1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	Config5		= 0xD8,	/* Config5 */
161 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
162 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
163 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
164 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
165 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
166 	TxThresh	= 0xEC, /* Early Tx threshold */
167 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
168 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
169 
170 	/* Tx and Rx status descriptors */
171 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
172 	RingEnd		= (1 << 30), /* End of descriptor ring */
173 	FirstFrag	= (1 << 29), /* First segment of a packet */
174 	LastFrag	= (1 << 28), /* Final segment of a packet */
175 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
176 	MSSShift	= 16,	     /* MSS value position */
177 	MSSMask		= 0xfff,     /* MSS value: 11 bits */
178 	TxError		= (1 << 23), /* Tx error summary */
179 	RxError		= (1 << 20), /* Rx error summary */
180 	IPCS		= (1 << 18), /* Calculate IP checksum */
181 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
182 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
183 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
184 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
185 	IPFail		= (1 << 15), /* IP checksum failed */
186 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
187 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
188 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
189 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
190 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 	RxProtoTCP	= 1,
192 	RxProtoUDP	= 2,
193 	RxProtoIP	= 3,
194 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
195 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
196 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
197 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
198 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
199 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
201 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
202 	RxErrCRC	= (1 << 18), /* Rx CRC error */
203 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
204 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
205 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206 
207 	/* StatsAddr register */
208 	DumpStats	= (1 << 3),  /* Begin stats dump */
209 
210 	/* RxConfig register */
211 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
212 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
213 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
214 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
215 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
216 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
217 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
218 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
219 
220 	/* IntrMask / IntrStatus registers */
221 	PciErr		= (1 << 15), /* System error on the PCI bus */
222 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 	LenChg		= (1 << 13), /* Cable length change */
224 	SWInt		= (1 << 8),  /* Software-requested interrupt */
225 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
226 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
227 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
228 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
229 	TxErr		= (1 << 3),  /* Tx error */
230 	TxOK		= (1 << 2),  /* Tx packet sent */
231 	RxErr		= (1 << 1),  /* Rx error */
232 	RxOK		= (1 << 0),  /* Rx packet received */
233 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
234 					but hardware likes to raise it */
235 
236 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 			  RxErr | RxOK | IntrResvd,
239 
240 	/* C mode command register */
241 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
242 	RxOn		= (1 << 3),  /* Rx mode enable */
243 	TxOn		= (1 << 2),  /* Tx mode enable */
244 
245 	/* C+ mode command register */
246 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
247 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
248 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
249 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
250 	CpRxOn		= (1 << 1),  /* Rx mode enable */
251 	CpTxOn		= (1 << 0),  /* Tx mode enable */
252 
253 	/* Cfg9436 EEPROM control register */
254 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
255 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
256 
257 	/* TxConfig register */
258 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
260 
261 	/* Early Tx Threshold register */
262 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
263 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
264 
265 	/* Config1 register */
266 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
267 	LWACT           = (1 << 4),  /* LWAKE active mode */
268 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
269 
270 	/* Config3 register */
271 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
272 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
273 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
274 
275 	/* Config4 register */
276 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
277 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
278 
279 	/* Config5 register */
280 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
281 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
282 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
283 	LANWake         = (1 << 1),  /* Enable LANWake signal */
284 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
285 
286 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290 
291 static const unsigned int cp_rx_config =
292 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 	  (RX_DMA_BURST << RxCfgDMAShift);
294 
295 struct cp_desc {
296 	__le32		opts1;
297 	__le32		opts2;
298 	__le64		addr;
299 };
300 
301 struct cp_dma_stats {
302 	__le64			tx_ok;
303 	__le64			rx_ok;
304 	__le64			tx_err;
305 	__le32			rx_err;
306 	__le16			rx_fifo;
307 	__le16			frame_align;
308 	__le32			tx_ok_1col;
309 	__le32			tx_ok_mcol;
310 	__le64			rx_ok_phys;
311 	__le64			rx_ok_bcast;
312 	__le32			rx_ok_mcast;
313 	__le16			tx_abort;
314 	__le16			tx_underrun;
315 } __packed;
316 
317 struct cp_extra_stats {
318 	unsigned long		rx_frags;
319 };
320 
321 struct cp_private {
322 	void			__iomem *regs;
323 	struct net_device	*dev;
324 	spinlock_t		lock;
325 	u32			msg_enable;
326 
327 	struct napi_struct	napi;
328 
329 	struct pci_dev		*pdev;
330 	u32			rx_config;
331 	u16			cpcmd;
332 
333 	struct cp_extra_stats	cp_stats;
334 
335 	unsigned		rx_head		____cacheline_aligned;
336 	unsigned		rx_tail;
337 	struct cp_desc		*rx_ring;
338 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
339 
340 	unsigned		tx_head		____cacheline_aligned;
341 	unsigned		tx_tail;
342 	struct cp_desc		*tx_ring;
343 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
344 
345 	unsigned		rx_buf_sz;
346 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347 
348 	dma_addr_t		ring_dma;
349 
350 	struct mii_if_info	mii_if;
351 };
352 
353 #define cpr8(reg)	readb(cp->regs + (reg))
354 #define cpr16(reg)	readw(cp->regs + (reg))
355 #define cpr32(reg)	readl(cp->regs + (reg))
356 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
358 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do {			\
360 	writeb((val), cp->regs + (reg));	\
361 	readb(cp->regs + (reg));		\
362 	} while (0)
363 #define cpw16_f(reg,val) do {			\
364 	writew((val), cp->regs + (reg));	\
365 	readw(cp->regs + (reg));		\
366 	} while (0)
367 #define cpw32_f(reg,val) do {			\
368 	writel((val), cp->regs + (reg));	\
369 	readl(cp->regs + (reg));		\
370 	} while (0)
371 
372 
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 			 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	PCI_DEVICE_ID_REALTEK_8139), },
387 	{ PCI_DEVICE(PCI_VENDOR_ID_TTTECH,	PCI_DEVICE_ID_TTTECH_MC322), },
388 	{ },
389 };
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391 
392 static struct {
393 	const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 	{ "tx_ok" },
396 	{ "rx_ok" },
397 	{ "tx_err" },
398 	{ "rx_err" },
399 	{ "rx_fifo" },
400 	{ "frame_align" },
401 	{ "tx_ok_1col" },
402 	{ "tx_ok_mcol" },
403 	{ "rx_ok_phys" },
404 	{ "rx_ok_bcast" },
405 	{ "rx_ok_mcast" },
406 	{ "tx_abort" },
407 	{ "tx_underrun" },
408 	{ "rx_frags" },
409 };
410 
411 
412 static inline void cp_set_rxbufsize (struct cp_private *cp)
413 {
414 	unsigned int mtu = cp->dev->mtu;
415 
416 	if (mtu > ETH_DATA_LEN)
417 		/* MTU + ethernet header + FCS + optional VLAN tag */
418 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 	else
420 		cp->rx_buf_sz = PKT_BUF_SZ;
421 }
422 
423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 			      struct cp_desc *desc)
425 {
426 	u32 opts2 = le32_to_cpu(desc->opts2);
427 
428 	skb->protocol = eth_type_trans (skb, cp->dev);
429 
430 	cp->dev->stats.rx_packets++;
431 	cp->dev->stats.rx_bytes += skb->len;
432 
433 	if (opts2 & RxVlanTagged)
434 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
435 
436 	napi_gro_receive(&cp->napi, skb);
437 }
438 
439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 			    u32 status, u32 len)
441 {
442 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 		  rx_tail, status, len);
444 	cp->dev->stats.rx_errors++;
445 	if (status & RxErrFrame)
446 		cp->dev->stats.rx_frame_errors++;
447 	if (status & RxErrCRC)
448 		cp->dev->stats.rx_crc_errors++;
449 	if ((status & RxErrRunt) || (status & RxErrLong))
450 		cp->dev->stats.rx_length_errors++;
451 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 		cp->dev->stats.rx_length_errors++;
453 	if (status & RxErrFIFO)
454 		cp->dev->stats.rx_fifo_errors++;
455 }
456 
457 static inline unsigned int cp_rx_csum_ok (u32 status)
458 {
459 	unsigned int protocol = (status >> 16) & 0x3;
460 
461 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 		return 1;
464 	else
465 		return 0;
466 }
467 
468 static int cp_rx_poll(struct napi_struct *napi, int budget)
469 {
470 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 	struct net_device *dev = cp->dev;
472 	unsigned int rx_tail = cp->rx_tail;
473 	int rx;
474 
475 rx_status_loop:
476 	rx = 0;
477 	cpw16(IntrStatus, cp_rx_intr_mask);
478 
479 	while (rx < budget) {
480 		u32 status, len;
481 		dma_addr_t mapping, new_mapping;
482 		struct sk_buff *skb, *new_skb;
483 		struct cp_desc *desc;
484 		const unsigned buflen = cp->rx_buf_sz;
485 
486 		skb = cp->rx_skb[rx_tail];
487 		BUG_ON(!skb);
488 
489 		desc = &cp->rx_ring[rx_tail];
490 		status = le32_to_cpu(desc->opts1);
491 		if (status & DescOwn)
492 			break;
493 
494 		len = (status & 0x1fff) - 4;
495 		mapping = le64_to_cpu(desc->addr);
496 
497 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 			/* we don't support incoming fragmented frames.
499 			 * instead, we attempt to ensure that the
500 			 * pre-allocated RX skbs are properly sized such
501 			 * that RX fragments are never encountered
502 			 */
503 			cp_rx_err_acct(cp, rx_tail, status, len);
504 			dev->stats.rx_dropped++;
505 			cp->cp_stats.rx_frags++;
506 			goto rx_next;
507 		}
508 
509 		if (status & (RxError | RxErrFIFO)) {
510 			cp_rx_err_acct(cp, rx_tail, status, len);
511 			goto rx_next;
512 		}
513 
514 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 			  rx_tail, status, len);
516 
517 		new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 		if (!new_skb) {
519 			dev->stats.rx_dropped++;
520 			goto rx_next;
521 		}
522 
523 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
524 					 PCI_DMA_FROMDEVICE);
525 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
526 			dev->stats.rx_dropped++;
527 			kfree_skb(new_skb);
528 			goto rx_next;
529 		}
530 
531 		dma_unmap_single(&cp->pdev->dev, mapping,
532 				 buflen, PCI_DMA_FROMDEVICE);
533 
534 		/* Handle checksum offloading for incoming packets. */
535 		if (cp_rx_csum_ok(status))
536 			skb->ip_summed = CHECKSUM_UNNECESSARY;
537 		else
538 			skb_checksum_none_assert(skb);
539 
540 		skb_put(skb, len);
541 
542 		cp->rx_skb[rx_tail] = new_skb;
543 
544 		cp_rx_skb(cp, skb, desc);
545 		rx++;
546 		mapping = new_mapping;
547 
548 rx_next:
549 		cp->rx_ring[rx_tail].opts2 = 0;
550 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
551 		if (rx_tail == (CP_RX_RING_SIZE - 1))
552 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
553 						  cp->rx_buf_sz);
554 		else
555 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
556 		rx_tail = NEXT_RX(rx_tail);
557 	}
558 
559 	cp->rx_tail = rx_tail;
560 
561 	/* if we did not reach work limit, then we're done with
562 	 * this round of polling
563 	 */
564 	if (rx < budget) {
565 		unsigned long flags;
566 
567 		if (cpr16(IntrStatus) & cp_rx_intr_mask)
568 			goto rx_status_loop;
569 
570 		napi_gro_flush(napi, false);
571 		spin_lock_irqsave(&cp->lock, flags);
572 		__napi_complete(napi);
573 		cpw16_f(IntrMask, cp_intr_mask);
574 		spin_unlock_irqrestore(&cp->lock, flags);
575 	}
576 
577 	return rx;
578 }
579 
580 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
581 {
582 	struct net_device *dev = dev_instance;
583 	struct cp_private *cp;
584 	int handled = 0;
585 	u16 status;
586 
587 	if (unlikely(dev == NULL))
588 		return IRQ_NONE;
589 	cp = netdev_priv(dev);
590 
591 	spin_lock(&cp->lock);
592 
593 	status = cpr16(IntrStatus);
594 	if (!status || (status == 0xFFFF))
595 		goto out_unlock;
596 
597 	handled = 1;
598 
599 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
600 		  status, cpr8(Cmd), cpr16(CpCmd));
601 
602 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
603 
604 	/* close possible race's with dev_close */
605 	if (unlikely(!netif_running(dev))) {
606 		cpw16(IntrMask, 0);
607 		goto out_unlock;
608 	}
609 
610 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
611 		if (napi_schedule_prep(&cp->napi)) {
612 			cpw16_f(IntrMask, cp_norx_intr_mask);
613 			__napi_schedule(&cp->napi);
614 		}
615 
616 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
617 		cp_tx(cp);
618 	if (status & LinkChg)
619 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
620 
621 
622 	if (status & PciErr) {
623 		u16 pci_status;
624 
625 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
626 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
627 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
628 			   status, pci_status);
629 
630 		/* TODO: reset hardware */
631 	}
632 
633 out_unlock:
634 	spin_unlock(&cp->lock);
635 
636 	return IRQ_RETVAL(handled);
637 }
638 
639 #ifdef CONFIG_NET_POLL_CONTROLLER
640 /*
641  * Polling receive - used by netconsole and other diagnostic tools
642  * to allow network i/o with interrupts disabled.
643  */
644 static void cp_poll_controller(struct net_device *dev)
645 {
646 	struct cp_private *cp = netdev_priv(dev);
647 	const int irq = cp->pdev->irq;
648 
649 	disable_irq(irq);
650 	cp_interrupt(irq, dev);
651 	enable_irq(irq);
652 }
653 #endif
654 
655 static void cp_tx (struct cp_private *cp)
656 {
657 	unsigned tx_head = cp->tx_head;
658 	unsigned tx_tail = cp->tx_tail;
659 	unsigned bytes_compl = 0, pkts_compl = 0;
660 
661 	while (tx_tail != tx_head) {
662 		struct cp_desc *txd = cp->tx_ring + tx_tail;
663 		struct sk_buff *skb;
664 		u32 status;
665 
666 		rmb();
667 		status = le32_to_cpu(txd->opts1);
668 		if (status & DescOwn)
669 			break;
670 
671 		skb = cp->tx_skb[tx_tail];
672 		BUG_ON(!skb);
673 
674 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
675 				 le32_to_cpu(txd->opts1) & 0xffff,
676 				 PCI_DMA_TODEVICE);
677 
678 		if (status & LastFrag) {
679 			if (status & (TxError | TxFIFOUnder)) {
680 				netif_dbg(cp, tx_err, cp->dev,
681 					  "tx err, status 0x%x\n", status);
682 				cp->dev->stats.tx_errors++;
683 				if (status & TxOWC)
684 					cp->dev->stats.tx_window_errors++;
685 				if (status & TxMaxCol)
686 					cp->dev->stats.tx_aborted_errors++;
687 				if (status & TxLinkFail)
688 					cp->dev->stats.tx_carrier_errors++;
689 				if (status & TxFIFOUnder)
690 					cp->dev->stats.tx_fifo_errors++;
691 			} else {
692 				cp->dev->stats.collisions +=
693 					((status >> TxColCntShift) & TxColCntMask);
694 				cp->dev->stats.tx_packets++;
695 				cp->dev->stats.tx_bytes += skb->len;
696 				netif_dbg(cp, tx_done, cp->dev,
697 					  "tx done, slot %d\n", tx_tail);
698 			}
699 			bytes_compl += skb->len;
700 			pkts_compl++;
701 			dev_kfree_skb_irq(skb);
702 		}
703 
704 		cp->tx_skb[tx_tail] = NULL;
705 
706 		tx_tail = NEXT_TX(tx_tail);
707 	}
708 
709 	cp->tx_tail = tx_tail;
710 
711 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
712 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
713 		netif_wake_queue(cp->dev);
714 }
715 
716 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
717 {
718 	return vlan_tx_tag_present(skb) ?
719 		TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
720 }
721 
722 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
723 				   int first, int entry_last)
724 {
725 	int frag, index;
726 	struct cp_desc *txd;
727 	skb_frag_t *this_frag;
728 	for (frag = 0; frag+first < entry_last; frag++) {
729 		index = first+frag;
730 		cp->tx_skb[index] = NULL;
731 		txd = &cp->tx_ring[index];
732 		this_frag = &skb_shinfo(skb)->frags[frag];
733 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
734 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
735 	}
736 }
737 
738 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
739 					struct net_device *dev)
740 {
741 	struct cp_private *cp = netdev_priv(dev);
742 	unsigned entry;
743 	u32 eor, flags;
744 	unsigned long intr_flags;
745 	__le32 opts2;
746 	int mss = 0;
747 
748 	spin_lock_irqsave(&cp->lock, intr_flags);
749 
750 	/* This is a hard error, log it. */
751 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
752 		netif_stop_queue(dev);
753 		spin_unlock_irqrestore(&cp->lock, intr_flags);
754 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
755 		return NETDEV_TX_BUSY;
756 	}
757 
758 	entry = cp->tx_head;
759 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
760 	mss = skb_shinfo(skb)->gso_size;
761 
762 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
763 
764 	if (skb_shinfo(skb)->nr_frags == 0) {
765 		struct cp_desc *txd = &cp->tx_ring[entry];
766 		u32 len;
767 		dma_addr_t mapping;
768 
769 		len = skb->len;
770 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
771 		if (dma_mapping_error(&cp->pdev->dev, mapping))
772 			goto out_dma_error;
773 
774 		txd->opts2 = opts2;
775 		txd->addr = cpu_to_le64(mapping);
776 		wmb();
777 
778 		flags = eor | len | DescOwn | FirstFrag | LastFrag;
779 
780 		if (mss)
781 			flags |= LargeSend | ((mss & MSSMask) << MSSShift);
782 		else if (skb->ip_summed == CHECKSUM_PARTIAL) {
783 			const struct iphdr *ip = ip_hdr(skb);
784 			if (ip->protocol == IPPROTO_TCP)
785 				flags |= IPCS | TCPCS;
786 			else if (ip->protocol == IPPROTO_UDP)
787 				flags |= IPCS | UDPCS;
788 			else
789 				WARN_ON(1);	/* we need a WARN() */
790 		}
791 
792 		txd->opts1 = cpu_to_le32(flags);
793 		wmb();
794 
795 		cp->tx_skb[entry] = skb;
796 		entry = NEXT_TX(entry);
797 	} else {
798 		struct cp_desc *txd;
799 		u32 first_len, first_eor;
800 		dma_addr_t first_mapping;
801 		int frag, first_entry = entry;
802 		const struct iphdr *ip = ip_hdr(skb);
803 
804 		/* We must give this initial chunk to the device last.
805 		 * Otherwise we could race with the device.
806 		 */
807 		first_eor = eor;
808 		first_len = skb_headlen(skb);
809 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
810 					       first_len, PCI_DMA_TODEVICE);
811 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
812 			goto out_dma_error;
813 
814 		cp->tx_skb[entry] = skb;
815 		entry = NEXT_TX(entry);
816 
817 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
818 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
819 			u32 len;
820 			u32 ctrl;
821 			dma_addr_t mapping;
822 
823 			len = skb_frag_size(this_frag);
824 			mapping = dma_map_single(&cp->pdev->dev,
825 						 skb_frag_address(this_frag),
826 						 len, PCI_DMA_TODEVICE);
827 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
828 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
829 				goto out_dma_error;
830 			}
831 
832 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
833 
834 			ctrl = eor | len | DescOwn;
835 
836 			if (mss)
837 				ctrl |= LargeSend |
838 					((mss & MSSMask) << MSSShift);
839 			else if (skb->ip_summed == CHECKSUM_PARTIAL) {
840 				if (ip->protocol == IPPROTO_TCP)
841 					ctrl |= IPCS | TCPCS;
842 				else if (ip->protocol == IPPROTO_UDP)
843 					ctrl |= IPCS | UDPCS;
844 				else
845 					BUG();
846 			}
847 
848 			if (frag == skb_shinfo(skb)->nr_frags - 1)
849 				ctrl |= LastFrag;
850 
851 			txd = &cp->tx_ring[entry];
852 			txd->opts2 = opts2;
853 			txd->addr = cpu_to_le64(mapping);
854 			wmb();
855 
856 			txd->opts1 = cpu_to_le32(ctrl);
857 			wmb();
858 
859 			cp->tx_skb[entry] = skb;
860 			entry = NEXT_TX(entry);
861 		}
862 
863 		txd = &cp->tx_ring[first_entry];
864 		txd->opts2 = opts2;
865 		txd->addr = cpu_to_le64(first_mapping);
866 		wmb();
867 
868 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
869 			if (ip->protocol == IPPROTO_TCP)
870 				txd->opts1 = cpu_to_le32(first_eor | first_len |
871 							 FirstFrag | DescOwn |
872 							 IPCS | TCPCS);
873 			else if (ip->protocol == IPPROTO_UDP)
874 				txd->opts1 = cpu_to_le32(first_eor | first_len |
875 							 FirstFrag | DescOwn |
876 							 IPCS | UDPCS);
877 			else
878 				BUG();
879 		} else
880 			txd->opts1 = cpu_to_le32(first_eor | first_len |
881 						 FirstFrag | DescOwn);
882 		wmb();
883 	}
884 	cp->tx_head = entry;
885 
886 	netdev_sent_queue(dev, skb->len);
887 	netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
888 		  entry, skb->len);
889 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
890 		netif_stop_queue(dev);
891 
892 out_unlock:
893 	spin_unlock_irqrestore(&cp->lock, intr_flags);
894 
895 	cpw8(TxPoll, NormalTxPoll);
896 
897 	return NETDEV_TX_OK;
898 out_dma_error:
899 	dev_kfree_skb_any(skb);
900 	cp->dev->stats.tx_dropped++;
901 	goto out_unlock;
902 }
903 
904 /* Set or clear the multicast filter for this adaptor.
905    This routine is not state sensitive and need not be SMP locked. */
906 
907 static void __cp_set_rx_mode (struct net_device *dev)
908 {
909 	struct cp_private *cp = netdev_priv(dev);
910 	u32 mc_filter[2];	/* Multicast hash filter */
911 	int rx_mode;
912 
913 	/* Note: do not reorder, GCC is clever about common statements. */
914 	if (dev->flags & IFF_PROMISC) {
915 		/* Unconditionally log net taps. */
916 		rx_mode =
917 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
918 		    AcceptAllPhys;
919 		mc_filter[1] = mc_filter[0] = 0xffffffff;
920 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
921 		   (dev->flags & IFF_ALLMULTI)) {
922 		/* Too many to filter perfectly -- accept all multicasts. */
923 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
924 		mc_filter[1] = mc_filter[0] = 0xffffffff;
925 	} else {
926 		struct netdev_hw_addr *ha;
927 		rx_mode = AcceptBroadcast | AcceptMyPhys;
928 		mc_filter[1] = mc_filter[0] = 0;
929 		netdev_for_each_mc_addr(ha, dev) {
930 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
931 
932 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
933 			rx_mode |= AcceptMulticast;
934 		}
935 	}
936 
937 	/* We can safely update without stopping the chip. */
938 	cp->rx_config = cp_rx_config | rx_mode;
939 	cpw32_f(RxConfig, cp->rx_config);
940 
941 	cpw32_f (MAR0 + 0, mc_filter[0]);
942 	cpw32_f (MAR0 + 4, mc_filter[1]);
943 }
944 
945 static void cp_set_rx_mode (struct net_device *dev)
946 {
947 	unsigned long flags;
948 	struct cp_private *cp = netdev_priv(dev);
949 
950 	spin_lock_irqsave (&cp->lock, flags);
951 	__cp_set_rx_mode(dev);
952 	spin_unlock_irqrestore (&cp->lock, flags);
953 }
954 
955 static void __cp_get_stats(struct cp_private *cp)
956 {
957 	/* only lower 24 bits valid; write any value to clear */
958 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
959 	cpw32 (RxMissed, 0);
960 }
961 
962 static struct net_device_stats *cp_get_stats(struct net_device *dev)
963 {
964 	struct cp_private *cp = netdev_priv(dev);
965 	unsigned long flags;
966 
967 	/* The chip only need report frame silently dropped. */
968 	spin_lock_irqsave(&cp->lock, flags);
969  	if (netif_running(dev) && netif_device_present(dev))
970  		__cp_get_stats(cp);
971 	spin_unlock_irqrestore(&cp->lock, flags);
972 
973 	return &dev->stats;
974 }
975 
976 static void cp_stop_hw (struct cp_private *cp)
977 {
978 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
979 	cpw16_f(IntrMask, 0);
980 	cpw8(Cmd, 0);
981 	cpw16_f(CpCmd, 0);
982 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
983 
984 	cp->rx_tail = 0;
985 	cp->tx_head = cp->tx_tail = 0;
986 
987 	netdev_reset_queue(cp->dev);
988 }
989 
990 static void cp_reset_hw (struct cp_private *cp)
991 {
992 	unsigned work = 1000;
993 
994 	cpw8(Cmd, CmdReset);
995 
996 	while (work--) {
997 		if (!(cpr8(Cmd) & CmdReset))
998 			return;
999 
1000 		schedule_timeout_uninterruptible(10);
1001 	}
1002 
1003 	netdev_err(cp->dev, "hardware reset timeout\n");
1004 }
1005 
1006 static inline void cp_start_hw (struct cp_private *cp)
1007 {
1008 	dma_addr_t ring_dma;
1009 
1010 	cpw16(CpCmd, cp->cpcmd);
1011 
1012 	/*
1013 	 * These (at least TxRingAddr) need to be configured after the
1014 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1015 	 * (C+ Command Register) recommends that these and more be configured
1016 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1017 	 * it's been observed that the TxRingAddr is actually reset to garbage
1018 	 * when C+ mode Tx is enabled in CpCmd.
1019 	 */
1020 	cpw32_f(HiTxRingAddr, 0);
1021 	cpw32_f(HiTxRingAddr + 4, 0);
1022 
1023 	ring_dma = cp->ring_dma;
1024 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1025 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1026 
1027 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1028 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1029 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1030 
1031 	/*
1032 	 * Strictly speaking, the datasheet says this should be enabled
1033 	 * *before* setting the descriptor addresses. But what, then, would
1034 	 * prevent it from doing DMA to random unconfigured addresses?
1035 	 * This variant appears to work fine.
1036 	 */
1037 	cpw8(Cmd, RxOn | TxOn);
1038 
1039 	netdev_reset_queue(cp->dev);
1040 }
1041 
1042 static void cp_enable_irq(struct cp_private *cp)
1043 {
1044 	cpw16_f(IntrMask, cp_intr_mask);
1045 }
1046 
1047 static void cp_init_hw (struct cp_private *cp)
1048 {
1049 	struct net_device *dev = cp->dev;
1050 
1051 	cp_reset_hw(cp);
1052 
1053 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1054 
1055 	/* Restore our idea of the MAC address. */
1056 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1057 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1058 
1059 	cp_start_hw(cp);
1060 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1061 
1062 	__cp_set_rx_mode(dev);
1063 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1064 
1065 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1066 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1067 	cpw8(Config3, PARMEnable);
1068 	cp->wol_enabled = 0;
1069 
1070 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1071 
1072 	cpw16(MultiIntr, 0);
1073 
1074 	cpw8_f(Cfg9346, Cfg9346_Lock);
1075 }
1076 
1077 static int cp_refill_rx(struct cp_private *cp)
1078 {
1079 	struct net_device *dev = cp->dev;
1080 	unsigned i;
1081 
1082 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1083 		struct sk_buff *skb;
1084 		dma_addr_t mapping;
1085 
1086 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1087 		if (!skb)
1088 			goto err_out;
1089 
1090 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1091 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1092 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1093 			kfree_skb(skb);
1094 			goto err_out;
1095 		}
1096 		cp->rx_skb[i] = skb;
1097 
1098 		cp->rx_ring[i].opts2 = 0;
1099 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1100 		if (i == (CP_RX_RING_SIZE - 1))
1101 			cp->rx_ring[i].opts1 =
1102 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1103 		else
1104 			cp->rx_ring[i].opts1 =
1105 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1106 	}
1107 
1108 	return 0;
1109 
1110 err_out:
1111 	cp_clean_rings(cp);
1112 	return -ENOMEM;
1113 }
1114 
1115 static void cp_init_rings_index (struct cp_private *cp)
1116 {
1117 	cp->rx_tail = 0;
1118 	cp->tx_head = cp->tx_tail = 0;
1119 }
1120 
1121 static int cp_init_rings (struct cp_private *cp)
1122 {
1123 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1124 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1125 
1126 	cp_init_rings_index(cp);
1127 
1128 	return cp_refill_rx (cp);
1129 }
1130 
1131 static int cp_alloc_rings (struct cp_private *cp)
1132 {
1133 	struct device *d = &cp->pdev->dev;
1134 	void *mem;
1135 	int rc;
1136 
1137 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1138 	if (!mem)
1139 		return -ENOMEM;
1140 
1141 	cp->rx_ring = mem;
1142 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1143 
1144 	rc = cp_init_rings(cp);
1145 	if (rc < 0)
1146 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1147 
1148 	return rc;
1149 }
1150 
1151 static void cp_clean_rings (struct cp_private *cp)
1152 {
1153 	struct cp_desc *desc;
1154 	unsigned i;
1155 
1156 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1157 		if (cp->rx_skb[i]) {
1158 			desc = cp->rx_ring + i;
1159 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1160 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1161 			dev_kfree_skb(cp->rx_skb[i]);
1162 		}
1163 	}
1164 
1165 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1166 		if (cp->tx_skb[i]) {
1167 			struct sk_buff *skb = cp->tx_skb[i];
1168 
1169 			desc = cp->tx_ring + i;
1170 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1171 					 le32_to_cpu(desc->opts1) & 0xffff,
1172 					 PCI_DMA_TODEVICE);
1173 			if (le32_to_cpu(desc->opts1) & LastFrag)
1174 				dev_kfree_skb(skb);
1175 			cp->dev->stats.tx_dropped++;
1176 		}
1177 	}
1178 	netdev_reset_queue(cp->dev);
1179 
1180 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1181 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1182 
1183 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1184 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1185 }
1186 
1187 static void cp_free_rings (struct cp_private *cp)
1188 {
1189 	cp_clean_rings(cp);
1190 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1191 			  cp->ring_dma);
1192 	cp->rx_ring = NULL;
1193 	cp->tx_ring = NULL;
1194 }
1195 
1196 static int cp_open (struct net_device *dev)
1197 {
1198 	struct cp_private *cp = netdev_priv(dev);
1199 	const int irq = cp->pdev->irq;
1200 	int rc;
1201 
1202 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1203 
1204 	rc = cp_alloc_rings(cp);
1205 	if (rc)
1206 		return rc;
1207 
1208 	napi_enable(&cp->napi);
1209 
1210 	cp_init_hw(cp);
1211 
1212 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1213 	if (rc)
1214 		goto err_out_hw;
1215 
1216 	cp_enable_irq(cp);
1217 
1218 	netif_carrier_off(dev);
1219 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1220 	netif_start_queue(dev);
1221 
1222 	return 0;
1223 
1224 err_out_hw:
1225 	napi_disable(&cp->napi);
1226 	cp_stop_hw(cp);
1227 	cp_free_rings(cp);
1228 	return rc;
1229 }
1230 
1231 static int cp_close (struct net_device *dev)
1232 {
1233 	struct cp_private *cp = netdev_priv(dev);
1234 	unsigned long flags;
1235 
1236 	napi_disable(&cp->napi);
1237 
1238 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1239 
1240 	spin_lock_irqsave(&cp->lock, flags);
1241 
1242 	netif_stop_queue(dev);
1243 	netif_carrier_off(dev);
1244 
1245 	cp_stop_hw(cp);
1246 
1247 	spin_unlock_irqrestore(&cp->lock, flags);
1248 
1249 	free_irq(cp->pdev->irq, dev);
1250 
1251 	cp_free_rings(cp);
1252 	return 0;
1253 }
1254 
1255 static void cp_tx_timeout(struct net_device *dev)
1256 {
1257 	struct cp_private *cp = netdev_priv(dev);
1258 	unsigned long flags;
1259 	int rc;
1260 
1261 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1262 		    cpr8(Cmd), cpr16(CpCmd),
1263 		    cpr16(IntrStatus), cpr16(IntrMask));
1264 
1265 	spin_lock_irqsave(&cp->lock, flags);
1266 
1267 	cp_stop_hw(cp);
1268 	cp_clean_rings(cp);
1269 	rc = cp_init_rings(cp);
1270 	cp_start_hw(cp);
1271 	cp_enable_irq(cp);
1272 
1273 	netif_wake_queue(dev);
1274 
1275 	spin_unlock_irqrestore(&cp->lock, flags);
1276 }
1277 
1278 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1279 {
1280 	struct cp_private *cp = netdev_priv(dev);
1281 
1282 	/* check for invalid MTU, according to hardware limits */
1283 	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1284 		return -EINVAL;
1285 
1286 	/* if network interface not up, no need for complexity */
1287 	if (!netif_running(dev)) {
1288 		dev->mtu = new_mtu;
1289 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1290 		return 0;
1291 	}
1292 
1293 	/* network IS up, close it, reset MTU, and come up again. */
1294 	cp_close(dev);
1295 	dev->mtu = new_mtu;
1296 	cp_set_rxbufsize(cp);
1297 	return cp_open(dev);
1298 }
1299 
1300 static const char mii_2_8139_map[8] = {
1301 	BasicModeCtrl,
1302 	BasicModeStatus,
1303 	0,
1304 	0,
1305 	NWayAdvert,
1306 	NWayLPAR,
1307 	NWayExpansion,
1308 	0
1309 };
1310 
1311 static int mdio_read(struct net_device *dev, int phy_id, int location)
1312 {
1313 	struct cp_private *cp = netdev_priv(dev);
1314 
1315 	return location < 8 && mii_2_8139_map[location] ?
1316 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1317 }
1318 
1319 
1320 static void mdio_write(struct net_device *dev, int phy_id, int location,
1321 		       int value)
1322 {
1323 	struct cp_private *cp = netdev_priv(dev);
1324 
1325 	if (location == 0) {
1326 		cpw8(Cfg9346, Cfg9346_Unlock);
1327 		cpw16(BasicModeCtrl, value);
1328 		cpw8(Cfg9346, Cfg9346_Lock);
1329 	} else if (location < 8 && mii_2_8139_map[location])
1330 		cpw16(mii_2_8139_map[location], value);
1331 }
1332 
1333 /* Set the ethtool Wake-on-LAN settings */
1334 static int netdev_set_wol (struct cp_private *cp,
1335 			   const struct ethtool_wolinfo *wol)
1336 {
1337 	u8 options;
1338 
1339 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1340 	/* If WOL is being disabled, no need for complexity */
1341 	if (wol->wolopts) {
1342 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1343 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1344 	}
1345 
1346 	cpw8 (Cfg9346, Cfg9346_Unlock);
1347 	cpw8 (Config3, options);
1348 	cpw8 (Cfg9346, Cfg9346_Lock);
1349 
1350 	options = 0; /* Paranoia setting */
1351 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1352 	/* If WOL is being disabled, no need for complexity */
1353 	if (wol->wolopts) {
1354 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1355 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1356 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1357 	}
1358 
1359 	cpw8 (Config5, options);
1360 
1361 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1362 
1363 	return 0;
1364 }
1365 
1366 /* Get the ethtool Wake-on-LAN settings */
1367 static void netdev_get_wol (struct cp_private *cp,
1368 	             struct ethtool_wolinfo *wol)
1369 {
1370 	u8 options;
1371 
1372 	wol->wolopts   = 0; /* Start from scratch */
1373 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1374 		         WAKE_MCAST | WAKE_UCAST;
1375 	/* We don't need to go on if WOL is disabled */
1376 	if (!cp->wol_enabled) return;
1377 
1378 	options        = cpr8 (Config3);
1379 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1380 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1381 
1382 	options        = 0; /* Paranoia setting */
1383 	options        = cpr8 (Config5);
1384 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1385 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1386 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1387 }
1388 
1389 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1390 {
1391 	struct cp_private *cp = netdev_priv(dev);
1392 
1393 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1394 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1395 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1396 }
1397 
1398 static void cp_get_ringparam(struct net_device *dev,
1399 				struct ethtool_ringparam *ring)
1400 {
1401 	ring->rx_max_pending = CP_RX_RING_SIZE;
1402 	ring->tx_max_pending = CP_TX_RING_SIZE;
1403 	ring->rx_pending = CP_RX_RING_SIZE;
1404 	ring->tx_pending = CP_TX_RING_SIZE;
1405 }
1406 
1407 static int cp_get_regs_len(struct net_device *dev)
1408 {
1409 	return CP_REGS_SIZE;
1410 }
1411 
1412 static int cp_get_sset_count (struct net_device *dev, int sset)
1413 {
1414 	switch (sset) {
1415 	case ETH_SS_STATS:
1416 		return CP_NUM_STATS;
1417 	default:
1418 		return -EOPNOTSUPP;
1419 	}
1420 }
1421 
1422 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1423 {
1424 	struct cp_private *cp = netdev_priv(dev);
1425 	int rc;
1426 	unsigned long flags;
1427 
1428 	spin_lock_irqsave(&cp->lock, flags);
1429 	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1430 	spin_unlock_irqrestore(&cp->lock, flags);
1431 
1432 	return rc;
1433 }
1434 
1435 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1436 {
1437 	struct cp_private *cp = netdev_priv(dev);
1438 	int rc;
1439 	unsigned long flags;
1440 
1441 	spin_lock_irqsave(&cp->lock, flags);
1442 	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1443 	spin_unlock_irqrestore(&cp->lock, flags);
1444 
1445 	return rc;
1446 }
1447 
1448 static int cp_nway_reset(struct net_device *dev)
1449 {
1450 	struct cp_private *cp = netdev_priv(dev);
1451 	return mii_nway_restart(&cp->mii_if);
1452 }
1453 
1454 static u32 cp_get_msglevel(struct net_device *dev)
1455 {
1456 	struct cp_private *cp = netdev_priv(dev);
1457 	return cp->msg_enable;
1458 }
1459 
1460 static void cp_set_msglevel(struct net_device *dev, u32 value)
1461 {
1462 	struct cp_private *cp = netdev_priv(dev);
1463 	cp->msg_enable = value;
1464 }
1465 
1466 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1467 {
1468 	struct cp_private *cp = netdev_priv(dev);
1469 	unsigned long flags;
1470 
1471 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1472 		return 0;
1473 
1474 	spin_lock_irqsave(&cp->lock, flags);
1475 
1476 	if (features & NETIF_F_RXCSUM)
1477 		cp->cpcmd |= RxChkSum;
1478 	else
1479 		cp->cpcmd &= ~RxChkSum;
1480 
1481 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1482 		cp->cpcmd |= RxVlanOn;
1483 	else
1484 		cp->cpcmd &= ~RxVlanOn;
1485 
1486 	cpw16_f(CpCmd, cp->cpcmd);
1487 	spin_unlock_irqrestore(&cp->lock, flags);
1488 
1489 	return 0;
1490 }
1491 
1492 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1493 		        void *p)
1494 {
1495 	struct cp_private *cp = netdev_priv(dev);
1496 	unsigned long flags;
1497 
1498 	if (regs->len < CP_REGS_SIZE)
1499 		return /* -EINVAL */;
1500 
1501 	regs->version = CP_REGS_VER;
1502 
1503 	spin_lock_irqsave(&cp->lock, flags);
1504 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1505 	spin_unlock_irqrestore(&cp->lock, flags);
1506 }
1507 
1508 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1509 {
1510 	struct cp_private *cp = netdev_priv(dev);
1511 	unsigned long flags;
1512 
1513 	spin_lock_irqsave (&cp->lock, flags);
1514 	netdev_get_wol (cp, wol);
1515 	spin_unlock_irqrestore (&cp->lock, flags);
1516 }
1517 
1518 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1519 {
1520 	struct cp_private *cp = netdev_priv(dev);
1521 	unsigned long flags;
1522 	int rc;
1523 
1524 	spin_lock_irqsave (&cp->lock, flags);
1525 	rc = netdev_set_wol (cp, wol);
1526 	spin_unlock_irqrestore (&cp->lock, flags);
1527 
1528 	return rc;
1529 }
1530 
1531 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1532 {
1533 	switch (stringset) {
1534 	case ETH_SS_STATS:
1535 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1536 		break;
1537 	default:
1538 		BUG();
1539 		break;
1540 	}
1541 }
1542 
1543 static void cp_get_ethtool_stats (struct net_device *dev,
1544 				  struct ethtool_stats *estats, u64 *tmp_stats)
1545 {
1546 	struct cp_private *cp = netdev_priv(dev);
1547 	struct cp_dma_stats *nic_stats;
1548 	dma_addr_t dma;
1549 	int i;
1550 
1551 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1552 				       &dma, GFP_KERNEL);
1553 	if (!nic_stats)
1554 		return;
1555 
1556 	/* begin NIC statistics dump */
1557 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1558 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1559 	cpr32(StatsAddr);
1560 
1561 	for (i = 0; i < 1000; i++) {
1562 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1563 			break;
1564 		udelay(10);
1565 	}
1566 	cpw32(StatsAddr, 0);
1567 	cpw32(StatsAddr + 4, 0);
1568 	cpr32(StatsAddr);
1569 
1570 	i = 0;
1571 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1572 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1573 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1574 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1575 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1576 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1577 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1578 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1579 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1580 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1581 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1582 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1583 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1584 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1585 	BUG_ON(i != CP_NUM_STATS);
1586 
1587 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1588 }
1589 
1590 static const struct ethtool_ops cp_ethtool_ops = {
1591 	.get_drvinfo		= cp_get_drvinfo,
1592 	.get_regs_len		= cp_get_regs_len,
1593 	.get_sset_count		= cp_get_sset_count,
1594 	.get_settings		= cp_get_settings,
1595 	.set_settings		= cp_set_settings,
1596 	.nway_reset		= cp_nway_reset,
1597 	.get_link		= ethtool_op_get_link,
1598 	.get_msglevel		= cp_get_msglevel,
1599 	.set_msglevel		= cp_set_msglevel,
1600 	.get_regs		= cp_get_regs,
1601 	.get_wol		= cp_get_wol,
1602 	.set_wol		= cp_set_wol,
1603 	.get_strings		= cp_get_strings,
1604 	.get_ethtool_stats	= cp_get_ethtool_stats,
1605 	.get_eeprom_len		= cp_get_eeprom_len,
1606 	.get_eeprom		= cp_get_eeprom,
1607 	.set_eeprom		= cp_set_eeprom,
1608 	.get_ringparam		= cp_get_ringparam,
1609 };
1610 
1611 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1612 {
1613 	struct cp_private *cp = netdev_priv(dev);
1614 	int rc;
1615 	unsigned long flags;
1616 
1617 	if (!netif_running(dev))
1618 		return -EINVAL;
1619 
1620 	spin_lock_irqsave(&cp->lock, flags);
1621 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1622 	spin_unlock_irqrestore(&cp->lock, flags);
1623 	return rc;
1624 }
1625 
1626 static int cp_set_mac_address(struct net_device *dev, void *p)
1627 {
1628 	struct cp_private *cp = netdev_priv(dev);
1629 	struct sockaddr *addr = p;
1630 
1631 	if (!is_valid_ether_addr(addr->sa_data))
1632 		return -EADDRNOTAVAIL;
1633 
1634 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1635 
1636 	spin_lock_irq(&cp->lock);
1637 
1638 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1639 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1640 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1641 	cpw8_f(Cfg9346, Cfg9346_Lock);
1642 
1643 	spin_unlock_irq(&cp->lock);
1644 
1645 	return 0;
1646 }
1647 
1648 /* Serial EEPROM section. */
1649 
1650 /*  EEPROM_Ctrl bits. */
1651 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1652 #define EE_CS			0x08	/* EEPROM chip select. */
1653 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1654 #define EE_WRITE_0		0x00
1655 #define EE_WRITE_1		0x02
1656 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1657 #define EE_ENB			(0x80 | EE_CS)
1658 
1659 /* Delay between EEPROM clock transitions.
1660    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1661  */
1662 
1663 #define eeprom_delay()	readb(ee_addr)
1664 
1665 /* The EEPROM commands include the alway-set leading bit. */
1666 #define EE_EXTEND_CMD	(4)
1667 #define EE_WRITE_CMD	(5)
1668 #define EE_READ_CMD		(6)
1669 #define EE_ERASE_CMD	(7)
1670 
1671 #define EE_EWDS_ADDR	(0)
1672 #define EE_WRAL_ADDR	(1)
1673 #define EE_ERAL_ADDR	(2)
1674 #define EE_EWEN_ADDR	(3)
1675 
1676 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1677 
1678 static void eeprom_cmd_start(void __iomem *ee_addr)
1679 {
1680 	writeb (EE_ENB & ~EE_CS, ee_addr);
1681 	writeb (EE_ENB, ee_addr);
1682 	eeprom_delay ();
1683 }
1684 
1685 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1686 {
1687 	int i;
1688 
1689 	/* Shift the command bits out. */
1690 	for (i = cmd_len - 1; i >= 0; i--) {
1691 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1692 		writeb (EE_ENB | dataval, ee_addr);
1693 		eeprom_delay ();
1694 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1695 		eeprom_delay ();
1696 	}
1697 	writeb (EE_ENB, ee_addr);
1698 	eeprom_delay ();
1699 }
1700 
1701 static void eeprom_cmd_end(void __iomem *ee_addr)
1702 {
1703 	writeb(0, ee_addr);
1704 	eeprom_delay ();
1705 }
1706 
1707 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1708 			      int addr_len)
1709 {
1710 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1711 
1712 	eeprom_cmd_start(ee_addr);
1713 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1714 	eeprom_cmd_end(ee_addr);
1715 }
1716 
1717 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1718 {
1719 	int i;
1720 	u16 retval = 0;
1721 	void __iomem *ee_addr = ioaddr + Cfg9346;
1722 	int read_cmd = location | (EE_READ_CMD << addr_len);
1723 
1724 	eeprom_cmd_start(ee_addr);
1725 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1726 
1727 	for (i = 16; i > 0; i--) {
1728 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1729 		eeprom_delay ();
1730 		retval =
1731 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1732 				     0);
1733 		writeb (EE_ENB, ee_addr);
1734 		eeprom_delay ();
1735 	}
1736 
1737 	eeprom_cmd_end(ee_addr);
1738 
1739 	return retval;
1740 }
1741 
1742 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1743 			 int addr_len)
1744 {
1745 	int i;
1746 	void __iomem *ee_addr = ioaddr + Cfg9346;
1747 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1748 
1749 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1750 
1751 	eeprom_cmd_start(ee_addr);
1752 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1753 	eeprom_cmd(ee_addr, val, 16);
1754 	eeprom_cmd_end(ee_addr);
1755 
1756 	eeprom_cmd_start(ee_addr);
1757 	for (i = 0; i < 20000; i++)
1758 		if (readb(ee_addr) & EE_DATA_READ)
1759 			break;
1760 	eeprom_cmd_end(ee_addr);
1761 
1762 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1763 }
1764 
1765 static int cp_get_eeprom_len(struct net_device *dev)
1766 {
1767 	struct cp_private *cp = netdev_priv(dev);
1768 	int size;
1769 
1770 	spin_lock_irq(&cp->lock);
1771 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1772 	spin_unlock_irq(&cp->lock);
1773 
1774 	return size;
1775 }
1776 
1777 static int cp_get_eeprom(struct net_device *dev,
1778 			 struct ethtool_eeprom *eeprom, u8 *data)
1779 {
1780 	struct cp_private *cp = netdev_priv(dev);
1781 	unsigned int addr_len;
1782 	u16 val;
1783 	u32 offset = eeprom->offset >> 1;
1784 	u32 len = eeprom->len;
1785 	u32 i = 0;
1786 
1787 	eeprom->magic = CP_EEPROM_MAGIC;
1788 
1789 	spin_lock_irq(&cp->lock);
1790 
1791 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1792 
1793 	if (eeprom->offset & 1) {
1794 		val = read_eeprom(cp->regs, offset, addr_len);
1795 		data[i++] = (u8)(val >> 8);
1796 		offset++;
1797 	}
1798 
1799 	while (i < len - 1) {
1800 		val = read_eeprom(cp->regs, offset, addr_len);
1801 		data[i++] = (u8)val;
1802 		data[i++] = (u8)(val >> 8);
1803 		offset++;
1804 	}
1805 
1806 	if (i < len) {
1807 		val = read_eeprom(cp->regs, offset, addr_len);
1808 		data[i] = (u8)val;
1809 	}
1810 
1811 	spin_unlock_irq(&cp->lock);
1812 	return 0;
1813 }
1814 
1815 static int cp_set_eeprom(struct net_device *dev,
1816 			 struct ethtool_eeprom *eeprom, u8 *data)
1817 {
1818 	struct cp_private *cp = netdev_priv(dev);
1819 	unsigned int addr_len;
1820 	u16 val;
1821 	u32 offset = eeprom->offset >> 1;
1822 	u32 len = eeprom->len;
1823 	u32 i = 0;
1824 
1825 	if (eeprom->magic != CP_EEPROM_MAGIC)
1826 		return -EINVAL;
1827 
1828 	spin_lock_irq(&cp->lock);
1829 
1830 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1831 
1832 	if (eeprom->offset & 1) {
1833 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1834 		val |= (u16)data[i++] << 8;
1835 		write_eeprom(cp->regs, offset, val, addr_len);
1836 		offset++;
1837 	}
1838 
1839 	while (i < len - 1) {
1840 		val = (u16)data[i++];
1841 		val |= (u16)data[i++] << 8;
1842 		write_eeprom(cp->regs, offset, val, addr_len);
1843 		offset++;
1844 	}
1845 
1846 	if (i < len) {
1847 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1848 		val |= (u16)data[i];
1849 		write_eeprom(cp->regs, offset, val, addr_len);
1850 	}
1851 
1852 	spin_unlock_irq(&cp->lock);
1853 	return 0;
1854 }
1855 
1856 /* Put the board into D3cold state and wait for WakeUp signal */
1857 static void cp_set_d3_state (struct cp_private *cp)
1858 {
1859 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1860 	pci_set_power_state (cp->pdev, PCI_D3hot);
1861 }
1862 
1863 static const struct net_device_ops cp_netdev_ops = {
1864 	.ndo_open		= cp_open,
1865 	.ndo_stop		= cp_close,
1866 	.ndo_validate_addr	= eth_validate_addr,
1867 	.ndo_set_mac_address 	= cp_set_mac_address,
1868 	.ndo_set_rx_mode	= cp_set_rx_mode,
1869 	.ndo_get_stats		= cp_get_stats,
1870 	.ndo_do_ioctl		= cp_ioctl,
1871 	.ndo_start_xmit		= cp_start_xmit,
1872 	.ndo_tx_timeout		= cp_tx_timeout,
1873 	.ndo_set_features	= cp_set_features,
1874 	.ndo_change_mtu		= cp_change_mtu,
1875 
1876 #ifdef CONFIG_NET_POLL_CONTROLLER
1877 	.ndo_poll_controller	= cp_poll_controller,
1878 #endif
1879 };
1880 
1881 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1882 {
1883 	struct net_device *dev;
1884 	struct cp_private *cp;
1885 	int rc;
1886 	void __iomem *regs;
1887 	resource_size_t pciaddr;
1888 	unsigned int addr_len, i, pci_using_dac;
1889 
1890 #ifndef MODULE
1891 	static int version_printed;
1892 	if (version_printed++ == 0)
1893 		pr_info("%s", version);
1894 #endif
1895 
1896 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1897 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1898 		dev_info(&pdev->dev,
1899 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1900 			 pdev->vendor, pdev->device, pdev->revision);
1901 		return -ENODEV;
1902 	}
1903 
1904 	dev = alloc_etherdev(sizeof(struct cp_private));
1905 	if (!dev)
1906 		return -ENOMEM;
1907 	SET_NETDEV_DEV(dev, &pdev->dev);
1908 
1909 	cp = netdev_priv(dev);
1910 	cp->pdev = pdev;
1911 	cp->dev = dev;
1912 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1913 	spin_lock_init (&cp->lock);
1914 	cp->mii_if.dev = dev;
1915 	cp->mii_if.mdio_read = mdio_read;
1916 	cp->mii_if.mdio_write = mdio_write;
1917 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1918 	cp->mii_if.phy_id_mask = 0x1f;
1919 	cp->mii_if.reg_num_mask = 0x1f;
1920 	cp_set_rxbufsize(cp);
1921 
1922 	rc = pci_enable_device(pdev);
1923 	if (rc)
1924 		goto err_out_free;
1925 
1926 	rc = pci_set_mwi(pdev);
1927 	if (rc)
1928 		goto err_out_disable;
1929 
1930 	rc = pci_request_regions(pdev, DRV_NAME);
1931 	if (rc)
1932 		goto err_out_mwi;
1933 
1934 	pciaddr = pci_resource_start(pdev, 1);
1935 	if (!pciaddr) {
1936 		rc = -EIO;
1937 		dev_err(&pdev->dev, "no MMIO resource\n");
1938 		goto err_out_res;
1939 	}
1940 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1941 		rc = -EIO;
1942 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1943 		       (unsigned long long)pci_resource_len(pdev, 1));
1944 		goto err_out_res;
1945 	}
1946 
1947 	/* Configure DMA attributes. */
1948 	if ((sizeof(dma_addr_t) > 4) &&
1949 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1950 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1951 		pci_using_dac = 1;
1952 	} else {
1953 		pci_using_dac = 0;
1954 
1955 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1956 		if (rc) {
1957 			dev_err(&pdev->dev,
1958 				"No usable DMA configuration, aborting\n");
1959 			goto err_out_res;
1960 		}
1961 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1962 		if (rc) {
1963 			dev_err(&pdev->dev,
1964 				"No usable consistent DMA configuration, aborting\n");
1965 			goto err_out_res;
1966 		}
1967 	}
1968 
1969 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1970 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1971 
1972 	dev->features |= NETIF_F_RXCSUM;
1973 	dev->hw_features |= NETIF_F_RXCSUM;
1974 
1975 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1976 	if (!regs) {
1977 		rc = -EIO;
1978 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1979 			(unsigned long long)pci_resource_len(pdev, 1),
1980 		       (unsigned long long)pciaddr);
1981 		goto err_out_res;
1982 	}
1983 	cp->regs = regs;
1984 
1985 	cp_stop_hw(cp);
1986 
1987 	/* read MAC address from EEPROM */
1988 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1989 	for (i = 0; i < 3; i++)
1990 		((__le16 *) (dev->dev_addr))[i] =
1991 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1992 
1993 	dev->netdev_ops = &cp_netdev_ops;
1994 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1995 	dev->ethtool_ops = &cp_ethtool_ops;
1996 	dev->watchdog_timeo = TX_TIMEOUT;
1997 
1998 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1999 
2000 	if (pci_using_dac)
2001 		dev->features |= NETIF_F_HIGHDMA;
2002 
2003 	/* disabled by default until verified */
2004 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2005 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2006 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2007 		NETIF_F_HIGHDMA;
2008 
2009 	rc = register_netdev(dev);
2010 	if (rc)
2011 		goto err_out_iomap;
2012 
2013 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2014 		    regs, dev->dev_addr, pdev->irq);
2015 
2016 	pci_set_drvdata(pdev, dev);
2017 
2018 	/* enable busmastering and memory-write-invalidate */
2019 	pci_set_master(pdev);
2020 
2021 	if (cp->wol_enabled)
2022 		cp_set_d3_state (cp);
2023 
2024 	return 0;
2025 
2026 err_out_iomap:
2027 	iounmap(regs);
2028 err_out_res:
2029 	pci_release_regions(pdev);
2030 err_out_mwi:
2031 	pci_clear_mwi(pdev);
2032 err_out_disable:
2033 	pci_disable_device(pdev);
2034 err_out_free:
2035 	free_netdev(dev);
2036 	return rc;
2037 }
2038 
2039 static void cp_remove_one (struct pci_dev *pdev)
2040 {
2041 	struct net_device *dev = pci_get_drvdata(pdev);
2042 	struct cp_private *cp = netdev_priv(dev);
2043 
2044 	unregister_netdev(dev);
2045 	iounmap(cp->regs);
2046 	if (cp->wol_enabled)
2047 		pci_set_power_state (pdev, PCI_D0);
2048 	pci_release_regions(pdev);
2049 	pci_clear_mwi(pdev);
2050 	pci_disable_device(pdev);
2051 	free_netdev(dev);
2052 }
2053 
2054 #ifdef CONFIG_PM
2055 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2056 {
2057 	struct net_device *dev = pci_get_drvdata(pdev);
2058 	struct cp_private *cp = netdev_priv(dev);
2059 	unsigned long flags;
2060 
2061 	if (!netif_running(dev))
2062 		return 0;
2063 
2064 	netif_device_detach (dev);
2065 	netif_stop_queue (dev);
2066 
2067 	spin_lock_irqsave (&cp->lock, flags);
2068 
2069 	/* Disable Rx and Tx */
2070 	cpw16 (IntrMask, 0);
2071 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2072 
2073 	spin_unlock_irqrestore (&cp->lock, flags);
2074 
2075 	pci_save_state(pdev);
2076 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2077 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2078 
2079 	return 0;
2080 }
2081 
2082 static int cp_resume (struct pci_dev *pdev)
2083 {
2084 	struct net_device *dev = pci_get_drvdata (pdev);
2085 	struct cp_private *cp = netdev_priv(dev);
2086 	unsigned long flags;
2087 
2088 	if (!netif_running(dev))
2089 		return 0;
2090 
2091 	netif_device_attach (dev);
2092 
2093 	pci_set_power_state(pdev, PCI_D0);
2094 	pci_restore_state(pdev);
2095 	pci_enable_wake(pdev, PCI_D0, 0);
2096 
2097 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2098 	cp_init_rings_index (cp);
2099 	cp_init_hw (cp);
2100 	cp_enable_irq(cp);
2101 	netif_start_queue (dev);
2102 
2103 	spin_lock_irqsave (&cp->lock, flags);
2104 
2105 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2106 
2107 	spin_unlock_irqrestore (&cp->lock, flags);
2108 
2109 	return 0;
2110 }
2111 #endif /* CONFIG_PM */
2112 
2113 static struct pci_driver cp_driver = {
2114 	.name         = DRV_NAME,
2115 	.id_table     = cp_pci_tbl,
2116 	.probe        =	cp_init_one,
2117 	.remove       = cp_remove_one,
2118 #ifdef CONFIG_PM
2119 	.resume       = cp_resume,
2120 	.suspend      = cp_suspend,
2121 #endif
2122 };
2123 
2124 static int __init cp_init (void)
2125 {
2126 #ifdef MODULE
2127 	pr_info("%s", version);
2128 #endif
2129 	return pci_register_driver(&cp_driver);
2130 }
2131 
2132 static void __exit cp_exit (void)
2133 {
2134 	pci_unregister_driver (&cp_driver);
2135 }
2136 
2137 module_init(cp_init);
2138 module_exit(cp_exit);
2139