1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */ 2 /* 3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com> 4 5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c] 6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c] 7 Copyright 2001 Manfred Spraul [natsemi.c] 8 Copyright 1999-2001 by Donald Becker. [natsemi.c] 9 Written 1997-2001 by Donald Becker. [8139too.c] 10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c] 11 12 This software may be used and distributed according to the terms of 13 the GNU General Public License (GPL), incorporated herein by reference. 14 Drivers based on or derived from this code fall under the GPL and must 15 retain the authorship, copyright and license notice. This file is not 16 a complete program and may only be used when the entire operating 17 system is licensed under the GPL. 18 19 See the file COPYING in this distribution for more information. 20 21 Contributors: 22 23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br> 24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br> 25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br> 26 27 TODO: 28 * Test Tx checksumming thoroughly 29 30 Low priority TODO: 31 * Complete reset on PciErr 32 * Consider Rx interrupt mitigation using TimerIntr 33 * Investigate using skb->priority with h/w VLAN priority 34 * Investigate using High Priority Tx Queue with skb->priority 35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error 36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error 37 * Implement Tx software interrupt mitigation via 38 Tx descriptor bit 39 * The real minimum of CP_MIN_MTU is 4 bytes. However, 40 for this to be supported, one must(?) turn on packet padding. 41 * Support external MII transceivers (patch available) 42 43 NOTES: 44 * TX checksumming is considered experimental. It is off by 45 default, use ethtool to turn it on. 46 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #define DRV_NAME "8139cp" 52 #define DRV_VERSION "1.3" 53 #define DRV_RELDATE "Mar 22, 2004" 54 55 56 #include <linux/module.h> 57 #include <linux/moduleparam.h> 58 #include <linux/kernel.h> 59 #include <linux/compiler.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/init.h> 63 #include <linux/interrupt.h> 64 #include <linux/pci.h> 65 #include <linux/dma-mapping.h> 66 #include <linux/delay.h> 67 #include <linux/ethtool.h> 68 #include <linux/gfp.h> 69 #include <linux/mii.h> 70 #include <linux/if_vlan.h> 71 #include <linux/crc32.h> 72 #include <linux/in.h> 73 #include <linux/ip.h> 74 #include <linux/tcp.h> 75 #include <linux/udp.h> 76 #include <linux/cache.h> 77 #include <asm/io.h> 78 #include <asm/irq.h> 79 #include <asm/uaccess.h> 80 81 /* These identify the driver base version and may not be removed. */ 82 static char version[] = 83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n"; 84 85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>"); 86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver"); 87 MODULE_VERSION(DRV_VERSION); 88 MODULE_LICENSE("GPL"); 89 90 static int debug = -1; 91 module_param(debug, int, 0); 92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number"); 93 94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). 95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */ 96 static int multicast_filter_limit = 32; 97 module_param(multicast_filter_limit, int, 0); 98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses"); 99 100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 101 NETIF_MSG_PROBE | \ 102 NETIF_MSG_LINK) 103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */ 104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */ 105 #define CP_REGS_SIZE (0xff + 1) 106 #define CP_REGS_VER 1 /* version 1 */ 107 #define CP_RX_RING_SIZE 64 108 #define CP_TX_RING_SIZE 64 109 #define CP_RING_BYTES \ 110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \ 111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \ 112 CP_STATS_SIZE) 113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1)) 114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1)) 115 #define TX_BUFFS_AVAIL(CP) \ 116 (((CP)->tx_tail <= (CP)->tx_head) ? \ 117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \ 118 (CP)->tx_tail - (CP)->tx_head - 1) 119 120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 121 #define CP_INTERNAL_PHY 32 122 123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */ 124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */ 125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */ 126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ 127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */ 128 129 /* Time in jiffies before concluding the transmitter is hung. */ 130 #define TX_TIMEOUT (6*HZ) 131 132 /* hardware minimum and maximum for a single frame's data payload */ 133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */ 134 #define CP_MAX_MTU 4096 135 136 enum { 137 /* NIC register offsets */ 138 MAC0 = 0x00, /* Ethernet hardware address. */ 139 MAR0 = 0x08, /* Multicast filter. */ 140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */ 141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */ 142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */ 143 Cmd = 0x37, /* Command register */ 144 IntrMask = 0x3C, /* Interrupt mask */ 145 IntrStatus = 0x3E, /* Interrupt status */ 146 TxConfig = 0x40, /* Tx configuration */ 147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */ 148 RxConfig = 0x44, /* Rx configuration */ 149 RxMissed = 0x4C, /* 24 bits valid, write clears */ 150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */ 151 Config1 = 0x52, /* Config1 */ 152 Config3 = 0x59, /* Config3 */ 153 Config4 = 0x5A, /* Config4 */ 154 MultiIntr = 0x5C, /* Multiple interrupt select */ 155 BasicModeCtrl = 0x62, /* MII BMCR */ 156 BasicModeStatus = 0x64, /* MII BMSR */ 157 NWayAdvert = 0x66, /* MII ADVERTISE */ 158 NWayLPAR = 0x68, /* MII LPA */ 159 NWayExpansion = 0x6A, /* MII Expansion */ 160 Config5 = 0xD8, /* Config5 */ 161 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */ 162 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */ 163 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */ 164 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */ 165 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */ 166 TxThresh = 0xEC, /* Early Tx threshold */ 167 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */ 168 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */ 169 170 /* Tx and Rx status descriptors */ 171 DescOwn = (1 << 31), /* Descriptor is owned by NIC */ 172 RingEnd = (1 << 30), /* End of descriptor ring */ 173 FirstFrag = (1 << 29), /* First segment of a packet */ 174 LastFrag = (1 << 28), /* Final segment of a packet */ 175 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */ 176 MSSShift = 16, /* MSS value position */ 177 MSSMask = 0xfff, /* MSS value: 11 bits */ 178 TxError = (1 << 23), /* Tx error summary */ 179 RxError = (1 << 20), /* Rx error summary */ 180 IPCS = (1 << 18), /* Calculate IP checksum */ 181 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */ 182 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */ 183 TxVlanTag = (1 << 17), /* Add VLAN tag */ 184 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */ 185 IPFail = (1 << 15), /* IP checksum failed */ 186 UDPFail = (1 << 14), /* UDP/IP checksum failed */ 187 TCPFail = (1 << 13), /* TCP/IP checksum failed */ 188 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */ 189 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */ 190 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */ 191 RxProtoTCP = 1, 192 RxProtoUDP = 2, 193 RxProtoIP = 3, 194 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */ 195 TxOWC = (1 << 22), /* Tx Out-of-window collision */ 196 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */ 197 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */ 198 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */ 199 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */ 200 RxErrFrame = (1 << 27), /* Rx frame alignment error */ 201 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */ 202 RxErrCRC = (1 << 18), /* Rx CRC error */ 203 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */ 204 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */ 205 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */ 206 207 /* StatsAddr register */ 208 DumpStats = (1 << 3), /* Begin stats dump */ 209 210 /* RxConfig register */ 211 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */ 212 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */ 213 AcceptErr = 0x20, /* Accept packets with CRC errors */ 214 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */ 215 AcceptBroadcast = 0x08, /* Accept broadcast packets */ 216 AcceptMulticast = 0x04, /* Accept multicast packets */ 217 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */ 218 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */ 219 220 /* IntrMask / IntrStatus registers */ 221 PciErr = (1 << 15), /* System error on the PCI bus */ 222 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */ 223 LenChg = (1 << 13), /* Cable length change */ 224 SWInt = (1 << 8), /* Software-requested interrupt */ 225 TxEmpty = (1 << 7), /* No Tx descriptors available */ 226 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */ 227 LinkChg = (1 << 5), /* Packet underrun, or link change */ 228 RxEmpty = (1 << 4), /* No Rx descriptors available */ 229 TxErr = (1 << 3), /* Tx error */ 230 TxOK = (1 << 2), /* Tx packet sent */ 231 RxErr = (1 << 1), /* Rx error */ 232 RxOK = (1 << 0), /* Rx packet received */ 233 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers, 234 but hardware likes to raise it */ 235 236 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty | 237 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK | 238 RxErr | RxOK | IntrResvd, 239 240 /* C mode command register */ 241 CmdReset = (1 << 4), /* Enable to reset; self-clearing */ 242 RxOn = (1 << 3), /* Rx mode enable */ 243 TxOn = (1 << 2), /* Tx mode enable */ 244 245 /* C+ mode command register */ 246 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */ 247 RxChkSum = (1 << 5), /* Rx checksum offload enable */ 248 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */ 249 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */ 250 CpRxOn = (1 << 1), /* Rx mode enable */ 251 CpTxOn = (1 << 0), /* Tx mode enable */ 252 253 /* Cfg9436 EEPROM control register */ 254 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */ 255 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */ 256 257 /* TxConfig register */ 258 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */ 259 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ 260 261 /* Early Tx Threshold register */ 262 TxThreshMask = 0x3f, /* Mask bits 5-0 */ 263 TxThreshMax = 2048, /* Max early Tx threshold */ 264 265 /* Config1 register */ 266 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */ 267 LWACT = (1 << 4), /* LWAKE active mode */ 268 PMEnable = (1 << 0), /* Enable various PM features of chip */ 269 270 /* Config3 register */ 271 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */ 272 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */ 273 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */ 274 275 /* Config4 register */ 276 LWPTN = (1 << 1), /* LWAKE Pattern */ 277 LWPME = (1 << 4), /* LANWAKE vs PMEB */ 278 279 /* Config5 register */ 280 BWF = (1 << 6), /* Accept Broadcast wakeup frame */ 281 MWF = (1 << 5), /* Accept Multicast wakeup frame */ 282 UWF = (1 << 4), /* Accept Unicast wakeup frame */ 283 LANWake = (1 << 1), /* Enable LANWake signal */ 284 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */ 285 286 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty, 287 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr, 288 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask, 289 }; 290 291 static const unsigned int cp_rx_config = 292 (RX_FIFO_THRESH << RxCfgFIFOShift) | 293 (RX_DMA_BURST << RxCfgDMAShift); 294 295 struct cp_desc { 296 __le32 opts1; 297 __le32 opts2; 298 __le64 addr; 299 }; 300 301 struct cp_dma_stats { 302 __le64 tx_ok; 303 __le64 rx_ok; 304 __le64 tx_err; 305 __le32 rx_err; 306 __le16 rx_fifo; 307 __le16 frame_align; 308 __le32 tx_ok_1col; 309 __le32 tx_ok_mcol; 310 __le64 rx_ok_phys; 311 __le64 rx_ok_bcast; 312 __le32 rx_ok_mcast; 313 __le16 tx_abort; 314 __le16 tx_underrun; 315 } __packed; 316 317 struct cp_extra_stats { 318 unsigned long rx_frags; 319 }; 320 321 struct cp_private { 322 void __iomem *regs; 323 struct net_device *dev; 324 spinlock_t lock; 325 u32 msg_enable; 326 327 struct napi_struct napi; 328 329 struct pci_dev *pdev; 330 u32 rx_config; 331 u16 cpcmd; 332 333 struct cp_extra_stats cp_stats; 334 335 unsigned rx_head ____cacheline_aligned; 336 unsigned rx_tail; 337 struct cp_desc *rx_ring; 338 struct sk_buff *rx_skb[CP_RX_RING_SIZE]; 339 340 unsigned tx_head ____cacheline_aligned; 341 unsigned tx_tail; 342 struct cp_desc *tx_ring; 343 struct sk_buff *tx_skb[CP_TX_RING_SIZE]; 344 345 unsigned rx_buf_sz; 346 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */ 347 348 dma_addr_t ring_dma; 349 350 struct mii_if_info mii_if; 351 }; 352 353 #define cpr8(reg) readb(cp->regs + (reg)) 354 #define cpr16(reg) readw(cp->regs + (reg)) 355 #define cpr32(reg) readl(cp->regs + (reg)) 356 #define cpw8(reg,val) writeb((val), cp->regs + (reg)) 357 #define cpw16(reg,val) writew((val), cp->regs + (reg)) 358 #define cpw32(reg,val) writel((val), cp->regs + (reg)) 359 #define cpw8_f(reg,val) do { \ 360 writeb((val), cp->regs + (reg)); \ 361 readb(cp->regs + (reg)); \ 362 } while (0) 363 #define cpw16_f(reg,val) do { \ 364 writew((val), cp->regs + (reg)); \ 365 readw(cp->regs + (reg)); \ 366 } while (0) 367 #define cpw32_f(reg,val) do { \ 368 writel((val), cp->regs + (reg)); \ 369 readl(cp->regs + (reg)); \ 370 } while (0) 371 372 373 static void __cp_set_rx_mode (struct net_device *dev); 374 static void cp_tx (struct cp_private *cp); 375 static void cp_clean_rings (struct cp_private *cp); 376 #ifdef CONFIG_NET_POLL_CONTROLLER 377 static void cp_poll_controller(struct net_device *dev); 378 #endif 379 static int cp_get_eeprom_len(struct net_device *dev); 380 static int cp_get_eeprom(struct net_device *dev, 381 struct ethtool_eeprom *eeprom, u8 *data); 382 static int cp_set_eeprom(struct net_device *dev, 383 struct ethtool_eeprom *eeprom, u8 *data); 384 385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = { 386 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), }, 387 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), }, 388 { }, 389 }; 390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl); 391 392 static struct { 393 const char str[ETH_GSTRING_LEN]; 394 } ethtool_stats_keys[] = { 395 { "tx_ok" }, 396 { "rx_ok" }, 397 { "tx_err" }, 398 { "rx_err" }, 399 { "rx_fifo" }, 400 { "frame_align" }, 401 { "tx_ok_1col" }, 402 { "tx_ok_mcol" }, 403 { "rx_ok_phys" }, 404 { "rx_ok_bcast" }, 405 { "rx_ok_mcast" }, 406 { "tx_abort" }, 407 { "tx_underrun" }, 408 { "rx_frags" }, 409 }; 410 411 412 static inline void cp_set_rxbufsize (struct cp_private *cp) 413 { 414 unsigned int mtu = cp->dev->mtu; 415 416 if (mtu > ETH_DATA_LEN) 417 /* MTU + ethernet header + FCS + optional VLAN tag */ 418 cp->rx_buf_sz = mtu + ETH_HLEN + 8; 419 else 420 cp->rx_buf_sz = PKT_BUF_SZ; 421 } 422 423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb, 424 struct cp_desc *desc) 425 { 426 u32 opts2 = le32_to_cpu(desc->opts2); 427 428 skb->protocol = eth_type_trans (skb, cp->dev); 429 430 cp->dev->stats.rx_packets++; 431 cp->dev->stats.rx_bytes += skb->len; 432 433 if (opts2 & RxVlanTagged) 434 __vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff)); 435 436 napi_gro_receive(&cp->napi, skb); 437 } 438 439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail, 440 u32 status, u32 len) 441 { 442 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n", 443 rx_tail, status, len); 444 cp->dev->stats.rx_errors++; 445 if (status & RxErrFrame) 446 cp->dev->stats.rx_frame_errors++; 447 if (status & RxErrCRC) 448 cp->dev->stats.rx_crc_errors++; 449 if ((status & RxErrRunt) || (status & RxErrLong)) 450 cp->dev->stats.rx_length_errors++; 451 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) 452 cp->dev->stats.rx_length_errors++; 453 if (status & RxErrFIFO) 454 cp->dev->stats.rx_fifo_errors++; 455 } 456 457 static inline unsigned int cp_rx_csum_ok (u32 status) 458 { 459 unsigned int protocol = (status >> 16) & 0x3; 460 461 if (((protocol == RxProtoTCP) && !(status & TCPFail)) || 462 ((protocol == RxProtoUDP) && !(status & UDPFail))) 463 return 1; 464 else 465 return 0; 466 } 467 468 static int cp_rx_poll(struct napi_struct *napi, int budget) 469 { 470 struct cp_private *cp = container_of(napi, struct cp_private, napi); 471 struct net_device *dev = cp->dev; 472 unsigned int rx_tail = cp->rx_tail; 473 int rx; 474 475 rx_status_loop: 476 rx = 0; 477 cpw16(IntrStatus, cp_rx_intr_mask); 478 479 while (1) { 480 u32 status, len; 481 dma_addr_t mapping; 482 struct sk_buff *skb, *new_skb; 483 struct cp_desc *desc; 484 const unsigned buflen = cp->rx_buf_sz; 485 486 skb = cp->rx_skb[rx_tail]; 487 BUG_ON(!skb); 488 489 desc = &cp->rx_ring[rx_tail]; 490 status = le32_to_cpu(desc->opts1); 491 if (status & DescOwn) 492 break; 493 494 len = (status & 0x1fff) - 4; 495 mapping = le64_to_cpu(desc->addr); 496 497 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) { 498 /* we don't support incoming fragmented frames. 499 * instead, we attempt to ensure that the 500 * pre-allocated RX skbs are properly sized such 501 * that RX fragments are never encountered 502 */ 503 cp_rx_err_acct(cp, rx_tail, status, len); 504 dev->stats.rx_dropped++; 505 cp->cp_stats.rx_frags++; 506 goto rx_next; 507 } 508 509 if (status & (RxError | RxErrFIFO)) { 510 cp_rx_err_acct(cp, rx_tail, status, len); 511 goto rx_next; 512 } 513 514 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n", 515 rx_tail, status, len); 516 517 new_skb = netdev_alloc_skb_ip_align(dev, buflen); 518 if (!new_skb) { 519 dev->stats.rx_dropped++; 520 goto rx_next; 521 } 522 523 dma_unmap_single(&cp->pdev->dev, mapping, 524 buflen, PCI_DMA_FROMDEVICE); 525 526 /* Handle checksum offloading for incoming packets. */ 527 if (cp_rx_csum_ok(status)) 528 skb->ip_summed = CHECKSUM_UNNECESSARY; 529 else 530 skb_checksum_none_assert(skb); 531 532 skb_put(skb, len); 533 534 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen, 535 PCI_DMA_FROMDEVICE); 536 cp->rx_skb[rx_tail] = new_skb; 537 538 cp_rx_skb(cp, skb, desc); 539 rx++; 540 541 rx_next: 542 cp->rx_ring[rx_tail].opts2 = 0; 543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping); 544 if (rx_tail == (CP_RX_RING_SIZE - 1)) 545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd | 546 cp->rx_buf_sz); 547 else 548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz); 549 rx_tail = NEXT_RX(rx_tail); 550 551 if (rx >= budget) 552 break; 553 } 554 555 cp->rx_tail = rx_tail; 556 557 /* if we did not reach work limit, then we're done with 558 * this round of polling 559 */ 560 if (rx < budget) { 561 unsigned long flags; 562 563 if (cpr16(IntrStatus) & cp_rx_intr_mask) 564 goto rx_status_loop; 565 566 napi_gro_flush(napi); 567 spin_lock_irqsave(&cp->lock, flags); 568 __napi_complete(napi); 569 cpw16_f(IntrMask, cp_intr_mask); 570 spin_unlock_irqrestore(&cp->lock, flags); 571 } 572 573 return rx; 574 } 575 576 static irqreturn_t cp_interrupt (int irq, void *dev_instance) 577 { 578 struct net_device *dev = dev_instance; 579 struct cp_private *cp; 580 u16 status; 581 582 if (unlikely(dev == NULL)) 583 return IRQ_NONE; 584 cp = netdev_priv(dev); 585 586 status = cpr16(IntrStatus); 587 if (!status || (status == 0xFFFF)) 588 return IRQ_NONE; 589 590 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n", 591 status, cpr8(Cmd), cpr16(CpCmd)); 592 593 cpw16(IntrStatus, status & ~cp_rx_intr_mask); 594 595 spin_lock(&cp->lock); 596 597 /* close possible race's with dev_close */ 598 if (unlikely(!netif_running(dev))) { 599 cpw16(IntrMask, 0); 600 spin_unlock(&cp->lock); 601 return IRQ_HANDLED; 602 } 603 604 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr)) 605 if (napi_schedule_prep(&cp->napi)) { 606 cpw16_f(IntrMask, cp_norx_intr_mask); 607 __napi_schedule(&cp->napi); 608 } 609 610 if (status & (TxOK | TxErr | TxEmpty | SWInt)) 611 cp_tx(cp); 612 if (status & LinkChg) 613 mii_check_media(&cp->mii_if, netif_msg_link(cp), false); 614 615 spin_unlock(&cp->lock); 616 617 if (status & PciErr) { 618 u16 pci_status; 619 620 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status); 621 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status); 622 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n", 623 status, pci_status); 624 625 /* TODO: reset hardware */ 626 } 627 628 return IRQ_HANDLED; 629 } 630 631 #ifdef CONFIG_NET_POLL_CONTROLLER 632 /* 633 * Polling receive - used by netconsole and other diagnostic tools 634 * to allow network i/o with interrupts disabled. 635 */ 636 static void cp_poll_controller(struct net_device *dev) 637 { 638 disable_irq(dev->irq); 639 cp_interrupt(dev->irq, dev); 640 enable_irq(dev->irq); 641 } 642 #endif 643 644 static void cp_tx (struct cp_private *cp) 645 { 646 unsigned tx_head = cp->tx_head; 647 unsigned tx_tail = cp->tx_tail; 648 649 while (tx_tail != tx_head) { 650 struct cp_desc *txd = cp->tx_ring + tx_tail; 651 struct sk_buff *skb; 652 u32 status; 653 654 rmb(); 655 status = le32_to_cpu(txd->opts1); 656 if (status & DescOwn) 657 break; 658 659 skb = cp->tx_skb[tx_tail]; 660 BUG_ON(!skb); 661 662 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr), 663 le32_to_cpu(txd->opts1) & 0xffff, 664 PCI_DMA_TODEVICE); 665 666 if (status & LastFrag) { 667 if (status & (TxError | TxFIFOUnder)) { 668 netif_dbg(cp, tx_err, cp->dev, 669 "tx err, status 0x%x\n", status); 670 cp->dev->stats.tx_errors++; 671 if (status & TxOWC) 672 cp->dev->stats.tx_window_errors++; 673 if (status & TxMaxCol) 674 cp->dev->stats.tx_aborted_errors++; 675 if (status & TxLinkFail) 676 cp->dev->stats.tx_carrier_errors++; 677 if (status & TxFIFOUnder) 678 cp->dev->stats.tx_fifo_errors++; 679 } else { 680 cp->dev->stats.collisions += 681 ((status >> TxColCntShift) & TxColCntMask); 682 cp->dev->stats.tx_packets++; 683 cp->dev->stats.tx_bytes += skb->len; 684 netif_dbg(cp, tx_done, cp->dev, 685 "tx done, slot %d\n", tx_tail); 686 } 687 dev_kfree_skb_irq(skb); 688 } 689 690 cp->tx_skb[tx_tail] = NULL; 691 692 tx_tail = NEXT_TX(tx_tail); 693 } 694 695 cp->tx_tail = tx_tail; 696 697 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1)) 698 netif_wake_queue(cp->dev); 699 } 700 701 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb) 702 { 703 return vlan_tx_tag_present(skb) ? 704 TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00; 705 } 706 707 static netdev_tx_t cp_start_xmit (struct sk_buff *skb, 708 struct net_device *dev) 709 { 710 struct cp_private *cp = netdev_priv(dev); 711 unsigned entry; 712 u32 eor, flags; 713 unsigned long intr_flags; 714 __le32 opts2; 715 int mss = 0; 716 717 spin_lock_irqsave(&cp->lock, intr_flags); 718 719 /* This is a hard error, log it. */ 720 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) { 721 netif_stop_queue(dev); 722 spin_unlock_irqrestore(&cp->lock, intr_flags); 723 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 724 return NETDEV_TX_BUSY; 725 } 726 727 entry = cp->tx_head; 728 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0; 729 mss = skb_shinfo(skb)->gso_size; 730 731 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb)); 732 733 if (skb_shinfo(skb)->nr_frags == 0) { 734 struct cp_desc *txd = &cp->tx_ring[entry]; 735 u32 len; 736 dma_addr_t mapping; 737 738 len = skb->len; 739 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE); 740 txd->opts2 = opts2; 741 txd->addr = cpu_to_le64(mapping); 742 wmb(); 743 744 flags = eor | len | DescOwn | FirstFrag | LastFrag; 745 746 if (mss) 747 flags |= LargeSend | ((mss & MSSMask) << MSSShift); 748 else if (skb->ip_summed == CHECKSUM_PARTIAL) { 749 const struct iphdr *ip = ip_hdr(skb); 750 if (ip->protocol == IPPROTO_TCP) 751 flags |= IPCS | TCPCS; 752 else if (ip->protocol == IPPROTO_UDP) 753 flags |= IPCS | UDPCS; 754 else 755 WARN_ON(1); /* we need a WARN() */ 756 } 757 758 txd->opts1 = cpu_to_le32(flags); 759 wmb(); 760 761 cp->tx_skb[entry] = skb; 762 entry = NEXT_TX(entry); 763 } else { 764 struct cp_desc *txd; 765 u32 first_len, first_eor; 766 dma_addr_t first_mapping; 767 int frag, first_entry = entry; 768 const struct iphdr *ip = ip_hdr(skb); 769 770 /* We must give this initial chunk to the device last. 771 * Otherwise we could race with the device. 772 */ 773 first_eor = eor; 774 first_len = skb_headlen(skb); 775 first_mapping = dma_map_single(&cp->pdev->dev, skb->data, 776 first_len, PCI_DMA_TODEVICE); 777 cp->tx_skb[entry] = skb; 778 entry = NEXT_TX(entry); 779 780 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 781 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 782 u32 len; 783 u32 ctrl; 784 dma_addr_t mapping; 785 786 len = skb_frag_size(this_frag); 787 mapping = dma_map_single(&cp->pdev->dev, 788 skb_frag_address(this_frag), 789 len, PCI_DMA_TODEVICE); 790 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0; 791 792 ctrl = eor | len | DescOwn; 793 794 if (mss) 795 ctrl |= LargeSend | 796 ((mss & MSSMask) << MSSShift); 797 else if (skb->ip_summed == CHECKSUM_PARTIAL) { 798 if (ip->protocol == IPPROTO_TCP) 799 ctrl |= IPCS | TCPCS; 800 else if (ip->protocol == IPPROTO_UDP) 801 ctrl |= IPCS | UDPCS; 802 else 803 BUG(); 804 } 805 806 if (frag == skb_shinfo(skb)->nr_frags - 1) 807 ctrl |= LastFrag; 808 809 txd = &cp->tx_ring[entry]; 810 txd->opts2 = opts2; 811 txd->addr = cpu_to_le64(mapping); 812 wmb(); 813 814 txd->opts1 = cpu_to_le32(ctrl); 815 wmb(); 816 817 cp->tx_skb[entry] = skb; 818 entry = NEXT_TX(entry); 819 } 820 821 txd = &cp->tx_ring[first_entry]; 822 txd->opts2 = opts2; 823 txd->addr = cpu_to_le64(first_mapping); 824 wmb(); 825 826 if (skb->ip_summed == CHECKSUM_PARTIAL) { 827 if (ip->protocol == IPPROTO_TCP) 828 txd->opts1 = cpu_to_le32(first_eor | first_len | 829 FirstFrag | DescOwn | 830 IPCS | TCPCS); 831 else if (ip->protocol == IPPROTO_UDP) 832 txd->opts1 = cpu_to_le32(first_eor | first_len | 833 FirstFrag | DescOwn | 834 IPCS | UDPCS); 835 else 836 BUG(); 837 } else 838 txd->opts1 = cpu_to_le32(first_eor | first_len | 839 FirstFrag | DescOwn); 840 wmb(); 841 } 842 cp->tx_head = entry; 843 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n", 844 entry, skb->len); 845 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1)) 846 netif_stop_queue(dev); 847 848 spin_unlock_irqrestore(&cp->lock, intr_flags); 849 850 cpw8(TxPoll, NormalTxPoll); 851 852 return NETDEV_TX_OK; 853 } 854 855 /* Set or clear the multicast filter for this adaptor. 856 This routine is not state sensitive and need not be SMP locked. */ 857 858 static void __cp_set_rx_mode (struct net_device *dev) 859 { 860 struct cp_private *cp = netdev_priv(dev); 861 u32 mc_filter[2]; /* Multicast hash filter */ 862 int rx_mode; 863 864 /* Note: do not reorder, GCC is clever about common statements. */ 865 if (dev->flags & IFF_PROMISC) { 866 /* Unconditionally log net taps. */ 867 rx_mode = 868 AcceptBroadcast | AcceptMulticast | AcceptMyPhys | 869 AcceptAllPhys; 870 mc_filter[1] = mc_filter[0] = 0xffffffff; 871 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 872 (dev->flags & IFF_ALLMULTI)) { 873 /* Too many to filter perfectly -- accept all multicasts. */ 874 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; 875 mc_filter[1] = mc_filter[0] = 0xffffffff; 876 } else { 877 struct netdev_hw_addr *ha; 878 rx_mode = AcceptBroadcast | AcceptMyPhys; 879 mc_filter[1] = mc_filter[0] = 0; 880 netdev_for_each_mc_addr(ha, dev) { 881 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 882 883 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 884 rx_mode |= AcceptMulticast; 885 } 886 } 887 888 /* We can safely update without stopping the chip. */ 889 cp->rx_config = cp_rx_config | rx_mode; 890 cpw32_f(RxConfig, cp->rx_config); 891 892 cpw32_f (MAR0 + 0, mc_filter[0]); 893 cpw32_f (MAR0 + 4, mc_filter[1]); 894 } 895 896 static void cp_set_rx_mode (struct net_device *dev) 897 { 898 unsigned long flags; 899 struct cp_private *cp = netdev_priv(dev); 900 901 spin_lock_irqsave (&cp->lock, flags); 902 __cp_set_rx_mode(dev); 903 spin_unlock_irqrestore (&cp->lock, flags); 904 } 905 906 static void __cp_get_stats(struct cp_private *cp) 907 { 908 /* only lower 24 bits valid; write any value to clear */ 909 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff); 910 cpw32 (RxMissed, 0); 911 } 912 913 static struct net_device_stats *cp_get_stats(struct net_device *dev) 914 { 915 struct cp_private *cp = netdev_priv(dev); 916 unsigned long flags; 917 918 /* The chip only need report frame silently dropped. */ 919 spin_lock_irqsave(&cp->lock, flags); 920 if (netif_running(dev) && netif_device_present(dev)) 921 __cp_get_stats(cp); 922 spin_unlock_irqrestore(&cp->lock, flags); 923 924 return &dev->stats; 925 } 926 927 static void cp_stop_hw (struct cp_private *cp) 928 { 929 cpw16(IntrStatus, ~(cpr16(IntrStatus))); 930 cpw16_f(IntrMask, 0); 931 cpw8(Cmd, 0); 932 cpw16_f(CpCmd, 0); 933 cpw16_f(IntrStatus, ~(cpr16(IntrStatus))); 934 935 cp->rx_tail = 0; 936 cp->tx_head = cp->tx_tail = 0; 937 } 938 939 static void cp_reset_hw (struct cp_private *cp) 940 { 941 unsigned work = 1000; 942 943 cpw8(Cmd, CmdReset); 944 945 while (work--) { 946 if (!(cpr8(Cmd) & CmdReset)) 947 return; 948 949 schedule_timeout_uninterruptible(10); 950 } 951 952 netdev_err(cp->dev, "hardware reset timeout\n"); 953 } 954 955 static inline void cp_start_hw (struct cp_private *cp) 956 { 957 cpw16(CpCmd, cp->cpcmd); 958 cpw8(Cmd, RxOn | TxOn); 959 } 960 961 static void cp_enable_irq(struct cp_private *cp) 962 { 963 cpw16_f(IntrMask, cp_intr_mask); 964 } 965 966 static void cp_init_hw (struct cp_private *cp) 967 { 968 struct net_device *dev = cp->dev; 969 dma_addr_t ring_dma; 970 971 cp_reset_hw(cp); 972 973 cpw8_f (Cfg9346, Cfg9346_Unlock); 974 975 /* Restore our idea of the MAC address. */ 976 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0))); 977 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4))); 978 979 cp_start_hw(cp); 980 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */ 981 982 __cp_set_rx_mode(dev); 983 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift)); 984 985 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable); 986 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */ 987 cpw8(Config3, PARMEnable); 988 cp->wol_enabled = 0; 989 990 cpw8(Config5, cpr8(Config5) & PMEStatus); 991 992 cpw32_f(HiTxRingAddr, 0); 993 cpw32_f(HiTxRingAddr + 4, 0); 994 995 ring_dma = cp->ring_dma; 996 cpw32_f(RxRingAddr, ring_dma & 0xffffffff); 997 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16); 998 999 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE; 1000 cpw32_f(TxRingAddr, ring_dma & 0xffffffff); 1001 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16); 1002 1003 cpw16(MultiIntr, 0); 1004 1005 cpw8_f(Cfg9346, Cfg9346_Lock); 1006 } 1007 1008 static int cp_refill_rx(struct cp_private *cp) 1009 { 1010 struct net_device *dev = cp->dev; 1011 unsigned i; 1012 1013 for (i = 0; i < CP_RX_RING_SIZE; i++) { 1014 struct sk_buff *skb; 1015 dma_addr_t mapping; 1016 1017 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz); 1018 if (!skb) 1019 goto err_out; 1020 1021 mapping = dma_map_single(&cp->pdev->dev, skb->data, 1022 cp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1023 cp->rx_skb[i] = skb; 1024 1025 cp->rx_ring[i].opts2 = 0; 1026 cp->rx_ring[i].addr = cpu_to_le64(mapping); 1027 if (i == (CP_RX_RING_SIZE - 1)) 1028 cp->rx_ring[i].opts1 = 1029 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz); 1030 else 1031 cp->rx_ring[i].opts1 = 1032 cpu_to_le32(DescOwn | cp->rx_buf_sz); 1033 } 1034 1035 return 0; 1036 1037 err_out: 1038 cp_clean_rings(cp); 1039 return -ENOMEM; 1040 } 1041 1042 static void cp_init_rings_index (struct cp_private *cp) 1043 { 1044 cp->rx_tail = 0; 1045 cp->tx_head = cp->tx_tail = 0; 1046 } 1047 1048 static int cp_init_rings (struct cp_private *cp) 1049 { 1050 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE); 1051 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd); 1052 1053 cp_init_rings_index(cp); 1054 1055 return cp_refill_rx (cp); 1056 } 1057 1058 static int cp_alloc_rings (struct cp_private *cp) 1059 { 1060 void *mem; 1061 1062 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES, 1063 &cp->ring_dma, GFP_KERNEL); 1064 if (!mem) 1065 return -ENOMEM; 1066 1067 cp->rx_ring = mem; 1068 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE]; 1069 1070 return cp_init_rings(cp); 1071 } 1072 1073 static void cp_clean_rings (struct cp_private *cp) 1074 { 1075 struct cp_desc *desc; 1076 unsigned i; 1077 1078 for (i = 0; i < CP_RX_RING_SIZE; i++) { 1079 if (cp->rx_skb[i]) { 1080 desc = cp->rx_ring + i; 1081 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr), 1082 cp->rx_buf_sz, PCI_DMA_FROMDEVICE); 1083 dev_kfree_skb(cp->rx_skb[i]); 1084 } 1085 } 1086 1087 for (i = 0; i < CP_TX_RING_SIZE; i++) { 1088 if (cp->tx_skb[i]) { 1089 struct sk_buff *skb = cp->tx_skb[i]; 1090 1091 desc = cp->tx_ring + i; 1092 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr), 1093 le32_to_cpu(desc->opts1) & 0xffff, 1094 PCI_DMA_TODEVICE); 1095 if (le32_to_cpu(desc->opts1) & LastFrag) 1096 dev_kfree_skb(skb); 1097 cp->dev->stats.tx_dropped++; 1098 } 1099 } 1100 1101 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE); 1102 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE); 1103 1104 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE); 1105 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE); 1106 } 1107 1108 static void cp_free_rings (struct cp_private *cp) 1109 { 1110 cp_clean_rings(cp); 1111 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring, 1112 cp->ring_dma); 1113 cp->rx_ring = NULL; 1114 cp->tx_ring = NULL; 1115 } 1116 1117 static int cp_open (struct net_device *dev) 1118 { 1119 struct cp_private *cp = netdev_priv(dev); 1120 int rc; 1121 1122 netif_dbg(cp, ifup, dev, "enabling interface\n"); 1123 1124 rc = cp_alloc_rings(cp); 1125 if (rc) 1126 return rc; 1127 1128 napi_enable(&cp->napi); 1129 1130 cp_init_hw(cp); 1131 1132 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev); 1133 if (rc) 1134 goto err_out_hw; 1135 1136 cp_enable_irq(cp); 1137 1138 netif_carrier_off(dev); 1139 mii_check_media(&cp->mii_if, netif_msg_link(cp), true); 1140 netif_start_queue(dev); 1141 1142 return 0; 1143 1144 err_out_hw: 1145 napi_disable(&cp->napi); 1146 cp_stop_hw(cp); 1147 cp_free_rings(cp); 1148 return rc; 1149 } 1150 1151 static int cp_close (struct net_device *dev) 1152 { 1153 struct cp_private *cp = netdev_priv(dev); 1154 unsigned long flags; 1155 1156 napi_disable(&cp->napi); 1157 1158 netif_dbg(cp, ifdown, dev, "disabling interface\n"); 1159 1160 spin_lock_irqsave(&cp->lock, flags); 1161 1162 netif_stop_queue(dev); 1163 netif_carrier_off(dev); 1164 1165 cp_stop_hw(cp); 1166 1167 spin_unlock_irqrestore(&cp->lock, flags); 1168 1169 free_irq(dev->irq, dev); 1170 1171 cp_free_rings(cp); 1172 return 0; 1173 } 1174 1175 static void cp_tx_timeout(struct net_device *dev) 1176 { 1177 struct cp_private *cp = netdev_priv(dev); 1178 unsigned long flags; 1179 int rc; 1180 1181 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n", 1182 cpr8(Cmd), cpr16(CpCmd), 1183 cpr16(IntrStatus), cpr16(IntrMask)); 1184 1185 spin_lock_irqsave(&cp->lock, flags); 1186 1187 cp_stop_hw(cp); 1188 cp_clean_rings(cp); 1189 rc = cp_init_rings(cp); 1190 cp_start_hw(cp); 1191 1192 netif_wake_queue(dev); 1193 1194 spin_unlock_irqrestore(&cp->lock, flags); 1195 } 1196 1197 #ifdef BROKEN 1198 static int cp_change_mtu(struct net_device *dev, int new_mtu) 1199 { 1200 struct cp_private *cp = netdev_priv(dev); 1201 int rc; 1202 unsigned long flags; 1203 1204 /* check for invalid MTU, according to hardware limits */ 1205 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU) 1206 return -EINVAL; 1207 1208 /* if network interface not up, no need for complexity */ 1209 if (!netif_running(dev)) { 1210 dev->mtu = new_mtu; 1211 cp_set_rxbufsize(cp); /* set new rx buf size */ 1212 return 0; 1213 } 1214 1215 spin_lock_irqsave(&cp->lock, flags); 1216 1217 cp_stop_hw(cp); /* stop h/w and free rings */ 1218 cp_clean_rings(cp); 1219 1220 dev->mtu = new_mtu; 1221 cp_set_rxbufsize(cp); /* set new rx buf size */ 1222 1223 rc = cp_init_rings(cp); /* realloc and restart h/w */ 1224 cp_start_hw(cp); 1225 1226 spin_unlock_irqrestore(&cp->lock, flags); 1227 1228 return rc; 1229 } 1230 #endif /* BROKEN */ 1231 1232 static const char mii_2_8139_map[8] = { 1233 BasicModeCtrl, 1234 BasicModeStatus, 1235 0, 1236 0, 1237 NWayAdvert, 1238 NWayLPAR, 1239 NWayExpansion, 1240 0 1241 }; 1242 1243 static int mdio_read(struct net_device *dev, int phy_id, int location) 1244 { 1245 struct cp_private *cp = netdev_priv(dev); 1246 1247 return location < 8 && mii_2_8139_map[location] ? 1248 readw(cp->regs + mii_2_8139_map[location]) : 0; 1249 } 1250 1251 1252 static void mdio_write(struct net_device *dev, int phy_id, int location, 1253 int value) 1254 { 1255 struct cp_private *cp = netdev_priv(dev); 1256 1257 if (location == 0) { 1258 cpw8(Cfg9346, Cfg9346_Unlock); 1259 cpw16(BasicModeCtrl, value); 1260 cpw8(Cfg9346, Cfg9346_Lock); 1261 } else if (location < 8 && mii_2_8139_map[location]) 1262 cpw16(mii_2_8139_map[location], value); 1263 } 1264 1265 /* Set the ethtool Wake-on-LAN settings */ 1266 static int netdev_set_wol (struct cp_private *cp, 1267 const struct ethtool_wolinfo *wol) 1268 { 1269 u8 options; 1270 1271 options = cpr8 (Config3) & ~(LinkUp | MagicPacket); 1272 /* If WOL is being disabled, no need for complexity */ 1273 if (wol->wolopts) { 1274 if (wol->wolopts & WAKE_PHY) options |= LinkUp; 1275 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket; 1276 } 1277 1278 cpw8 (Cfg9346, Cfg9346_Unlock); 1279 cpw8 (Config3, options); 1280 cpw8 (Cfg9346, Cfg9346_Lock); 1281 1282 options = 0; /* Paranoia setting */ 1283 options = cpr8 (Config5) & ~(UWF | MWF | BWF); 1284 /* If WOL is being disabled, no need for complexity */ 1285 if (wol->wolopts) { 1286 if (wol->wolopts & WAKE_UCAST) options |= UWF; 1287 if (wol->wolopts & WAKE_BCAST) options |= BWF; 1288 if (wol->wolopts & WAKE_MCAST) options |= MWF; 1289 } 1290 1291 cpw8 (Config5, options); 1292 1293 cp->wol_enabled = (wol->wolopts) ? 1 : 0; 1294 1295 return 0; 1296 } 1297 1298 /* Get the ethtool Wake-on-LAN settings */ 1299 static void netdev_get_wol (struct cp_private *cp, 1300 struct ethtool_wolinfo *wol) 1301 { 1302 u8 options; 1303 1304 wol->wolopts = 0; /* Start from scratch */ 1305 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC | 1306 WAKE_MCAST | WAKE_UCAST; 1307 /* We don't need to go on if WOL is disabled */ 1308 if (!cp->wol_enabled) return; 1309 1310 options = cpr8 (Config3); 1311 if (options & LinkUp) wol->wolopts |= WAKE_PHY; 1312 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC; 1313 1314 options = 0; /* Paranoia setting */ 1315 options = cpr8 (Config5); 1316 if (options & UWF) wol->wolopts |= WAKE_UCAST; 1317 if (options & BWF) wol->wolopts |= WAKE_BCAST; 1318 if (options & MWF) wol->wolopts |= WAKE_MCAST; 1319 } 1320 1321 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1322 { 1323 struct cp_private *cp = netdev_priv(dev); 1324 1325 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1326 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1327 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 1328 } 1329 1330 static void cp_get_ringparam(struct net_device *dev, 1331 struct ethtool_ringparam *ring) 1332 { 1333 ring->rx_max_pending = CP_RX_RING_SIZE; 1334 ring->tx_max_pending = CP_TX_RING_SIZE; 1335 ring->rx_pending = CP_RX_RING_SIZE; 1336 ring->tx_pending = CP_TX_RING_SIZE; 1337 } 1338 1339 static int cp_get_regs_len(struct net_device *dev) 1340 { 1341 return CP_REGS_SIZE; 1342 } 1343 1344 static int cp_get_sset_count (struct net_device *dev, int sset) 1345 { 1346 switch (sset) { 1347 case ETH_SS_STATS: 1348 return CP_NUM_STATS; 1349 default: 1350 return -EOPNOTSUPP; 1351 } 1352 } 1353 1354 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1355 { 1356 struct cp_private *cp = netdev_priv(dev); 1357 int rc; 1358 unsigned long flags; 1359 1360 spin_lock_irqsave(&cp->lock, flags); 1361 rc = mii_ethtool_gset(&cp->mii_if, cmd); 1362 spin_unlock_irqrestore(&cp->lock, flags); 1363 1364 return rc; 1365 } 1366 1367 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1368 { 1369 struct cp_private *cp = netdev_priv(dev); 1370 int rc; 1371 unsigned long flags; 1372 1373 spin_lock_irqsave(&cp->lock, flags); 1374 rc = mii_ethtool_sset(&cp->mii_if, cmd); 1375 spin_unlock_irqrestore(&cp->lock, flags); 1376 1377 return rc; 1378 } 1379 1380 static int cp_nway_reset(struct net_device *dev) 1381 { 1382 struct cp_private *cp = netdev_priv(dev); 1383 return mii_nway_restart(&cp->mii_if); 1384 } 1385 1386 static u32 cp_get_msglevel(struct net_device *dev) 1387 { 1388 struct cp_private *cp = netdev_priv(dev); 1389 return cp->msg_enable; 1390 } 1391 1392 static void cp_set_msglevel(struct net_device *dev, u32 value) 1393 { 1394 struct cp_private *cp = netdev_priv(dev); 1395 cp->msg_enable = value; 1396 } 1397 1398 static int cp_set_features(struct net_device *dev, netdev_features_t features) 1399 { 1400 struct cp_private *cp = netdev_priv(dev); 1401 unsigned long flags; 1402 1403 if (!((dev->features ^ features) & NETIF_F_RXCSUM)) 1404 return 0; 1405 1406 spin_lock_irqsave(&cp->lock, flags); 1407 1408 if (features & NETIF_F_RXCSUM) 1409 cp->cpcmd |= RxChkSum; 1410 else 1411 cp->cpcmd &= ~RxChkSum; 1412 1413 if (features & NETIF_F_HW_VLAN_RX) 1414 cp->cpcmd |= RxVlanOn; 1415 else 1416 cp->cpcmd &= ~RxVlanOn; 1417 1418 cpw16_f(CpCmd, cp->cpcmd); 1419 spin_unlock_irqrestore(&cp->lock, flags); 1420 1421 return 0; 1422 } 1423 1424 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs, 1425 void *p) 1426 { 1427 struct cp_private *cp = netdev_priv(dev); 1428 unsigned long flags; 1429 1430 if (regs->len < CP_REGS_SIZE) 1431 return /* -EINVAL */; 1432 1433 regs->version = CP_REGS_VER; 1434 1435 spin_lock_irqsave(&cp->lock, flags); 1436 memcpy_fromio(p, cp->regs, CP_REGS_SIZE); 1437 spin_unlock_irqrestore(&cp->lock, flags); 1438 } 1439 1440 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol) 1441 { 1442 struct cp_private *cp = netdev_priv(dev); 1443 unsigned long flags; 1444 1445 spin_lock_irqsave (&cp->lock, flags); 1446 netdev_get_wol (cp, wol); 1447 spin_unlock_irqrestore (&cp->lock, flags); 1448 } 1449 1450 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol) 1451 { 1452 struct cp_private *cp = netdev_priv(dev); 1453 unsigned long flags; 1454 int rc; 1455 1456 spin_lock_irqsave (&cp->lock, flags); 1457 rc = netdev_set_wol (cp, wol); 1458 spin_unlock_irqrestore (&cp->lock, flags); 1459 1460 return rc; 1461 } 1462 1463 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf) 1464 { 1465 switch (stringset) { 1466 case ETH_SS_STATS: 1467 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1468 break; 1469 default: 1470 BUG(); 1471 break; 1472 } 1473 } 1474 1475 static void cp_get_ethtool_stats (struct net_device *dev, 1476 struct ethtool_stats *estats, u64 *tmp_stats) 1477 { 1478 struct cp_private *cp = netdev_priv(dev); 1479 struct cp_dma_stats *nic_stats; 1480 dma_addr_t dma; 1481 int i; 1482 1483 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats), 1484 &dma, GFP_KERNEL); 1485 if (!nic_stats) 1486 return; 1487 1488 /* begin NIC statistics dump */ 1489 cpw32(StatsAddr + 4, (u64)dma >> 32); 1490 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats); 1491 cpr32(StatsAddr); 1492 1493 for (i = 0; i < 1000; i++) { 1494 if ((cpr32(StatsAddr) & DumpStats) == 0) 1495 break; 1496 udelay(10); 1497 } 1498 cpw32(StatsAddr, 0); 1499 cpw32(StatsAddr + 4, 0); 1500 cpr32(StatsAddr); 1501 1502 i = 0; 1503 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok); 1504 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok); 1505 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err); 1506 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err); 1507 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo); 1508 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align); 1509 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col); 1510 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol); 1511 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys); 1512 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast); 1513 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast); 1514 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort); 1515 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun); 1516 tmp_stats[i++] = cp->cp_stats.rx_frags; 1517 BUG_ON(i != CP_NUM_STATS); 1518 1519 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma); 1520 } 1521 1522 static const struct ethtool_ops cp_ethtool_ops = { 1523 .get_drvinfo = cp_get_drvinfo, 1524 .get_regs_len = cp_get_regs_len, 1525 .get_sset_count = cp_get_sset_count, 1526 .get_settings = cp_get_settings, 1527 .set_settings = cp_set_settings, 1528 .nway_reset = cp_nway_reset, 1529 .get_link = ethtool_op_get_link, 1530 .get_msglevel = cp_get_msglevel, 1531 .set_msglevel = cp_set_msglevel, 1532 .get_regs = cp_get_regs, 1533 .get_wol = cp_get_wol, 1534 .set_wol = cp_set_wol, 1535 .get_strings = cp_get_strings, 1536 .get_ethtool_stats = cp_get_ethtool_stats, 1537 .get_eeprom_len = cp_get_eeprom_len, 1538 .get_eeprom = cp_get_eeprom, 1539 .set_eeprom = cp_set_eeprom, 1540 .get_ringparam = cp_get_ringparam, 1541 }; 1542 1543 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) 1544 { 1545 struct cp_private *cp = netdev_priv(dev); 1546 int rc; 1547 unsigned long flags; 1548 1549 if (!netif_running(dev)) 1550 return -EINVAL; 1551 1552 spin_lock_irqsave(&cp->lock, flags); 1553 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL); 1554 spin_unlock_irqrestore(&cp->lock, flags); 1555 return rc; 1556 } 1557 1558 static int cp_set_mac_address(struct net_device *dev, void *p) 1559 { 1560 struct cp_private *cp = netdev_priv(dev); 1561 struct sockaddr *addr = p; 1562 1563 if (!is_valid_ether_addr(addr->sa_data)) 1564 return -EADDRNOTAVAIL; 1565 1566 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1567 1568 spin_lock_irq(&cp->lock); 1569 1570 cpw8_f(Cfg9346, Cfg9346_Unlock); 1571 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0))); 1572 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4))); 1573 cpw8_f(Cfg9346, Cfg9346_Lock); 1574 1575 spin_unlock_irq(&cp->lock); 1576 1577 return 0; 1578 } 1579 1580 /* Serial EEPROM section. */ 1581 1582 /* EEPROM_Ctrl bits. */ 1583 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ 1584 #define EE_CS 0x08 /* EEPROM chip select. */ 1585 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */ 1586 #define EE_WRITE_0 0x00 1587 #define EE_WRITE_1 0x02 1588 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */ 1589 #define EE_ENB (0x80 | EE_CS) 1590 1591 /* Delay between EEPROM clock transitions. 1592 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this. 1593 */ 1594 1595 #define eeprom_delay() readb(ee_addr) 1596 1597 /* The EEPROM commands include the alway-set leading bit. */ 1598 #define EE_EXTEND_CMD (4) 1599 #define EE_WRITE_CMD (5) 1600 #define EE_READ_CMD (6) 1601 #define EE_ERASE_CMD (7) 1602 1603 #define EE_EWDS_ADDR (0) 1604 #define EE_WRAL_ADDR (1) 1605 #define EE_ERAL_ADDR (2) 1606 #define EE_EWEN_ADDR (3) 1607 1608 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139 1609 1610 static void eeprom_cmd_start(void __iomem *ee_addr) 1611 { 1612 writeb (EE_ENB & ~EE_CS, ee_addr); 1613 writeb (EE_ENB, ee_addr); 1614 eeprom_delay (); 1615 } 1616 1617 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len) 1618 { 1619 int i; 1620 1621 /* Shift the command bits out. */ 1622 for (i = cmd_len - 1; i >= 0; i--) { 1623 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0; 1624 writeb (EE_ENB | dataval, ee_addr); 1625 eeprom_delay (); 1626 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); 1627 eeprom_delay (); 1628 } 1629 writeb (EE_ENB, ee_addr); 1630 eeprom_delay (); 1631 } 1632 1633 static void eeprom_cmd_end(void __iomem *ee_addr) 1634 { 1635 writeb (~EE_CS, ee_addr); 1636 eeprom_delay (); 1637 } 1638 1639 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd, 1640 int addr_len) 1641 { 1642 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2)); 1643 1644 eeprom_cmd_start(ee_addr); 1645 eeprom_cmd(ee_addr, cmd, 3 + addr_len); 1646 eeprom_cmd_end(ee_addr); 1647 } 1648 1649 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len) 1650 { 1651 int i; 1652 u16 retval = 0; 1653 void __iomem *ee_addr = ioaddr + Cfg9346; 1654 int read_cmd = location | (EE_READ_CMD << addr_len); 1655 1656 eeprom_cmd_start(ee_addr); 1657 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len); 1658 1659 for (i = 16; i > 0; i--) { 1660 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr); 1661 eeprom_delay (); 1662 retval = 1663 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 : 1664 0); 1665 writeb (EE_ENB, ee_addr); 1666 eeprom_delay (); 1667 } 1668 1669 eeprom_cmd_end(ee_addr); 1670 1671 return retval; 1672 } 1673 1674 static void write_eeprom(void __iomem *ioaddr, int location, u16 val, 1675 int addr_len) 1676 { 1677 int i; 1678 void __iomem *ee_addr = ioaddr + Cfg9346; 1679 int write_cmd = location | (EE_WRITE_CMD << addr_len); 1680 1681 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len); 1682 1683 eeprom_cmd_start(ee_addr); 1684 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len); 1685 eeprom_cmd(ee_addr, val, 16); 1686 eeprom_cmd_end(ee_addr); 1687 1688 eeprom_cmd_start(ee_addr); 1689 for (i = 0; i < 20000; i++) 1690 if (readb(ee_addr) & EE_DATA_READ) 1691 break; 1692 eeprom_cmd_end(ee_addr); 1693 1694 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len); 1695 } 1696 1697 static int cp_get_eeprom_len(struct net_device *dev) 1698 { 1699 struct cp_private *cp = netdev_priv(dev); 1700 int size; 1701 1702 spin_lock_irq(&cp->lock); 1703 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128; 1704 spin_unlock_irq(&cp->lock); 1705 1706 return size; 1707 } 1708 1709 static int cp_get_eeprom(struct net_device *dev, 1710 struct ethtool_eeprom *eeprom, u8 *data) 1711 { 1712 struct cp_private *cp = netdev_priv(dev); 1713 unsigned int addr_len; 1714 u16 val; 1715 u32 offset = eeprom->offset >> 1; 1716 u32 len = eeprom->len; 1717 u32 i = 0; 1718 1719 eeprom->magic = CP_EEPROM_MAGIC; 1720 1721 spin_lock_irq(&cp->lock); 1722 1723 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6; 1724 1725 if (eeprom->offset & 1) { 1726 val = read_eeprom(cp->regs, offset, addr_len); 1727 data[i++] = (u8)(val >> 8); 1728 offset++; 1729 } 1730 1731 while (i < len - 1) { 1732 val = read_eeprom(cp->regs, offset, addr_len); 1733 data[i++] = (u8)val; 1734 data[i++] = (u8)(val >> 8); 1735 offset++; 1736 } 1737 1738 if (i < len) { 1739 val = read_eeprom(cp->regs, offset, addr_len); 1740 data[i] = (u8)val; 1741 } 1742 1743 spin_unlock_irq(&cp->lock); 1744 return 0; 1745 } 1746 1747 static int cp_set_eeprom(struct net_device *dev, 1748 struct ethtool_eeprom *eeprom, u8 *data) 1749 { 1750 struct cp_private *cp = netdev_priv(dev); 1751 unsigned int addr_len; 1752 u16 val; 1753 u32 offset = eeprom->offset >> 1; 1754 u32 len = eeprom->len; 1755 u32 i = 0; 1756 1757 if (eeprom->magic != CP_EEPROM_MAGIC) 1758 return -EINVAL; 1759 1760 spin_lock_irq(&cp->lock); 1761 1762 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6; 1763 1764 if (eeprom->offset & 1) { 1765 val = read_eeprom(cp->regs, offset, addr_len) & 0xff; 1766 val |= (u16)data[i++] << 8; 1767 write_eeprom(cp->regs, offset, val, addr_len); 1768 offset++; 1769 } 1770 1771 while (i < len - 1) { 1772 val = (u16)data[i++]; 1773 val |= (u16)data[i++] << 8; 1774 write_eeprom(cp->regs, offset, val, addr_len); 1775 offset++; 1776 } 1777 1778 if (i < len) { 1779 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00; 1780 val |= (u16)data[i]; 1781 write_eeprom(cp->regs, offset, val, addr_len); 1782 } 1783 1784 spin_unlock_irq(&cp->lock); 1785 return 0; 1786 } 1787 1788 /* Put the board into D3cold state and wait for WakeUp signal */ 1789 static void cp_set_d3_state (struct cp_private *cp) 1790 { 1791 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */ 1792 pci_set_power_state (cp->pdev, PCI_D3hot); 1793 } 1794 1795 static const struct net_device_ops cp_netdev_ops = { 1796 .ndo_open = cp_open, 1797 .ndo_stop = cp_close, 1798 .ndo_validate_addr = eth_validate_addr, 1799 .ndo_set_mac_address = cp_set_mac_address, 1800 .ndo_set_rx_mode = cp_set_rx_mode, 1801 .ndo_get_stats = cp_get_stats, 1802 .ndo_do_ioctl = cp_ioctl, 1803 .ndo_start_xmit = cp_start_xmit, 1804 .ndo_tx_timeout = cp_tx_timeout, 1805 .ndo_set_features = cp_set_features, 1806 #ifdef BROKEN 1807 .ndo_change_mtu = cp_change_mtu, 1808 #endif 1809 1810 #ifdef CONFIG_NET_POLL_CONTROLLER 1811 .ndo_poll_controller = cp_poll_controller, 1812 #endif 1813 }; 1814 1815 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) 1816 { 1817 struct net_device *dev; 1818 struct cp_private *cp; 1819 int rc; 1820 void __iomem *regs; 1821 resource_size_t pciaddr; 1822 unsigned int addr_len, i, pci_using_dac; 1823 1824 #ifndef MODULE 1825 static int version_printed; 1826 if (version_printed++ == 0) 1827 pr_info("%s", version); 1828 #endif 1829 1830 if (pdev->vendor == PCI_VENDOR_ID_REALTEK && 1831 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) { 1832 dev_info(&pdev->dev, 1833 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n", 1834 pdev->vendor, pdev->device, pdev->revision); 1835 return -ENODEV; 1836 } 1837 1838 dev = alloc_etherdev(sizeof(struct cp_private)); 1839 if (!dev) 1840 return -ENOMEM; 1841 SET_NETDEV_DEV(dev, &pdev->dev); 1842 1843 cp = netdev_priv(dev); 1844 cp->pdev = pdev; 1845 cp->dev = dev; 1846 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug); 1847 spin_lock_init (&cp->lock); 1848 cp->mii_if.dev = dev; 1849 cp->mii_if.mdio_read = mdio_read; 1850 cp->mii_if.mdio_write = mdio_write; 1851 cp->mii_if.phy_id = CP_INTERNAL_PHY; 1852 cp->mii_if.phy_id_mask = 0x1f; 1853 cp->mii_if.reg_num_mask = 0x1f; 1854 cp_set_rxbufsize(cp); 1855 1856 rc = pci_enable_device(pdev); 1857 if (rc) 1858 goto err_out_free; 1859 1860 rc = pci_set_mwi(pdev); 1861 if (rc) 1862 goto err_out_disable; 1863 1864 rc = pci_request_regions(pdev, DRV_NAME); 1865 if (rc) 1866 goto err_out_mwi; 1867 1868 pciaddr = pci_resource_start(pdev, 1); 1869 if (!pciaddr) { 1870 rc = -EIO; 1871 dev_err(&pdev->dev, "no MMIO resource\n"); 1872 goto err_out_res; 1873 } 1874 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) { 1875 rc = -EIO; 1876 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n", 1877 (unsigned long long)pci_resource_len(pdev, 1)); 1878 goto err_out_res; 1879 } 1880 1881 /* Configure DMA attributes. */ 1882 if ((sizeof(dma_addr_t) > 4) && 1883 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) && 1884 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 1885 pci_using_dac = 1; 1886 } else { 1887 pci_using_dac = 0; 1888 1889 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1890 if (rc) { 1891 dev_err(&pdev->dev, 1892 "No usable DMA configuration, aborting\n"); 1893 goto err_out_res; 1894 } 1895 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 1896 if (rc) { 1897 dev_err(&pdev->dev, 1898 "No usable consistent DMA configuration, aborting\n"); 1899 goto err_out_res; 1900 } 1901 } 1902 1903 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) | 1904 PCIMulRW | RxChkSum | CpRxOn | CpTxOn; 1905 1906 dev->features |= NETIF_F_RXCSUM; 1907 dev->hw_features |= NETIF_F_RXCSUM; 1908 1909 regs = ioremap(pciaddr, CP_REGS_SIZE); 1910 if (!regs) { 1911 rc = -EIO; 1912 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n", 1913 (unsigned long long)pci_resource_len(pdev, 1), 1914 (unsigned long long)pciaddr); 1915 goto err_out_res; 1916 } 1917 dev->base_addr = (unsigned long) regs; 1918 cp->regs = regs; 1919 1920 cp_stop_hw(cp); 1921 1922 /* read MAC address from EEPROM */ 1923 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6; 1924 for (i = 0; i < 3; i++) 1925 ((__le16 *) (dev->dev_addr))[i] = 1926 cpu_to_le16(read_eeprom (regs, i + 7, addr_len)); 1927 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 1928 1929 dev->netdev_ops = &cp_netdev_ops; 1930 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16); 1931 dev->ethtool_ops = &cp_ethtool_ops; 1932 dev->watchdog_timeo = TX_TIMEOUT; 1933 1934 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 1935 1936 if (pci_using_dac) 1937 dev->features |= NETIF_F_HIGHDMA; 1938 1939 /* disabled by default until verified */ 1940 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 1941 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 1942 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 1943 NETIF_F_HIGHDMA; 1944 1945 dev->irq = pdev->irq; 1946 1947 rc = register_netdev(dev); 1948 if (rc) 1949 goto err_out_iomap; 1950 1951 netdev_info(dev, "RTL-8139C+ at 0x%lx, %pM, IRQ %d\n", 1952 dev->base_addr, dev->dev_addr, dev->irq); 1953 1954 pci_set_drvdata(pdev, dev); 1955 1956 /* enable busmastering and memory-write-invalidate */ 1957 pci_set_master(pdev); 1958 1959 if (cp->wol_enabled) 1960 cp_set_d3_state (cp); 1961 1962 return 0; 1963 1964 err_out_iomap: 1965 iounmap(regs); 1966 err_out_res: 1967 pci_release_regions(pdev); 1968 err_out_mwi: 1969 pci_clear_mwi(pdev); 1970 err_out_disable: 1971 pci_disable_device(pdev); 1972 err_out_free: 1973 free_netdev(dev); 1974 return rc; 1975 } 1976 1977 static void cp_remove_one (struct pci_dev *pdev) 1978 { 1979 struct net_device *dev = pci_get_drvdata(pdev); 1980 struct cp_private *cp = netdev_priv(dev); 1981 1982 unregister_netdev(dev); 1983 iounmap(cp->regs); 1984 if (cp->wol_enabled) 1985 pci_set_power_state (pdev, PCI_D0); 1986 pci_release_regions(pdev); 1987 pci_clear_mwi(pdev); 1988 pci_disable_device(pdev); 1989 pci_set_drvdata(pdev, NULL); 1990 free_netdev(dev); 1991 } 1992 1993 #ifdef CONFIG_PM 1994 static int cp_suspend (struct pci_dev *pdev, pm_message_t state) 1995 { 1996 struct net_device *dev = pci_get_drvdata(pdev); 1997 struct cp_private *cp = netdev_priv(dev); 1998 unsigned long flags; 1999 2000 if (!netif_running(dev)) 2001 return 0; 2002 2003 netif_device_detach (dev); 2004 netif_stop_queue (dev); 2005 2006 spin_lock_irqsave (&cp->lock, flags); 2007 2008 /* Disable Rx and Tx */ 2009 cpw16 (IntrMask, 0); 2010 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn)); 2011 2012 spin_unlock_irqrestore (&cp->lock, flags); 2013 2014 pci_save_state(pdev); 2015 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled); 2016 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 2017 2018 return 0; 2019 } 2020 2021 static int cp_resume (struct pci_dev *pdev) 2022 { 2023 struct net_device *dev = pci_get_drvdata (pdev); 2024 struct cp_private *cp = netdev_priv(dev); 2025 unsigned long flags; 2026 2027 if (!netif_running(dev)) 2028 return 0; 2029 2030 netif_device_attach (dev); 2031 2032 pci_set_power_state(pdev, PCI_D0); 2033 pci_restore_state(pdev); 2034 pci_enable_wake(pdev, PCI_D0, 0); 2035 2036 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */ 2037 cp_init_rings_index (cp); 2038 cp_init_hw (cp); 2039 cp_enable_irq(cp); 2040 netif_start_queue (dev); 2041 2042 spin_lock_irqsave (&cp->lock, flags); 2043 2044 mii_check_media(&cp->mii_if, netif_msg_link(cp), false); 2045 2046 spin_unlock_irqrestore (&cp->lock, flags); 2047 2048 return 0; 2049 } 2050 #endif /* CONFIG_PM */ 2051 2052 static struct pci_driver cp_driver = { 2053 .name = DRV_NAME, 2054 .id_table = cp_pci_tbl, 2055 .probe = cp_init_one, 2056 .remove = cp_remove_one, 2057 #ifdef CONFIG_PM 2058 .resume = cp_resume, 2059 .suspend = cp_suspend, 2060 #endif 2061 }; 2062 2063 static int __init cp_init (void) 2064 { 2065 #ifdef MODULE 2066 pr_info("%s", version); 2067 #endif 2068 return pci_register_driver(&cp_driver); 2069 } 2070 2071 static void __exit cp_exit (void) 2072 { 2073 pci_unregister_driver (&cp_driver); 2074 } 2075 2076 module_init(cp_init); 2077 module_exit(cp_exit); 2078