1 /* Renesas Ethernet AVB device driver
2  *
3  * Copyright (C) 2014-2015 Renesas Electronics Corporation
4  * Copyright (C) 2015 Renesas Solutions Corp.
5  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6  *
7  * Based on the SuperH Ethernet driver
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License version 2,
11  * as published by the Free Software Foundation.
12  */
13 
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 #include <asm/div64.h>
36 
37 #include "ravb.h"
38 
39 #define RAVB_DEF_MSG_ENABLE \
40 		(NETIF_MSG_LINK	  | \
41 		 NETIF_MSG_TIMER  | \
42 		 NETIF_MSG_RX_ERR | \
43 		 NETIF_MSG_TX_ERR)
44 
45 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
46 	"ch0", /* RAVB_BE */
47 	"ch1", /* RAVB_NC */
48 };
49 
50 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
51 	"ch18", /* RAVB_BE */
52 	"ch19", /* RAVB_NC */
53 };
54 
55 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
56 		 u32 set)
57 {
58 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
59 }
60 
61 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
62 {
63 	int i;
64 
65 	for (i = 0; i < 10000; i++) {
66 		if ((ravb_read(ndev, reg) & mask) == value)
67 			return 0;
68 		udelay(10);
69 	}
70 	return -ETIMEDOUT;
71 }
72 
73 static int ravb_config(struct net_device *ndev)
74 {
75 	int error;
76 
77 	/* Set config mode */
78 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
79 	/* Check if the operating mode is changed to the config mode */
80 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
81 	if (error)
82 		netdev_err(ndev, "failed to switch device to config mode\n");
83 
84 	return error;
85 }
86 
87 static void ravb_set_duplex(struct net_device *ndev)
88 {
89 	struct ravb_private *priv = netdev_priv(ndev);
90 
91 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
92 }
93 
94 static void ravb_set_rate(struct net_device *ndev)
95 {
96 	struct ravb_private *priv = netdev_priv(ndev);
97 
98 	switch (priv->speed) {
99 	case 100:		/* 100BASE */
100 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
101 		break;
102 	case 1000:		/* 1000BASE */
103 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
104 		break;
105 	}
106 }
107 
108 static void ravb_set_buffer_align(struct sk_buff *skb)
109 {
110 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
111 
112 	if (reserve)
113 		skb_reserve(skb, RAVB_ALIGN - reserve);
114 }
115 
116 /* Get MAC address from the MAC address registers
117  *
118  * Ethernet AVB device doesn't have ROM for MAC address.
119  * This function gets the MAC address that was used by a bootloader.
120  */
121 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
122 {
123 	if (mac) {
124 		ether_addr_copy(ndev->dev_addr, mac);
125 	} else {
126 		u32 mahr = ravb_read(ndev, MAHR);
127 		u32 malr = ravb_read(ndev, MALR);
128 
129 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
130 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
131 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
132 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
133 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
134 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
135 	}
136 }
137 
138 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
139 {
140 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
141 						 mdiobb);
142 
143 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
144 }
145 
146 /* MDC pin control */
147 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
148 {
149 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
150 }
151 
152 /* Data I/O pin control */
153 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
154 {
155 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
156 }
157 
158 /* Set data bit */
159 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
160 {
161 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
162 }
163 
164 /* Get data bit */
165 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
166 {
167 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
168 						 mdiobb);
169 
170 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
171 }
172 
173 /* MDIO bus control struct */
174 static struct mdiobb_ops bb_ops = {
175 	.owner = THIS_MODULE,
176 	.set_mdc = ravb_set_mdc,
177 	.set_mdio_dir = ravb_set_mdio_dir,
178 	.set_mdio_data = ravb_set_mdio_data,
179 	.get_mdio_data = ravb_get_mdio_data,
180 };
181 
182 /* Free skb's and DMA buffers for Ethernet AVB */
183 static void ravb_ring_free(struct net_device *ndev, int q)
184 {
185 	struct ravb_private *priv = netdev_priv(ndev);
186 	int ring_size;
187 	int i;
188 
189 	/* Free RX skb ringbuffer */
190 	if (priv->rx_skb[q]) {
191 		for (i = 0; i < priv->num_rx_ring[q]; i++)
192 			dev_kfree_skb(priv->rx_skb[q][i]);
193 	}
194 	kfree(priv->rx_skb[q]);
195 	priv->rx_skb[q] = NULL;
196 
197 	/* Free TX skb ringbuffer */
198 	if (priv->tx_skb[q]) {
199 		for (i = 0; i < priv->num_tx_ring[q]; i++)
200 			dev_kfree_skb(priv->tx_skb[q][i]);
201 	}
202 	kfree(priv->tx_skb[q]);
203 	priv->tx_skb[q] = NULL;
204 
205 	/* Free aligned TX buffers */
206 	kfree(priv->tx_align[q]);
207 	priv->tx_align[q] = NULL;
208 
209 	if (priv->rx_ring[q]) {
210 		ring_size = sizeof(struct ravb_ex_rx_desc) *
211 			    (priv->num_rx_ring[q] + 1);
212 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
213 				  priv->rx_desc_dma[q]);
214 		priv->rx_ring[q] = NULL;
215 	}
216 
217 	if (priv->tx_ring[q]) {
218 		ring_size = sizeof(struct ravb_tx_desc) *
219 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
220 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
221 				  priv->tx_desc_dma[q]);
222 		priv->tx_ring[q] = NULL;
223 	}
224 }
225 
226 /* Format skb and descriptor buffer for Ethernet AVB */
227 static void ravb_ring_format(struct net_device *ndev, int q)
228 {
229 	struct ravb_private *priv = netdev_priv(ndev);
230 	struct ravb_ex_rx_desc *rx_desc;
231 	struct ravb_tx_desc *tx_desc;
232 	struct ravb_desc *desc;
233 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
234 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
235 			   NUM_TX_DESC;
236 	dma_addr_t dma_addr;
237 	int i;
238 
239 	priv->cur_rx[q] = 0;
240 	priv->cur_tx[q] = 0;
241 	priv->dirty_rx[q] = 0;
242 	priv->dirty_tx[q] = 0;
243 
244 	memset(priv->rx_ring[q], 0, rx_ring_size);
245 	/* Build RX ring buffer */
246 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
247 		/* RX descriptor */
248 		rx_desc = &priv->rx_ring[q][i];
249 		rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
250 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
251 					  PKT_BUF_SZ,
252 					  DMA_FROM_DEVICE);
253 		/* We just set the data size to 0 for a failed mapping which
254 		 * should prevent DMA from happening...
255 		 */
256 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
257 			rx_desc->ds_cc = cpu_to_le16(0);
258 		rx_desc->dptr = cpu_to_le32(dma_addr);
259 		rx_desc->die_dt = DT_FEMPTY;
260 	}
261 	rx_desc = &priv->rx_ring[q][i];
262 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
263 	rx_desc->die_dt = DT_LINKFIX; /* type */
264 
265 	memset(priv->tx_ring[q], 0, tx_ring_size);
266 	/* Build TX ring buffer */
267 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
268 	     i++, tx_desc++) {
269 		tx_desc->die_dt = DT_EEMPTY;
270 		tx_desc++;
271 		tx_desc->die_dt = DT_EEMPTY;
272 	}
273 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
274 	tx_desc->die_dt = DT_LINKFIX; /* type */
275 
276 	/* RX descriptor base address for best effort */
277 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
278 	desc->die_dt = DT_LINKFIX; /* type */
279 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
280 
281 	/* TX descriptor base address for best effort */
282 	desc = &priv->desc_bat[q];
283 	desc->die_dt = DT_LINKFIX; /* type */
284 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
285 }
286 
287 /* Init skb and descriptor buffer for Ethernet AVB */
288 static int ravb_ring_init(struct net_device *ndev, int q)
289 {
290 	struct ravb_private *priv = netdev_priv(ndev);
291 	struct sk_buff *skb;
292 	int ring_size;
293 	int i;
294 
295 	/* Allocate RX and TX skb rings */
296 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
297 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
298 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
299 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
300 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
301 		goto error;
302 
303 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
304 		skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
305 		if (!skb)
306 			goto error;
307 		ravb_set_buffer_align(skb);
308 		priv->rx_skb[q][i] = skb;
309 	}
310 
311 	/* Allocate rings for the aligned buffers */
312 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
313 				    DPTR_ALIGN - 1, GFP_KERNEL);
314 	if (!priv->tx_align[q])
315 		goto error;
316 
317 	/* Allocate all RX descriptors. */
318 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
319 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
320 					      &priv->rx_desc_dma[q],
321 					      GFP_KERNEL);
322 	if (!priv->rx_ring[q])
323 		goto error;
324 
325 	priv->dirty_rx[q] = 0;
326 
327 	/* Allocate all TX descriptors. */
328 	ring_size = sizeof(struct ravb_tx_desc) *
329 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
330 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
331 					      &priv->tx_desc_dma[q],
332 					      GFP_KERNEL);
333 	if (!priv->tx_ring[q])
334 		goto error;
335 
336 	return 0;
337 
338 error:
339 	ravb_ring_free(ndev, q);
340 
341 	return -ENOMEM;
342 }
343 
344 /* E-MAC init function */
345 static void ravb_emac_init(struct net_device *ndev)
346 {
347 	struct ravb_private *priv = netdev_priv(ndev);
348 
349 	/* Receive frame limit set register */
350 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
351 
352 	/* PAUSE prohibition */
353 	ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
354 		   ECMR_TE | ECMR_RE, ECMR);
355 
356 	ravb_set_rate(ndev);
357 
358 	/* Set MAC address */
359 	ravb_write(ndev,
360 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
361 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
362 	ravb_write(ndev,
363 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
364 
365 	ravb_write(ndev, 1, MPR);
366 
367 	/* E-MAC status register clear */
368 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
369 
370 	/* E-MAC interrupt enable register */
371 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
372 }
373 
374 /* Device init function for Ethernet AVB */
375 static int ravb_dmac_init(struct net_device *ndev)
376 {
377 	struct ravb_private *priv = netdev_priv(ndev);
378 	int error;
379 
380 	/* Set CONFIG mode */
381 	error = ravb_config(ndev);
382 	if (error)
383 		return error;
384 
385 	error = ravb_ring_init(ndev, RAVB_BE);
386 	if (error)
387 		return error;
388 	error = ravb_ring_init(ndev, RAVB_NC);
389 	if (error) {
390 		ravb_ring_free(ndev, RAVB_BE);
391 		return error;
392 	}
393 
394 	/* Descriptor format */
395 	ravb_ring_format(ndev, RAVB_BE);
396 	ravb_ring_format(ndev, RAVB_NC);
397 
398 #if defined(__LITTLE_ENDIAN)
399 	ravb_modify(ndev, CCC, CCC_BOC, 0);
400 #else
401 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
402 #endif
403 
404 	/* Set AVB RX */
405 	ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
406 
407 	/* Set FIFO size */
408 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
409 
410 	/* Timestamp enable */
411 	ravb_write(ndev, TCCR_TFEN, TCCR);
412 
413 	/* Interrupt init: */
414 	if (priv->chip_id == RCAR_GEN3) {
415 		/* Clear DIL.DPLx */
416 		ravb_write(ndev, 0, DIL);
417 		/* Set queue specific interrupt */
418 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
419 	}
420 	/* Frame receive */
421 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
422 	/* Disable FIFO full warning */
423 	ravb_write(ndev, 0, RIC1);
424 	/* Receive FIFO full error, descriptor empty */
425 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
426 	/* Frame transmitted, timestamp FIFO updated */
427 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
428 
429 	/* Setting the control will start the AVB-DMAC process. */
430 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
431 
432 	return 0;
433 }
434 
435 /* Free TX skb function for AVB-IP */
436 static int ravb_tx_free(struct net_device *ndev, int q)
437 {
438 	struct ravb_private *priv = netdev_priv(ndev);
439 	struct net_device_stats *stats = &priv->stats[q];
440 	struct ravb_tx_desc *desc;
441 	int free_num = 0;
442 	int entry;
443 	u32 size;
444 
445 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
446 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
447 					     NUM_TX_DESC);
448 		desc = &priv->tx_ring[q][entry];
449 		if (desc->die_dt != DT_FEMPTY)
450 			break;
451 		/* Descriptor type must be checked before all other reads */
452 		dma_rmb();
453 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
454 		/* Free the original skb. */
455 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
456 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
457 					 size, DMA_TO_DEVICE);
458 			/* Last packet descriptor? */
459 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
460 				entry /= NUM_TX_DESC;
461 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
462 				priv->tx_skb[q][entry] = NULL;
463 				stats->tx_packets++;
464 			}
465 			free_num++;
466 		}
467 		stats->tx_bytes += size;
468 		desc->die_dt = DT_EEMPTY;
469 	}
470 	return free_num;
471 }
472 
473 static void ravb_get_tx_tstamp(struct net_device *ndev)
474 {
475 	struct ravb_private *priv = netdev_priv(ndev);
476 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
477 	struct skb_shared_hwtstamps shhwtstamps;
478 	struct sk_buff *skb;
479 	struct timespec64 ts;
480 	u16 tag, tfa_tag;
481 	int count;
482 	u32 tfa2;
483 
484 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
485 	while (count--) {
486 		tfa2 = ravb_read(ndev, TFA2);
487 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
488 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
489 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
490 			    ravb_read(ndev, TFA1);
491 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
492 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
493 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
494 					 list) {
495 			skb = ts_skb->skb;
496 			tag = ts_skb->tag;
497 			list_del(&ts_skb->list);
498 			kfree(ts_skb);
499 			if (tag == tfa_tag) {
500 				skb_tstamp_tx(skb, &shhwtstamps);
501 				break;
502 			}
503 		}
504 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
505 	}
506 }
507 
508 /* Packet receive function for Ethernet AVB */
509 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
510 {
511 	struct ravb_private *priv = netdev_priv(ndev);
512 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
513 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
514 			priv->cur_rx[q];
515 	struct net_device_stats *stats = &priv->stats[q];
516 	struct ravb_ex_rx_desc *desc;
517 	struct sk_buff *skb;
518 	dma_addr_t dma_addr;
519 	struct timespec64 ts;
520 	u8  desc_status;
521 	u16 pkt_len;
522 	int limit;
523 
524 	boguscnt = min(boguscnt, *quota);
525 	limit = boguscnt;
526 	desc = &priv->rx_ring[q][entry];
527 	while (desc->die_dt != DT_FEMPTY) {
528 		/* Descriptor type must be checked before all other reads */
529 		dma_rmb();
530 		desc_status = desc->msc;
531 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
532 
533 		if (--boguscnt < 0)
534 			break;
535 
536 		/* We use 0-byte descriptors to mark the DMA mapping errors */
537 		if (!pkt_len)
538 			continue;
539 
540 		if (desc_status & MSC_MC)
541 			stats->multicast++;
542 
543 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
544 				   MSC_CEEF)) {
545 			stats->rx_errors++;
546 			if (desc_status & MSC_CRC)
547 				stats->rx_crc_errors++;
548 			if (desc_status & MSC_RFE)
549 				stats->rx_frame_errors++;
550 			if (desc_status & (MSC_RTLF | MSC_RTSF))
551 				stats->rx_length_errors++;
552 			if (desc_status & MSC_CEEF)
553 				stats->rx_missed_errors++;
554 		} else {
555 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
556 
557 			skb = priv->rx_skb[q][entry];
558 			priv->rx_skb[q][entry] = NULL;
559 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
560 					 PKT_BUF_SZ,
561 					 DMA_FROM_DEVICE);
562 			get_ts &= (q == RAVB_NC) ?
563 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
564 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
565 			if (get_ts) {
566 				struct skb_shared_hwtstamps *shhwtstamps;
567 
568 				shhwtstamps = skb_hwtstamps(skb);
569 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
570 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
571 					     32) | le32_to_cpu(desc->ts_sl);
572 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
573 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
574 			}
575 			skb_put(skb, pkt_len);
576 			skb->protocol = eth_type_trans(skb, ndev);
577 			napi_gro_receive(&priv->napi[q], skb);
578 			stats->rx_packets++;
579 			stats->rx_bytes += pkt_len;
580 		}
581 
582 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
583 		desc = &priv->rx_ring[q][entry];
584 	}
585 
586 	/* Refill the RX ring buffers. */
587 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
588 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
589 		desc = &priv->rx_ring[q][entry];
590 		desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
591 
592 		if (!priv->rx_skb[q][entry]) {
593 			skb = netdev_alloc_skb(ndev,
594 					       PKT_BUF_SZ + RAVB_ALIGN - 1);
595 			if (!skb)
596 				break;	/* Better luck next round. */
597 			ravb_set_buffer_align(skb);
598 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
599 						  le16_to_cpu(desc->ds_cc),
600 						  DMA_FROM_DEVICE);
601 			skb_checksum_none_assert(skb);
602 			/* We just set the data size to 0 for a failed mapping
603 			 * which should prevent DMA  from happening...
604 			 */
605 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
606 				desc->ds_cc = cpu_to_le16(0);
607 			desc->dptr = cpu_to_le32(dma_addr);
608 			priv->rx_skb[q][entry] = skb;
609 		}
610 		/* Descriptor type must be set after all the above writes */
611 		dma_wmb();
612 		desc->die_dt = DT_FEMPTY;
613 	}
614 
615 	*quota -= limit - (++boguscnt);
616 
617 	return boguscnt <= 0;
618 }
619 
620 static void ravb_rcv_snd_disable(struct net_device *ndev)
621 {
622 	/* Disable TX and RX */
623 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
624 }
625 
626 static void ravb_rcv_snd_enable(struct net_device *ndev)
627 {
628 	/* Enable TX and RX */
629 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
630 }
631 
632 /* function for waiting dma process finished */
633 static int ravb_stop_dma(struct net_device *ndev)
634 {
635 	int error;
636 
637 	/* Wait for stopping the hardware TX process */
638 	error = ravb_wait(ndev, TCCR,
639 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
640 	if (error)
641 		return error;
642 
643 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
644 			  0);
645 	if (error)
646 		return error;
647 
648 	/* Stop the E-MAC's RX/TX processes. */
649 	ravb_rcv_snd_disable(ndev);
650 
651 	/* Wait for stopping the RX DMA process */
652 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
653 	if (error)
654 		return error;
655 
656 	/* Stop AVB-DMAC process */
657 	return ravb_config(ndev);
658 }
659 
660 /* E-MAC interrupt handler */
661 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
662 {
663 	struct ravb_private *priv = netdev_priv(ndev);
664 	u32 ecsr, psr;
665 
666 	ecsr = ravb_read(ndev, ECSR);
667 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
668 	if (ecsr & ECSR_ICD)
669 		ndev->stats.tx_carrier_errors++;
670 	if (ecsr & ECSR_LCHNG) {
671 		/* Link changed */
672 		if (priv->no_avb_link)
673 			return;
674 		psr = ravb_read(ndev, PSR);
675 		if (priv->avb_link_active_low)
676 			psr ^= PSR_LMON;
677 		if (!(psr & PSR_LMON)) {
678 			/* DIsable RX and TX */
679 			ravb_rcv_snd_disable(ndev);
680 		} else {
681 			/* Enable RX and TX */
682 			ravb_rcv_snd_enable(ndev);
683 		}
684 	}
685 }
686 
687 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
688 {
689 	struct net_device *ndev = dev_id;
690 	struct ravb_private *priv = netdev_priv(ndev);
691 
692 	spin_lock(&priv->lock);
693 	ravb_emac_interrupt_unlocked(ndev);
694 	mmiowb();
695 	spin_unlock(&priv->lock);
696 	return IRQ_HANDLED;
697 }
698 
699 /* Error interrupt handler */
700 static void ravb_error_interrupt(struct net_device *ndev)
701 {
702 	struct ravb_private *priv = netdev_priv(ndev);
703 	u32 eis, ris2;
704 
705 	eis = ravb_read(ndev, EIS);
706 	ravb_write(ndev, ~EIS_QFS, EIS);
707 	if (eis & EIS_QFS) {
708 		ris2 = ravb_read(ndev, RIS2);
709 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
710 
711 		/* Receive Descriptor Empty int */
712 		if (ris2 & RIS2_QFF0)
713 			priv->stats[RAVB_BE].rx_over_errors++;
714 
715 		    /* Receive Descriptor Empty int */
716 		if (ris2 & RIS2_QFF1)
717 			priv->stats[RAVB_NC].rx_over_errors++;
718 
719 		/* Receive FIFO Overflow int */
720 		if (ris2 & RIS2_RFFF)
721 			priv->rx_fifo_errors++;
722 	}
723 }
724 
725 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
726 {
727 	struct ravb_private *priv = netdev_priv(ndev);
728 	u32 ris0 = ravb_read(ndev, RIS0);
729 	u32 ric0 = ravb_read(ndev, RIC0);
730 	u32 tis  = ravb_read(ndev, TIS);
731 	u32 tic  = ravb_read(ndev, TIC);
732 
733 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
734 		if (napi_schedule_prep(&priv->napi[q])) {
735 			/* Mask RX and TX interrupts */
736 			if (priv->chip_id == RCAR_GEN2) {
737 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
738 				ravb_write(ndev, tic & ~BIT(q), TIC);
739 			} else {
740 				ravb_write(ndev, BIT(q), RID0);
741 				ravb_write(ndev, BIT(q), TID);
742 			}
743 			__napi_schedule(&priv->napi[q]);
744 		} else {
745 			netdev_warn(ndev,
746 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
747 				    ris0, ric0);
748 			netdev_warn(ndev,
749 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
750 				    tis, tic);
751 		}
752 		return true;
753 	}
754 	return false;
755 }
756 
757 static bool ravb_timestamp_interrupt(struct net_device *ndev)
758 {
759 	u32 tis = ravb_read(ndev, TIS);
760 
761 	if (tis & TIS_TFUF) {
762 		ravb_write(ndev, ~TIS_TFUF, TIS);
763 		ravb_get_tx_tstamp(ndev);
764 		return true;
765 	}
766 	return false;
767 }
768 
769 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
770 {
771 	struct net_device *ndev = dev_id;
772 	struct ravb_private *priv = netdev_priv(ndev);
773 	irqreturn_t result = IRQ_NONE;
774 	u32 iss;
775 
776 	spin_lock(&priv->lock);
777 	/* Get interrupt status */
778 	iss = ravb_read(ndev, ISS);
779 
780 	/* Received and transmitted interrupts */
781 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
782 		int q;
783 
784 		/* Timestamp updated */
785 		if (ravb_timestamp_interrupt(ndev))
786 			result = IRQ_HANDLED;
787 
788 		/* Network control and best effort queue RX/TX */
789 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
790 			if (ravb_queue_interrupt(ndev, q))
791 				result = IRQ_HANDLED;
792 		}
793 	}
794 
795 	/* E-MAC status summary */
796 	if (iss & ISS_MS) {
797 		ravb_emac_interrupt_unlocked(ndev);
798 		result = IRQ_HANDLED;
799 	}
800 
801 	/* Error status summary */
802 	if (iss & ISS_ES) {
803 		ravb_error_interrupt(ndev);
804 		result = IRQ_HANDLED;
805 	}
806 
807 	/* gPTP interrupt status summary */
808 	if (iss & ISS_CGIS) {
809 		ravb_ptp_interrupt(ndev);
810 		result = IRQ_HANDLED;
811 	}
812 
813 	mmiowb();
814 	spin_unlock(&priv->lock);
815 	return result;
816 }
817 
818 /* Timestamp/Error/gPTP interrupt handler */
819 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
820 {
821 	struct net_device *ndev = dev_id;
822 	struct ravb_private *priv = netdev_priv(ndev);
823 	irqreturn_t result = IRQ_NONE;
824 	u32 iss;
825 
826 	spin_lock(&priv->lock);
827 	/* Get interrupt status */
828 	iss = ravb_read(ndev, ISS);
829 
830 	/* Timestamp updated */
831 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
832 		result = IRQ_HANDLED;
833 
834 	/* Error status summary */
835 	if (iss & ISS_ES) {
836 		ravb_error_interrupt(ndev);
837 		result = IRQ_HANDLED;
838 	}
839 
840 	/* gPTP interrupt status summary */
841 	if (iss & ISS_CGIS) {
842 		ravb_ptp_interrupt(ndev);
843 		result = IRQ_HANDLED;
844 	}
845 
846 	mmiowb();
847 	spin_unlock(&priv->lock);
848 	return result;
849 }
850 
851 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
852 {
853 	struct net_device *ndev = dev_id;
854 	struct ravb_private *priv = netdev_priv(ndev);
855 	irqreturn_t result = IRQ_NONE;
856 
857 	spin_lock(&priv->lock);
858 
859 	/* Network control/Best effort queue RX/TX */
860 	if (ravb_queue_interrupt(ndev, q))
861 		result = IRQ_HANDLED;
862 
863 	mmiowb();
864 	spin_unlock(&priv->lock);
865 	return result;
866 }
867 
868 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
869 {
870 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
871 }
872 
873 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
874 {
875 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
876 }
877 
878 static int ravb_poll(struct napi_struct *napi, int budget)
879 {
880 	struct net_device *ndev = napi->dev;
881 	struct ravb_private *priv = netdev_priv(ndev);
882 	unsigned long flags;
883 	int q = napi - priv->napi;
884 	int mask = BIT(q);
885 	int quota = budget;
886 	u32 ris0, tis;
887 
888 	for (;;) {
889 		tis = ravb_read(ndev, TIS);
890 		ris0 = ravb_read(ndev, RIS0);
891 		if (!((ris0 & mask) || (tis & mask)))
892 			break;
893 
894 		/* Processing RX Descriptor Ring */
895 		if (ris0 & mask) {
896 			/* Clear RX interrupt */
897 			ravb_write(ndev, ~mask, RIS0);
898 			if (ravb_rx(ndev, &quota, q))
899 				goto out;
900 		}
901 		/* Processing TX Descriptor Ring */
902 		if (tis & mask) {
903 			spin_lock_irqsave(&priv->lock, flags);
904 			/* Clear TX interrupt */
905 			ravb_write(ndev, ~mask, TIS);
906 			ravb_tx_free(ndev, q);
907 			netif_wake_subqueue(ndev, q);
908 			mmiowb();
909 			spin_unlock_irqrestore(&priv->lock, flags);
910 		}
911 	}
912 
913 	napi_complete(napi);
914 
915 	/* Re-enable RX/TX interrupts */
916 	spin_lock_irqsave(&priv->lock, flags);
917 	if (priv->chip_id == RCAR_GEN2) {
918 		ravb_modify(ndev, RIC0, mask, mask);
919 		ravb_modify(ndev, TIC,  mask, mask);
920 	} else {
921 		ravb_write(ndev, mask, RIE0);
922 		ravb_write(ndev, mask, TIE);
923 	}
924 	mmiowb();
925 	spin_unlock_irqrestore(&priv->lock, flags);
926 
927 	/* Receive error message handling */
928 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
929 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
930 	if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
931 		ndev->stats.rx_over_errors = priv->rx_over_errors;
932 		netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
933 	}
934 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
935 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
936 		netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
937 	}
938 out:
939 	return budget - quota;
940 }
941 
942 /* PHY state control function */
943 static void ravb_adjust_link(struct net_device *ndev)
944 {
945 	struct ravb_private *priv = netdev_priv(ndev);
946 	struct phy_device *phydev = priv->phydev;
947 	bool new_state = false;
948 
949 	if (phydev->link) {
950 		if (phydev->duplex != priv->duplex) {
951 			new_state = true;
952 			priv->duplex = phydev->duplex;
953 			ravb_set_duplex(ndev);
954 		}
955 
956 		if (phydev->speed != priv->speed) {
957 			new_state = true;
958 			priv->speed = phydev->speed;
959 			ravb_set_rate(ndev);
960 		}
961 		if (!priv->link) {
962 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
963 			new_state = true;
964 			priv->link = phydev->link;
965 			if (priv->no_avb_link)
966 				ravb_rcv_snd_enable(ndev);
967 		}
968 	} else if (priv->link) {
969 		new_state = true;
970 		priv->link = 0;
971 		priv->speed = 0;
972 		priv->duplex = -1;
973 		if (priv->no_avb_link)
974 			ravb_rcv_snd_disable(ndev);
975 	}
976 
977 	if (new_state && netif_msg_link(priv))
978 		phy_print_status(phydev);
979 }
980 
981 /* PHY init function */
982 static int ravb_phy_init(struct net_device *ndev)
983 {
984 	struct device_node *np = ndev->dev.parent->of_node;
985 	struct ravb_private *priv = netdev_priv(ndev);
986 	struct phy_device *phydev;
987 	struct device_node *pn;
988 	int err;
989 
990 	priv->link = 0;
991 	priv->speed = 0;
992 	priv->duplex = -1;
993 
994 	/* Try connecting to PHY */
995 	pn = of_parse_phandle(np, "phy-handle", 0);
996 	if (!pn) {
997 		/* In the case of a fixed PHY, the DT node associated
998 		 * to the PHY is the Ethernet MAC DT node.
999 		 */
1000 		if (of_phy_is_fixed_link(np)) {
1001 			err = of_phy_register_fixed_link(np);
1002 			if (err)
1003 				return err;
1004 		}
1005 		pn = of_node_get(np);
1006 	}
1007 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1008 				priv->phy_interface);
1009 	if (!phydev) {
1010 		netdev_err(ndev, "failed to connect PHY\n");
1011 		return -ENOENT;
1012 	}
1013 
1014 	/* This driver only support 10/100Mbit speeds on Gen3
1015 	 * at this time.
1016 	 */
1017 	if (priv->chip_id == RCAR_GEN3) {
1018 		int err;
1019 
1020 		err = phy_set_max_speed(phydev, SPEED_100);
1021 		if (err) {
1022 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1023 			phy_disconnect(phydev);
1024 			return err;
1025 		}
1026 
1027 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1028 	}
1029 
1030 	/* 10BASE is not supported */
1031 	phydev->supported &= ~PHY_10BT_FEATURES;
1032 
1033 	phy_attached_info(phydev);
1034 
1035 	priv->phydev = phydev;
1036 
1037 	return 0;
1038 }
1039 
1040 /* PHY control start function */
1041 static int ravb_phy_start(struct net_device *ndev)
1042 {
1043 	struct ravb_private *priv = netdev_priv(ndev);
1044 	int error;
1045 
1046 	error = ravb_phy_init(ndev);
1047 	if (error)
1048 		return error;
1049 
1050 	phy_start(priv->phydev);
1051 
1052 	return 0;
1053 }
1054 
1055 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1056 {
1057 	struct ravb_private *priv = netdev_priv(ndev);
1058 	int error = -ENODEV;
1059 	unsigned long flags;
1060 
1061 	if (priv->phydev) {
1062 		spin_lock_irqsave(&priv->lock, flags);
1063 		error = phy_ethtool_gset(priv->phydev, ecmd);
1064 		spin_unlock_irqrestore(&priv->lock, flags);
1065 	}
1066 
1067 	return error;
1068 }
1069 
1070 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1071 {
1072 	struct ravb_private *priv = netdev_priv(ndev);
1073 	unsigned long flags;
1074 	int error;
1075 
1076 	if (!priv->phydev)
1077 		return -ENODEV;
1078 
1079 	spin_lock_irqsave(&priv->lock, flags);
1080 
1081 	/* Disable TX and RX */
1082 	ravb_rcv_snd_disable(ndev);
1083 
1084 	error = phy_ethtool_sset(priv->phydev, ecmd);
1085 	if (error)
1086 		goto error_exit;
1087 
1088 	if (ecmd->duplex == DUPLEX_FULL)
1089 		priv->duplex = 1;
1090 	else
1091 		priv->duplex = 0;
1092 
1093 	ravb_set_duplex(ndev);
1094 
1095 error_exit:
1096 	mdelay(1);
1097 
1098 	/* Enable TX and RX */
1099 	ravb_rcv_snd_enable(ndev);
1100 
1101 	mmiowb();
1102 	spin_unlock_irqrestore(&priv->lock, flags);
1103 
1104 	return error;
1105 }
1106 
1107 static int ravb_nway_reset(struct net_device *ndev)
1108 {
1109 	struct ravb_private *priv = netdev_priv(ndev);
1110 	int error = -ENODEV;
1111 	unsigned long flags;
1112 
1113 	if (priv->phydev) {
1114 		spin_lock_irqsave(&priv->lock, flags);
1115 		error = phy_start_aneg(priv->phydev);
1116 		spin_unlock_irqrestore(&priv->lock, flags);
1117 	}
1118 
1119 	return error;
1120 }
1121 
1122 static u32 ravb_get_msglevel(struct net_device *ndev)
1123 {
1124 	struct ravb_private *priv = netdev_priv(ndev);
1125 
1126 	return priv->msg_enable;
1127 }
1128 
1129 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1130 {
1131 	struct ravb_private *priv = netdev_priv(ndev);
1132 
1133 	priv->msg_enable = value;
1134 }
1135 
1136 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1137 	"rx_queue_0_current",
1138 	"tx_queue_0_current",
1139 	"rx_queue_0_dirty",
1140 	"tx_queue_0_dirty",
1141 	"rx_queue_0_packets",
1142 	"tx_queue_0_packets",
1143 	"rx_queue_0_bytes",
1144 	"tx_queue_0_bytes",
1145 	"rx_queue_0_mcast_packets",
1146 	"rx_queue_0_errors",
1147 	"rx_queue_0_crc_errors",
1148 	"rx_queue_0_frame_errors",
1149 	"rx_queue_0_length_errors",
1150 	"rx_queue_0_missed_errors",
1151 	"rx_queue_0_over_errors",
1152 
1153 	"rx_queue_1_current",
1154 	"tx_queue_1_current",
1155 	"rx_queue_1_dirty",
1156 	"tx_queue_1_dirty",
1157 	"rx_queue_1_packets",
1158 	"tx_queue_1_packets",
1159 	"rx_queue_1_bytes",
1160 	"tx_queue_1_bytes",
1161 	"rx_queue_1_mcast_packets",
1162 	"rx_queue_1_errors",
1163 	"rx_queue_1_crc_errors",
1164 	"rx_queue_1_frame_errors",
1165 	"rx_queue_1_length_errors",
1166 	"rx_queue_1_missed_errors",
1167 	"rx_queue_1_over_errors",
1168 };
1169 
1170 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1171 
1172 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1173 {
1174 	switch (sset) {
1175 	case ETH_SS_STATS:
1176 		return RAVB_STATS_LEN;
1177 	default:
1178 		return -EOPNOTSUPP;
1179 	}
1180 }
1181 
1182 static void ravb_get_ethtool_stats(struct net_device *ndev,
1183 				   struct ethtool_stats *stats, u64 *data)
1184 {
1185 	struct ravb_private *priv = netdev_priv(ndev);
1186 	int i = 0;
1187 	int q;
1188 
1189 	/* Device-specific stats */
1190 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1191 		struct net_device_stats *stats = &priv->stats[q];
1192 
1193 		data[i++] = priv->cur_rx[q];
1194 		data[i++] = priv->cur_tx[q];
1195 		data[i++] = priv->dirty_rx[q];
1196 		data[i++] = priv->dirty_tx[q];
1197 		data[i++] = stats->rx_packets;
1198 		data[i++] = stats->tx_packets;
1199 		data[i++] = stats->rx_bytes;
1200 		data[i++] = stats->tx_bytes;
1201 		data[i++] = stats->multicast;
1202 		data[i++] = stats->rx_errors;
1203 		data[i++] = stats->rx_crc_errors;
1204 		data[i++] = stats->rx_frame_errors;
1205 		data[i++] = stats->rx_length_errors;
1206 		data[i++] = stats->rx_missed_errors;
1207 		data[i++] = stats->rx_over_errors;
1208 	}
1209 }
1210 
1211 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1212 {
1213 	switch (stringset) {
1214 	case ETH_SS_STATS:
1215 		memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1216 		break;
1217 	}
1218 }
1219 
1220 static void ravb_get_ringparam(struct net_device *ndev,
1221 			       struct ethtool_ringparam *ring)
1222 {
1223 	struct ravb_private *priv = netdev_priv(ndev);
1224 
1225 	ring->rx_max_pending = BE_RX_RING_MAX;
1226 	ring->tx_max_pending = BE_TX_RING_MAX;
1227 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1228 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1229 }
1230 
1231 static int ravb_set_ringparam(struct net_device *ndev,
1232 			      struct ethtool_ringparam *ring)
1233 {
1234 	struct ravb_private *priv = netdev_priv(ndev);
1235 	int error;
1236 
1237 	if (ring->tx_pending > BE_TX_RING_MAX ||
1238 	    ring->rx_pending > BE_RX_RING_MAX ||
1239 	    ring->tx_pending < BE_TX_RING_MIN ||
1240 	    ring->rx_pending < BE_RX_RING_MIN)
1241 		return -EINVAL;
1242 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1243 		return -EINVAL;
1244 
1245 	if (netif_running(ndev)) {
1246 		netif_device_detach(ndev);
1247 		/* Stop PTP Clock driver */
1248 		if (priv->chip_id == RCAR_GEN2)
1249 			ravb_ptp_stop(ndev);
1250 		/* Wait for DMA stopping */
1251 		error = ravb_stop_dma(ndev);
1252 		if (error) {
1253 			netdev_err(ndev,
1254 				   "cannot set ringparam! Any AVB processes are still running?\n");
1255 			return error;
1256 		}
1257 		synchronize_irq(ndev->irq);
1258 
1259 		/* Free all the skb's in the RX queue and the DMA buffers. */
1260 		ravb_ring_free(ndev, RAVB_BE);
1261 		ravb_ring_free(ndev, RAVB_NC);
1262 	}
1263 
1264 	/* Set new parameters */
1265 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1266 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1267 
1268 	if (netif_running(ndev)) {
1269 		error = ravb_dmac_init(ndev);
1270 		if (error) {
1271 			netdev_err(ndev,
1272 				   "%s: ravb_dmac_init() failed, error %d\n",
1273 				   __func__, error);
1274 			return error;
1275 		}
1276 
1277 		ravb_emac_init(ndev);
1278 
1279 		/* Initialise PTP Clock driver */
1280 		if (priv->chip_id == RCAR_GEN2)
1281 			ravb_ptp_init(ndev, priv->pdev);
1282 
1283 		netif_device_attach(ndev);
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int ravb_get_ts_info(struct net_device *ndev,
1290 			    struct ethtool_ts_info *info)
1291 {
1292 	struct ravb_private *priv = netdev_priv(ndev);
1293 
1294 	info->so_timestamping =
1295 		SOF_TIMESTAMPING_TX_SOFTWARE |
1296 		SOF_TIMESTAMPING_RX_SOFTWARE |
1297 		SOF_TIMESTAMPING_SOFTWARE |
1298 		SOF_TIMESTAMPING_TX_HARDWARE |
1299 		SOF_TIMESTAMPING_RX_HARDWARE |
1300 		SOF_TIMESTAMPING_RAW_HARDWARE;
1301 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1302 	info->rx_filters =
1303 		(1 << HWTSTAMP_FILTER_NONE) |
1304 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1305 		(1 << HWTSTAMP_FILTER_ALL);
1306 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1307 
1308 	return 0;
1309 }
1310 
1311 static const struct ethtool_ops ravb_ethtool_ops = {
1312 	.get_settings		= ravb_get_settings,
1313 	.set_settings		= ravb_set_settings,
1314 	.nway_reset		= ravb_nway_reset,
1315 	.get_msglevel		= ravb_get_msglevel,
1316 	.set_msglevel		= ravb_set_msglevel,
1317 	.get_link		= ethtool_op_get_link,
1318 	.get_strings		= ravb_get_strings,
1319 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1320 	.get_sset_count		= ravb_get_sset_count,
1321 	.get_ringparam		= ravb_get_ringparam,
1322 	.set_ringparam		= ravb_set_ringparam,
1323 	.get_ts_info		= ravb_get_ts_info,
1324 };
1325 
1326 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1327 				struct net_device *ndev, struct device *dev,
1328 				const char *ch)
1329 {
1330 	char *name;
1331 	int error;
1332 
1333 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1334 	if (!name)
1335 		return -ENOMEM;
1336 	error = request_irq(irq, handler, 0, name, ndev);
1337 	if (error)
1338 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1339 
1340 	return error;
1341 }
1342 
1343 /* Network device open function for Ethernet AVB */
1344 static int ravb_open(struct net_device *ndev)
1345 {
1346 	struct ravb_private *priv = netdev_priv(ndev);
1347 	struct platform_device *pdev = priv->pdev;
1348 	struct device *dev = &pdev->dev;
1349 	int error;
1350 
1351 	napi_enable(&priv->napi[RAVB_BE]);
1352 	napi_enable(&priv->napi[RAVB_NC]);
1353 
1354 	if (priv->chip_id == RCAR_GEN2) {
1355 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1356 				    ndev->name, ndev);
1357 		if (error) {
1358 			netdev_err(ndev, "cannot request IRQ\n");
1359 			goto out_napi_off;
1360 		}
1361 	} else {
1362 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1363 				      dev, "ch22:multi");
1364 		if (error)
1365 			goto out_napi_off;
1366 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1367 				      dev, "ch24:emac");
1368 		if (error)
1369 			goto out_free_irq;
1370 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1371 				      ndev, dev, "ch0:rx_be");
1372 		if (error)
1373 			goto out_free_irq_emac;
1374 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1375 				      ndev, dev, "ch18:tx_be");
1376 		if (error)
1377 			goto out_free_irq_be_rx;
1378 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1379 				      ndev, dev, "ch1:rx_nc");
1380 		if (error)
1381 			goto out_free_irq_be_tx;
1382 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1383 				      ndev, dev, "ch19:tx_nc");
1384 		if (error)
1385 			goto out_free_irq_nc_rx;
1386 	}
1387 
1388 	/* Device init */
1389 	error = ravb_dmac_init(ndev);
1390 	if (error)
1391 		goto out_free_irq_nc_tx;
1392 	ravb_emac_init(ndev);
1393 
1394 	/* Initialise PTP Clock driver */
1395 	if (priv->chip_id == RCAR_GEN2)
1396 		ravb_ptp_init(ndev, priv->pdev);
1397 
1398 	netif_tx_start_all_queues(ndev);
1399 
1400 	/* PHY control start */
1401 	error = ravb_phy_start(ndev);
1402 	if (error)
1403 		goto out_ptp_stop;
1404 
1405 	return 0;
1406 
1407 out_ptp_stop:
1408 	/* Stop PTP Clock driver */
1409 	if (priv->chip_id == RCAR_GEN2)
1410 		ravb_ptp_stop(ndev);
1411 out_free_irq_nc_tx:
1412 	if (priv->chip_id == RCAR_GEN2)
1413 		goto out_free_irq;
1414 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1415 out_free_irq_nc_rx:
1416 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1417 out_free_irq_be_tx:
1418 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1419 out_free_irq_be_rx:
1420 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1421 out_free_irq_emac:
1422 	free_irq(priv->emac_irq, ndev);
1423 out_free_irq:
1424 	free_irq(ndev->irq, ndev);
1425 out_napi_off:
1426 	napi_disable(&priv->napi[RAVB_NC]);
1427 	napi_disable(&priv->napi[RAVB_BE]);
1428 	return error;
1429 }
1430 
1431 /* Timeout function for Ethernet AVB */
1432 static void ravb_tx_timeout(struct net_device *ndev)
1433 {
1434 	struct ravb_private *priv = netdev_priv(ndev);
1435 
1436 	netif_err(priv, tx_err, ndev,
1437 		  "transmit timed out, status %08x, resetting...\n",
1438 		  ravb_read(ndev, ISS));
1439 
1440 	/* tx_errors count up */
1441 	ndev->stats.tx_errors++;
1442 
1443 	schedule_work(&priv->work);
1444 }
1445 
1446 static void ravb_tx_timeout_work(struct work_struct *work)
1447 {
1448 	struct ravb_private *priv = container_of(work, struct ravb_private,
1449 						 work);
1450 	struct net_device *ndev = priv->ndev;
1451 
1452 	netif_tx_stop_all_queues(ndev);
1453 
1454 	/* Stop PTP Clock driver */
1455 	if (priv->chip_id == RCAR_GEN2)
1456 		ravb_ptp_stop(ndev);
1457 
1458 	/* Wait for DMA stopping */
1459 	ravb_stop_dma(ndev);
1460 
1461 	ravb_ring_free(ndev, RAVB_BE);
1462 	ravb_ring_free(ndev, RAVB_NC);
1463 
1464 	/* Device init */
1465 	ravb_dmac_init(ndev);
1466 	ravb_emac_init(ndev);
1467 
1468 	/* Initialise PTP Clock driver */
1469 	if (priv->chip_id == RCAR_GEN2)
1470 		ravb_ptp_init(ndev, priv->pdev);
1471 
1472 	netif_tx_start_all_queues(ndev);
1473 }
1474 
1475 /* Packet transmit function for Ethernet AVB */
1476 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1477 {
1478 	struct ravb_private *priv = netdev_priv(ndev);
1479 	u16 q = skb_get_queue_mapping(skb);
1480 	struct ravb_tstamp_skb *ts_skb;
1481 	struct ravb_tx_desc *desc;
1482 	unsigned long flags;
1483 	u32 dma_addr;
1484 	void *buffer;
1485 	u32 entry;
1486 	u32 len;
1487 
1488 	spin_lock_irqsave(&priv->lock, flags);
1489 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1490 	    NUM_TX_DESC) {
1491 		netif_err(priv, tx_queued, ndev,
1492 			  "still transmitting with the full ring!\n");
1493 		netif_stop_subqueue(ndev, q);
1494 		spin_unlock_irqrestore(&priv->lock, flags);
1495 		return NETDEV_TX_BUSY;
1496 	}
1497 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1498 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1499 
1500 	if (skb_put_padto(skb, ETH_ZLEN))
1501 		goto drop;
1502 
1503 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1504 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1505 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1506 	memcpy(buffer, skb->data, len);
1507 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1508 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1509 		goto drop;
1510 
1511 	desc = &priv->tx_ring[q][entry];
1512 	desc->ds_tagl = cpu_to_le16(len);
1513 	desc->dptr = cpu_to_le32(dma_addr);
1514 
1515 	buffer = skb->data + len;
1516 	len = skb->len - len;
1517 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1518 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1519 		goto unmap;
1520 
1521 	desc++;
1522 	desc->ds_tagl = cpu_to_le16(len);
1523 	desc->dptr = cpu_to_le32(dma_addr);
1524 
1525 	/* TX timestamp required */
1526 	if (q == RAVB_NC) {
1527 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1528 		if (!ts_skb) {
1529 			desc--;
1530 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1531 					 DMA_TO_DEVICE);
1532 			goto unmap;
1533 		}
1534 		ts_skb->skb = skb;
1535 		ts_skb->tag = priv->ts_skb_tag++;
1536 		priv->ts_skb_tag &= 0x3ff;
1537 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1538 
1539 		/* TAG and timestamp required flag */
1540 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1541 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1542 		desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1543 	}
1544 
1545 	skb_tx_timestamp(skb);
1546 	/* Descriptor type must be set after all the above writes */
1547 	dma_wmb();
1548 	desc->die_dt = DT_FEND;
1549 	desc--;
1550 	desc->die_dt = DT_FSTART;
1551 
1552 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1553 
1554 	priv->cur_tx[q] += NUM_TX_DESC;
1555 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1556 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1557 		netif_stop_subqueue(ndev, q);
1558 
1559 exit:
1560 	mmiowb();
1561 	spin_unlock_irqrestore(&priv->lock, flags);
1562 	return NETDEV_TX_OK;
1563 
1564 unmap:
1565 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1566 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1567 drop:
1568 	dev_kfree_skb_any(skb);
1569 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1570 	goto exit;
1571 }
1572 
1573 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1574 			     void *accel_priv, select_queue_fallback_t fallback)
1575 {
1576 	/* If skb needs TX timestamp, it is handled in network control queue */
1577 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1578 							       RAVB_BE;
1579 
1580 }
1581 
1582 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1583 {
1584 	struct ravb_private *priv = netdev_priv(ndev);
1585 	struct net_device_stats *nstats, *stats0, *stats1;
1586 
1587 	nstats = &ndev->stats;
1588 	stats0 = &priv->stats[RAVB_BE];
1589 	stats1 = &priv->stats[RAVB_NC];
1590 
1591 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1592 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1593 	nstats->collisions += ravb_read(ndev, CDCR);
1594 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1595 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1596 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1597 
1598 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1599 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1600 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1601 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1602 
1603 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1604 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1605 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1606 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1607 	nstats->multicast = stats0->multicast + stats1->multicast;
1608 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1609 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1610 	nstats->rx_frame_errors =
1611 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1612 	nstats->rx_length_errors =
1613 		stats0->rx_length_errors + stats1->rx_length_errors;
1614 	nstats->rx_missed_errors =
1615 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1616 	nstats->rx_over_errors =
1617 		stats0->rx_over_errors + stats1->rx_over_errors;
1618 
1619 	return nstats;
1620 }
1621 
1622 /* Update promiscuous bit */
1623 static void ravb_set_rx_mode(struct net_device *ndev)
1624 {
1625 	struct ravb_private *priv = netdev_priv(ndev);
1626 	unsigned long flags;
1627 
1628 	spin_lock_irqsave(&priv->lock, flags);
1629 	ravb_modify(ndev, ECMR, ECMR_PRM,
1630 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1631 	mmiowb();
1632 	spin_unlock_irqrestore(&priv->lock, flags);
1633 }
1634 
1635 /* Device close function for Ethernet AVB */
1636 static int ravb_close(struct net_device *ndev)
1637 {
1638 	struct ravb_private *priv = netdev_priv(ndev);
1639 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1640 
1641 	netif_tx_stop_all_queues(ndev);
1642 
1643 	/* Disable interrupts by clearing the interrupt masks. */
1644 	ravb_write(ndev, 0, RIC0);
1645 	ravb_write(ndev, 0, RIC2);
1646 	ravb_write(ndev, 0, TIC);
1647 
1648 	/* Stop PTP Clock driver */
1649 	if (priv->chip_id == RCAR_GEN2)
1650 		ravb_ptp_stop(ndev);
1651 
1652 	/* Set the config mode to stop the AVB-DMAC's processes */
1653 	if (ravb_stop_dma(ndev) < 0)
1654 		netdev_err(ndev,
1655 			   "device will be stopped after h/w processes are done.\n");
1656 
1657 	/* Clear the timestamp list */
1658 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1659 		list_del(&ts_skb->list);
1660 		kfree(ts_skb);
1661 	}
1662 
1663 	/* PHY disconnect */
1664 	if (priv->phydev) {
1665 		phy_stop(priv->phydev);
1666 		phy_disconnect(priv->phydev);
1667 		priv->phydev = NULL;
1668 	}
1669 
1670 	if (priv->chip_id != RCAR_GEN2) {
1671 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1672 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1673 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1674 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1675 		free_irq(priv->emac_irq, ndev);
1676 	}
1677 	free_irq(ndev->irq, ndev);
1678 
1679 	napi_disable(&priv->napi[RAVB_NC]);
1680 	napi_disable(&priv->napi[RAVB_BE]);
1681 
1682 	/* Free all the skb's in the RX queue and the DMA buffers. */
1683 	ravb_ring_free(ndev, RAVB_BE);
1684 	ravb_ring_free(ndev, RAVB_NC);
1685 
1686 	return 0;
1687 }
1688 
1689 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1690 {
1691 	struct ravb_private *priv = netdev_priv(ndev);
1692 	struct hwtstamp_config config;
1693 
1694 	config.flags = 0;
1695 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1696 						HWTSTAMP_TX_OFF;
1697 	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1698 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1699 	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1700 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1701 	else
1702 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1703 
1704 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1705 		-EFAULT : 0;
1706 }
1707 
1708 /* Control hardware time stamping */
1709 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1710 {
1711 	struct ravb_private *priv = netdev_priv(ndev);
1712 	struct hwtstamp_config config;
1713 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1714 	u32 tstamp_tx_ctrl;
1715 
1716 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1717 		return -EFAULT;
1718 
1719 	/* Reserved for future extensions */
1720 	if (config.flags)
1721 		return -EINVAL;
1722 
1723 	switch (config.tx_type) {
1724 	case HWTSTAMP_TX_OFF:
1725 		tstamp_tx_ctrl = 0;
1726 		break;
1727 	case HWTSTAMP_TX_ON:
1728 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1729 		break;
1730 	default:
1731 		return -ERANGE;
1732 	}
1733 
1734 	switch (config.rx_filter) {
1735 	case HWTSTAMP_FILTER_NONE:
1736 		tstamp_rx_ctrl = 0;
1737 		break;
1738 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1739 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1740 		break;
1741 	default:
1742 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1743 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1744 	}
1745 
1746 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1747 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1748 
1749 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1750 		-EFAULT : 0;
1751 }
1752 
1753 /* ioctl to device function */
1754 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1755 {
1756 	struct ravb_private *priv = netdev_priv(ndev);
1757 	struct phy_device *phydev = priv->phydev;
1758 
1759 	if (!netif_running(ndev))
1760 		return -EINVAL;
1761 
1762 	if (!phydev)
1763 		return -ENODEV;
1764 
1765 	switch (cmd) {
1766 	case SIOCGHWTSTAMP:
1767 		return ravb_hwtstamp_get(ndev, req);
1768 	case SIOCSHWTSTAMP:
1769 		return ravb_hwtstamp_set(ndev, req);
1770 	}
1771 
1772 	return phy_mii_ioctl(phydev, req, cmd);
1773 }
1774 
1775 static const struct net_device_ops ravb_netdev_ops = {
1776 	.ndo_open		= ravb_open,
1777 	.ndo_stop		= ravb_close,
1778 	.ndo_start_xmit		= ravb_start_xmit,
1779 	.ndo_select_queue	= ravb_select_queue,
1780 	.ndo_get_stats		= ravb_get_stats,
1781 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1782 	.ndo_tx_timeout		= ravb_tx_timeout,
1783 	.ndo_do_ioctl		= ravb_do_ioctl,
1784 	.ndo_validate_addr	= eth_validate_addr,
1785 	.ndo_set_mac_address	= eth_mac_addr,
1786 	.ndo_change_mtu		= eth_change_mtu,
1787 };
1788 
1789 /* MDIO bus init function */
1790 static int ravb_mdio_init(struct ravb_private *priv)
1791 {
1792 	struct platform_device *pdev = priv->pdev;
1793 	struct device *dev = &pdev->dev;
1794 	int error;
1795 
1796 	/* Bitbang init */
1797 	priv->mdiobb.ops = &bb_ops;
1798 
1799 	/* MII controller setting */
1800 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1801 	if (!priv->mii_bus)
1802 		return -ENOMEM;
1803 
1804 	/* Hook up MII support for ethtool */
1805 	priv->mii_bus->name = "ravb_mii";
1806 	priv->mii_bus->parent = dev;
1807 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1808 		 pdev->name, pdev->id);
1809 
1810 	/* Register MDIO bus */
1811 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1812 	if (error)
1813 		goto out_free_bus;
1814 
1815 	return 0;
1816 
1817 out_free_bus:
1818 	free_mdio_bitbang(priv->mii_bus);
1819 	return error;
1820 }
1821 
1822 /* MDIO bus release function */
1823 static int ravb_mdio_release(struct ravb_private *priv)
1824 {
1825 	/* Unregister mdio bus */
1826 	mdiobus_unregister(priv->mii_bus);
1827 
1828 	/* Free bitbang info */
1829 	free_mdio_bitbang(priv->mii_bus);
1830 
1831 	return 0;
1832 }
1833 
1834 static const struct of_device_id ravb_match_table[] = {
1835 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1836 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1837 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1838 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1839 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1840 	{ }
1841 };
1842 MODULE_DEVICE_TABLE(of, ravb_match_table);
1843 
1844 static int ravb_set_gti(struct net_device *ndev)
1845 {
1846 
1847 	struct device *dev = ndev->dev.parent;
1848 	struct device_node *np = dev->of_node;
1849 	unsigned long rate;
1850 	struct clk *clk;
1851 	uint64_t inc;
1852 
1853 	clk = of_clk_get(np, 0);
1854 	if (IS_ERR(clk)) {
1855 		dev_err(dev, "could not get clock\n");
1856 		return PTR_ERR(clk);
1857 	}
1858 
1859 	rate = clk_get_rate(clk);
1860 	clk_put(clk);
1861 
1862 	if (!rate)
1863 		return -EINVAL;
1864 
1865 	inc = 1000000000ULL << 20;
1866 	do_div(inc, rate);
1867 
1868 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1869 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1870 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1871 		return -EINVAL;
1872 	}
1873 
1874 	ravb_write(ndev, inc, GTI);
1875 
1876 	return 0;
1877 }
1878 
1879 static int ravb_probe(struct platform_device *pdev)
1880 {
1881 	struct device_node *np = pdev->dev.of_node;
1882 	struct ravb_private *priv;
1883 	enum ravb_chip_id chip_id;
1884 	struct net_device *ndev;
1885 	int error, irq, q;
1886 	struct resource *res;
1887 	int i;
1888 
1889 	if (!np) {
1890 		dev_err(&pdev->dev,
1891 			"this driver is required to be instantiated from device tree\n");
1892 		return -EINVAL;
1893 	}
1894 
1895 	/* Get base address */
1896 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1897 	if (!res) {
1898 		dev_err(&pdev->dev, "invalid resource\n");
1899 		return -EINVAL;
1900 	}
1901 
1902 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1903 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
1904 	if (!ndev)
1905 		return -ENOMEM;
1906 
1907 	pm_runtime_enable(&pdev->dev);
1908 	pm_runtime_get_sync(&pdev->dev);
1909 
1910 	/* The Ether-specific entries in the device structure. */
1911 	ndev->base_addr = res->start;
1912 	ndev->dma = -1;
1913 
1914 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1915 
1916 	if (chip_id == RCAR_GEN3)
1917 		irq = platform_get_irq_byname(pdev, "ch22");
1918 	else
1919 		irq = platform_get_irq(pdev, 0);
1920 	if (irq < 0) {
1921 		error = irq;
1922 		goto out_release;
1923 	}
1924 	ndev->irq = irq;
1925 
1926 	SET_NETDEV_DEV(ndev, &pdev->dev);
1927 
1928 	priv = netdev_priv(ndev);
1929 	priv->ndev = ndev;
1930 	priv->pdev = pdev;
1931 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1932 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1933 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1934 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1935 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
1936 	if (IS_ERR(priv->addr)) {
1937 		error = PTR_ERR(priv->addr);
1938 		goto out_release;
1939 	}
1940 
1941 	spin_lock_init(&priv->lock);
1942 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
1943 
1944 	priv->phy_interface = of_get_phy_mode(np);
1945 
1946 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1947 	priv->avb_link_active_low =
1948 		of_property_read_bool(np, "renesas,ether-link-active-low");
1949 
1950 	if (chip_id == RCAR_GEN3) {
1951 		irq = platform_get_irq_byname(pdev, "ch24");
1952 		if (irq < 0) {
1953 			error = irq;
1954 			goto out_release;
1955 		}
1956 		priv->emac_irq = irq;
1957 		for (i = 0; i < NUM_RX_QUEUE; i++) {
1958 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
1959 			if (irq < 0) {
1960 				error = irq;
1961 				goto out_release;
1962 			}
1963 			priv->rx_irqs[i] = irq;
1964 		}
1965 		for (i = 0; i < NUM_TX_QUEUE; i++) {
1966 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
1967 			if (irq < 0) {
1968 				error = irq;
1969 				goto out_release;
1970 			}
1971 			priv->tx_irqs[i] = irq;
1972 		}
1973 	}
1974 
1975 	priv->chip_id = chip_id;
1976 
1977 	/* Set function */
1978 	ndev->netdev_ops = &ravb_netdev_ops;
1979 	ndev->ethtool_ops = &ravb_ethtool_ops;
1980 
1981 	/* Set AVB config mode */
1982 	if (chip_id == RCAR_GEN2) {
1983 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1984 		/* Set CSEL value */
1985 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1986 	} else {
1987 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1988 			    CCC_GAC | CCC_CSEL_HPB);
1989 	}
1990 
1991 	/* Set GTI value */
1992 	error = ravb_set_gti(ndev);
1993 	if (error)
1994 		goto out_release;
1995 
1996 	/* Request GTI loading */
1997 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1998 
1999 	/* Allocate descriptor base address table */
2000 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2001 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2002 					    &priv->desc_bat_dma, GFP_KERNEL);
2003 	if (!priv->desc_bat) {
2004 		dev_err(&pdev->dev,
2005 			"Cannot allocate desc base address table (size %d bytes)\n",
2006 			priv->desc_bat_size);
2007 		error = -ENOMEM;
2008 		goto out_release;
2009 	}
2010 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2011 		priv->desc_bat[q].die_dt = DT_EOS;
2012 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2013 
2014 	/* Initialise HW timestamp list */
2015 	INIT_LIST_HEAD(&priv->ts_skb_list);
2016 
2017 	/* Initialise PTP Clock driver */
2018 	if (chip_id != RCAR_GEN2)
2019 		ravb_ptp_init(ndev, pdev);
2020 
2021 	/* Debug message level */
2022 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2023 
2024 	/* Read and set MAC address */
2025 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2026 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2027 		dev_warn(&pdev->dev,
2028 			 "no valid MAC address supplied, using a random one\n");
2029 		eth_hw_addr_random(ndev);
2030 	}
2031 
2032 	/* MDIO bus init */
2033 	error = ravb_mdio_init(priv);
2034 	if (error) {
2035 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2036 		goto out_dma_free;
2037 	}
2038 
2039 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2040 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2041 
2042 	/* Network device register */
2043 	error = register_netdev(ndev);
2044 	if (error)
2045 		goto out_napi_del;
2046 
2047 	/* Print device information */
2048 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2049 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2050 
2051 	platform_set_drvdata(pdev, ndev);
2052 
2053 	return 0;
2054 
2055 out_napi_del:
2056 	netif_napi_del(&priv->napi[RAVB_NC]);
2057 	netif_napi_del(&priv->napi[RAVB_BE]);
2058 	ravb_mdio_release(priv);
2059 out_dma_free:
2060 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2061 			  priv->desc_bat_dma);
2062 
2063 	/* Stop PTP Clock driver */
2064 	if (chip_id != RCAR_GEN2)
2065 		ravb_ptp_stop(ndev);
2066 out_release:
2067 	if (ndev)
2068 		free_netdev(ndev);
2069 
2070 	pm_runtime_put(&pdev->dev);
2071 	pm_runtime_disable(&pdev->dev);
2072 	return error;
2073 }
2074 
2075 static int ravb_remove(struct platform_device *pdev)
2076 {
2077 	struct net_device *ndev = platform_get_drvdata(pdev);
2078 	struct ravb_private *priv = netdev_priv(ndev);
2079 
2080 	/* Stop PTP Clock driver */
2081 	if (priv->chip_id != RCAR_GEN2)
2082 		ravb_ptp_stop(ndev);
2083 
2084 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2085 			  priv->desc_bat_dma);
2086 	/* Set reset mode */
2087 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2088 	pm_runtime_put_sync(&pdev->dev);
2089 	unregister_netdev(ndev);
2090 	netif_napi_del(&priv->napi[RAVB_NC]);
2091 	netif_napi_del(&priv->napi[RAVB_BE]);
2092 	ravb_mdio_release(priv);
2093 	pm_runtime_disable(&pdev->dev);
2094 	free_netdev(ndev);
2095 	platform_set_drvdata(pdev, NULL);
2096 
2097 	return 0;
2098 }
2099 
2100 #ifdef CONFIG_PM
2101 static int ravb_runtime_nop(struct device *dev)
2102 {
2103 	/* Runtime PM callback shared between ->runtime_suspend()
2104 	 * and ->runtime_resume(). Simply returns success.
2105 	 *
2106 	 * This driver re-initializes all registers after
2107 	 * pm_runtime_get_sync() anyway so there is no need
2108 	 * to save and restore registers here.
2109 	 */
2110 	return 0;
2111 }
2112 
2113 static const struct dev_pm_ops ravb_dev_pm_ops = {
2114 	.runtime_suspend = ravb_runtime_nop,
2115 	.runtime_resume = ravb_runtime_nop,
2116 };
2117 
2118 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
2119 #else
2120 #define RAVB_PM_OPS NULL
2121 #endif
2122 
2123 static struct platform_driver ravb_driver = {
2124 	.probe		= ravb_probe,
2125 	.remove		= ravb_remove,
2126 	.driver = {
2127 		.name	= "ravb",
2128 		.pm	= RAVB_PM_OPS,
2129 		.of_match_table = ravb_match_table,
2130 	},
2131 };
2132 
2133 module_platform_driver(ravb_driver);
2134 
2135 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2136 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2137 MODULE_LICENSE("GPL v2");
2138