1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */ 2 /* 3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com> 4 5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c] 6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c] 7 Copyright 2001 Manfred Spraul [natsemi.c] 8 Copyright 1999-2001 by Donald Becker. [natsemi.c] 9 Written 1997-2001 by Donald Becker. [8139too.c] 10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c] 11 12 This software may be used and distributed according to the terms of 13 the GNU General Public License (GPL), incorporated herein by reference. 14 Drivers based on or derived from this code fall under the GPL and must 15 retain the authorship, copyright and license notice. This file is not 16 a complete program and may only be used when the entire operating 17 system is licensed under the GPL. 18 19 See the file COPYING in this distribution for more information. 20 21 Contributors: 22 23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br> 24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br> 25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br> 26 27 TODO: 28 * Test Tx checksumming thoroughly 29 30 Low priority TODO: 31 * Complete reset on PciErr 32 * Consider Rx interrupt mitigation using TimerIntr 33 * Investigate using skb->priority with h/w VLAN priority 34 * Investigate using High Priority Tx Queue with skb->priority 35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error 36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error 37 * Implement Tx software interrupt mitigation via 38 Tx descriptor bit 39 * The real minimum of CP_MIN_MTU is 4 bytes. However, 40 for this to be supported, one must(?) turn on packet padding. 41 * Support external MII transceivers (patch available) 42 43 NOTES: 44 * TX checksumming is considered experimental. It is off by 45 default, use ethtool to turn it on. 46 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #define DRV_NAME "8139cp" 52 #define DRV_VERSION "1.3" 53 #define DRV_RELDATE "Mar 22, 2004" 54 55 56 #include <linux/module.h> 57 #include <linux/moduleparam.h> 58 #include <linux/kernel.h> 59 #include <linux/compiler.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/init.h> 63 #include <linux/interrupt.h> 64 #include <linux/pci.h> 65 #include <linux/dma-mapping.h> 66 #include <linux/delay.h> 67 #include <linux/ethtool.h> 68 #include <linux/gfp.h> 69 #include <linux/mii.h> 70 #include <linux/if_vlan.h> 71 #include <linux/crc32.h> 72 #include <linux/in.h> 73 #include <linux/ip.h> 74 #include <linux/tcp.h> 75 #include <linux/udp.h> 76 #include <linux/cache.h> 77 #include <asm/io.h> 78 #include <asm/irq.h> 79 #include <linux/uaccess.h> 80 81 /* These identify the driver base version and may not be removed. */ 82 static char version[] = 83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n"; 84 85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>"); 86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver"); 87 MODULE_VERSION(DRV_VERSION); 88 MODULE_LICENSE("GPL"); 89 90 static int debug = -1; 91 module_param(debug, int, 0); 92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number"); 93 94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). 95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */ 96 static int multicast_filter_limit = 32; 97 module_param(multicast_filter_limit, int, 0); 98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses"); 99 100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 101 NETIF_MSG_PROBE | \ 102 NETIF_MSG_LINK) 103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */ 104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */ 105 #define CP_REGS_SIZE (0xff + 1) 106 #define CP_REGS_VER 1 /* version 1 */ 107 #define CP_RX_RING_SIZE 64 108 #define CP_TX_RING_SIZE 64 109 #define CP_RING_BYTES \ 110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \ 111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \ 112 CP_STATS_SIZE) 113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1)) 114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1)) 115 #define TX_BUFFS_AVAIL(CP) \ 116 (((CP)->tx_tail <= (CP)->tx_head) ? \ 117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \ 118 (CP)->tx_tail - (CP)->tx_head - 1) 119 120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 121 #define CP_INTERNAL_PHY 32 122 123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */ 124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */ 125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */ 126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ 127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */ 128 129 /* Time in jiffies before concluding the transmitter is hung. */ 130 #define TX_TIMEOUT (6*HZ) 131 132 /* hardware minimum and maximum for a single frame's data payload */ 133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */ 134 #define CP_MAX_MTU 4096 135 136 enum { 137 /* NIC register offsets */ 138 MAC0 = 0x00, /* Ethernet hardware address. */ 139 MAR0 = 0x08, /* Multicast filter. */ 140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */ 141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */ 142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */ 143 Cmd = 0x37, /* Command register */ 144 IntrMask = 0x3C, /* Interrupt mask */ 145 IntrStatus = 0x3E, /* Interrupt status */ 146 TxConfig = 0x40, /* Tx configuration */ 147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */ 148 RxConfig = 0x44, /* Rx configuration */ 149 RxMissed = 0x4C, /* 24 bits valid, write clears */ 150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */ 151 Config1 = 0x52, /* Config1 */ 152 Config3 = 0x59, /* Config3 */ 153 Config4 = 0x5A, /* Config4 */ 154 MultiIntr = 0x5C, /* Multiple interrupt select */ 155 BasicModeCtrl = 0x62, /* MII BMCR */ 156 BasicModeStatus = 0x64, /* MII BMSR */ 157 NWayAdvert = 0x66, /* MII ADVERTISE */ 158 NWayLPAR = 0x68, /* MII LPA */ 159 NWayExpansion = 0x6A, /* MII Expansion */ 160 TxDmaOkLowDesc = 0x82, /* Low 16 bit address of a Tx descriptor. */ 161 Config5 = 0xD8, /* Config5 */ 162 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */ 163 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */ 164 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */ 165 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */ 166 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */ 167 TxThresh = 0xEC, /* Early Tx threshold */ 168 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */ 169 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */ 170 171 /* Tx and Rx status descriptors */ 172 DescOwn = (1 << 31), /* Descriptor is owned by NIC */ 173 RingEnd = (1 << 30), /* End of descriptor ring */ 174 FirstFrag = (1 << 29), /* First segment of a packet */ 175 LastFrag = (1 << 28), /* Final segment of a packet */ 176 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */ 177 MSSShift = 16, /* MSS value position */ 178 MSSMask = 0x7ff, /* MSS value: 11 bits */ 179 TxError = (1 << 23), /* Tx error summary */ 180 RxError = (1 << 20), /* Rx error summary */ 181 IPCS = (1 << 18), /* Calculate IP checksum */ 182 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */ 183 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */ 184 TxVlanTag = (1 << 17), /* Add VLAN tag */ 185 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */ 186 IPFail = (1 << 15), /* IP checksum failed */ 187 UDPFail = (1 << 14), /* UDP/IP checksum failed */ 188 TCPFail = (1 << 13), /* TCP/IP checksum failed */ 189 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */ 190 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */ 191 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */ 192 RxProtoTCP = 1, 193 RxProtoUDP = 2, 194 RxProtoIP = 3, 195 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */ 196 TxOWC = (1 << 22), /* Tx Out-of-window collision */ 197 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */ 198 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */ 199 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */ 200 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */ 201 RxErrFrame = (1 << 27), /* Rx frame alignment error */ 202 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */ 203 RxErrCRC = (1 << 18), /* Rx CRC error */ 204 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */ 205 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */ 206 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */ 207 208 /* StatsAddr register */ 209 DumpStats = (1 << 3), /* Begin stats dump */ 210 211 /* RxConfig register */ 212 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */ 213 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */ 214 AcceptErr = 0x20, /* Accept packets with CRC errors */ 215 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */ 216 AcceptBroadcast = 0x08, /* Accept broadcast packets */ 217 AcceptMulticast = 0x04, /* Accept multicast packets */ 218 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */ 219 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */ 220 221 /* IntrMask / IntrStatus registers */ 222 PciErr = (1 << 15), /* System error on the PCI bus */ 223 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */ 224 LenChg = (1 << 13), /* Cable length change */ 225 SWInt = (1 << 8), /* Software-requested interrupt */ 226 TxEmpty = (1 << 7), /* No Tx descriptors available */ 227 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */ 228 LinkChg = (1 << 5), /* Packet underrun, or link change */ 229 RxEmpty = (1 << 4), /* No Rx descriptors available */ 230 TxErr = (1 << 3), /* Tx error */ 231 TxOK = (1 << 2), /* Tx packet sent */ 232 RxErr = (1 << 1), /* Rx error */ 233 RxOK = (1 << 0), /* Rx packet received */ 234 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers, 235 but hardware likes to raise it */ 236 237 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty | 238 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK | 239 RxErr | RxOK | IntrResvd, 240 241 /* C mode command register */ 242 CmdReset = (1 << 4), /* Enable to reset; self-clearing */ 243 RxOn = (1 << 3), /* Rx mode enable */ 244 TxOn = (1 << 2), /* Tx mode enable */ 245 246 /* C+ mode command register */ 247 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */ 248 RxChkSum = (1 << 5), /* Rx checksum offload enable */ 249 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */ 250 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */ 251 CpRxOn = (1 << 1), /* Rx mode enable */ 252 CpTxOn = (1 << 0), /* Tx mode enable */ 253 254 /* Cfg9436 EEPROM control register */ 255 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */ 256 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */ 257 258 /* TxConfig register */ 259 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */ 260 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ 261 262 /* Early Tx Threshold register */ 263 TxThreshMask = 0x3f, /* Mask bits 5-0 */ 264 TxThreshMax = 2048, /* Max early Tx threshold */ 265 266 /* Config1 register */ 267 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */ 268 LWACT = (1 << 4), /* LWAKE active mode */ 269 PMEnable = (1 << 0), /* Enable various PM features of chip */ 270 271 /* Config3 register */ 272 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */ 273 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */ 274 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */ 275 276 /* Config4 register */ 277 LWPTN = (1 << 1), /* LWAKE Pattern */ 278 LWPME = (1 << 4), /* LANWAKE vs PMEB */ 279 280 /* Config5 register */ 281 BWF = (1 << 6), /* Accept Broadcast wakeup frame */ 282 MWF = (1 << 5), /* Accept Multicast wakeup frame */ 283 UWF = (1 << 4), /* Accept Unicast wakeup frame */ 284 LANWake = (1 << 1), /* Enable LANWake signal */ 285 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */ 286 287 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty, 288 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr, 289 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask, 290 }; 291 292 static const unsigned int cp_rx_config = 293 (RX_FIFO_THRESH << RxCfgFIFOShift) | 294 (RX_DMA_BURST << RxCfgDMAShift); 295 296 struct cp_desc { 297 __le32 opts1; 298 __le32 opts2; 299 __le64 addr; 300 }; 301 302 struct cp_dma_stats { 303 __le64 tx_ok; 304 __le64 rx_ok; 305 __le64 tx_err; 306 __le32 rx_err; 307 __le16 rx_fifo; 308 __le16 frame_align; 309 __le32 tx_ok_1col; 310 __le32 tx_ok_mcol; 311 __le64 rx_ok_phys; 312 __le64 rx_ok_bcast; 313 __le32 rx_ok_mcast; 314 __le16 tx_abort; 315 __le16 tx_underrun; 316 } __packed; 317 318 struct cp_extra_stats { 319 unsigned long rx_frags; 320 }; 321 322 struct cp_private { 323 void __iomem *regs; 324 struct net_device *dev; 325 spinlock_t lock; 326 u32 msg_enable; 327 328 struct napi_struct napi; 329 330 struct pci_dev *pdev; 331 u32 rx_config; 332 u16 cpcmd; 333 334 struct cp_extra_stats cp_stats; 335 336 unsigned rx_head ____cacheline_aligned; 337 unsigned rx_tail; 338 struct cp_desc *rx_ring; 339 struct sk_buff *rx_skb[CP_RX_RING_SIZE]; 340 341 unsigned tx_head ____cacheline_aligned; 342 unsigned tx_tail; 343 struct cp_desc *tx_ring; 344 struct sk_buff *tx_skb[CP_TX_RING_SIZE]; 345 u32 tx_opts[CP_TX_RING_SIZE]; 346 347 unsigned rx_buf_sz; 348 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */ 349 350 dma_addr_t ring_dma; 351 352 struct mii_if_info mii_if; 353 }; 354 355 #define cpr8(reg) readb(cp->regs + (reg)) 356 #define cpr16(reg) readw(cp->regs + (reg)) 357 #define cpr32(reg) readl(cp->regs + (reg)) 358 #define cpw8(reg,val) writeb((val), cp->regs + (reg)) 359 #define cpw16(reg,val) writew((val), cp->regs + (reg)) 360 #define cpw32(reg,val) writel((val), cp->regs + (reg)) 361 #define cpw8_f(reg,val) do { \ 362 writeb((val), cp->regs + (reg)); \ 363 readb(cp->regs + (reg)); \ 364 } while (0) 365 #define cpw16_f(reg,val) do { \ 366 writew((val), cp->regs + (reg)); \ 367 readw(cp->regs + (reg)); \ 368 } while (0) 369 #define cpw32_f(reg,val) do { \ 370 writel((val), cp->regs + (reg)); \ 371 readl(cp->regs + (reg)); \ 372 } while (0) 373 374 375 static void __cp_set_rx_mode (struct net_device *dev); 376 static void cp_tx (struct cp_private *cp); 377 static void cp_clean_rings (struct cp_private *cp); 378 #ifdef CONFIG_NET_POLL_CONTROLLER 379 static void cp_poll_controller(struct net_device *dev); 380 #endif 381 static int cp_get_eeprom_len(struct net_device *dev); 382 static int cp_get_eeprom(struct net_device *dev, 383 struct ethtool_eeprom *eeprom, u8 *data); 384 static int cp_set_eeprom(struct net_device *dev, 385 struct ethtool_eeprom *eeprom, u8 *data); 386 387 static struct { 388 const char str[ETH_GSTRING_LEN]; 389 } ethtool_stats_keys[] = { 390 { "tx_ok" }, 391 { "rx_ok" }, 392 { "tx_err" }, 393 { "rx_err" }, 394 { "rx_fifo" }, 395 { "frame_align" }, 396 { "tx_ok_1col" }, 397 { "tx_ok_mcol" }, 398 { "rx_ok_phys" }, 399 { "rx_ok_bcast" }, 400 { "rx_ok_mcast" }, 401 { "tx_abort" }, 402 { "tx_underrun" }, 403 { "rx_frags" }, 404 }; 405 406 407 static inline void cp_set_rxbufsize (struct cp_private *cp) 408 { 409 unsigned int mtu = cp->dev->mtu; 410 411 if (mtu > ETH_DATA_LEN) 412 /* MTU + ethernet header + FCS + optional VLAN tag */ 413 cp->rx_buf_sz = mtu + ETH_HLEN + 8; 414 else 415 cp->rx_buf_sz = PKT_BUF_SZ; 416 } 417 418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb, 419 struct cp_desc *desc) 420 { 421 u32 opts2 = le32_to_cpu(desc->opts2); 422 423 skb->protocol = eth_type_trans (skb, cp->dev); 424 425 cp->dev->stats.rx_packets++; 426 cp->dev->stats.rx_bytes += skb->len; 427 428 if (opts2 & RxVlanTagged) 429 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff)); 430 431 napi_gro_receive(&cp->napi, skb); 432 } 433 434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail, 435 u32 status, u32 len) 436 { 437 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n", 438 rx_tail, status, len); 439 cp->dev->stats.rx_errors++; 440 if (status & RxErrFrame) 441 cp->dev->stats.rx_frame_errors++; 442 if (status & RxErrCRC) 443 cp->dev->stats.rx_crc_errors++; 444 if ((status & RxErrRunt) || (status & RxErrLong)) 445 cp->dev->stats.rx_length_errors++; 446 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) 447 cp->dev->stats.rx_length_errors++; 448 if (status & RxErrFIFO) 449 cp->dev->stats.rx_fifo_errors++; 450 } 451 452 static inline unsigned int cp_rx_csum_ok (u32 status) 453 { 454 unsigned int protocol = (status >> 16) & 0x3; 455 456 if (((protocol == RxProtoTCP) && !(status & TCPFail)) || 457 ((protocol == RxProtoUDP) && !(status & UDPFail))) 458 return 1; 459 else 460 return 0; 461 } 462 463 static int cp_rx_poll(struct napi_struct *napi, int budget) 464 { 465 struct cp_private *cp = container_of(napi, struct cp_private, napi); 466 struct net_device *dev = cp->dev; 467 unsigned int rx_tail = cp->rx_tail; 468 int rx = 0; 469 470 cpw16(IntrStatus, cp_rx_intr_mask); 471 472 while (rx < budget) { 473 u32 status, len; 474 dma_addr_t mapping, new_mapping; 475 struct sk_buff *skb, *new_skb; 476 struct cp_desc *desc; 477 const unsigned buflen = cp->rx_buf_sz; 478 479 skb = cp->rx_skb[rx_tail]; 480 BUG_ON(!skb); 481 482 desc = &cp->rx_ring[rx_tail]; 483 status = le32_to_cpu(desc->opts1); 484 if (status & DescOwn) 485 break; 486 487 len = (status & 0x1fff) - 4; 488 mapping = le64_to_cpu(desc->addr); 489 490 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) { 491 /* we don't support incoming fragmented frames. 492 * instead, we attempt to ensure that the 493 * pre-allocated RX skbs are properly sized such 494 * that RX fragments are never encountered 495 */ 496 cp_rx_err_acct(cp, rx_tail, status, len); 497 dev->stats.rx_dropped++; 498 cp->cp_stats.rx_frags++; 499 goto rx_next; 500 } 501 502 if (status & (RxError | RxErrFIFO)) { 503 cp_rx_err_acct(cp, rx_tail, status, len); 504 goto rx_next; 505 } 506 507 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n", 508 rx_tail, status, len); 509 510 new_skb = napi_alloc_skb(napi, buflen); 511 if (!new_skb) { 512 dev->stats.rx_dropped++; 513 goto rx_next; 514 } 515 516 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen, 517 PCI_DMA_FROMDEVICE); 518 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) { 519 dev->stats.rx_dropped++; 520 kfree_skb(new_skb); 521 goto rx_next; 522 } 523 524 dma_unmap_single(&cp->pdev->dev, mapping, 525 buflen, PCI_DMA_FROMDEVICE); 526 527 /* Handle checksum offloading for incoming packets. */ 528 if (cp_rx_csum_ok(status)) 529 skb->ip_summed = CHECKSUM_UNNECESSARY; 530 else 531 skb_checksum_none_assert(skb); 532 533 skb_put(skb, len); 534 535 cp->rx_skb[rx_tail] = new_skb; 536 537 cp_rx_skb(cp, skb, desc); 538 rx++; 539 mapping = new_mapping; 540 541 rx_next: 542 cp->rx_ring[rx_tail].opts2 = 0; 543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping); 544 if (rx_tail == (CP_RX_RING_SIZE - 1)) 545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd | 546 cp->rx_buf_sz); 547 else 548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz); 549 rx_tail = NEXT_RX(rx_tail); 550 } 551 552 cp->rx_tail = rx_tail; 553 554 /* if we did not reach work limit, then we're done with 555 * this round of polling 556 */ 557 if (rx < budget && napi_complete_done(napi, rx)) { 558 unsigned long flags; 559 560 spin_lock_irqsave(&cp->lock, flags); 561 cpw16_f(IntrMask, cp_intr_mask); 562 spin_unlock_irqrestore(&cp->lock, flags); 563 } 564 565 return rx; 566 } 567 568 static irqreturn_t cp_interrupt (int irq, void *dev_instance) 569 { 570 struct net_device *dev = dev_instance; 571 struct cp_private *cp; 572 int handled = 0; 573 u16 status; 574 575 if (unlikely(dev == NULL)) 576 return IRQ_NONE; 577 cp = netdev_priv(dev); 578 579 spin_lock(&cp->lock); 580 581 status = cpr16(IntrStatus); 582 if (!status || (status == 0xFFFF)) 583 goto out_unlock; 584 585 handled = 1; 586 587 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n", 588 status, cpr8(Cmd), cpr16(CpCmd)); 589 590 cpw16(IntrStatus, status & ~cp_rx_intr_mask); 591 592 /* close possible race's with dev_close */ 593 if (unlikely(!netif_running(dev))) { 594 cpw16(IntrMask, 0); 595 goto out_unlock; 596 } 597 598 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr)) 599 if (napi_schedule_prep(&cp->napi)) { 600 cpw16_f(IntrMask, cp_norx_intr_mask); 601 __napi_schedule(&cp->napi); 602 } 603 604 if (status & (TxOK | TxErr | TxEmpty | SWInt)) 605 cp_tx(cp); 606 if (status & LinkChg) 607 mii_check_media(&cp->mii_if, netif_msg_link(cp), false); 608 609 610 if (status & PciErr) { 611 u16 pci_status; 612 613 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status); 614 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status); 615 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n", 616 status, pci_status); 617 618 /* TODO: reset hardware */ 619 } 620 621 out_unlock: 622 spin_unlock(&cp->lock); 623 624 return IRQ_RETVAL(handled); 625 } 626 627 #ifdef CONFIG_NET_POLL_CONTROLLER 628 /* 629 * Polling receive - used by netconsole and other diagnostic tools 630 * to allow network i/o with interrupts disabled. 631 */ 632 static void cp_poll_controller(struct net_device *dev) 633 { 634 struct cp_private *cp = netdev_priv(dev); 635 const int irq = cp->pdev->irq; 636 637 disable_irq(irq); 638 cp_interrupt(irq, dev); 639 enable_irq(irq); 640 } 641 #endif 642 643 static void cp_tx (struct cp_private *cp) 644 { 645 unsigned tx_head = cp->tx_head; 646 unsigned tx_tail = cp->tx_tail; 647 unsigned bytes_compl = 0, pkts_compl = 0; 648 649 while (tx_tail != tx_head) { 650 struct cp_desc *txd = cp->tx_ring + tx_tail; 651 struct sk_buff *skb; 652 u32 status; 653 654 rmb(); 655 status = le32_to_cpu(txd->opts1); 656 if (status & DescOwn) 657 break; 658 659 skb = cp->tx_skb[tx_tail]; 660 BUG_ON(!skb); 661 662 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr), 663 cp->tx_opts[tx_tail] & 0xffff, 664 PCI_DMA_TODEVICE); 665 666 if (status & LastFrag) { 667 if (status & (TxError | TxFIFOUnder)) { 668 netif_dbg(cp, tx_err, cp->dev, 669 "tx err, status 0x%x\n", status); 670 cp->dev->stats.tx_errors++; 671 if (status & TxOWC) 672 cp->dev->stats.tx_window_errors++; 673 if (status & TxMaxCol) 674 cp->dev->stats.tx_aborted_errors++; 675 if (status & TxLinkFail) 676 cp->dev->stats.tx_carrier_errors++; 677 if (status & TxFIFOUnder) 678 cp->dev->stats.tx_fifo_errors++; 679 } else { 680 cp->dev->stats.collisions += 681 ((status >> TxColCntShift) & TxColCntMask); 682 cp->dev->stats.tx_packets++; 683 cp->dev->stats.tx_bytes += skb->len; 684 netif_dbg(cp, tx_done, cp->dev, 685 "tx done, slot %d\n", tx_tail); 686 } 687 bytes_compl += skb->len; 688 pkts_compl++; 689 dev_kfree_skb_irq(skb); 690 } 691 692 cp->tx_skb[tx_tail] = NULL; 693 694 tx_tail = NEXT_TX(tx_tail); 695 } 696 697 cp->tx_tail = tx_tail; 698 699 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl); 700 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1)) 701 netif_wake_queue(cp->dev); 702 } 703 704 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb) 705 { 706 return skb_vlan_tag_present(skb) ? 707 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00; 708 } 709 710 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb, 711 int first, int entry_last) 712 { 713 int frag, index; 714 struct cp_desc *txd; 715 skb_frag_t *this_frag; 716 for (frag = 0; frag+first < entry_last; frag++) { 717 index = first+frag; 718 cp->tx_skb[index] = NULL; 719 txd = &cp->tx_ring[index]; 720 this_frag = &skb_shinfo(skb)->frags[frag]; 721 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr), 722 skb_frag_size(this_frag), PCI_DMA_TODEVICE); 723 } 724 } 725 726 static netdev_tx_t cp_start_xmit (struct sk_buff *skb, 727 struct net_device *dev) 728 { 729 struct cp_private *cp = netdev_priv(dev); 730 unsigned entry; 731 u32 eor, opts1; 732 unsigned long intr_flags; 733 __le32 opts2; 734 int mss = 0; 735 736 spin_lock_irqsave(&cp->lock, intr_flags); 737 738 /* This is a hard error, log it. */ 739 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) { 740 netif_stop_queue(dev); 741 spin_unlock_irqrestore(&cp->lock, intr_flags); 742 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 743 return NETDEV_TX_BUSY; 744 } 745 746 entry = cp->tx_head; 747 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0; 748 mss = skb_shinfo(skb)->gso_size; 749 750 if (mss > MSSMask) { 751 WARN_ONCE(1, "Net bug: GSO size %d too large for 8139CP\n", 752 mss); 753 goto out_dma_error; 754 } 755 756 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb)); 757 opts1 = DescOwn; 758 if (mss) 759 opts1 |= LargeSend | (mss << MSSShift); 760 else if (skb->ip_summed == CHECKSUM_PARTIAL) { 761 const struct iphdr *ip = ip_hdr(skb); 762 if (ip->protocol == IPPROTO_TCP) 763 opts1 |= IPCS | TCPCS; 764 else if (ip->protocol == IPPROTO_UDP) 765 opts1 |= IPCS | UDPCS; 766 else { 767 WARN_ONCE(1, 768 "Net bug: asked to checksum invalid Legacy IP packet\n"); 769 goto out_dma_error; 770 } 771 } 772 773 if (skb_shinfo(skb)->nr_frags == 0) { 774 struct cp_desc *txd = &cp->tx_ring[entry]; 775 u32 len; 776 dma_addr_t mapping; 777 778 len = skb->len; 779 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE); 780 if (dma_mapping_error(&cp->pdev->dev, mapping)) 781 goto out_dma_error; 782 783 txd->opts2 = opts2; 784 txd->addr = cpu_to_le64(mapping); 785 wmb(); 786 787 opts1 |= eor | len | FirstFrag | LastFrag; 788 789 txd->opts1 = cpu_to_le32(opts1); 790 wmb(); 791 792 cp->tx_skb[entry] = skb; 793 cp->tx_opts[entry] = opts1; 794 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n", 795 entry, skb->len); 796 } else { 797 struct cp_desc *txd; 798 u32 first_len, first_eor, ctrl; 799 dma_addr_t first_mapping; 800 int frag, first_entry = entry; 801 802 /* We must give this initial chunk to the device last. 803 * Otherwise we could race with the device. 804 */ 805 first_eor = eor; 806 first_len = skb_headlen(skb); 807 first_mapping = dma_map_single(&cp->pdev->dev, skb->data, 808 first_len, PCI_DMA_TODEVICE); 809 if (dma_mapping_error(&cp->pdev->dev, first_mapping)) 810 goto out_dma_error; 811 812 cp->tx_skb[entry] = skb; 813 814 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 815 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 816 u32 len; 817 dma_addr_t mapping; 818 819 entry = NEXT_TX(entry); 820 821 len = skb_frag_size(this_frag); 822 mapping = dma_map_single(&cp->pdev->dev, 823 skb_frag_address(this_frag), 824 len, PCI_DMA_TODEVICE); 825 if (dma_mapping_error(&cp->pdev->dev, mapping)) { 826 unwind_tx_frag_mapping(cp, skb, first_entry, entry); 827 goto out_dma_error; 828 } 829 830 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0; 831 832 ctrl = opts1 | eor | len; 833 834 if (frag == skb_shinfo(skb)->nr_frags - 1) 835 ctrl |= LastFrag; 836 837 txd = &cp->tx_ring[entry]; 838 txd->opts2 = opts2; 839 txd->addr = cpu_to_le64(mapping); 840 wmb(); 841 842 txd->opts1 = cpu_to_le32(ctrl); 843 wmb(); 844 845 cp->tx_opts[entry] = ctrl; 846 cp->tx_skb[entry] = skb; 847 } 848 849 txd = &cp->tx_ring[first_entry]; 850 txd->opts2 = opts2; 851 txd->addr = cpu_to_le64(first_mapping); 852 wmb(); 853 854 ctrl = opts1 | first_eor | first_len | FirstFrag; 855 txd->opts1 = cpu_to_le32(ctrl); 856 wmb(); 857 858 cp->tx_opts[first_entry] = ctrl; 859 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n", 860 first_entry, entry, skb->len); 861 } 862 cp->tx_head = NEXT_TX(entry); 863 864 netdev_sent_queue(dev, skb->len); 865 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1)) 866 netif_stop_queue(dev); 867 868 out_unlock: 869 spin_unlock_irqrestore(&cp->lock, intr_flags); 870 871 cpw8(TxPoll, NormalTxPoll); 872 873 return NETDEV_TX_OK; 874 out_dma_error: 875 dev_kfree_skb_any(skb); 876 cp->dev->stats.tx_dropped++; 877 goto out_unlock; 878 } 879 880 /* Set or clear the multicast filter for this adaptor. 881 This routine is not state sensitive and need not be SMP locked. */ 882 883 static void __cp_set_rx_mode (struct net_device *dev) 884 { 885 struct cp_private *cp = netdev_priv(dev); 886 u32 mc_filter[2]; /* Multicast hash filter */ 887 int rx_mode; 888 889 /* Note: do not reorder, GCC is clever about common statements. */ 890 if (dev->flags & IFF_PROMISC) { 891 /* Unconditionally log net taps. */ 892 rx_mode = 893 AcceptBroadcast | AcceptMulticast | AcceptMyPhys | 894 AcceptAllPhys; 895 mc_filter[1] = mc_filter[0] = 0xffffffff; 896 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 897 (dev->flags & IFF_ALLMULTI)) { 898 /* Too many to filter perfectly -- accept all multicasts. */ 899 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; 900 mc_filter[1] = mc_filter[0] = 0xffffffff; 901 } else { 902 struct netdev_hw_addr *ha; 903 rx_mode = AcceptBroadcast | AcceptMyPhys; 904 mc_filter[1] = mc_filter[0] = 0; 905 netdev_for_each_mc_addr(ha, dev) { 906 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 907 908 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 909 rx_mode |= AcceptMulticast; 910 } 911 } 912 913 /* We can safely update without stopping the chip. */ 914 cp->rx_config = cp_rx_config | rx_mode; 915 cpw32_f(RxConfig, cp->rx_config); 916 917 cpw32_f (MAR0 + 0, mc_filter[0]); 918 cpw32_f (MAR0 + 4, mc_filter[1]); 919 } 920 921 static void cp_set_rx_mode (struct net_device *dev) 922 { 923 unsigned long flags; 924 struct cp_private *cp = netdev_priv(dev); 925 926 spin_lock_irqsave (&cp->lock, flags); 927 __cp_set_rx_mode(dev); 928 spin_unlock_irqrestore (&cp->lock, flags); 929 } 930 931 static void __cp_get_stats(struct cp_private *cp) 932 { 933 /* only lower 24 bits valid; write any value to clear */ 934 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff); 935 cpw32 (RxMissed, 0); 936 } 937 938 static struct net_device_stats *cp_get_stats(struct net_device *dev) 939 { 940 struct cp_private *cp = netdev_priv(dev); 941 unsigned long flags; 942 943 /* The chip only need report frame silently dropped. */ 944 spin_lock_irqsave(&cp->lock, flags); 945 if (netif_running(dev) && netif_device_present(dev)) 946 __cp_get_stats(cp); 947 spin_unlock_irqrestore(&cp->lock, flags); 948 949 return &dev->stats; 950 } 951 952 static void cp_stop_hw (struct cp_private *cp) 953 { 954 cpw16(IntrStatus, ~(cpr16(IntrStatus))); 955 cpw16_f(IntrMask, 0); 956 cpw8(Cmd, 0); 957 cpw16_f(CpCmd, 0); 958 cpw16_f(IntrStatus, ~(cpr16(IntrStatus))); 959 960 cp->rx_tail = 0; 961 cp->tx_head = cp->tx_tail = 0; 962 963 netdev_reset_queue(cp->dev); 964 } 965 966 static void cp_reset_hw (struct cp_private *cp) 967 { 968 unsigned work = 1000; 969 970 cpw8(Cmd, CmdReset); 971 972 while (work--) { 973 if (!(cpr8(Cmd) & CmdReset)) 974 return; 975 976 schedule_timeout_uninterruptible(10); 977 } 978 979 netdev_err(cp->dev, "hardware reset timeout\n"); 980 } 981 982 static inline void cp_start_hw (struct cp_private *cp) 983 { 984 dma_addr_t ring_dma; 985 986 cpw16(CpCmd, cp->cpcmd); 987 988 /* 989 * These (at least TxRingAddr) need to be configured after the 990 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33 991 * (C+ Command Register) recommends that these and more be configured 992 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware 993 * it's been observed that the TxRingAddr is actually reset to garbage 994 * when C+ mode Tx is enabled in CpCmd. 995 */ 996 cpw32_f(HiTxRingAddr, 0); 997 cpw32_f(HiTxRingAddr + 4, 0); 998 999 ring_dma = cp->ring_dma; 1000 cpw32_f(RxRingAddr, ring_dma & 0xffffffff); 1001 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16); 1002 1003 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE; 1004 cpw32_f(TxRingAddr, ring_dma & 0xffffffff); 1005 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16); 1006 1007 /* 1008 * Strictly speaking, the datasheet says this should be enabled 1009 * *before* setting the descriptor addresses. But what, then, would 1010 * prevent it from doing DMA to random unconfigured addresses? 1011 * This variant appears to work fine. 1012 */ 1013 cpw8(Cmd, RxOn | TxOn); 1014 1015 netdev_reset_queue(cp->dev); 1016 } 1017 1018 static void cp_enable_irq(struct cp_private *cp) 1019 { 1020 cpw16_f(IntrMask, cp_intr_mask); 1021 } 1022 1023 static void cp_init_hw (struct cp_private *cp) 1024 { 1025 struct net_device *dev = cp->dev; 1026 1027 cp_reset_hw(cp); 1028 1029 cpw8_f (Cfg9346, Cfg9346_Unlock); 1030 1031 /* Restore our idea of the MAC address. */ 1032 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0))); 1033 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4))); 1034 1035 cp_start_hw(cp); 1036 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */ 1037 1038 __cp_set_rx_mode(dev); 1039 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift)); 1040 1041 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable); 1042 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */ 1043 cpw8(Config3, PARMEnable); 1044 cp->wol_enabled = 0; 1045 1046 cpw8(Config5, cpr8(Config5) & PMEStatus); 1047 1048 cpw16(MultiIntr, 0); 1049 1050 cpw8_f(Cfg9346, Cfg9346_Lock); 1051 } 1052 1053 static int cp_refill_rx(struct cp_private *cp) 1054 { 1055 struct net_device *dev = cp->dev; 1056 unsigned i; 1057 1058 for (i = 0; i < CP_RX_RING_SIZE; i++) { 1059 struct sk_buff *skb; 1060 dma_addr_t mapping; 1061 1062 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz); 1063 if (!skb) 1064 goto err_out; 1065 1066 mapping = dma_map_single(&cp->pdev->dev, skb->data, 1067 cp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1068 if (dma_mapping_error(&cp->pdev->dev, mapping)) { 1069 kfree_skb(skb); 1070 goto err_out; 1071 } 1072 cp->rx_skb[i] = skb; 1073 1074 cp->rx_ring[i].opts2 = 0; 1075 cp->rx_ring[i].addr = cpu_to_le64(mapping); 1076 if (i == (CP_RX_RING_SIZE - 1)) 1077 cp->rx_ring[i].opts1 = 1078 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz); 1079 else 1080 cp->rx_ring[i].opts1 = 1081 cpu_to_le32(DescOwn | cp->rx_buf_sz); 1082 } 1083 1084 return 0; 1085 1086 err_out: 1087 cp_clean_rings(cp); 1088 return -ENOMEM; 1089 } 1090 1091 static void cp_init_rings_index (struct cp_private *cp) 1092 { 1093 cp->rx_tail = 0; 1094 cp->tx_head = cp->tx_tail = 0; 1095 } 1096 1097 static int cp_init_rings (struct cp_private *cp) 1098 { 1099 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE); 1100 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd); 1101 memset(cp->tx_opts, 0, sizeof(cp->tx_opts)); 1102 1103 cp_init_rings_index(cp); 1104 1105 return cp_refill_rx (cp); 1106 } 1107 1108 static int cp_alloc_rings (struct cp_private *cp) 1109 { 1110 struct device *d = &cp->pdev->dev; 1111 void *mem; 1112 int rc; 1113 1114 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL); 1115 if (!mem) 1116 return -ENOMEM; 1117 1118 cp->rx_ring = mem; 1119 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE]; 1120 1121 rc = cp_init_rings(cp); 1122 if (rc < 0) 1123 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma); 1124 1125 return rc; 1126 } 1127 1128 static void cp_clean_rings (struct cp_private *cp) 1129 { 1130 struct cp_desc *desc; 1131 unsigned i; 1132 1133 for (i = 0; i < CP_RX_RING_SIZE; i++) { 1134 if (cp->rx_skb[i]) { 1135 desc = cp->rx_ring + i; 1136 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr), 1137 cp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1138 dev_kfree_skb_any(cp->rx_skb[i]); 1139 } 1140 } 1141 1142 for (i = 0; i < CP_TX_RING_SIZE; i++) { 1143 if (cp->tx_skb[i]) { 1144 struct sk_buff *skb = cp->tx_skb[i]; 1145 1146 desc = cp->tx_ring + i; 1147 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr), 1148 le32_to_cpu(desc->opts1) & 0xffff, 1149 PCI_DMA_TODEVICE); 1150 if (le32_to_cpu(desc->opts1) & LastFrag) 1151 dev_kfree_skb_any(skb); 1152 cp->dev->stats.tx_dropped++; 1153 } 1154 } 1155 netdev_reset_queue(cp->dev); 1156 1157 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE); 1158 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE); 1159 memset(cp->tx_opts, 0, sizeof(cp->tx_opts)); 1160 1161 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE); 1162 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE); 1163 } 1164 1165 static void cp_free_rings (struct cp_private *cp) 1166 { 1167 cp_clean_rings(cp); 1168 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring, 1169 cp->ring_dma); 1170 cp->rx_ring = NULL; 1171 cp->tx_ring = NULL; 1172 } 1173 1174 static int cp_open (struct net_device *dev) 1175 { 1176 struct cp_private *cp = netdev_priv(dev); 1177 const int irq = cp->pdev->irq; 1178 int rc; 1179 1180 netif_dbg(cp, ifup, dev, "enabling interface\n"); 1181 1182 rc = cp_alloc_rings(cp); 1183 if (rc) 1184 return rc; 1185 1186 napi_enable(&cp->napi); 1187 1188 cp_init_hw(cp); 1189 1190 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev); 1191 if (rc) 1192 goto err_out_hw; 1193 1194 cp_enable_irq(cp); 1195 1196 netif_carrier_off(dev); 1197 mii_check_media(&cp->mii_if, netif_msg_link(cp), true); 1198 netif_start_queue(dev); 1199 1200 return 0; 1201 1202 err_out_hw: 1203 napi_disable(&cp->napi); 1204 cp_stop_hw(cp); 1205 cp_free_rings(cp); 1206 return rc; 1207 } 1208 1209 static int cp_close (struct net_device *dev) 1210 { 1211 struct cp_private *cp = netdev_priv(dev); 1212 unsigned long flags; 1213 1214 napi_disable(&cp->napi); 1215 1216 netif_dbg(cp, ifdown, dev, "disabling interface\n"); 1217 1218 spin_lock_irqsave(&cp->lock, flags); 1219 1220 netif_stop_queue(dev); 1221 netif_carrier_off(dev); 1222 1223 cp_stop_hw(cp); 1224 1225 spin_unlock_irqrestore(&cp->lock, flags); 1226 1227 free_irq(cp->pdev->irq, dev); 1228 1229 cp_free_rings(cp); 1230 return 0; 1231 } 1232 1233 static void cp_tx_timeout(struct net_device *dev) 1234 { 1235 struct cp_private *cp = netdev_priv(dev); 1236 unsigned long flags; 1237 int rc, i; 1238 1239 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n", 1240 cpr8(Cmd), cpr16(CpCmd), 1241 cpr16(IntrStatus), cpr16(IntrMask)); 1242 1243 spin_lock_irqsave(&cp->lock, flags); 1244 1245 netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n", 1246 cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc)); 1247 for (i = 0; i < CP_TX_RING_SIZE; i++) { 1248 netif_dbg(cp, tx_err, cp->dev, 1249 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n", 1250 i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1), 1251 cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2), 1252 le64_to_cpu(cp->tx_ring[i].addr), 1253 cp->tx_skb[i]); 1254 } 1255 1256 cp_stop_hw(cp); 1257 cp_clean_rings(cp); 1258 rc = cp_init_rings(cp); 1259 cp_start_hw(cp); 1260 __cp_set_rx_mode(dev); 1261 cpw16_f(IntrMask, cp_norx_intr_mask); 1262 1263 netif_wake_queue(dev); 1264 napi_schedule_irqoff(&cp->napi); 1265 1266 spin_unlock_irqrestore(&cp->lock, flags); 1267 } 1268 1269 static int cp_change_mtu(struct net_device *dev, int new_mtu) 1270 { 1271 struct cp_private *cp = netdev_priv(dev); 1272 1273 /* if network interface not up, no need for complexity */ 1274 if (!netif_running(dev)) { 1275 dev->mtu = new_mtu; 1276 cp_set_rxbufsize(cp); /* set new rx buf size */ 1277 return 0; 1278 } 1279 1280 /* network IS up, close it, reset MTU, and come up again. */ 1281 cp_close(dev); 1282 dev->mtu = new_mtu; 1283 cp_set_rxbufsize(cp); 1284 return cp_open(dev); 1285 } 1286 1287 static const char mii_2_8139_map[8] = { 1288 BasicModeCtrl, 1289 BasicModeStatus, 1290 0, 1291 0, 1292 NWayAdvert, 1293 NWayLPAR, 1294 NWayExpansion, 1295 0 1296 }; 1297 1298 static int mdio_read(struct net_device *dev, int phy_id, int location) 1299 { 1300 struct cp_private *cp = netdev_priv(dev); 1301 1302 return location < 8 && mii_2_8139_map[location] ? 1303 readw(cp->regs + mii_2_8139_map[location]) : 0; 1304 } 1305 1306 1307 static void mdio_write(struct net_device *dev, int phy_id, int location, 1308 int value) 1309 { 1310 struct cp_private *cp = netdev_priv(dev); 1311 1312 if (location == 0) { 1313 cpw8(Cfg9346, Cfg9346_Unlock); 1314 cpw16(BasicModeCtrl, value); 1315 cpw8(Cfg9346, Cfg9346_Lock); 1316 } else if (location < 8 && mii_2_8139_map[location]) 1317 cpw16(mii_2_8139_map[location], value); 1318 } 1319 1320 /* Set the ethtool Wake-on-LAN settings */ 1321 static int netdev_set_wol (struct cp_private *cp, 1322 const struct ethtool_wolinfo *wol) 1323 { 1324 u8 options; 1325 1326 options = cpr8 (Config3) & ~(LinkUp | MagicPacket); 1327 /* If WOL is being disabled, no need for complexity */ 1328 if (wol->wolopts) { 1329 if (wol->wolopts & WAKE_PHY) options |= LinkUp; 1330 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket; 1331 } 1332 1333 cpw8 (Cfg9346, Cfg9346_Unlock); 1334 cpw8 (Config3, options); 1335 cpw8 (Cfg9346, Cfg9346_Lock); 1336 1337 options = 0; /* Paranoia setting */ 1338 options = cpr8 (Config5) & ~(UWF | MWF | BWF); 1339 /* If WOL is being disabled, no need for complexity */ 1340 if (wol->wolopts) { 1341 if (wol->wolopts & WAKE_UCAST) options |= UWF; 1342 if (wol->wolopts & WAKE_BCAST) options |= BWF; 1343 if (wol->wolopts & WAKE_MCAST) options |= MWF; 1344 } 1345 1346 cpw8 (Config5, options); 1347 1348 cp->wol_enabled = (wol->wolopts) ? 1 : 0; 1349 1350 return 0; 1351 } 1352 1353 /* Get the ethtool Wake-on-LAN settings */ 1354 static void netdev_get_wol (struct cp_private *cp, 1355 struct ethtool_wolinfo *wol) 1356 { 1357 u8 options; 1358 1359 wol->wolopts = 0; /* Start from scratch */ 1360 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC | 1361 WAKE_MCAST | WAKE_UCAST; 1362 /* We don't need to go on if WOL is disabled */ 1363 if (!cp->wol_enabled) return; 1364 1365 options = cpr8 (Config3); 1366 if (options & LinkUp) wol->wolopts |= WAKE_PHY; 1367 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC; 1368 1369 options = 0; /* Paranoia setting */ 1370 options = cpr8 (Config5); 1371 if (options & UWF) wol->wolopts |= WAKE_UCAST; 1372 if (options & BWF) wol->wolopts |= WAKE_BCAST; 1373 if (options & MWF) wol->wolopts |= WAKE_MCAST; 1374 } 1375 1376 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1377 { 1378 struct cp_private *cp = netdev_priv(dev); 1379 1380 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1381 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1382 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 1383 } 1384 1385 static void cp_get_ringparam(struct net_device *dev, 1386 struct ethtool_ringparam *ring) 1387 { 1388 ring->rx_max_pending = CP_RX_RING_SIZE; 1389 ring->tx_max_pending = CP_TX_RING_SIZE; 1390 ring->rx_pending = CP_RX_RING_SIZE; 1391 ring->tx_pending = CP_TX_RING_SIZE; 1392 } 1393 1394 static int cp_get_regs_len(struct net_device *dev) 1395 { 1396 return CP_REGS_SIZE; 1397 } 1398 1399 static int cp_get_sset_count (struct net_device *dev, int sset) 1400 { 1401 switch (sset) { 1402 case ETH_SS_STATS: 1403 return CP_NUM_STATS; 1404 default: 1405 return -EOPNOTSUPP; 1406 } 1407 } 1408 1409 static int cp_get_link_ksettings(struct net_device *dev, 1410 struct ethtool_link_ksettings *cmd) 1411 { 1412 struct cp_private *cp = netdev_priv(dev); 1413 unsigned long flags; 1414 1415 spin_lock_irqsave(&cp->lock, flags); 1416 mii_ethtool_get_link_ksettings(&cp->mii_if, cmd); 1417 spin_unlock_irqrestore(&cp->lock, flags); 1418 1419 return 0; 1420 } 1421 1422 static int cp_set_link_ksettings(struct net_device *dev, 1423 const struct ethtool_link_ksettings *cmd) 1424 { 1425 struct cp_private *cp = netdev_priv(dev); 1426 int rc; 1427 unsigned long flags; 1428 1429 spin_lock_irqsave(&cp->lock, flags); 1430 rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd); 1431 spin_unlock_irqrestore(&cp->lock, flags); 1432 1433 return rc; 1434 } 1435 1436 static int cp_nway_reset(struct net_device *dev) 1437 { 1438 struct cp_private *cp = netdev_priv(dev); 1439 return mii_nway_restart(&cp->mii_if); 1440 } 1441 1442 static u32 cp_get_msglevel(struct net_device *dev) 1443 { 1444 struct cp_private *cp = netdev_priv(dev); 1445 return cp->msg_enable; 1446 } 1447 1448 static void cp_set_msglevel(struct net_device *dev, u32 value) 1449 { 1450 struct cp_private *cp = netdev_priv(dev); 1451 cp->msg_enable = value; 1452 } 1453 1454 static int cp_set_features(struct net_device *dev, netdev_features_t features) 1455 { 1456 struct cp_private *cp = netdev_priv(dev); 1457 unsigned long flags; 1458 1459 if (!((dev->features ^ features) & NETIF_F_RXCSUM)) 1460 return 0; 1461 1462 spin_lock_irqsave(&cp->lock, flags); 1463 1464 if (features & NETIF_F_RXCSUM) 1465 cp->cpcmd |= RxChkSum; 1466 else 1467 cp->cpcmd &= ~RxChkSum; 1468 1469 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1470 cp->cpcmd |= RxVlanOn; 1471 else 1472 cp->cpcmd &= ~RxVlanOn; 1473 1474 cpw16_f(CpCmd, cp->cpcmd); 1475 spin_unlock_irqrestore(&cp->lock, flags); 1476 1477 return 0; 1478 } 1479 1480 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs, 1481 void *p) 1482 { 1483 struct cp_private *cp = netdev_priv(dev); 1484 unsigned long flags; 1485 1486 if (regs->len < CP_REGS_SIZE) 1487 return /* -EINVAL */; 1488 1489 regs->version = CP_REGS_VER; 1490 1491 spin_lock_irqsave(&cp->lock, flags); 1492 memcpy_fromio(p, cp->regs, CP_REGS_SIZE); 1493 spin_unlock_irqrestore(&cp->lock, flags); 1494 } 1495 1496 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol) 1497 { 1498 struct cp_private *cp = netdev_priv(dev); 1499 unsigned long flags; 1500 1501 spin_lock_irqsave (&cp->lock, flags); 1502 netdev_get_wol (cp, wol); 1503 spin_unlock_irqrestore (&cp->lock, flags); 1504 } 1505 1506 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol) 1507 { 1508 struct cp_private *cp = netdev_priv(dev); 1509 unsigned long flags; 1510 int rc; 1511 1512 spin_lock_irqsave (&cp->lock, flags); 1513 rc = netdev_set_wol (cp, wol); 1514 spin_unlock_irqrestore (&cp->lock, flags); 1515 1516 return rc; 1517 } 1518 1519 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf) 1520 { 1521 switch (stringset) { 1522 case ETH_SS_STATS: 1523 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1524 break; 1525 default: 1526 BUG(); 1527 break; 1528 } 1529 } 1530 1531 static void cp_get_ethtool_stats (struct net_device *dev, 1532 struct ethtool_stats *estats, u64 *tmp_stats) 1533 { 1534 struct cp_private *cp = netdev_priv(dev); 1535 struct cp_dma_stats *nic_stats; 1536 dma_addr_t dma; 1537 int i; 1538 1539 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats), 1540 &dma, GFP_KERNEL); 1541 if (!nic_stats) 1542 return; 1543 1544 /* begin NIC statistics dump */ 1545 cpw32(StatsAddr + 4, (u64)dma >> 32); 1546 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats); 1547 cpr32(StatsAddr); 1548 1549 for (i = 0; i < 1000; i++) { 1550 if ((cpr32(StatsAddr) & DumpStats) == 0) 1551 break; 1552 udelay(10); 1553 } 1554 cpw32(StatsAddr, 0); 1555 cpw32(StatsAddr + 4, 0); 1556 cpr32(StatsAddr); 1557 1558 i = 0; 1559 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok); 1560 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok); 1561 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err); 1562 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err); 1563 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo); 1564 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align); 1565 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col); 1566 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol); 1567 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys); 1568 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast); 1569 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast); 1570 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort); 1571 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun); 1572 tmp_stats[i++] = cp->cp_stats.rx_frags; 1573 BUG_ON(i != CP_NUM_STATS); 1574 1575 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma); 1576 } 1577 1578 static const struct ethtool_ops cp_ethtool_ops = { 1579 .get_drvinfo = cp_get_drvinfo, 1580 .get_regs_len = cp_get_regs_len, 1581 .get_sset_count = cp_get_sset_count, 1582 .nway_reset = cp_nway_reset, 1583 .get_link = ethtool_op_get_link, 1584 .get_msglevel = cp_get_msglevel, 1585 .set_msglevel = cp_set_msglevel, 1586 .get_regs = cp_get_regs, 1587 .get_wol = cp_get_wol, 1588 .set_wol = cp_set_wol, 1589 .get_strings = cp_get_strings, 1590 .get_ethtool_stats = cp_get_ethtool_stats, 1591 .get_eeprom_len = cp_get_eeprom_len, 1592 .get_eeprom = cp_get_eeprom, 1593 .set_eeprom = cp_set_eeprom, 1594 .get_ringparam = cp_get_ringparam, 1595 .get_link_ksettings = cp_get_link_ksettings, 1596 .set_link_ksettings = cp_set_link_ksettings, 1597 }; 1598 1599 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) 1600 { 1601 struct cp_private *cp = netdev_priv(dev); 1602 int rc; 1603 unsigned long flags; 1604 1605 if (!netif_running(dev)) 1606 return -EINVAL; 1607 1608 spin_lock_irqsave(&cp->lock, flags); 1609 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL); 1610 spin_unlock_irqrestore(&cp->lock, flags); 1611 return rc; 1612 } 1613 1614 static int cp_set_mac_address(struct net_device *dev, void *p) 1615 { 1616 struct cp_private *cp = netdev_priv(dev); 1617 struct sockaddr *addr = p; 1618 1619 if (!is_valid_ether_addr(addr->sa_data)) 1620 return -EADDRNOTAVAIL; 1621 1622 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1623 1624 spin_lock_irq(&cp->lock); 1625 1626 cpw8_f(Cfg9346, Cfg9346_Unlock); 1627 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0))); 1628 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4))); 1629 cpw8_f(Cfg9346, Cfg9346_Lock); 1630 1631 spin_unlock_irq(&cp->lock); 1632 1633 return 0; 1634 } 1635 1636 /* Serial EEPROM section. */ 1637 1638 /* EEPROM_Ctrl bits. */ 1639 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ 1640 #define EE_CS 0x08 /* EEPROM chip select. */ 1641 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */ 1642 #define EE_WRITE_0 0x00 1643 #define EE_WRITE_1 0x02 1644 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */ 1645 #define EE_ENB (0x80 | EE_CS) 1646 1647 /* Delay between EEPROM clock transitions. 1648 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this. 1649 */ 1650 1651 #define eeprom_delay() readb(ee_addr) 1652 1653 /* The EEPROM commands include the alway-set leading bit. */ 1654 #define EE_EXTEND_CMD (4) 1655 #define EE_WRITE_CMD (5) 1656 #define EE_READ_CMD (6) 1657 #define EE_ERASE_CMD (7) 1658 1659 #define EE_EWDS_ADDR (0) 1660 #define EE_WRAL_ADDR (1) 1661 #define EE_ERAL_ADDR (2) 1662 #define EE_EWEN_ADDR (3) 1663 1664 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139 1665 1666 static void eeprom_cmd_start(void __iomem *ee_addr) 1667 { 1668 writeb (EE_ENB & ~EE_CS, ee_addr); 1669 writeb (EE_ENB, ee_addr); 1670 eeprom_delay (); 1671 } 1672 1673 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len) 1674 { 1675 int i; 1676 1677 /* Shift the command bits out. */ 1678 for (i = cmd_len - 1; i >= 0; i--) { 1679 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0; 1680 writeb (EE_ENB | dataval, ee_addr); 1681 eeprom_delay (); 1682 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); 1683 eeprom_delay (); 1684 } 1685 writeb (EE_ENB, ee_addr); 1686 eeprom_delay (); 1687 } 1688 1689 static void eeprom_cmd_end(void __iomem *ee_addr) 1690 { 1691 writeb(0, ee_addr); 1692 eeprom_delay (); 1693 } 1694 1695 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd, 1696 int addr_len) 1697 { 1698 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2)); 1699 1700 eeprom_cmd_start(ee_addr); 1701 eeprom_cmd(ee_addr, cmd, 3 + addr_len); 1702 eeprom_cmd_end(ee_addr); 1703 } 1704 1705 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len) 1706 { 1707 int i; 1708 u16 retval = 0; 1709 void __iomem *ee_addr = ioaddr + Cfg9346; 1710 int read_cmd = location | (EE_READ_CMD << addr_len); 1711 1712 eeprom_cmd_start(ee_addr); 1713 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len); 1714 1715 for (i = 16; i > 0; i--) { 1716 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr); 1717 eeprom_delay (); 1718 retval = 1719 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 : 1720 0); 1721 writeb (EE_ENB, ee_addr); 1722 eeprom_delay (); 1723 } 1724 1725 eeprom_cmd_end(ee_addr); 1726 1727 return retval; 1728 } 1729 1730 static void write_eeprom(void __iomem *ioaddr, int location, u16 val, 1731 int addr_len) 1732 { 1733 int i; 1734 void __iomem *ee_addr = ioaddr + Cfg9346; 1735 int write_cmd = location | (EE_WRITE_CMD << addr_len); 1736 1737 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len); 1738 1739 eeprom_cmd_start(ee_addr); 1740 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len); 1741 eeprom_cmd(ee_addr, val, 16); 1742 eeprom_cmd_end(ee_addr); 1743 1744 eeprom_cmd_start(ee_addr); 1745 for (i = 0; i < 20000; i++) 1746 if (readb(ee_addr) & EE_DATA_READ) 1747 break; 1748 eeprom_cmd_end(ee_addr); 1749 1750 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len); 1751 } 1752 1753 static int cp_get_eeprom_len(struct net_device *dev) 1754 { 1755 struct cp_private *cp = netdev_priv(dev); 1756 int size; 1757 1758 spin_lock_irq(&cp->lock); 1759 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128; 1760 spin_unlock_irq(&cp->lock); 1761 1762 return size; 1763 } 1764 1765 static int cp_get_eeprom(struct net_device *dev, 1766 struct ethtool_eeprom *eeprom, u8 *data) 1767 { 1768 struct cp_private *cp = netdev_priv(dev); 1769 unsigned int addr_len; 1770 u16 val; 1771 u32 offset = eeprom->offset >> 1; 1772 u32 len = eeprom->len; 1773 u32 i = 0; 1774 1775 eeprom->magic = CP_EEPROM_MAGIC; 1776 1777 spin_lock_irq(&cp->lock); 1778 1779 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6; 1780 1781 if (eeprom->offset & 1) { 1782 val = read_eeprom(cp->regs, offset, addr_len); 1783 data[i++] = (u8)(val >> 8); 1784 offset++; 1785 } 1786 1787 while (i < len - 1) { 1788 val = read_eeprom(cp->regs, offset, addr_len); 1789 data[i++] = (u8)val; 1790 data[i++] = (u8)(val >> 8); 1791 offset++; 1792 } 1793 1794 if (i < len) { 1795 val = read_eeprom(cp->regs, offset, addr_len); 1796 data[i] = (u8)val; 1797 } 1798 1799 spin_unlock_irq(&cp->lock); 1800 return 0; 1801 } 1802 1803 static int cp_set_eeprom(struct net_device *dev, 1804 struct ethtool_eeprom *eeprom, u8 *data) 1805 { 1806 struct cp_private *cp = netdev_priv(dev); 1807 unsigned int addr_len; 1808 u16 val; 1809 u32 offset = eeprom->offset >> 1; 1810 u32 len = eeprom->len; 1811 u32 i = 0; 1812 1813 if (eeprom->magic != CP_EEPROM_MAGIC) 1814 return -EINVAL; 1815 1816 spin_lock_irq(&cp->lock); 1817 1818 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6; 1819 1820 if (eeprom->offset & 1) { 1821 val = read_eeprom(cp->regs, offset, addr_len) & 0xff; 1822 val |= (u16)data[i++] << 8; 1823 write_eeprom(cp->regs, offset, val, addr_len); 1824 offset++; 1825 } 1826 1827 while (i < len - 1) { 1828 val = (u16)data[i++]; 1829 val |= (u16)data[i++] << 8; 1830 write_eeprom(cp->regs, offset, val, addr_len); 1831 offset++; 1832 } 1833 1834 if (i < len) { 1835 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00; 1836 val |= (u16)data[i]; 1837 write_eeprom(cp->regs, offset, val, addr_len); 1838 } 1839 1840 spin_unlock_irq(&cp->lock); 1841 return 0; 1842 } 1843 1844 /* Put the board into D3cold state and wait for WakeUp signal */ 1845 static void cp_set_d3_state (struct cp_private *cp) 1846 { 1847 pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */ 1848 pci_set_power_state (cp->pdev, PCI_D3hot); 1849 } 1850 1851 static netdev_features_t cp_features_check(struct sk_buff *skb, 1852 struct net_device *dev, 1853 netdev_features_t features) 1854 { 1855 if (skb_shinfo(skb)->gso_size > MSSMask) 1856 features &= ~NETIF_F_TSO; 1857 1858 return vlan_features_check(skb, features); 1859 } 1860 static const struct net_device_ops cp_netdev_ops = { 1861 .ndo_open = cp_open, 1862 .ndo_stop = cp_close, 1863 .ndo_validate_addr = eth_validate_addr, 1864 .ndo_set_mac_address = cp_set_mac_address, 1865 .ndo_set_rx_mode = cp_set_rx_mode, 1866 .ndo_get_stats = cp_get_stats, 1867 .ndo_do_ioctl = cp_ioctl, 1868 .ndo_start_xmit = cp_start_xmit, 1869 .ndo_tx_timeout = cp_tx_timeout, 1870 .ndo_set_features = cp_set_features, 1871 .ndo_change_mtu = cp_change_mtu, 1872 .ndo_features_check = cp_features_check, 1873 1874 #ifdef CONFIG_NET_POLL_CONTROLLER 1875 .ndo_poll_controller = cp_poll_controller, 1876 #endif 1877 }; 1878 1879 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) 1880 { 1881 struct net_device *dev; 1882 struct cp_private *cp; 1883 int rc; 1884 void __iomem *regs; 1885 resource_size_t pciaddr; 1886 unsigned int addr_len, i, pci_using_dac; 1887 1888 pr_info_once("%s", version); 1889 1890 if (pdev->vendor == PCI_VENDOR_ID_REALTEK && 1891 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) { 1892 dev_info(&pdev->dev, 1893 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n", 1894 pdev->vendor, pdev->device, pdev->revision); 1895 return -ENODEV; 1896 } 1897 1898 dev = alloc_etherdev(sizeof(struct cp_private)); 1899 if (!dev) 1900 return -ENOMEM; 1901 SET_NETDEV_DEV(dev, &pdev->dev); 1902 1903 cp = netdev_priv(dev); 1904 cp->pdev = pdev; 1905 cp->dev = dev; 1906 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug); 1907 spin_lock_init (&cp->lock); 1908 cp->mii_if.dev = dev; 1909 cp->mii_if.mdio_read = mdio_read; 1910 cp->mii_if.mdio_write = mdio_write; 1911 cp->mii_if.phy_id = CP_INTERNAL_PHY; 1912 cp->mii_if.phy_id_mask = 0x1f; 1913 cp->mii_if.reg_num_mask = 0x1f; 1914 cp_set_rxbufsize(cp); 1915 1916 rc = pci_enable_device(pdev); 1917 if (rc) 1918 goto err_out_free; 1919 1920 rc = pci_set_mwi(pdev); 1921 if (rc) 1922 goto err_out_disable; 1923 1924 rc = pci_request_regions(pdev, DRV_NAME); 1925 if (rc) 1926 goto err_out_mwi; 1927 1928 pciaddr = pci_resource_start(pdev, 1); 1929 if (!pciaddr) { 1930 rc = -EIO; 1931 dev_err(&pdev->dev, "no MMIO resource\n"); 1932 goto err_out_res; 1933 } 1934 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) { 1935 rc = -EIO; 1936 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n", 1937 (unsigned long long)pci_resource_len(pdev, 1)); 1938 goto err_out_res; 1939 } 1940 1941 /* Configure DMA attributes. */ 1942 if ((sizeof(dma_addr_t) > 4) && 1943 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) && 1944 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 1945 pci_using_dac = 1; 1946 } else { 1947 pci_using_dac = 0; 1948 1949 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1950 if (rc) { 1951 dev_err(&pdev->dev, 1952 "No usable DMA configuration, aborting\n"); 1953 goto err_out_res; 1954 } 1955 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 1956 if (rc) { 1957 dev_err(&pdev->dev, 1958 "No usable consistent DMA configuration, aborting\n"); 1959 goto err_out_res; 1960 } 1961 } 1962 1963 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) | 1964 PCIMulRW | RxChkSum | CpRxOn | CpTxOn; 1965 1966 dev->features |= NETIF_F_RXCSUM; 1967 dev->hw_features |= NETIF_F_RXCSUM; 1968 1969 regs = ioremap(pciaddr, CP_REGS_SIZE); 1970 if (!regs) { 1971 rc = -EIO; 1972 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n", 1973 (unsigned long long)pci_resource_len(pdev, 1), 1974 (unsigned long long)pciaddr); 1975 goto err_out_res; 1976 } 1977 cp->regs = regs; 1978 1979 cp_stop_hw(cp); 1980 1981 /* read MAC address from EEPROM */ 1982 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6; 1983 for (i = 0; i < 3; i++) 1984 ((__le16 *) (dev->dev_addr))[i] = 1985 cpu_to_le16(read_eeprom (regs, i + 7, addr_len)); 1986 1987 dev->netdev_ops = &cp_netdev_ops; 1988 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16); 1989 dev->ethtool_ops = &cp_ethtool_ops; 1990 dev->watchdog_timeo = TX_TIMEOUT; 1991 1992 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 1993 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 1994 1995 if (pci_using_dac) 1996 dev->features |= NETIF_F_HIGHDMA; 1997 1998 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 1999 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2000 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 2001 NETIF_F_HIGHDMA; 2002 2003 /* MTU range: 60 - 4096 */ 2004 dev->min_mtu = CP_MIN_MTU; 2005 dev->max_mtu = CP_MAX_MTU; 2006 2007 rc = register_netdev(dev); 2008 if (rc) 2009 goto err_out_iomap; 2010 2011 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n", 2012 regs, dev->dev_addr, pdev->irq); 2013 2014 pci_set_drvdata(pdev, dev); 2015 2016 /* enable busmastering and memory-write-invalidate */ 2017 pci_set_master(pdev); 2018 2019 if (cp->wol_enabled) 2020 cp_set_d3_state (cp); 2021 2022 return 0; 2023 2024 err_out_iomap: 2025 iounmap(regs); 2026 err_out_res: 2027 pci_release_regions(pdev); 2028 err_out_mwi: 2029 pci_clear_mwi(pdev); 2030 err_out_disable: 2031 pci_disable_device(pdev); 2032 err_out_free: 2033 free_netdev(dev); 2034 return rc; 2035 } 2036 2037 static void cp_remove_one (struct pci_dev *pdev) 2038 { 2039 struct net_device *dev = pci_get_drvdata(pdev); 2040 struct cp_private *cp = netdev_priv(dev); 2041 2042 unregister_netdev(dev); 2043 iounmap(cp->regs); 2044 if (cp->wol_enabled) 2045 pci_set_power_state (pdev, PCI_D0); 2046 pci_release_regions(pdev); 2047 pci_clear_mwi(pdev); 2048 pci_disable_device(pdev); 2049 free_netdev(dev); 2050 } 2051 2052 #ifdef CONFIG_PM 2053 static int cp_suspend (struct pci_dev *pdev, pm_message_t state) 2054 { 2055 struct net_device *dev = pci_get_drvdata(pdev); 2056 struct cp_private *cp = netdev_priv(dev); 2057 unsigned long flags; 2058 2059 if (!netif_running(dev)) 2060 return 0; 2061 2062 netif_device_detach (dev); 2063 netif_stop_queue (dev); 2064 2065 spin_lock_irqsave (&cp->lock, flags); 2066 2067 /* Disable Rx and Tx */ 2068 cpw16 (IntrMask, 0); 2069 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn)); 2070 2071 spin_unlock_irqrestore (&cp->lock, flags); 2072 2073 pci_save_state(pdev); 2074 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled); 2075 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 2076 2077 return 0; 2078 } 2079 2080 static int cp_resume (struct pci_dev *pdev) 2081 { 2082 struct net_device *dev = pci_get_drvdata (pdev); 2083 struct cp_private *cp = netdev_priv(dev); 2084 unsigned long flags; 2085 2086 if (!netif_running(dev)) 2087 return 0; 2088 2089 netif_device_attach (dev); 2090 2091 pci_set_power_state(pdev, PCI_D0); 2092 pci_restore_state(pdev); 2093 pci_enable_wake(pdev, PCI_D0, 0); 2094 2095 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */ 2096 cp_init_rings_index (cp); 2097 cp_init_hw (cp); 2098 cp_enable_irq(cp); 2099 netif_start_queue (dev); 2100 2101 spin_lock_irqsave (&cp->lock, flags); 2102 2103 mii_check_media(&cp->mii_if, netif_msg_link(cp), false); 2104 2105 spin_unlock_irqrestore (&cp->lock, flags); 2106 2107 return 0; 2108 } 2109 #endif /* CONFIG_PM */ 2110 2111 static const struct pci_device_id cp_pci_tbl[] = { 2112 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), }, 2113 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), }, 2114 { }, 2115 }; 2116 MODULE_DEVICE_TABLE(pci, cp_pci_tbl); 2117 2118 static struct pci_driver cp_driver = { 2119 .name = DRV_NAME, 2120 .id_table = cp_pci_tbl, 2121 .probe = cp_init_one, 2122 .remove = cp_remove_one, 2123 #ifdef CONFIG_PM 2124 .resume = cp_resume, 2125 .suspend = cp_suspend, 2126 #endif 2127 }; 2128 2129 module_pci_driver(cp_driver); 2130