1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2015 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
85 static void ravb_set_duplex(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
90 }
91 
92 static void ravb_set_rate(struct net_device *ndev)
93 {
94 	struct ravb_private *priv = netdev_priv(ndev);
95 
96 	switch (priv->speed) {
97 	case 100:		/* 100BASE */
98 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
99 		break;
100 	case 1000:		/* 1000BASE */
101 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
102 		break;
103 	}
104 }
105 
106 static void ravb_set_buffer_align(struct sk_buff *skb)
107 {
108 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
109 
110 	if (reserve)
111 		skb_reserve(skb, RAVB_ALIGN - reserve);
112 }
113 
114 /* Get MAC address from the MAC address registers
115  *
116  * Ethernet AVB device doesn't have ROM for MAC address.
117  * This function gets the MAC address that was used by a bootloader.
118  */
119 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
120 {
121 	if (mac) {
122 		ether_addr_copy(ndev->dev_addr, mac);
123 	} else {
124 		u32 mahr = ravb_read(ndev, MAHR);
125 		u32 malr = ravb_read(ndev, MALR);
126 
127 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
128 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
129 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
130 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
131 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
132 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
133 	}
134 }
135 
136 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
137 {
138 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
139 						 mdiobb);
140 
141 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
142 }
143 
144 /* MDC pin control */
145 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
146 {
147 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
148 }
149 
150 /* Data I/O pin control */
151 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
152 {
153 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
154 }
155 
156 /* Set data bit */
157 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
158 {
159 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
160 }
161 
162 /* Get data bit */
163 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
164 {
165 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
166 						 mdiobb);
167 
168 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
169 }
170 
171 /* MDIO bus control struct */
172 static struct mdiobb_ops bb_ops = {
173 	.owner = THIS_MODULE,
174 	.set_mdc = ravb_set_mdc,
175 	.set_mdio_dir = ravb_set_mdio_dir,
176 	.set_mdio_data = ravb_set_mdio_data,
177 	.get_mdio_data = ravb_get_mdio_data,
178 };
179 
180 /* Free TX skb function for AVB-IP */
181 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
182 {
183 	struct ravb_private *priv = netdev_priv(ndev);
184 	struct net_device_stats *stats = &priv->stats[q];
185 	struct ravb_tx_desc *desc;
186 	int free_num = 0;
187 	int entry;
188 	u32 size;
189 
190 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
191 		bool txed;
192 
193 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
194 					     NUM_TX_DESC);
195 		desc = &priv->tx_ring[q][entry];
196 		txed = desc->die_dt == DT_FEMPTY;
197 		if (free_txed_only && !txed)
198 			break;
199 		/* Descriptor type must be checked before all other reads */
200 		dma_rmb();
201 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
202 		/* Free the original skb. */
203 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
204 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
205 					 size, DMA_TO_DEVICE);
206 			/* Last packet descriptor? */
207 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
208 				entry /= NUM_TX_DESC;
209 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
210 				priv->tx_skb[q][entry] = NULL;
211 				if (txed)
212 					stats->tx_packets++;
213 			}
214 			free_num++;
215 		}
216 		if (txed)
217 			stats->tx_bytes += size;
218 		desc->die_dt = DT_EEMPTY;
219 	}
220 	return free_num;
221 }
222 
223 /* Free skb's and DMA buffers for Ethernet AVB */
224 static void ravb_ring_free(struct net_device *ndev, int q)
225 {
226 	struct ravb_private *priv = netdev_priv(ndev);
227 	int ring_size;
228 	int i;
229 
230 	if (priv->rx_ring[q]) {
231 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
232 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
233 
234 			if (!dma_mapping_error(ndev->dev.parent,
235 					       le32_to_cpu(desc->dptr)))
236 				dma_unmap_single(ndev->dev.parent,
237 						 le32_to_cpu(desc->dptr),
238 						 priv->rx_buf_sz,
239 						 DMA_FROM_DEVICE);
240 		}
241 		ring_size = sizeof(struct ravb_ex_rx_desc) *
242 			    (priv->num_rx_ring[q] + 1);
243 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
244 				  priv->rx_desc_dma[q]);
245 		priv->rx_ring[q] = NULL;
246 	}
247 
248 	if (priv->tx_ring[q]) {
249 		ravb_tx_free(ndev, q, false);
250 
251 		ring_size = sizeof(struct ravb_tx_desc) *
252 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
253 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
254 				  priv->tx_desc_dma[q]);
255 		priv->tx_ring[q] = NULL;
256 	}
257 
258 	/* Free RX skb ringbuffer */
259 	if (priv->rx_skb[q]) {
260 		for (i = 0; i < priv->num_rx_ring[q]; i++)
261 			dev_kfree_skb(priv->rx_skb[q][i]);
262 	}
263 	kfree(priv->rx_skb[q]);
264 	priv->rx_skb[q] = NULL;
265 
266 	/* Free aligned TX buffers */
267 	kfree(priv->tx_align[q]);
268 	priv->tx_align[q] = NULL;
269 
270 	/* Free TX skb ringbuffer.
271 	 * SKBs are freed by ravb_tx_free() call above.
272 	 */
273 	kfree(priv->tx_skb[q]);
274 	priv->tx_skb[q] = NULL;
275 }
276 
277 /* Format skb and descriptor buffer for Ethernet AVB */
278 static void ravb_ring_format(struct net_device *ndev, int q)
279 {
280 	struct ravb_private *priv = netdev_priv(ndev);
281 	struct ravb_ex_rx_desc *rx_desc;
282 	struct ravb_tx_desc *tx_desc;
283 	struct ravb_desc *desc;
284 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
285 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
286 			   NUM_TX_DESC;
287 	dma_addr_t dma_addr;
288 	int i;
289 
290 	priv->cur_rx[q] = 0;
291 	priv->cur_tx[q] = 0;
292 	priv->dirty_rx[q] = 0;
293 	priv->dirty_tx[q] = 0;
294 
295 	memset(priv->rx_ring[q], 0, rx_ring_size);
296 	/* Build RX ring buffer */
297 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
298 		/* RX descriptor */
299 		rx_desc = &priv->rx_ring[q][i];
300 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
301 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
302 					  priv->rx_buf_sz,
303 					  DMA_FROM_DEVICE);
304 		/* We just set the data size to 0 for a failed mapping which
305 		 * should prevent DMA from happening...
306 		 */
307 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
308 			rx_desc->ds_cc = cpu_to_le16(0);
309 		rx_desc->dptr = cpu_to_le32(dma_addr);
310 		rx_desc->die_dt = DT_FEMPTY;
311 	}
312 	rx_desc = &priv->rx_ring[q][i];
313 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
314 	rx_desc->die_dt = DT_LINKFIX; /* type */
315 
316 	memset(priv->tx_ring[q], 0, tx_ring_size);
317 	/* Build TX ring buffer */
318 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
319 	     i++, tx_desc++) {
320 		tx_desc->die_dt = DT_EEMPTY;
321 		tx_desc++;
322 		tx_desc->die_dt = DT_EEMPTY;
323 	}
324 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
325 	tx_desc->die_dt = DT_LINKFIX; /* type */
326 
327 	/* RX descriptor base address for best effort */
328 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
329 	desc->die_dt = DT_LINKFIX; /* type */
330 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
331 
332 	/* TX descriptor base address for best effort */
333 	desc = &priv->desc_bat[q];
334 	desc->die_dt = DT_LINKFIX; /* type */
335 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
336 }
337 
338 /* Init skb and descriptor buffer for Ethernet AVB */
339 static int ravb_ring_init(struct net_device *ndev, int q)
340 {
341 	struct ravb_private *priv = netdev_priv(ndev);
342 	struct sk_buff *skb;
343 	int ring_size;
344 	int i;
345 
346 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
347 		ETH_HLEN + VLAN_HLEN;
348 
349 	/* Allocate RX and TX skb rings */
350 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
351 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
352 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
353 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
354 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
355 		goto error;
356 
357 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
358 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
359 		if (!skb)
360 			goto error;
361 		ravb_set_buffer_align(skb);
362 		priv->rx_skb[q][i] = skb;
363 	}
364 
365 	/* Allocate rings for the aligned buffers */
366 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 				    DPTR_ALIGN - 1, GFP_KERNEL);
368 	if (!priv->tx_align[q])
369 		goto error;
370 
371 	/* Allocate all RX descriptors. */
372 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
373 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
374 					      &priv->rx_desc_dma[q],
375 					      GFP_KERNEL);
376 	if (!priv->rx_ring[q])
377 		goto error;
378 
379 	priv->dirty_rx[q] = 0;
380 
381 	/* Allocate all TX descriptors. */
382 	ring_size = sizeof(struct ravb_tx_desc) *
383 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
384 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
385 					      &priv->tx_desc_dma[q],
386 					      GFP_KERNEL);
387 	if (!priv->tx_ring[q])
388 		goto error;
389 
390 	return 0;
391 
392 error:
393 	ravb_ring_free(ndev, q);
394 
395 	return -ENOMEM;
396 }
397 
398 /* E-MAC init function */
399 static void ravb_emac_init(struct net_device *ndev)
400 {
401 	struct ravb_private *priv = netdev_priv(ndev);
402 
403 	/* Receive frame limit set register */
404 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
405 
406 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
407 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
408 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
409 		   ECMR_TE | ECMR_RE, ECMR);
410 
411 	ravb_set_rate(ndev);
412 
413 	/* Set MAC address */
414 	ravb_write(ndev,
415 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
416 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
417 	ravb_write(ndev,
418 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
419 
420 	/* E-MAC status register clear */
421 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
422 
423 	/* E-MAC interrupt enable register */
424 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
425 }
426 
427 /* Device init function for Ethernet AVB */
428 static int ravb_dmac_init(struct net_device *ndev)
429 {
430 	struct ravb_private *priv = netdev_priv(ndev);
431 	int error;
432 
433 	/* Set CONFIG mode */
434 	error = ravb_config(ndev);
435 	if (error)
436 		return error;
437 
438 	error = ravb_ring_init(ndev, RAVB_BE);
439 	if (error)
440 		return error;
441 	error = ravb_ring_init(ndev, RAVB_NC);
442 	if (error) {
443 		ravb_ring_free(ndev, RAVB_BE);
444 		return error;
445 	}
446 
447 	/* Descriptor format */
448 	ravb_ring_format(ndev, RAVB_BE);
449 	ravb_ring_format(ndev, RAVB_NC);
450 
451 #if defined(__LITTLE_ENDIAN)
452 	ravb_modify(ndev, CCC, CCC_BOC, 0);
453 #else
454 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
455 #endif
456 
457 	/* Set AVB RX */
458 	ravb_write(ndev,
459 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
460 
461 	/* Set FIFO size */
462 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
463 
464 	/* Timestamp enable */
465 	ravb_write(ndev, TCCR_TFEN, TCCR);
466 
467 	/* Interrupt init: */
468 	if (priv->chip_id == RCAR_GEN3) {
469 		/* Clear DIL.DPLx */
470 		ravb_write(ndev, 0, DIL);
471 		/* Set queue specific interrupt */
472 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
473 	}
474 	/* Frame receive */
475 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
476 	/* Disable FIFO full warning */
477 	ravb_write(ndev, 0, RIC1);
478 	/* Receive FIFO full error, descriptor empty */
479 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
480 	/* Frame transmitted, timestamp FIFO updated */
481 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
482 
483 	/* Setting the control will start the AVB-DMAC process. */
484 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
485 
486 	return 0;
487 }
488 
489 static void ravb_get_tx_tstamp(struct net_device *ndev)
490 {
491 	struct ravb_private *priv = netdev_priv(ndev);
492 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
493 	struct skb_shared_hwtstamps shhwtstamps;
494 	struct sk_buff *skb;
495 	struct timespec64 ts;
496 	u16 tag, tfa_tag;
497 	int count;
498 	u32 tfa2;
499 
500 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
501 	while (count--) {
502 		tfa2 = ravb_read(ndev, TFA2);
503 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
504 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
505 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
506 			    ravb_read(ndev, TFA1);
507 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
508 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
509 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
510 					 list) {
511 			skb = ts_skb->skb;
512 			tag = ts_skb->tag;
513 			list_del(&ts_skb->list);
514 			kfree(ts_skb);
515 			if (tag == tfa_tag) {
516 				skb_tstamp_tx(skb, &shhwtstamps);
517 				break;
518 			}
519 		}
520 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
521 	}
522 }
523 
524 static void ravb_rx_csum(struct sk_buff *skb)
525 {
526 	u8 *hw_csum;
527 
528 	/* The hardware checksum is 2 bytes appended to packet data */
529 	if (unlikely(skb->len < 2))
530 		return;
531 	hw_csum = skb_tail_pointer(skb) - 2;
532 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
533 	skb->ip_summed = CHECKSUM_COMPLETE;
534 	skb_trim(skb, skb->len - 2);
535 }
536 
537 /* Packet receive function for Ethernet AVB */
538 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
539 {
540 	struct ravb_private *priv = netdev_priv(ndev);
541 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
542 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
543 			priv->cur_rx[q];
544 	struct net_device_stats *stats = &priv->stats[q];
545 	struct ravb_ex_rx_desc *desc;
546 	struct sk_buff *skb;
547 	dma_addr_t dma_addr;
548 	struct timespec64 ts;
549 	u8  desc_status;
550 	u16 pkt_len;
551 	int limit;
552 
553 	boguscnt = min(boguscnt, *quota);
554 	limit = boguscnt;
555 	desc = &priv->rx_ring[q][entry];
556 	while (desc->die_dt != DT_FEMPTY) {
557 		/* Descriptor type must be checked before all other reads */
558 		dma_rmb();
559 		desc_status = desc->msc;
560 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
561 
562 		if (--boguscnt < 0)
563 			break;
564 
565 		/* We use 0-byte descriptors to mark the DMA mapping errors */
566 		if (!pkt_len)
567 			continue;
568 
569 		if (desc_status & MSC_MC)
570 			stats->multicast++;
571 
572 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
573 				   MSC_CEEF)) {
574 			stats->rx_errors++;
575 			if (desc_status & MSC_CRC)
576 				stats->rx_crc_errors++;
577 			if (desc_status & MSC_RFE)
578 				stats->rx_frame_errors++;
579 			if (desc_status & (MSC_RTLF | MSC_RTSF))
580 				stats->rx_length_errors++;
581 			if (desc_status & MSC_CEEF)
582 				stats->rx_missed_errors++;
583 		} else {
584 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
585 
586 			skb = priv->rx_skb[q][entry];
587 			priv->rx_skb[q][entry] = NULL;
588 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
589 					 priv->rx_buf_sz,
590 					 DMA_FROM_DEVICE);
591 			get_ts &= (q == RAVB_NC) ?
592 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
593 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
594 			if (get_ts) {
595 				struct skb_shared_hwtstamps *shhwtstamps;
596 
597 				shhwtstamps = skb_hwtstamps(skb);
598 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
599 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
600 					     32) | le32_to_cpu(desc->ts_sl);
601 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
602 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
603 			}
604 
605 			skb_put(skb, pkt_len);
606 			skb->protocol = eth_type_trans(skb, ndev);
607 			if (ndev->features & NETIF_F_RXCSUM)
608 				ravb_rx_csum(skb);
609 			napi_gro_receive(&priv->napi[q], skb);
610 			stats->rx_packets++;
611 			stats->rx_bytes += pkt_len;
612 		}
613 
614 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
615 		desc = &priv->rx_ring[q][entry];
616 	}
617 
618 	/* Refill the RX ring buffers. */
619 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
620 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
621 		desc = &priv->rx_ring[q][entry];
622 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
623 
624 		if (!priv->rx_skb[q][entry]) {
625 			skb = netdev_alloc_skb(ndev,
626 					       priv->rx_buf_sz +
627 					       RAVB_ALIGN - 1);
628 			if (!skb)
629 				break;	/* Better luck next round. */
630 			ravb_set_buffer_align(skb);
631 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
632 						  le16_to_cpu(desc->ds_cc),
633 						  DMA_FROM_DEVICE);
634 			skb_checksum_none_assert(skb);
635 			/* We just set the data size to 0 for a failed mapping
636 			 * which should prevent DMA  from happening...
637 			 */
638 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
639 				desc->ds_cc = cpu_to_le16(0);
640 			desc->dptr = cpu_to_le32(dma_addr);
641 			priv->rx_skb[q][entry] = skb;
642 		}
643 		/* Descriptor type must be set after all the above writes */
644 		dma_wmb();
645 		desc->die_dt = DT_FEMPTY;
646 	}
647 
648 	*quota -= limit - (++boguscnt);
649 
650 	return boguscnt <= 0;
651 }
652 
653 static void ravb_rcv_snd_disable(struct net_device *ndev)
654 {
655 	/* Disable TX and RX */
656 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
657 }
658 
659 static void ravb_rcv_snd_enable(struct net_device *ndev)
660 {
661 	/* Enable TX and RX */
662 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
663 }
664 
665 /* function for waiting dma process finished */
666 static int ravb_stop_dma(struct net_device *ndev)
667 {
668 	int error;
669 
670 	/* Wait for stopping the hardware TX process */
671 	error = ravb_wait(ndev, TCCR,
672 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
673 	if (error)
674 		return error;
675 
676 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
677 			  0);
678 	if (error)
679 		return error;
680 
681 	/* Stop the E-MAC's RX/TX processes. */
682 	ravb_rcv_snd_disable(ndev);
683 
684 	/* Wait for stopping the RX DMA process */
685 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
686 	if (error)
687 		return error;
688 
689 	/* Stop AVB-DMAC process */
690 	return ravb_config(ndev);
691 }
692 
693 /* E-MAC interrupt handler */
694 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
695 {
696 	struct ravb_private *priv = netdev_priv(ndev);
697 	u32 ecsr, psr;
698 
699 	ecsr = ravb_read(ndev, ECSR);
700 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
701 
702 	if (ecsr & ECSR_MPD)
703 		pm_wakeup_event(&priv->pdev->dev, 0);
704 	if (ecsr & ECSR_ICD)
705 		ndev->stats.tx_carrier_errors++;
706 	if (ecsr & ECSR_LCHNG) {
707 		/* Link changed */
708 		if (priv->no_avb_link)
709 			return;
710 		psr = ravb_read(ndev, PSR);
711 		if (priv->avb_link_active_low)
712 			psr ^= PSR_LMON;
713 		if (!(psr & PSR_LMON)) {
714 			/* DIsable RX and TX */
715 			ravb_rcv_snd_disable(ndev);
716 		} else {
717 			/* Enable RX and TX */
718 			ravb_rcv_snd_enable(ndev);
719 		}
720 	}
721 }
722 
723 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
724 {
725 	struct net_device *ndev = dev_id;
726 	struct ravb_private *priv = netdev_priv(ndev);
727 
728 	spin_lock(&priv->lock);
729 	ravb_emac_interrupt_unlocked(ndev);
730 	mmiowb();
731 	spin_unlock(&priv->lock);
732 	return IRQ_HANDLED;
733 }
734 
735 /* Error interrupt handler */
736 static void ravb_error_interrupt(struct net_device *ndev)
737 {
738 	struct ravb_private *priv = netdev_priv(ndev);
739 	u32 eis, ris2;
740 
741 	eis = ravb_read(ndev, EIS);
742 	ravb_write(ndev, ~EIS_QFS, EIS);
743 	if (eis & EIS_QFS) {
744 		ris2 = ravb_read(ndev, RIS2);
745 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
746 
747 		/* Receive Descriptor Empty int */
748 		if (ris2 & RIS2_QFF0)
749 			priv->stats[RAVB_BE].rx_over_errors++;
750 
751 		    /* Receive Descriptor Empty int */
752 		if (ris2 & RIS2_QFF1)
753 			priv->stats[RAVB_NC].rx_over_errors++;
754 
755 		/* Receive FIFO Overflow int */
756 		if (ris2 & RIS2_RFFF)
757 			priv->rx_fifo_errors++;
758 	}
759 }
760 
761 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
762 {
763 	struct ravb_private *priv = netdev_priv(ndev);
764 	u32 ris0 = ravb_read(ndev, RIS0);
765 	u32 ric0 = ravb_read(ndev, RIC0);
766 	u32 tis  = ravb_read(ndev, TIS);
767 	u32 tic  = ravb_read(ndev, TIC);
768 
769 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
770 		if (napi_schedule_prep(&priv->napi[q])) {
771 			/* Mask RX and TX interrupts */
772 			if (priv->chip_id == RCAR_GEN2) {
773 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
774 				ravb_write(ndev, tic & ~BIT(q), TIC);
775 			} else {
776 				ravb_write(ndev, BIT(q), RID0);
777 				ravb_write(ndev, BIT(q), TID);
778 			}
779 			__napi_schedule(&priv->napi[q]);
780 		} else {
781 			netdev_warn(ndev,
782 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
783 				    ris0, ric0);
784 			netdev_warn(ndev,
785 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
786 				    tis, tic);
787 		}
788 		return true;
789 	}
790 	return false;
791 }
792 
793 static bool ravb_timestamp_interrupt(struct net_device *ndev)
794 {
795 	u32 tis = ravb_read(ndev, TIS);
796 
797 	if (tis & TIS_TFUF) {
798 		ravb_write(ndev, ~TIS_TFUF, TIS);
799 		ravb_get_tx_tstamp(ndev);
800 		return true;
801 	}
802 	return false;
803 }
804 
805 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
806 {
807 	struct net_device *ndev = dev_id;
808 	struct ravb_private *priv = netdev_priv(ndev);
809 	irqreturn_t result = IRQ_NONE;
810 	u32 iss;
811 
812 	spin_lock(&priv->lock);
813 	/* Get interrupt status */
814 	iss = ravb_read(ndev, ISS);
815 
816 	/* Received and transmitted interrupts */
817 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
818 		int q;
819 
820 		/* Timestamp updated */
821 		if (ravb_timestamp_interrupt(ndev))
822 			result = IRQ_HANDLED;
823 
824 		/* Network control and best effort queue RX/TX */
825 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
826 			if (ravb_queue_interrupt(ndev, q))
827 				result = IRQ_HANDLED;
828 		}
829 	}
830 
831 	/* E-MAC status summary */
832 	if (iss & ISS_MS) {
833 		ravb_emac_interrupt_unlocked(ndev);
834 		result = IRQ_HANDLED;
835 	}
836 
837 	/* Error status summary */
838 	if (iss & ISS_ES) {
839 		ravb_error_interrupt(ndev);
840 		result = IRQ_HANDLED;
841 	}
842 
843 	/* gPTP interrupt status summary */
844 	if (iss & ISS_CGIS) {
845 		ravb_ptp_interrupt(ndev);
846 		result = IRQ_HANDLED;
847 	}
848 
849 	mmiowb();
850 	spin_unlock(&priv->lock);
851 	return result;
852 }
853 
854 /* Timestamp/Error/gPTP interrupt handler */
855 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
856 {
857 	struct net_device *ndev = dev_id;
858 	struct ravb_private *priv = netdev_priv(ndev);
859 	irqreturn_t result = IRQ_NONE;
860 	u32 iss;
861 
862 	spin_lock(&priv->lock);
863 	/* Get interrupt status */
864 	iss = ravb_read(ndev, ISS);
865 
866 	/* Timestamp updated */
867 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
868 		result = IRQ_HANDLED;
869 
870 	/* Error status summary */
871 	if (iss & ISS_ES) {
872 		ravb_error_interrupt(ndev);
873 		result = IRQ_HANDLED;
874 	}
875 
876 	/* gPTP interrupt status summary */
877 	if (iss & ISS_CGIS) {
878 		ravb_ptp_interrupt(ndev);
879 		result = IRQ_HANDLED;
880 	}
881 
882 	mmiowb();
883 	spin_unlock(&priv->lock);
884 	return result;
885 }
886 
887 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
888 {
889 	struct net_device *ndev = dev_id;
890 	struct ravb_private *priv = netdev_priv(ndev);
891 	irqreturn_t result = IRQ_NONE;
892 
893 	spin_lock(&priv->lock);
894 
895 	/* Network control/Best effort queue RX/TX */
896 	if (ravb_queue_interrupt(ndev, q))
897 		result = IRQ_HANDLED;
898 
899 	mmiowb();
900 	spin_unlock(&priv->lock);
901 	return result;
902 }
903 
904 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
905 {
906 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
907 }
908 
909 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
910 {
911 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
912 }
913 
914 static int ravb_poll(struct napi_struct *napi, int budget)
915 {
916 	struct net_device *ndev = napi->dev;
917 	struct ravb_private *priv = netdev_priv(ndev);
918 	unsigned long flags;
919 	int q = napi - priv->napi;
920 	int mask = BIT(q);
921 	int quota = budget;
922 	u32 ris0, tis;
923 
924 	for (;;) {
925 		tis = ravb_read(ndev, TIS);
926 		ris0 = ravb_read(ndev, RIS0);
927 		if (!((ris0 & mask) || (tis & mask)))
928 			break;
929 
930 		/* Processing RX Descriptor Ring */
931 		if (ris0 & mask) {
932 			/* Clear RX interrupt */
933 			ravb_write(ndev, ~mask, RIS0);
934 			if (ravb_rx(ndev, &quota, q))
935 				goto out;
936 		}
937 		/* Processing TX Descriptor Ring */
938 		if (tis & mask) {
939 			spin_lock_irqsave(&priv->lock, flags);
940 			/* Clear TX interrupt */
941 			ravb_write(ndev, ~mask, TIS);
942 			ravb_tx_free(ndev, q, true);
943 			netif_wake_subqueue(ndev, q);
944 			mmiowb();
945 			spin_unlock_irqrestore(&priv->lock, flags);
946 		}
947 	}
948 
949 	napi_complete(napi);
950 
951 	/* Re-enable RX/TX interrupts */
952 	spin_lock_irqsave(&priv->lock, flags);
953 	if (priv->chip_id == RCAR_GEN2) {
954 		ravb_modify(ndev, RIC0, mask, mask);
955 		ravb_modify(ndev, TIC,  mask, mask);
956 	} else {
957 		ravb_write(ndev, mask, RIE0);
958 		ravb_write(ndev, mask, TIE);
959 	}
960 	mmiowb();
961 	spin_unlock_irqrestore(&priv->lock, flags);
962 
963 	/* Receive error message handling */
964 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
965 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
966 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
967 		ndev->stats.rx_over_errors = priv->rx_over_errors;
968 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
969 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
970 out:
971 	return budget - quota;
972 }
973 
974 /* PHY state control function */
975 static void ravb_adjust_link(struct net_device *ndev)
976 {
977 	struct ravb_private *priv = netdev_priv(ndev);
978 	struct phy_device *phydev = ndev->phydev;
979 	bool new_state = false;
980 	unsigned long flags;
981 
982 	spin_lock_irqsave(&priv->lock, flags);
983 
984 	/* Disable TX and RX right over here, if E-MAC change is ignored */
985 	if (priv->no_avb_link)
986 		ravb_rcv_snd_disable(ndev);
987 
988 	if (phydev->link) {
989 		if (phydev->duplex != priv->duplex) {
990 			new_state = true;
991 			priv->duplex = phydev->duplex;
992 			ravb_set_duplex(ndev);
993 		}
994 
995 		if (phydev->speed != priv->speed) {
996 			new_state = true;
997 			priv->speed = phydev->speed;
998 			ravb_set_rate(ndev);
999 		}
1000 		if (!priv->link) {
1001 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1002 			new_state = true;
1003 			priv->link = phydev->link;
1004 		}
1005 	} else if (priv->link) {
1006 		new_state = true;
1007 		priv->link = 0;
1008 		priv->speed = 0;
1009 		priv->duplex = -1;
1010 	}
1011 
1012 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1013 	if (priv->no_avb_link && phydev->link)
1014 		ravb_rcv_snd_enable(ndev);
1015 
1016 	mmiowb();
1017 	spin_unlock_irqrestore(&priv->lock, flags);
1018 
1019 	if (new_state && netif_msg_link(priv))
1020 		phy_print_status(phydev);
1021 }
1022 
1023 static const struct soc_device_attribute r8a7795es10[] = {
1024 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1025 	{ /* sentinel */ }
1026 };
1027 
1028 /* PHY init function */
1029 static int ravb_phy_init(struct net_device *ndev)
1030 {
1031 	struct device_node *np = ndev->dev.parent->of_node;
1032 	struct ravb_private *priv = netdev_priv(ndev);
1033 	struct phy_device *phydev;
1034 	struct device_node *pn;
1035 	int err;
1036 
1037 	priv->link = 0;
1038 	priv->speed = 0;
1039 	priv->duplex = -1;
1040 
1041 	/* Try connecting to PHY */
1042 	pn = of_parse_phandle(np, "phy-handle", 0);
1043 	if (!pn) {
1044 		/* In the case of a fixed PHY, the DT node associated
1045 		 * to the PHY is the Ethernet MAC DT node.
1046 		 */
1047 		if (of_phy_is_fixed_link(np)) {
1048 			err = of_phy_register_fixed_link(np);
1049 			if (err)
1050 				return err;
1051 		}
1052 		pn = of_node_get(np);
1053 	}
1054 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1055 				priv->phy_interface);
1056 	of_node_put(pn);
1057 	if (!phydev) {
1058 		netdev_err(ndev, "failed to connect PHY\n");
1059 		err = -ENOENT;
1060 		goto err_deregister_fixed_link;
1061 	}
1062 
1063 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1064 	 * at this time.
1065 	 */
1066 	if (soc_device_match(r8a7795es10)) {
1067 		err = phy_set_max_speed(phydev, SPEED_100);
1068 		if (err) {
1069 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1070 			goto err_phy_disconnect;
1071 		}
1072 
1073 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1074 	}
1075 
1076 	/* 10BASE is not supported */
1077 	phydev->supported &= ~PHY_10BT_FEATURES;
1078 
1079 	phy_attached_info(phydev);
1080 
1081 	return 0;
1082 
1083 err_phy_disconnect:
1084 	phy_disconnect(phydev);
1085 err_deregister_fixed_link:
1086 	if (of_phy_is_fixed_link(np))
1087 		of_phy_deregister_fixed_link(np);
1088 
1089 	return err;
1090 }
1091 
1092 /* PHY control start function */
1093 static int ravb_phy_start(struct net_device *ndev)
1094 {
1095 	int error;
1096 
1097 	error = ravb_phy_init(ndev);
1098 	if (error)
1099 		return error;
1100 
1101 	phy_start(ndev->phydev);
1102 
1103 	return 0;
1104 }
1105 
1106 static u32 ravb_get_msglevel(struct net_device *ndev)
1107 {
1108 	struct ravb_private *priv = netdev_priv(ndev);
1109 
1110 	return priv->msg_enable;
1111 }
1112 
1113 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1114 {
1115 	struct ravb_private *priv = netdev_priv(ndev);
1116 
1117 	priv->msg_enable = value;
1118 }
1119 
1120 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1121 	"rx_queue_0_current",
1122 	"tx_queue_0_current",
1123 	"rx_queue_0_dirty",
1124 	"tx_queue_0_dirty",
1125 	"rx_queue_0_packets",
1126 	"tx_queue_0_packets",
1127 	"rx_queue_0_bytes",
1128 	"tx_queue_0_bytes",
1129 	"rx_queue_0_mcast_packets",
1130 	"rx_queue_0_errors",
1131 	"rx_queue_0_crc_errors",
1132 	"rx_queue_0_frame_errors",
1133 	"rx_queue_0_length_errors",
1134 	"rx_queue_0_missed_errors",
1135 	"rx_queue_0_over_errors",
1136 
1137 	"rx_queue_1_current",
1138 	"tx_queue_1_current",
1139 	"rx_queue_1_dirty",
1140 	"tx_queue_1_dirty",
1141 	"rx_queue_1_packets",
1142 	"tx_queue_1_packets",
1143 	"rx_queue_1_bytes",
1144 	"tx_queue_1_bytes",
1145 	"rx_queue_1_mcast_packets",
1146 	"rx_queue_1_errors",
1147 	"rx_queue_1_crc_errors",
1148 	"rx_queue_1_frame_errors",
1149 	"rx_queue_1_length_errors",
1150 	"rx_queue_1_missed_errors",
1151 	"rx_queue_1_over_errors",
1152 };
1153 
1154 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1155 
1156 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1157 {
1158 	switch (sset) {
1159 	case ETH_SS_STATS:
1160 		return RAVB_STATS_LEN;
1161 	default:
1162 		return -EOPNOTSUPP;
1163 	}
1164 }
1165 
1166 static void ravb_get_ethtool_stats(struct net_device *ndev,
1167 				   struct ethtool_stats *estats, u64 *data)
1168 {
1169 	struct ravb_private *priv = netdev_priv(ndev);
1170 	int i = 0;
1171 	int q;
1172 
1173 	/* Device-specific stats */
1174 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1175 		struct net_device_stats *stats = &priv->stats[q];
1176 
1177 		data[i++] = priv->cur_rx[q];
1178 		data[i++] = priv->cur_tx[q];
1179 		data[i++] = priv->dirty_rx[q];
1180 		data[i++] = priv->dirty_tx[q];
1181 		data[i++] = stats->rx_packets;
1182 		data[i++] = stats->tx_packets;
1183 		data[i++] = stats->rx_bytes;
1184 		data[i++] = stats->tx_bytes;
1185 		data[i++] = stats->multicast;
1186 		data[i++] = stats->rx_errors;
1187 		data[i++] = stats->rx_crc_errors;
1188 		data[i++] = stats->rx_frame_errors;
1189 		data[i++] = stats->rx_length_errors;
1190 		data[i++] = stats->rx_missed_errors;
1191 		data[i++] = stats->rx_over_errors;
1192 	}
1193 }
1194 
1195 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1196 {
1197 	switch (stringset) {
1198 	case ETH_SS_STATS:
1199 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1200 		break;
1201 	}
1202 }
1203 
1204 static void ravb_get_ringparam(struct net_device *ndev,
1205 			       struct ethtool_ringparam *ring)
1206 {
1207 	struct ravb_private *priv = netdev_priv(ndev);
1208 
1209 	ring->rx_max_pending = BE_RX_RING_MAX;
1210 	ring->tx_max_pending = BE_TX_RING_MAX;
1211 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1212 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1213 }
1214 
1215 static int ravb_set_ringparam(struct net_device *ndev,
1216 			      struct ethtool_ringparam *ring)
1217 {
1218 	struct ravb_private *priv = netdev_priv(ndev);
1219 	int error;
1220 
1221 	if (ring->tx_pending > BE_TX_RING_MAX ||
1222 	    ring->rx_pending > BE_RX_RING_MAX ||
1223 	    ring->tx_pending < BE_TX_RING_MIN ||
1224 	    ring->rx_pending < BE_RX_RING_MIN)
1225 		return -EINVAL;
1226 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1227 		return -EINVAL;
1228 
1229 	if (netif_running(ndev)) {
1230 		netif_device_detach(ndev);
1231 		/* Stop PTP Clock driver */
1232 		if (priv->chip_id == RCAR_GEN2)
1233 			ravb_ptp_stop(ndev);
1234 		/* Wait for DMA stopping */
1235 		error = ravb_stop_dma(ndev);
1236 		if (error) {
1237 			netdev_err(ndev,
1238 				   "cannot set ringparam! Any AVB processes are still running?\n");
1239 			return error;
1240 		}
1241 		synchronize_irq(ndev->irq);
1242 
1243 		/* Free all the skb's in the RX queue and the DMA buffers. */
1244 		ravb_ring_free(ndev, RAVB_BE);
1245 		ravb_ring_free(ndev, RAVB_NC);
1246 	}
1247 
1248 	/* Set new parameters */
1249 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1250 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1251 
1252 	if (netif_running(ndev)) {
1253 		error = ravb_dmac_init(ndev);
1254 		if (error) {
1255 			netdev_err(ndev,
1256 				   "%s: ravb_dmac_init() failed, error %d\n",
1257 				   __func__, error);
1258 			return error;
1259 		}
1260 
1261 		ravb_emac_init(ndev);
1262 
1263 		/* Initialise PTP Clock driver */
1264 		if (priv->chip_id == RCAR_GEN2)
1265 			ravb_ptp_init(ndev, priv->pdev);
1266 
1267 		netif_device_attach(ndev);
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int ravb_get_ts_info(struct net_device *ndev,
1274 			    struct ethtool_ts_info *info)
1275 {
1276 	struct ravb_private *priv = netdev_priv(ndev);
1277 
1278 	info->so_timestamping =
1279 		SOF_TIMESTAMPING_TX_SOFTWARE |
1280 		SOF_TIMESTAMPING_RX_SOFTWARE |
1281 		SOF_TIMESTAMPING_SOFTWARE |
1282 		SOF_TIMESTAMPING_TX_HARDWARE |
1283 		SOF_TIMESTAMPING_RX_HARDWARE |
1284 		SOF_TIMESTAMPING_RAW_HARDWARE;
1285 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1286 	info->rx_filters =
1287 		(1 << HWTSTAMP_FILTER_NONE) |
1288 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1289 		(1 << HWTSTAMP_FILTER_ALL);
1290 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1291 
1292 	return 0;
1293 }
1294 
1295 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1296 {
1297 	struct ravb_private *priv = netdev_priv(ndev);
1298 
1299 	wol->supported = WAKE_MAGIC;
1300 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1301 }
1302 
1303 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1304 {
1305 	struct ravb_private *priv = netdev_priv(ndev);
1306 
1307 	if (wol->wolopts & ~WAKE_MAGIC)
1308 		return -EOPNOTSUPP;
1309 
1310 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1311 
1312 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1313 
1314 	return 0;
1315 }
1316 
1317 static const struct ethtool_ops ravb_ethtool_ops = {
1318 	.nway_reset		= phy_ethtool_nway_reset,
1319 	.get_msglevel		= ravb_get_msglevel,
1320 	.set_msglevel		= ravb_set_msglevel,
1321 	.get_link		= ethtool_op_get_link,
1322 	.get_strings		= ravb_get_strings,
1323 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1324 	.get_sset_count		= ravb_get_sset_count,
1325 	.get_ringparam		= ravb_get_ringparam,
1326 	.set_ringparam		= ravb_set_ringparam,
1327 	.get_ts_info		= ravb_get_ts_info,
1328 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1329 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1330 	.get_wol		= ravb_get_wol,
1331 	.set_wol		= ravb_set_wol,
1332 };
1333 
1334 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1335 				struct net_device *ndev, struct device *dev,
1336 				const char *ch)
1337 {
1338 	char *name;
1339 	int error;
1340 
1341 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1342 	if (!name)
1343 		return -ENOMEM;
1344 	error = request_irq(irq, handler, 0, name, ndev);
1345 	if (error)
1346 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1347 
1348 	return error;
1349 }
1350 
1351 /* Network device open function for Ethernet AVB */
1352 static int ravb_open(struct net_device *ndev)
1353 {
1354 	struct ravb_private *priv = netdev_priv(ndev);
1355 	struct platform_device *pdev = priv->pdev;
1356 	struct device *dev = &pdev->dev;
1357 	int error;
1358 
1359 	napi_enable(&priv->napi[RAVB_BE]);
1360 	napi_enable(&priv->napi[RAVB_NC]);
1361 
1362 	if (priv->chip_id == RCAR_GEN2) {
1363 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1364 				    ndev->name, ndev);
1365 		if (error) {
1366 			netdev_err(ndev, "cannot request IRQ\n");
1367 			goto out_napi_off;
1368 		}
1369 	} else {
1370 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1371 				      dev, "ch22:multi");
1372 		if (error)
1373 			goto out_napi_off;
1374 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1375 				      dev, "ch24:emac");
1376 		if (error)
1377 			goto out_free_irq;
1378 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1379 				      ndev, dev, "ch0:rx_be");
1380 		if (error)
1381 			goto out_free_irq_emac;
1382 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1383 				      ndev, dev, "ch18:tx_be");
1384 		if (error)
1385 			goto out_free_irq_be_rx;
1386 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1387 				      ndev, dev, "ch1:rx_nc");
1388 		if (error)
1389 			goto out_free_irq_be_tx;
1390 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1391 				      ndev, dev, "ch19:tx_nc");
1392 		if (error)
1393 			goto out_free_irq_nc_rx;
1394 	}
1395 
1396 	/* Device init */
1397 	error = ravb_dmac_init(ndev);
1398 	if (error)
1399 		goto out_free_irq_nc_tx;
1400 	ravb_emac_init(ndev);
1401 
1402 	/* Initialise PTP Clock driver */
1403 	if (priv->chip_id == RCAR_GEN2)
1404 		ravb_ptp_init(ndev, priv->pdev);
1405 
1406 	netif_tx_start_all_queues(ndev);
1407 
1408 	/* PHY control start */
1409 	error = ravb_phy_start(ndev);
1410 	if (error)
1411 		goto out_ptp_stop;
1412 
1413 	return 0;
1414 
1415 out_ptp_stop:
1416 	/* Stop PTP Clock driver */
1417 	if (priv->chip_id == RCAR_GEN2)
1418 		ravb_ptp_stop(ndev);
1419 out_free_irq_nc_tx:
1420 	if (priv->chip_id == RCAR_GEN2)
1421 		goto out_free_irq;
1422 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1423 out_free_irq_nc_rx:
1424 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1425 out_free_irq_be_tx:
1426 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1427 out_free_irq_be_rx:
1428 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1429 out_free_irq_emac:
1430 	free_irq(priv->emac_irq, ndev);
1431 out_free_irq:
1432 	free_irq(ndev->irq, ndev);
1433 out_napi_off:
1434 	napi_disable(&priv->napi[RAVB_NC]);
1435 	napi_disable(&priv->napi[RAVB_BE]);
1436 	return error;
1437 }
1438 
1439 /* Timeout function for Ethernet AVB */
1440 static void ravb_tx_timeout(struct net_device *ndev)
1441 {
1442 	struct ravb_private *priv = netdev_priv(ndev);
1443 
1444 	netif_err(priv, tx_err, ndev,
1445 		  "transmit timed out, status %08x, resetting...\n",
1446 		  ravb_read(ndev, ISS));
1447 
1448 	/* tx_errors count up */
1449 	ndev->stats.tx_errors++;
1450 
1451 	schedule_work(&priv->work);
1452 }
1453 
1454 static void ravb_tx_timeout_work(struct work_struct *work)
1455 {
1456 	struct ravb_private *priv = container_of(work, struct ravb_private,
1457 						 work);
1458 	struct net_device *ndev = priv->ndev;
1459 
1460 	netif_tx_stop_all_queues(ndev);
1461 
1462 	/* Stop PTP Clock driver */
1463 	if (priv->chip_id == RCAR_GEN2)
1464 		ravb_ptp_stop(ndev);
1465 
1466 	/* Wait for DMA stopping */
1467 	ravb_stop_dma(ndev);
1468 
1469 	ravb_ring_free(ndev, RAVB_BE);
1470 	ravb_ring_free(ndev, RAVB_NC);
1471 
1472 	/* Device init */
1473 	ravb_dmac_init(ndev);
1474 	ravb_emac_init(ndev);
1475 
1476 	/* Initialise PTP Clock driver */
1477 	if (priv->chip_id == RCAR_GEN2)
1478 		ravb_ptp_init(ndev, priv->pdev);
1479 
1480 	netif_tx_start_all_queues(ndev);
1481 }
1482 
1483 /* Packet transmit function for Ethernet AVB */
1484 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1485 {
1486 	struct ravb_private *priv = netdev_priv(ndev);
1487 	u16 q = skb_get_queue_mapping(skb);
1488 	struct ravb_tstamp_skb *ts_skb;
1489 	struct ravb_tx_desc *desc;
1490 	unsigned long flags;
1491 	u32 dma_addr;
1492 	void *buffer;
1493 	u32 entry;
1494 	u32 len;
1495 
1496 	spin_lock_irqsave(&priv->lock, flags);
1497 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1498 	    NUM_TX_DESC) {
1499 		netif_err(priv, tx_queued, ndev,
1500 			  "still transmitting with the full ring!\n");
1501 		netif_stop_subqueue(ndev, q);
1502 		spin_unlock_irqrestore(&priv->lock, flags);
1503 		return NETDEV_TX_BUSY;
1504 	}
1505 
1506 	if (skb_put_padto(skb, ETH_ZLEN))
1507 		goto exit;
1508 
1509 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1510 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1511 
1512 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1513 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1514 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1515 	/* Zero length DMA descriptors are problematic as they seem to
1516 	 * terminate DMA transfers. Avoid them by simply using a length of
1517 	 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1518 	 *
1519 	 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1520 	 * data by the call to skb_put_padto() above this is safe with
1521 	 * respect to both the length of the first DMA descriptor (len)
1522 	 * overflowing the available data and the length of the second DMA
1523 	 * descriptor (skb->len - len) being negative.
1524 	 */
1525 	if (len == 0)
1526 		len = DPTR_ALIGN;
1527 
1528 	memcpy(buffer, skb->data, len);
1529 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1530 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1531 		goto drop;
1532 
1533 	desc = &priv->tx_ring[q][entry];
1534 	desc->ds_tagl = cpu_to_le16(len);
1535 	desc->dptr = cpu_to_le32(dma_addr);
1536 
1537 	buffer = skb->data + len;
1538 	len = skb->len - len;
1539 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1540 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1541 		goto unmap;
1542 
1543 	desc++;
1544 	desc->ds_tagl = cpu_to_le16(len);
1545 	desc->dptr = cpu_to_le32(dma_addr);
1546 
1547 	/* TX timestamp required */
1548 	if (q == RAVB_NC) {
1549 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1550 		if (!ts_skb) {
1551 			desc--;
1552 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1553 					 DMA_TO_DEVICE);
1554 			goto unmap;
1555 		}
1556 		ts_skb->skb = skb;
1557 		ts_skb->tag = priv->ts_skb_tag++;
1558 		priv->ts_skb_tag &= 0x3ff;
1559 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1560 
1561 		/* TAG and timestamp required flag */
1562 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1563 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1564 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1565 	}
1566 
1567 	skb_tx_timestamp(skb);
1568 	/* Descriptor type must be set after all the above writes */
1569 	dma_wmb();
1570 	desc->die_dt = DT_FEND;
1571 	desc--;
1572 	desc->die_dt = DT_FSTART;
1573 
1574 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1575 
1576 	priv->cur_tx[q] += NUM_TX_DESC;
1577 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1578 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
1579 	    !ravb_tx_free(ndev, q, true))
1580 		netif_stop_subqueue(ndev, q);
1581 
1582 exit:
1583 	mmiowb();
1584 	spin_unlock_irqrestore(&priv->lock, flags);
1585 	return NETDEV_TX_OK;
1586 
1587 unmap:
1588 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1589 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1590 drop:
1591 	dev_kfree_skb_any(skb);
1592 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1593 	goto exit;
1594 }
1595 
1596 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1597 			     struct net_device *sb_dev,
1598 			     select_queue_fallback_t fallback)
1599 {
1600 	/* If skb needs TX timestamp, it is handled in network control queue */
1601 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1602 							       RAVB_BE;
1603 
1604 }
1605 
1606 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1607 {
1608 	struct ravb_private *priv = netdev_priv(ndev);
1609 	struct net_device_stats *nstats, *stats0, *stats1;
1610 
1611 	nstats = &ndev->stats;
1612 	stats0 = &priv->stats[RAVB_BE];
1613 	stats1 = &priv->stats[RAVB_NC];
1614 
1615 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1616 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1617 	nstats->collisions += ravb_read(ndev, CDCR);
1618 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1619 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1620 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1621 
1622 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1623 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1624 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1625 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1626 
1627 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1628 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1629 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1630 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1631 	nstats->multicast = stats0->multicast + stats1->multicast;
1632 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1633 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1634 	nstats->rx_frame_errors =
1635 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1636 	nstats->rx_length_errors =
1637 		stats0->rx_length_errors + stats1->rx_length_errors;
1638 	nstats->rx_missed_errors =
1639 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1640 	nstats->rx_over_errors =
1641 		stats0->rx_over_errors + stats1->rx_over_errors;
1642 
1643 	return nstats;
1644 }
1645 
1646 /* Update promiscuous bit */
1647 static void ravb_set_rx_mode(struct net_device *ndev)
1648 {
1649 	struct ravb_private *priv = netdev_priv(ndev);
1650 	unsigned long flags;
1651 
1652 	spin_lock_irqsave(&priv->lock, flags);
1653 	ravb_modify(ndev, ECMR, ECMR_PRM,
1654 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1655 	mmiowb();
1656 	spin_unlock_irqrestore(&priv->lock, flags);
1657 }
1658 
1659 /* Device close function for Ethernet AVB */
1660 static int ravb_close(struct net_device *ndev)
1661 {
1662 	struct device_node *np = ndev->dev.parent->of_node;
1663 	struct ravb_private *priv = netdev_priv(ndev);
1664 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1665 
1666 	netif_tx_stop_all_queues(ndev);
1667 
1668 	/* Disable interrupts by clearing the interrupt masks. */
1669 	ravb_write(ndev, 0, RIC0);
1670 	ravb_write(ndev, 0, RIC2);
1671 	ravb_write(ndev, 0, TIC);
1672 
1673 	/* Stop PTP Clock driver */
1674 	if (priv->chip_id == RCAR_GEN2)
1675 		ravb_ptp_stop(ndev);
1676 
1677 	/* Set the config mode to stop the AVB-DMAC's processes */
1678 	if (ravb_stop_dma(ndev) < 0)
1679 		netdev_err(ndev,
1680 			   "device will be stopped after h/w processes are done.\n");
1681 
1682 	/* Clear the timestamp list */
1683 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1684 		list_del(&ts_skb->list);
1685 		kfree(ts_skb);
1686 	}
1687 
1688 	/* PHY disconnect */
1689 	if (ndev->phydev) {
1690 		phy_stop(ndev->phydev);
1691 		phy_disconnect(ndev->phydev);
1692 		if (of_phy_is_fixed_link(np))
1693 			of_phy_deregister_fixed_link(np);
1694 	}
1695 
1696 	if (priv->chip_id != RCAR_GEN2) {
1697 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1698 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1699 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1700 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1701 		free_irq(priv->emac_irq, ndev);
1702 	}
1703 	free_irq(ndev->irq, ndev);
1704 
1705 	napi_disable(&priv->napi[RAVB_NC]);
1706 	napi_disable(&priv->napi[RAVB_BE]);
1707 
1708 	/* Free all the skb's in the RX queue and the DMA buffers. */
1709 	ravb_ring_free(ndev, RAVB_BE);
1710 	ravb_ring_free(ndev, RAVB_NC);
1711 
1712 	return 0;
1713 }
1714 
1715 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1716 {
1717 	struct ravb_private *priv = netdev_priv(ndev);
1718 	struct hwtstamp_config config;
1719 
1720 	config.flags = 0;
1721 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1722 						HWTSTAMP_TX_OFF;
1723 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1724 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1725 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1726 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1727 	else
1728 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1729 
1730 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1731 		-EFAULT : 0;
1732 }
1733 
1734 /* Control hardware time stamping */
1735 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1736 {
1737 	struct ravb_private *priv = netdev_priv(ndev);
1738 	struct hwtstamp_config config;
1739 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1740 	u32 tstamp_tx_ctrl;
1741 
1742 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1743 		return -EFAULT;
1744 
1745 	/* Reserved for future extensions */
1746 	if (config.flags)
1747 		return -EINVAL;
1748 
1749 	switch (config.tx_type) {
1750 	case HWTSTAMP_TX_OFF:
1751 		tstamp_tx_ctrl = 0;
1752 		break;
1753 	case HWTSTAMP_TX_ON:
1754 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1755 		break;
1756 	default:
1757 		return -ERANGE;
1758 	}
1759 
1760 	switch (config.rx_filter) {
1761 	case HWTSTAMP_FILTER_NONE:
1762 		tstamp_rx_ctrl = 0;
1763 		break;
1764 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1765 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1766 		break;
1767 	default:
1768 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1769 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1770 	}
1771 
1772 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1773 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1774 
1775 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1776 		-EFAULT : 0;
1777 }
1778 
1779 /* ioctl to device function */
1780 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1781 {
1782 	struct phy_device *phydev = ndev->phydev;
1783 
1784 	if (!netif_running(ndev))
1785 		return -EINVAL;
1786 
1787 	if (!phydev)
1788 		return -ENODEV;
1789 
1790 	switch (cmd) {
1791 	case SIOCGHWTSTAMP:
1792 		return ravb_hwtstamp_get(ndev, req);
1793 	case SIOCSHWTSTAMP:
1794 		return ravb_hwtstamp_set(ndev, req);
1795 	}
1796 
1797 	return phy_mii_ioctl(phydev, req, cmd);
1798 }
1799 
1800 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1801 {
1802 	if (netif_running(ndev))
1803 		return -EBUSY;
1804 
1805 	ndev->mtu = new_mtu;
1806 	netdev_update_features(ndev);
1807 
1808 	return 0;
1809 }
1810 
1811 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1812 {
1813 	struct ravb_private *priv = netdev_priv(ndev);
1814 	unsigned long flags;
1815 
1816 	spin_lock_irqsave(&priv->lock, flags);
1817 
1818 	/* Disable TX and RX */
1819 	ravb_rcv_snd_disable(ndev);
1820 
1821 	/* Modify RX Checksum setting */
1822 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1823 
1824 	/* Enable TX and RX */
1825 	ravb_rcv_snd_enable(ndev);
1826 
1827 	spin_unlock_irqrestore(&priv->lock, flags);
1828 }
1829 
1830 static int ravb_set_features(struct net_device *ndev,
1831 			     netdev_features_t features)
1832 {
1833 	netdev_features_t changed = ndev->features ^ features;
1834 
1835 	if (changed & NETIF_F_RXCSUM)
1836 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1837 
1838 	ndev->features = features;
1839 
1840 	return 0;
1841 }
1842 
1843 static const struct net_device_ops ravb_netdev_ops = {
1844 	.ndo_open		= ravb_open,
1845 	.ndo_stop		= ravb_close,
1846 	.ndo_start_xmit		= ravb_start_xmit,
1847 	.ndo_select_queue	= ravb_select_queue,
1848 	.ndo_get_stats		= ravb_get_stats,
1849 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1850 	.ndo_tx_timeout		= ravb_tx_timeout,
1851 	.ndo_do_ioctl		= ravb_do_ioctl,
1852 	.ndo_change_mtu		= ravb_change_mtu,
1853 	.ndo_validate_addr	= eth_validate_addr,
1854 	.ndo_set_mac_address	= eth_mac_addr,
1855 	.ndo_set_features	= ravb_set_features,
1856 };
1857 
1858 /* MDIO bus init function */
1859 static int ravb_mdio_init(struct ravb_private *priv)
1860 {
1861 	struct platform_device *pdev = priv->pdev;
1862 	struct device *dev = &pdev->dev;
1863 	int error;
1864 
1865 	/* Bitbang init */
1866 	priv->mdiobb.ops = &bb_ops;
1867 
1868 	/* MII controller setting */
1869 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1870 	if (!priv->mii_bus)
1871 		return -ENOMEM;
1872 
1873 	/* Hook up MII support for ethtool */
1874 	priv->mii_bus->name = "ravb_mii";
1875 	priv->mii_bus->parent = dev;
1876 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1877 		 pdev->name, pdev->id);
1878 
1879 	/* Register MDIO bus */
1880 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1881 	if (error)
1882 		goto out_free_bus;
1883 
1884 	return 0;
1885 
1886 out_free_bus:
1887 	free_mdio_bitbang(priv->mii_bus);
1888 	return error;
1889 }
1890 
1891 /* MDIO bus release function */
1892 static int ravb_mdio_release(struct ravb_private *priv)
1893 {
1894 	/* Unregister mdio bus */
1895 	mdiobus_unregister(priv->mii_bus);
1896 
1897 	/* Free bitbang info */
1898 	free_mdio_bitbang(priv->mii_bus);
1899 
1900 	return 0;
1901 }
1902 
1903 static const struct of_device_id ravb_match_table[] = {
1904 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1905 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1906 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1907 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1908 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1909 	{ }
1910 };
1911 MODULE_DEVICE_TABLE(of, ravb_match_table);
1912 
1913 static int ravb_set_gti(struct net_device *ndev)
1914 {
1915 	struct ravb_private *priv = netdev_priv(ndev);
1916 	struct device *dev = ndev->dev.parent;
1917 	unsigned long rate;
1918 	uint64_t inc;
1919 
1920 	rate = clk_get_rate(priv->clk);
1921 	if (!rate)
1922 		return -EINVAL;
1923 
1924 	inc = 1000000000ULL << 20;
1925 	do_div(inc, rate);
1926 
1927 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1928 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1929 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1930 		return -EINVAL;
1931 	}
1932 
1933 	ravb_write(ndev, inc, GTI);
1934 
1935 	return 0;
1936 }
1937 
1938 static void ravb_set_config_mode(struct net_device *ndev)
1939 {
1940 	struct ravb_private *priv = netdev_priv(ndev);
1941 
1942 	if (priv->chip_id == RCAR_GEN2) {
1943 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1944 		/* Set CSEL value */
1945 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1946 	} else {
1947 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1948 			    CCC_GAC | CCC_CSEL_HPB);
1949 	}
1950 }
1951 
1952 /* Set tx and rx clock internal delay modes */
1953 static void ravb_set_delay_mode(struct net_device *ndev)
1954 {
1955 	struct ravb_private *priv = netdev_priv(ndev);
1956 	int set = 0;
1957 
1958 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1959 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1960 		set |= APSR_DM_RDM;
1961 
1962 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1963 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1964 		set |= APSR_DM_TDM;
1965 
1966 	ravb_modify(ndev, APSR, APSR_DM, set);
1967 }
1968 
1969 static int ravb_probe(struct platform_device *pdev)
1970 {
1971 	struct device_node *np = pdev->dev.of_node;
1972 	struct ravb_private *priv;
1973 	enum ravb_chip_id chip_id;
1974 	struct net_device *ndev;
1975 	int error, irq, q;
1976 	struct resource *res;
1977 	int i;
1978 
1979 	if (!np) {
1980 		dev_err(&pdev->dev,
1981 			"this driver is required to be instantiated from device tree\n");
1982 		return -EINVAL;
1983 	}
1984 
1985 	/* Get base address */
1986 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1987 	if (!res) {
1988 		dev_err(&pdev->dev, "invalid resource\n");
1989 		return -EINVAL;
1990 	}
1991 
1992 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1993 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1994 	if (!ndev)
1995 		return -ENOMEM;
1996 
1997 	ndev->features = NETIF_F_RXCSUM;
1998 	ndev->hw_features = NETIF_F_RXCSUM;
1999 
2000 	pm_runtime_enable(&pdev->dev);
2001 	pm_runtime_get_sync(&pdev->dev);
2002 
2003 	/* The Ether-specific entries in the device structure. */
2004 	ndev->base_addr = res->start;
2005 
2006 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2007 
2008 	if (chip_id == RCAR_GEN3)
2009 		irq = platform_get_irq_byname(pdev, "ch22");
2010 	else
2011 		irq = platform_get_irq(pdev, 0);
2012 	if (irq < 0) {
2013 		error = irq;
2014 		goto out_release;
2015 	}
2016 	ndev->irq = irq;
2017 
2018 	SET_NETDEV_DEV(ndev, &pdev->dev);
2019 
2020 	priv = netdev_priv(ndev);
2021 	priv->ndev = ndev;
2022 	priv->pdev = pdev;
2023 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2024 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2025 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2026 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2027 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2028 	if (IS_ERR(priv->addr)) {
2029 		error = PTR_ERR(priv->addr);
2030 		goto out_release;
2031 	}
2032 
2033 	spin_lock_init(&priv->lock);
2034 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2035 
2036 	priv->phy_interface = of_get_phy_mode(np);
2037 
2038 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2039 	priv->avb_link_active_low =
2040 		of_property_read_bool(np, "renesas,ether-link-active-low");
2041 
2042 	if (chip_id == RCAR_GEN3) {
2043 		irq = platform_get_irq_byname(pdev, "ch24");
2044 		if (irq < 0) {
2045 			error = irq;
2046 			goto out_release;
2047 		}
2048 		priv->emac_irq = irq;
2049 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2050 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2051 			if (irq < 0) {
2052 				error = irq;
2053 				goto out_release;
2054 			}
2055 			priv->rx_irqs[i] = irq;
2056 		}
2057 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2058 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2059 			if (irq < 0) {
2060 				error = irq;
2061 				goto out_release;
2062 			}
2063 			priv->tx_irqs[i] = irq;
2064 		}
2065 	}
2066 
2067 	priv->chip_id = chip_id;
2068 
2069 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2070 	if (IS_ERR(priv->clk)) {
2071 		error = PTR_ERR(priv->clk);
2072 		goto out_release;
2073 	}
2074 
2075 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2076 	ndev->min_mtu = ETH_MIN_MTU;
2077 
2078 	/* Set function */
2079 	ndev->netdev_ops = &ravb_netdev_ops;
2080 	ndev->ethtool_ops = &ravb_ethtool_ops;
2081 
2082 	/* Set AVB config mode */
2083 	ravb_set_config_mode(ndev);
2084 
2085 	/* Set GTI value */
2086 	error = ravb_set_gti(ndev);
2087 	if (error)
2088 		goto out_release;
2089 
2090 	/* Request GTI loading */
2091 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2092 
2093 	if (priv->chip_id != RCAR_GEN2)
2094 		ravb_set_delay_mode(ndev);
2095 
2096 	/* Allocate descriptor base address table */
2097 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2098 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2099 					    &priv->desc_bat_dma, GFP_KERNEL);
2100 	if (!priv->desc_bat) {
2101 		dev_err(&pdev->dev,
2102 			"Cannot allocate desc base address table (size %d bytes)\n",
2103 			priv->desc_bat_size);
2104 		error = -ENOMEM;
2105 		goto out_release;
2106 	}
2107 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2108 		priv->desc_bat[q].die_dt = DT_EOS;
2109 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2110 
2111 	/* Initialise HW timestamp list */
2112 	INIT_LIST_HEAD(&priv->ts_skb_list);
2113 
2114 	/* Initialise PTP Clock driver */
2115 	if (chip_id != RCAR_GEN2)
2116 		ravb_ptp_init(ndev, pdev);
2117 
2118 	/* Debug message level */
2119 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2120 
2121 	/* Read and set MAC address */
2122 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2123 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2124 		dev_warn(&pdev->dev,
2125 			 "no valid MAC address supplied, using a random one\n");
2126 		eth_hw_addr_random(ndev);
2127 	}
2128 
2129 	/* MDIO bus init */
2130 	error = ravb_mdio_init(priv);
2131 	if (error) {
2132 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2133 		goto out_dma_free;
2134 	}
2135 
2136 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2137 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2138 
2139 	/* Network device register */
2140 	error = register_netdev(ndev);
2141 	if (error)
2142 		goto out_napi_del;
2143 
2144 	device_set_wakeup_capable(&pdev->dev, 1);
2145 
2146 	/* Print device information */
2147 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2148 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2149 
2150 	platform_set_drvdata(pdev, ndev);
2151 
2152 	return 0;
2153 
2154 out_napi_del:
2155 	netif_napi_del(&priv->napi[RAVB_NC]);
2156 	netif_napi_del(&priv->napi[RAVB_BE]);
2157 	ravb_mdio_release(priv);
2158 out_dma_free:
2159 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2160 			  priv->desc_bat_dma);
2161 
2162 	/* Stop PTP Clock driver */
2163 	if (chip_id != RCAR_GEN2)
2164 		ravb_ptp_stop(ndev);
2165 out_release:
2166 	free_netdev(ndev);
2167 
2168 	pm_runtime_put(&pdev->dev);
2169 	pm_runtime_disable(&pdev->dev);
2170 	return error;
2171 }
2172 
2173 static int ravb_remove(struct platform_device *pdev)
2174 {
2175 	struct net_device *ndev = platform_get_drvdata(pdev);
2176 	struct ravb_private *priv = netdev_priv(ndev);
2177 
2178 	/* Stop PTP Clock driver */
2179 	if (priv->chip_id != RCAR_GEN2)
2180 		ravb_ptp_stop(ndev);
2181 
2182 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2183 			  priv->desc_bat_dma);
2184 	/* Set reset mode */
2185 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2186 	pm_runtime_put_sync(&pdev->dev);
2187 	unregister_netdev(ndev);
2188 	netif_napi_del(&priv->napi[RAVB_NC]);
2189 	netif_napi_del(&priv->napi[RAVB_BE]);
2190 	ravb_mdio_release(priv);
2191 	pm_runtime_disable(&pdev->dev);
2192 	free_netdev(ndev);
2193 	platform_set_drvdata(pdev, NULL);
2194 
2195 	return 0;
2196 }
2197 
2198 static int ravb_wol_setup(struct net_device *ndev)
2199 {
2200 	struct ravb_private *priv = netdev_priv(ndev);
2201 
2202 	/* Disable interrupts by clearing the interrupt masks. */
2203 	ravb_write(ndev, 0, RIC0);
2204 	ravb_write(ndev, 0, RIC2);
2205 	ravb_write(ndev, 0, TIC);
2206 
2207 	/* Only allow ECI interrupts */
2208 	synchronize_irq(priv->emac_irq);
2209 	napi_disable(&priv->napi[RAVB_NC]);
2210 	napi_disable(&priv->napi[RAVB_BE]);
2211 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2212 
2213 	/* Enable MagicPacket */
2214 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2215 
2216 	return enable_irq_wake(priv->emac_irq);
2217 }
2218 
2219 static int ravb_wol_restore(struct net_device *ndev)
2220 {
2221 	struct ravb_private *priv = netdev_priv(ndev);
2222 	int ret;
2223 
2224 	napi_enable(&priv->napi[RAVB_NC]);
2225 	napi_enable(&priv->napi[RAVB_BE]);
2226 
2227 	/* Disable MagicPacket */
2228 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2229 
2230 	ret = ravb_close(ndev);
2231 	if (ret < 0)
2232 		return ret;
2233 
2234 	return disable_irq_wake(priv->emac_irq);
2235 }
2236 
2237 static int __maybe_unused ravb_suspend(struct device *dev)
2238 {
2239 	struct net_device *ndev = dev_get_drvdata(dev);
2240 	struct ravb_private *priv = netdev_priv(ndev);
2241 	int ret;
2242 
2243 	if (!netif_running(ndev))
2244 		return 0;
2245 
2246 	netif_device_detach(ndev);
2247 
2248 	if (priv->wol_enabled)
2249 		ret = ravb_wol_setup(ndev);
2250 	else
2251 		ret = ravb_close(ndev);
2252 
2253 	return ret;
2254 }
2255 
2256 static int __maybe_unused ravb_resume(struct device *dev)
2257 {
2258 	struct net_device *ndev = dev_get_drvdata(dev);
2259 	struct ravb_private *priv = netdev_priv(ndev);
2260 	int ret = 0;
2261 
2262 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2263 	if (priv->wol_enabled)
2264 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2265 
2266 	/* All register have been reset to default values.
2267 	 * Restore all registers which where setup at probe time and
2268 	 * reopen device if it was running before system suspended.
2269 	 */
2270 
2271 	/* Set AVB config mode */
2272 	ravb_set_config_mode(ndev);
2273 
2274 	/* Set GTI value */
2275 	ret = ravb_set_gti(ndev);
2276 	if (ret)
2277 		return ret;
2278 
2279 	/* Request GTI loading */
2280 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2281 
2282 	if (priv->chip_id != RCAR_GEN2)
2283 		ravb_set_delay_mode(ndev);
2284 
2285 	/* Restore descriptor base address table */
2286 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2287 
2288 	if (netif_running(ndev)) {
2289 		if (priv->wol_enabled) {
2290 			ret = ravb_wol_restore(ndev);
2291 			if (ret)
2292 				return ret;
2293 		}
2294 		ret = ravb_open(ndev);
2295 		if (ret < 0)
2296 			return ret;
2297 		netif_device_attach(ndev);
2298 	}
2299 
2300 	return ret;
2301 }
2302 
2303 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2304 {
2305 	/* Runtime PM callback shared between ->runtime_suspend()
2306 	 * and ->runtime_resume(). Simply returns success.
2307 	 *
2308 	 * This driver re-initializes all registers after
2309 	 * pm_runtime_get_sync() anyway so there is no need
2310 	 * to save and restore registers here.
2311 	 */
2312 	return 0;
2313 }
2314 
2315 static const struct dev_pm_ops ravb_dev_pm_ops = {
2316 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2317 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2318 };
2319 
2320 static struct platform_driver ravb_driver = {
2321 	.probe		= ravb_probe,
2322 	.remove		= ravb_remove,
2323 	.driver = {
2324 		.name	= "ravb",
2325 		.pm	= &ravb_dev_pm_ops,
2326 		.of_match_table = ravb_match_table,
2327 	},
2328 };
2329 
2330 module_platform_driver(ravb_driver);
2331 
2332 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2333 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2334 MODULE_LICENSE("GPL v2");
2335