over_errors", 1047 }; 1048 1049 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats) 1050 1051 static int ravb_get_sset_count(struct net_device *netdev, int sset) 1052 { 1053 switch (sset) { 1054 case ETH_SS_STATS: 1055 return RAVB_STATS_LEN; 1056 default: 1057 return -EOPNOTSUPP; 1058 } 1059 } 1060 1061 static void ravb_get_ethtool_stats(struct net_device *ndev, 1062 struct ethtool_stats *stats, u64 *data) 1063 { 1064 struct ravb_private *priv = netdev_priv(ndev); 1065 int i = 0; 1066 int q; 1067 1068 /* Device-specific stats */ 1069 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) { 1070 struct net_device_stats *stats = &priv->stats[q]; 1071 1072 data[i++] = priv->cur_rx[q]; 1073 data[i++] = priv->cur_tx[q]; 1074 data[i++] = priv->dirty_rx[q]; 1075 data[i++] = priv->dirty_tx[q]; 1076 data[i++] = stats->rx_packets; 1077 data[i++] = stats->tx_packets; 1078 data[i++] = stats->rx_bytes; 1079 data[i++] = stats->tx_bytes; 1080 data[i++] = stats->multicast; 1081 data[i++] = stats->rx_errors; 1082 data[i++] = stats->rx_crc_errors; 1083 data[i++] = stats->rx_frame_errors; 1084 data[i++] = stats->rx_length_errors; 1085 data[i++] = stats->rx_missed_errors; 1086 data[i++] = stats->rx_over_errors; 1087 } 1088 } 1089 1090 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 1091 { 1092 switch (stringset) { 1093 case ETH_SS_STATS: 1094 memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats)); 1095 break; 1096 } 1097 } 1098 1099 static void ravb_get_ringparam(struct net_device *ndev, 1100 struct ethtool_ringparam *ring) 1101 { 1102 struct ravb_private *priv = netdev_priv(ndev); 1103 1104 ring->rx_max_pending = BE_RX_RING_MAX; 1105 ring->tx_max_pending = BE_TX_RING_MAX; 1106 ring->rx_pending = priv->num_rx_ring[RAVB_BE]; 1107 ring->tx_pending = priv->num_tx_ring[RAVB_BE]; 1108 } 1109 1110 static int ravb_set_ringparam(struct net_device *ndev, 1111 struct ethtool_ringparam *ring) 1112 { 1113 struct ravb_private *priv = netdev_priv(ndev); 1114 int error; 1115 1116 if (ring->tx_pending > BE_TX_RING_MAX || 1117 ring->rx_pending > BE_RX_RING_MAX || 1118 ring->tx_pending < BE_TX_RING_MIN || 1119 ring->rx_pending < BE_RX_RING_MIN) 1120 return -EINVAL; 1121 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 1122 return -EINVAL; 1123 1124 if (netif_running(ndev)) { 1125 netif_device_detach(ndev); 1126 /* Stop PTP Clock driver */ 1127 ravb_ptp_stop(ndev); 1128 /* Wait for DMA stopping */ 1129 error = ravb_stop_dma(ndev); 1130 if (error) { 1131 netdev_err(ndev, 1132 "cannot set ringparam! Any AVB processes are still running?\n"); 1133 return error; 1134 } 1135 synchronize_irq(ndev->irq); 1136 1137 /* Free all the skb's in the RX queue and the DMA buffers. */ 1138 ravb_ring_free(ndev, RAVB_BE); 1139 ravb_ring_free(ndev, RAVB_NC); 1140 } 1141 1142 /* Set new parameters */ 1143 priv->num_rx_ring[RAVB_BE] = ring->rx_pending; 1144 priv->num_tx_ring[RAVB_BE] = ring->tx_pending; 1145 1146 if (netif_running(ndev)) { 1147 error = ravb_dmac_init(ndev); 1148 if (error) { 1149 netdev_err(ndev, 1150 "%s: ravb_dmac_init() failed, error %d\n", 1151 __func__, error); 1152 return error; 1153 } 1154 1155 ravb_emac_init(ndev); 1156 1157 /* Initialise PTP Clock driver */ 1158 ravb_ptp_init(ndev, priv->pdev); 1159 1160 netif_device_attach(ndev); 1161 } 1162 1163 return 0; 1164 } 1165 1166 static int ravb_get_ts_info(struct net_device *ndev, 1167 struct ethtool_ts_info *info) 1168 { 1169 struct ravb_private *priv = netdev_priv(ndev); 1170 1171 info->so_timestamping = 1172 SOF_TIMESTAMPING_TX_SOFTWARE | 1173 SOF_TIMESTAMPING_RX_SOFTWARE | 1174 SOF_TIMESTAMPING_SOFTWARE | 1175 SOF_TIMESTAMPING_TX_HARDWARE | 1176 SOF_TIMESTAMPING_RX_HARDWARE | 1177 SOF_TIMESTAMPING_RAW_HARDWARE; 1178 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); 1179 info->rx_filters = 1180 (1 << HWTSTAMP_FILTER_NONE) | 1181 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 1182 (1 << HWTSTAMP_FILTER_ALL); 1183 info->phc_index = ptp_clock_index(priv->ptp.clock); 1184 1185 return 0; 1186 } 1187 1188 static const struct ethtool_ops ravb_ethtool_ops = { 1189 .get_settings = ravb_get_settings, 1190 .set_settings = ravb_set_settings, 1191 .nway_reset = ravb_nway_reset, 1192 .get_msglevel = ravb_get_msglevel, 1193 .set_msglevel = ravb_set_msglevel, 1194 .get_link = ethtool_op_get_link, 1195 .get_strings = ravb_get_strings, 1196 .get_ethtool_stats = ravb_get_ethtool_stats, 1197 .get_sset_count = ravb_get_sset_count, 1198 .get_ringparam = ravb_get_ringparam, 1199 .set_ringparam = ravb_set_ringparam, 1200 .get_ts_info = ravb_get_ts_info, 1201 }; 1202 1203 /* Network device open function for Ethernet AVB */ 1204 static int ravb_open(struct net_device *ndev) 1205 { 1206 struct ravb_private *priv = netdev_priv(ndev); 1207 int error; 1208 1209 napi_enable(&priv->napi[RAVB_BE]); 1210 napi_enable(&priv->napi[RAVB_NC]); 1211 1212 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name, 1213 ndev); 1214 if (error) { 1215 netdev_err(ndev, "cannot request IRQ\n"); 1216 goto out_napi_off; 1217 } 1218 1219 if (priv->chip_id == RCAR_GEN3) { 1220 error = request_irq(priv->emac_irq, ravb_interrupt, 1221 IRQF_SHARED, ndev->name, ndev); 1222 if (error) { 1223 netdev_err(ndev, "cannot request IRQ\n"); 1224 goto out_free_irq; 1225 } 1226 } 1227 1228 /* Device init */ 1229 error = ravb_dmac_init(ndev); 1230 if (error) 1231 goto out_free_irq2; 1232 ravb_emac_init(ndev); 1233 1234 /* Initialise PTP Clock driver */ 1235 ravb_ptp_init(ndev, priv->pdev); 1236 1237 netif_tx_start_all_queues(ndev); 1238 1239 /* PHY control start */ 1240 error = ravb_phy_start(ndev); 1241 if (error) 1242 goto out_ptp_stop; 1243 1244 return 0; 1245 1246 out_ptp_stop: 1247 /* Stop PTP Clock driver */ 1248 ravb_ptp_stop(ndev); 1249 out_free_irq2: 1250 if (priv->chip_id == RCAR_GEN3) 1251 free_irq(priv->emac_irq, ndev); 1252 out_free_irq: 1253 free_irq(ndev->irq, ndev); 1254 out_napi_off: 1255 napi_disable(&priv->napi[RAVB_NC]); 1256 napi_disable(&priv->napi[RAVB_BE]); 1257 return error; 1258 } 1259 1260 /* Timeout function for Ethernet AVB */ 1261 static void ravb_tx_timeout(struct net_device *ndev) 1262 { 1263 struct ravb_private *priv = netdev_priv(ndev); 1264 1265 netif_err(priv, tx_err, ndev, 1266 "transmit timed out, status %08x, resetting...\n", 1267 ravb_read(ndev, ISS)); 1268 1269 /* tx_errors count up */ 1270 ndev->stats.tx_errors++; 1271 1272 schedule_work(&priv->work); 1273 } 1274 1275 static void ravb_tx_timeout_work(struct work_struct *work) 1276 { 1277 struct ravb_private *priv = container_of(work, struct ravb_private, 1278 work); 1279 struct net_device *ndev = priv->ndev; 1280 1281 netif_tx_stop_all_queues(ndev); 1282 1283 /* Stop PTP Clock driver */ 1284 ravb_ptp_stop(ndev); 1285 1286 /* Wait for DMA stopping */ 1287 ravb_stop_dma(ndev); 1288 1289 ravb_ring_free(ndev, RAVB_BE); 1290 ravb_ring_free(ndev, RAVB_NC); 1291 1292 /* Device init */ 1293 ravb_dmac_init(ndev); 1294 ravb_emac_init(ndev); 1295 1296 /* Initialise PTP Clock driver */ 1297 ravb_ptp_init(ndev, priv->pdev); 1298 1299 netif_tx_start_all_queues(ndev); 1300 } 1301 1302 /* Packet transmit function for Ethernet AVB */ 1303 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1304 { 1305 struct ravb_private *priv = netdev_priv(ndev); 1306 u16 q = skb_get_queue_mapping(skb); 1307 struct ravb_tstamp_skb *ts_skb; 1308 struct ravb_tx_desc *desc; 1309 unsigned long flags; 1310 u32 dma_addr; 1311 void *buffer; 1312 u32 entry; 1313 u32 len; 1314 1315 spin_lock_irqsave(&priv->lock, flags); 1316 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) * 1317 NUM_TX_DESC) { 1318 netif_err(priv, tx_queued, ndev, 1319 "still transmitting with the full ring!\n"); 1320 netif_stop_subqueue(ndev, q); 1321 spin_unlock_irqrestore(&priv->lock, flags); 1322 return NETDEV_TX_BUSY; 1323 } 1324 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC); 1325 priv->tx_skb[q][entry / NUM_TX_DESC] = skb; 1326 1327 if (skb_put_padto(skb, ETH_ZLEN)) 1328 goto drop; 1329 1330 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) + 1331 entry / NUM_TX_DESC * DPTR_ALIGN; 1332 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data; 1333 memcpy(buffer, skb->data, len); 1334 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE); 1335 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 1336 goto drop; 1337 1338 desc = &priv->tx_ring[q][entry]; 1339 desc->ds_tagl = cpu_to_le16(len); 1340 desc->dptr = cpu_to_le32(dma_addr); 1341 1342 buffer = skb->data + len; 1343 len = skb->len - len; 1344 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE); 1345 if (dma_mapping_error(ndev->dev.parent, dma_addr)) 1346 goto unmap; 1347 1348 desc++; 1349 desc->ds_tagl = cpu_to_le16(len); 1350 desc->dptr = cpu_to_le32(dma_addr); 1351 1352 /* TX timestamp required */ 1353 if (q == RAVB_NC) { 1354 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC); 1355 if (!ts_skb) { 1356 desc--; 1357 dma_unmap_single(ndev->dev.parent, dma_addr, len, 1358 DMA_TO_DEVICE); 1359 goto unmap; 1360 } 1361 ts_skb->skb = skb; 1362 ts_skb->tag = priv->ts_skb_tag++; 1363 priv->ts_skb_tag &= 0x3ff; 1364 list_add_tail(&ts_skb->list, &priv->ts_skb_list); 1365 1366 /* TAG and timestamp required flag */ 1367 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1368 skb_tx_timestamp(skb); 1369 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR; 1370 desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12); 1371 } 1372 1373 /* Descriptor type must be set after all the above writes */ 1374 dma_wmb(); 1375 desc->die_dt = DT_FEND; 1376 desc--; 1377 desc->die_dt = DT_FSTART; 1378 1379 ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR); 1380 1381 priv->cur_tx[q] += NUM_TX_DESC; 1382 if (priv->cur_tx[q] - priv->dirty_tx[q] > 1383 (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q)) 1384 netif_stop_subqueue(ndev, q); 1385 1386 exit: 1387 mmiowb(); 1388 spin_unlock_irqrestore(&priv->lock, flags); 1389 return NETDEV_TX_OK; 1390 1391 unmap: 1392 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr), 1393 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE); 1394 drop: 1395 dev_kfree_skb_any(skb); 1396 priv->tx_skb[q][entry / NUM_TX_DESC] = NULL; 1397 goto exit; 1398 } 1399 1400 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb, 1401 void *accel_priv, select_queue_fallback_t fallback) 1402 { 1403 /* If skb needs TX timestamp, it is handled in network control queue */ 1404 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC : 1405 RAVB_BE; 1406 1407 } 1408 1409 static struct net_device_stats *ravb_get_stats(struct net_device *ndev) 1410 { 1411 struct ravb_private *priv = netdev_priv(ndev); 1412 struct net_device_stats *nstats, *stats0, *stats1; 1413 1414 nstats = &ndev->stats; 1415 stats0 = &priv->stats[RAVB_BE]; 1416 stats1 = &priv->stats[RAVB_NC]; 1417 1418 nstats->tx_dropped += ravb_read(ndev, TROCR); 1419 ravb_write(ndev, 0, TROCR); /* (write clear) */ 1420 nstats->collisions += ravb_read(ndev, CDCR); 1421 ravb_write(ndev, 0, CDCR); /* (write clear) */ 1422 nstats->tx_carrier_errors += ravb_read(ndev, LCCR); 1423 ravb_write(ndev, 0, LCCR); /* (write clear) */ 1424 1425 nstats->tx_carrier_errors += ravb_read(ndev, CERCR); 1426 ravb_write(ndev, 0, CERCR); /* (write clear) */ 1427 nstats->tx_carrier_errors += ravb_read(ndev, CEECR); 1428 ravb_write(ndev, 0, CEECR); /* (write clear) */ 1429 1430 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets; 1431 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets; 1432 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes; 1433 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes; 1434 nstats->multicast = stats0->multicast + stats1->multicast; 1435 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors; 1436 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors; 1437 nstats->rx_frame_errors = 1438 stats0->rx_frame_errors + stats1->rx_frame_errors; 1439 nstats->rx_length_errors = 1440 stats0->rx_length_errors + stats1->rx_length_errors; 1441 nstats->rx_missed_errors = 1442 stats0->rx_missed_errors + stats1->rx_missed_errors; 1443 nstats->rx_over_errors = 1444 stats0->rx_over_errors + stats1->rx_over_errors; 1445 1446 return nstats; 1447 } 1448 1449 /* Update promiscuous bit */ 1450 static void ravb_set_rx_mode(struct net_device *ndev) 1451 { 1452 struct ravb_private *priv = netdev_priv(ndev); 1453 unsigned long flags; 1454 u32 ecmr; 1455 1456 spin_lock_irqsave(&priv->lock, flags); 1457 ecmr = ravb_read(ndev, ECMR); 1458 if (ndev->flags & IFF_PROMISC) 1459 ecmr |= ECMR_PRM; 1460 else 1461 ecmr &= ~ECMR_PRM; 1462 ravb_write(ndev, ecmr, ECMR); 1463 mmiowb(); 1464 spin_unlock_irqrestore(&priv->lock, flags); 1465 } 1466 1467 /* Device close function for Ethernet AVB */ 1468 static int ravb_close(struct net_device *ndev) 1469 { 1470 struct ravb_private *priv = netdev_priv(ndev); 1471 struct ravb_tstamp_skb *ts_skb, *ts_skb2; 1472 1473 netif_tx_stop_all_queues(ndev); 1474 1475 /* Disable interrupts by clearing the interrupt masks. */ 1476 ravb_write(ndev, 0, RIC0); 1477 ravb_write(ndev, 0, RIC1); 1478 ravb_write(ndev, 0, RIC2); 1479 ravb_write(ndev, 0, TIC); 1480 1481 /* Stop PTP Clock driver */ 1482 ravb_ptp_stop(ndev); 1483 1484 /* Set the config mode to stop the AVB-DMAC's processes */ 1485 if (ravb_stop_dma(ndev) < 0) 1486 netdev_err(ndev, 1487 "device will be stopped after h/w processes are done.\n"); 1488 1489 /* Clear the timestamp list */ 1490 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) { 1491 list_del(&ts_skb->list); 1492 kfree(ts_skb); 1493 } 1494 1495 /* PHY disconnect */ 1496 if (priv->phydev) { 1497 phy_stop(priv->phydev); 1498 phy_disconnect(priv->phydev); 1499 priv->phydev = NULL; 1500 } 1501 1502 free_irq(ndev->irq, ndev); 1503 1504 napi_disable(&priv->napi[RAVB_NC]); 1505 napi_disable(&priv->napi[RAVB_BE]); 1506 1507 /* Free all the skb's in the RX queue and the DMA buffers. */ 1508 ravb_ring_free(ndev, RAVB_BE); 1509 ravb_ring_free(ndev, RAVB_NC); 1510 1511 return 0; 1512 } 1513 1514 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req) 1515 { 1516 struct ravb_private *priv = netdev_priv(ndev); 1517 struct hwtstamp_config config; 1518 1519 config.flags = 0; 1520 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON : 1521 HWTSTAMP_TX_OFF; 1522 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT) 1523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 1524 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL) 1525 config.rx_filter = HWTSTAMP_FILTER_ALL; 1526 else 1527 config.rx_filter = HWTSTAMP_FILTER_NONE; 1528 1529 return copy_to_user(req->ifr_data, &config, sizeof(config)) ? 1530 -EFAULT : 0; 1531 } 1532 1533 /* Control hardware time stamping */ 1534 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req) 1535 { 1536 struct ravb_private *priv = netdev_priv(ndev); 1537 struct hwtstamp_config config; 1538 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED; 1539 u32 tstamp_tx_ctrl; 1540 1541 if (copy_from_user(&config, req->ifr_data, sizeof(config))) 1542 return -EFAULT; 1543 1544 /* Reserved for future extensions */ 1545 if (config.flags) 1546 return -EINVAL; 1547 1548 switch (config.tx_type) { 1549 case HWTSTAMP_TX_OFF: 1550 tstamp_tx_ctrl = 0; 1551 break; 1552 case HWTSTAMP_TX_ON: 1553 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED; 1554 break; 1555 default: 1556 return -ERANGE; 1557 } 1558 1559 switch (config.rx_filter) { 1560 case HWTSTAMP_FILTER_NONE: 1561 tstamp_rx_ctrl = 0; 1562 break; 1563 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1564 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT; 1565 break; 1566 default: 1567 config.rx_filter = HWTSTAMP_FILTER_ALL; 1568 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL; 1569 } 1570 1571 priv->tstamp_tx_ctrl = tstamp_tx_ctrl; 1572 priv->tstamp_rx_ctrl = tstamp_rx_ctrl; 1573 1574 return copy_to_user(req->ifr_data, &config, sizeof(config)) ? 1575 -EFAULT : 0; 1576 } 1577 1578 /* ioctl to device function */ 1579 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd) 1580 { 1581 struct ravb_private *priv = netdev_priv(ndev); 1582 struct phy_device *phydev = priv->phydev; 1583 1584 if (!netif_running(ndev)) 1585 return -EINVAL; 1586 1587 if (!phydev) 1588 return -ENODEV; 1589 1590 switch (cmd) { 1591 case SIOCGHWTSTAMP: 1592 return ravb_hwtstamp_get(ndev, req); 1593 case SIOCSHWTSTAMP: 1594 return ravb_hwtstamp_set(ndev, req); 1595 } 1596 1597 return phy_mii_ioctl(phydev, req, cmd); 1598 } 1599 1600 static const struct net_device_ops ravb_netdev_ops = { 1601 .ndo_open = ravb_open, 1602 .ndo_stop = ravb_close, 1603 .ndo_start_xmit = ravb_start_xmit, 1604 .ndo_select_queue = ravb_select_queue, 1605 .ndo_get_stats = ravb_get_stats, 1606 .ndo_set_rx_mode = ravb_set_rx_mode, 1607 .ndo_tx_timeout = ravb_tx_timeout, 1608 .ndo_do_ioctl = ravb_do_ioctl, 1609 .ndo_validate_addr = eth_validate_addr, 1610 .ndo_set_mac_address = eth_mac_addr, 1611 .ndo_change_mtu = eth_change_mtu, 1612 }; 1613 1614 /* MDIO bus init function */ 1615 static int ravb_mdio_init(struct ravb_private *priv) 1616 { 1617 struct platform_device *pdev = priv->pdev; 1618 struct device *dev = &pdev->dev; 1619 int error; 1620 1621 /* Bitbang init */ 1622 priv->mdiobb.ops = &bb_ops; 1623 1624 /* MII controller setting */ 1625 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb); 1626 if (!priv->mii_bus) 1627 return -ENOMEM; 1628 1629 /* Hook up MII support for ethtool */ 1630 priv->mii_bus->name = "ravb_mii"; 1631 priv->mii_bus->parent = dev; 1632 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 1633 pdev->name, pdev->id); 1634 1635 /* Register MDIO bus */ 1636 error = of_mdiobus_register(priv->mii_bus, dev->of_node); 1637 if (error) 1638 goto out_free_bus; 1639 1640 return 0; 1641 1642 out_free_bus: 1643 free_mdio_bitbang(priv->mii_bus); 1644 return error; 1645 } 1646 1647 /* MDIO bus release function */ 1648 static int ravb_mdio_release(struct ravb_private *priv) 1649 { 1650 /* Unregister mdio bus */ 1651 mdiobus_unregister(priv->mii_bus); 1652 1653 /* Free bitbang info */ 1654 free_mdio_bitbang(priv->mii_bus); 1655 1656 return 0; 1657 } 1658 1659 static const struct of_device_id ravb_match_table[] = { 1660 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 }, 1661 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 }, 1662 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 }, 1663 { } 1664 }; 1665 MODULE_DEVICE_TABLE(of, ravb_match_table); 1666 1667 static int ravb_probe(struct platform_device *pdev) 1668 { 1669 struct device_node *np = pdev->dev.of_node; 1670 const struct of_device_id *match; 1671 struct ravb_private *priv; 1672 enum ravb_chip_id chip_id; 1673 struct net_device *ndev; 1674 int error, irq, q; 1675 struct resource *res; 1676 1677 if (!np) { 1678 dev_err(&pdev->dev, 1679 "this driver is required to be instantiated from device tree\n"); 1680 return -EINVAL; 1681 } 1682 1683 /* Get base address */ 1684 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1685 if (!res) { 1686 dev_err(&pdev->dev, "invalid resource\n"); 1687 return -EINVAL; 1688 } 1689 1690 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private), 1691 NUM_TX_QUEUE, NUM_RX_QUEUE); 1692 if (!ndev) 1693 return -ENOMEM; 1694 1695 pm_runtime_enable(&pdev->dev); 1696 pm_runtime_get_sync(&pdev->dev); 1697 1698 /* The Ether-specific entries in the device structure. */ 1699 ndev->base_addr = res->start; 1700 ndev->dma = -1; 1701 1702 match = of_match_device(of_match_ptr(ravb_match_table), &pdev->dev); 1703 chip_id = (enum ravb_chip_id)match->data; 1704 1705 if (chip_id == RCAR_GEN3) 1706 irq = platform_get_irq_byname(pdev, "ch22"); 1707 else 1708 irq = platform_get_irq(pdev, 0); 1709 if (irq < 0) { 1710 error = irq; 1711 goto out_release; 1712 } 1713 ndev->irq = irq; 1714 1715 SET_NETDEV_DEV(ndev, &pdev->dev); 1716 1717 priv = netdev_priv(ndev); 1718 priv->ndev = ndev; 1719 priv->pdev = pdev; 1720 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE; 1721 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE; 1722 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE; 1723 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE; 1724 priv->addr = devm_ioremap_resource(&pdev->dev, res); 1725 if (IS_ERR(priv->addr)) { 1726 error = PTR_ERR(priv->addr); 1727 goto out_release; 1728 } 1729 1730 spin_lock_init(&priv->lock); 1731 INIT_WORK(&priv->work, ravb_tx_timeout_work); 1732 1733 priv->phy_interface = of_get_phy_mode(np); 1734 1735 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link"); 1736 priv->avb_link_active_low = 1737 of_property_read_bool(np, "renesas,ether-link-active-low"); 1738 1739 if (chip_id == RCAR_GEN3) { 1740 irq = platform_get_irq_byname(pdev, "ch24"); 1741 if (irq < 0) { 1742 error = irq; 1743 goto out_release; 1744 } 1745 priv->emac_irq = irq; 1746 } 1747 1748 priv->chip_id = chip_id; 1749 1750 /* Set function */ 1751 ndev->netdev_ops = &ravb_netdev_ops; 1752 ndev->ethtool_ops = &ravb_ethtool_ops; 1753 1754 /* Set AVB config mode */ 1755 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG, 1756 CCC); 1757 1758 /* Set CSEL value */ 1759 ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB, 1760 CCC); 1761 1762 /* Set GTI value */ 1763 ravb_write(ndev, ((1000 << 20) / 130) & GTI_TIV, GTI); 1764 1765 /* Request GTI loading */ 1766 ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR); 1767 1768 /* Allocate descriptor base address table */ 1769 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM; 1770 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size, 1771 &priv->desc_bat_dma, GFP_KERNEL); 1772 if (!priv->desc_bat) { 1773 dev_err(&pdev->dev, 1774 "Cannot allocate desc base address table (size %d bytes)\n", 1775 priv->desc_bat_size); 1776 error = -ENOMEM; 1777 goto out_release; 1778 } 1779 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++) 1780 priv->desc_bat[q].die_dt = DT_EOS; 1781 ravb_write(ndev, priv->desc_bat_dma, DBAT); 1782 1783 /* Initialise HW timestamp list */ 1784 INIT_LIST_HEAD(&priv->ts_skb_list); 1785 1786 /* Debug message level */ 1787 priv->msg_enable = RAVB_DEF_MSG_ENABLE; 1788 1789 /* Read and set MAC address */ 1790 ravb_read_mac_address(ndev, of_get_mac_address(np)); 1791 if (!is_valid_ether_addr(ndev->dev_addr)) { 1792 dev_warn(&pdev->dev, 1793 "no valid MAC address supplied, using a random one\n"); 1794 eth_hw_addr_random(ndev); 1795 } 1796 1797 /* MDIO bus init */ 1798 error = ravb_mdio_init(priv); 1799 if (error) { 1800 dev_err(&pdev->dev, "failed to initialize MDIO\n"); 1801 goto out_dma_free; 1802 } 1803 1804 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64); 1805 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64); 1806 1807 /* Network device register */ 1808 error = register_netdev(ndev); 1809 if (error) 1810 goto out_napi_del; 1811 1812 /* Print device information */ 1813 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n", 1814 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 1815 1816 platform_set_drvdata(pdev, ndev); 1817 1818 return 0; 1819 1820 out_napi_del: 1821 netif_napi_del(&priv->napi[RAVB_NC]); 1822 netif_napi_del(&priv->napi[RAVB_BE]); 1823 ravb_mdio_release(priv); 1824 out_dma_free: 1825 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat, 1826 priv->desc_bat_dma); 1827 out_release: 1828 if (ndev) 1829 free_netdev(ndev); 1830 1831 pm_runtime_put(&pdev->dev); 1832 pm_runtime_disable(&pdev->dev); 1833 return error; 1834 } 1835 1836 static int ravb_remove(struct platform_device *pdev) 1837 { 1838 struct net_device *ndev = platform_get_drvdata(pdev); 1839 struct ravb_private *priv = netdev_priv(ndev); 1840 1841 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat, 1842 priv->desc_bat_dma); 1843 /* Set reset mode */ 1844 ravb_write(ndev, CCC_OPC_RESET, CCC); 1845 pm_runtime_put_sync(&pdev->dev); 1846 unregister_netdev(ndev); 1847 netif_napi_del(&priv->napi[RAVB_NC]); 1848 netif_napi_del(&priv->napi[RAVB_BE]); 1849 ravb_mdio_release(priv); 1850 pm_runtime_disable(&pdev->dev); 1851 free_netdev(ndev); 1852 platform_set_drvdata(pdev, NULL); 1853 1854 return 0; 1855 } 1856 1857 #ifdef CONFIG_PM 1858 static int ravb_runtime_nop(struct device *dev) 1859 { 1860 /* Runtime PM callback shared between ->runtime_suspend() 1861 * and ->runtime_resume(). Simply returns success. 1862 * 1863 * This driver re-initializes all registers after 1864 * pm_runtime_get_sync() anyway so there is no need 1865 * to save and restore registers here. 1866 */ 1867 return 0; 1868 } 1869 1870 static const struct dev_pm_ops ravb_dev_pm_ops = { 1871 .runtime_suspend = ravb_runtime_nop, 1872 .runtime_resume = ravb_runtime_nop, 1873 }; 1874 1875 #define RAVB_PM_OPS (&ravb_dev_pm_ops) 1876 #else 1877 #define RAVB_PM_OPS NULL 1878 #endif 1879 1880 static struct platform_driver ravb_driver = { 1881 .probe = ravb_probe, 1882 .remove = ravb_remove, 1883 .driver = { 1884 .name = "ravb", 1885 .pm = RAVB_PM_OPS, 1886 .of_match_table = ravb_match_table, 1887 }, 1888 }; 1889 1890 module_platform_driver(ravb_driver); 1891 1892 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai"); 1893 MODULE_DESCRIPTION("Renesas Ethernet AVB driver"); 1894 MODULE_LICENSE("GPL v2"); 1895