1 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12 
13 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
14  */
15 
16 #include <linux/tcp.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/crc32.h>
20 #include <linux/if_vlan.h>
21 #include <linux/jiffies.h>
22 #include <linux/phy.h>
23 #include <linux/of.h>
24 #include <net/ip6_checksum.h>
25 #include "emac.h"
26 #include "emac-sgmii.h"
27 
28 /* EMAC base register offsets */
29 #define EMAC_MAC_CTRL			0x001480
30 #define EMAC_WOL_CTRL0			0x0014a0
31 #define EMAC_RSS_KEY0			0x0014b0
32 #define EMAC_H1TPD_BASE_ADDR_LO		0x0014e0
33 #define EMAC_H2TPD_BASE_ADDR_LO		0x0014e4
34 #define EMAC_H3TPD_BASE_ADDR_LO		0x0014e8
35 #define EMAC_INTER_SRAM_PART9		0x001534
36 #define EMAC_DESC_CTRL_0		0x001540
37 #define EMAC_DESC_CTRL_1		0x001544
38 #define EMAC_DESC_CTRL_2		0x001550
39 #define EMAC_DESC_CTRL_10		0x001554
40 #define EMAC_DESC_CTRL_12		0x001558
41 #define EMAC_DESC_CTRL_13		0x00155c
42 #define EMAC_DESC_CTRL_3		0x001560
43 #define EMAC_DESC_CTRL_4		0x001564
44 #define EMAC_DESC_CTRL_5		0x001568
45 #define EMAC_DESC_CTRL_14		0x00156c
46 #define EMAC_DESC_CTRL_15		0x001570
47 #define EMAC_DESC_CTRL_16		0x001574
48 #define EMAC_DESC_CTRL_6		0x001578
49 #define EMAC_DESC_CTRL_8		0x001580
50 #define EMAC_DESC_CTRL_9		0x001584
51 #define EMAC_DESC_CTRL_11		0x001588
52 #define EMAC_TXQ_CTRL_0			0x001590
53 #define EMAC_TXQ_CTRL_1			0x001594
54 #define EMAC_TXQ_CTRL_2			0x001598
55 #define EMAC_RXQ_CTRL_0			0x0015a0
56 #define EMAC_RXQ_CTRL_1			0x0015a4
57 #define EMAC_RXQ_CTRL_2			0x0015a8
58 #define EMAC_RXQ_CTRL_3			0x0015ac
59 #define EMAC_BASE_CPU_NUMBER		0x0015b8
60 #define EMAC_DMA_CTRL			0x0015c0
61 #define EMAC_MAILBOX_0			0x0015e0
62 #define EMAC_MAILBOX_5			0x0015e4
63 #define EMAC_MAILBOX_6			0x0015e8
64 #define EMAC_MAILBOX_13			0x0015ec
65 #define EMAC_MAILBOX_2			0x0015f4
66 #define EMAC_MAILBOX_3			0x0015f8
67 #define EMAC_MAILBOX_11			0x00160c
68 #define EMAC_AXI_MAST_CTRL		0x001610
69 #define EMAC_MAILBOX_12			0x001614
70 #define EMAC_MAILBOX_9			0x001618
71 #define EMAC_MAILBOX_10			0x00161c
72 #define EMAC_ATHR_HEADER_CTRL		0x001620
73 #define EMAC_CLK_GATE_CTRL		0x001814
74 #define EMAC_MISC_CTRL			0x001990
75 #define EMAC_MAILBOX_7			0x0019e0
76 #define EMAC_MAILBOX_8			0x0019e4
77 #define EMAC_MAILBOX_15			0x001bd4
78 #define EMAC_MAILBOX_16			0x001bd8
79 
80 /* EMAC_MAC_CTRL */
81 #define SINGLE_PAUSE_MODE       	0x10000000
82 #define DEBUG_MODE                      0x08000000
83 #define BROAD_EN                        0x04000000
84 #define MULTI_ALL                       0x02000000
85 #define RX_CHKSUM_EN                    0x01000000
86 #define HUGE                            0x00800000
87 #define SPEED(x)			(((x) & 0x3) << 20)
88 #define SPEED_MASK			SPEED(0x3)
89 #define SIMR                            0x00080000
90 #define TPAUSE                          0x00010000
91 #define PROM_MODE                       0x00008000
92 #define VLAN_STRIP                      0x00004000
93 #define PRLEN_BMSK                      0x00003c00
94 #define PRLEN_SHFT                      10
95 #define HUGEN                           0x00000200
96 #define FLCHK                           0x00000100
97 #define PCRCE                           0x00000080
98 #define CRCE                            0x00000040
99 #define FULLD                           0x00000020
100 #define MAC_LP_EN                       0x00000010
101 #define RXFC                            0x00000008
102 #define TXFC                            0x00000004
103 #define RXEN                            0x00000002
104 #define TXEN                            0x00000001
105 
106 
107 /* EMAC_WOL_CTRL0 */
108 #define LK_CHG_PME			0x20
109 #define LK_CHG_EN			0x10
110 #define MG_FRAME_PME			0x8
111 #define MG_FRAME_EN			0x4
112 #define WK_FRAME_EN			0x1
113 
114 /* EMAC_DESC_CTRL_3 */
115 #define RFD_RING_SIZE_BMSK                                       0xfff
116 
117 /* EMAC_DESC_CTRL_4 */
118 #define RX_BUFFER_SIZE_BMSK                                     0xffff
119 
120 /* EMAC_DESC_CTRL_6 */
121 #define RRD_RING_SIZE_BMSK                                       0xfff
122 
123 /* EMAC_DESC_CTRL_9 */
124 #define TPD_RING_SIZE_BMSK                                      0xffff
125 
126 /* EMAC_TXQ_CTRL_0 */
127 #define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
128 #define NUM_TXF_BURST_PREF_SHFT                                     16
129 #define LS_8023_SP                                                0x80
130 #define TXQ_MODE                                                  0x40
131 #define TXQ_EN                                                    0x20
132 #define IP_OP_SP                                                  0x10
133 #define NUM_TPD_BURST_PREF_BMSK                                    0xf
134 #define NUM_TPD_BURST_PREF_SHFT                                      0
135 
136 /* EMAC_TXQ_CTRL_1 */
137 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
138 
139 /* EMAC_TXQ_CTRL_2 */
140 #define TXF_HWM_BMSK                                         0xfff0000
141 #define TXF_LWM_BMSK                                             0xfff
142 
143 /* EMAC_RXQ_CTRL_0 */
144 #define RXQ_EN                                                 BIT(31)
145 #define CUT_THRU_EN                                            BIT(30)
146 #define RSS_HASH_EN                                            BIT(29)
147 #define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
148 #define NUM_RFD_BURST_PREF_SHFT                                     20
149 #define IDT_TABLE_SIZE_BMSK                                    0x1ff00
150 #define IDT_TABLE_SIZE_SHFT                                          8
151 #define SP_IPV6                                                   0x80
152 
153 /* EMAC_RXQ_CTRL_1 */
154 #define JUMBO_1KAH_BMSK                                         0xf000
155 #define JUMBO_1KAH_SHFT                                             12
156 #define RFD_PREF_LOW_TH                                           0x10
157 #define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
158 #define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
159 #define RFD_PREF_UP_TH                                            0x10
160 #define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
161 #define RFD_PREF_UP_THRESHOLD_SHFT                                   0
162 
163 /* EMAC_RXQ_CTRL_2 */
164 #define RXF_DOF_THRESFHOLD                                       0x1a0
165 #define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
166 #define RXF_DOF_THRESHOLD_SHFT                                      16
167 #define RXF_UOF_THRESFHOLD                                        0xbe
168 #define RXF_UOF_THRESHOLD_BMSK                                   0xfff
169 #define RXF_UOF_THRESHOLD_SHFT                                       0
170 
171 /* EMAC_RXQ_CTRL_3 */
172 #define RXD_TIMER_BMSK                                      0xffff0000
173 #define RXD_THRESHOLD_BMSK                                       0xfff
174 #define RXD_THRESHOLD_SHFT                                           0
175 
176 /* EMAC_DMA_CTRL */
177 #define DMAW_DLY_CNT_BMSK                                      0xf0000
178 #define DMAW_DLY_CNT_SHFT                                           16
179 #define DMAR_DLY_CNT_BMSK                                       0xf800
180 #define DMAR_DLY_CNT_SHFT                                           11
181 #define DMAR_REQ_PRI                                             0x400
182 #define REGWRBLEN_BMSK                                           0x380
183 #define REGWRBLEN_SHFT                                               7
184 #define REGRDBLEN_BMSK                                            0x70
185 #define REGRDBLEN_SHFT                                               4
186 #define OUT_ORDER_MODE                                             0x4
187 #define ENH_ORDER_MODE                                             0x2
188 #define IN_ORDER_MODE                                              0x1
189 
190 /* EMAC_MAILBOX_13 */
191 #define RFD3_PROC_IDX_BMSK                                   0xfff0000
192 #define RFD3_PROC_IDX_SHFT                                          16
193 #define RFD3_PROD_IDX_BMSK                                       0xfff
194 #define RFD3_PROD_IDX_SHFT                                           0
195 
196 /* EMAC_MAILBOX_2 */
197 #define NTPD_CONS_IDX_BMSK                                  0xffff0000
198 #define NTPD_CONS_IDX_SHFT                                          16
199 
200 /* EMAC_MAILBOX_3 */
201 #define RFD0_CONS_IDX_BMSK                                       0xfff
202 #define RFD0_CONS_IDX_SHFT                                           0
203 
204 /* EMAC_MAILBOX_11 */
205 #define H3TPD_PROD_IDX_BMSK                                 0xffff0000
206 #define H3TPD_PROD_IDX_SHFT                                         16
207 
208 /* EMAC_AXI_MAST_CTRL */
209 #define DATA_BYTE_SWAP                                             0x8
210 #define MAX_BOUND                                                  0x2
211 #define MAX_BTYPE                                                  0x1
212 
213 /* EMAC_MAILBOX_12 */
214 #define H3TPD_CONS_IDX_BMSK                                 0xffff0000
215 #define H3TPD_CONS_IDX_SHFT                                         16
216 
217 /* EMAC_MAILBOX_9 */
218 #define H2TPD_PROD_IDX_BMSK                                     0xffff
219 #define H2TPD_PROD_IDX_SHFT                                          0
220 
221 /* EMAC_MAILBOX_10 */
222 #define H1TPD_CONS_IDX_BMSK                                 0xffff0000
223 #define H1TPD_CONS_IDX_SHFT                                         16
224 #define H2TPD_CONS_IDX_BMSK                                     0xffff
225 #define H2TPD_CONS_IDX_SHFT                                          0
226 
227 /* EMAC_ATHR_HEADER_CTRL */
228 #define HEADER_CNT_EN                                              0x2
229 #define HEADER_ENABLE                                              0x1
230 
231 /* EMAC_MAILBOX_0 */
232 #define RFD0_PROC_IDX_BMSK                                   0xfff0000
233 #define RFD0_PROC_IDX_SHFT                                          16
234 #define RFD0_PROD_IDX_BMSK                                       0xfff
235 #define RFD0_PROD_IDX_SHFT                                           0
236 
237 /* EMAC_MAILBOX_5 */
238 #define RFD1_PROC_IDX_BMSK                                   0xfff0000
239 #define RFD1_PROC_IDX_SHFT                                          16
240 #define RFD1_PROD_IDX_BMSK                                       0xfff
241 #define RFD1_PROD_IDX_SHFT                                           0
242 
243 /* EMAC_MISC_CTRL */
244 #define RX_UNCPL_INT_EN                                            0x1
245 
246 /* EMAC_MAILBOX_7 */
247 #define RFD2_CONS_IDX_BMSK                                   0xfff0000
248 #define RFD2_CONS_IDX_SHFT                                          16
249 #define RFD1_CONS_IDX_BMSK                                       0xfff
250 #define RFD1_CONS_IDX_SHFT                                           0
251 
252 /* EMAC_MAILBOX_8 */
253 #define RFD3_CONS_IDX_BMSK                                       0xfff
254 #define RFD3_CONS_IDX_SHFT                                           0
255 
256 /* EMAC_MAILBOX_15 */
257 #define NTPD_PROD_IDX_BMSK                                      0xffff
258 #define NTPD_PROD_IDX_SHFT                                           0
259 
260 /* EMAC_MAILBOX_16 */
261 #define H1TPD_PROD_IDX_BMSK                                     0xffff
262 #define H1TPD_PROD_IDX_SHFT                                          0
263 
264 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
265 #define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
266 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
267 #define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
268 
269 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
270 #define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
271 #define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
272 
273 struct emac_skb_cb {
274 	u32           tpd_idx;
275 	unsigned long jiffies;
276 };
277 
278 #define EMAC_SKB_CB(skb)	((struct emac_skb_cb *)(skb)->cb)
279 #define EMAC_RSS_IDT_SIZE	256
280 #define JUMBO_1KAH		0x4
281 #define RXD_TH			0x100
282 #define EMAC_TPD_LAST_FRAGMENT	0x80000000
283 #define EMAC_TPD_TSTAMP_SAVE	0x80000000
284 
285 /* EMAC Errors in emac_rrd.word[3] */
286 #define EMAC_RRD_L4F		BIT(14)
287 #define EMAC_RRD_IPF		BIT(15)
288 #define EMAC_RRD_CRC		BIT(21)
289 #define EMAC_RRD_FAE		BIT(22)
290 #define EMAC_RRD_TRN		BIT(23)
291 #define EMAC_RRD_RNT		BIT(24)
292 #define EMAC_RRD_INC		BIT(25)
293 #define EMAC_RRD_FOV		BIT(29)
294 #define EMAC_RRD_LEN		BIT(30)
295 
296 /* Error bits that will result in a received frame being discarded */
297 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
298 			EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
299 			EMAC_RRD_FOV | EMAC_RRD_LEN)
300 #define EMAC_RRD_STATS_DW_IDX 3
301 
302 #define EMAC_RRD(RXQ, SIZE, IDX)	((RXQ)->rrd.v_addr + (SIZE * (IDX)))
303 #define EMAC_RFD(RXQ, SIZE, IDX)	((RXQ)->rfd.v_addr + (SIZE * (IDX)))
304 #define EMAC_TPD(TXQ, SIZE, IDX)	((TXQ)->tpd.v_addr + (SIZE * (IDX)))
305 
306 #define GET_RFD_BUFFER(RXQ, IDX)	(&((RXQ)->rfd.rfbuff[(IDX)]))
307 #define GET_TPD_BUFFER(RTQ, IDX)	(&((RTQ)->tpd.tpbuff[(IDX)]))
308 
309 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD	8
310 
311 #define ISR_RX_PKT      (\
312 	RX_PKT_INT0     |\
313 	RX_PKT_INT1     |\
314 	RX_PKT_INT2     |\
315 	RX_PKT_INT3)
316 
317 #define EMAC_MAC_IRQ_RES                                    	"core0"
318 
319 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
320 {
321 	u32 crc32, bit, reg, mta;
322 
323 	/* Calculate the CRC of the MAC address */
324 	crc32 = ether_crc(ETH_ALEN, addr);
325 
326 	/* The HASH Table is an array of 2 32-bit registers. It is
327 	 * treated like an array of 64 bits (BitArray[hash_value]).
328 	 * Use the upper 6 bits of the above CRC as the hash value.
329 	 */
330 	reg = (crc32 >> 31) & 0x1;
331 	bit = (crc32 >> 26) & 0x1F;
332 
333 	mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
334 	mta |= BIT(bit);
335 	writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
336 }
337 
338 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
339 {
340 	writel(0, adpt->base + EMAC_HASH_TAB_REG0);
341 	writel(0, adpt->base + EMAC_HASH_TAB_REG1);
342 }
343 
344 /* definitions for RSS */
345 #define EMAC_RSS_KEY(_i, _type) \
346 		(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
347 #define EMAC_RSS_TBL(_i, _type) \
348 		(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
349 
350 /* Config MAC modes */
351 void emac_mac_mode_config(struct emac_adapter *adpt)
352 {
353 	struct net_device *netdev = adpt->netdev;
354 	u32 mac;
355 
356 	mac = readl(adpt->base + EMAC_MAC_CTRL);
357 	mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
358 
359 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
360 		mac |= VLAN_STRIP;
361 
362 	if (netdev->flags & IFF_PROMISC)
363 		mac |= PROM_MODE;
364 
365 	if (netdev->flags & IFF_ALLMULTI)
366 		mac |= MULTI_ALL;
367 
368 	writel(mac, adpt->base + EMAC_MAC_CTRL);
369 }
370 
371 /* Config descriptor rings */
372 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
373 {
374 	static const unsigned short tpd_q_offset[] = {
375 		EMAC_DESC_CTRL_8,        EMAC_H1TPD_BASE_ADDR_LO,
376 		EMAC_H2TPD_BASE_ADDR_LO, EMAC_H3TPD_BASE_ADDR_LO};
377 	static const unsigned short rfd_q_offset[] = {
378 		EMAC_DESC_CTRL_2,        EMAC_DESC_CTRL_10,
379 		EMAC_DESC_CTRL_12,       EMAC_DESC_CTRL_13};
380 	static const unsigned short rrd_q_offset[] = {
381 		EMAC_DESC_CTRL_5,        EMAC_DESC_CTRL_14,
382 		EMAC_DESC_CTRL_15,       EMAC_DESC_CTRL_16};
383 
384 	/* TPD (Transmit Packet Descriptor) */
385 	writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
386 	       adpt->base + EMAC_DESC_CTRL_1);
387 
388 	writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
389 	       adpt->base + tpd_q_offset[0]);
390 
391 	writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
392 	       adpt->base + EMAC_DESC_CTRL_9);
393 
394 	/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
395 	writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
396 	       adpt->base + EMAC_DESC_CTRL_0);
397 
398 	writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
399 	       adpt->base + rfd_q_offset[0]);
400 	writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
401 	       adpt->base + rrd_q_offset[0]);
402 
403 	writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
404 	       adpt->base + EMAC_DESC_CTRL_3);
405 	writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
406 	       adpt->base + EMAC_DESC_CTRL_6);
407 
408 	writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
409 	       adpt->base + EMAC_DESC_CTRL_4);
410 
411 	writel(0, adpt->base + EMAC_DESC_CTRL_11);
412 
413 	/* Load all of the base addresses above and ensure that triggering HW to
414 	 * read ring pointers is flushed
415 	 */
416 	writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
417 }
418 
419 /* Config transmit parameters */
420 static void emac_mac_tx_config(struct emac_adapter *adpt)
421 {
422 	u32 val;
423 
424 	writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
425 	       JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
426 
427 	val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
428 	       NUM_TPD_BURST_PREF_BMSK;
429 
430 	val |= TXQ_MODE | LS_8023_SP;
431 	val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
432 		NUM_TXF_BURST_PREF_BMSK;
433 
434 	writel(val, adpt->base + EMAC_TXQ_CTRL_0);
435 	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
436 			  (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
437 }
438 
439 /* Config receive parameters */
440 static void emac_mac_rx_config(struct emac_adapter *adpt)
441 {
442 	u32 val;
443 
444 	val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
445 	       NUM_RFD_BURST_PREF_BMSK;
446 	val |= (SP_IPV6 | CUT_THRU_EN);
447 
448 	writel(val, adpt->base + EMAC_RXQ_CTRL_0);
449 
450 	val = readl(adpt->base + EMAC_RXQ_CTRL_1);
451 	val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
452 		 RFD_PREF_UP_THRESHOLD_BMSK);
453 	val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
454 		(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
455 		(RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
456 	writel(val, adpt->base + EMAC_RXQ_CTRL_1);
457 
458 	val = readl(adpt->base + EMAC_RXQ_CTRL_2);
459 	val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
460 	val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
461 		(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
462 	writel(val, adpt->base + EMAC_RXQ_CTRL_2);
463 
464 	val = readl(adpt->base + EMAC_RXQ_CTRL_3);
465 	val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
466 	val |= RXD_TH << RXD_THRESHOLD_SHFT;
467 	writel(val, adpt->base + EMAC_RXQ_CTRL_3);
468 }
469 
470 /* Config dma */
471 static void emac_mac_dma_config(struct emac_adapter *adpt)
472 {
473 	u32 dma_ctrl = DMAR_REQ_PRI;
474 
475 	switch (adpt->dma_order) {
476 	case emac_dma_ord_in:
477 		dma_ctrl |= IN_ORDER_MODE;
478 		break;
479 	case emac_dma_ord_enh:
480 		dma_ctrl |= ENH_ORDER_MODE;
481 		break;
482 	case emac_dma_ord_out:
483 		dma_ctrl |= OUT_ORDER_MODE;
484 		break;
485 	default:
486 		break;
487 	}
488 
489 	dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
490 						REGRDBLEN_BMSK;
491 	dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
492 						REGWRBLEN_BMSK;
493 	dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
494 						DMAR_DLY_CNT_BMSK;
495 	dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
496 						DMAW_DLY_CNT_BMSK;
497 
498 	/* config DMA and ensure that configuration is flushed to HW */
499 	writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
500 }
501 
502 /* set MAC address */
503 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
504 {
505 	u32 sta;
506 
507 	/* for example: 00-A0-C6-11-22-33
508 	 * 0<-->C6112233, 1<-->00A0.
509 	 */
510 
511 	/* low 32bit word */
512 	sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
513 	      (((u32)addr[4]) << 8)  | (((u32)addr[5]));
514 	writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
515 
516 	/* hight 32bit word */
517 	sta = (((u32)addr[0]) << 8) | (u32)addr[1];
518 	writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
519 }
520 
521 static void emac_mac_config(struct emac_adapter *adpt)
522 {
523 	struct net_device *netdev = adpt->netdev;
524 	unsigned int max_frame;
525 	u32 val;
526 
527 	emac_set_mac_address(adpt, netdev->dev_addr);
528 
529 	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
530 	adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
531 		ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
532 
533 	emac_mac_dma_rings_config(adpt);
534 
535 	writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
536 	       adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
537 
538 	emac_mac_tx_config(adpt);
539 	emac_mac_rx_config(adpt);
540 	emac_mac_dma_config(adpt);
541 
542 	val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
543 	val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
544 	val |= MAX_BTYPE;
545 	writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
546 	writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
547 	writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
548 }
549 
550 void emac_mac_reset(struct emac_adapter *adpt)
551 {
552 	emac_mac_stop(adpt);
553 
554 	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
555 	usleep_range(100, 150); /* reset may take up to 100usec */
556 
557 	/* interrupt clear-on-read */
558 	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
559 }
560 
561 void emac_mac_start(struct emac_adapter *adpt)
562 {
563 	struct phy_device *phydev = adpt->phydev;
564 	u32 mac, csr1;
565 
566 	/* enable tx queue */
567 	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
568 
569 	/* enable rx queue */
570 	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
571 
572 	/* enable mac control */
573 	mac = readl(adpt->base + EMAC_MAC_CTRL);
574 	csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
575 
576 	mac |= TXEN | RXEN;     /* enable RX/TX */
577 
578 	/* We don't have ethtool support yet, so force flow-control mode
579 	 * to 'full' always.
580 	 */
581 	mac |= TXFC | RXFC;
582 
583 	/* setup link speed */
584 	mac &= ~SPEED_MASK;
585 	if (phydev->speed == SPEED_1000) {
586 		mac |= SPEED(2);
587 		csr1 |= FREQ_MODE;
588 	} else {
589 		mac |= SPEED(1);
590 		csr1 &= ~FREQ_MODE;
591 	}
592 
593 	if (phydev->duplex == DUPLEX_FULL)
594 		mac |= FULLD;
595 	else
596 		mac &= ~FULLD;
597 
598 	/* other parameters */
599 	mac |= (CRCE | PCRCE);
600 	mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
601 	mac |= BROAD_EN;
602 	mac |= FLCHK;
603 	mac &= ~RX_CHKSUM_EN;
604 	mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
605 		 DEBUG_MODE | SINGLE_PAUSE_MODE);
606 
607 	writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
608 
609 	writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
610 
611 	/* enable interrupt read clear, low power sleep mode and
612 	 * the irq moderators
613 	 */
614 
615 	writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
616 	writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
617 			IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
618 
619 	emac_mac_mode_config(adpt);
620 
621 	emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
622 			  (HEADER_ENABLE | HEADER_CNT_EN), 0);
623 
624 	emac_reg_update32(adpt->csr + EMAC_EMAC_WRAPPER_CSR2, 0, WOL_EN);
625 }
626 
627 void emac_mac_stop(struct emac_adapter *adpt)
628 {
629 	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
630 	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
631 	emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
632 	usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
633 }
634 
635 /* Free all descriptors of given transmit queue */
636 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
637 {
638 	struct emac_tx_queue *tx_q = &adpt->tx_q;
639 	unsigned int i;
640 	size_t size;
641 
642 	/* ring already cleared, nothing to do */
643 	if (!tx_q->tpd.tpbuff)
644 		return;
645 
646 	for (i = 0; i < tx_q->tpd.count; i++) {
647 		struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
648 
649 		if (tpbuf->dma_addr) {
650 			dma_unmap_single(adpt->netdev->dev.parent,
651 					 tpbuf->dma_addr, tpbuf->length,
652 					 DMA_TO_DEVICE);
653 			tpbuf->dma_addr = 0;
654 		}
655 		if (tpbuf->skb) {
656 			dev_kfree_skb_any(tpbuf->skb);
657 			tpbuf->skb = NULL;
658 		}
659 	}
660 
661 	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
662 	memset(tx_q->tpd.tpbuff, 0, size);
663 
664 	/* clear the descriptor ring */
665 	memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
666 
667 	tx_q->tpd.consume_idx = 0;
668 	tx_q->tpd.produce_idx = 0;
669 }
670 
671 /* Free all descriptors of given receive queue */
672 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
673 {
674 	struct device *dev = adpt->netdev->dev.parent;
675 	struct emac_rx_queue *rx_q = &adpt->rx_q;
676 	unsigned int i;
677 	size_t size;
678 
679 	/* ring already cleared, nothing to do */
680 	if (!rx_q->rfd.rfbuff)
681 		return;
682 
683 	for (i = 0; i < rx_q->rfd.count; i++) {
684 		struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
685 
686 		if (rfbuf->dma_addr) {
687 			dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
688 					 DMA_FROM_DEVICE);
689 			rfbuf->dma_addr = 0;
690 		}
691 		if (rfbuf->skb) {
692 			dev_kfree_skb(rfbuf->skb);
693 			rfbuf->skb = NULL;
694 		}
695 	}
696 
697 	size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
698 	memset(rx_q->rfd.rfbuff, 0, size);
699 
700 	/* clear the descriptor rings */
701 	memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
702 	rx_q->rrd.produce_idx = 0;
703 	rx_q->rrd.consume_idx = 0;
704 
705 	memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
706 	rx_q->rfd.produce_idx = 0;
707 	rx_q->rfd.consume_idx = 0;
708 }
709 
710 /* Free all buffers associated with given transmit queue */
711 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
712 {
713 	struct emac_tx_queue *tx_q = &adpt->tx_q;
714 
715 	emac_tx_q_descs_free(adpt);
716 
717 	kfree(tx_q->tpd.tpbuff);
718 	tx_q->tpd.tpbuff = NULL;
719 	tx_q->tpd.v_addr = NULL;
720 	tx_q->tpd.dma_addr = 0;
721 	tx_q->tpd.size = 0;
722 }
723 
724 /* Allocate TX descriptor ring for the given transmit queue */
725 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
726 				struct emac_tx_queue *tx_q)
727 {
728 	struct emac_ring_header *ring_header = &adpt->ring_header;
729 	size_t size;
730 
731 	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
732 	tx_q->tpd.tpbuff = kzalloc(size, GFP_KERNEL);
733 	if (!tx_q->tpd.tpbuff)
734 		return -ENOMEM;
735 
736 	tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
737 	tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
738 	tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
739 	ring_header->used += ALIGN(tx_q->tpd.size, 8);
740 	tx_q->tpd.produce_idx = 0;
741 	tx_q->tpd.consume_idx = 0;
742 
743 	return 0;
744 }
745 
746 /* Free all buffers associated with given transmit queue */
747 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
748 {
749 	struct emac_rx_queue *rx_q = &adpt->rx_q;
750 
751 	emac_rx_q_free_descs(adpt);
752 
753 	kfree(rx_q->rfd.rfbuff);
754 	rx_q->rfd.rfbuff   = NULL;
755 
756 	rx_q->rfd.v_addr   = NULL;
757 	rx_q->rfd.dma_addr = 0;
758 	rx_q->rfd.size     = 0;
759 
760 	rx_q->rrd.v_addr   = NULL;
761 	rx_q->rrd.dma_addr = 0;
762 	rx_q->rrd.size     = 0;
763 }
764 
765 /* Allocate RX descriptor rings for the given receive queue */
766 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
767 {
768 	struct emac_ring_header *ring_header = &adpt->ring_header;
769 	struct emac_rx_queue *rx_q = &adpt->rx_q;
770 	size_t size;
771 
772 	size = sizeof(struct emac_buffer) * rx_q->rfd.count;
773 	rx_q->rfd.rfbuff = kzalloc(size, GFP_KERNEL);
774 	if (!rx_q->rfd.rfbuff)
775 		return -ENOMEM;
776 
777 	rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
778 	rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
779 
780 	rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
781 	rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
782 	ring_header->used += ALIGN(rx_q->rrd.size, 8);
783 
784 	rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
785 	rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
786 	ring_header->used += ALIGN(rx_q->rfd.size, 8);
787 
788 	rx_q->rrd.produce_idx = 0;
789 	rx_q->rrd.consume_idx = 0;
790 
791 	rx_q->rfd.produce_idx = 0;
792 	rx_q->rfd.consume_idx = 0;
793 
794 	return 0;
795 }
796 
797 /* Allocate all TX and RX descriptor rings */
798 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
799 {
800 	struct emac_ring_header *ring_header = &adpt->ring_header;
801 	struct device *dev = adpt->netdev->dev.parent;
802 	unsigned int num_tx_descs = adpt->tx_desc_cnt;
803 	unsigned int num_rx_descs = adpt->rx_desc_cnt;
804 	int ret;
805 
806 	adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
807 
808 	adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
809 	adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
810 
811 	/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
812 	 * hence the additional padding bytes are allocated.
813 	 */
814 	ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
815 			    num_rx_descs * (adpt->rfd_size * 4) +
816 			    num_rx_descs * (adpt->rrd_size * 4) +
817 			    8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
818 
819 	ring_header->used = 0;
820 	ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
821 						 &ring_header->dma_addr,
822 						 GFP_KERNEL);
823 	if (!ring_header->v_addr)
824 		return -ENOMEM;
825 
826 	ring_header->used = ALIGN(ring_header->dma_addr, 8) -
827 							ring_header->dma_addr;
828 
829 	ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
830 	if (ret) {
831 		netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
832 		goto err_alloc_tx;
833 	}
834 
835 	ret = emac_rx_descs_alloc(adpt);
836 	if (ret) {
837 		netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
838 		goto err_alloc_rx;
839 	}
840 
841 	return 0;
842 
843 err_alloc_rx:
844 	emac_tx_q_bufs_free(adpt);
845 err_alloc_tx:
846 	dma_free_coherent(dev, ring_header->size,
847 			  ring_header->v_addr, ring_header->dma_addr);
848 
849 	ring_header->v_addr   = NULL;
850 	ring_header->dma_addr = 0;
851 	ring_header->size     = 0;
852 	ring_header->used     = 0;
853 
854 	return ret;
855 }
856 
857 /* Free all TX and RX descriptor rings */
858 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
859 {
860 	struct emac_ring_header *ring_header = &adpt->ring_header;
861 	struct device *dev = adpt->netdev->dev.parent;
862 
863 	emac_tx_q_bufs_free(adpt);
864 	emac_rx_q_bufs_free(adpt);
865 
866 	dma_free_coherent(dev, ring_header->size,
867 			  ring_header->v_addr, ring_header->dma_addr);
868 
869 	ring_header->v_addr   = NULL;
870 	ring_header->dma_addr = 0;
871 	ring_header->size     = 0;
872 	ring_header->used     = 0;
873 }
874 
875 /* Initialize descriptor rings */
876 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
877 {
878 	unsigned int i;
879 
880 	adpt->tx_q.tpd.produce_idx = 0;
881 	adpt->tx_q.tpd.consume_idx = 0;
882 	for (i = 0; i < adpt->tx_q.tpd.count; i++)
883 		adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
884 
885 	adpt->rx_q.rrd.produce_idx = 0;
886 	adpt->rx_q.rrd.consume_idx = 0;
887 	adpt->rx_q.rfd.produce_idx = 0;
888 	adpt->rx_q.rfd.consume_idx = 0;
889 	for (i = 0; i < adpt->rx_q.rfd.count; i++)
890 		adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
891 }
892 
893 /* Produce new receive free descriptor */
894 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
895 				   struct emac_rx_queue *rx_q,
896 				   dma_addr_t addr)
897 {
898 	u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
899 
900 	*(hw_rfd++) = lower_32_bits(addr);
901 	*hw_rfd = upper_32_bits(addr);
902 
903 	if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
904 		rx_q->rfd.produce_idx = 0;
905 }
906 
907 /* Fill up receive queue's RFD with preallocated receive buffers */
908 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
909 				    struct emac_rx_queue *rx_q)
910 {
911 	struct emac_buffer *curr_rxbuf;
912 	struct emac_buffer *next_rxbuf;
913 	unsigned int count = 0;
914 	u32 next_produce_idx;
915 
916 	next_produce_idx = rx_q->rfd.produce_idx + 1;
917 	if (next_produce_idx == rx_q->rfd.count)
918 		next_produce_idx = 0;
919 
920 	curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
921 	next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
922 
923 	/* this always has a blank rx_buffer*/
924 	while (!next_rxbuf->dma_addr) {
925 		struct sk_buff *skb;
926 		int ret;
927 
928 		skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
929 		if (!skb)
930 			break;
931 
932 		curr_rxbuf->dma_addr =
933 			dma_map_single(adpt->netdev->dev.parent, skb->data,
934 				       curr_rxbuf->length, DMA_FROM_DEVICE);
935 		ret = dma_mapping_error(adpt->netdev->dev.parent,
936 					curr_rxbuf->dma_addr);
937 		if (ret) {
938 			dev_kfree_skb(skb);
939 			break;
940 		}
941 		curr_rxbuf->skb = skb;
942 		curr_rxbuf->length = adpt->rxbuf_size;
943 
944 		emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
945 		next_produce_idx = rx_q->rfd.produce_idx + 1;
946 		if (next_produce_idx == rx_q->rfd.count)
947 			next_produce_idx = 0;
948 
949 		curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
950 		next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
951 		count++;
952 	}
953 
954 	if (count) {
955 		u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
956 				rx_q->produce_mask;
957 		emac_reg_update32(adpt->base + rx_q->produce_reg,
958 				  rx_q->produce_mask, prod_idx);
959 	}
960 }
961 
962 static void emac_adjust_link(struct net_device *netdev)
963 {
964 	struct emac_adapter *adpt = netdev_priv(netdev);
965 	struct phy_device *phydev = netdev->phydev;
966 
967 	if (phydev->link)
968 		emac_mac_start(adpt);
969 	else
970 		emac_mac_stop(adpt);
971 
972 	phy_print_status(phydev);
973 }
974 
975 /* Bringup the interface/HW */
976 int emac_mac_up(struct emac_adapter *adpt)
977 {
978 	struct net_device *netdev = adpt->netdev;
979 	struct emac_irq	*irq = &adpt->irq;
980 	int ret;
981 
982 	emac_mac_rx_tx_ring_reset_all(adpt);
983 	emac_mac_config(adpt);
984 
985 	ret = request_irq(irq->irq, emac_isr, 0, EMAC_MAC_IRQ_RES, irq);
986 	if (ret) {
987 		netdev_err(adpt->netdev, "could not request %s irq\n",
988 			   EMAC_MAC_IRQ_RES);
989 		return ret;
990 	}
991 
992 	emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
993 
994 	ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
995 				 PHY_INTERFACE_MODE_SGMII);
996 	if (ret) {
997 		netdev_err(adpt->netdev, "could not connect phy\n");
998 		free_irq(irq->irq, irq);
999 		return ret;
1000 	}
1001 
1002 	/* enable mac irq */
1003 	writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
1004 	writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
1005 
1006 	adpt->phydev->irq = PHY_IGNORE_INTERRUPT;
1007 	phy_start(adpt->phydev);
1008 
1009 	napi_enable(&adpt->rx_q.napi);
1010 	netif_start_queue(netdev);
1011 
1012 	return 0;
1013 }
1014 
1015 /* Bring down the interface/HW */
1016 void emac_mac_down(struct emac_adapter *adpt)
1017 {
1018 	struct net_device *netdev = adpt->netdev;
1019 
1020 	netif_stop_queue(netdev);
1021 	napi_disable(&adpt->rx_q.napi);
1022 
1023 	phy_stop(adpt->phydev);
1024 
1025 	/* Interrupts must be disabled before the PHY is disconnected, to
1026 	 * avoid a race condition where adjust_link is null when we get
1027 	 * an interrupt.
1028 	 */
1029 	writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
1030 	writel(0, adpt->base + EMAC_INT_MASK);
1031 	synchronize_irq(adpt->irq.irq);
1032 	free_irq(adpt->irq.irq, &adpt->irq);
1033 
1034 	phy_disconnect(adpt->phydev);
1035 
1036 	emac_mac_reset(adpt);
1037 
1038 	emac_tx_q_descs_free(adpt);
1039 	netdev_reset_queue(adpt->netdev);
1040 	emac_rx_q_free_descs(adpt);
1041 }
1042 
1043 /* Consume next received packet descriptor */
1044 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
1045 				struct emac_rx_queue *rx_q,
1046 				struct emac_rrd *rrd)
1047 {
1048 	u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
1049 
1050 	rrd->word[3] = *(hw_rrd + 3);
1051 
1052 	if (!RRD_UPDT(rrd))
1053 		return false;
1054 
1055 	rrd->word[4] = 0;
1056 	rrd->word[5] = 0;
1057 
1058 	rrd->word[0] = *(hw_rrd++);
1059 	rrd->word[1] = *(hw_rrd++);
1060 	rrd->word[2] = *(hw_rrd++);
1061 
1062 	if (unlikely(RRD_NOR(rrd) != 1)) {
1063 		netdev_err(adpt->netdev,
1064 			   "error: multi-RFD not support yet! nor:%lu\n",
1065 			   RRD_NOR(rrd));
1066 	}
1067 
1068 	/* mark rrd as processed */
1069 	RRD_UPDT_SET(rrd, 0);
1070 	*hw_rrd = rrd->word[3];
1071 
1072 	if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1073 		rx_q->rrd.consume_idx = 0;
1074 
1075 	return true;
1076 }
1077 
1078 /* Produce new transmit descriptor */
1079 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1080 			       struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1081 {
1082 	u32 *hw_tpd;
1083 
1084 	tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1085 	hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1086 
1087 	if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1088 		tx_q->tpd.produce_idx = 0;
1089 
1090 	*(hw_tpd++) = tpd->word[0];
1091 	*(hw_tpd++) = tpd->word[1];
1092 	*(hw_tpd++) = tpd->word[2];
1093 	*hw_tpd = tpd->word[3];
1094 }
1095 
1096 /* Mark the last transmit descriptor as such (for the transmit packet) */
1097 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1098 				  struct emac_tx_queue *tx_q)
1099 {
1100 	u32 *hw_tpd =
1101 		EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1102 	u32 tmp_tpd;
1103 
1104 	tmp_tpd = *(hw_tpd + 1);
1105 	tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1106 	*(hw_tpd + 1) = tmp_tpd;
1107 }
1108 
1109 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1110 {
1111 	struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1112 	u32 consume_idx = RRD_SI(rrd);
1113 	unsigned int i;
1114 
1115 	for (i = 0; i < RRD_NOR(rrd); i++) {
1116 		rfbuf[consume_idx].skb = NULL;
1117 		if (++consume_idx == rx_q->rfd.count)
1118 			consume_idx = 0;
1119 	}
1120 
1121 	rx_q->rfd.consume_idx = consume_idx;
1122 	rx_q->rfd.process_idx = consume_idx;
1123 }
1124 
1125 /* Push the received skb to upper layers */
1126 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1127 			     struct sk_buff *skb,
1128 			     u16 vlan_tag, bool vlan_flag)
1129 {
1130 	if (vlan_flag) {
1131 		u16 vlan;
1132 
1133 		EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1134 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1135 	}
1136 
1137 	napi_gro_receive(&rx_q->napi, skb);
1138 }
1139 
1140 /* Process receive event */
1141 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1142 			 int *num_pkts, int max_pkts)
1143 {
1144 	u32 proc_idx, hw_consume_idx, num_consume_pkts;
1145 	struct net_device *netdev  = adpt->netdev;
1146 	struct emac_buffer *rfbuf;
1147 	unsigned int count = 0;
1148 	struct emac_rrd rrd;
1149 	struct sk_buff *skb;
1150 	u32 reg;
1151 
1152 	reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1153 
1154 	hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1155 	num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1156 		(hw_consume_idx -  rx_q->rrd.consume_idx) :
1157 		(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1158 
1159 	do {
1160 		if (!num_consume_pkts)
1161 			break;
1162 
1163 		if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1164 			break;
1165 
1166 		if (likely(RRD_NOR(&rrd) == 1)) {
1167 			/* good receive */
1168 			rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1169 			dma_unmap_single(adpt->netdev->dev.parent,
1170 					 rfbuf->dma_addr, rfbuf->length,
1171 					 DMA_FROM_DEVICE);
1172 			rfbuf->dma_addr = 0;
1173 			skb = rfbuf->skb;
1174 		} else {
1175 			netdev_err(adpt->netdev,
1176 				   "error: multi-RFD not support yet!\n");
1177 			break;
1178 		}
1179 		emac_rx_rfd_clean(rx_q, &rrd);
1180 		num_consume_pkts--;
1181 		count++;
1182 
1183 		/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1184 		 * with DF set are marked as error), drop packets based on the
1185 		 * error mask rather than the summary bit (ignoring L4F errors)
1186 		 */
1187 		if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1188 			netif_dbg(adpt, rx_status, adpt->netdev,
1189 				  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1190 				  rrd.word[0], rrd.word[1],
1191 				  rrd.word[2], rrd.word[3]);
1192 
1193 			dev_kfree_skb(skb);
1194 			continue;
1195 		}
1196 
1197 		skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1198 		skb->dev = netdev;
1199 		skb->protocol = eth_type_trans(skb, skb->dev);
1200 		if (netdev->features & NETIF_F_RXCSUM)
1201 			skb->ip_summed = RRD_L4F(&rrd) ?
1202 					  CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1203 		else
1204 			skb_checksum_none_assert(skb);
1205 
1206 		emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1207 				 (bool)RRD_CVTAG(&rrd));
1208 
1209 		netdev->last_rx = jiffies;
1210 		(*num_pkts)++;
1211 	} while (*num_pkts < max_pkts);
1212 
1213 	if (count) {
1214 		proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1215 				rx_q->process_mask;
1216 		emac_reg_update32(adpt->base + rx_q->process_reg,
1217 				  rx_q->process_mask, proc_idx);
1218 		emac_mac_rx_descs_refill(adpt, rx_q);
1219 	}
1220 }
1221 
1222 /* get the number of free transmit descriptors */
1223 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1224 {
1225 	u32 produce_idx = tx_q->tpd.produce_idx;
1226 	u32 consume_idx = tx_q->tpd.consume_idx;
1227 
1228 	return (consume_idx > produce_idx) ?
1229 		(consume_idx - produce_idx - 1) :
1230 		(tx_q->tpd.count + consume_idx - produce_idx - 1);
1231 }
1232 
1233 /* Process transmit event */
1234 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1235 {
1236 	u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1237 	u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1238 	struct emac_buffer *tpbuf;
1239 
1240 	hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1241 
1242 	while (tx_q->tpd.consume_idx != hw_consume_idx) {
1243 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1244 		if (tpbuf->dma_addr) {
1245 			dma_unmap_single(adpt->netdev->dev.parent,
1246 					 tpbuf->dma_addr, tpbuf->length,
1247 					 DMA_TO_DEVICE);
1248 			tpbuf->dma_addr = 0;
1249 		}
1250 
1251 		if (tpbuf->skb) {
1252 			pkts_compl++;
1253 			bytes_compl += tpbuf->skb->len;
1254 			dev_kfree_skb_irq(tpbuf->skb);
1255 			tpbuf->skb = NULL;
1256 		}
1257 
1258 		if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1259 			tx_q->tpd.consume_idx = 0;
1260 	}
1261 
1262 	netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1263 
1264 	if (netif_queue_stopped(adpt->netdev))
1265 		if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1266 			netif_wake_queue(adpt->netdev);
1267 }
1268 
1269 /* Initialize all queue data structures */
1270 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1271 				  struct emac_adapter *adpt)
1272 {
1273 	adpt->rx_q.netdev = adpt->netdev;
1274 
1275 	adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1276 	adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1277 	adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1278 
1279 	adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1280 	adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1281 	adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1282 
1283 	adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1284 	adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1285 	adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1286 
1287 	adpt->rx_q.irq          = &adpt->irq;
1288 	adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1289 
1290 	adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1291 	adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1292 	adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1293 
1294 	adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1295 	adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1296 	adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1297 }
1298 
1299 /* Fill up transmit descriptors with TSO and Checksum offload information */
1300 static int emac_tso_csum(struct emac_adapter *adpt,
1301 			 struct emac_tx_queue *tx_q,
1302 			 struct sk_buff *skb,
1303 			 struct emac_tpd *tpd)
1304 {
1305 	unsigned int hdr_len;
1306 	int ret;
1307 
1308 	if (skb_is_gso(skb)) {
1309 		if (skb_header_cloned(skb)) {
1310 			ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1311 			if (unlikely(ret))
1312 				return ret;
1313 		}
1314 
1315 		if (skb->protocol == htons(ETH_P_IP)) {
1316 			u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1317 				       + ntohs(ip_hdr(skb)->tot_len);
1318 			if (skb->len > pkt_len)
1319 				pskb_trim(skb, pkt_len);
1320 		}
1321 
1322 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1323 		if (unlikely(skb->len == hdr_len)) {
1324 			/* we only need to do csum */
1325 			netif_warn(adpt, tx_err, adpt->netdev,
1326 				   "tso not needed for packet with 0 data\n");
1327 			goto do_csum;
1328 		}
1329 
1330 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1331 			ip_hdr(skb)->check = 0;
1332 			tcp_hdr(skb)->check =
1333 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1334 						   ip_hdr(skb)->daddr,
1335 						   0, IPPROTO_TCP, 0);
1336 			TPD_IPV4_SET(tpd, 1);
1337 		}
1338 
1339 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1340 			/* ipv6 tso need an extra tpd */
1341 			struct emac_tpd extra_tpd;
1342 
1343 			memset(tpd, 0, sizeof(*tpd));
1344 			memset(&extra_tpd, 0, sizeof(extra_tpd));
1345 
1346 			ipv6_hdr(skb)->payload_len = 0;
1347 			tcp_hdr(skb)->check =
1348 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1349 						 &ipv6_hdr(skb)->daddr,
1350 						 0, IPPROTO_TCP, 0);
1351 			TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1352 			TPD_LSO_SET(&extra_tpd, 1);
1353 			TPD_LSOV_SET(&extra_tpd, 1);
1354 			emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1355 			TPD_LSOV_SET(tpd, 1);
1356 		}
1357 
1358 		TPD_LSO_SET(tpd, 1);
1359 		TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1360 		TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1361 		return 0;
1362 	}
1363 
1364 do_csum:
1365 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1366 		unsigned int css, cso;
1367 
1368 		cso = skb_transport_offset(skb);
1369 		if (unlikely(cso & 0x1)) {
1370 			netdev_err(adpt->netdev,
1371 				   "error: payload offset should be even\n");
1372 			return -EINVAL;
1373 		}
1374 		css = cso + skb->csum_offset;
1375 
1376 		TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1377 		TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1378 		TPD_CSX_SET(tpd, 1);
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 /* Fill up transmit descriptors */
1385 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1386 			     struct emac_tx_queue *tx_q, struct sk_buff *skb,
1387 			     struct emac_tpd *tpd)
1388 {
1389 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1390 	unsigned int first = tx_q->tpd.produce_idx;
1391 	unsigned int len = skb_headlen(skb);
1392 	struct emac_buffer *tpbuf = NULL;
1393 	unsigned int mapped_len = 0;
1394 	unsigned int i;
1395 	int count = 0;
1396 	int ret;
1397 
1398 	/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1399 	if (TPD_LSO(tpd)) {
1400 		mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1401 
1402 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1403 		tpbuf->length = mapped_len;
1404 		tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1405 						 skb->data, tpbuf->length,
1406 						 DMA_TO_DEVICE);
1407 		ret = dma_mapping_error(adpt->netdev->dev.parent,
1408 					tpbuf->dma_addr);
1409 		if (ret)
1410 			goto error;
1411 
1412 		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1413 		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1414 		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1415 		emac_tx_tpd_create(adpt, tx_q, tpd);
1416 		count++;
1417 	}
1418 
1419 	if (mapped_len < len) {
1420 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1421 		tpbuf->length = len - mapped_len;
1422 		tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1423 						 skb->data + mapped_len,
1424 						 tpbuf->length, DMA_TO_DEVICE);
1425 		ret = dma_mapping_error(adpt->netdev->dev.parent,
1426 					tpbuf->dma_addr);
1427 		if (ret)
1428 			goto error;
1429 
1430 		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1431 		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1432 		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1433 		emac_tx_tpd_create(adpt, tx_q, tpd);
1434 		count++;
1435 	}
1436 
1437 	for (i = 0; i < nr_frags; i++) {
1438 		struct skb_frag_struct *frag;
1439 
1440 		frag = &skb_shinfo(skb)->frags[i];
1441 
1442 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1443 		tpbuf->length = frag->size;
1444 		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1445 					       frag->page.p, frag->page_offset,
1446 					       tpbuf->length, DMA_TO_DEVICE);
1447 		ret = dma_mapping_error(adpt->netdev->dev.parent,
1448 					tpbuf->dma_addr);
1449 		if (ret)
1450 			goto error;
1451 
1452 		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1453 		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1454 		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1455 		emac_tx_tpd_create(adpt, tx_q, tpd);
1456 		count++;
1457 	}
1458 
1459 	/* The last tpd */
1460 	wmb();
1461 	emac_tx_tpd_mark_last(adpt, tx_q);
1462 
1463 	/* The last buffer info contain the skb address,
1464 	 * so it will be freed after unmap
1465 	 */
1466 	tpbuf->skb = skb;
1467 
1468 	return;
1469 
1470 error:
1471 	/* One of the memory mappings failed, so undo everything */
1472 	tx_q->tpd.produce_idx = first;
1473 
1474 	while (count--) {
1475 		tpbuf = GET_TPD_BUFFER(tx_q, first);
1476 		dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1477 			       tpbuf->length, DMA_TO_DEVICE);
1478 		tpbuf->dma_addr = 0;
1479 		tpbuf->length = 0;
1480 
1481 		if (++first == tx_q->tpd.count)
1482 			first = 0;
1483 	}
1484 
1485 	dev_kfree_skb(skb);
1486 }
1487 
1488 /* Transmit the packet using specified transmit queue */
1489 int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1490 			 struct sk_buff *skb)
1491 {
1492 	struct emac_tpd tpd;
1493 	u32 prod_idx;
1494 
1495 	memset(&tpd, 0, sizeof(tpd));
1496 
1497 	if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1498 		dev_kfree_skb_any(skb);
1499 		return NETDEV_TX_OK;
1500 	}
1501 
1502 	if (skb_vlan_tag_present(skb)) {
1503 		u16 tag;
1504 
1505 		EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1506 		TPD_CVLAN_TAG_SET(&tpd, tag);
1507 		TPD_INSTC_SET(&tpd, 1);
1508 	}
1509 
1510 	if (skb_network_offset(skb) != ETH_HLEN)
1511 		TPD_TYP_SET(&tpd, 1);
1512 
1513 	emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1514 
1515 	netdev_sent_queue(adpt->netdev, skb->len);
1516 
1517 	/* Make sure the are enough free descriptors to hold one
1518 	 * maximum-sized SKB.  We need one desc for each fragment,
1519 	 * one for the checksum (emac_tso_csum), one for TSO, and
1520 	 * and one for the SKB header.
1521 	 */
1522 	if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1523 		netif_stop_queue(adpt->netdev);
1524 
1525 	/* update produce idx */
1526 	prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1527 		    tx_q->produce_mask;
1528 	emac_reg_update32(adpt->base + tx_q->produce_reg,
1529 			  tx_q->produce_mask, prod_idx);
1530 
1531 	return NETDEV_TX_OK;
1532 }
1533