1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
44 {
45 	int i;
46 
47 	for (i = 0; i < 10000; i++) {
48 		if ((ravb_read(ndev, reg) & mask) == value)
49 			return 0;
50 		udelay(10);
51 	}
52 	return -ETIMEDOUT;
53 }
54 
55 static int ravb_config(struct net_device *ndev)
56 {
57 	int error;
58 
59 	/* Set config mode */
60 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
61 		   CCC);
62 	/* Check if the operating mode is changed to the config mode */
63 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
64 	if (error)
65 		netdev_err(ndev, "failed to switch device to config mode\n");
66 
67 	return error;
68 }
69 
70 static void ravb_set_duplex(struct net_device *ndev)
71 {
72 	struct ravb_private *priv = netdev_priv(ndev);
73 	u32 ecmr = ravb_read(ndev, ECMR);
74 
75 	if (priv->duplex)	/* Full */
76 		ecmr |=  ECMR_DM;
77 	else			/* Half */
78 		ecmr &= ~ECMR_DM;
79 	ravb_write(ndev, ecmr, ECMR);
80 }
81 
82 static void ravb_set_rate(struct net_device *ndev)
83 {
84 	struct ravb_private *priv = netdev_priv(ndev);
85 
86 	switch (priv->speed) {
87 	case 100:		/* 100BASE */
88 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
89 		break;
90 	case 1000:		/* 1000BASE */
91 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
92 		break;
93 	default:
94 		break;
95 	}
96 }
97 
98 static void ravb_set_buffer_align(struct sk_buff *skb)
99 {
100 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
101 
102 	if (reserve)
103 		skb_reserve(skb, RAVB_ALIGN - reserve);
104 }
105 
106 /* Get MAC address from the MAC address registers
107  *
108  * Ethernet AVB device doesn't have ROM for MAC address.
109  * This function gets the MAC address that was used by a bootloader.
110  */
111 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
112 {
113 	if (mac) {
114 		ether_addr_copy(ndev->dev_addr, mac);
115 	} else {
116 		ndev->dev_addr[0] = (ravb_read(ndev, MAHR) >> 24);
117 		ndev->dev_addr[1] = (ravb_read(ndev, MAHR) >> 16) & 0xFF;
118 		ndev->dev_addr[2] = (ravb_read(ndev, MAHR) >> 8) & 0xFF;
119 		ndev->dev_addr[3] = (ravb_read(ndev, MAHR) >> 0) & 0xFF;
120 		ndev->dev_addr[4] = (ravb_read(ndev, MALR) >> 8) & 0xFF;
121 		ndev->dev_addr[5] = (ravb_read(ndev, MALR) >> 0) & 0xFF;
122 	}
123 }
124 
125 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
126 {
127 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
128 						 mdiobb);
129 	u32 pir = ravb_read(priv->ndev, PIR);
130 
131 	if (set)
132 		pir |=  mask;
133 	else
134 		pir &= ~mask;
135 	ravb_write(priv->ndev, pir, PIR);
136 }
137 
138 /* MDC pin control */
139 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
140 {
141 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
142 }
143 
144 /* Data I/O pin control */
145 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
146 {
147 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
148 }
149 
150 /* Set data bit */
151 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
152 {
153 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
154 }
155 
156 /* Get data bit */
157 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
158 {
159 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
160 						 mdiobb);
161 
162 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
163 }
164 
165 /* MDIO bus control struct */
166 static struct mdiobb_ops bb_ops = {
167 	.owner = THIS_MODULE,
168 	.set_mdc = ravb_set_mdc,
169 	.set_mdio_dir = ravb_set_mdio_dir,
170 	.set_mdio_data = ravb_set_mdio_data,
171 	.get_mdio_data = ravb_get_mdio_data,
172 };
173 
174 /* Free skb's and DMA buffers for Ethernet AVB */
175 static void ravb_ring_free(struct net_device *ndev, int q)
176 {
177 	struct ravb_private *priv = netdev_priv(ndev);
178 	int ring_size;
179 	int i;
180 
181 	/* Free RX skb ringbuffer */
182 	if (priv->rx_skb[q]) {
183 		for (i = 0; i < priv->num_rx_ring[q]; i++)
184 			dev_kfree_skb(priv->rx_skb[q][i]);
185 	}
186 	kfree(priv->rx_skb[q]);
187 	priv->rx_skb[q] = NULL;
188 
189 	/* Free TX skb ringbuffer */
190 	if (priv->tx_skb[q]) {
191 		for (i = 0; i < priv->num_tx_ring[q]; i++)
192 			dev_kfree_skb(priv->tx_skb[q][i]);
193 	}
194 	kfree(priv->tx_skb[q]);
195 	priv->tx_skb[q] = NULL;
196 
197 	/* Free aligned TX buffers */
198 	kfree(priv->tx_align[q]);
199 	priv->tx_align[q] = NULL;
200 
201 	if (priv->rx_ring[q]) {
202 		ring_size = sizeof(struct ravb_ex_rx_desc) *
203 			    (priv->num_rx_ring[q] + 1);
204 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
205 				  priv->rx_desc_dma[q]);
206 		priv->rx_ring[q] = NULL;
207 	}
208 
209 	if (priv->tx_ring[q]) {
210 		ring_size = sizeof(struct ravb_tx_desc) *
211 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
212 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
213 				  priv->tx_desc_dma[q]);
214 		priv->tx_ring[q] = NULL;
215 	}
216 }
217 
218 /* Format skb and descriptor buffer for Ethernet AVB */
219 static void ravb_ring_format(struct net_device *ndev, int q)
220 {
221 	struct ravb_private *priv = netdev_priv(ndev);
222 	struct ravb_ex_rx_desc *rx_desc;
223 	struct ravb_tx_desc *tx_desc;
224 	struct ravb_desc *desc;
225 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
226 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
227 			   NUM_TX_DESC;
228 	dma_addr_t dma_addr;
229 	int i;
230 
231 	priv->cur_rx[q] = 0;
232 	priv->cur_tx[q] = 0;
233 	priv->dirty_rx[q] = 0;
234 	priv->dirty_tx[q] = 0;
235 
236 	memset(priv->rx_ring[q], 0, rx_ring_size);
237 	/* Build RX ring buffer */
238 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
239 		/* RX descriptor */
240 		rx_desc = &priv->rx_ring[q][i];
241 		/* The size of the buffer should be on 16-byte boundary. */
242 		rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
243 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
244 					  ALIGN(PKT_BUF_SZ, 16),
245 					  DMA_FROM_DEVICE);
246 		/* We just set the data size to 0 for a failed mapping which
247 		 * should prevent DMA from happening...
248 		 */
249 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
250 			rx_desc->ds_cc = cpu_to_le16(0);
251 		rx_desc->dptr = cpu_to_le32(dma_addr);
252 		rx_desc->die_dt = DT_FEMPTY;
253 	}
254 	rx_desc = &priv->rx_ring[q][i];
255 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
256 	rx_desc->die_dt = DT_LINKFIX; /* type */
257 
258 	memset(priv->tx_ring[q], 0, tx_ring_size);
259 	/* Build TX ring buffer */
260 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
261 	     i++, tx_desc++) {
262 		tx_desc->die_dt = DT_EEMPTY;
263 		tx_desc++;
264 		tx_desc->die_dt = DT_EEMPTY;
265 	}
266 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
267 	tx_desc->die_dt = DT_LINKFIX; /* type */
268 
269 	/* RX descriptor base address for best effort */
270 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
271 	desc->die_dt = DT_LINKFIX; /* type */
272 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
273 
274 	/* TX descriptor base address for best effort */
275 	desc = &priv->desc_bat[q];
276 	desc->die_dt = DT_LINKFIX; /* type */
277 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
278 }
279 
280 /* Init skb and descriptor buffer for Ethernet AVB */
281 static int ravb_ring_init(struct net_device *ndev, int q)
282 {
283 	struct ravb_private *priv = netdev_priv(ndev);
284 	struct sk_buff *skb;
285 	int ring_size;
286 	int i;
287 
288 	/* Allocate RX and TX skb rings */
289 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
290 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
291 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
292 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
293 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
294 		goto error;
295 
296 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
297 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
298 		if (!skb)
299 			goto error;
300 		ravb_set_buffer_align(skb);
301 		priv->rx_skb[q][i] = skb;
302 	}
303 
304 	/* Allocate rings for the aligned buffers */
305 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
306 				    DPTR_ALIGN - 1, GFP_KERNEL);
307 	if (!priv->tx_align[q])
308 		goto error;
309 
310 	/* Allocate all RX descriptors. */
311 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
312 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
313 					      &priv->rx_desc_dma[q],
314 					      GFP_KERNEL);
315 	if (!priv->rx_ring[q])
316 		goto error;
317 
318 	priv->dirty_rx[q] = 0;
319 
320 	/* Allocate all TX descriptors. */
321 	ring_size = sizeof(struct ravb_tx_desc) *
322 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
323 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
324 					      &priv->tx_desc_dma[q],
325 					      GFP_KERNEL);
326 	if (!priv->tx_ring[q])
327 		goto error;
328 
329 	return 0;
330 
331 error:
332 	ravb_ring_free(ndev, q);
333 
334 	return -ENOMEM;
335 }
336 
337 /* E-MAC init function */
338 static void ravb_emac_init(struct net_device *ndev)
339 {
340 	struct ravb_private *priv = netdev_priv(ndev);
341 	u32 ecmr;
342 
343 	/* Receive frame limit set register */
344 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
345 
346 	/* PAUSE prohibition */
347 	ecmr =  ravb_read(ndev, ECMR);
348 	ecmr &= ECMR_DM;
349 	ecmr |= ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
350 	ravb_write(ndev, ecmr, ECMR);
351 
352 	ravb_set_rate(ndev);
353 
354 	/* Set MAC address */
355 	ravb_write(ndev,
356 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
357 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
358 	ravb_write(ndev,
359 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
360 
361 	ravb_write(ndev, 1, MPR);
362 
363 	/* E-MAC status register clear */
364 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
365 
366 	/* E-MAC interrupt enable register */
367 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
368 }
369 
370 /* Device init function for Ethernet AVB */
371 static int ravb_dmac_init(struct net_device *ndev)
372 {
373 	int error;
374 
375 	/* Set CONFIG mode */
376 	error = ravb_config(ndev);
377 	if (error)
378 		return error;
379 
380 	error = ravb_ring_init(ndev, RAVB_BE);
381 	if (error)
382 		return error;
383 	error = ravb_ring_init(ndev, RAVB_NC);
384 	if (error) {
385 		ravb_ring_free(ndev, RAVB_BE);
386 		return error;
387 	}
388 
389 	/* Descriptor format */
390 	ravb_ring_format(ndev, RAVB_BE);
391 	ravb_ring_format(ndev, RAVB_NC);
392 
393 #if defined(__LITTLE_ENDIAN)
394 	ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC);
395 #else
396 	ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC);
397 #endif
398 
399 	/* Set AVB RX */
400 	ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
401 
402 	/* Set FIFO size */
403 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
404 
405 	/* Timestamp enable */
406 	ravb_write(ndev, TCCR_TFEN, TCCR);
407 
408 	/* Interrupt enable: */
409 	/* Frame receive */
410 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
411 	/* Receive FIFO full error, descriptor empty */
412 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
413 	/* Frame transmitted, timestamp FIFO updated */
414 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
415 
416 	/* Setting the control will start the AVB-DMAC process. */
417 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION,
418 		   CCC);
419 
420 	return 0;
421 }
422 
423 /* Free TX skb function for AVB-IP */
424 static int ravb_tx_free(struct net_device *ndev, int q)
425 {
426 	struct ravb_private *priv = netdev_priv(ndev);
427 	struct net_device_stats *stats = &priv->stats[q];
428 	struct ravb_tx_desc *desc;
429 	int free_num = 0;
430 	int entry;
431 	u32 size;
432 
433 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
434 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
435 					     NUM_TX_DESC);
436 		desc = &priv->tx_ring[q][entry];
437 		if (desc->die_dt != DT_FEMPTY)
438 			break;
439 		/* Descriptor type must be checked before all other reads */
440 		dma_rmb();
441 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
442 		/* Free the original skb. */
443 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
444 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
445 					 size, DMA_TO_DEVICE);
446 			/* Last packet descriptor? */
447 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
448 				entry /= NUM_TX_DESC;
449 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
450 				priv->tx_skb[q][entry] = NULL;
451 				stats->tx_packets++;
452 			}
453 			free_num++;
454 		}
455 		stats->tx_bytes += size;
456 		desc->die_dt = DT_EEMPTY;
457 	}
458 	return free_num;
459 }
460 
461 static void ravb_get_tx_tstamp(struct net_device *ndev)
462 {
463 	struct ravb_private *priv = netdev_priv(ndev);
464 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
465 	struct skb_shared_hwtstamps shhwtstamps;
466 	struct sk_buff *skb;
467 	struct timespec64 ts;
468 	u16 tag, tfa_tag;
469 	int count;
470 	u32 tfa2;
471 
472 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
473 	while (count--) {
474 		tfa2 = ravb_read(ndev, TFA2);
475 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
476 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
477 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
478 			    ravb_read(ndev, TFA1);
479 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
480 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
481 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
482 					 list) {
483 			skb = ts_skb->skb;
484 			tag = ts_skb->tag;
485 			list_del(&ts_skb->list);
486 			kfree(ts_skb);
487 			if (tag == tfa_tag) {
488 				skb_tstamp_tx(skb, &shhwtstamps);
489 				break;
490 			}
491 		}
492 		ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR);
493 	}
494 }
495 
496 /* Packet receive function for Ethernet AVB */
497 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
498 {
499 	struct ravb_private *priv = netdev_priv(ndev);
500 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
501 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
502 			priv->cur_rx[q];
503 	struct net_device_stats *stats = &priv->stats[q];
504 	struct ravb_ex_rx_desc *desc;
505 	struct sk_buff *skb;
506 	dma_addr_t dma_addr;
507 	struct timespec64 ts;
508 	u8  desc_status;
509 	u16 pkt_len;
510 	int limit;
511 
512 	boguscnt = min(boguscnt, *quota);
513 	limit = boguscnt;
514 	desc = &priv->rx_ring[q][entry];
515 	while (desc->die_dt != DT_FEMPTY) {
516 		/* Descriptor type must be checked before all other reads */
517 		dma_rmb();
518 		desc_status = desc->msc;
519 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
520 
521 		if (--boguscnt < 0)
522 			break;
523 
524 		/* We use 0-byte descriptors to mark the DMA mapping errors */
525 		if (!pkt_len)
526 			continue;
527 
528 		if (desc_status & MSC_MC)
529 			stats->multicast++;
530 
531 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
532 				   MSC_CEEF)) {
533 			stats->rx_errors++;
534 			if (desc_status & MSC_CRC)
535 				stats->rx_crc_errors++;
536 			if (desc_status & MSC_RFE)
537 				stats->rx_frame_errors++;
538 			if (desc_status & (MSC_RTLF | MSC_RTSF))
539 				stats->rx_length_errors++;
540 			if (desc_status & MSC_CEEF)
541 				stats->rx_missed_errors++;
542 		} else {
543 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
544 
545 			skb = priv->rx_skb[q][entry];
546 			priv->rx_skb[q][entry] = NULL;
547 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
548 					 ALIGN(PKT_BUF_SZ, 16),
549 					 DMA_FROM_DEVICE);
550 			get_ts &= (q == RAVB_NC) ?
551 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
552 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
553 			if (get_ts) {
554 				struct skb_shared_hwtstamps *shhwtstamps;
555 
556 				shhwtstamps = skb_hwtstamps(skb);
557 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
558 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
559 					     32) | le32_to_cpu(desc->ts_sl);
560 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
561 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
562 			}
563 			skb_put(skb, pkt_len);
564 			skb->protocol = eth_type_trans(skb, ndev);
565 			napi_gro_receive(&priv->napi[q], skb);
566 			stats->rx_packets++;
567 			stats->rx_bytes += pkt_len;
568 		}
569 
570 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
571 		desc = &priv->rx_ring[q][entry];
572 	}
573 
574 	/* Refill the RX ring buffers. */
575 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
576 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
577 		desc = &priv->rx_ring[q][entry];
578 		/* The size of the buffer should be on 16-byte boundary. */
579 		desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
580 
581 		if (!priv->rx_skb[q][entry]) {
582 			skb = netdev_alloc_skb(ndev,
583 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
584 			if (!skb)
585 				break;	/* Better luck next round. */
586 			ravb_set_buffer_align(skb);
587 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
588 						  le16_to_cpu(desc->ds_cc),
589 						  DMA_FROM_DEVICE);
590 			skb_checksum_none_assert(skb);
591 			/* We just set the data size to 0 for a failed mapping
592 			 * which should prevent DMA  from happening...
593 			 */
594 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
595 				desc->ds_cc = cpu_to_le16(0);
596 			desc->dptr = cpu_to_le32(dma_addr);
597 			priv->rx_skb[q][entry] = skb;
598 		}
599 		/* Descriptor type must be set after all the above writes */
600 		dma_wmb();
601 		desc->die_dt = DT_FEMPTY;
602 	}
603 
604 	*quota -= limit - (++boguscnt);
605 
606 	return boguscnt <= 0;
607 }
608 
609 static void ravb_rcv_snd_disable(struct net_device *ndev)
610 {
611 	/* Disable TX and RX */
612 	ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR);
613 }
614 
615 static void ravb_rcv_snd_enable(struct net_device *ndev)
616 {
617 	/* Enable TX and RX */
618 	ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR);
619 }
620 
621 /* function for waiting dma process finished */
622 static int ravb_stop_dma(struct net_device *ndev)
623 {
624 	int error;
625 
626 	/* Wait for stopping the hardware TX process */
627 	error = ravb_wait(ndev, TCCR,
628 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
629 	if (error)
630 		return error;
631 
632 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
633 			  0);
634 	if (error)
635 		return error;
636 
637 	/* Stop the E-MAC's RX/TX processes. */
638 	ravb_rcv_snd_disable(ndev);
639 
640 	/* Wait for stopping the RX DMA process */
641 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
642 	if (error)
643 		return error;
644 
645 	/* Stop AVB-DMAC process */
646 	return ravb_config(ndev);
647 }
648 
649 /* E-MAC interrupt handler */
650 static void ravb_emac_interrupt(struct net_device *ndev)
651 {
652 	struct ravb_private *priv = netdev_priv(ndev);
653 	u32 ecsr, psr;
654 
655 	ecsr = ravb_read(ndev, ECSR);
656 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
657 	if (ecsr & ECSR_ICD)
658 		ndev->stats.tx_carrier_errors++;
659 	if (ecsr & ECSR_LCHNG) {
660 		/* Link changed */
661 		if (priv->no_avb_link)
662 			return;
663 		psr = ravb_read(ndev, PSR);
664 		if (priv->avb_link_active_low)
665 			psr ^= PSR_LMON;
666 		if (!(psr & PSR_LMON)) {
667 			/* DIsable RX and TX */
668 			ravb_rcv_snd_disable(ndev);
669 		} else {
670 			/* Enable RX and TX */
671 			ravb_rcv_snd_enable(ndev);
672 		}
673 	}
674 }
675 
676 /* Error interrupt handler */
677 static void ravb_error_interrupt(struct net_device *ndev)
678 {
679 	struct ravb_private *priv = netdev_priv(ndev);
680 	u32 eis, ris2;
681 
682 	eis = ravb_read(ndev, EIS);
683 	ravb_write(ndev, ~EIS_QFS, EIS);
684 	if (eis & EIS_QFS) {
685 		ris2 = ravb_read(ndev, RIS2);
686 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
687 
688 		/* Receive Descriptor Empty int */
689 		if (ris2 & RIS2_QFF0)
690 			priv->stats[RAVB_BE].rx_over_errors++;
691 
692 		    /* Receive Descriptor Empty int */
693 		if (ris2 & RIS2_QFF1)
694 			priv->stats[RAVB_NC].rx_over_errors++;
695 
696 		/* Receive FIFO Overflow int */
697 		if (ris2 & RIS2_RFFF)
698 			priv->rx_fifo_errors++;
699 	}
700 }
701 
702 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
703 {
704 	struct net_device *ndev = dev_id;
705 	struct ravb_private *priv = netdev_priv(ndev);
706 	irqreturn_t result = IRQ_NONE;
707 	u32 iss;
708 
709 	spin_lock(&priv->lock);
710 	/* Get interrupt status */
711 	iss = ravb_read(ndev, ISS);
712 
713 	/* Received and transmitted interrupts */
714 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
715 		u32 ris0 = ravb_read(ndev, RIS0);
716 		u32 ric0 = ravb_read(ndev, RIC0);
717 		u32 tis  = ravb_read(ndev, TIS);
718 		u32 tic  = ravb_read(ndev, TIC);
719 		int q;
720 
721 		/* Timestamp updated */
722 		if (tis & TIS_TFUF) {
723 			ravb_write(ndev, ~TIS_TFUF, TIS);
724 			ravb_get_tx_tstamp(ndev);
725 			result = IRQ_HANDLED;
726 		}
727 
728 		/* Network control and best effort queue RX/TX */
729 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
730 			if (((ris0 & ric0) & BIT(q)) ||
731 			    ((tis  & tic)  & BIT(q))) {
732 				if (napi_schedule_prep(&priv->napi[q])) {
733 					/* Mask RX and TX interrupts */
734 					ric0 &= ~BIT(q);
735 					tic &= ~BIT(q);
736 					ravb_write(ndev, ric0, RIC0);
737 					ravb_write(ndev, tic, TIC);
738 					__napi_schedule(&priv->napi[q]);
739 				} else {
740 					netdev_warn(ndev,
741 						    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
742 						    ris0, ric0);
743 					netdev_warn(ndev,
744 						    "                    tx status 0x%08x, tx mask 0x%08x.\n",
745 						    tis, tic);
746 				}
747 				result = IRQ_HANDLED;
748 			}
749 		}
750 	}
751 
752 	/* E-MAC status summary */
753 	if (iss & ISS_MS) {
754 		ravb_emac_interrupt(ndev);
755 		result = IRQ_HANDLED;
756 	}
757 
758 	/* Error status summary */
759 	if (iss & ISS_ES) {
760 		ravb_error_interrupt(ndev);
761 		result = IRQ_HANDLED;
762 	}
763 
764 	if (iss & ISS_CGIS)
765 		result = ravb_ptp_interrupt(ndev);
766 
767 	mmiowb();
768 	spin_unlock(&priv->lock);
769 	return result;
770 }
771 
772 static int ravb_poll(struct napi_struct *napi, int budget)
773 {
774 	struct net_device *ndev = napi->dev;
775 	struct ravb_private *priv = netdev_priv(ndev);
776 	unsigned long flags;
777 	int q = napi - priv->napi;
778 	int mask = BIT(q);
779 	int quota = budget;
780 	u32 ris0, tis;
781 
782 	for (;;) {
783 		tis = ravb_read(ndev, TIS);
784 		ris0 = ravb_read(ndev, RIS0);
785 		if (!((ris0 & mask) || (tis & mask)))
786 			break;
787 
788 		/* Processing RX Descriptor Ring */
789 		if (ris0 & mask) {
790 			/* Clear RX interrupt */
791 			ravb_write(ndev, ~mask, RIS0);
792 			if (ravb_rx(ndev, &quota, q))
793 				goto out;
794 		}
795 		/* Processing TX Descriptor Ring */
796 		if (tis & mask) {
797 			spin_lock_irqsave(&priv->lock, flags);
798 			/* Clear TX interrupt */
799 			ravb_write(ndev, ~mask, TIS);
800 			ravb_tx_free(ndev, q);
801 			netif_wake_subqueue(ndev, q);
802 			mmiowb();
803 			spin_unlock_irqrestore(&priv->lock, flags);
804 		}
805 	}
806 
807 	napi_complete(napi);
808 
809 	/* Re-enable RX/TX interrupts */
810 	spin_lock_irqsave(&priv->lock, flags);
811 	ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0);
812 	ravb_write(ndev, ravb_read(ndev, TIC)  | mask,  TIC);
813 	mmiowb();
814 	spin_unlock_irqrestore(&priv->lock, flags);
815 
816 	/* Receive error message handling */
817 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
818 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
819 	if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
820 		ndev->stats.rx_over_errors = priv->rx_over_errors;
821 		netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
822 	}
823 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
824 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
825 		netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
826 	}
827 out:
828 	return budget - quota;
829 }
830 
831 /* PHY state control function */
832 static void ravb_adjust_link(struct net_device *ndev)
833 {
834 	struct ravb_private *priv = netdev_priv(ndev);
835 	struct phy_device *phydev = priv->phydev;
836 	bool new_state = false;
837 
838 	if (phydev->link) {
839 		if (phydev->duplex != priv->duplex) {
840 			new_state = true;
841 			priv->duplex = phydev->duplex;
842 			ravb_set_duplex(ndev);
843 		}
844 
845 		if (phydev->speed != priv->speed) {
846 			new_state = true;
847 			priv->speed = phydev->speed;
848 			ravb_set_rate(ndev);
849 		}
850 		if (!priv->link) {
851 			ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF,
852 				   ECMR);
853 			new_state = true;
854 			priv->link = phydev->link;
855 			if (priv->no_avb_link)
856 				ravb_rcv_snd_enable(ndev);
857 		}
858 	} else if (priv->link) {
859 		new_state = true;
860 		priv->link = 0;
861 		priv->speed = 0;
862 		priv->duplex = -1;
863 		if (priv->no_avb_link)
864 			ravb_rcv_snd_disable(ndev);
865 	}
866 
867 	if (new_state && netif_msg_link(priv))
868 		phy_print_status(phydev);
869 }
870 
871 /* PHY init function */
872 static int ravb_phy_init(struct net_device *ndev)
873 {
874 	struct device_node *np = ndev->dev.parent->of_node;
875 	struct ravb_private *priv = netdev_priv(ndev);
876 	struct phy_device *phydev;
877 	struct device_node *pn;
878 
879 	priv->link = 0;
880 	priv->speed = 0;
881 	priv->duplex = -1;
882 
883 	/* Try connecting to PHY */
884 	pn = of_parse_phandle(np, "phy-handle", 0);
885 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
886 				priv->phy_interface);
887 	if (!phydev) {
888 		netdev_err(ndev, "failed to connect PHY\n");
889 		return -ENOENT;
890 	}
891 
892 	/* This driver only support 10/100Mbit speeds on Gen3
893 	 * at this time.
894 	 */
895 	if (priv->chip_id == RCAR_GEN3) {
896 		int err;
897 
898 		err = phy_set_max_speed(phydev, SPEED_100);
899 		if (err) {
900 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
901 			phy_disconnect(phydev);
902 			return err;
903 		}
904 
905 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
906 	}
907 
908 	/* 10BASE is not supported */
909 	phydev->supported &= ~PHY_10BT_FEATURES;
910 
911 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
912 		    phydev->addr, phydev->irq, phydev->drv->name);
913 
914 	priv->phydev = phydev;
915 
916 	return 0;
917 }
918 
919 /* PHY control start function */
920 static int ravb_phy_start(struct net_device *ndev)
921 {
922 	struct ravb_private *priv = netdev_priv(ndev);
923 	int error;
924 
925 	error = ravb_phy_init(ndev);
926 	if (error)
927 		return error;
928 
929 	phy_start(priv->phydev);
930 
931 	return 0;
932 }
933 
934 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
935 {
936 	struct ravb_private *priv = netdev_priv(ndev);
937 	int error = -ENODEV;
938 	unsigned long flags;
939 
940 	if (priv->phydev) {
941 		spin_lock_irqsave(&priv->lock, flags);
942 		error = phy_ethtool_gset(priv->phydev, ecmd);
943 		spin_unlock_irqrestore(&priv->lock, flags);
944 	}
945 
946 	return error;
947 }
948 
949 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
950 {
951 	struct ravb_private *priv = netdev_priv(ndev);
952 	unsigned long flags;
953 	int error;
954 
955 	if (!priv->phydev)
956 		return -ENODEV;
957 
958 	spin_lock_irqsave(&priv->lock, flags);
959 
960 	/* Disable TX and RX */
961 	ravb_rcv_snd_disable(ndev);
962 
963 	error = phy_ethtool_sset(priv->phydev, ecmd);
964 	if (error)
965 		goto error_exit;
966 
967 	if (ecmd->duplex == DUPLEX_FULL)
968 		priv->duplex = 1;
969 	else
970 		priv->duplex = 0;
971 
972 	ravb_set_duplex(ndev);
973 
974 error_exit:
975 	mdelay(1);
976 
977 	/* Enable TX and RX */
978 	ravb_rcv_snd_enable(ndev);
979 
980 	mmiowb();
981 	spin_unlock_irqrestore(&priv->lock, flags);
982 
983 	return error;
984 }
985 
986 static int ravb_nway_reset(struct net_device *ndev)
987 {
988 	struct ravb_private *priv = netdev_priv(ndev);
989 	int error = -ENODEV;
990 	unsigned long flags;
991 
992 	if (priv->phydev) {
993 		spin_lock_irqsave(&priv->lock, flags);
994 		error = phy_start_aneg(priv->phydev);
995 		spin_unlock_irqrestore(&priv->lock, flags);
996 	}
997 
998 	return error;
999 }
1000 
1001 static u32 ravb_get_msglevel(struct net_device *ndev)
1002 {
1003 	struct ravb_private *priv = netdev_priv(ndev);
1004 
1005 	return priv->msg_enable;
1006 }
1007 
1008 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1009 {
1010 	struct ravb_private *priv = netdev_priv(ndev);
1011 
1012 	priv->msg_enable = value;
1013 }
1014 
1015 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1016 	"rx_queue_0_current",
1017 	"tx_queue_0_current",
1018 	"rx_queue_0_dirty",
1019 	"tx_queue_0_dirty",
1020 	"rx_queue_0_packets",
1021 	"tx_queue_0_packets",
1022 	"rx_queue_0_bytes",
1023 	"tx_queue_0_bytes",
1024 	"rx_queue_0_mcast_packets",
1025 	"rx_queue_0_errors",
1026 	"rx_queue_0_crc_errors",
1027 	"rx_queue_0_frame_errors",
1028 	"rx_queue_0_length_errors",
1029 	"rx_queue_0_missed_errors",
1030 	"rx_queue_0_over_errors",
1031 
1032 	"rx_queue_1_current",
1033 	"tx_queue_1_current",
1034 	"rx_queue_1_dirty",
1035 	"tx_queue_1_dirty",
1036 	"rx_queue_1_packets",
1037 	"tx_queue_1_packets",
1038 	"rx_queue_1_bytes",
1039 	"tx_queue_1_bytes",
1040 	"rx_queue_1_mcast_packets",
1041 	"rx_queue_1_errors",
1042 	"rx_queue_1_crc_errors",
1043 	"rx_queue_1_frame_errors",
1044 	"rx_queue_1_length_errors",
1045 	"rx_queue_1_missed_errors",
1046 	"rx_queue_1_over_errors",
1047 };
1048 
1049 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1050 
1051 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1052 {
1053 	switch (sset) {
1054 	case ETH_SS_STATS:
1055 		return RAVB_STATS_LEN;
1056 	default:
1057 		return -EOPNOTSUPP;
1058 	}
1059 }
1060 
1061 static void ravb_get_ethtool_stats(struct net_device *ndev,
1062 				   struct ethtool_stats *stats, u64 *data)
1063 {
1064 	struct ravb_private *priv = netdev_priv(ndev);
1065 	int i = 0;
1066 	int q;
1067 
1068 	/* Device-specific stats */
1069 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1070 		struct net_device_stats *stats = &priv->stats[q];
1071 
1072 		data[i++] = priv->cur_rx[q];
1073 		data[i++] = priv->cur_tx[q];
1074 		data[i++] = priv->dirty_rx[q];
1075 		data[i++] = priv->dirty_tx[q];
1076 		data[i++] = stats->rx_packets;
1077 		data[i++] = stats->tx_packets;
1078 		data[i++] = stats->rx_bytes;
1079 		data[i++] = stats->tx_bytes;
1080 		data[i++] = stats->multicast;
1081 		data[i++] = stats->rx_errors;
1082 		data[i++] = stats->rx_crc_errors;
1083 		data[i++] = stats->rx_frame_errors;
1084 		data[i++] = stats->rx_length_errors;
1085 		data[i++] = stats->rx_missed_errors;
1086 		data[i++] = stats->rx_over_errors;
1087 	}
1088 }
1089 
1090 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1091 {
1092 	switch (stringset) {
1093 	case ETH_SS_STATS:
1094 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1095 		break;
1096 	}
1097 }
1098 
1099 static void ravb_get_ringparam(struct net_device *ndev,
1100 			       struct ethtool_ringparam *ring)
1101 {
1102 	struct ravb_private *priv = netdev_priv(ndev);
1103 
1104 	ring->rx_max_pending = BE_RX_RING_MAX;
1105 	ring->tx_max_pending = BE_TX_RING_MAX;
1106 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1107 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1108 }
1109 
1110 static int ravb_set_ringparam(struct net_device *ndev,
1111 			      struct ethtool_ringparam *ring)
1112 {
1113 	struct ravb_private *priv = netdev_priv(ndev);
1114 	int error;
1115 
1116 	if (ring->tx_pending > BE_TX_RING_MAX ||
1117 	    ring->rx_pending > BE_RX_RING_MAX ||
1118 	    ring->tx_pending < BE_TX_RING_MIN ||
1119 	    ring->rx_pending < BE_RX_RING_MIN)
1120 		return -EINVAL;
1121 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1122 		return -EINVAL;
1123 
1124 	if (netif_running(ndev)) {
1125 		netif_device_detach(ndev);
1126 		/* Stop PTP Clock driver */
1127 		ravb_ptp_stop(ndev);
1128 		/* Wait for DMA stopping */
1129 		error = ravb_stop_dma(ndev);
1130 		if (error) {
1131 			netdev_err(ndev,
1132 				   "cannot set ringparam! Any AVB processes are still running?\n");
1133 			return error;
1134 		}
1135 		synchronize_irq(ndev->irq);
1136 
1137 		/* Free all the skb's in the RX queue and the DMA buffers. */
1138 		ravb_ring_free(ndev, RAVB_BE);
1139 		ravb_ring_free(ndev, RAVB_NC);
1140 	}
1141 
1142 	/* Set new parameters */
1143 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1144 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1145 
1146 	if (netif_running(ndev)) {
1147 		error = ravb_dmac_init(ndev);
1148 		if (error) {
1149 			netdev_err(ndev,
1150 				   "%s: ravb_dmac_init() failed, error %d\n",
1151 				   __func__, error);
1152 			return error;
1153 		}
1154 
1155 		ravb_emac_init(ndev);
1156 
1157 		/* Initialise PTP Clock driver */
1158 		ravb_ptp_init(ndev, priv->pdev);
1159 
1160 		netif_device_attach(ndev);
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 static int ravb_get_ts_info(struct net_device *ndev,
1167 			    struct ethtool_ts_info *info)
1168 {
1169 	struct ravb_private *priv = netdev_priv(ndev);
1170 
1171 	info->so_timestamping =
1172 		SOF_TIMESTAMPING_TX_SOFTWARE |
1173 		SOF_TIMESTAMPING_RX_SOFTWARE |
1174 		SOF_TIMESTAMPING_SOFTWARE |
1175 		SOF_TIMESTAMPING_TX_HARDWARE |
1176 		SOF_TIMESTAMPING_RX_HARDWARE |
1177 		SOF_TIMESTAMPING_RAW_HARDWARE;
1178 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1179 	info->rx_filters =
1180 		(1 << HWTSTAMP_FILTER_NONE) |
1181 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1182 		(1 << HWTSTAMP_FILTER_ALL);
1183 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1184 
1185 	return 0;
1186 }
1187 
1188 static const struct ethtool_ops ravb_ethtool_ops = {
1189 	.get_settings		= ravb_get_settings,
1190 	.set_settings		= ravb_set_settings,
1191 	.nway_reset		= ravb_nway_reset,
1192 	.get_msglevel		= ravb_get_msglevel,
1193 	.set_msglevel		= ravb_set_msglevel,
1194 	.get_link		= ethtool_op_get_link,
1195 	.get_strings		= ravb_get_strings,
1196 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1197 	.get_sset_count		= ravb_get_sset_count,
1198 	.get_ringparam		= ravb_get_ringparam,
1199 	.set_ringparam		= ravb_set_ringparam,
1200 	.get_ts_info		= ravb_get_ts_info,
1201 };
1202 
1203 /* Network device open function for Ethernet AVB */
1204 static int ravb_open(struct net_device *ndev)
1205 {
1206 	struct ravb_private *priv = netdev_priv(ndev);
1207 	int error;
1208 
1209 	napi_enable(&priv->napi[RAVB_BE]);
1210 	napi_enable(&priv->napi[RAVB_NC]);
1211 
1212 	error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
1213 			    ndev);
1214 	if (error) {
1215 		netdev_err(ndev, "cannot request IRQ\n");
1216 		goto out_napi_off;
1217 	}
1218 
1219 	if (priv->chip_id == RCAR_GEN3) {
1220 		error = request_irq(priv->emac_irq, ravb_interrupt,
1221 				    IRQF_SHARED, ndev->name, ndev);
1222 		if (error) {
1223 			netdev_err(ndev, "cannot request IRQ\n");
1224 			goto out_free_irq;
1225 		}
1226 	}
1227 
1228 	/* Device init */
1229 	error = ravb_dmac_init(ndev);
1230 	if (error)
1231 		goto out_free_irq2;
1232 	ravb_emac_init(ndev);
1233 
1234 	/* Initialise PTP Clock driver */
1235 	ravb_ptp_init(ndev, priv->pdev);
1236 
1237 	netif_tx_start_all_queues(ndev);
1238 
1239 	/* PHY control start */
1240 	error = ravb_phy_start(ndev);
1241 	if (error)
1242 		goto out_ptp_stop;
1243 
1244 	return 0;
1245 
1246 out_ptp_stop:
1247 	/* Stop PTP Clock driver */
1248 	ravb_ptp_stop(ndev);
1249 out_free_irq2:
1250 	if (priv->chip_id == RCAR_GEN3)
1251 		free_irq(priv->emac_irq, ndev);
1252 out_free_irq:
1253 	free_irq(ndev->irq, ndev);
1254 out_napi_off:
1255 	napi_disable(&priv->napi[RAVB_NC]);
1256 	napi_disable(&priv->napi[RAVB_BE]);
1257 	return error;
1258 }
1259 
1260 /* Timeout function for Ethernet AVB */
1261 static void ravb_tx_timeout(struct net_device *ndev)
1262 {
1263 	struct ravb_private *priv = netdev_priv(ndev);
1264 
1265 	netif_err(priv, tx_err, ndev,
1266 		  "transmit timed out, status %08x, resetting...\n",
1267 		  ravb_read(ndev, ISS));
1268 
1269 	/* tx_errors count up */
1270 	ndev->stats.tx_errors++;
1271 
1272 	schedule_work(&priv->work);
1273 }
1274 
1275 static void ravb_tx_timeout_work(struct work_struct *work)
1276 {
1277 	struct ravb_private *priv = container_of(work, struct ravb_private,
1278 						 work);
1279 	struct net_device *ndev = priv->ndev;
1280 
1281 	netif_tx_stop_all_queues(ndev);
1282 
1283 	/* Stop PTP Clock driver */
1284 	ravb_ptp_stop(ndev);
1285 
1286 	/* Wait for DMA stopping */
1287 	ravb_stop_dma(ndev);
1288 
1289 	ravb_ring_free(ndev, RAVB_BE);
1290 	ravb_ring_free(ndev, RAVB_NC);
1291 
1292 	/* Device init */
1293 	ravb_dmac_init(ndev);
1294 	ravb_emac_init(ndev);
1295 
1296 	/* Initialise PTP Clock driver */
1297 	ravb_ptp_init(ndev, priv->pdev);
1298 
1299 	netif_tx_start_all_queues(ndev);
1300 }
1301 
1302 /* Packet transmit function for Ethernet AVB */
1303 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1304 {
1305 	struct ravb_private *priv = netdev_priv(ndev);
1306 	u16 q = skb_get_queue_mapping(skb);
1307 	struct ravb_tstamp_skb *ts_skb;
1308 	struct ravb_tx_desc *desc;
1309 	unsigned long flags;
1310 	u32 dma_addr;
1311 	void *buffer;
1312 	u32 entry;
1313 	u32 len;
1314 
1315 	spin_lock_irqsave(&priv->lock, flags);
1316 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1317 	    NUM_TX_DESC) {
1318 		netif_err(priv, tx_queued, ndev,
1319 			  "still transmitting with the full ring!\n");
1320 		netif_stop_subqueue(ndev, q);
1321 		spin_unlock_irqrestore(&priv->lock, flags);
1322 		return NETDEV_TX_BUSY;
1323 	}
1324 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1325 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1326 
1327 	if (skb_put_padto(skb, ETH_ZLEN))
1328 		goto drop;
1329 
1330 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1331 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1332 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1333 	memcpy(buffer, skb->data, len);
1334 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1335 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1336 		goto drop;
1337 
1338 	desc = &priv->tx_ring[q][entry];
1339 	desc->ds_tagl = cpu_to_le16(len);
1340 	desc->dptr = cpu_to_le32(dma_addr);
1341 
1342 	buffer = skb->data + len;
1343 	len = skb->len - len;
1344 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1345 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1346 		goto unmap;
1347 
1348 	desc++;
1349 	desc->ds_tagl = cpu_to_le16(len);
1350 	desc->dptr = cpu_to_le32(dma_addr);
1351 
1352 	/* TX timestamp required */
1353 	if (q == RAVB_NC) {
1354 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1355 		if (!ts_skb) {
1356 			desc--;
1357 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1358 					 DMA_TO_DEVICE);
1359 			goto unmap;
1360 		}
1361 		ts_skb->skb = skb;
1362 		ts_skb->tag = priv->ts_skb_tag++;
1363 		priv->ts_skb_tag &= 0x3ff;
1364 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1365 
1366 		/* TAG and timestamp required flag */
1367 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1368 		skb_tx_timestamp(skb);
1369 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1370 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1371 	}
1372 
1373 	/* Descriptor type must be set after all the above writes */
1374 	dma_wmb();
1375 	desc->die_dt = DT_FEND;
1376 	desc--;
1377 	desc->die_dt = DT_FSTART;
1378 
1379 	ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR);
1380 
1381 	priv->cur_tx[q] += NUM_TX_DESC;
1382 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1383 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1384 		netif_stop_subqueue(ndev, q);
1385 
1386 exit:
1387 	mmiowb();
1388 	spin_unlock_irqrestore(&priv->lock, flags);
1389 	return NETDEV_TX_OK;
1390 
1391 unmap:
1392 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1393 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1394 drop:
1395 	dev_kfree_skb_any(skb);
1396 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1397 	goto exit;
1398 }
1399 
1400 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1401 			     void *accel_priv, select_queue_fallback_t fallback)
1402 {
1403 	/* If skb needs TX timestamp, it is handled in network control queue */
1404 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1405 							       RAVB_BE;
1406 
1407 }
1408 
1409 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1410 {
1411 	struct ravb_private *priv = netdev_priv(ndev);
1412 	struct net_device_stats *nstats, *stats0, *stats1;
1413 
1414 	nstats = &ndev->stats;
1415 	stats0 = &priv->stats[RAVB_BE];
1416 	stats1 = &priv->stats[RAVB_NC];
1417 
1418 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1419 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1420 	nstats->collisions += ravb_read(ndev, CDCR);
1421 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1422 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1423 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1424 
1425 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1426 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1427 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1428 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1429 
1430 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1431 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1432 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1433 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1434 	nstats->multicast = stats0->multicast + stats1->multicast;
1435 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1436 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1437 	nstats->rx_frame_errors =
1438 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1439 	nstats->rx_length_errors =
1440 		stats0->rx_length_errors + stats1->rx_length_errors;
1441 	nstats->rx_missed_errors =
1442 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1443 	nstats->rx_over_errors =
1444 		stats0->rx_over_errors + stats1->rx_over_errors;
1445 
1446 	return nstats;
1447 }
1448 
1449 /* Update promiscuous bit */
1450 static void ravb_set_rx_mode(struct net_device *ndev)
1451 {
1452 	struct ravb_private *priv = netdev_priv(ndev);
1453 	unsigned long flags;
1454 	u32 ecmr;
1455 
1456 	spin_lock_irqsave(&priv->lock, flags);
1457 	ecmr = ravb_read(ndev, ECMR);
1458 	if (ndev->flags & IFF_PROMISC)
1459 		ecmr |=  ECMR_PRM;
1460 	else
1461 		ecmr &= ~ECMR_PRM;
1462 	ravb_write(ndev, ecmr, ECMR);
1463 	mmiowb();
1464 	spin_unlock_irqrestore(&priv->lock, flags);
1465 }
1466 
1467 /* Device close function for Ethernet AVB */
1468 static int ravb_close(struct net_device *ndev)
1469 {
1470 	struct ravb_private *priv = netdev_priv(ndev);
1471 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1472 
1473 	netif_tx_stop_all_queues(ndev);
1474 
1475 	/* Disable interrupts by clearing the interrupt masks. */
1476 	ravb_write(ndev, 0, RIC0);
1477 	ravb_write(ndev, 0, RIC1);
1478 	ravb_write(ndev, 0, RIC2);
1479 	ravb_write(ndev, 0, TIC);
1480 
1481 	/* Stop PTP Clock driver */
1482 	ravb_ptp_stop(ndev);
1483 
1484 	/* Set the config mode to stop the AVB-DMAC's processes */
1485 	if (ravb_stop_dma(ndev) < 0)
1486 		netdev_err(ndev,
1487 			   "device will be stopped after h/w processes are done.\n");
1488 
1489 	/* Clear the timestamp list */
1490 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1491 		list_del(&ts_skb->list);
1492 		kfree(ts_skb);
1493 	}
1494 
1495 	/* PHY disconnect */
1496 	if (priv->phydev) {
1497 		phy_stop(priv->phydev);
1498 		phy_disconnect(priv->phydev);
1499 		priv->phydev = NULL;
1500 	}
1501 
1502 	free_irq(ndev->irq, ndev);
1503 
1504 	napi_disable(&priv->napi[RAVB_NC]);
1505 	napi_disable(&priv->napi[RAVB_BE]);
1506 
1507 	/* Free all the skb's in the RX queue and the DMA buffers. */
1508 	ravb_ring_free(ndev, RAVB_BE);
1509 	ravb_ring_free(ndev, RAVB_NC);
1510 
1511 	return 0;
1512 }
1513 
1514 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1515 {
1516 	struct ravb_private *priv = netdev_priv(ndev);
1517 	struct hwtstamp_config config;
1518 
1519 	config.flags = 0;
1520 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1521 						HWTSTAMP_TX_OFF;
1522 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1523 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1524 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1525 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1526 	else
1527 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1528 
1529 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1530 		-EFAULT : 0;
1531 }
1532 
1533 /* Control hardware time stamping */
1534 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1535 {
1536 	struct ravb_private *priv = netdev_priv(ndev);
1537 	struct hwtstamp_config config;
1538 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1539 	u32 tstamp_tx_ctrl;
1540 
1541 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1542 		return -EFAULT;
1543 
1544 	/* Reserved for future extensions */
1545 	if (config.flags)
1546 		return -EINVAL;
1547 
1548 	switch (config.tx_type) {
1549 	case HWTSTAMP_TX_OFF:
1550 		tstamp_tx_ctrl = 0;
1551 		break;
1552 	case HWTSTAMP_TX_ON:
1553 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1554 		break;
1555 	default:
1556 		return -ERANGE;
1557 	}
1558 
1559 	switch (config.rx_filter) {
1560 	case HWTSTAMP_FILTER_NONE:
1561 		tstamp_rx_ctrl = 0;
1562 		break;
1563 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1564 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1565 		break;
1566 	default:
1567 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1568 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1569 	}
1570 
1571 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1572 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1573 
1574 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1575 		-EFAULT : 0;
1576 }
1577 
1578 /* ioctl to device function */
1579 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1580 {
1581 	struct ravb_private *priv = netdev_priv(ndev);
1582 	struct phy_device *phydev = priv->phydev;
1583 
1584 	if (!netif_running(ndev))
1585 		return -EINVAL;
1586 
1587 	if (!phydev)
1588 		return -ENODEV;
1589 
1590 	switch (cmd) {
1591 	case SIOCGHWTSTAMP:
1592 		return ravb_hwtstamp_get(ndev, req);
1593 	case SIOCSHWTSTAMP:
1594 		return ravb_hwtstamp_set(ndev, req);
1595 	}
1596 
1597 	return phy_mii_ioctl(phydev, req, cmd);
1598 }
1599 
1600 static const struct net_device_ops ravb_netdev_ops = {
1601 	.ndo_open		= ravb_open,
1602 	.ndo_stop		= ravb_close,
1603 	.ndo_start_xmit		= ravb_start_xmit,
1604 	.ndo_select_queue	= ravb_select_queue,
1605 	.ndo_get_stats		= ravb_get_stats,
1606 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1607 	.ndo_tx_timeout		= ravb_tx_timeout,
1608 	.ndo_do_ioctl		= ravb_do_ioctl,
1609 	.ndo_validate_addr	= eth_validate_addr,
1610 	.ndo_set_mac_address	= eth_mac_addr,
1611 	.ndo_change_mtu		= eth_change_mtu,
1612 };
1613 
1614 /* MDIO bus init function */
1615 static int ravb_mdio_init(struct ravb_private *priv)
1616 {
1617 	struct platform_device *pdev = priv->pdev;
1618 	struct device *dev = &pdev->dev;
1619 	int error;
1620 
1621 	/* Bitbang init */
1622 	priv->mdiobb.ops = &bb_ops;
1623 
1624 	/* MII controller setting */
1625 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1626 	if (!priv->mii_bus)
1627 		return -ENOMEM;
1628 
1629 	/* Hook up MII support for ethtool */
1630 	priv->mii_bus->name = "ravb_mii";
1631 	priv->mii_bus->parent = dev;
1632 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1633 		 pdev->name, pdev->id);
1634 
1635 	/* Register MDIO bus */
1636 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1637 	if (error)
1638 		goto out_free_bus;
1639 
1640 	return 0;
1641 
1642 out_free_bus:
1643 	free_mdio_bitbang(priv->mii_bus);
1644 	return error;
1645 }
1646 
1647 /* MDIO bus release function */
1648 static int ravb_mdio_release(struct ravb_private *priv)
1649 {
1650 	/* Unregister mdio bus */
1651 	mdiobus_unregister(priv->mii_bus);
1652 
1653 	/* Free bitbang info */
1654 	free_mdio_bitbang(priv->mii_bus);
1655 
1656 	return 0;
1657 }
1658 
1659 static const struct of_device_id ravb_match_table[] = {
1660 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1661 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1662 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1663 	{ }
1664 };
1665 MODULE_DEVICE_TABLE(of, ravb_match_table);
1666 
1667 static int ravb_probe(struct platform_device *pdev)
1668 {
1669 	struct device_node *np = pdev->dev.of_node;
1670 	const struct of_device_id *match;
1671 	struct ravb_private *priv;
1672 	enum ravb_chip_id chip_id;
1673 	struct net_device *ndev;
1674 	int error, irq, q;
1675 	struct resource *res;
1676 
1677 	if (!np) {
1678 		dev_err(&pdev->dev,
1679 			"this driver is required to be instantiated from device tree\n");
1680 		return -EINVAL;
1681 	}
1682 
1683 	/* Get base address */
1684 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1685 	if (!res) {
1686 		dev_err(&pdev->dev, "invalid resource\n");
1687 		return -EINVAL;
1688 	}
1689 
1690 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1691 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1692 	if (!ndev)
1693 		return -ENOMEM;
1694 
1695 	pm_runtime_enable(&pdev->dev);
1696 	pm_runtime_get_sync(&pdev->dev);
1697 
1698 	/* The Ether-specific entries in the device structure. */
1699 	ndev->base_addr = res->start;
1700 	ndev->dma = -1;
1701 
1702 	match = of_match_device(of_match_ptr(ravb_match_table), &pdev->dev);
1703 	chip_id = (enum ravb_chip_id)match->data;
1704 
1705 	if (chip_id == RCAR_GEN3)
1706 		irq = platform_get_irq_byname(pdev, "ch22");
1707 	else
1708 		irq = platform_get_irq(pdev, 0);
1709 	if (irq < 0) {
1710 		error = irq;
1711 		goto out_release;
1712 	}
1713 	ndev->irq = irq;
1714 
1715 	SET_NETDEV_DEV(ndev, &pdev->dev);
1716 
1717 	priv = netdev_priv(ndev);
1718 	priv->ndev = ndev;
1719 	priv->pdev = pdev;
1720 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1721 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1722 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1723 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1724 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1725 	if (IS_ERR(priv->addr)) {
1726 		error = PTR_ERR(priv->addr);
1727 		goto out_release;
1728 	}
1729 
1730 	spin_lock_init(&priv->lock);
1731 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1732 
1733 	priv->phy_interface = of_get_phy_mode(np);
1734 
1735 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1736 	priv->avb_link_active_low =
1737 		of_property_read_bool(np, "renesas,ether-link-active-low");
1738 
1739 	if (chip_id == RCAR_GEN3) {
1740 		irq = platform_get_irq_byname(pdev, "ch24");
1741 		if (irq < 0) {
1742 			error = irq;
1743 			goto out_release;
1744 		}
1745 		priv->emac_irq = irq;
1746 	}
1747 
1748 	priv->chip_id = chip_id;
1749 
1750 	/* Set function */
1751 	ndev->netdev_ops = &ravb_netdev_ops;
1752 	ndev->ethtool_ops = &ravb_ethtool_ops;
1753 
1754 	/* Set AVB config mode */
1755 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
1756 		   CCC);
1757 
1758 	/* Set CSEL value */
1759 	ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB,
1760 		   CCC);
1761 
1762 	/* Set GTI value */
1763 	ravb_write(ndev, ((1000 << 20) / 130) & GTI_TIV, GTI);
1764 
1765 	/* Request GTI loading */
1766 	ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR);
1767 
1768 	/* Allocate descriptor base address table */
1769 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
1770 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
1771 					    &priv->desc_bat_dma, GFP_KERNEL);
1772 	if (!priv->desc_bat) {
1773 		dev_err(&pdev->dev,
1774 			"Cannot allocate desc base address table (size %d bytes)\n",
1775 			priv->desc_bat_size);
1776 		error = -ENOMEM;
1777 		goto out_release;
1778 	}
1779 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
1780 		priv->desc_bat[q].die_dt = DT_EOS;
1781 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1782 
1783 	/* Initialise HW timestamp list */
1784 	INIT_LIST_HEAD(&priv->ts_skb_list);
1785 
1786 	/* Debug message level */
1787 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
1788 
1789 	/* Read and set MAC address */
1790 	ravb_read_mac_address(ndev, of_get_mac_address(np));
1791 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1792 		dev_warn(&pdev->dev,
1793 			 "no valid MAC address supplied, using a random one\n");
1794 		eth_hw_addr_random(ndev);
1795 	}
1796 
1797 	/* MDIO bus init */
1798 	error = ravb_mdio_init(priv);
1799 	if (error) {
1800 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
1801 		goto out_dma_free;
1802 	}
1803 
1804 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
1805 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
1806 
1807 	/* Network device register */
1808 	error = register_netdev(ndev);
1809 	if (error)
1810 		goto out_napi_del;
1811 
1812 	/* Print device information */
1813 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
1814 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1815 
1816 	platform_set_drvdata(pdev, ndev);
1817 
1818 	return 0;
1819 
1820 out_napi_del:
1821 	netif_napi_del(&priv->napi[RAVB_NC]);
1822 	netif_napi_del(&priv->napi[RAVB_BE]);
1823 	ravb_mdio_release(priv);
1824 out_dma_free:
1825 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1826 			  priv->desc_bat_dma);
1827 out_release:
1828 	if (ndev)
1829 		free_netdev(ndev);
1830 
1831 	pm_runtime_put(&pdev->dev);
1832 	pm_runtime_disable(&pdev->dev);
1833 	return error;
1834 }
1835 
1836 static int ravb_remove(struct platform_device *pdev)
1837 {
1838 	struct net_device *ndev = platform_get_drvdata(pdev);
1839 	struct ravb_private *priv = netdev_priv(ndev);
1840 
1841 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1842 			  priv->desc_bat_dma);
1843 	/* Set reset mode */
1844 	ravb_write(ndev, CCC_OPC_RESET, CCC);
1845 	pm_runtime_put_sync(&pdev->dev);
1846 	unregister_netdev(ndev);
1847 	netif_napi_del(&priv->napi[RAVB_NC]);
1848 	netif_napi_del(&priv->napi[RAVB_BE]);
1849 	ravb_mdio_release(priv);
1850 	pm_runtime_disable(&pdev->dev);
1851 	free_netdev(ndev);
1852 	platform_set_drvdata(pdev, NULL);
1853 
1854 	return 0;
1855 }
1856 
1857 #ifdef CONFIG_PM
1858 static int ravb_runtime_nop(struct device *dev)
1859 {
1860 	/* Runtime PM callback shared between ->runtime_suspend()
1861 	 * and ->runtime_resume(). Simply returns success.
1862 	 *
1863 	 * This driver re-initializes all registers after
1864 	 * pm_runtime_get_sync() anyway so there is no need
1865 	 * to save and restore registers here.
1866 	 */
1867 	return 0;
1868 }
1869 
1870 static const struct dev_pm_ops ravb_dev_pm_ops = {
1871 	.runtime_suspend = ravb_runtime_nop,
1872 	.runtime_resume = ravb_runtime_nop,
1873 };
1874 
1875 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
1876 #else
1877 #define RAVB_PM_OPS NULL
1878 #endif
1879 
1880 static struct platform_driver ravb_driver = {
1881 	.probe		= ravb_probe,
1882 	.remove		= ravb_remove,
1883 	.driver = {
1884 		.name	= "ravb",
1885 		.pm	= RAVB_PM_OPS,
1886 		.of_match_table = ravb_match_table,
1887 	},
1888 };
1889 
1890 module_platform_driver(ravb_driver);
1891 
1892 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
1893 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
1894 MODULE_LICENSE("GPL v2");
1895