xref: /openbmc/linux/drivers/net/ethernet/realtek/8139cp.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	Config5		= 0xD8,	/* Config5 */
161 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
162 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
163 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
164 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
165 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
166 	TxThresh	= 0xEC, /* Early Tx threshold */
167 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
168 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
169 
170 	/* Tx and Rx status descriptors */
171 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
172 	RingEnd		= (1 << 30), /* End of descriptor ring */
173 	FirstFrag	= (1 << 29), /* First segment of a packet */
174 	LastFrag	= (1 << 28), /* Final segment of a packet */
175 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
176 	MSSShift	= 16,	     /* MSS value position */
177 	MSSMask		= 0xfff,     /* MSS value: 11 bits */
178 	TxError		= (1 << 23), /* Tx error summary */
179 	RxError		= (1 << 20), /* Rx error summary */
180 	IPCS		= (1 << 18), /* Calculate IP checksum */
181 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
182 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
183 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
184 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
185 	IPFail		= (1 << 15), /* IP checksum failed */
186 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
187 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
188 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
189 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
190 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 	RxProtoTCP	= 1,
192 	RxProtoUDP	= 2,
193 	RxProtoIP	= 3,
194 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
195 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
196 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
197 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
198 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
199 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
201 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
202 	RxErrCRC	= (1 << 18), /* Rx CRC error */
203 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
204 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
205 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206 
207 	/* StatsAddr register */
208 	DumpStats	= (1 << 3),  /* Begin stats dump */
209 
210 	/* RxConfig register */
211 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
212 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
213 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
214 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
215 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
216 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
217 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
218 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
219 
220 	/* IntrMask / IntrStatus registers */
221 	PciErr		= (1 << 15), /* System error on the PCI bus */
222 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 	LenChg		= (1 << 13), /* Cable length change */
224 	SWInt		= (1 << 8),  /* Software-requested interrupt */
225 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
226 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
227 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
228 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
229 	TxErr		= (1 << 3),  /* Tx error */
230 	TxOK		= (1 << 2),  /* Tx packet sent */
231 	RxErr		= (1 << 1),  /* Rx error */
232 	RxOK		= (1 << 0),  /* Rx packet received */
233 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
234 					but hardware likes to raise it */
235 
236 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 			  RxErr | RxOK | IntrResvd,
239 
240 	/* C mode command register */
241 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
242 	RxOn		= (1 << 3),  /* Rx mode enable */
243 	TxOn		= (1 << 2),  /* Tx mode enable */
244 
245 	/* C+ mode command register */
246 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
247 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
248 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
249 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
250 	CpRxOn		= (1 << 1),  /* Rx mode enable */
251 	CpTxOn		= (1 << 0),  /* Tx mode enable */
252 
253 	/* Cfg9436 EEPROM control register */
254 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
255 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
256 
257 	/* TxConfig register */
258 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
260 
261 	/* Early Tx Threshold register */
262 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
263 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
264 
265 	/* Config1 register */
266 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
267 	LWACT           = (1 << 4),  /* LWAKE active mode */
268 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
269 
270 	/* Config3 register */
271 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
272 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
273 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
274 
275 	/* Config4 register */
276 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
277 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
278 
279 	/* Config5 register */
280 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
281 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
282 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
283 	LANWake         = (1 << 1),  /* Enable LANWake signal */
284 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
285 
286 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290 
291 static const unsigned int cp_rx_config =
292 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 	  (RX_DMA_BURST << RxCfgDMAShift);
294 
295 struct cp_desc {
296 	__le32		opts1;
297 	__le32		opts2;
298 	__le64		addr;
299 };
300 
301 struct cp_dma_stats {
302 	__le64			tx_ok;
303 	__le64			rx_ok;
304 	__le64			tx_err;
305 	__le32			rx_err;
306 	__le16			rx_fifo;
307 	__le16			frame_align;
308 	__le32			tx_ok_1col;
309 	__le32			tx_ok_mcol;
310 	__le64			rx_ok_phys;
311 	__le64			rx_ok_bcast;
312 	__le32			rx_ok_mcast;
313 	__le16			tx_abort;
314 	__le16			tx_underrun;
315 } __packed;
316 
317 struct cp_extra_stats {
318 	unsigned long		rx_frags;
319 };
320 
321 struct cp_private {
322 	void			__iomem *regs;
323 	struct net_device	*dev;
324 	spinlock_t		lock;
325 	u32			msg_enable;
326 
327 	struct napi_struct	napi;
328 
329 	struct pci_dev		*pdev;
330 	u32			rx_config;
331 	u16			cpcmd;
332 
333 	struct cp_extra_stats	cp_stats;
334 
335 	unsigned		rx_head		____cacheline_aligned;
336 	unsigned		rx_tail;
337 	struct cp_desc		*rx_ring;
338 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
339 
340 	unsigned		tx_head		____cacheline_aligned;
341 	unsigned		tx_tail;
342 	struct cp_desc		*tx_ring;
343 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
344 
345 	unsigned		rx_buf_sz;
346 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347 
348 	dma_addr_t		ring_dma;
349 
350 	struct mii_if_info	mii_if;
351 };
352 
353 #define cpr8(reg)	readb(cp->regs + (reg))
354 #define cpr16(reg)	readw(cp->regs + (reg))
355 #define cpr32(reg)	readl(cp->regs + (reg))
356 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
358 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do {			\
360 	writeb((val), cp->regs + (reg));	\
361 	readb(cp->regs + (reg));		\
362 	} while (0)
363 #define cpw16_f(reg,val) do {			\
364 	writew((val), cp->regs + (reg));	\
365 	readw(cp->regs + (reg));		\
366 	} while (0)
367 #define cpw32_f(reg,val) do {			\
368 	writel((val), cp->regs + (reg));	\
369 	readl(cp->regs + (reg));		\
370 	} while (0)
371 
372 
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 			 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	PCI_DEVICE_ID_REALTEK_8139), },
387 	{ PCI_DEVICE(PCI_VENDOR_ID_TTTECH,	PCI_DEVICE_ID_TTTECH_MC322), },
388 	{ },
389 };
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391 
392 static struct {
393 	const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 	{ "tx_ok" },
396 	{ "rx_ok" },
397 	{ "tx_err" },
398 	{ "rx_err" },
399 	{ "rx_fifo" },
400 	{ "frame_align" },
401 	{ "tx_ok_1col" },
402 	{ "tx_ok_mcol" },
403 	{ "rx_ok_phys" },
404 	{ "rx_ok_bcast" },
405 	{ "rx_ok_mcast" },
406 	{ "tx_abort" },
407 	{ "tx_underrun" },
408 	{ "rx_frags" },
409 };
410 
411 
412 static inline void cp_set_rxbufsize (struct cp_private *cp)
413 {
414 	unsigned int mtu = cp->dev->mtu;
415 
416 	if (mtu > ETH_DATA_LEN)
417 		/* MTU + ethernet header + FCS + optional VLAN tag */
418 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 	else
420 		cp->rx_buf_sz = PKT_BUF_SZ;
421 }
422 
423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 			      struct cp_desc *desc)
425 {
426 	u32 opts2 = le32_to_cpu(desc->opts2);
427 
428 	skb->protocol = eth_type_trans (skb, cp->dev);
429 
430 	cp->dev->stats.rx_packets++;
431 	cp->dev->stats.rx_bytes += skb->len;
432 
433 	if (opts2 & RxVlanTagged)
434 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
435 
436 	napi_gro_receive(&cp->napi, skb);
437 }
438 
439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 			    u32 status, u32 len)
441 {
442 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 		  rx_tail, status, len);
444 	cp->dev->stats.rx_errors++;
445 	if (status & RxErrFrame)
446 		cp->dev->stats.rx_frame_errors++;
447 	if (status & RxErrCRC)
448 		cp->dev->stats.rx_crc_errors++;
449 	if ((status & RxErrRunt) || (status & RxErrLong))
450 		cp->dev->stats.rx_length_errors++;
451 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 		cp->dev->stats.rx_length_errors++;
453 	if (status & RxErrFIFO)
454 		cp->dev->stats.rx_fifo_errors++;
455 }
456 
457 static inline unsigned int cp_rx_csum_ok (u32 status)
458 {
459 	unsigned int protocol = (status >> 16) & 0x3;
460 
461 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 		return 1;
464 	else
465 		return 0;
466 }
467 
468 static int cp_rx_poll(struct napi_struct *napi, int budget)
469 {
470 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 	struct net_device *dev = cp->dev;
472 	unsigned int rx_tail = cp->rx_tail;
473 	int rx;
474 
475 rx_status_loop:
476 	rx = 0;
477 	cpw16(IntrStatus, cp_rx_intr_mask);
478 
479 	while (1) {
480 		u32 status, len;
481 		dma_addr_t mapping, new_mapping;
482 		struct sk_buff *skb, *new_skb;
483 		struct cp_desc *desc;
484 		const unsigned buflen = cp->rx_buf_sz;
485 
486 		skb = cp->rx_skb[rx_tail];
487 		BUG_ON(!skb);
488 
489 		desc = &cp->rx_ring[rx_tail];
490 		status = le32_to_cpu(desc->opts1);
491 		if (status & DescOwn)
492 			break;
493 
494 		len = (status & 0x1fff) - 4;
495 		mapping = le64_to_cpu(desc->addr);
496 
497 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 			/* we don't support incoming fragmented frames.
499 			 * instead, we attempt to ensure that the
500 			 * pre-allocated RX skbs are properly sized such
501 			 * that RX fragments are never encountered
502 			 */
503 			cp_rx_err_acct(cp, rx_tail, status, len);
504 			dev->stats.rx_dropped++;
505 			cp->cp_stats.rx_frags++;
506 			goto rx_next;
507 		}
508 
509 		if (status & (RxError | RxErrFIFO)) {
510 			cp_rx_err_acct(cp, rx_tail, status, len);
511 			goto rx_next;
512 		}
513 
514 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 			  rx_tail, status, len);
516 
517 		new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 		if (!new_skb) {
519 			dev->stats.rx_dropped++;
520 			goto rx_next;
521 		}
522 
523 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
524 					 PCI_DMA_FROMDEVICE);
525 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
526 			dev->stats.rx_dropped++;
527 			kfree_skb(new_skb);
528 			goto rx_next;
529 		}
530 
531 		dma_unmap_single(&cp->pdev->dev, mapping,
532 				 buflen, PCI_DMA_FROMDEVICE);
533 
534 		/* Handle checksum offloading for incoming packets. */
535 		if (cp_rx_csum_ok(status))
536 			skb->ip_summed = CHECKSUM_UNNECESSARY;
537 		else
538 			skb_checksum_none_assert(skb);
539 
540 		skb_put(skb, len);
541 
542 		cp->rx_skb[rx_tail] = new_skb;
543 
544 		cp_rx_skb(cp, skb, desc);
545 		rx++;
546 		mapping = new_mapping;
547 
548 rx_next:
549 		cp->rx_ring[rx_tail].opts2 = 0;
550 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
551 		if (rx_tail == (CP_RX_RING_SIZE - 1))
552 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
553 						  cp->rx_buf_sz);
554 		else
555 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
556 		rx_tail = NEXT_RX(rx_tail);
557 
558 		if (rx >= budget)
559 			break;
560 	}
561 
562 	cp->rx_tail = rx_tail;
563 
564 	/* if we did not reach work limit, then we're done with
565 	 * this round of polling
566 	 */
567 	if (rx < budget) {
568 		unsigned long flags;
569 
570 		if (cpr16(IntrStatus) & cp_rx_intr_mask)
571 			goto rx_status_loop;
572 
573 		napi_gro_flush(napi, false);
574 		spin_lock_irqsave(&cp->lock, flags);
575 		__napi_complete(napi);
576 		cpw16_f(IntrMask, cp_intr_mask);
577 		spin_unlock_irqrestore(&cp->lock, flags);
578 	}
579 
580 	return rx;
581 }
582 
583 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
584 {
585 	struct net_device *dev = dev_instance;
586 	struct cp_private *cp;
587 	int handled = 0;
588 	u16 status;
589 
590 	if (unlikely(dev == NULL))
591 		return IRQ_NONE;
592 	cp = netdev_priv(dev);
593 
594 	spin_lock(&cp->lock);
595 
596 	status = cpr16(IntrStatus);
597 	if (!status || (status == 0xFFFF))
598 		goto out_unlock;
599 
600 	handled = 1;
601 
602 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
603 		  status, cpr8(Cmd), cpr16(CpCmd));
604 
605 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
606 
607 	/* close possible race's with dev_close */
608 	if (unlikely(!netif_running(dev))) {
609 		cpw16(IntrMask, 0);
610 		goto out_unlock;
611 	}
612 
613 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
614 		if (napi_schedule_prep(&cp->napi)) {
615 			cpw16_f(IntrMask, cp_norx_intr_mask);
616 			__napi_schedule(&cp->napi);
617 		}
618 
619 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
620 		cp_tx(cp);
621 	if (status & LinkChg)
622 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
623 
624 
625 	if (status & PciErr) {
626 		u16 pci_status;
627 
628 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
629 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
630 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
631 			   status, pci_status);
632 
633 		/* TODO: reset hardware */
634 	}
635 
636 out_unlock:
637 	spin_unlock(&cp->lock);
638 
639 	return IRQ_RETVAL(handled);
640 }
641 
642 #ifdef CONFIG_NET_POLL_CONTROLLER
643 /*
644  * Polling receive - used by netconsole and other diagnostic tools
645  * to allow network i/o with interrupts disabled.
646  */
647 static void cp_poll_controller(struct net_device *dev)
648 {
649 	struct cp_private *cp = netdev_priv(dev);
650 	const int irq = cp->pdev->irq;
651 
652 	disable_irq(irq);
653 	cp_interrupt(irq, dev);
654 	enable_irq(irq);
655 }
656 #endif
657 
658 static void cp_tx (struct cp_private *cp)
659 {
660 	unsigned tx_head = cp->tx_head;
661 	unsigned tx_tail = cp->tx_tail;
662 	unsigned bytes_compl = 0, pkts_compl = 0;
663 
664 	while (tx_tail != tx_head) {
665 		struct cp_desc *txd = cp->tx_ring + tx_tail;
666 		struct sk_buff *skb;
667 		u32 status;
668 
669 		rmb();
670 		status = le32_to_cpu(txd->opts1);
671 		if (status & DescOwn)
672 			break;
673 
674 		skb = cp->tx_skb[tx_tail];
675 		BUG_ON(!skb);
676 
677 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
678 				 le32_to_cpu(txd->opts1) & 0xffff,
679 				 PCI_DMA_TODEVICE);
680 
681 		if (status & LastFrag) {
682 			if (status & (TxError | TxFIFOUnder)) {
683 				netif_dbg(cp, tx_err, cp->dev,
684 					  "tx err, status 0x%x\n", status);
685 				cp->dev->stats.tx_errors++;
686 				if (status & TxOWC)
687 					cp->dev->stats.tx_window_errors++;
688 				if (status & TxMaxCol)
689 					cp->dev->stats.tx_aborted_errors++;
690 				if (status & TxLinkFail)
691 					cp->dev->stats.tx_carrier_errors++;
692 				if (status & TxFIFOUnder)
693 					cp->dev->stats.tx_fifo_errors++;
694 			} else {
695 				cp->dev->stats.collisions +=
696 					((status >> TxColCntShift) & TxColCntMask);
697 				cp->dev->stats.tx_packets++;
698 				cp->dev->stats.tx_bytes += skb->len;
699 				netif_dbg(cp, tx_done, cp->dev,
700 					  "tx done, slot %d\n", tx_tail);
701 			}
702 			bytes_compl += skb->len;
703 			pkts_compl++;
704 			dev_kfree_skb_irq(skb);
705 		}
706 
707 		cp->tx_skb[tx_tail] = NULL;
708 
709 		tx_tail = NEXT_TX(tx_tail);
710 	}
711 
712 	cp->tx_tail = tx_tail;
713 
714 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
715 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
716 		netif_wake_queue(cp->dev);
717 }
718 
719 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
720 {
721 	return vlan_tx_tag_present(skb) ?
722 		TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
723 }
724 
725 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
726 				   int first, int entry_last)
727 {
728 	int frag, index;
729 	struct cp_desc *txd;
730 	skb_frag_t *this_frag;
731 	for (frag = 0; frag+first < entry_last; frag++) {
732 		index = first+frag;
733 		cp->tx_skb[index] = NULL;
734 		txd = &cp->tx_ring[index];
735 		this_frag = &skb_shinfo(skb)->frags[frag];
736 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
737 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
738 	}
739 }
740 
741 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
742 					struct net_device *dev)
743 {
744 	struct cp_private *cp = netdev_priv(dev);
745 	unsigned entry;
746 	u32 eor, flags;
747 	unsigned long intr_flags;
748 	__le32 opts2;
749 	int mss = 0;
750 
751 	spin_lock_irqsave(&cp->lock, intr_flags);
752 
753 	/* This is a hard error, log it. */
754 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
755 		netif_stop_queue(dev);
756 		spin_unlock_irqrestore(&cp->lock, intr_flags);
757 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
758 		return NETDEV_TX_BUSY;
759 	}
760 
761 	entry = cp->tx_head;
762 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
763 	mss = skb_shinfo(skb)->gso_size;
764 
765 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
766 
767 	if (skb_shinfo(skb)->nr_frags == 0) {
768 		struct cp_desc *txd = &cp->tx_ring[entry];
769 		u32 len;
770 		dma_addr_t mapping;
771 
772 		len = skb->len;
773 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
774 		if (dma_mapping_error(&cp->pdev->dev, mapping))
775 			goto out_dma_error;
776 
777 		txd->opts2 = opts2;
778 		txd->addr = cpu_to_le64(mapping);
779 		wmb();
780 
781 		flags = eor | len | DescOwn | FirstFrag | LastFrag;
782 
783 		if (mss)
784 			flags |= LargeSend | ((mss & MSSMask) << MSSShift);
785 		else if (skb->ip_summed == CHECKSUM_PARTIAL) {
786 			const struct iphdr *ip = ip_hdr(skb);
787 			if (ip->protocol == IPPROTO_TCP)
788 				flags |= IPCS | TCPCS;
789 			else if (ip->protocol == IPPROTO_UDP)
790 				flags |= IPCS | UDPCS;
791 			else
792 				WARN_ON(1);	/* we need a WARN() */
793 		}
794 
795 		txd->opts1 = cpu_to_le32(flags);
796 		wmb();
797 
798 		cp->tx_skb[entry] = skb;
799 		entry = NEXT_TX(entry);
800 	} else {
801 		struct cp_desc *txd;
802 		u32 first_len, first_eor;
803 		dma_addr_t first_mapping;
804 		int frag, first_entry = entry;
805 		const struct iphdr *ip = ip_hdr(skb);
806 
807 		/* We must give this initial chunk to the device last.
808 		 * Otherwise we could race with the device.
809 		 */
810 		first_eor = eor;
811 		first_len = skb_headlen(skb);
812 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
813 					       first_len, PCI_DMA_TODEVICE);
814 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
815 			goto out_dma_error;
816 
817 		cp->tx_skb[entry] = skb;
818 		entry = NEXT_TX(entry);
819 
820 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
821 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
822 			u32 len;
823 			u32 ctrl;
824 			dma_addr_t mapping;
825 
826 			len = skb_frag_size(this_frag);
827 			mapping = dma_map_single(&cp->pdev->dev,
828 						 skb_frag_address(this_frag),
829 						 len, PCI_DMA_TODEVICE);
830 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
831 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
832 				goto out_dma_error;
833 			}
834 
835 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
836 
837 			ctrl = eor | len | DescOwn;
838 
839 			if (mss)
840 				ctrl |= LargeSend |
841 					((mss & MSSMask) << MSSShift);
842 			else if (skb->ip_summed == CHECKSUM_PARTIAL) {
843 				if (ip->protocol == IPPROTO_TCP)
844 					ctrl |= IPCS | TCPCS;
845 				else if (ip->protocol == IPPROTO_UDP)
846 					ctrl |= IPCS | UDPCS;
847 				else
848 					BUG();
849 			}
850 
851 			if (frag == skb_shinfo(skb)->nr_frags - 1)
852 				ctrl |= LastFrag;
853 
854 			txd = &cp->tx_ring[entry];
855 			txd->opts2 = opts2;
856 			txd->addr = cpu_to_le64(mapping);
857 			wmb();
858 
859 			txd->opts1 = cpu_to_le32(ctrl);
860 			wmb();
861 
862 			cp->tx_skb[entry] = skb;
863 			entry = NEXT_TX(entry);
864 		}
865 
866 		txd = &cp->tx_ring[first_entry];
867 		txd->opts2 = opts2;
868 		txd->addr = cpu_to_le64(first_mapping);
869 		wmb();
870 
871 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
872 			if (ip->protocol == IPPROTO_TCP)
873 				txd->opts1 = cpu_to_le32(first_eor | first_len |
874 							 FirstFrag | DescOwn |
875 							 IPCS | TCPCS);
876 			else if (ip->protocol == IPPROTO_UDP)
877 				txd->opts1 = cpu_to_le32(first_eor | first_len |
878 							 FirstFrag | DescOwn |
879 							 IPCS | UDPCS);
880 			else
881 				BUG();
882 		} else
883 			txd->opts1 = cpu_to_le32(first_eor | first_len |
884 						 FirstFrag | DescOwn);
885 		wmb();
886 	}
887 	cp->tx_head = entry;
888 
889 	netdev_sent_queue(dev, skb->len);
890 	netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
891 		  entry, skb->len);
892 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
893 		netif_stop_queue(dev);
894 
895 out_unlock:
896 	spin_unlock_irqrestore(&cp->lock, intr_flags);
897 
898 	cpw8(TxPoll, NormalTxPoll);
899 
900 	return NETDEV_TX_OK;
901 out_dma_error:
902 	kfree_skb(skb);
903 	cp->dev->stats.tx_dropped++;
904 	goto out_unlock;
905 }
906 
907 /* Set or clear the multicast filter for this adaptor.
908    This routine is not state sensitive and need not be SMP locked. */
909 
910 static void __cp_set_rx_mode (struct net_device *dev)
911 {
912 	struct cp_private *cp = netdev_priv(dev);
913 	u32 mc_filter[2];	/* Multicast hash filter */
914 	int rx_mode;
915 
916 	/* Note: do not reorder, GCC is clever about common statements. */
917 	if (dev->flags & IFF_PROMISC) {
918 		/* Unconditionally log net taps. */
919 		rx_mode =
920 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
921 		    AcceptAllPhys;
922 		mc_filter[1] = mc_filter[0] = 0xffffffff;
923 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
924 		   (dev->flags & IFF_ALLMULTI)) {
925 		/* Too many to filter perfectly -- accept all multicasts. */
926 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
927 		mc_filter[1] = mc_filter[0] = 0xffffffff;
928 	} else {
929 		struct netdev_hw_addr *ha;
930 		rx_mode = AcceptBroadcast | AcceptMyPhys;
931 		mc_filter[1] = mc_filter[0] = 0;
932 		netdev_for_each_mc_addr(ha, dev) {
933 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
934 
935 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
936 			rx_mode |= AcceptMulticast;
937 		}
938 	}
939 
940 	/* We can safely update without stopping the chip. */
941 	cp->rx_config = cp_rx_config | rx_mode;
942 	cpw32_f(RxConfig, cp->rx_config);
943 
944 	cpw32_f (MAR0 + 0, mc_filter[0]);
945 	cpw32_f (MAR0 + 4, mc_filter[1]);
946 }
947 
948 static void cp_set_rx_mode (struct net_device *dev)
949 {
950 	unsigned long flags;
951 	struct cp_private *cp = netdev_priv(dev);
952 
953 	spin_lock_irqsave (&cp->lock, flags);
954 	__cp_set_rx_mode(dev);
955 	spin_unlock_irqrestore (&cp->lock, flags);
956 }
957 
958 static void __cp_get_stats(struct cp_private *cp)
959 {
960 	/* only lower 24 bits valid; write any value to clear */
961 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
962 	cpw32 (RxMissed, 0);
963 }
964 
965 static struct net_device_stats *cp_get_stats(struct net_device *dev)
966 {
967 	struct cp_private *cp = netdev_priv(dev);
968 	unsigned long flags;
969 
970 	/* The chip only need report frame silently dropped. */
971 	spin_lock_irqsave(&cp->lock, flags);
972  	if (netif_running(dev) && netif_device_present(dev))
973  		__cp_get_stats(cp);
974 	spin_unlock_irqrestore(&cp->lock, flags);
975 
976 	return &dev->stats;
977 }
978 
979 static void cp_stop_hw (struct cp_private *cp)
980 {
981 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
982 	cpw16_f(IntrMask, 0);
983 	cpw8(Cmd, 0);
984 	cpw16_f(CpCmd, 0);
985 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
986 
987 	cp->rx_tail = 0;
988 	cp->tx_head = cp->tx_tail = 0;
989 
990 	netdev_reset_queue(cp->dev);
991 }
992 
993 static void cp_reset_hw (struct cp_private *cp)
994 {
995 	unsigned work = 1000;
996 
997 	cpw8(Cmd, CmdReset);
998 
999 	while (work--) {
1000 		if (!(cpr8(Cmd) & CmdReset))
1001 			return;
1002 
1003 		schedule_timeout_uninterruptible(10);
1004 	}
1005 
1006 	netdev_err(cp->dev, "hardware reset timeout\n");
1007 }
1008 
1009 static inline void cp_start_hw (struct cp_private *cp)
1010 {
1011 	dma_addr_t ring_dma;
1012 
1013 	cpw16(CpCmd, cp->cpcmd);
1014 
1015 	/*
1016 	 * These (at least TxRingAddr) need to be configured after the
1017 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1018 	 * (C+ Command Register) recommends that these and more be configured
1019 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1020 	 * it's been observed that the TxRingAddr is actually reset to garbage
1021 	 * when C+ mode Tx is enabled in CpCmd.
1022 	 */
1023 	cpw32_f(HiTxRingAddr, 0);
1024 	cpw32_f(HiTxRingAddr + 4, 0);
1025 
1026 	ring_dma = cp->ring_dma;
1027 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1028 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1029 
1030 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1031 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1032 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1033 
1034 	/*
1035 	 * Strictly speaking, the datasheet says this should be enabled
1036 	 * *before* setting the descriptor addresses. But what, then, would
1037 	 * prevent it from doing DMA to random unconfigured addresses?
1038 	 * This variant appears to work fine.
1039 	 */
1040 	cpw8(Cmd, RxOn | TxOn);
1041 
1042 	netdev_reset_queue(cp->dev);
1043 }
1044 
1045 static void cp_enable_irq(struct cp_private *cp)
1046 {
1047 	cpw16_f(IntrMask, cp_intr_mask);
1048 }
1049 
1050 static void cp_init_hw (struct cp_private *cp)
1051 {
1052 	struct net_device *dev = cp->dev;
1053 
1054 	cp_reset_hw(cp);
1055 
1056 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1057 
1058 	/* Restore our idea of the MAC address. */
1059 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1060 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1061 
1062 	cp_start_hw(cp);
1063 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1064 
1065 	__cp_set_rx_mode(dev);
1066 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1067 
1068 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1069 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1070 	cpw8(Config3, PARMEnable);
1071 	cp->wol_enabled = 0;
1072 
1073 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1074 
1075 	cpw16(MultiIntr, 0);
1076 
1077 	cpw8_f(Cfg9346, Cfg9346_Lock);
1078 }
1079 
1080 static int cp_refill_rx(struct cp_private *cp)
1081 {
1082 	struct net_device *dev = cp->dev;
1083 	unsigned i;
1084 
1085 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1086 		struct sk_buff *skb;
1087 		dma_addr_t mapping;
1088 
1089 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1090 		if (!skb)
1091 			goto err_out;
1092 
1093 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1094 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1095 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1096 			kfree_skb(skb);
1097 			goto err_out;
1098 		}
1099 		cp->rx_skb[i] = skb;
1100 
1101 		cp->rx_ring[i].opts2 = 0;
1102 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1103 		if (i == (CP_RX_RING_SIZE - 1))
1104 			cp->rx_ring[i].opts1 =
1105 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1106 		else
1107 			cp->rx_ring[i].opts1 =
1108 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1109 	}
1110 
1111 	return 0;
1112 
1113 err_out:
1114 	cp_clean_rings(cp);
1115 	return -ENOMEM;
1116 }
1117 
1118 static void cp_init_rings_index (struct cp_private *cp)
1119 {
1120 	cp->rx_tail = 0;
1121 	cp->tx_head = cp->tx_tail = 0;
1122 }
1123 
1124 static int cp_init_rings (struct cp_private *cp)
1125 {
1126 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1127 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1128 
1129 	cp_init_rings_index(cp);
1130 
1131 	return cp_refill_rx (cp);
1132 }
1133 
1134 static int cp_alloc_rings (struct cp_private *cp)
1135 {
1136 	struct device *d = &cp->pdev->dev;
1137 	void *mem;
1138 	int rc;
1139 
1140 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1141 	if (!mem)
1142 		return -ENOMEM;
1143 
1144 	cp->rx_ring = mem;
1145 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1146 
1147 	rc = cp_init_rings(cp);
1148 	if (rc < 0)
1149 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1150 
1151 	return rc;
1152 }
1153 
1154 static void cp_clean_rings (struct cp_private *cp)
1155 {
1156 	struct cp_desc *desc;
1157 	unsigned i;
1158 
1159 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1160 		if (cp->rx_skb[i]) {
1161 			desc = cp->rx_ring + i;
1162 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1163 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1164 			dev_kfree_skb(cp->rx_skb[i]);
1165 		}
1166 	}
1167 
1168 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1169 		if (cp->tx_skb[i]) {
1170 			struct sk_buff *skb = cp->tx_skb[i];
1171 
1172 			desc = cp->tx_ring + i;
1173 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1174 					 le32_to_cpu(desc->opts1) & 0xffff,
1175 					 PCI_DMA_TODEVICE);
1176 			if (le32_to_cpu(desc->opts1) & LastFrag)
1177 				dev_kfree_skb(skb);
1178 			cp->dev->stats.tx_dropped++;
1179 		}
1180 	}
1181 	netdev_reset_queue(cp->dev);
1182 
1183 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1184 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1185 
1186 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1187 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1188 }
1189 
1190 static void cp_free_rings (struct cp_private *cp)
1191 {
1192 	cp_clean_rings(cp);
1193 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1194 			  cp->ring_dma);
1195 	cp->rx_ring = NULL;
1196 	cp->tx_ring = NULL;
1197 }
1198 
1199 static int cp_open (struct net_device *dev)
1200 {
1201 	struct cp_private *cp = netdev_priv(dev);
1202 	const int irq = cp->pdev->irq;
1203 	int rc;
1204 
1205 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1206 
1207 	rc = cp_alloc_rings(cp);
1208 	if (rc)
1209 		return rc;
1210 
1211 	napi_enable(&cp->napi);
1212 
1213 	cp_init_hw(cp);
1214 
1215 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1216 	if (rc)
1217 		goto err_out_hw;
1218 
1219 	cp_enable_irq(cp);
1220 
1221 	netif_carrier_off(dev);
1222 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1223 	netif_start_queue(dev);
1224 
1225 	return 0;
1226 
1227 err_out_hw:
1228 	napi_disable(&cp->napi);
1229 	cp_stop_hw(cp);
1230 	cp_free_rings(cp);
1231 	return rc;
1232 }
1233 
1234 static int cp_close (struct net_device *dev)
1235 {
1236 	struct cp_private *cp = netdev_priv(dev);
1237 	unsigned long flags;
1238 
1239 	napi_disable(&cp->napi);
1240 
1241 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1242 
1243 	spin_lock_irqsave(&cp->lock, flags);
1244 
1245 	netif_stop_queue(dev);
1246 	netif_carrier_off(dev);
1247 
1248 	cp_stop_hw(cp);
1249 
1250 	spin_unlock_irqrestore(&cp->lock, flags);
1251 
1252 	free_irq(cp->pdev->irq, dev);
1253 
1254 	cp_free_rings(cp);
1255 	return 0;
1256 }
1257 
1258 static void cp_tx_timeout(struct net_device *dev)
1259 {
1260 	struct cp_private *cp = netdev_priv(dev);
1261 	unsigned long flags;
1262 	int rc;
1263 
1264 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1265 		    cpr8(Cmd), cpr16(CpCmd),
1266 		    cpr16(IntrStatus), cpr16(IntrMask));
1267 
1268 	spin_lock_irqsave(&cp->lock, flags);
1269 
1270 	cp_stop_hw(cp);
1271 	cp_clean_rings(cp);
1272 	rc = cp_init_rings(cp);
1273 	cp_start_hw(cp);
1274 	cp_enable_irq(cp);
1275 
1276 	netif_wake_queue(dev);
1277 
1278 	spin_unlock_irqrestore(&cp->lock, flags);
1279 }
1280 
1281 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1282 {
1283 	struct cp_private *cp = netdev_priv(dev);
1284 
1285 	/* check for invalid MTU, according to hardware limits */
1286 	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1287 		return -EINVAL;
1288 
1289 	/* if network interface not up, no need for complexity */
1290 	if (!netif_running(dev)) {
1291 		dev->mtu = new_mtu;
1292 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1293 		return 0;
1294 	}
1295 
1296 	/* network IS up, close it, reset MTU, and come up again. */
1297 	cp_close(dev);
1298 	dev->mtu = new_mtu;
1299 	cp_set_rxbufsize(cp);
1300 	return cp_open(dev);
1301 }
1302 
1303 static const char mii_2_8139_map[8] = {
1304 	BasicModeCtrl,
1305 	BasicModeStatus,
1306 	0,
1307 	0,
1308 	NWayAdvert,
1309 	NWayLPAR,
1310 	NWayExpansion,
1311 	0
1312 };
1313 
1314 static int mdio_read(struct net_device *dev, int phy_id, int location)
1315 {
1316 	struct cp_private *cp = netdev_priv(dev);
1317 
1318 	return location < 8 && mii_2_8139_map[location] ?
1319 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1320 }
1321 
1322 
1323 static void mdio_write(struct net_device *dev, int phy_id, int location,
1324 		       int value)
1325 {
1326 	struct cp_private *cp = netdev_priv(dev);
1327 
1328 	if (location == 0) {
1329 		cpw8(Cfg9346, Cfg9346_Unlock);
1330 		cpw16(BasicModeCtrl, value);
1331 		cpw8(Cfg9346, Cfg9346_Lock);
1332 	} else if (location < 8 && mii_2_8139_map[location])
1333 		cpw16(mii_2_8139_map[location], value);
1334 }
1335 
1336 /* Set the ethtool Wake-on-LAN settings */
1337 static int netdev_set_wol (struct cp_private *cp,
1338 			   const struct ethtool_wolinfo *wol)
1339 {
1340 	u8 options;
1341 
1342 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1343 	/* If WOL is being disabled, no need for complexity */
1344 	if (wol->wolopts) {
1345 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1346 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1347 	}
1348 
1349 	cpw8 (Cfg9346, Cfg9346_Unlock);
1350 	cpw8 (Config3, options);
1351 	cpw8 (Cfg9346, Cfg9346_Lock);
1352 
1353 	options = 0; /* Paranoia setting */
1354 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1355 	/* If WOL is being disabled, no need for complexity */
1356 	if (wol->wolopts) {
1357 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1358 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1359 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1360 	}
1361 
1362 	cpw8 (Config5, options);
1363 
1364 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1365 
1366 	return 0;
1367 }
1368 
1369 /* Get the ethtool Wake-on-LAN settings */
1370 static void netdev_get_wol (struct cp_private *cp,
1371 	             struct ethtool_wolinfo *wol)
1372 {
1373 	u8 options;
1374 
1375 	wol->wolopts   = 0; /* Start from scratch */
1376 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1377 		         WAKE_MCAST | WAKE_UCAST;
1378 	/* We don't need to go on if WOL is disabled */
1379 	if (!cp->wol_enabled) return;
1380 
1381 	options        = cpr8 (Config3);
1382 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1383 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1384 
1385 	options        = 0; /* Paranoia setting */
1386 	options        = cpr8 (Config5);
1387 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1388 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1389 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1390 }
1391 
1392 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1393 {
1394 	struct cp_private *cp = netdev_priv(dev);
1395 
1396 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1397 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1398 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1399 }
1400 
1401 static void cp_get_ringparam(struct net_device *dev,
1402 				struct ethtool_ringparam *ring)
1403 {
1404 	ring->rx_max_pending = CP_RX_RING_SIZE;
1405 	ring->tx_max_pending = CP_TX_RING_SIZE;
1406 	ring->rx_pending = CP_RX_RING_SIZE;
1407 	ring->tx_pending = CP_TX_RING_SIZE;
1408 }
1409 
1410 static int cp_get_regs_len(struct net_device *dev)
1411 {
1412 	return CP_REGS_SIZE;
1413 }
1414 
1415 static int cp_get_sset_count (struct net_device *dev, int sset)
1416 {
1417 	switch (sset) {
1418 	case ETH_SS_STATS:
1419 		return CP_NUM_STATS;
1420 	default:
1421 		return -EOPNOTSUPP;
1422 	}
1423 }
1424 
1425 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1426 {
1427 	struct cp_private *cp = netdev_priv(dev);
1428 	int rc;
1429 	unsigned long flags;
1430 
1431 	spin_lock_irqsave(&cp->lock, flags);
1432 	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1433 	spin_unlock_irqrestore(&cp->lock, flags);
1434 
1435 	return rc;
1436 }
1437 
1438 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1439 {
1440 	struct cp_private *cp = netdev_priv(dev);
1441 	int rc;
1442 	unsigned long flags;
1443 
1444 	spin_lock_irqsave(&cp->lock, flags);
1445 	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1446 	spin_unlock_irqrestore(&cp->lock, flags);
1447 
1448 	return rc;
1449 }
1450 
1451 static int cp_nway_reset(struct net_device *dev)
1452 {
1453 	struct cp_private *cp = netdev_priv(dev);
1454 	return mii_nway_restart(&cp->mii_if);
1455 }
1456 
1457 static u32 cp_get_msglevel(struct net_device *dev)
1458 {
1459 	struct cp_private *cp = netdev_priv(dev);
1460 	return cp->msg_enable;
1461 }
1462 
1463 static void cp_set_msglevel(struct net_device *dev, u32 value)
1464 {
1465 	struct cp_private *cp = netdev_priv(dev);
1466 	cp->msg_enable = value;
1467 }
1468 
1469 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1470 {
1471 	struct cp_private *cp = netdev_priv(dev);
1472 	unsigned long flags;
1473 
1474 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1475 		return 0;
1476 
1477 	spin_lock_irqsave(&cp->lock, flags);
1478 
1479 	if (features & NETIF_F_RXCSUM)
1480 		cp->cpcmd |= RxChkSum;
1481 	else
1482 		cp->cpcmd &= ~RxChkSum;
1483 
1484 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1485 		cp->cpcmd |= RxVlanOn;
1486 	else
1487 		cp->cpcmd &= ~RxVlanOn;
1488 
1489 	cpw16_f(CpCmd, cp->cpcmd);
1490 	spin_unlock_irqrestore(&cp->lock, flags);
1491 
1492 	return 0;
1493 }
1494 
1495 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1496 		        void *p)
1497 {
1498 	struct cp_private *cp = netdev_priv(dev);
1499 	unsigned long flags;
1500 
1501 	if (regs->len < CP_REGS_SIZE)
1502 		return /* -EINVAL */;
1503 
1504 	regs->version = CP_REGS_VER;
1505 
1506 	spin_lock_irqsave(&cp->lock, flags);
1507 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1508 	spin_unlock_irqrestore(&cp->lock, flags);
1509 }
1510 
1511 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512 {
1513 	struct cp_private *cp = netdev_priv(dev);
1514 	unsigned long flags;
1515 
1516 	spin_lock_irqsave (&cp->lock, flags);
1517 	netdev_get_wol (cp, wol);
1518 	spin_unlock_irqrestore (&cp->lock, flags);
1519 }
1520 
1521 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1522 {
1523 	struct cp_private *cp = netdev_priv(dev);
1524 	unsigned long flags;
1525 	int rc;
1526 
1527 	spin_lock_irqsave (&cp->lock, flags);
1528 	rc = netdev_set_wol (cp, wol);
1529 	spin_unlock_irqrestore (&cp->lock, flags);
1530 
1531 	return rc;
1532 }
1533 
1534 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1535 {
1536 	switch (stringset) {
1537 	case ETH_SS_STATS:
1538 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1539 		break;
1540 	default:
1541 		BUG();
1542 		break;
1543 	}
1544 }
1545 
1546 static void cp_get_ethtool_stats (struct net_device *dev,
1547 				  struct ethtool_stats *estats, u64 *tmp_stats)
1548 {
1549 	struct cp_private *cp = netdev_priv(dev);
1550 	struct cp_dma_stats *nic_stats;
1551 	dma_addr_t dma;
1552 	int i;
1553 
1554 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1555 				       &dma, GFP_KERNEL);
1556 	if (!nic_stats)
1557 		return;
1558 
1559 	/* begin NIC statistics dump */
1560 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1561 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1562 	cpr32(StatsAddr);
1563 
1564 	for (i = 0; i < 1000; i++) {
1565 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1566 			break;
1567 		udelay(10);
1568 	}
1569 	cpw32(StatsAddr, 0);
1570 	cpw32(StatsAddr + 4, 0);
1571 	cpr32(StatsAddr);
1572 
1573 	i = 0;
1574 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1575 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1576 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1577 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1578 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1579 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1580 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1581 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1582 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1583 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1584 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1585 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1586 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1587 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1588 	BUG_ON(i != CP_NUM_STATS);
1589 
1590 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1591 }
1592 
1593 static const struct ethtool_ops cp_ethtool_ops = {
1594 	.get_drvinfo		= cp_get_drvinfo,
1595 	.get_regs_len		= cp_get_regs_len,
1596 	.get_sset_count		= cp_get_sset_count,
1597 	.get_settings		= cp_get_settings,
1598 	.set_settings		= cp_set_settings,
1599 	.nway_reset		= cp_nway_reset,
1600 	.get_link		= ethtool_op_get_link,
1601 	.get_msglevel		= cp_get_msglevel,
1602 	.set_msglevel		= cp_set_msglevel,
1603 	.get_regs		= cp_get_regs,
1604 	.get_wol		= cp_get_wol,
1605 	.set_wol		= cp_set_wol,
1606 	.get_strings		= cp_get_strings,
1607 	.get_ethtool_stats	= cp_get_ethtool_stats,
1608 	.get_eeprom_len		= cp_get_eeprom_len,
1609 	.get_eeprom		= cp_get_eeprom,
1610 	.set_eeprom		= cp_set_eeprom,
1611 	.get_ringparam		= cp_get_ringparam,
1612 };
1613 
1614 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1615 {
1616 	struct cp_private *cp = netdev_priv(dev);
1617 	int rc;
1618 	unsigned long flags;
1619 
1620 	if (!netif_running(dev))
1621 		return -EINVAL;
1622 
1623 	spin_lock_irqsave(&cp->lock, flags);
1624 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1625 	spin_unlock_irqrestore(&cp->lock, flags);
1626 	return rc;
1627 }
1628 
1629 static int cp_set_mac_address(struct net_device *dev, void *p)
1630 {
1631 	struct cp_private *cp = netdev_priv(dev);
1632 	struct sockaddr *addr = p;
1633 
1634 	if (!is_valid_ether_addr(addr->sa_data))
1635 		return -EADDRNOTAVAIL;
1636 
1637 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1638 
1639 	spin_lock_irq(&cp->lock);
1640 
1641 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1642 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1643 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1644 	cpw8_f(Cfg9346, Cfg9346_Lock);
1645 
1646 	spin_unlock_irq(&cp->lock);
1647 
1648 	return 0;
1649 }
1650 
1651 /* Serial EEPROM section. */
1652 
1653 /*  EEPROM_Ctrl bits. */
1654 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1655 #define EE_CS			0x08	/* EEPROM chip select. */
1656 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1657 #define EE_WRITE_0		0x00
1658 #define EE_WRITE_1		0x02
1659 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1660 #define EE_ENB			(0x80 | EE_CS)
1661 
1662 /* Delay between EEPROM clock transitions.
1663    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1664  */
1665 
1666 #define eeprom_delay()	readb(ee_addr)
1667 
1668 /* The EEPROM commands include the alway-set leading bit. */
1669 #define EE_EXTEND_CMD	(4)
1670 #define EE_WRITE_CMD	(5)
1671 #define EE_READ_CMD		(6)
1672 #define EE_ERASE_CMD	(7)
1673 
1674 #define EE_EWDS_ADDR	(0)
1675 #define EE_WRAL_ADDR	(1)
1676 #define EE_ERAL_ADDR	(2)
1677 #define EE_EWEN_ADDR	(3)
1678 
1679 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1680 
1681 static void eeprom_cmd_start(void __iomem *ee_addr)
1682 {
1683 	writeb (EE_ENB & ~EE_CS, ee_addr);
1684 	writeb (EE_ENB, ee_addr);
1685 	eeprom_delay ();
1686 }
1687 
1688 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1689 {
1690 	int i;
1691 
1692 	/* Shift the command bits out. */
1693 	for (i = cmd_len - 1; i >= 0; i--) {
1694 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1695 		writeb (EE_ENB | dataval, ee_addr);
1696 		eeprom_delay ();
1697 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1698 		eeprom_delay ();
1699 	}
1700 	writeb (EE_ENB, ee_addr);
1701 	eeprom_delay ();
1702 }
1703 
1704 static void eeprom_cmd_end(void __iomem *ee_addr)
1705 {
1706 	writeb(0, ee_addr);
1707 	eeprom_delay ();
1708 }
1709 
1710 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1711 			      int addr_len)
1712 {
1713 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1714 
1715 	eeprom_cmd_start(ee_addr);
1716 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1717 	eeprom_cmd_end(ee_addr);
1718 }
1719 
1720 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1721 {
1722 	int i;
1723 	u16 retval = 0;
1724 	void __iomem *ee_addr = ioaddr + Cfg9346;
1725 	int read_cmd = location | (EE_READ_CMD << addr_len);
1726 
1727 	eeprom_cmd_start(ee_addr);
1728 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1729 
1730 	for (i = 16; i > 0; i--) {
1731 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1732 		eeprom_delay ();
1733 		retval =
1734 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1735 				     0);
1736 		writeb (EE_ENB, ee_addr);
1737 		eeprom_delay ();
1738 	}
1739 
1740 	eeprom_cmd_end(ee_addr);
1741 
1742 	return retval;
1743 }
1744 
1745 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1746 			 int addr_len)
1747 {
1748 	int i;
1749 	void __iomem *ee_addr = ioaddr + Cfg9346;
1750 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1751 
1752 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1753 
1754 	eeprom_cmd_start(ee_addr);
1755 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1756 	eeprom_cmd(ee_addr, val, 16);
1757 	eeprom_cmd_end(ee_addr);
1758 
1759 	eeprom_cmd_start(ee_addr);
1760 	for (i = 0; i < 20000; i++)
1761 		if (readb(ee_addr) & EE_DATA_READ)
1762 			break;
1763 	eeprom_cmd_end(ee_addr);
1764 
1765 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1766 }
1767 
1768 static int cp_get_eeprom_len(struct net_device *dev)
1769 {
1770 	struct cp_private *cp = netdev_priv(dev);
1771 	int size;
1772 
1773 	spin_lock_irq(&cp->lock);
1774 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1775 	spin_unlock_irq(&cp->lock);
1776 
1777 	return size;
1778 }
1779 
1780 static int cp_get_eeprom(struct net_device *dev,
1781 			 struct ethtool_eeprom *eeprom, u8 *data)
1782 {
1783 	struct cp_private *cp = netdev_priv(dev);
1784 	unsigned int addr_len;
1785 	u16 val;
1786 	u32 offset = eeprom->offset >> 1;
1787 	u32 len = eeprom->len;
1788 	u32 i = 0;
1789 
1790 	eeprom->magic = CP_EEPROM_MAGIC;
1791 
1792 	spin_lock_irq(&cp->lock);
1793 
1794 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1795 
1796 	if (eeprom->offset & 1) {
1797 		val = read_eeprom(cp->regs, offset, addr_len);
1798 		data[i++] = (u8)(val >> 8);
1799 		offset++;
1800 	}
1801 
1802 	while (i < len - 1) {
1803 		val = read_eeprom(cp->regs, offset, addr_len);
1804 		data[i++] = (u8)val;
1805 		data[i++] = (u8)(val >> 8);
1806 		offset++;
1807 	}
1808 
1809 	if (i < len) {
1810 		val = read_eeprom(cp->regs, offset, addr_len);
1811 		data[i] = (u8)val;
1812 	}
1813 
1814 	spin_unlock_irq(&cp->lock);
1815 	return 0;
1816 }
1817 
1818 static int cp_set_eeprom(struct net_device *dev,
1819 			 struct ethtool_eeprom *eeprom, u8 *data)
1820 {
1821 	struct cp_private *cp = netdev_priv(dev);
1822 	unsigned int addr_len;
1823 	u16 val;
1824 	u32 offset = eeprom->offset >> 1;
1825 	u32 len = eeprom->len;
1826 	u32 i = 0;
1827 
1828 	if (eeprom->magic != CP_EEPROM_MAGIC)
1829 		return -EINVAL;
1830 
1831 	spin_lock_irq(&cp->lock);
1832 
1833 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1834 
1835 	if (eeprom->offset & 1) {
1836 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1837 		val |= (u16)data[i++] << 8;
1838 		write_eeprom(cp->regs, offset, val, addr_len);
1839 		offset++;
1840 	}
1841 
1842 	while (i < len - 1) {
1843 		val = (u16)data[i++];
1844 		val |= (u16)data[i++] << 8;
1845 		write_eeprom(cp->regs, offset, val, addr_len);
1846 		offset++;
1847 	}
1848 
1849 	if (i < len) {
1850 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1851 		val |= (u16)data[i];
1852 		write_eeprom(cp->regs, offset, val, addr_len);
1853 	}
1854 
1855 	spin_unlock_irq(&cp->lock);
1856 	return 0;
1857 }
1858 
1859 /* Put the board into D3cold state and wait for WakeUp signal */
1860 static void cp_set_d3_state (struct cp_private *cp)
1861 {
1862 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1863 	pci_set_power_state (cp->pdev, PCI_D3hot);
1864 }
1865 
1866 static const struct net_device_ops cp_netdev_ops = {
1867 	.ndo_open		= cp_open,
1868 	.ndo_stop		= cp_close,
1869 	.ndo_validate_addr	= eth_validate_addr,
1870 	.ndo_set_mac_address 	= cp_set_mac_address,
1871 	.ndo_set_rx_mode	= cp_set_rx_mode,
1872 	.ndo_get_stats		= cp_get_stats,
1873 	.ndo_do_ioctl		= cp_ioctl,
1874 	.ndo_start_xmit		= cp_start_xmit,
1875 	.ndo_tx_timeout		= cp_tx_timeout,
1876 	.ndo_set_features	= cp_set_features,
1877 	.ndo_change_mtu		= cp_change_mtu,
1878 
1879 #ifdef CONFIG_NET_POLL_CONTROLLER
1880 	.ndo_poll_controller	= cp_poll_controller,
1881 #endif
1882 };
1883 
1884 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1885 {
1886 	struct net_device *dev;
1887 	struct cp_private *cp;
1888 	int rc;
1889 	void __iomem *regs;
1890 	resource_size_t pciaddr;
1891 	unsigned int addr_len, i, pci_using_dac;
1892 
1893 #ifndef MODULE
1894 	static int version_printed;
1895 	if (version_printed++ == 0)
1896 		pr_info("%s", version);
1897 #endif
1898 
1899 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1900 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1901 		dev_info(&pdev->dev,
1902 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1903 			 pdev->vendor, pdev->device, pdev->revision);
1904 		return -ENODEV;
1905 	}
1906 
1907 	dev = alloc_etherdev(sizeof(struct cp_private));
1908 	if (!dev)
1909 		return -ENOMEM;
1910 	SET_NETDEV_DEV(dev, &pdev->dev);
1911 
1912 	cp = netdev_priv(dev);
1913 	cp->pdev = pdev;
1914 	cp->dev = dev;
1915 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1916 	spin_lock_init (&cp->lock);
1917 	cp->mii_if.dev = dev;
1918 	cp->mii_if.mdio_read = mdio_read;
1919 	cp->mii_if.mdio_write = mdio_write;
1920 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1921 	cp->mii_if.phy_id_mask = 0x1f;
1922 	cp->mii_if.reg_num_mask = 0x1f;
1923 	cp_set_rxbufsize(cp);
1924 
1925 	rc = pci_enable_device(pdev);
1926 	if (rc)
1927 		goto err_out_free;
1928 
1929 	rc = pci_set_mwi(pdev);
1930 	if (rc)
1931 		goto err_out_disable;
1932 
1933 	rc = pci_request_regions(pdev, DRV_NAME);
1934 	if (rc)
1935 		goto err_out_mwi;
1936 
1937 	pciaddr = pci_resource_start(pdev, 1);
1938 	if (!pciaddr) {
1939 		rc = -EIO;
1940 		dev_err(&pdev->dev, "no MMIO resource\n");
1941 		goto err_out_res;
1942 	}
1943 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1944 		rc = -EIO;
1945 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1946 		       (unsigned long long)pci_resource_len(pdev, 1));
1947 		goto err_out_res;
1948 	}
1949 
1950 	/* Configure DMA attributes. */
1951 	if ((sizeof(dma_addr_t) > 4) &&
1952 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1953 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1954 		pci_using_dac = 1;
1955 	} else {
1956 		pci_using_dac = 0;
1957 
1958 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1959 		if (rc) {
1960 			dev_err(&pdev->dev,
1961 				"No usable DMA configuration, aborting\n");
1962 			goto err_out_res;
1963 		}
1964 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1965 		if (rc) {
1966 			dev_err(&pdev->dev,
1967 				"No usable consistent DMA configuration, aborting\n");
1968 			goto err_out_res;
1969 		}
1970 	}
1971 
1972 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1973 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1974 
1975 	dev->features |= NETIF_F_RXCSUM;
1976 	dev->hw_features |= NETIF_F_RXCSUM;
1977 
1978 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1979 	if (!regs) {
1980 		rc = -EIO;
1981 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1982 			(unsigned long long)pci_resource_len(pdev, 1),
1983 		       (unsigned long long)pciaddr);
1984 		goto err_out_res;
1985 	}
1986 	cp->regs = regs;
1987 
1988 	cp_stop_hw(cp);
1989 
1990 	/* read MAC address from EEPROM */
1991 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1992 	for (i = 0; i < 3; i++)
1993 		((__le16 *) (dev->dev_addr))[i] =
1994 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1995 
1996 	dev->netdev_ops = &cp_netdev_ops;
1997 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1998 	dev->ethtool_ops = &cp_ethtool_ops;
1999 	dev->watchdog_timeo = TX_TIMEOUT;
2000 
2001 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2002 
2003 	if (pci_using_dac)
2004 		dev->features |= NETIF_F_HIGHDMA;
2005 
2006 	/* disabled by default until verified */
2007 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2008 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2009 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2010 		NETIF_F_HIGHDMA;
2011 
2012 	rc = register_netdev(dev);
2013 	if (rc)
2014 		goto err_out_iomap;
2015 
2016 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2017 		    regs, dev->dev_addr, pdev->irq);
2018 
2019 	pci_set_drvdata(pdev, dev);
2020 
2021 	/* enable busmastering and memory-write-invalidate */
2022 	pci_set_master(pdev);
2023 
2024 	if (cp->wol_enabled)
2025 		cp_set_d3_state (cp);
2026 
2027 	return 0;
2028 
2029 err_out_iomap:
2030 	iounmap(regs);
2031 err_out_res:
2032 	pci_release_regions(pdev);
2033 err_out_mwi:
2034 	pci_clear_mwi(pdev);
2035 err_out_disable:
2036 	pci_disable_device(pdev);
2037 err_out_free:
2038 	free_netdev(dev);
2039 	return rc;
2040 }
2041 
2042 static void cp_remove_one (struct pci_dev *pdev)
2043 {
2044 	struct net_device *dev = pci_get_drvdata(pdev);
2045 	struct cp_private *cp = netdev_priv(dev);
2046 
2047 	unregister_netdev(dev);
2048 	iounmap(cp->regs);
2049 	if (cp->wol_enabled)
2050 		pci_set_power_state (pdev, PCI_D0);
2051 	pci_release_regions(pdev);
2052 	pci_clear_mwi(pdev);
2053 	pci_disable_device(pdev);
2054 	free_netdev(dev);
2055 }
2056 
2057 #ifdef CONFIG_PM
2058 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2059 {
2060 	struct net_device *dev = pci_get_drvdata(pdev);
2061 	struct cp_private *cp = netdev_priv(dev);
2062 	unsigned long flags;
2063 
2064 	if (!netif_running(dev))
2065 		return 0;
2066 
2067 	netif_device_detach (dev);
2068 	netif_stop_queue (dev);
2069 
2070 	spin_lock_irqsave (&cp->lock, flags);
2071 
2072 	/* Disable Rx and Tx */
2073 	cpw16 (IntrMask, 0);
2074 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2075 
2076 	spin_unlock_irqrestore (&cp->lock, flags);
2077 
2078 	pci_save_state(pdev);
2079 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2080 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2081 
2082 	return 0;
2083 }
2084 
2085 static int cp_resume (struct pci_dev *pdev)
2086 {
2087 	struct net_device *dev = pci_get_drvdata (pdev);
2088 	struct cp_private *cp = netdev_priv(dev);
2089 	unsigned long flags;
2090 
2091 	if (!netif_running(dev))
2092 		return 0;
2093 
2094 	netif_device_attach (dev);
2095 
2096 	pci_set_power_state(pdev, PCI_D0);
2097 	pci_restore_state(pdev);
2098 	pci_enable_wake(pdev, PCI_D0, 0);
2099 
2100 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2101 	cp_init_rings_index (cp);
2102 	cp_init_hw (cp);
2103 	cp_enable_irq(cp);
2104 	netif_start_queue (dev);
2105 
2106 	spin_lock_irqsave (&cp->lock, flags);
2107 
2108 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2109 
2110 	spin_unlock_irqrestore (&cp->lock, flags);
2111 
2112 	return 0;
2113 }
2114 #endif /* CONFIG_PM */
2115 
2116 static struct pci_driver cp_driver = {
2117 	.name         = DRV_NAME,
2118 	.id_table     = cp_pci_tbl,
2119 	.probe        =	cp_init_one,
2120 	.remove       = cp_remove_one,
2121 #ifdef CONFIG_PM
2122 	.resume       = cp_resume,
2123 	.suspend      = cp_suspend,
2124 #endif
2125 };
2126 
2127 static int __init cp_init (void)
2128 {
2129 #ifdef MODULE
2130 	pr_info("%s", version);
2131 #endif
2132 	return pci_register_driver(&cp_driver);
2133 }
2134 
2135 static void __exit cp_exit (void)
2136 {
2137 	pci_unregister_driver (&cp_driver);
2138 }
2139 
2140 module_init(cp_init);
2141 module_exit(cp_exit);
2142