1 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 2 * 3 * This program is free software; you can redistribute it and/or modify 4 * it under the terms of the GNU General Public License version 2 and 5 * only version 2 as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 */ 12 13 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support 14 */ 15 16 #include <linux/tcp.h> 17 #include <linux/ip.h> 18 #include <linux/ipv6.h> 19 #include <linux/crc32.h> 20 #include <linux/if_vlan.h> 21 #include <linux/jiffies.h> 22 #include <linux/phy.h> 23 #include <linux/of.h> 24 #include <net/ip6_checksum.h> 25 #include "emac.h" 26 #include "emac-sgmii.h" 27 28 /* EMAC_MAC_CTRL */ 29 #define SINGLE_PAUSE_MODE 0x10000000 30 #define DEBUG_MODE 0x08000000 31 #define BROAD_EN 0x04000000 32 #define MULTI_ALL 0x02000000 33 #define RX_CHKSUM_EN 0x01000000 34 #define HUGE 0x00800000 35 #define SPEED(x) (((x) & 0x3) << 20) 36 #define SPEED_MASK SPEED(0x3) 37 #define SIMR 0x00080000 38 #define TPAUSE 0x00010000 39 #define PROM_MODE 0x00008000 40 #define VLAN_STRIP 0x00004000 41 #define PRLEN_BMSK 0x00003c00 42 #define PRLEN_SHFT 10 43 #define HUGEN 0x00000200 44 #define FLCHK 0x00000100 45 #define PCRCE 0x00000080 46 #define CRCE 0x00000040 47 #define FULLD 0x00000020 48 #define MAC_LP_EN 0x00000010 49 #define RXFC 0x00000008 50 #define TXFC 0x00000004 51 #define RXEN 0x00000002 52 #define TXEN 0x00000001 53 54 /* EMAC_DESC_CTRL_3 */ 55 #define RFD_RING_SIZE_BMSK 0xfff 56 57 /* EMAC_DESC_CTRL_4 */ 58 #define RX_BUFFER_SIZE_BMSK 0xffff 59 60 /* EMAC_DESC_CTRL_6 */ 61 #define RRD_RING_SIZE_BMSK 0xfff 62 63 /* EMAC_DESC_CTRL_9 */ 64 #define TPD_RING_SIZE_BMSK 0xffff 65 66 /* EMAC_TXQ_CTRL_0 */ 67 #define NUM_TXF_BURST_PREF_BMSK 0xffff0000 68 #define NUM_TXF_BURST_PREF_SHFT 16 69 #define LS_8023_SP 0x80 70 #define TXQ_MODE 0x40 71 #define TXQ_EN 0x20 72 #define IP_OP_SP 0x10 73 #define NUM_TPD_BURST_PREF_BMSK 0xf 74 #define NUM_TPD_BURST_PREF_SHFT 0 75 76 /* EMAC_TXQ_CTRL_1 */ 77 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff 78 79 /* EMAC_TXQ_CTRL_2 */ 80 #define TXF_HWM_BMSK 0xfff0000 81 #define TXF_LWM_BMSK 0xfff 82 83 /* EMAC_RXQ_CTRL_0 */ 84 #define RXQ_EN BIT(31) 85 #define CUT_THRU_EN BIT(30) 86 #define RSS_HASH_EN BIT(29) 87 #define NUM_RFD_BURST_PREF_BMSK 0x3f00000 88 #define NUM_RFD_BURST_PREF_SHFT 20 89 #define IDT_TABLE_SIZE_BMSK 0x1ff00 90 #define IDT_TABLE_SIZE_SHFT 8 91 #define SP_IPV6 0x80 92 93 /* EMAC_RXQ_CTRL_1 */ 94 #define JUMBO_1KAH_BMSK 0xf000 95 #define JUMBO_1KAH_SHFT 12 96 #define RFD_PREF_LOW_TH 0x10 97 #define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0 98 #define RFD_PREF_LOW_THRESHOLD_SHFT 6 99 #define RFD_PREF_UP_TH 0x10 100 #define RFD_PREF_UP_THRESHOLD_BMSK 0x3f 101 #define RFD_PREF_UP_THRESHOLD_SHFT 0 102 103 /* EMAC_RXQ_CTRL_2 */ 104 #define RXF_DOF_THRESFHOLD 0x1a0 105 #define RXF_DOF_THRESHOLD_BMSK 0xfff0000 106 #define RXF_DOF_THRESHOLD_SHFT 16 107 #define RXF_UOF_THRESFHOLD 0xbe 108 #define RXF_UOF_THRESHOLD_BMSK 0xfff 109 #define RXF_UOF_THRESHOLD_SHFT 0 110 111 /* EMAC_RXQ_CTRL_3 */ 112 #define RXD_TIMER_BMSK 0xffff0000 113 #define RXD_THRESHOLD_BMSK 0xfff 114 #define RXD_THRESHOLD_SHFT 0 115 116 /* EMAC_DMA_CTRL */ 117 #define DMAW_DLY_CNT_BMSK 0xf0000 118 #define DMAW_DLY_CNT_SHFT 16 119 #define DMAR_DLY_CNT_BMSK 0xf800 120 #define DMAR_DLY_CNT_SHFT 11 121 #define DMAR_REQ_PRI 0x400 122 #define REGWRBLEN_BMSK 0x380 123 #define REGWRBLEN_SHFT 7 124 #define REGRDBLEN_BMSK 0x70 125 #define REGRDBLEN_SHFT 4 126 #define OUT_ORDER_MODE 0x4 127 #define ENH_ORDER_MODE 0x2 128 #define IN_ORDER_MODE 0x1 129 130 /* EMAC_MAILBOX_13 */ 131 #define RFD3_PROC_IDX_BMSK 0xfff0000 132 #define RFD3_PROC_IDX_SHFT 16 133 #define RFD3_PROD_IDX_BMSK 0xfff 134 #define RFD3_PROD_IDX_SHFT 0 135 136 /* EMAC_MAILBOX_2 */ 137 #define NTPD_CONS_IDX_BMSK 0xffff0000 138 #define NTPD_CONS_IDX_SHFT 16 139 140 /* EMAC_MAILBOX_3 */ 141 #define RFD0_CONS_IDX_BMSK 0xfff 142 #define RFD0_CONS_IDX_SHFT 0 143 144 /* EMAC_MAILBOX_11 */ 145 #define H3TPD_PROD_IDX_BMSK 0xffff0000 146 #define H3TPD_PROD_IDX_SHFT 16 147 148 /* EMAC_AXI_MAST_CTRL */ 149 #define DATA_BYTE_SWAP 0x8 150 #define MAX_BOUND 0x2 151 #define MAX_BTYPE 0x1 152 153 /* EMAC_MAILBOX_12 */ 154 #define H3TPD_CONS_IDX_BMSK 0xffff0000 155 #define H3TPD_CONS_IDX_SHFT 16 156 157 /* EMAC_MAILBOX_9 */ 158 #define H2TPD_PROD_IDX_BMSK 0xffff 159 #define H2TPD_PROD_IDX_SHFT 0 160 161 /* EMAC_MAILBOX_10 */ 162 #define H1TPD_CONS_IDX_BMSK 0xffff0000 163 #define H1TPD_CONS_IDX_SHFT 16 164 #define H2TPD_CONS_IDX_BMSK 0xffff 165 #define H2TPD_CONS_IDX_SHFT 0 166 167 /* EMAC_ATHR_HEADER_CTRL */ 168 #define HEADER_CNT_EN 0x2 169 #define HEADER_ENABLE 0x1 170 171 /* EMAC_MAILBOX_0 */ 172 #define RFD0_PROC_IDX_BMSK 0xfff0000 173 #define RFD0_PROC_IDX_SHFT 16 174 #define RFD0_PROD_IDX_BMSK 0xfff 175 #define RFD0_PROD_IDX_SHFT 0 176 177 /* EMAC_MAILBOX_5 */ 178 #define RFD1_PROC_IDX_BMSK 0xfff0000 179 #define RFD1_PROC_IDX_SHFT 16 180 #define RFD1_PROD_IDX_BMSK 0xfff 181 #define RFD1_PROD_IDX_SHFT 0 182 183 /* EMAC_MISC_CTRL */ 184 #define RX_UNCPL_INT_EN 0x1 185 186 /* EMAC_MAILBOX_7 */ 187 #define RFD2_CONS_IDX_BMSK 0xfff0000 188 #define RFD2_CONS_IDX_SHFT 16 189 #define RFD1_CONS_IDX_BMSK 0xfff 190 #define RFD1_CONS_IDX_SHFT 0 191 192 /* EMAC_MAILBOX_8 */ 193 #define RFD3_CONS_IDX_BMSK 0xfff 194 #define RFD3_CONS_IDX_SHFT 0 195 196 /* EMAC_MAILBOX_15 */ 197 #define NTPD_PROD_IDX_BMSK 0xffff 198 #define NTPD_PROD_IDX_SHFT 0 199 200 /* EMAC_MAILBOX_16 */ 201 #define H1TPD_PROD_IDX_BMSK 0xffff 202 #define H1TPD_PROD_IDX_SHFT 0 203 204 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20 205 #define RXQ0_RSS_HSTYP_IPV6_EN 0x10 206 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8 207 #define RXQ0_RSS_HSTYP_IPV4_EN 0x4 208 209 /* EMAC_EMAC_WRAPPER_TX_TS_INX */ 210 #define EMAC_WRAPPER_TX_TS_EMPTY BIT(31) 211 #define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff 212 213 struct emac_skb_cb { 214 u32 tpd_idx; 215 unsigned long jiffies; 216 }; 217 218 #define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb) 219 #define EMAC_RSS_IDT_SIZE 256 220 #define JUMBO_1KAH 0x4 221 #define RXD_TH 0x100 222 #define EMAC_TPD_LAST_FRAGMENT 0x80000000 223 #define EMAC_TPD_TSTAMP_SAVE 0x80000000 224 225 /* EMAC Errors in emac_rrd.word[3] */ 226 #define EMAC_RRD_L4F BIT(14) 227 #define EMAC_RRD_IPF BIT(15) 228 #define EMAC_RRD_CRC BIT(21) 229 #define EMAC_RRD_FAE BIT(22) 230 #define EMAC_RRD_TRN BIT(23) 231 #define EMAC_RRD_RNT BIT(24) 232 #define EMAC_RRD_INC BIT(25) 233 #define EMAC_RRD_FOV BIT(29) 234 #define EMAC_RRD_LEN BIT(30) 235 236 /* Error bits that will result in a received frame being discarded */ 237 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \ 238 EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \ 239 EMAC_RRD_FOV | EMAC_RRD_LEN) 240 #define EMAC_RRD_STATS_DW_IDX 3 241 242 #define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX))) 243 #define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX))) 244 #define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX))) 245 246 #define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)])) 247 #define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)])) 248 249 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8 250 251 #define ISR_RX_PKT (\ 252 RX_PKT_INT0 |\ 253 RX_PKT_INT1 |\ 254 RX_PKT_INT2 |\ 255 RX_PKT_INT3) 256 257 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr) 258 { 259 u32 crc32, bit, reg, mta; 260 261 /* Calculate the CRC of the MAC address */ 262 crc32 = ether_crc(ETH_ALEN, addr); 263 264 /* The HASH Table is an array of 2 32-bit registers. It is 265 * treated like an array of 64 bits (BitArray[hash_value]). 266 * Use the upper 6 bits of the above CRC as the hash value. 267 */ 268 reg = (crc32 >> 31) & 0x1; 269 bit = (crc32 >> 26) & 0x1F; 270 271 mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2)); 272 mta |= BIT(bit); 273 writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2)); 274 } 275 276 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt) 277 { 278 writel(0, adpt->base + EMAC_HASH_TAB_REG0); 279 writel(0, adpt->base + EMAC_HASH_TAB_REG1); 280 } 281 282 /* definitions for RSS */ 283 #define EMAC_RSS_KEY(_i, _type) \ 284 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type))) 285 #define EMAC_RSS_TBL(_i, _type) \ 286 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type))) 287 288 /* Config MAC modes */ 289 void emac_mac_mode_config(struct emac_adapter *adpt) 290 { 291 struct net_device *netdev = adpt->netdev; 292 u32 mac; 293 294 mac = readl(adpt->base + EMAC_MAC_CTRL); 295 mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN); 296 297 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 298 mac |= VLAN_STRIP; 299 300 if (netdev->flags & IFF_PROMISC) 301 mac |= PROM_MODE; 302 303 if (netdev->flags & IFF_ALLMULTI) 304 mac |= MULTI_ALL; 305 306 writel(mac, adpt->base + EMAC_MAC_CTRL); 307 } 308 309 /* Config descriptor rings */ 310 static void emac_mac_dma_rings_config(struct emac_adapter *adpt) 311 { 312 /* TPD (Transmit Packet Descriptor) */ 313 writel(upper_32_bits(adpt->tx_q.tpd.dma_addr), 314 adpt->base + EMAC_DESC_CTRL_1); 315 316 writel(lower_32_bits(adpt->tx_q.tpd.dma_addr), 317 adpt->base + EMAC_DESC_CTRL_8); 318 319 writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK, 320 adpt->base + EMAC_DESC_CTRL_9); 321 322 /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */ 323 writel(upper_32_bits(adpt->rx_q.rfd.dma_addr), 324 adpt->base + EMAC_DESC_CTRL_0); 325 326 writel(lower_32_bits(adpt->rx_q.rfd.dma_addr), 327 adpt->base + EMAC_DESC_CTRL_2); 328 writel(lower_32_bits(adpt->rx_q.rrd.dma_addr), 329 adpt->base + EMAC_DESC_CTRL_5); 330 331 writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK, 332 adpt->base + EMAC_DESC_CTRL_3); 333 writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK, 334 adpt->base + EMAC_DESC_CTRL_6); 335 336 writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK, 337 adpt->base + EMAC_DESC_CTRL_4); 338 339 writel(0, adpt->base + EMAC_DESC_CTRL_11); 340 341 /* Load all of the base addresses above and ensure that triggering HW to 342 * read ring pointers is flushed 343 */ 344 writel(1, adpt->base + EMAC_INTER_SRAM_PART9); 345 } 346 347 /* Config transmit parameters */ 348 static void emac_mac_tx_config(struct emac_adapter *adpt) 349 { 350 u32 val; 351 352 writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) & 353 JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1); 354 355 val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) & 356 NUM_TPD_BURST_PREF_BMSK; 357 358 val |= TXQ_MODE | LS_8023_SP; 359 val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) & 360 NUM_TXF_BURST_PREF_BMSK; 361 362 writel(val, adpt->base + EMAC_TXQ_CTRL_0); 363 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2, 364 (TXF_HWM_BMSK | TXF_LWM_BMSK), 0); 365 } 366 367 /* Config receive parameters */ 368 static void emac_mac_rx_config(struct emac_adapter *adpt) 369 { 370 u32 val; 371 372 val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) & 373 NUM_RFD_BURST_PREF_BMSK; 374 val |= (SP_IPV6 | CUT_THRU_EN); 375 376 writel(val, adpt->base + EMAC_RXQ_CTRL_0); 377 378 val = readl(adpt->base + EMAC_RXQ_CTRL_1); 379 val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK | 380 RFD_PREF_UP_THRESHOLD_BMSK); 381 val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) | 382 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) | 383 (RFD_PREF_UP_TH << RFD_PREF_UP_THRESHOLD_SHFT); 384 writel(val, adpt->base + EMAC_RXQ_CTRL_1); 385 386 val = readl(adpt->base + EMAC_RXQ_CTRL_2); 387 val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK); 388 val |= (RXF_DOF_THRESFHOLD << RXF_DOF_THRESHOLD_SHFT) | 389 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT); 390 writel(val, adpt->base + EMAC_RXQ_CTRL_2); 391 392 val = readl(adpt->base + EMAC_RXQ_CTRL_3); 393 val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK); 394 val |= RXD_TH << RXD_THRESHOLD_SHFT; 395 writel(val, adpt->base + EMAC_RXQ_CTRL_3); 396 } 397 398 /* Config dma */ 399 static void emac_mac_dma_config(struct emac_adapter *adpt) 400 { 401 u32 dma_ctrl = DMAR_REQ_PRI; 402 403 switch (adpt->dma_order) { 404 case emac_dma_ord_in: 405 dma_ctrl |= IN_ORDER_MODE; 406 break; 407 case emac_dma_ord_enh: 408 dma_ctrl |= ENH_ORDER_MODE; 409 break; 410 case emac_dma_ord_out: 411 dma_ctrl |= OUT_ORDER_MODE; 412 break; 413 default: 414 break; 415 } 416 417 dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) & 418 REGRDBLEN_BMSK; 419 dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) & 420 REGWRBLEN_BMSK; 421 dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) & 422 DMAR_DLY_CNT_BMSK; 423 dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) & 424 DMAW_DLY_CNT_BMSK; 425 426 /* config DMA and ensure that configuration is flushed to HW */ 427 writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL); 428 } 429 430 /* set MAC address */ 431 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr) 432 { 433 u32 sta; 434 435 /* for example: 00-A0-C6-11-22-33 436 * 0<-->C6112233, 1<-->00A0. 437 */ 438 439 /* low 32bit word */ 440 sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) | 441 (((u32)addr[4]) << 8) | (((u32)addr[5])); 442 writel(sta, adpt->base + EMAC_MAC_STA_ADDR0); 443 444 /* hight 32bit word */ 445 sta = (((u32)addr[0]) << 8) | (u32)addr[1]; 446 writel(sta, adpt->base + EMAC_MAC_STA_ADDR1); 447 } 448 449 static void emac_mac_config(struct emac_adapter *adpt) 450 { 451 struct net_device *netdev = adpt->netdev; 452 unsigned int max_frame; 453 u32 val; 454 455 emac_set_mac_address(adpt, netdev->dev_addr); 456 457 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 458 adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ? 459 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE; 460 461 emac_mac_dma_rings_config(adpt); 462 463 writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, 464 adpt->base + EMAC_MAX_FRAM_LEN_CTRL); 465 466 emac_mac_tx_config(adpt); 467 emac_mac_rx_config(adpt); 468 emac_mac_dma_config(adpt); 469 470 val = readl(adpt->base + EMAC_AXI_MAST_CTRL); 471 val &= ~(DATA_BYTE_SWAP | MAX_BOUND); 472 val |= MAX_BTYPE; 473 writel(val, adpt->base + EMAC_AXI_MAST_CTRL); 474 writel(0, adpt->base + EMAC_CLK_GATE_CTRL); 475 writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL); 476 } 477 478 void emac_mac_reset(struct emac_adapter *adpt) 479 { 480 emac_mac_stop(adpt); 481 482 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST); 483 usleep_range(100, 150); /* reset may take up to 100usec */ 484 485 /* interrupt clear-on-read */ 486 emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN); 487 } 488 489 static void emac_mac_start(struct emac_adapter *adpt) 490 { 491 struct phy_device *phydev = adpt->phydev; 492 u32 mac, csr1; 493 494 /* enable tx queue */ 495 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN); 496 497 /* enable rx queue */ 498 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN); 499 500 /* enable mac control */ 501 mac = readl(adpt->base + EMAC_MAC_CTRL); 502 csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1); 503 504 mac |= TXEN | RXEN; /* enable RX/TX */ 505 506 /* Configure MAC flow control. If set to automatic, then match 507 * whatever the PHY does. Otherwise, enable or disable it, depending 508 * on what the user configured via ethtool. 509 */ 510 mac &= ~(RXFC | TXFC); 511 512 if (adpt->automatic) { 513 /* If it's set to automatic, then update our local values */ 514 adpt->rx_flow_control = phydev->pause; 515 adpt->tx_flow_control = phydev->pause != phydev->asym_pause; 516 } 517 mac |= adpt->rx_flow_control ? RXFC : 0; 518 mac |= adpt->tx_flow_control ? TXFC : 0; 519 520 /* setup link speed */ 521 mac &= ~SPEED_MASK; 522 if (phydev->speed == SPEED_1000) { 523 mac |= SPEED(2); 524 csr1 |= FREQ_MODE; 525 } else { 526 mac |= SPEED(1); 527 csr1 &= ~FREQ_MODE; 528 } 529 530 if (phydev->duplex == DUPLEX_FULL) 531 mac |= FULLD; 532 else 533 mac &= ~FULLD; 534 535 /* other parameters */ 536 mac |= (CRCE | PCRCE); 537 mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK); 538 mac |= BROAD_EN; 539 mac |= FLCHK; 540 mac &= ~RX_CHKSUM_EN; 541 mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL | 542 DEBUG_MODE | SINGLE_PAUSE_MODE); 543 544 /* Enable single-pause-frame mode if requested. 545 * 546 * If enabled, the EMAC will send a single pause frame when the RX 547 * queue is full. This normally leads to packet loss because 548 * the pause frame disables the remote MAC only for 33ms (the quanta), 549 * and then the remote MAC continues sending packets even though 550 * the RX queue is still full. 551 * 552 * If disabled, the EMAC sends a pause frame every 31ms until the RX 553 * queue is no longer full. Normally, this is the preferred 554 * method of operation. However, when the system is hung (e.g. 555 * cores are halted), the EMAC interrupt handler is never called 556 * and so the RX queue fills up quickly and stays full. The resuling 557 * non-stop "flood" of pause frames sometimes has the effect of 558 * disabling nearby switches. In some cases, other nearby switches 559 * are also affected, shutting down the entire network. 560 * 561 * The user can enable or disable single-pause-frame mode 562 * via ethtool. 563 */ 564 mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0; 565 566 writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1); 567 568 writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL); 569 570 /* enable interrupt read clear, low power sleep mode and 571 * the irq moderators 572 */ 573 574 writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT); 575 writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN | 576 IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL); 577 578 emac_mac_mode_config(adpt); 579 580 emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL, 581 (HEADER_ENABLE | HEADER_CNT_EN), 0); 582 } 583 584 void emac_mac_stop(struct emac_adapter *adpt) 585 { 586 emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0); 587 emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0); 588 emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0); 589 usleep_range(1000, 1050); /* stopping mac may take upto 1msec */ 590 } 591 592 /* Free all descriptors of given transmit queue */ 593 static void emac_tx_q_descs_free(struct emac_adapter *adpt) 594 { 595 struct emac_tx_queue *tx_q = &adpt->tx_q; 596 unsigned int i; 597 size_t size; 598 599 /* ring already cleared, nothing to do */ 600 if (!tx_q->tpd.tpbuff) 601 return; 602 603 for (i = 0; i < tx_q->tpd.count; i++) { 604 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i); 605 606 if (tpbuf->dma_addr) { 607 dma_unmap_single(adpt->netdev->dev.parent, 608 tpbuf->dma_addr, tpbuf->length, 609 DMA_TO_DEVICE); 610 tpbuf->dma_addr = 0; 611 } 612 if (tpbuf->skb) { 613 dev_kfree_skb_any(tpbuf->skb); 614 tpbuf->skb = NULL; 615 } 616 } 617 618 size = sizeof(struct emac_buffer) * tx_q->tpd.count; 619 memset(tx_q->tpd.tpbuff, 0, size); 620 621 /* clear the descriptor ring */ 622 memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size); 623 624 tx_q->tpd.consume_idx = 0; 625 tx_q->tpd.produce_idx = 0; 626 } 627 628 /* Free all descriptors of given receive queue */ 629 static void emac_rx_q_free_descs(struct emac_adapter *adpt) 630 { 631 struct device *dev = adpt->netdev->dev.parent; 632 struct emac_rx_queue *rx_q = &adpt->rx_q; 633 unsigned int i; 634 size_t size; 635 636 /* ring already cleared, nothing to do */ 637 if (!rx_q->rfd.rfbuff) 638 return; 639 640 for (i = 0; i < rx_q->rfd.count; i++) { 641 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i); 642 643 if (rfbuf->dma_addr) { 644 dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length, 645 DMA_FROM_DEVICE); 646 rfbuf->dma_addr = 0; 647 } 648 if (rfbuf->skb) { 649 dev_kfree_skb(rfbuf->skb); 650 rfbuf->skb = NULL; 651 } 652 } 653 654 size = sizeof(struct emac_buffer) * rx_q->rfd.count; 655 memset(rx_q->rfd.rfbuff, 0, size); 656 657 /* clear the descriptor rings */ 658 memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size); 659 rx_q->rrd.produce_idx = 0; 660 rx_q->rrd.consume_idx = 0; 661 662 memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size); 663 rx_q->rfd.produce_idx = 0; 664 rx_q->rfd.consume_idx = 0; 665 } 666 667 /* Free all buffers associated with given transmit queue */ 668 static void emac_tx_q_bufs_free(struct emac_adapter *adpt) 669 { 670 struct emac_tx_queue *tx_q = &adpt->tx_q; 671 672 emac_tx_q_descs_free(adpt); 673 674 kfree(tx_q->tpd.tpbuff); 675 tx_q->tpd.tpbuff = NULL; 676 tx_q->tpd.v_addr = NULL; 677 tx_q->tpd.dma_addr = 0; 678 tx_q->tpd.size = 0; 679 } 680 681 /* Allocate TX descriptor ring for the given transmit queue */ 682 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt, 683 struct emac_tx_queue *tx_q) 684 { 685 struct emac_ring_header *ring_header = &adpt->ring_header; 686 int node = dev_to_node(adpt->netdev->dev.parent); 687 size_t size; 688 689 size = sizeof(struct emac_buffer) * tx_q->tpd.count; 690 tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node); 691 if (!tx_q->tpd.tpbuff) 692 return -ENOMEM; 693 694 tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4); 695 tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used; 696 tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used; 697 ring_header->used += ALIGN(tx_q->tpd.size, 8); 698 tx_q->tpd.produce_idx = 0; 699 tx_q->tpd.consume_idx = 0; 700 701 return 0; 702 } 703 704 /* Free all buffers associated with given transmit queue */ 705 static void emac_rx_q_bufs_free(struct emac_adapter *adpt) 706 { 707 struct emac_rx_queue *rx_q = &adpt->rx_q; 708 709 emac_rx_q_free_descs(adpt); 710 711 kfree(rx_q->rfd.rfbuff); 712 rx_q->rfd.rfbuff = NULL; 713 714 rx_q->rfd.v_addr = NULL; 715 rx_q->rfd.dma_addr = 0; 716 rx_q->rfd.size = 0; 717 718 rx_q->rrd.v_addr = NULL; 719 rx_q->rrd.dma_addr = 0; 720 rx_q->rrd.size = 0; 721 } 722 723 /* Allocate RX descriptor rings for the given receive queue */ 724 static int emac_rx_descs_alloc(struct emac_adapter *adpt) 725 { 726 struct emac_ring_header *ring_header = &adpt->ring_header; 727 int node = dev_to_node(adpt->netdev->dev.parent); 728 struct emac_rx_queue *rx_q = &adpt->rx_q; 729 size_t size; 730 731 size = sizeof(struct emac_buffer) * rx_q->rfd.count; 732 rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node); 733 if (!rx_q->rfd.rfbuff) 734 return -ENOMEM; 735 736 rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4); 737 rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4); 738 739 rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used; 740 rx_q->rrd.v_addr = ring_header->v_addr + ring_header->used; 741 ring_header->used += ALIGN(rx_q->rrd.size, 8); 742 743 rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used; 744 rx_q->rfd.v_addr = ring_header->v_addr + ring_header->used; 745 ring_header->used += ALIGN(rx_q->rfd.size, 8); 746 747 rx_q->rrd.produce_idx = 0; 748 rx_q->rrd.consume_idx = 0; 749 750 rx_q->rfd.produce_idx = 0; 751 rx_q->rfd.consume_idx = 0; 752 753 return 0; 754 } 755 756 /* Allocate all TX and RX descriptor rings */ 757 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt) 758 { 759 struct emac_ring_header *ring_header = &adpt->ring_header; 760 struct device *dev = adpt->netdev->dev.parent; 761 unsigned int num_tx_descs = adpt->tx_desc_cnt; 762 unsigned int num_rx_descs = adpt->rx_desc_cnt; 763 int ret; 764 765 adpt->tx_q.tpd.count = adpt->tx_desc_cnt; 766 767 adpt->rx_q.rrd.count = adpt->rx_desc_cnt; 768 adpt->rx_q.rfd.count = adpt->rx_desc_cnt; 769 770 /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment, 771 * hence the additional padding bytes are allocated. 772 */ 773 ring_header->size = num_tx_descs * (adpt->tpd_size * 4) + 774 num_rx_descs * (adpt->rfd_size * 4) + 775 num_rx_descs * (adpt->rrd_size * 4) + 776 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */ 777 778 ring_header->used = 0; 779 ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size, 780 &ring_header->dma_addr, 781 GFP_KERNEL); 782 if (!ring_header->v_addr) 783 return -ENOMEM; 784 785 ring_header->used = ALIGN(ring_header->dma_addr, 8) - 786 ring_header->dma_addr; 787 788 ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q); 789 if (ret) { 790 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n"); 791 goto err_alloc_tx; 792 } 793 794 ret = emac_rx_descs_alloc(adpt); 795 if (ret) { 796 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n"); 797 goto err_alloc_rx; 798 } 799 800 return 0; 801 802 err_alloc_rx: 803 emac_tx_q_bufs_free(adpt); 804 err_alloc_tx: 805 dma_free_coherent(dev, ring_header->size, 806 ring_header->v_addr, ring_header->dma_addr); 807 808 ring_header->v_addr = NULL; 809 ring_header->dma_addr = 0; 810 ring_header->size = 0; 811 ring_header->used = 0; 812 813 return ret; 814 } 815 816 /* Free all TX and RX descriptor rings */ 817 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt) 818 { 819 struct emac_ring_header *ring_header = &adpt->ring_header; 820 struct device *dev = adpt->netdev->dev.parent; 821 822 emac_tx_q_bufs_free(adpt); 823 emac_rx_q_bufs_free(adpt); 824 825 dma_free_coherent(dev, ring_header->size, 826 ring_header->v_addr, ring_header->dma_addr); 827 828 ring_header->v_addr = NULL; 829 ring_header->dma_addr = 0; 830 ring_header->size = 0; 831 ring_header->used = 0; 832 } 833 834 /* Initialize descriptor rings */ 835 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt) 836 { 837 unsigned int i; 838 839 adpt->tx_q.tpd.produce_idx = 0; 840 adpt->tx_q.tpd.consume_idx = 0; 841 for (i = 0; i < adpt->tx_q.tpd.count; i++) 842 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0; 843 844 adpt->rx_q.rrd.produce_idx = 0; 845 adpt->rx_q.rrd.consume_idx = 0; 846 adpt->rx_q.rfd.produce_idx = 0; 847 adpt->rx_q.rfd.consume_idx = 0; 848 for (i = 0; i < adpt->rx_q.rfd.count; i++) 849 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0; 850 } 851 852 /* Produce new receive free descriptor */ 853 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt, 854 struct emac_rx_queue *rx_q, 855 dma_addr_t addr) 856 { 857 u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx); 858 859 *(hw_rfd++) = lower_32_bits(addr); 860 *hw_rfd = upper_32_bits(addr); 861 862 if (++rx_q->rfd.produce_idx == rx_q->rfd.count) 863 rx_q->rfd.produce_idx = 0; 864 } 865 866 /* Fill up receive queue's RFD with preallocated receive buffers */ 867 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt, 868 struct emac_rx_queue *rx_q) 869 { 870 struct emac_buffer *curr_rxbuf; 871 struct emac_buffer *next_rxbuf; 872 unsigned int count = 0; 873 u32 next_produce_idx; 874 875 next_produce_idx = rx_q->rfd.produce_idx + 1; 876 if (next_produce_idx == rx_q->rfd.count) 877 next_produce_idx = 0; 878 879 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx); 880 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx); 881 882 /* this always has a blank rx_buffer*/ 883 while (!next_rxbuf->dma_addr) { 884 struct sk_buff *skb; 885 int ret; 886 887 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size); 888 if (!skb) 889 break; 890 891 curr_rxbuf->dma_addr = 892 dma_map_single(adpt->netdev->dev.parent, skb->data, 893 adpt->rxbuf_size, DMA_FROM_DEVICE); 894 895 ret = dma_mapping_error(adpt->netdev->dev.parent, 896 curr_rxbuf->dma_addr); 897 if (ret) { 898 dev_kfree_skb(skb); 899 break; 900 } 901 curr_rxbuf->skb = skb; 902 curr_rxbuf->length = adpt->rxbuf_size; 903 904 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr); 905 next_produce_idx = rx_q->rfd.produce_idx + 1; 906 if (next_produce_idx == rx_q->rfd.count) 907 next_produce_idx = 0; 908 909 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx); 910 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx); 911 count++; 912 } 913 914 if (count) { 915 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) & 916 rx_q->produce_mask; 917 emac_reg_update32(adpt->base + rx_q->produce_reg, 918 rx_q->produce_mask, prod_idx); 919 } 920 } 921 922 static void emac_adjust_link(struct net_device *netdev) 923 { 924 struct emac_adapter *adpt = netdev_priv(netdev); 925 struct phy_device *phydev = netdev->phydev; 926 927 if (phydev->link) { 928 emac_mac_start(adpt); 929 emac_sgmii_link_change(adpt, true); 930 } else { 931 emac_sgmii_link_change(adpt, false); 932 emac_mac_stop(adpt); 933 } 934 935 phy_print_status(phydev); 936 } 937 938 /* Bringup the interface/HW */ 939 int emac_mac_up(struct emac_adapter *adpt) 940 { 941 struct net_device *netdev = adpt->netdev; 942 int ret; 943 944 emac_mac_rx_tx_ring_reset_all(adpt); 945 emac_mac_config(adpt); 946 emac_mac_rx_descs_refill(adpt, &adpt->rx_q); 947 948 adpt->phydev->irq = PHY_POLL; 949 ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link, 950 PHY_INTERFACE_MODE_SGMII); 951 if (ret) { 952 netdev_err(adpt->netdev, "could not connect phy\n"); 953 return ret; 954 } 955 956 phy_attached_print(adpt->phydev, NULL); 957 958 /* enable mac irq */ 959 writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS); 960 writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK); 961 962 phy_start(adpt->phydev); 963 964 napi_enable(&adpt->rx_q.napi); 965 netif_start_queue(netdev); 966 967 return 0; 968 } 969 970 /* Bring down the interface/HW */ 971 void emac_mac_down(struct emac_adapter *adpt) 972 { 973 struct net_device *netdev = adpt->netdev; 974 975 netif_stop_queue(netdev); 976 napi_disable(&adpt->rx_q.napi); 977 978 phy_stop(adpt->phydev); 979 980 /* Interrupts must be disabled before the PHY is disconnected, to 981 * avoid a race condition where adjust_link is null when we get 982 * an interrupt. 983 */ 984 writel(DIS_INT, adpt->base + EMAC_INT_STATUS); 985 writel(0, adpt->base + EMAC_INT_MASK); 986 synchronize_irq(adpt->irq.irq); 987 988 phy_disconnect(adpt->phydev); 989 990 emac_mac_reset(adpt); 991 992 emac_tx_q_descs_free(adpt); 993 netdev_reset_queue(adpt->netdev); 994 emac_rx_q_free_descs(adpt); 995 } 996 997 /* Consume next received packet descriptor */ 998 static bool emac_rx_process_rrd(struct emac_adapter *adpt, 999 struct emac_rx_queue *rx_q, 1000 struct emac_rrd *rrd) 1001 { 1002 u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx); 1003 1004 rrd->word[3] = *(hw_rrd + 3); 1005 1006 if (!RRD_UPDT(rrd)) 1007 return false; 1008 1009 rrd->word[4] = 0; 1010 rrd->word[5] = 0; 1011 1012 rrd->word[0] = *(hw_rrd++); 1013 rrd->word[1] = *(hw_rrd++); 1014 rrd->word[2] = *(hw_rrd++); 1015 1016 if (unlikely(RRD_NOR(rrd) != 1)) { 1017 netdev_err(adpt->netdev, 1018 "error: multi-RFD not support yet! nor:%lu\n", 1019 RRD_NOR(rrd)); 1020 } 1021 1022 /* mark rrd as processed */ 1023 RRD_UPDT_SET(rrd, 0); 1024 *hw_rrd = rrd->word[3]; 1025 1026 if (++rx_q->rrd.consume_idx == rx_q->rrd.count) 1027 rx_q->rrd.consume_idx = 0; 1028 1029 return true; 1030 } 1031 1032 /* Produce new transmit descriptor */ 1033 static void emac_tx_tpd_create(struct emac_adapter *adpt, 1034 struct emac_tx_queue *tx_q, struct emac_tpd *tpd) 1035 { 1036 u32 *hw_tpd; 1037 1038 tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx; 1039 hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx); 1040 1041 if (++tx_q->tpd.produce_idx == tx_q->tpd.count) 1042 tx_q->tpd.produce_idx = 0; 1043 1044 *(hw_tpd++) = tpd->word[0]; 1045 *(hw_tpd++) = tpd->word[1]; 1046 *(hw_tpd++) = tpd->word[2]; 1047 *hw_tpd = tpd->word[3]; 1048 } 1049 1050 /* Mark the last transmit descriptor as such (for the transmit packet) */ 1051 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt, 1052 struct emac_tx_queue *tx_q) 1053 { 1054 u32 *hw_tpd = 1055 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx); 1056 u32 tmp_tpd; 1057 1058 tmp_tpd = *(hw_tpd + 1); 1059 tmp_tpd |= EMAC_TPD_LAST_FRAGMENT; 1060 *(hw_tpd + 1) = tmp_tpd; 1061 } 1062 1063 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd) 1064 { 1065 struct emac_buffer *rfbuf = rx_q->rfd.rfbuff; 1066 u32 consume_idx = RRD_SI(rrd); 1067 unsigned int i; 1068 1069 for (i = 0; i < RRD_NOR(rrd); i++) { 1070 rfbuf[consume_idx].skb = NULL; 1071 if (++consume_idx == rx_q->rfd.count) 1072 consume_idx = 0; 1073 } 1074 1075 rx_q->rfd.consume_idx = consume_idx; 1076 rx_q->rfd.process_idx = consume_idx; 1077 } 1078 1079 /* Push the received skb to upper layers */ 1080 static void emac_receive_skb(struct emac_rx_queue *rx_q, 1081 struct sk_buff *skb, 1082 u16 vlan_tag, bool vlan_flag) 1083 { 1084 if (vlan_flag) { 1085 u16 vlan; 1086 1087 EMAC_TAG_TO_VLAN(vlan_tag, vlan); 1088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan); 1089 } 1090 1091 napi_gro_receive(&rx_q->napi, skb); 1092 } 1093 1094 /* Process receive event */ 1095 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q, 1096 int *num_pkts, int max_pkts) 1097 { 1098 u32 proc_idx, hw_consume_idx, num_consume_pkts; 1099 struct net_device *netdev = adpt->netdev; 1100 struct emac_buffer *rfbuf; 1101 unsigned int count = 0; 1102 struct emac_rrd rrd; 1103 struct sk_buff *skb; 1104 u32 reg; 1105 1106 reg = readl_relaxed(adpt->base + rx_q->consume_reg); 1107 1108 hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift; 1109 num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ? 1110 (hw_consume_idx - rx_q->rrd.consume_idx) : 1111 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx); 1112 1113 do { 1114 if (!num_consume_pkts) 1115 break; 1116 1117 if (!emac_rx_process_rrd(adpt, rx_q, &rrd)) 1118 break; 1119 1120 if (likely(RRD_NOR(&rrd) == 1)) { 1121 /* good receive */ 1122 rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd)); 1123 dma_unmap_single(adpt->netdev->dev.parent, 1124 rfbuf->dma_addr, rfbuf->length, 1125 DMA_FROM_DEVICE); 1126 rfbuf->dma_addr = 0; 1127 skb = rfbuf->skb; 1128 } else { 1129 netdev_err(adpt->netdev, 1130 "error: multi-RFD not support yet!\n"); 1131 break; 1132 } 1133 emac_rx_rfd_clean(rx_q, &rrd); 1134 num_consume_pkts--; 1135 count++; 1136 1137 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags 1138 * with DF set are marked as error), drop packets based on the 1139 * error mask rather than the summary bit (ignoring L4F errors) 1140 */ 1141 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) { 1142 netif_dbg(adpt, rx_status, adpt->netdev, 1143 "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n", 1144 rrd.word[0], rrd.word[1], 1145 rrd.word[2], rrd.word[3]); 1146 1147 dev_kfree_skb(skb); 1148 continue; 1149 } 1150 1151 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN); 1152 skb->dev = netdev; 1153 skb->protocol = eth_type_trans(skb, skb->dev); 1154 if (netdev->features & NETIF_F_RXCSUM) 1155 skb->ip_summed = RRD_L4F(&rrd) ? 1156 CHECKSUM_NONE : CHECKSUM_UNNECESSARY; 1157 else 1158 skb_checksum_none_assert(skb); 1159 1160 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd), 1161 (bool)RRD_CVTAG(&rrd)); 1162 1163 (*num_pkts)++; 1164 } while (*num_pkts < max_pkts); 1165 1166 if (count) { 1167 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) & 1168 rx_q->process_mask; 1169 emac_reg_update32(adpt->base + rx_q->process_reg, 1170 rx_q->process_mask, proc_idx); 1171 emac_mac_rx_descs_refill(adpt, rx_q); 1172 } 1173 } 1174 1175 /* get the number of free transmit descriptors */ 1176 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q) 1177 { 1178 u32 produce_idx = tx_q->tpd.produce_idx; 1179 u32 consume_idx = tx_q->tpd.consume_idx; 1180 1181 return (consume_idx > produce_idx) ? 1182 (consume_idx - produce_idx - 1) : 1183 (tx_q->tpd.count + consume_idx - produce_idx - 1); 1184 } 1185 1186 /* Process transmit event */ 1187 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q) 1188 { 1189 u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg); 1190 u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0; 1191 struct emac_buffer *tpbuf; 1192 1193 hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift; 1194 1195 while (tx_q->tpd.consume_idx != hw_consume_idx) { 1196 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx); 1197 if (tpbuf->dma_addr) { 1198 dma_unmap_page(adpt->netdev->dev.parent, 1199 tpbuf->dma_addr, tpbuf->length, 1200 DMA_TO_DEVICE); 1201 tpbuf->dma_addr = 0; 1202 } 1203 1204 if (tpbuf->skb) { 1205 pkts_compl++; 1206 bytes_compl += tpbuf->skb->len; 1207 dev_kfree_skb_irq(tpbuf->skb); 1208 tpbuf->skb = NULL; 1209 } 1210 1211 if (++tx_q->tpd.consume_idx == tx_q->tpd.count) 1212 tx_q->tpd.consume_idx = 0; 1213 } 1214 1215 netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl); 1216 1217 if (netif_queue_stopped(adpt->netdev)) 1218 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1)) 1219 netif_wake_queue(adpt->netdev); 1220 } 1221 1222 /* Initialize all queue data structures */ 1223 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev, 1224 struct emac_adapter *adpt) 1225 { 1226 adpt->rx_q.netdev = adpt->netdev; 1227 1228 adpt->rx_q.produce_reg = EMAC_MAILBOX_0; 1229 adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK; 1230 adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT; 1231 1232 adpt->rx_q.process_reg = EMAC_MAILBOX_0; 1233 adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK; 1234 adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT; 1235 1236 adpt->rx_q.consume_reg = EMAC_MAILBOX_3; 1237 adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK; 1238 adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT; 1239 1240 adpt->rx_q.irq = &adpt->irq; 1241 adpt->rx_q.intr = adpt->irq.mask & ISR_RX_PKT; 1242 1243 adpt->tx_q.produce_reg = EMAC_MAILBOX_15; 1244 adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK; 1245 adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT; 1246 1247 adpt->tx_q.consume_reg = EMAC_MAILBOX_2; 1248 adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK; 1249 adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT; 1250 } 1251 1252 /* Fill up transmit descriptors with TSO and Checksum offload information */ 1253 static int emac_tso_csum(struct emac_adapter *adpt, 1254 struct emac_tx_queue *tx_q, 1255 struct sk_buff *skb, 1256 struct emac_tpd *tpd) 1257 { 1258 unsigned int hdr_len; 1259 int ret; 1260 1261 if (skb_is_gso(skb)) { 1262 if (skb_header_cloned(skb)) { 1263 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1264 if (unlikely(ret)) 1265 return ret; 1266 } 1267 1268 if (skb->protocol == htons(ETH_P_IP)) { 1269 u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data) 1270 + ntohs(ip_hdr(skb)->tot_len); 1271 if (skb->len > pkt_len) 1272 pskb_trim(skb, pkt_len); 1273 } 1274 1275 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1276 if (unlikely(skb->len == hdr_len)) { 1277 /* we only need to do csum */ 1278 netif_warn(adpt, tx_err, adpt->netdev, 1279 "tso not needed for packet with 0 data\n"); 1280 goto do_csum; 1281 } 1282 1283 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 1284 ip_hdr(skb)->check = 0; 1285 tcp_hdr(skb)->check = 1286 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 1287 ip_hdr(skb)->daddr, 1288 0, IPPROTO_TCP, 0); 1289 TPD_IPV4_SET(tpd, 1); 1290 } 1291 1292 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { 1293 /* ipv6 tso need an extra tpd */ 1294 struct emac_tpd extra_tpd; 1295 1296 memset(tpd, 0, sizeof(*tpd)); 1297 memset(&extra_tpd, 0, sizeof(extra_tpd)); 1298 1299 ipv6_hdr(skb)->payload_len = 0; 1300 tcp_hdr(skb)->check = 1301 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1302 &ipv6_hdr(skb)->daddr, 1303 0, IPPROTO_TCP, 0); 1304 TPD_PKT_LEN_SET(&extra_tpd, skb->len); 1305 TPD_LSO_SET(&extra_tpd, 1); 1306 TPD_LSOV_SET(&extra_tpd, 1); 1307 emac_tx_tpd_create(adpt, tx_q, &extra_tpd); 1308 TPD_LSOV_SET(tpd, 1); 1309 } 1310 1311 TPD_LSO_SET(tpd, 1); 1312 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb)); 1313 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size); 1314 return 0; 1315 } 1316 1317 do_csum: 1318 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 1319 unsigned int css, cso; 1320 1321 cso = skb_transport_offset(skb); 1322 if (unlikely(cso & 0x1)) { 1323 netdev_err(adpt->netdev, 1324 "error: payload offset should be even\n"); 1325 return -EINVAL; 1326 } 1327 css = cso + skb->csum_offset; 1328 1329 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1); 1330 TPD_CXSUM_OFFSET_SET(tpd, css >> 1); 1331 TPD_CSX_SET(tpd, 1); 1332 } 1333 1334 return 0; 1335 } 1336 1337 /* Fill up transmit descriptors */ 1338 static void emac_tx_fill_tpd(struct emac_adapter *adpt, 1339 struct emac_tx_queue *tx_q, struct sk_buff *skb, 1340 struct emac_tpd *tpd) 1341 { 1342 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 1343 unsigned int first = tx_q->tpd.produce_idx; 1344 unsigned int len = skb_headlen(skb); 1345 struct emac_buffer *tpbuf = NULL; 1346 unsigned int mapped_len = 0; 1347 unsigned int i; 1348 int count = 0; 1349 int ret; 1350 1351 /* if Large Segment Offload is (in TCP Segmentation Offload struct) */ 1352 if (TPD_LSO(tpd)) { 1353 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1354 1355 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx); 1356 tpbuf->length = mapped_len; 1357 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent, 1358 virt_to_page(skb->data), 1359 offset_in_page(skb->data), 1360 tpbuf->length, 1361 DMA_TO_DEVICE); 1362 ret = dma_mapping_error(adpt->netdev->dev.parent, 1363 tpbuf->dma_addr); 1364 if (ret) 1365 goto error; 1366 1367 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr)); 1368 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr)); 1369 TPD_BUF_LEN_SET(tpd, tpbuf->length); 1370 emac_tx_tpd_create(adpt, tx_q, tpd); 1371 count++; 1372 } 1373 1374 if (mapped_len < len) { 1375 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx); 1376 tpbuf->length = len - mapped_len; 1377 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent, 1378 virt_to_page(skb->data + 1379 mapped_len), 1380 offset_in_page(skb->data + 1381 mapped_len), 1382 tpbuf->length, DMA_TO_DEVICE); 1383 ret = dma_mapping_error(adpt->netdev->dev.parent, 1384 tpbuf->dma_addr); 1385 if (ret) 1386 goto error; 1387 1388 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr)); 1389 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr)); 1390 TPD_BUF_LEN_SET(tpd, tpbuf->length); 1391 emac_tx_tpd_create(adpt, tx_q, tpd); 1392 count++; 1393 } 1394 1395 for (i = 0; i < nr_frags; i++) { 1396 struct skb_frag_struct *frag; 1397 1398 frag = &skb_shinfo(skb)->frags[i]; 1399 1400 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx); 1401 tpbuf->length = frag->size; 1402 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent, 1403 frag->page.p, frag->page_offset, 1404 tpbuf->length, DMA_TO_DEVICE); 1405 ret = dma_mapping_error(adpt->netdev->dev.parent, 1406 tpbuf->dma_addr); 1407 if (ret) 1408 goto error; 1409 1410 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr)); 1411 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr)); 1412 TPD_BUF_LEN_SET(tpd, tpbuf->length); 1413 emac_tx_tpd_create(adpt, tx_q, tpd); 1414 count++; 1415 } 1416 1417 /* The last tpd */ 1418 wmb(); 1419 emac_tx_tpd_mark_last(adpt, tx_q); 1420 1421 /* The last buffer info contain the skb address, 1422 * so it will be freed after unmap 1423 */ 1424 tpbuf->skb = skb; 1425 1426 return; 1427 1428 error: 1429 /* One of the memory mappings failed, so undo everything */ 1430 tx_q->tpd.produce_idx = first; 1431 1432 while (count--) { 1433 tpbuf = GET_TPD_BUFFER(tx_q, first); 1434 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr, 1435 tpbuf->length, DMA_TO_DEVICE); 1436 tpbuf->dma_addr = 0; 1437 tpbuf->length = 0; 1438 1439 if (++first == tx_q->tpd.count) 1440 first = 0; 1441 } 1442 1443 dev_kfree_skb(skb); 1444 } 1445 1446 /* Transmit the packet using specified transmit queue */ 1447 int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q, 1448 struct sk_buff *skb) 1449 { 1450 struct emac_tpd tpd; 1451 u32 prod_idx; 1452 1453 memset(&tpd, 0, sizeof(tpd)); 1454 1455 if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) { 1456 dev_kfree_skb_any(skb); 1457 return NETDEV_TX_OK; 1458 } 1459 1460 if (skb_vlan_tag_present(skb)) { 1461 u16 tag; 1462 1463 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag); 1464 TPD_CVLAN_TAG_SET(&tpd, tag); 1465 TPD_INSTC_SET(&tpd, 1); 1466 } 1467 1468 if (skb_network_offset(skb) != ETH_HLEN) 1469 TPD_TYP_SET(&tpd, 1); 1470 1471 emac_tx_fill_tpd(adpt, tx_q, skb, &tpd); 1472 1473 netdev_sent_queue(adpt->netdev, skb->len); 1474 1475 /* Make sure the are enough free descriptors to hold one 1476 * maximum-sized SKB. We need one desc for each fragment, 1477 * one for the checksum (emac_tso_csum), one for TSO, and 1478 * and one for the SKB header. 1479 */ 1480 if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3)) 1481 netif_stop_queue(adpt->netdev); 1482 1483 /* update produce idx */ 1484 prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) & 1485 tx_q->produce_mask; 1486 emac_reg_update32(adpt->base + tx_q->produce_reg, 1487 tx_q->produce_mask, prod_idx); 1488 1489 return NETDEV_TX_OK; 1490 } 1491