1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	Config5		= 0xD8,	/* Config5 */
161 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
162 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
163 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
164 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
165 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
166 	TxThresh	= 0xEC, /* Early Tx threshold */
167 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
168 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
169 
170 	/* Tx and Rx status descriptors */
171 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
172 	RingEnd		= (1 << 30), /* End of descriptor ring */
173 	FirstFrag	= (1 << 29), /* First segment of a packet */
174 	LastFrag	= (1 << 28), /* Final segment of a packet */
175 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
176 	MSSShift	= 16,	     /* MSS value position */
177 	MSSMask		= 0xfff,     /* MSS value: 11 bits */
178 	TxError		= (1 << 23), /* Tx error summary */
179 	RxError		= (1 << 20), /* Rx error summary */
180 	IPCS		= (1 << 18), /* Calculate IP checksum */
181 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
182 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
183 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
184 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
185 	IPFail		= (1 << 15), /* IP checksum failed */
186 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
187 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
188 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
189 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
190 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 	RxProtoTCP	= 1,
192 	RxProtoUDP	= 2,
193 	RxProtoIP	= 3,
194 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
195 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
196 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
197 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
198 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
199 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
201 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
202 	RxErrCRC	= (1 << 18), /* Rx CRC error */
203 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
204 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
205 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206 
207 	/* StatsAddr register */
208 	DumpStats	= (1 << 3),  /* Begin stats dump */
209 
210 	/* RxConfig register */
211 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
212 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
213 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
214 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
215 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
216 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
217 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
218 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
219 
220 	/* IntrMask / IntrStatus registers */
221 	PciErr		= (1 << 15), /* System error on the PCI bus */
222 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 	LenChg		= (1 << 13), /* Cable length change */
224 	SWInt		= (1 << 8),  /* Software-requested interrupt */
225 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
226 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
227 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
228 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
229 	TxErr		= (1 << 3),  /* Tx error */
230 	TxOK		= (1 << 2),  /* Tx packet sent */
231 	RxErr		= (1 << 1),  /* Rx error */
232 	RxOK		= (1 << 0),  /* Rx packet received */
233 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
234 					but hardware likes to raise it */
235 
236 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 			  RxErr | RxOK | IntrResvd,
239 
240 	/* C mode command register */
241 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
242 	RxOn		= (1 << 3),  /* Rx mode enable */
243 	TxOn		= (1 << 2),  /* Tx mode enable */
244 
245 	/* C+ mode command register */
246 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
247 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
248 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
249 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
250 	CpRxOn		= (1 << 1),  /* Rx mode enable */
251 	CpTxOn		= (1 << 0),  /* Tx mode enable */
252 
253 	/* Cfg9436 EEPROM control register */
254 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
255 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
256 
257 	/* TxConfig register */
258 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
260 
261 	/* Early Tx Threshold register */
262 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
263 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
264 
265 	/* Config1 register */
266 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
267 	LWACT           = (1 << 4),  /* LWAKE active mode */
268 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
269 
270 	/* Config3 register */
271 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
272 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
273 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
274 
275 	/* Config4 register */
276 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
277 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
278 
279 	/* Config5 register */
280 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
281 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
282 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
283 	LANWake         = (1 << 1),  /* Enable LANWake signal */
284 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
285 
286 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290 
291 static const unsigned int cp_rx_config =
292 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 	  (RX_DMA_BURST << RxCfgDMAShift);
294 
295 struct cp_desc {
296 	__le32		opts1;
297 	__le32		opts2;
298 	__le64		addr;
299 };
300 
301 struct cp_dma_stats {
302 	__le64			tx_ok;
303 	__le64			rx_ok;
304 	__le64			tx_err;
305 	__le32			rx_err;
306 	__le16			rx_fifo;
307 	__le16			frame_align;
308 	__le32			tx_ok_1col;
309 	__le32			tx_ok_mcol;
310 	__le64			rx_ok_phys;
311 	__le64			rx_ok_bcast;
312 	__le32			rx_ok_mcast;
313 	__le16			tx_abort;
314 	__le16			tx_underrun;
315 } __packed;
316 
317 struct cp_extra_stats {
318 	unsigned long		rx_frags;
319 };
320 
321 struct cp_private {
322 	void			__iomem *regs;
323 	struct net_device	*dev;
324 	spinlock_t		lock;
325 	u32			msg_enable;
326 
327 	struct napi_struct	napi;
328 
329 	struct pci_dev		*pdev;
330 	u32			rx_config;
331 	u16			cpcmd;
332 
333 	struct cp_extra_stats	cp_stats;
334 
335 	unsigned		rx_head		____cacheline_aligned;
336 	unsigned		rx_tail;
337 	struct cp_desc		*rx_ring;
338 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
339 
340 	unsigned		tx_head		____cacheline_aligned;
341 	unsigned		tx_tail;
342 	struct cp_desc		*tx_ring;
343 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
344 
345 	unsigned		rx_buf_sz;
346 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347 
348 	dma_addr_t		ring_dma;
349 
350 	struct mii_if_info	mii_if;
351 };
352 
353 #define cpr8(reg)	readb(cp->regs + (reg))
354 #define cpr16(reg)	readw(cp->regs + (reg))
355 #define cpr32(reg)	readl(cp->regs + (reg))
356 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
358 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do {			\
360 	writeb((val), cp->regs + (reg));	\
361 	readb(cp->regs + (reg));		\
362 	} while (0)
363 #define cpw16_f(reg,val) do {			\
364 	writew((val), cp->regs + (reg));	\
365 	readw(cp->regs + (reg));		\
366 	} while (0)
367 #define cpw32_f(reg,val) do {			\
368 	writel((val), cp->regs + (reg));	\
369 	readl(cp->regs + (reg));		\
370 	} while (0)
371 
372 
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 			 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	PCI_DEVICE_ID_REALTEK_8139), },
387 	{ PCI_DEVICE(PCI_VENDOR_ID_TTTECH,	PCI_DEVICE_ID_TTTECH_MC322), },
388 	{ },
389 };
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391 
392 static struct {
393 	const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 	{ "tx_ok" },
396 	{ "rx_ok" },
397 	{ "tx_err" },
398 	{ "rx_err" },
399 	{ "rx_fifo" },
400 	{ "frame_align" },
401 	{ "tx_ok_1col" },
402 	{ "tx_ok_mcol" },
403 	{ "rx_ok_phys" },
404 	{ "rx_ok_bcast" },
405 	{ "rx_ok_mcast" },
406 	{ "tx_abort" },
407 	{ "tx_underrun" },
408 	{ "rx_frags" },
409 };
410 
411 
412 static inline void cp_set_rxbufsize (struct cp_private *cp)
413 {
414 	unsigned int mtu = cp->dev->mtu;
415 
416 	if (mtu > ETH_DATA_LEN)
417 		/* MTU + ethernet header + FCS + optional VLAN tag */
418 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 	else
420 		cp->rx_buf_sz = PKT_BUF_SZ;
421 }
422 
423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 			      struct cp_desc *desc)
425 {
426 	u32 opts2 = le32_to_cpu(desc->opts2);
427 
428 	skb->protocol = eth_type_trans (skb, cp->dev);
429 
430 	cp->dev->stats.rx_packets++;
431 	cp->dev->stats.rx_bytes += skb->len;
432 
433 	if (opts2 & RxVlanTagged)
434 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
435 
436 	napi_gro_receive(&cp->napi, skb);
437 }
438 
439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 			    u32 status, u32 len)
441 {
442 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 		  rx_tail, status, len);
444 	cp->dev->stats.rx_errors++;
445 	if (status & RxErrFrame)
446 		cp->dev->stats.rx_frame_errors++;
447 	if (status & RxErrCRC)
448 		cp->dev->stats.rx_crc_errors++;
449 	if ((status & RxErrRunt) || (status & RxErrLong))
450 		cp->dev->stats.rx_length_errors++;
451 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 		cp->dev->stats.rx_length_errors++;
453 	if (status & RxErrFIFO)
454 		cp->dev->stats.rx_fifo_errors++;
455 }
456 
457 static inline unsigned int cp_rx_csum_ok (u32 status)
458 {
459 	unsigned int protocol = (status >> 16) & 0x3;
460 
461 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 		return 1;
464 	else
465 		return 0;
466 }
467 
468 static int cp_rx_poll(struct napi_struct *napi, int budget)
469 {
470 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 	struct net_device *dev = cp->dev;
472 	unsigned int rx_tail = cp->rx_tail;
473 	int rx;
474 
475 rx_status_loop:
476 	rx = 0;
477 	cpw16(IntrStatus, cp_rx_intr_mask);
478 
479 	while (1) {
480 		u32 status, len;
481 		dma_addr_t mapping, new_mapping;
482 		struct sk_buff *skb, *new_skb;
483 		struct cp_desc *desc;
484 		const unsigned buflen = cp->rx_buf_sz;
485 
486 		skb = cp->rx_skb[rx_tail];
487 		BUG_ON(!skb);
488 
489 		desc = &cp->rx_ring[rx_tail];
490 		status = le32_to_cpu(desc->opts1);
491 		if (status & DescOwn)
492 			break;
493 
494 		len = (status & 0x1fff) - 4;
495 		mapping = le64_to_cpu(desc->addr);
496 
497 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 			/* we don't support incoming fragmented frames.
499 			 * instead, we attempt to ensure that the
500 			 * pre-allocated RX skbs are properly sized such
501 			 * that RX fragments are never encountered
502 			 */
503 			cp_rx_err_acct(cp, rx_tail, status, len);
504 			dev->stats.rx_dropped++;
505 			cp->cp_stats.rx_frags++;
506 			goto rx_next;
507 		}
508 
509 		if (status & (RxError | RxErrFIFO)) {
510 			cp_rx_err_acct(cp, rx_tail, status, len);
511 			goto rx_next;
512 		}
513 
514 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 			  rx_tail, status, len);
516 
517 		new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 		if (!new_skb) {
519 			dev->stats.rx_dropped++;
520 			goto rx_next;
521 		}
522 
523 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
524 					 PCI_DMA_FROMDEVICE);
525 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
526 			dev->stats.rx_dropped++;
527 			kfree_skb(new_skb);
528 			goto rx_next;
529 		}
530 
531 		dma_unmap_single(&cp->pdev->dev, mapping,
532 				 buflen, PCI_DMA_FROMDEVICE);
533 
534 		/* Handle checksum offloading for incoming packets. */
535 		if (cp_rx_csum_ok(status))
536 			skb->ip_summed = CHECKSUM_UNNECESSARY;
537 		else
538 			skb_checksum_none_assert(skb);
539 
540 		skb_put(skb, len);
541 
542 		cp->rx_skb[rx_tail] = new_skb;
543 
544 		cp_rx_skb(cp, skb, desc);
545 		rx++;
546 		mapping = new_mapping;
547 
548 rx_next:
549 		cp->rx_ring[rx_tail].opts2 = 0;
550 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
551 		if (rx_tail == (CP_RX_RING_SIZE - 1))
552 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
553 						  cp->rx_buf_sz);
554 		else
555 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
556 		rx_tail = NEXT_RX(rx_tail);
557 
558 		if (rx >= budget)
559 			break;
560 	}
561 
562 	cp->rx_tail = rx_tail;
563 
564 	/* if we did not reach work limit, then we're done with
565 	 * this round of polling
566 	 */
567 	if (rx < budget) {
568 		unsigned long flags;
569 
570 		if (cpr16(IntrStatus) & cp_rx_intr_mask)
571 			goto rx_status_loop;
572 
573 		napi_gro_flush(napi, false);
574 		spin_lock_irqsave(&cp->lock, flags);
575 		__napi_complete(napi);
576 		cpw16_f(IntrMask, cp_intr_mask);
577 		spin_unlock_irqrestore(&cp->lock, flags);
578 	}
579 
580 	return rx;
581 }
582 
583 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
584 {
585 	struct net_device *dev = dev_instance;
586 	struct cp_private *cp;
587 	int handled = 0;
588 	u16 status;
589 
590 	if (unlikely(dev == NULL))
591 		return IRQ_NONE;
592 	cp = netdev_priv(dev);
593 
594 	spin_lock(&cp->lock);
595 
596 	status = cpr16(IntrStatus);
597 	if (!status || (status == 0xFFFF))
598 		goto out_unlock;
599 
600 	handled = 1;
601 
602 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
603 		  status, cpr8(Cmd), cpr16(CpCmd));
604 
605 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
606 
607 	/* close possible race's with dev_close */
608 	if (unlikely(!netif_running(dev))) {
609 		cpw16(IntrMask, 0);
610 		goto out_unlock;
611 	}
612 
613 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
614 		if (napi_schedule_prep(&cp->napi)) {
615 			cpw16_f(IntrMask, cp_norx_intr_mask);
616 			__napi_schedule(&cp->napi);
617 		}
618 
619 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
620 		cp_tx(cp);
621 	if (status & LinkChg)
622 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
623 
624 
625 	if (status & PciErr) {
626 		u16 pci_status;
627 
628 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
629 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
630 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
631 			   status, pci_status);
632 
633 		/* TODO: reset hardware */
634 	}
635 
636 out_unlock:
637 	spin_unlock(&cp->lock);
638 
639 	return IRQ_RETVAL(handled);
640 }
641 
642 #ifdef CONFIG_NET_POLL_CONTROLLER
643 /*
644  * Polling receive - used by netconsole and other diagnostic tools
645  * to allow network i/o with interrupts disabled.
646  */
647 static void cp_poll_controller(struct net_device *dev)
648 {
649 	struct cp_private *cp = netdev_priv(dev);
650 	const int irq = cp->pdev->irq;
651 
652 	disable_irq(irq);
653 	cp_interrupt(irq, dev);
654 	enable_irq(irq);
655 }
656 #endif
657 
658 static void cp_tx (struct cp_private *cp)
659 {
660 	unsigned tx_head = cp->tx_head;
661 	unsigned tx_tail = cp->tx_tail;
662 	unsigned bytes_compl = 0, pkts_compl = 0;
663 
664 	while (tx_tail != tx_head) {
665 		struct cp_desc *txd = cp->tx_ring + tx_tail;
666 		struct sk_buff *skb;
667 		u32 status;
668 
669 		rmb();
670 		status = le32_to_cpu(txd->opts1);
671 		if (status & DescOwn)
672 			break;
673 
674 		skb = cp->tx_skb[tx_tail];
675 		BUG_ON(!skb);
676 
677 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
678 				 le32_to_cpu(txd->opts1) & 0xffff,
679 				 PCI_DMA_TODEVICE);
680 
681 		bytes_compl += skb->len;
682 		pkts_compl++;
683 
684 		if (status & LastFrag) {
685 			if (status & (TxError | TxFIFOUnder)) {
686 				netif_dbg(cp, tx_err, cp->dev,
687 					  "tx err, status 0x%x\n", status);
688 				cp->dev->stats.tx_errors++;
689 				if (status & TxOWC)
690 					cp->dev->stats.tx_window_errors++;
691 				if (status & TxMaxCol)
692 					cp->dev->stats.tx_aborted_errors++;
693 				if (status & TxLinkFail)
694 					cp->dev->stats.tx_carrier_errors++;
695 				if (status & TxFIFOUnder)
696 					cp->dev->stats.tx_fifo_errors++;
697 			} else {
698 				cp->dev->stats.collisions +=
699 					((status >> TxColCntShift) & TxColCntMask);
700 				cp->dev->stats.tx_packets++;
701 				cp->dev->stats.tx_bytes += skb->len;
702 				netif_dbg(cp, tx_done, cp->dev,
703 					  "tx done, slot %d\n", tx_tail);
704 			}
705 			dev_kfree_skb_irq(skb);
706 		}
707 
708 		cp->tx_skb[tx_tail] = NULL;
709 
710 		tx_tail = NEXT_TX(tx_tail);
711 	}
712 
713 	cp->tx_tail = tx_tail;
714 
715 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
716 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
717 		netif_wake_queue(cp->dev);
718 }
719 
720 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
721 {
722 	return vlan_tx_tag_present(skb) ?
723 		TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
724 }
725 
726 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
727 				   int first, int entry_last)
728 {
729 	int frag, index;
730 	struct cp_desc *txd;
731 	skb_frag_t *this_frag;
732 	for (frag = 0; frag+first < entry_last; frag++) {
733 		index = first+frag;
734 		cp->tx_skb[index] = NULL;
735 		txd = &cp->tx_ring[index];
736 		this_frag = &skb_shinfo(skb)->frags[frag];
737 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
738 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
739 	}
740 }
741 
742 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
743 					struct net_device *dev)
744 {
745 	struct cp_private *cp = netdev_priv(dev);
746 	unsigned entry;
747 	u32 eor, flags;
748 	unsigned long intr_flags;
749 	__le32 opts2;
750 	int mss = 0;
751 
752 	spin_lock_irqsave(&cp->lock, intr_flags);
753 
754 	/* This is a hard error, log it. */
755 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
756 		netif_stop_queue(dev);
757 		spin_unlock_irqrestore(&cp->lock, intr_flags);
758 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
759 		return NETDEV_TX_BUSY;
760 	}
761 
762 	entry = cp->tx_head;
763 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
764 	mss = skb_shinfo(skb)->gso_size;
765 
766 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
767 
768 	if (skb_shinfo(skb)->nr_frags == 0) {
769 		struct cp_desc *txd = &cp->tx_ring[entry];
770 		u32 len;
771 		dma_addr_t mapping;
772 
773 		len = skb->len;
774 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
775 		if (dma_mapping_error(&cp->pdev->dev, mapping))
776 			goto out_dma_error;
777 
778 		txd->opts2 = opts2;
779 		txd->addr = cpu_to_le64(mapping);
780 		wmb();
781 
782 		flags = eor | len | DescOwn | FirstFrag | LastFrag;
783 
784 		if (mss)
785 			flags |= LargeSend | ((mss & MSSMask) << MSSShift);
786 		else if (skb->ip_summed == CHECKSUM_PARTIAL) {
787 			const struct iphdr *ip = ip_hdr(skb);
788 			if (ip->protocol == IPPROTO_TCP)
789 				flags |= IPCS | TCPCS;
790 			else if (ip->protocol == IPPROTO_UDP)
791 				flags |= IPCS | UDPCS;
792 			else
793 				WARN_ON(1);	/* we need a WARN() */
794 		}
795 
796 		txd->opts1 = cpu_to_le32(flags);
797 		wmb();
798 
799 		cp->tx_skb[entry] = skb;
800 		entry = NEXT_TX(entry);
801 	} else {
802 		struct cp_desc *txd;
803 		u32 first_len, first_eor;
804 		dma_addr_t first_mapping;
805 		int frag, first_entry = entry;
806 		const struct iphdr *ip = ip_hdr(skb);
807 
808 		/* We must give this initial chunk to the device last.
809 		 * Otherwise we could race with the device.
810 		 */
811 		first_eor = eor;
812 		first_len = skb_headlen(skb);
813 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
814 					       first_len, PCI_DMA_TODEVICE);
815 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
816 			goto out_dma_error;
817 
818 		cp->tx_skb[entry] = skb;
819 		entry = NEXT_TX(entry);
820 
821 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
822 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
823 			u32 len;
824 			u32 ctrl;
825 			dma_addr_t mapping;
826 
827 			len = skb_frag_size(this_frag);
828 			mapping = dma_map_single(&cp->pdev->dev,
829 						 skb_frag_address(this_frag),
830 						 len, PCI_DMA_TODEVICE);
831 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
832 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
833 				goto out_dma_error;
834 			}
835 
836 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
837 
838 			ctrl = eor | len | DescOwn;
839 
840 			if (mss)
841 				ctrl |= LargeSend |
842 					((mss & MSSMask) << MSSShift);
843 			else if (skb->ip_summed == CHECKSUM_PARTIAL) {
844 				if (ip->protocol == IPPROTO_TCP)
845 					ctrl |= IPCS | TCPCS;
846 				else if (ip->protocol == IPPROTO_UDP)
847 					ctrl |= IPCS | UDPCS;
848 				else
849 					BUG();
850 			}
851 
852 			if (frag == skb_shinfo(skb)->nr_frags - 1)
853 				ctrl |= LastFrag;
854 
855 			txd = &cp->tx_ring[entry];
856 			txd->opts2 = opts2;
857 			txd->addr = cpu_to_le64(mapping);
858 			wmb();
859 
860 			txd->opts1 = cpu_to_le32(ctrl);
861 			wmb();
862 
863 			cp->tx_skb[entry] = skb;
864 			entry = NEXT_TX(entry);
865 		}
866 
867 		txd = &cp->tx_ring[first_entry];
868 		txd->opts2 = opts2;
869 		txd->addr = cpu_to_le64(first_mapping);
870 		wmb();
871 
872 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
873 			if (ip->protocol == IPPROTO_TCP)
874 				txd->opts1 = cpu_to_le32(first_eor | first_len |
875 							 FirstFrag | DescOwn |
876 							 IPCS | TCPCS);
877 			else if (ip->protocol == IPPROTO_UDP)
878 				txd->opts1 = cpu_to_le32(first_eor | first_len |
879 							 FirstFrag | DescOwn |
880 							 IPCS | UDPCS);
881 			else
882 				BUG();
883 		} else
884 			txd->opts1 = cpu_to_le32(first_eor | first_len |
885 						 FirstFrag | DescOwn);
886 		wmb();
887 	}
888 	cp->tx_head = entry;
889 
890 	netdev_sent_queue(dev, skb->len);
891 	netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
892 		  entry, skb->len);
893 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
894 		netif_stop_queue(dev);
895 
896 out_unlock:
897 	spin_unlock_irqrestore(&cp->lock, intr_flags);
898 
899 	cpw8(TxPoll, NormalTxPoll);
900 
901 	return NETDEV_TX_OK;
902 out_dma_error:
903 	kfree_skb(skb);
904 	cp->dev->stats.tx_dropped++;
905 	goto out_unlock;
906 }
907 
908 /* Set or clear the multicast filter for this adaptor.
909    This routine is not state sensitive and need not be SMP locked. */
910 
911 static void __cp_set_rx_mode (struct net_device *dev)
912 {
913 	struct cp_private *cp = netdev_priv(dev);
914 	u32 mc_filter[2];	/* Multicast hash filter */
915 	int rx_mode;
916 
917 	/* Note: do not reorder, GCC is clever about common statements. */
918 	if (dev->flags & IFF_PROMISC) {
919 		/* Unconditionally log net taps. */
920 		rx_mode =
921 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
922 		    AcceptAllPhys;
923 		mc_filter[1] = mc_filter[0] = 0xffffffff;
924 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
925 		   (dev->flags & IFF_ALLMULTI)) {
926 		/* Too many to filter perfectly -- accept all multicasts. */
927 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
928 		mc_filter[1] = mc_filter[0] = 0xffffffff;
929 	} else {
930 		struct netdev_hw_addr *ha;
931 		rx_mode = AcceptBroadcast | AcceptMyPhys;
932 		mc_filter[1] = mc_filter[0] = 0;
933 		netdev_for_each_mc_addr(ha, dev) {
934 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
935 
936 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
937 			rx_mode |= AcceptMulticast;
938 		}
939 	}
940 
941 	/* We can safely update without stopping the chip. */
942 	cp->rx_config = cp_rx_config | rx_mode;
943 	cpw32_f(RxConfig, cp->rx_config);
944 
945 	cpw32_f (MAR0 + 0, mc_filter[0]);
946 	cpw32_f (MAR0 + 4, mc_filter[1]);
947 }
948 
949 static void cp_set_rx_mode (struct net_device *dev)
950 {
951 	unsigned long flags;
952 	struct cp_private *cp = netdev_priv(dev);
953 
954 	spin_lock_irqsave (&cp->lock, flags);
955 	__cp_set_rx_mode(dev);
956 	spin_unlock_irqrestore (&cp->lock, flags);
957 }
958 
959 static void __cp_get_stats(struct cp_private *cp)
960 {
961 	/* only lower 24 bits valid; write any value to clear */
962 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
963 	cpw32 (RxMissed, 0);
964 }
965 
966 static struct net_device_stats *cp_get_stats(struct net_device *dev)
967 {
968 	struct cp_private *cp = netdev_priv(dev);
969 	unsigned long flags;
970 
971 	/* The chip only need report frame silently dropped. */
972 	spin_lock_irqsave(&cp->lock, flags);
973  	if (netif_running(dev) && netif_device_present(dev))
974  		__cp_get_stats(cp);
975 	spin_unlock_irqrestore(&cp->lock, flags);
976 
977 	return &dev->stats;
978 }
979 
980 static void cp_stop_hw (struct cp_private *cp)
981 {
982 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
983 	cpw16_f(IntrMask, 0);
984 	cpw8(Cmd, 0);
985 	cpw16_f(CpCmd, 0);
986 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
987 
988 	cp->rx_tail = 0;
989 	cp->tx_head = cp->tx_tail = 0;
990 
991 	netdev_reset_queue(cp->dev);
992 }
993 
994 static void cp_reset_hw (struct cp_private *cp)
995 {
996 	unsigned work = 1000;
997 
998 	cpw8(Cmd, CmdReset);
999 
1000 	while (work--) {
1001 		if (!(cpr8(Cmd) & CmdReset))
1002 			return;
1003 
1004 		schedule_timeout_uninterruptible(10);
1005 	}
1006 
1007 	netdev_err(cp->dev, "hardware reset timeout\n");
1008 }
1009 
1010 static inline void cp_start_hw (struct cp_private *cp)
1011 {
1012 	dma_addr_t ring_dma;
1013 
1014 	cpw16(CpCmd, cp->cpcmd);
1015 
1016 	/*
1017 	 * These (at least TxRingAddr) need to be configured after the
1018 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1019 	 * (C+ Command Register) recommends that these and more be configured
1020 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1021 	 * it's been observed that the TxRingAddr is actually reset to garbage
1022 	 * when C+ mode Tx is enabled in CpCmd.
1023 	 */
1024 	cpw32_f(HiTxRingAddr, 0);
1025 	cpw32_f(HiTxRingAddr + 4, 0);
1026 
1027 	ring_dma = cp->ring_dma;
1028 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1029 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1030 
1031 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1032 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1033 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1034 
1035 	/*
1036 	 * Strictly speaking, the datasheet says this should be enabled
1037 	 * *before* setting the descriptor addresses. But what, then, would
1038 	 * prevent it from doing DMA to random unconfigured addresses?
1039 	 * This variant appears to work fine.
1040 	 */
1041 	cpw8(Cmd, RxOn | TxOn);
1042 
1043 	netdev_reset_queue(cp->dev);
1044 }
1045 
1046 static void cp_enable_irq(struct cp_private *cp)
1047 {
1048 	cpw16_f(IntrMask, cp_intr_mask);
1049 }
1050 
1051 static void cp_init_hw (struct cp_private *cp)
1052 {
1053 	struct net_device *dev = cp->dev;
1054 
1055 	cp_reset_hw(cp);
1056 
1057 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1058 
1059 	/* Restore our idea of the MAC address. */
1060 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1061 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1062 
1063 	cp_start_hw(cp);
1064 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1065 
1066 	__cp_set_rx_mode(dev);
1067 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1068 
1069 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1070 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1071 	cpw8(Config3, PARMEnable);
1072 	cp->wol_enabled = 0;
1073 
1074 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1075 
1076 	cpw16(MultiIntr, 0);
1077 
1078 	cpw8_f(Cfg9346, Cfg9346_Lock);
1079 }
1080 
1081 static int cp_refill_rx(struct cp_private *cp)
1082 {
1083 	struct net_device *dev = cp->dev;
1084 	unsigned i;
1085 
1086 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1087 		struct sk_buff *skb;
1088 		dma_addr_t mapping;
1089 
1090 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1091 		if (!skb)
1092 			goto err_out;
1093 
1094 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1095 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1096 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1097 			kfree_skb(skb);
1098 			goto err_out;
1099 		}
1100 		cp->rx_skb[i] = skb;
1101 
1102 		cp->rx_ring[i].opts2 = 0;
1103 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1104 		if (i == (CP_RX_RING_SIZE - 1))
1105 			cp->rx_ring[i].opts1 =
1106 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1107 		else
1108 			cp->rx_ring[i].opts1 =
1109 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1110 	}
1111 
1112 	return 0;
1113 
1114 err_out:
1115 	cp_clean_rings(cp);
1116 	return -ENOMEM;
1117 }
1118 
1119 static void cp_init_rings_index (struct cp_private *cp)
1120 {
1121 	cp->rx_tail = 0;
1122 	cp->tx_head = cp->tx_tail = 0;
1123 }
1124 
1125 static int cp_init_rings (struct cp_private *cp)
1126 {
1127 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1128 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1129 
1130 	cp_init_rings_index(cp);
1131 
1132 	return cp_refill_rx (cp);
1133 }
1134 
1135 static int cp_alloc_rings (struct cp_private *cp)
1136 {
1137 	struct device *d = &cp->pdev->dev;
1138 	void *mem;
1139 	int rc;
1140 
1141 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1142 	if (!mem)
1143 		return -ENOMEM;
1144 
1145 	cp->rx_ring = mem;
1146 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1147 
1148 	rc = cp_init_rings(cp);
1149 	if (rc < 0)
1150 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1151 
1152 	return rc;
1153 }
1154 
1155 static void cp_clean_rings (struct cp_private *cp)
1156 {
1157 	struct cp_desc *desc;
1158 	unsigned i;
1159 
1160 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1161 		if (cp->rx_skb[i]) {
1162 			desc = cp->rx_ring + i;
1163 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1164 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1165 			dev_kfree_skb(cp->rx_skb[i]);
1166 		}
1167 	}
1168 
1169 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1170 		if (cp->tx_skb[i]) {
1171 			struct sk_buff *skb = cp->tx_skb[i];
1172 
1173 			desc = cp->tx_ring + i;
1174 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1175 					 le32_to_cpu(desc->opts1) & 0xffff,
1176 					 PCI_DMA_TODEVICE);
1177 			if (le32_to_cpu(desc->opts1) & LastFrag)
1178 				dev_kfree_skb(skb);
1179 			cp->dev->stats.tx_dropped++;
1180 		}
1181 	}
1182 	netdev_reset_queue(cp->dev);
1183 
1184 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1185 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1186 
1187 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1188 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1189 }
1190 
1191 static void cp_free_rings (struct cp_private *cp)
1192 {
1193 	cp_clean_rings(cp);
1194 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1195 			  cp->ring_dma);
1196 	cp->rx_ring = NULL;
1197 	cp->tx_ring = NULL;
1198 }
1199 
1200 static int cp_open (struct net_device *dev)
1201 {
1202 	struct cp_private *cp = netdev_priv(dev);
1203 	const int irq = cp->pdev->irq;
1204 	int rc;
1205 
1206 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1207 
1208 	rc = cp_alloc_rings(cp);
1209 	if (rc)
1210 		return rc;
1211 
1212 	napi_enable(&cp->napi);
1213 
1214 	cp_init_hw(cp);
1215 
1216 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1217 	if (rc)
1218 		goto err_out_hw;
1219 
1220 	cp_enable_irq(cp);
1221 
1222 	netif_carrier_off(dev);
1223 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1224 	netif_start_queue(dev);
1225 
1226 	return 0;
1227 
1228 err_out_hw:
1229 	napi_disable(&cp->napi);
1230 	cp_stop_hw(cp);
1231 	cp_free_rings(cp);
1232 	return rc;
1233 }
1234 
1235 static int cp_close (struct net_device *dev)
1236 {
1237 	struct cp_private *cp = netdev_priv(dev);
1238 	unsigned long flags;
1239 
1240 	napi_disable(&cp->napi);
1241 
1242 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1243 
1244 	spin_lock_irqsave(&cp->lock, flags);
1245 
1246 	netif_stop_queue(dev);
1247 	netif_carrier_off(dev);
1248 
1249 	cp_stop_hw(cp);
1250 
1251 	spin_unlock_irqrestore(&cp->lock, flags);
1252 
1253 	free_irq(cp->pdev->irq, dev);
1254 
1255 	cp_free_rings(cp);
1256 	return 0;
1257 }
1258 
1259 static void cp_tx_timeout(struct net_device *dev)
1260 {
1261 	struct cp_private *cp = netdev_priv(dev);
1262 	unsigned long flags;
1263 	int rc;
1264 
1265 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1266 		    cpr8(Cmd), cpr16(CpCmd),
1267 		    cpr16(IntrStatus), cpr16(IntrMask));
1268 
1269 	spin_lock_irqsave(&cp->lock, flags);
1270 
1271 	cp_stop_hw(cp);
1272 	cp_clean_rings(cp);
1273 	rc = cp_init_rings(cp);
1274 	cp_start_hw(cp);
1275 	cp_enable_irq(cp);
1276 
1277 	netif_wake_queue(dev);
1278 
1279 	spin_unlock_irqrestore(&cp->lock, flags);
1280 }
1281 
1282 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1283 {
1284 	struct cp_private *cp = netdev_priv(dev);
1285 
1286 	/* check for invalid MTU, according to hardware limits */
1287 	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1288 		return -EINVAL;
1289 
1290 	/* if network interface not up, no need for complexity */
1291 	if (!netif_running(dev)) {
1292 		dev->mtu = new_mtu;
1293 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1294 		return 0;
1295 	}
1296 
1297 	/* network IS up, close it, reset MTU, and come up again. */
1298 	cp_close(dev);
1299 	dev->mtu = new_mtu;
1300 	cp_set_rxbufsize(cp);
1301 	return cp_open(dev);
1302 }
1303 
1304 static const char mii_2_8139_map[8] = {
1305 	BasicModeCtrl,
1306 	BasicModeStatus,
1307 	0,
1308 	0,
1309 	NWayAdvert,
1310 	NWayLPAR,
1311 	NWayExpansion,
1312 	0
1313 };
1314 
1315 static int mdio_read(struct net_device *dev, int phy_id, int location)
1316 {
1317 	struct cp_private *cp = netdev_priv(dev);
1318 
1319 	return location < 8 && mii_2_8139_map[location] ?
1320 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1321 }
1322 
1323 
1324 static void mdio_write(struct net_device *dev, int phy_id, int location,
1325 		       int value)
1326 {
1327 	struct cp_private *cp = netdev_priv(dev);
1328 
1329 	if (location == 0) {
1330 		cpw8(Cfg9346, Cfg9346_Unlock);
1331 		cpw16(BasicModeCtrl, value);
1332 		cpw8(Cfg9346, Cfg9346_Lock);
1333 	} else if (location < 8 && mii_2_8139_map[location])
1334 		cpw16(mii_2_8139_map[location], value);
1335 }
1336 
1337 /* Set the ethtool Wake-on-LAN settings */
1338 static int netdev_set_wol (struct cp_private *cp,
1339 			   const struct ethtool_wolinfo *wol)
1340 {
1341 	u8 options;
1342 
1343 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1344 	/* If WOL is being disabled, no need for complexity */
1345 	if (wol->wolopts) {
1346 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1347 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1348 	}
1349 
1350 	cpw8 (Cfg9346, Cfg9346_Unlock);
1351 	cpw8 (Config3, options);
1352 	cpw8 (Cfg9346, Cfg9346_Lock);
1353 
1354 	options = 0; /* Paranoia setting */
1355 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1356 	/* If WOL is being disabled, no need for complexity */
1357 	if (wol->wolopts) {
1358 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1359 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1360 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1361 	}
1362 
1363 	cpw8 (Config5, options);
1364 
1365 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1366 
1367 	return 0;
1368 }
1369 
1370 /* Get the ethtool Wake-on-LAN settings */
1371 static void netdev_get_wol (struct cp_private *cp,
1372 	             struct ethtool_wolinfo *wol)
1373 {
1374 	u8 options;
1375 
1376 	wol->wolopts   = 0; /* Start from scratch */
1377 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1378 		         WAKE_MCAST | WAKE_UCAST;
1379 	/* We don't need to go on if WOL is disabled */
1380 	if (!cp->wol_enabled) return;
1381 
1382 	options        = cpr8 (Config3);
1383 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1384 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1385 
1386 	options        = 0; /* Paranoia setting */
1387 	options        = cpr8 (Config5);
1388 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1389 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1390 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1391 }
1392 
1393 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1394 {
1395 	struct cp_private *cp = netdev_priv(dev);
1396 
1397 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1398 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1399 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1400 }
1401 
1402 static void cp_get_ringparam(struct net_device *dev,
1403 				struct ethtool_ringparam *ring)
1404 {
1405 	ring->rx_max_pending = CP_RX_RING_SIZE;
1406 	ring->tx_max_pending = CP_TX_RING_SIZE;
1407 	ring->rx_pending = CP_RX_RING_SIZE;
1408 	ring->tx_pending = CP_TX_RING_SIZE;
1409 }
1410 
1411 static int cp_get_regs_len(struct net_device *dev)
1412 {
1413 	return CP_REGS_SIZE;
1414 }
1415 
1416 static int cp_get_sset_count (struct net_device *dev, int sset)
1417 {
1418 	switch (sset) {
1419 	case ETH_SS_STATS:
1420 		return CP_NUM_STATS;
1421 	default:
1422 		return -EOPNOTSUPP;
1423 	}
1424 }
1425 
1426 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1427 {
1428 	struct cp_private *cp = netdev_priv(dev);
1429 	int rc;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&cp->lock, flags);
1433 	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1434 	spin_unlock_irqrestore(&cp->lock, flags);
1435 
1436 	return rc;
1437 }
1438 
1439 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1440 {
1441 	struct cp_private *cp = netdev_priv(dev);
1442 	int rc;
1443 	unsigned long flags;
1444 
1445 	spin_lock_irqsave(&cp->lock, flags);
1446 	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1447 	spin_unlock_irqrestore(&cp->lock, flags);
1448 
1449 	return rc;
1450 }
1451 
1452 static int cp_nway_reset(struct net_device *dev)
1453 {
1454 	struct cp_private *cp = netdev_priv(dev);
1455 	return mii_nway_restart(&cp->mii_if);
1456 }
1457 
1458 static u32 cp_get_msglevel(struct net_device *dev)
1459 {
1460 	struct cp_private *cp = netdev_priv(dev);
1461 	return cp->msg_enable;
1462 }
1463 
1464 static void cp_set_msglevel(struct net_device *dev, u32 value)
1465 {
1466 	struct cp_private *cp = netdev_priv(dev);
1467 	cp->msg_enable = value;
1468 }
1469 
1470 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1471 {
1472 	struct cp_private *cp = netdev_priv(dev);
1473 	unsigned long flags;
1474 
1475 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1476 		return 0;
1477 
1478 	spin_lock_irqsave(&cp->lock, flags);
1479 
1480 	if (features & NETIF_F_RXCSUM)
1481 		cp->cpcmd |= RxChkSum;
1482 	else
1483 		cp->cpcmd &= ~RxChkSum;
1484 
1485 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1486 		cp->cpcmd |= RxVlanOn;
1487 	else
1488 		cp->cpcmd &= ~RxVlanOn;
1489 
1490 	cpw16_f(CpCmd, cp->cpcmd);
1491 	spin_unlock_irqrestore(&cp->lock, flags);
1492 
1493 	return 0;
1494 }
1495 
1496 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1497 		        void *p)
1498 {
1499 	struct cp_private *cp = netdev_priv(dev);
1500 	unsigned long flags;
1501 
1502 	if (regs->len < CP_REGS_SIZE)
1503 		return /* -EINVAL */;
1504 
1505 	regs->version = CP_REGS_VER;
1506 
1507 	spin_lock_irqsave(&cp->lock, flags);
1508 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1509 	spin_unlock_irqrestore(&cp->lock, flags);
1510 }
1511 
1512 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1513 {
1514 	struct cp_private *cp = netdev_priv(dev);
1515 	unsigned long flags;
1516 
1517 	spin_lock_irqsave (&cp->lock, flags);
1518 	netdev_get_wol (cp, wol);
1519 	spin_unlock_irqrestore (&cp->lock, flags);
1520 }
1521 
1522 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1523 {
1524 	struct cp_private *cp = netdev_priv(dev);
1525 	unsigned long flags;
1526 	int rc;
1527 
1528 	spin_lock_irqsave (&cp->lock, flags);
1529 	rc = netdev_set_wol (cp, wol);
1530 	spin_unlock_irqrestore (&cp->lock, flags);
1531 
1532 	return rc;
1533 }
1534 
1535 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1536 {
1537 	switch (stringset) {
1538 	case ETH_SS_STATS:
1539 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1540 		break;
1541 	default:
1542 		BUG();
1543 		break;
1544 	}
1545 }
1546 
1547 static void cp_get_ethtool_stats (struct net_device *dev,
1548 				  struct ethtool_stats *estats, u64 *tmp_stats)
1549 {
1550 	struct cp_private *cp = netdev_priv(dev);
1551 	struct cp_dma_stats *nic_stats;
1552 	dma_addr_t dma;
1553 	int i;
1554 
1555 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1556 				       &dma, GFP_KERNEL);
1557 	if (!nic_stats)
1558 		return;
1559 
1560 	/* begin NIC statistics dump */
1561 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1562 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1563 	cpr32(StatsAddr);
1564 
1565 	for (i = 0; i < 1000; i++) {
1566 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1567 			break;
1568 		udelay(10);
1569 	}
1570 	cpw32(StatsAddr, 0);
1571 	cpw32(StatsAddr + 4, 0);
1572 	cpr32(StatsAddr);
1573 
1574 	i = 0;
1575 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1576 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1577 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1578 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1579 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1580 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1581 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1582 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1583 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1584 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1585 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1586 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1587 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1588 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1589 	BUG_ON(i != CP_NUM_STATS);
1590 
1591 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1592 }
1593 
1594 static const struct ethtool_ops cp_ethtool_ops = {
1595 	.get_drvinfo		= cp_get_drvinfo,
1596 	.get_regs_len		= cp_get_regs_len,
1597 	.get_sset_count		= cp_get_sset_count,
1598 	.get_settings		= cp_get_settings,
1599 	.set_settings		= cp_set_settings,
1600 	.nway_reset		= cp_nway_reset,
1601 	.get_link		= ethtool_op_get_link,
1602 	.get_msglevel		= cp_get_msglevel,
1603 	.set_msglevel		= cp_set_msglevel,
1604 	.get_regs		= cp_get_regs,
1605 	.get_wol		= cp_get_wol,
1606 	.set_wol		= cp_set_wol,
1607 	.get_strings		= cp_get_strings,
1608 	.get_ethtool_stats	= cp_get_ethtool_stats,
1609 	.get_eeprom_len		= cp_get_eeprom_len,
1610 	.get_eeprom		= cp_get_eeprom,
1611 	.set_eeprom		= cp_set_eeprom,
1612 	.get_ringparam		= cp_get_ringparam,
1613 };
1614 
1615 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1616 {
1617 	struct cp_private *cp = netdev_priv(dev);
1618 	int rc;
1619 	unsigned long flags;
1620 
1621 	if (!netif_running(dev))
1622 		return -EINVAL;
1623 
1624 	spin_lock_irqsave(&cp->lock, flags);
1625 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1626 	spin_unlock_irqrestore(&cp->lock, flags);
1627 	return rc;
1628 }
1629 
1630 static int cp_set_mac_address(struct net_device *dev, void *p)
1631 {
1632 	struct cp_private *cp = netdev_priv(dev);
1633 	struct sockaddr *addr = p;
1634 
1635 	if (!is_valid_ether_addr(addr->sa_data))
1636 		return -EADDRNOTAVAIL;
1637 
1638 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1639 
1640 	spin_lock_irq(&cp->lock);
1641 
1642 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1643 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1644 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1645 	cpw8_f(Cfg9346, Cfg9346_Lock);
1646 
1647 	spin_unlock_irq(&cp->lock);
1648 
1649 	return 0;
1650 }
1651 
1652 /* Serial EEPROM section. */
1653 
1654 /*  EEPROM_Ctrl bits. */
1655 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1656 #define EE_CS			0x08	/* EEPROM chip select. */
1657 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1658 #define EE_WRITE_0		0x00
1659 #define EE_WRITE_1		0x02
1660 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1661 #define EE_ENB			(0x80 | EE_CS)
1662 
1663 /* Delay between EEPROM clock transitions.
1664    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1665  */
1666 
1667 #define eeprom_delay()	readb(ee_addr)
1668 
1669 /* The EEPROM commands include the alway-set leading bit. */
1670 #define EE_EXTEND_CMD	(4)
1671 #define EE_WRITE_CMD	(5)
1672 #define EE_READ_CMD		(6)
1673 #define EE_ERASE_CMD	(7)
1674 
1675 #define EE_EWDS_ADDR	(0)
1676 #define EE_WRAL_ADDR	(1)
1677 #define EE_ERAL_ADDR	(2)
1678 #define EE_EWEN_ADDR	(3)
1679 
1680 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1681 
1682 static void eeprom_cmd_start(void __iomem *ee_addr)
1683 {
1684 	writeb (EE_ENB & ~EE_CS, ee_addr);
1685 	writeb (EE_ENB, ee_addr);
1686 	eeprom_delay ();
1687 }
1688 
1689 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1690 {
1691 	int i;
1692 
1693 	/* Shift the command bits out. */
1694 	for (i = cmd_len - 1; i >= 0; i--) {
1695 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1696 		writeb (EE_ENB | dataval, ee_addr);
1697 		eeprom_delay ();
1698 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1699 		eeprom_delay ();
1700 	}
1701 	writeb (EE_ENB, ee_addr);
1702 	eeprom_delay ();
1703 }
1704 
1705 static void eeprom_cmd_end(void __iomem *ee_addr)
1706 {
1707 	writeb(0, ee_addr);
1708 	eeprom_delay ();
1709 }
1710 
1711 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1712 			      int addr_len)
1713 {
1714 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1715 
1716 	eeprom_cmd_start(ee_addr);
1717 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1718 	eeprom_cmd_end(ee_addr);
1719 }
1720 
1721 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1722 {
1723 	int i;
1724 	u16 retval = 0;
1725 	void __iomem *ee_addr = ioaddr + Cfg9346;
1726 	int read_cmd = location | (EE_READ_CMD << addr_len);
1727 
1728 	eeprom_cmd_start(ee_addr);
1729 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1730 
1731 	for (i = 16; i > 0; i--) {
1732 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1733 		eeprom_delay ();
1734 		retval =
1735 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1736 				     0);
1737 		writeb (EE_ENB, ee_addr);
1738 		eeprom_delay ();
1739 	}
1740 
1741 	eeprom_cmd_end(ee_addr);
1742 
1743 	return retval;
1744 }
1745 
1746 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1747 			 int addr_len)
1748 {
1749 	int i;
1750 	void __iomem *ee_addr = ioaddr + Cfg9346;
1751 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1752 
1753 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1754 
1755 	eeprom_cmd_start(ee_addr);
1756 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1757 	eeprom_cmd(ee_addr, val, 16);
1758 	eeprom_cmd_end(ee_addr);
1759 
1760 	eeprom_cmd_start(ee_addr);
1761 	for (i = 0; i < 20000; i++)
1762 		if (readb(ee_addr) & EE_DATA_READ)
1763 			break;
1764 	eeprom_cmd_end(ee_addr);
1765 
1766 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1767 }
1768 
1769 static int cp_get_eeprom_len(struct net_device *dev)
1770 {
1771 	struct cp_private *cp = netdev_priv(dev);
1772 	int size;
1773 
1774 	spin_lock_irq(&cp->lock);
1775 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1776 	spin_unlock_irq(&cp->lock);
1777 
1778 	return size;
1779 }
1780 
1781 static int cp_get_eeprom(struct net_device *dev,
1782 			 struct ethtool_eeprom *eeprom, u8 *data)
1783 {
1784 	struct cp_private *cp = netdev_priv(dev);
1785 	unsigned int addr_len;
1786 	u16 val;
1787 	u32 offset = eeprom->offset >> 1;
1788 	u32 len = eeprom->len;
1789 	u32 i = 0;
1790 
1791 	eeprom->magic = CP_EEPROM_MAGIC;
1792 
1793 	spin_lock_irq(&cp->lock);
1794 
1795 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1796 
1797 	if (eeprom->offset & 1) {
1798 		val = read_eeprom(cp->regs, offset, addr_len);
1799 		data[i++] = (u8)(val >> 8);
1800 		offset++;
1801 	}
1802 
1803 	while (i < len - 1) {
1804 		val = read_eeprom(cp->regs, offset, addr_len);
1805 		data[i++] = (u8)val;
1806 		data[i++] = (u8)(val >> 8);
1807 		offset++;
1808 	}
1809 
1810 	if (i < len) {
1811 		val = read_eeprom(cp->regs, offset, addr_len);
1812 		data[i] = (u8)val;
1813 	}
1814 
1815 	spin_unlock_irq(&cp->lock);
1816 	return 0;
1817 }
1818 
1819 static int cp_set_eeprom(struct net_device *dev,
1820 			 struct ethtool_eeprom *eeprom, u8 *data)
1821 {
1822 	struct cp_private *cp = netdev_priv(dev);
1823 	unsigned int addr_len;
1824 	u16 val;
1825 	u32 offset = eeprom->offset >> 1;
1826 	u32 len = eeprom->len;
1827 	u32 i = 0;
1828 
1829 	if (eeprom->magic != CP_EEPROM_MAGIC)
1830 		return -EINVAL;
1831 
1832 	spin_lock_irq(&cp->lock);
1833 
1834 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1835 
1836 	if (eeprom->offset & 1) {
1837 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1838 		val |= (u16)data[i++] << 8;
1839 		write_eeprom(cp->regs, offset, val, addr_len);
1840 		offset++;
1841 	}
1842 
1843 	while (i < len - 1) {
1844 		val = (u16)data[i++];
1845 		val |= (u16)data[i++] << 8;
1846 		write_eeprom(cp->regs, offset, val, addr_len);
1847 		offset++;
1848 	}
1849 
1850 	if (i < len) {
1851 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1852 		val |= (u16)data[i];
1853 		write_eeprom(cp->regs, offset, val, addr_len);
1854 	}
1855 
1856 	spin_unlock_irq(&cp->lock);
1857 	return 0;
1858 }
1859 
1860 /* Put the board into D3cold state and wait for WakeUp signal */
1861 static void cp_set_d3_state (struct cp_private *cp)
1862 {
1863 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1864 	pci_set_power_state (cp->pdev, PCI_D3hot);
1865 }
1866 
1867 static const struct net_device_ops cp_netdev_ops = {
1868 	.ndo_open		= cp_open,
1869 	.ndo_stop		= cp_close,
1870 	.ndo_validate_addr	= eth_validate_addr,
1871 	.ndo_set_mac_address 	= cp_set_mac_address,
1872 	.ndo_set_rx_mode	= cp_set_rx_mode,
1873 	.ndo_get_stats		= cp_get_stats,
1874 	.ndo_do_ioctl		= cp_ioctl,
1875 	.ndo_start_xmit		= cp_start_xmit,
1876 	.ndo_tx_timeout		= cp_tx_timeout,
1877 	.ndo_set_features	= cp_set_features,
1878 	.ndo_change_mtu		= cp_change_mtu,
1879 
1880 #ifdef CONFIG_NET_POLL_CONTROLLER
1881 	.ndo_poll_controller	= cp_poll_controller,
1882 #endif
1883 };
1884 
1885 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1886 {
1887 	struct net_device *dev;
1888 	struct cp_private *cp;
1889 	int rc;
1890 	void __iomem *regs;
1891 	resource_size_t pciaddr;
1892 	unsigned int addr_len, i, pci_using_dac;
1893 
1894 #ifndef MODULE
1895 	static int version_printed;
1896 	if (version_printed++ == 0)
1897 		pr_info("%s", version);
1898 #endif
1899 
1900 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1901 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1902 		dev_info(&pdev->dev,
1903 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1904 			 pdev->vendor, pdev->device, pdev->revision);
1905 		return -ENODEV;
1906 	}
1907 
1908 	dev = alloc_etherdev(sizeof(struct cp_private));
1909 	if (!dev)
1910 		return -ENOMEM;
1911 	SET_NETDEV_DEV(dev, &pdev->dev);
1912 
1913 	cp = netdev_priv(dev);
1914 	cp->pdev = pdev;
1915 	cp->dev = dev;
1916 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1917 	spin_lock_init (&cp->lock);
1918 	cp->mii_if.dev = dev;
1919 	cp->mii_if.mdio_read = mdio_read;
1920 	cp->mii_if.mdio_write = mdio_write;
1921 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1922 	cp->mii_if.phy_id_mask = 0x1f;
1923 	cp->mii_if.reg_num_mask = 0x1f;
1924 	cp_set_rxbufsize(cp);
1925 
1926 	rc = pci_enable_device(pdev);
1927 	if (rc)
1928 		goto err_out_free;
1929 
1930 	rc = pci_set_mwi(pdev);
1931 	if (rc)
1932 		goto err_out_disable;
1933 
1934 	rc = pci_request_regions(pdev, DRV_NAME);
1935 	if (rc)
1936 		goto err_out_mwi;
1937 
1938 	pciaddr = pci_resource_start(pdev, 1);
1939 	if (!pciaddr) {
1940 		rc = -EIO;
1941 		dev_err(&pdev->dev, "no MMIO resource\n");
1942 		goto err_out_res;
1943 	}
1944 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1945 		rc = -EIO;
1946 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1947 		       (unsigned long long)pci_resource_len(pdev, 1));
1948 		goto err_out_res;
1949 	}
1950 
1951 	/* Configure DMA attributes. */
1952 	if ((sizeof(dma_addr_t) > 4) &&
1953 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1954 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1955 		pci_using_dac = 1;
1956 	} else {
1957 		pci_using_dac = 0;
1958 
1959 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1960 		if (rc) {
1961 			dev_err(&pdev->dev,
1962 				"No usable DMA configuration, aborting\n");
1963 			goto err_out_res;
1964 		}
1965 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1966 		if (rc) {
1967 			dev_err(&pdev->dev,
1968 				"No usable consistent DMA configuration, aborting\n");
1969 			goto err_out_res;
1970 		}
1971 	}
1972 
1973 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1974 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1975 
1976 	dev->features |= NETIF_F_RXCSUM;
1977 	dev->hw_features |= NETIF_F_RXCSUM;
1978 
1979 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1980 	if (!regs) {
1981 		rc = -EIO;
1982 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1983 			(unsigned long long)pci_resource_len(pdev, 1),
1984 		       (unsigned long long)pciaddr);
1985 		goto err_out_res;
1986 	}
1987 	cp->regs = regs;
1988 
1989 	cp_stop_hw(cp);
1990 
1991 	/* read MAC address from EEPROM */
1992 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1993 	for (i = 0; i < 3; i++)
1994 		((__le16 *) (dev->dev_addr))[i] =
1995 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1996 
1997 	dev->netdev_ops = &cp_netdev_ops;
1998 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1999 	dev->ethtool_ops = &cp_ethtool_ops;
2000 	dev->watchdog_timeo = TX_TIMEOUT;
2001 
2002 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2003 
2004 	if (pci_using_dac)
2005 		dev->features |= NETIF_F_HIGHDMA;
2006 
2007 	/* disabled by default until verified */
2008 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2009 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2010 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2011 		NETIF_F_HIGHDMA;
2012 
2013 	rc = register_netdev(dev);
2014 	if (rc)
2015 		goto err_out_iomap;
2016 
2017 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2018 		    regs, dev->dev_addr, pdev->irq);
2019 
2020 	pci_set_drvdata(pdev, dev);
2021 
2022 	/* enable busmastering and memory-write-invalidate */
2023 	pci_set_master(pdev);
2024 
2025 	if (cp->wol_enabled)
2026 		cp_set_d3_state (cp);
2027 
2028 	return 0;
2029 
2030 err_out_iomap:
2031 	iounmap(regs);
2032 err_out_res:
2033 	pci_release_regions(pdev);
2034 err_out_mwi:
2035 	pci_clear_mwi(pdev);
2036 err_out_disable:
2037 	pci_disable_device(pdev);
2038 err_out_free:
2039 	free_netdev(dev);
2040 	return rc;
2041 }
2042 
2043 static void cp_remove_one (struct pci_dev *pdev)
2044 {
2045 	struct net_device *dev = pci_get_drvdata(pdev);
2046 	struct cp_private *cp = netdev_priv(dev);
2047 
2048 	unregister_netdev(dev);
2049 	iounmap(cp->regs);
2050 	if (cp->wol_enabled)
2051 		pci_set_power_state (pdev, PCI_D0);
2052 	pci_release_regions(pdev);
2053 	pci_clear_mwi(pdev);
2054 	pci_disable_device(pdev);
2055 	pci_set_drvdata(pdev, NULL);
2056 	free_netdev(dev);
2057 }
2058 
2059 #ifdef CONFIG_PM
2060 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2061 {
2062 	struct net_device *dev = pci_get_drvdata(pdev);
2063 	struct cp_private *cp = netdev_priv(dev);
2064 	unsigned long flags;
2065 
2066 	if (!netif_running(dev))
2067 		return 0;
2068 
2069 	netif_device_detach (dev);
2070 	netif_stop_queue (dev);
2071 
2072 	spin_lock_irqsave (&cp->lock, flags);
2073 
2074 	/* Disable Rx and Tx */
2075 	cpw16 (IntrMask, 0);
2076 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2077 
2078 	spin_unlock_irqrestore (&cp->lock, flags);
2079 
2080 	pci_save_state(pdev);
2081 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2082 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2083 
2084 	return 0;
2085 }
2086 
2087 static int cp_resume (struct pci_dev *pdev)
2088 {
2089 	struct net_device *dev = pci_get_drvdata (pdev);
2090 	struct cp_private *cp = netdev_priv(dev);
2091 	unsigned long flags;
2092 
2093 	if (!netif_running(dev))
2094 		return 0;
2095 
2096 	netif_device_attach (dev);
2097 
2098 	pci_set_power_state(pdev, PCI_D0);
2099 	pci_restore_state(pdev);
2100 	pci_enable_wake(pdev, PCI_D0, 0);
2101 
2102 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2103 	cp_init_rings_index (cp);
2104 	cp_init_hw (cp);
2105 	cp_enable_irq(cp);
2106 	netif_start_queue (dev);
2107 
2108 	spin_lock_irqsave (&cp->lock, flags);
2109 
2110 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2111 
2112 	spin_unlock_irqrestore (&cp->lock, flags);
2113 
2114 	return 0;
2115 }
2116 #endif /* CONFIG_PM */
2117 
2118 static struct pci_driver cp_driver = {
2119 	.name         = DRV_NAME,
2120 	.id_table     = cp_pci_tbl,
2121 	.probe        =	cp_init_one,
2122 	.remove       = cp_remove_one,
2123 #ifdef CONFIG_PM
2124 	.resume       = cp_resume,
2125 	.suspend      = cp_suspend,
2126 #endif
2127 };
2128 
2129 static int __init cp_init (void)
2130 {
2131 #ifdef MODULE
2132 	pr_info("%s", version);
2133 #endif
2134 	return pci_register_driver(&cp_driver);
2135 }
2136 
2137 static void __exit cp_exit (void)
2138 {
2139 	pci_unregister_driver (&cp_driver);
2140 }
2141 
2142 module_init(cp_init);
2143 module_exit(cp_exit);
2144