xref: /openbmc/linux/drivers/net/ethernet/qualcomm/emac/emac-mac.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12 
13 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
14  */
15 
16 #include <linux/tcp.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/crc32.h>
20 #include <linux/if_vlan.h>
21 #include <linux/jiffies.h>
22 #include <linux/phy.h>
23 #include <linux/of.h>
24 #include <net/ip6_checksum.h>
25 #include "emac.h"
26 #include "emac-sgmii.h"
27 
28 /* EMAC_MAC_CTRL */
29 #define SINGLE_PAUSE_MODE       	0x10000000
30 #define DEBUG_MODE                      0x08000000
31 #define BROAD_EN                        0x04000000
32 #define MULTI_ALL                       0x02000000
33 #define RX_CHKSUM_EN                    0x01000000
34 #define HUGE                            0x00800000
35 #define SPEED(x)			(((x) & 0x3) << 20)
36 #define SPEED_MASK			SPEED(0x3)
37 #define SIMR                            0x00080000
38 #define TPAUSE                          0x00010000
39 #define PROM_MODE                       0x00008000
40 #define VLAN_STRIP                      0x00004000
41 #define PRLEN_BMSK                      0x00003c00
42 #define PRLEN_SHFT                      10
43 #define HUGEN                           0x00000200
44 #define FLCHK                           0x00000100
45 #define PCRCE                           0x00000080
46 #define CRCE                            0x00000040
47 #define FULLD                           0x00000020
48 #define MAC_LP_EN                       0x00000010
49 #define RXFC                            0x00000008
50 #define TXFC                            0x00000004
51 #define RXEN                            0x00000002
52 #define TXEN                            0x00000001
53 
54 /* EMAC_DESC_CTRL_3 */
55 #define RFD_RING_SIZE_BMSK                                       0xfff
56 
57 /* EMAC_DESC_CTRL_4 */
58 #define RX_BUFFER_SIZE_BMSK                                     0xffff
59 
60 /* EMAC_DESC_CTRL_6 */
61 #define RRD_RING_SIZE_BMSK                                       0xfff
62 
63 /* EMAC_DESC_CTRL_9 */
64 #define TPD_RING_SIZE_BMSK                                      0xffff
65 
66 /* EMAC_TXQ_CTRL_0 */
67 #define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
68 #define NUM_TXF_BURST_PREF_SHFT                                     16
69 #define LS_8023_SP                                                0x80
70 #define TXQ_MODE                                                  0x40
71 #define TXQ_EN                                                    0x20
72 #define IP_OP_SP                                                  0x10
73 #define NUM_TPD_BURST_PREF_BMSK                                    0xf
74 #define NUM_TPD_BURST_PREF_SHFT                                      0
75 
76 /* EMAC_TXQ_CTRL_1 */
77 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
78 
79 /* EMAC_TXQ_CTRL_2 */
80 #define TXF_HWM_BMSK                                         0xfff0000
81 #define TXF_LWM_BMSK                                             0xfff
82 
83 /* EMAC_RXQ_CTRL_0 */
84 #define RXQ_EN                                                 BIT(31)
85 #define CUT_THRU_EN                                            BIT(30)
86 #define RSS_HASH_EN                                            BIT(29)
87 #define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
88 #define NUM_RFD_BURST_PREF_SHFT                                     20
89 #define IDT_TABLE_SIZE_BMSK                                    0x1ff00
90 #define IDT_TABLE_SIZE_SHFT                                          8
91 #define SP_IPV6                                                   0x80
92 
93 /* EMAC_RXQ_CTRL_1 */
94 #define JUMBO_1KAH_BMSK                                         0xf000
95 #define JUMBO_1KAH_SHFT                                             12
96 #define RFD_PREF_LOW_TH                                           0x10
97 #define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
98 #define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
99 #define RFD_PREF_UP_TH                                            0x10
100 #define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
101 #define RFD_PREF_UP_THRESHOLD_SHFT                                   0
102 
103 /* EMAC_RXQ_CTRL_2 */
104 #define RXF_DOF_THRESFHOLD                                       0x1a0
105 #define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
106 #define RXF_DOF_THRESHOLD_SHFT                                      16
107 #define RXF_UOF_THRESFHOLD                                        0xbe
108 #define RXF_UOF_THRESHOLD_BMSK                                   0xfff
109 #define RXF_UOF_THRESHOLD_SHFT                                       0
110 
111 /* EMAC_RXQ_CTRL_3 */
112 #define RXD_TIMER_BMSK                                      0xffff0000
113 #define RXD_THRESHOLD_BMSK                                       0xfff
114 #define RXD_THRESHOLD_SHFT                                           0
115 
116 /* EMAC_DMA_CTRL */
117 #define DMAW_DLY_CNT_BMSK                                      0xf0000
118 #define DMAW_DLY_CNT_SHFT                                           16
119 #define DMAR_DLY_CNT_BMSK                                       0xf800
120 #define DMAR_DLY_CNT_SHFT                                           11
121 #define DMAR_REQ_PRI                                             0x400
122 #define REGWRBLEN_BMSK                                           0x380
123 #define REGWRBLEN_SHFT                                               7
124 #define REGRDBLEN_BMSK                                            0x70
125 #define REGRDBLEN_SHFT                                               4
126 #define OUT_ORDER_MODE                                             0x4
127 #define ENH_ORDER_MODE                                             0x2
128 #define IN_ORDER_MODE                                              0x1
129 
130 /* EMAC_MAILBOX_13 */
131 #define RFD3_PROC_IDX_BMSK                                   0xfff0000
132 #define RFD3_PROC_IDX_SHFT                                          16
133 #define RFD3_PROD_IDX_BMSK                                       0xfff
134 #define RFD3_PROD_IDX_SHFT                                           0
135 
136 /* EMAC_MAILBOX_2 */
137 #define NTPD_CONS_IDX_BMSK                                  0xffff0000
138 #define NTPD_CONS_IDX_SHFT                                          16
139 
140 /* EMAC_MAILBOX_3 */
141 #define RFD0_CONS_IDX_BMSK                                       0xfff
142 #define RFD0_CONS_IDX_SHFT                                           0
143 
144 /* EMAC_MAILBOX_11 */
145 #define H3TPD_PROD_IDX_BMSK                                 0xffff0000
146 #define H3TPD_PROD_IDX_SHFT                                         16
147 
148 /* EMAC_AXI_MAST_CTRL */
149 #define DATA_BYTE_SWAP                                             0x8
150 #define MAX_BOUND                                                  0x2
151 #define MAX_BTYPE                                                  0x1
152 
153 /* EMAC_MAILBOX_12 */
154 #define H3TPD_CONS_IDX_BMSK                                 0xffff0000
155 #define H3TPD_CONS_IDX_SHFT                                         16
156 
157 /* EMAC_MAILBOX_9 */
158 #define H2TPD_PROD_IDX_BMSK                                     0xffff
159 #define H2TPD_PROD_IDX_SHFT                                          0
160 
161 /* EMAC_MAILBOX_10 */
162 #define H1TPD_CONS_IDX_BMSK                                 0xffff0000
163 #define H1TPD_CONS_IDX_SHFT                                         16
164 #define H2TPD_CONS_IDX_BMSK                                     0xffff
165 #define H2TPD_CONS_IDX_SHFT                                          0
166 
167 /* EMAC_ATHR_HEADER_CTRL */
168 #define HEADER_CNT_EN                                              0x2
169 #define HEADER_ENABLE                                              0x1
170 
171 /* EMAC_MAILBOX_0 */
172 #define RFD0_PROC_IDX_BMSK                                   0xfff0000
173 #define RFD0_PROC_IDX_SHFT                                          16
174 #define RFD0_PROD_IDX_BMSK                                       0xfff
175 #define RFD0_PROD_IDX_SHFT                                           0
176 
177 /* EMAC_MAILBOX_5 */
178 #define RFD1_PROC_IDX_BMSK                                   0xfff0000
179 #define RFD1_PROC_IDX_SHFT                                          16
180 #define RFD1_PROD_IDX_BMSK                                       0xfff
181 #define RFD1_PROD_IDX_SHFT                                           0
182 
183 /* EMAC_MISC_CTRL */
184 #define RX_UNCPL_INT_EN                                            0x1
185 
186 /* EMAC_MAILBOX_7 */
187 #define RFD2_CONS_IDX_BMSK                                   0xfff0000
188 #define RFD2_CONS_IDX_SHFT                                          16
189 #define RFD1_CONS_IDX_BMSK                                       0xfff
190 #define RFD1_CONS_IDX_SHFT                                           0
191 
192 /* EMAC_MAILBOX_8 */
193 #define RFD3_CONS_IDX_BMSK                                       0xfff
194 #define RFD3_CONS_IDX_SHFT                                           0
195 
196 /* EMAC_MAILBOX_15 */
197 #define NTPD_PROD_IDX_BMSK                                      0xffff
198 #define NTPD_PROD_IDX_SHFT                                           0
199 
200 /* EMAC_MAILBOX_16 */
201 #define H1TPD_PROD_IDX_BMSK                                     0xffff
202 #define H1TPD_PROD_IDX_SHFT                                          0
203 
204 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
205 #define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
206 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
207 #define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
208 
209 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
210 #define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
211 #define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
212 
213 struct emac_skb_cb {
214 	u32           tpd_idx;
215 	unsigned long jiffies;
216 };
217 
218 #define EMAC_SKB_CB(skb)	((struct emac_skb_cb *)(skb)->cb)
219 #define EMAC_RSS_IDT_SIZE	256
220 #define JUMBO_1KAH		0x4
221 #define RXD_TH			0x100
222 #define EMAC_TPD_LAST_FRAGMENT	0x80000000
223 #define EMAC_TPD_TSTAMP_SAVE	0x80000000
224 
225 /* EMAC Errors in emac_rrd.word[3] */
226 #define EMAC_RRD_L4F		BIT(14)
227 #define EMAC_RRD_IPF		BIT(15)
228 #define EMAC_RRD_CRC		BIT(21)
229 #define EMAC_RRD_FAE		BIT(22)
230 #define EMAC_RRD_TRN		BIT(23)
231 #define EMAC_RRD_RNT		BIT(24)
232 #define EMAC_RRD_INC		BIT(25)
233 #define EMAC_RRD_FOV		BIT(29)
234 #define EMAC_RRD_LEN		BIT(30)
235 
236 /* Error bits that will result in a received frame being discarded */
237 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
238 			EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
239 			EMAC_RRD_FOV | EMAC_RRD_LEN)
240 #define EMAC_RRD_STATS_DW_IDX 3
241 
242 #define EMAC_RRD(RXQ, SIZE, IDX)	((RXQ)->rrd.v_addr + (SIZE * (IDX)))
243 #define EMAC_RFD(RXQ, SIZE, IDX)	((RXQ)->rfd.v_addr + (SIZE * (IDX)))
244 #define EMAC_TPD(TXQ, SIZE, IDX)	((TXQ)->tpd.v_addr + (SIZE * (IDX)))
245 
246 #define GET_RFD_BUFFER(RXQ, IDX)	(&((RXQ)->rfd.rfbuff[(IDX)]))
247 #define GET_TPD_BUFFER(RTQ, IDX)	(&((RTQ)->tpd.tpbuff[(IDX)]))
248 
249 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD	8
250 
251 #define ISR_RX_PKT      (\
252 	RX_PKT_INT0     |\
253 	RX_PKT_INT1     |\
254 	RX_PKT_INT2     |\
255 	RX_PKT_INT3)
256 
257 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
258 {
259 	u32 crc32, bit, reg, mta;
260 
261 	/* Calculate the CRC of the MAC address */
262 	crc32 = ether_crc(ETH_ALEN, addr);
263 
264 	/* The HASH Table is an array of 2 32-bit registers. It is
265 	 * treated like an array of 64 bits (BitArray[hash_value]).
266 	 * Use the upper 6 bits of the above CRC as the hash value.
267 	 */
268 	reg = (crc32 >> 31) & 0x1;
269 	bit = (crc32 >> 26) & 0x1F;
270 
271 	mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
272 	mta |= BIT(bit);
273 	writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
274 }
275 
276 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
277 {
278 	writel(0, adpt->base + EMAC_HASH_TAB_REG0);
279 	writel(0, adpt->base + EMAC_HASH_TAB_REG1);
280 }
281 
282 /* definitions for RSS */
283 #define EMAC_RSS_KEY(_i, _type) \
284 		(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
285 #define EMAC_RSS_TBL(_i, _type) \
286 		(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
287 
288 /* Config MAC modes */
289 void emac_mac_mode_config(struct emac_adapter *adpt)
290 {
291 	struct net_device *netdev = adpt->netdev;
292 	u32 mac;
293 
294 	mac = readl(adpt->base + EMAC_MAC_CTRL);
295 	mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
296 
297 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
298 		mac |= VLAN_STRIP;
299 
300 	if (netdev->flags & IFF_PROMISC)
301 		mac |= PROM_MODE;
302 
303 	if (netdev->flags & IFF_ALLMULTI)
304 		mac |= MULTI_ALL;
305 
306 	writel(mac, adpt->base + EMAC_MAC_CTRL);
307 }
308 
309 /* Config descriptor rings */
310 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
311 {
312 	static const unsigned short tpd_q_offset[] = {
313 		EMAC_DESC_CTRL_8,        EMAC_H1TPD_BASE_ADDR_LO,
314 		EMAC_H2TPD_BASE_ADDR_LO, EMAC_H3TPD_BASE_ADDR_LO};
315 	static const unsigned short rfd_q_offset[] = {
316 		EMAC_DESC_CTRL_2,        EMAC_DESC_CTRL_10,
317 		EMAC_DESC_CTRL_12,       EMAC_DESC_CTRL_13};
318 	static const unsigned short rrd_q_offset[] = {
319 		EMAC_DESC_CTRL_5,        EMAC_DESC_CTRL_14,
320 		EMAC_DESC_CTRL_15,       EMAC_DESC_CTRL_16};
321 
322 	/* TPD (Transmit Packet Descriptor) */
323 	writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
324 	       adpt->base + EMAC_DESC_CTRL_1);
325 
326 	writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
327 	       adpt->base + tpd_q_offset[0]);
328 
329 	writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
330 	       adpt->base + EMAC_DESC_CTRL_9);
331 
332 	/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
333 	writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
334 	       adpt->base + EMAC_DESC_CTRL_0);
335 
336 	writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
337 	       adpt->base + rfd_q_offset[0]);
338 	writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
339 	       adpt->base + rrd_q_offset[0]);
340 
341 	writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
342 	       adpt->base + EMAC_DESC_CTRL_3);
343 	writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
344 	       adpt->base + EMAC_DESC_CTRL_6);
345 
346 	writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
347 	       adpt->base + EMAC_DESC_CTRL_4);
348 
349 	writel(0, adpt->base + EMAC_DESC_CTRL_11);
350 
351 	/* Load all of the base addresses above and ensure that triggering HW to
352 	 * read ring pointers is flushed
353 	 */
354 	writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
355 }
356 
357 /* Config transmit parameters */
358 static void emac_mac_tx_config(struct emac_adapter *adpt)
359 {
360 	u32 val;
361 
362 	writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
363 	       JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
364 
365 	val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
366 	       NUM_TPD_BURST_PREF_BMSK;
367 
368 	val |= TXQ_MODE | LS_8023_SP;
369 	val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
370 		NUM_TXF_BURST_PREF_BMSK;
371 
372 	writel(val, adpt->base + EMAC_TXQ_CTRL_0);
373 	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
374 			  (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
375 }
376 
377 /* Config receive parameters */
378 static void emac_mac_rx_config(struct emac_adapter *adpt)
379 {
380 	u32 val;
381 
382 	val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
383 	       NUM_RFD_BURST_PREF_BMSK;
384 	val |= (SP_IPV6 | CUT_THRU_EN);
385 
386 	writel(val, adpt->base + EMAC_RXQ_CTRL_0);
387 
388 	val = readl(adpt->base + EMAC_RXQ_CTRL_1);
389 	val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
390 		 RFD_PREF_UP_THRESHOLD_BMSK);
391 	val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
392 		(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
393 		(RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
394 	writel(val, adpt->base + EMAC_RXQ_CTRL_1);
395 
396 	val = readl(adpt->base + EMAC_RXQ_CTRL_2);
397 	val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
398 	val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
399 		(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
400 	writel(val, adpt->base + EMAC_RXQ_CTRL_2);
401 
402 	val = readl(adpt->base + EMAC_RXQ_CTRL_3);
403 	val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
404 	val |= RXD_TH << RXD_THRESHOLD_SHFT;
405 	writel(val, adpt->base + EMAC_RXQ_CTRL_3);
406 }
407 
408 /* Config dma */
409 static void emac_mac_dma_config(struct emac_adapter *adpt)
410 {
411 	u32 dma_ctrl = DMAR_REQ_PRI;
412 
413 	switch (adpt->dma_order) {
414 	case emac_dma_ord_in:
415 		dma_ctrl |= IN_ORDER_MODE;
416 		break;
417 	case emac_dma_ord_enh:
418 		dma_ctrl |= ENH_ORDER_MODE;
419 		break;
420 	case emac_dma_ord_out:
421 		dma_ctrl |= OUT_ORDER_MODE;
422 		break;
423 	default:
424 		break;
425 	}
426 
427 	dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
428 						REGRDBLEN_BMSK;
429 	dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
430 						REGWRBLEN_BMSK;
431 	dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
432 						DMAR_DLY_CNT_BMSK;
433 	dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
434 						DMAW_DLY_CNT_BMSK;
435 
436 	/* config DMA and ensure that configuration is flushed to HW */
437 	writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
438 }
439 
440 /* set MAC address */
441 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
442 {
443 	u32 sta;
444 
445 	/* for example: 00-A0-C6-11-22-33
446 	 * 0<-->C6112233, 1<-->00A0.
447 	 */
448 
449 	/* low 32bit word */
450 	sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
451 	      (((u32)addr[4]) << 8)  | (((u32)addr[5]));
452 	writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
453 
454 	/* hight 32bit word */
455 	sta = (((u32)addr[0]) << 8) | (u32)addr[1];
456 	writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
457 }
458 
459 static void emac_mac_config(struct emac_adapter *adpt)
460 {
461 	struct net_device *netdev = adpt->netdev;
462 	unsigned int max_frame;
463 	u32 val;
464 
465 	emac_set_mac_address(adpt, netdev->dev_addr);
466 
467 	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
468 	adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
469 		ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
470 
471 	emac_mac_dma_rings_config(adpt);
472 
473 	writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
474 	       adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
475 
476 	emac_mac_tx_config(adpt);
477 	emac_mac_rx_config(adpt);
478 	emac_mac_dma_config(adpt);
479 
480 	val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
481 	val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
482 	val |= MAX_BTYPE;
483 	writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
484 	writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
485 	writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
486 }
487 
488 void emac_mac_reset(struct emac_adapter *adpt)
489 {
490 	emac_mac_stop(adpt);
491 
492 	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
493 	usleep_range(100, 150); /* reset may take up to 100usec */
494 
495 	/* interrupt clear-on-read */
496 	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
497 }
498 
499 static void emac_mac_start(struct emac_adapter *adpt)
500 {
501 	struct phy_device *phydev = adpt->phydev;
502 	u32 mac, csr1;
503 
504 	/* enable tx queue */
505 	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
506 
507 	/* enable rx queue */
508 	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
509 
510 	/* enable mac control */
511 	mac = readl(adpt->base + EMAC_MAC_CTRL);
512 	csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
513 
514 	mac |= TXEN | RXEN;     /* enable RX/TX */
515 
516 	/* Configure MAC flow control. If set to automatic, then match
517 	 * whatever the PHY does. Otherwise, enable or disable it, depending
518 	 * on what the user configured via ethtool.
519 	 */
520 	mac &= ~(RXFC | TXFC);
521 
522 	if (adpt->automatic) {
523 		/* If it's set to automatic, then update our local values */
524 		adpt->rx_flow_control = phydev->pause;
525 		adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
526 	}
527 	mac |= adpt->rx_flow_control ? RXFC : 0;
528 	mac |= adpt->tx_flow_control ? TXFC : 0;
529 
530 	/* setup link speed */
531 	mac &= ~SPEED_MASK;
532 	if (phydev->speed == SPEED_1000) {
533 		mac |= SPEED(2);
534 		csr1 |= FREQ_MODE;
535 	} else {
536 		mac |= SPEED(1);
537 		csr1 &= ~FREQ_MODE;
538 	}
539 
540 	if (phydev->duplex == DUPLEX_FULL)
541 		mac |= FULLD;
542 	else
543 		mac &= ~FULLD;
544 
545 	/* other parameters */
546 	mac |= (CRCE | PCRCE);
547 	mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
548 	mac |= BROAD_EN;
549 	mac |= FLCHK;
550 	mac &= ~RX_CHKSUM_EN;
551 	mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
552 		 DEBUG_MODE | SINGLE_PAUSE_MODE);
553 
554 	writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
555 
556 	writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
557 
558 	/* enable interrupt read clear, low power sleep mode and
559 	 * the irq moderators
560 	 */
561 
562 	writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
563 	writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
564 			IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
565 
566 	emac_mac_mode_config(adpt);
567 
568 	emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
569 			  (HEADER_ENABLE | HEADER_CNT_EN), 0);
570 }
571 
572 void emac_mac_stop(struct emac_adapter *adpt)
573 {
574 	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
575 	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
576 	emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
577 	usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
578 }
579 
580 /* Free all descriptors of given transmit queue */
581 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
582 {
583 	struct emac_tx_queue *tx_q = &adpt->tx_q;
584 	unsigned int i;
585 	size_t size;
586 
587 	/* ring already cleared, nothing to do */
588 	if (!tx_q->tpd.tpbuff)
589 		return;
590 
591 	for (i = 0; i < tx_q->tpd.count; i++) {
592 		struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
593 
594 		if (tpbuf->dma_addr) {
595 			dma_unmap_single(adpt->netdev->dev.parent,
596 					 tpbuf->dma_addr, tpbuf->length,
597 					 DMA_TO_DEVICE);
598 			tpbuf->dma_addr = 0;
599 		}
600 		if (tpbuf->skb) {
601 			dev_kfree_skb_any(tpbuf->skb);
602 			tpbuf->skb = NULL;
603 		}
604 	}
605 
606 	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
607 	memset(tx_q->tpd.tpbuff, 0, size);
608 
609 	/* clear the descriptor ring */
610 	memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
611 
612 	tx_q->tpd.consume_idx = 0;
613 	tx_q->tpd.produce_idx = 0;
614 }
615 
616 /* Free all descriptors of given receive queue */
617 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
618 {
619 	struct device *dev = adpt->netdev->dev.parent;
620 	struct emac_rx_queue *rx_q = &adpt->rx_q;
621 	unsigned int i;
622 	size_t size;
623 
624 	/* ring already cleared, nothing to do */
625 	if (!rx_q->rfd.rfbuff)
626 		return;
627 
628 	for (i = 0; i < rx_q->rfd.count; i++) {
629 		struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
630 
631 		if (rfbuf->dma_addr) {
632 			dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
633 					 DMA_FROM_DEVICE);
634 			rfbuf->dma_addr = 0;
635 		}
636 		if (rfbuf->skb) {
637 			dev_kfree_skb(rfbuf->skb);
638 			rfbuf->skb = NULL;
639 		}
640 	}
641 
642 	size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
643 	memset(rx_q->rfd.rfbuff, 0, size);
644 
645 	/* clear the descriptor rings */
646 	memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
647 	rx_q->rrd.produce_idx = 0;
648 	rx_q->rrd.consume_idx = 0;
649 
650 	memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
651 	rx_q->rfd.produce_idx = 0;
652 	rx_q->rfd.consume_idx = 0;
653 }
654 
655 /* Free all buffers associated with given transmit queue */
656 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
657 {
658 	struct emac_tx_queue *tx_q = &adpt->tx_q;
659 
660 	emac_tx_q_descs_free(adpt);
661 
662 	kfree(tx_q->tpd.tpbuff);
663 	tx_q->tpd.tpbuff = NULL;
664 	tx_q->tpd.v_addr = NULL;
665 	tx_q->tpd.dma_addr = 0;
666 	tx_q->tpd.size = 0;
667 }
668 
669 /* Allocate TX descriptor ring for the given transmit queue */
670 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
671 				struct emac_tx_queue *tx_q)
672 {
673 	struct emac_ring_header *ring_header = &adpt->ring_header;
674 	size_t size;
675 
676 	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
677 	tx_q->tpd.tpbuff = kzalloc(size, GFP_KERNEL);
678 	if (!tx_q->tpd.tpbuff)
679 		return -ENOMEM;
680 
681 	tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
682 	tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
683 	tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
684 	ring_header->used += ALIGN(tx_q->tpd.size, 8);
685 	tx_q->tpd.produce_idx = 0;
686 	tx_q->tpd.consume_idx = 0;
687 
688 	return 0;
689 }
690 
691 /* Free all buffers associated with given transmit queue */
692 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
693 {
694 	struct emac_rx_queue *rx_q = &adpt->rx_q;
695 
696 	emac_rx_q_free_descs(adpt);
697 
698 	kfree(rx_q->rfd.rfbuff);
699 	rx_q->rfd.rfbuff   = NULL;
700 
701 	rx_q->rfd.v_addr   = NULL;
702 	rx_q->rfd.dma_addr = 0;
703 	rx_q->rfd.size     = 0;
704 
705 	rx_q->rrd.v_addr   = NULL;
706 	rx_q->rrd.dma_addr = 0;
707 	rx_q->rrd.size     = 0;
708 }
709 
710 /* Allocate RX descriptor rings for the given receive queue */
711 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
712 {
713 	struct emac_ring_header *ring_header = &adpt->ring_header;
714 	struct emac_rx_queue *rx_q = &adpt->rx_q;
715 	size_t size;
716 
717 	size = sizeof(struct emac_buffer) * rx_q->rfd.count;
718 	rx_q->rfd.rfbuff = kzalloc(size, GFP_KERNEL);
719 	if (!rx_q->rfd.rfbuff)
720 		return -ENOMEM;
721 
722 	rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
723 	rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
724 
725 	rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
726 	rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
727 	ring_header->used += ALIGN(rx_q->rrd.size, 8);
728 
729 	rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
730 	rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
731 	ring_header->used += ALIGN(rx_q->rfd.size, 8);
732 
733 	rx_q->rrd.produce_idx = 0;
734 	rx_q->rrd.consume_idx = 0;
735 
736 	rx_q->rfd.produce_idx = 0;
737 	rx_q->rfd.consume_idx = 0;
738 
739 	return 0;
740 }
741 
742 /* Allocate all TX and RX descriptor rings */
743 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
744 {
745 	struct emac_ring_header *ring_header = &adpt->ring_header;
746 	struct device *dev = adpt->netdev->dev.parent;
747 	unsigned int num_tx_descs = adpt->tx_desc_cnt;
748 	unsigned int num_rx_descs = adpt->rx_desc_cnt;
749 	int ret;
750 
751 	adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
752 
753 	adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
754 	adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
755 
756 	/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
757 	 * hence the additional padding bytes are allocated.
758 	 */
759 	ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
760 			    num_rx_descs * (adpt->rfd_size * 4) +
761 			    num_rx_descs * (adpt->rrd_size * 4) +
762 			    8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
763 
764 	ring_header->used = 0;
765 	ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
766 						 &ring_header->dma_addr,
767 						 GFP_KERNEL);
768 	if (!ring_header->v_addr)
769 		return -ENOMEM;
770 
771 	ring_header->used = ALIGN(ring_header->dma_addr, 8) -
772 							ring_header->dma_addr;
773 
774 	ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
775 	if (ret) {
776 		netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
777 		goto err_alloc_tx;
778 	}
779 
780 	ret = emac_rx_descs_alloc(adpt);
781 	if (ret) {
782 		netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
783 		goto err_alloc_rx;
784 	}
785 
786 	return 0;
787 
788 err_alloc_rx:
789 	emac_tx_q_bufs_free(adpt);
790 err_alloc_tx:
791 	dma_free_coherent(dev, ring_header->size,
792 			  ring_header->v_addr, ring_header->dma_addr);
793 
794 	ring_header->v_addr   = NULL;
795 	ring_header->dma_addr = 0;
796 	ring_header->size     = 0;
797 	ring_header->used     = 0;
798 
799 	return ret;
800 }
801 
802 /* Free all TX and RX descriptor rings */
803 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
804 {
805 	struct emac_ring_header *ring_header = &adpt->ring_header;
806 	struct device *dev = adpt->netdev->dev.parent;
807 
808 	emac_tx_q_bufs_free(adpt);
809 	emac_rx_q_bufs_free(adpt);
810 
811 	dma_free_coherent(dev, ring_header->size,
812 			  ring_header->v_addr, ring_header->dma_addr);
813 
814 	ring_header->v_addr   = NULL;
815 	ring_header->dma_addr = 0;
816 	ring_header->size     = 0;
817 	ring_header->used     = 0;
818 }
819 
820 /* Initialize descriptor rings */
821 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
822 {
823 	unsigned int i;
824 
825 	adpt->tx_q.tpd.produce_idx = 0;
826 	adpt->tx_q.tpd.consume_idx = 0;
827 	for (i = 0; i < adpt->tx_q.tpd.count; i++)
828 		adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
829 
830 	adpt->rx_q.rrd.produce_idx = 0;
831 	adpt->rx_q.rrd.consume_idx = 0;
832 	adpt->rx_q.rfd.produce_idx = 0;
833 	adpt->rx_q.rfd.consume_idx = 0;
834 	for (i = 0; i < adpt->rx_q.rfd.count; i++)
835 		adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
836 }
837 
838 /* Produce new receive free descriptor */
839 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
840 				   struct emac_rx_queue *rx_q,
841 				   dma_addr_t addr)
842 {
843 	u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
844 
845 	*(hw_rfd++) = lower_32_bits(addr);
846 	*hw_rfd = upper_32_bits(addr);
847 
848 	if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
849 		rx_q->rfd.produce_idx = 0;
850 }
851 
852 /* Fill up receive queue's RFD with preallocated receive buffers */
853 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
854 				    struct emac_rx_queue *rx_q)
855 {
856 	struct emac_buffer *curr_rxbuf;
857 	struct emac_buffer *next_rxbuf;
858 	unsigned int count = 0;
859 	u32 next_produce_idx;
860 
861 	next_produce_idx = rx_q->rfd.produce_idx + 1;
862 	if (next_produce_idx == rx_q->rfd.count)
863 		next_produce_idx = 0;
864 
865 	curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
866 	next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
867 
868 	/* this always has a blank rx_buffer*/
869 	while (!next_rxbuf->dma_addr) {
870 		struct sk_buff *skb;
871 		int ret;
872 
873 		skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
874 		if (!skb)
875 			break;
876 
877 		curr_rxbuf->dma_addr =
878 			dma_map_single(adpt->netdev->dev.parent, skb->data,
879 				       curr_rxbuf->length, DMA_FROM_DEVICE);
880 		ret = dma_mapping_error(adpt->netdev->dev.parent,
881 					curr_rxbuf->dma_addr);
882 		if (ret) {
883 			dev_kfree_skb(skb);
884 			break;
885 		}
886 		curr_rxbuf->skb = skb;
887 		curr_rxbuf->length = adpt->rxbuf_size;
888 
889 		emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
890 		next_produce_idx = rx_q->rfd.produce_idx + 1;
891 		if (next_produce_idx == rx_q->rfd.count)
892 			next_produce_idx = 0;
893 
894 		curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
895 		next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
896 		count++;
897 	}
898 
899 	if (count) {
900 		u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
901 				rx_q->produce_mask;
902 		emac_reg_update32(adpt->base + rx_q->produce_reg,
903 				  rx_q->produce_mask, prod_idx);
904 	}
905 }
906 
907 static void emac_adjust_link(struct net_device *netdev)
908 {
909 	struct emac_adapter *adpt = netdev_priv(netdev);
910 	struct emac_sgmii *sgmii = &adpt->phy;
911 	struct phy_device *phydev = netdev->phydev;
912 
913 	if (phydev->link) {
914 		emac_mac_start(adpt);
915 		sgmii->link_up(adpt);
916 	} else {
917 		sgmii->link_down(adpt);
918 		emac_mac_stop(adpt);
919 	}
920 
921 	phy_print_status(phydev);
922 }
923 
924 /* Bringup the interface/HW */
925 int emac_mac_up(struct emac_adapter *adpt)
926 {
927 	struct net_device *netdev = adpt->netdev;
928 	int ret;
929 
930 	emac_mac_rx_tx_ring_reset_all(adpt);
931 	emac_mac_config(adpt);
932 	emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
933 
934 	adpt->phydev->irq = PHY_IGNORE_INTERRUPT;
935 	ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
936 				 PHY_INTERFACE_MODE_SGMII);
937 	if (ret) {
938 		netdev_err(adpt->netdev, "could not connect phy\n");
939 		return ret;
940 	}
941 
942 	phy_attached_print(adpt->phydev, NULL);
943 
944 	/* enable mac irq */
945 	writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
946 	writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
947 
948 	phy_start(adpt->phydev);
949 
950 	napi_enable(&adpt->rx_q.napi);
951 	netif_start_queue(netdev);
952 
953 	return 0;
954 }
955 
956 /* Bring down the interface/HW */
957 void emac_mac_down(struct emac_adapter *adpt)
958 {
959 	struct net_device *netdev = adpt->netdev;
960 
961 	netif_stop_queue(netdev);
962 	napi_disable(&adpt->rx_q.napi);
963 
964 	phy_stop(adpt->phydev);
965 
966 	/* Interrupts must be disabled before the PHY is disconnected, to
967 	 * avoid a race condition where adjust_link is null when we get
968 	 * an interrupt.
969 	 */
970 	writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
971 	writel(0, adpt->base + EMAC_INT_MASK);
972 	synchronize_irq(adpt->irq.irq);
973 
974 	phy_disconnect(adpt->phydev);
975 
976 	emac_mac_reset(adpt);
977 
978 	emac_tx_q_descs_free(adpt);
979 	netdev_reset_queue(adpt->netdev);
980 	emac_rx_q_free_descs(adpt);
981 }
982 
983 /* Consume next received packet descriptor */
984 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
985 				struct emac_rx_queue *rx_q,
986 				struct emac_rrd *rrd)
987 {
988 	u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
989 
990 	rrd->word[3] = *(hw_rrd + 3);
991 
992 	if (!RRD_UPDT(rrd))
993 		return false;
994 
995 	rrd->word[4] = 0;
996 	rrd->word[5] = 0;
997 
998 	rrd->word[0] = *(hw_rrd++);
999 	rrd->word[1] = *(hw_rrd++);
1000 	rrd->word[2] = *(hw_rrd++);
1001 
1002 	if (unlikely(RRD_NOR(rrd) != 1)) {
1003 		netdev_err(adpt->netdev,
1004 			   "error: multi-RFD not support yet! nor:%lu\n",
1005 			   RRD_NOR(rrd));
1006 	}
1007 
1008 	/* mark rrd as processed */
1009 	RRD_UPDT_SET(rrd, 0);
1010 	*hw_rrd = rrd->word[3];
1011 
1012 	if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1013 		rx_q->rrd.consume_idx = 0;
1014 
1015 	return true;
1016 }
1017 
1018 /* Produce new transmit descriptor */
1019 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1020 			       struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1021 {
1022 	u32 *hw_tpd;
1023 
1024 	tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1025 	hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1026 
1027 	if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1028 		tx_q->tpd.produce_idx = 0;
1029 
1030 	*(hw_tpd++) = tpd->word[0];
1031 	*(hw_tpd++) = tpd->word[1];
1032 	*(hw_tpd++) = tpd->word[2];
1033 	*hw_tpd = tpd->word[3];
1034 }
1035 
1036 /* Mark the last transmit descriptor as such (for the transmit packet) */
1037 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1038 				  struct emac_tx_queue *tx_q)
1039 {
1040 	u32 *hw_tpd =
1041 		EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1042 	u32 tmp_tpd;
1043 
1044 	tmp_tpd = *(hw_tpd + 1);
1045 	tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1046 	*(hw_tpd + 1) = tmp_tpd;
1047 }
1048 
1049 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1050 {
1051 	struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1052 	u32 consume_idx = RRD_SI(rrd);
1053 	unsigned int i;
1054 
1055 	for (i = 0; i < RRD_NOR(rrd); i++) {
1056 		rfbuf[consume_idx].skb = NULL;
1057 		if (++consume_idx == rx_q->rfd.count)
1058 			consume_idx = 0;
1059 	}
1060 
1061 	rx_q->rfd.consume_idx = consume_idx;
1062 	rx_q->rfd.process_idx = consume_idx;
1063 }
1064 
1065 /* Push the received skb to upper layers */
1066 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1067 			     struct sk_buff *skb,
1068 			     u16 vlan_tag, bool vlan_flag)
1069 {
1070 	if (vlan_flag) {
1071 		u16 vlan;
1072 
1073 		EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1074 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1075 	}
1076 
1077 	napi_gro_receive(&rx_q->napi, skb);
1078 }
1079 
1080 /* Process receive event */
1081 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1082 			 int *num_pkts, int max_pkts)
1083 {
1084 	u32 proc_idx, hw_consume_idx, num_consume_pkts;
1085 	struct net_device *netdev  = adpt->netdev;
1086 	struct emac_buffer *rfbuf;
1087 	unsigned int count = 0;
1088 	struct emac_rrd rrd;
1089 	struct sk_buff *skb;
1090 	u32 reg;
1091 
1092 	reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1093 
1094 	hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1095 	num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1096 		(hw_consume_idx -  rx_q->rrd.consume_idx) :
1097 		(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1098 
1099 	do {
1100 		if (!num_consume_pkts)
1101 			break;
1102 
1103 		if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1104 			break;
1105 
1106 		if (likely(RRD_NOR(&rrd) == 1)) {
1107 			/* good receive */
1108 			rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1109 			dma_unmap_single(adpt->netdev->dev.parent,
1110 					 rfbuf->dma_addr, rfbuf->length,
1111 					 DMA_FROM_DEVICE);
1112 			rfbuf->dma_addr = 0;
1113 			skb = rfbuf->skb;
1114 		} else {
1115 			netdev_err(adpt->netdev,
1116 				   "error: multi-RFD not support yet!\n");
1117 			break;
1118 		}
1119 		emac_rx_rfd_clean(rx_q, &rrd);
1120 		num_consume_pkts--;
1121 		count++;
1122 
1123 		/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1124 		 * with DF set are marked as error), drop packets based on the
1125 		 * error mask rather than the summary bit (ignoring L4F errors)
1126 		 */
1127 		if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1128 			netif_dbg(adpt, rx_status, adpt->netdev,
1129 				  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1130 				  rrd.word[0], rrd.word[1],
1131 				  rrd.word[2], rrd.word[3]);
1132 
1133 			dev_kfree_skb(skb);
1134 			continue;
1135 		}
1136 
1137 		skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1138 		skb->dev = netdev;
1139 		skb->protocol = eth_type_trans(skb, skb->dev);
1140 		if (netdev->features & NETIF_F_RXCSUM)
1141 			skb->ip_summed = RRD_L4F(&rrd) ?
1142 					  CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1143 		else
1144 			skb_checksum_none_assert(skb);
1145 
1146 		emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1147 				 (bool)RRD_CVTAG(&rrd));
1148 
1149 		(*num_pkts)++;
1150 	} while (*num_pkts < max_pkts);
1151 
1152 	if (count) {
1153 		proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1154 				rx_q->process_mask;
1155 		emac_reg_update32(adpt->base + rx_q->process_reg,
1156 				  rx_q->process_mask, proc_idx);
1157 		emac_mac_rx_descs_refill(adpt, rx_q);
1158 	}
1159 }
1160 
1161 /* get the number of free transmit descriptors */
1162 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1163 {
1164 	u32 produce_idx = tx_q->tpd.produce_idx;
1165 	u32 consume_idx = tx_q->tpd.consume_idx;
1166 
1167 	return (consume_idx > produce_idx) ?
1168 		(consume_idx - produce_idx - 1) :
1169 		(tx_q->tpd.count + consume_idx - produce_idx - 1);
1170 }
1171 
1172 /* Process transmit event */
1173 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1174 {
1175 	u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1176 	u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1177 	struct emac_buffer *tpbuf;
1178 
1179 	hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1180 
1181 	while (tx_q->tpd.consume_idx != hw_consume_idx) {
1182 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1183 		if (tpbuf->dma_addr) {
1184 			dma_unmap_single(adpt->netdev->dev.parent,
1185 					 tpbuf->dma_addr, tpbuf->length,
1186 					 DMA_TO_DEVICE);
1187 			tpbuf->dma_addr = 0;
1188 		}
1189 
1190 		if (tpbuf->skb) {
1191 			pkts_compl++;
1192 			bytes_compl += tpbuf->skb->len;
1193 			dev_kfree_skb_irq(tpbuf->skb);
1194 			tpbuf->skb = NULL;
1195 		}
1196 
1197 		if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1198 			tx_q->tpd.consume_idx = 0;
1199 	}
1200 
1201 	netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1202 
1203 	if (netif_queue_stopped(adpt->netdev))
1204 		if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1205 			netif_wake_queue(adpt->netdev);
1206 }
1207 
1208 /* Initialize all queue data structures */
1209 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1210 				  struct emac_adapter *adpt)
1211 {
1212 	adpt->rx_q.netdev = adpt->netdev;
1213 
1214 	adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1215 	adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1216 	adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1217 
1218 	adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1219 	adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1220 	adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1221 
1222 	adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1223 	adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1224 	adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1225 
1226 	adpt->rx_q.irq          = &adpt->irq;
1227 	adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1228 
1229 	adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1230 	adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1231 	adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1232 
1233 	adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1234 	adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1235 	adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1236 }
1237 
1238 /* Fill up transmit descriptors with TSO and Checksum offload information */
1239 static int emac_tso_csum(struct emac_adapter *adpt,
1240 			 struct emac_tx_queue *tx_q,
1241 			 struct sk_buff *skb,
1242 			 struct emac_tpd *tpd)
1243 {
1244 	unsigned int hdr_len;
1245 	int ret;
1246 
1247 	if (skb_is_gso(skb)) {
1248 		if (skb_header_cloned(skb)) {
1249 			ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1250 			if (unlikely(ret))
1251 				return ret;
1252 		}
1253 
1254 		if (skb->protocol == htons(ETH_P_IP)) {
1255 			u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1256 				       + ntohs(ip_hdr(skb)->tot_len);
1257 			if (skb->len > pkt_len)
1258 				pskb_trim(skb, pkt_len);
1259 		}
1260 
1261 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1262 		if (unlikely(skb->len == hdr_len)) {
1263 			/* we only need to do csum */
1264 			netif_warn(adpt, tx_err, adpt->netdev,
1265 				   "tso not needed for packet with 0 data\n");
1266 			goto do_csum;
1267 		}
1268 
1269 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1270 			ip_hdr(skb)->check = 0;
1271 			tcp_hdr(skb)->check =
1272 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1273 						   ip_hdr(skb)->daddr,
1274 						   0, IPPROTO_TCP, 0);
1275 			TPD_IPV4_SET(tpd, 1);
1276 		}
1277 
1278 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1279 			/* ipv6 tso need an extra tpd */
1280 			struct emac_tpd extra_tpd;
1281 
1282 			memset(tpd, 0, sizeof(*tpd));
1283 			memset(&extra_tpd, 0, sizeof(extra_tpd));
1284 
1285 			ipv6_hdr(skb)->payload_len = 0;
1286 			tcp_hdr(skb)->check =
1287 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1288 						 &ipv6_hdr(skb)->daddr,
1289 						 0, IPPROTO_TCP, 0);
1290 			TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1291 			TPD_LSO_SET(&extra_tpd, 1);
1292 			TPD_LSOV_SET(&extra_tpd, 1);
1293 			emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1294 			TPD_LSOV_SET(tpd, 1);
1295 		}
1296 
1297 		TPD_LSO_SET(tpd, 1);
1298 		TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1299 		TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1300 		return 0;
1301 	}
1302 
1303 do_csum:
1304 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1305 		unsigned int css, cso;
1306 
1307 		cso = skb_transport_offset(skb);
1308 		if (unlikely(cso & 0x1)) {
1309 			netdev_err(adpt->netdev,
1310 				   "error: payload offset should be even\n");
1311 			return -EINVAL;
1312 		}
1313 		css = cso + skb->csum_offset;
1314 
1315 		TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1316 		TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1317 		TPD_CSX_SET(tpd, 1);
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 /* Fill up transmit descriptors */
1324 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1325 			     struct emac_tx_queue *tx_q, struct sk_buff *skb,
1326 			     struct emac_tpd *tpd)
1327 {
1328 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1329 	unsigned int first = tx_q->tpd.produce_idx;
1330 	unsigned int len = skb_headlen(skb);
1331 	struct emac_buffer *tpbuf = NULL;
1332 	unsigned int mapped_len = 0;
1333 	unsigned int i;
1334 	int count = 0;
1335 	int ret;
1336 
1337 	/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1338 	if (TPD_LSO(tpd)) {
1339 		mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1340 
1341 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1342 		tpbuf->length = mapped_len;
1343 		tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1344 						 skb->data, tpbuf->length,
1345 						 DMA_TO_DEVICE);
1346 		ret = dma_mapping_error(adpt->netdev->dev.parent,
1347 					tpbuf->dma_addr);
1348 		if (ret)
1349 			goto error;
1350 
1351 		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1352 		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1353 		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1354 		emac_tx_tpd_create(adpt, tx_q, tpd);
1355 		count++;
1356 	}
1357 
1358 	if (mapped_len < len) {
1359 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1360 		tpbuf->length = len - mapped_len;
1361 		tpbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent,
1362 						 skb->data + mapped_len,
1363 						 tpbuf->length, DMA_TO_DEVICE);
1364 		ret = dma_mapping_error(adpt->netdev->dev.parent,
1365 					tpbuf->dma_addr);
1366 		if (ret)
1367 			goto error;
1368 
1369 		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1370 		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1371 		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1372 		emac_tx_tpd_create(adpt, tx_q, tpd);
1373 		count++;
1374 	}
1375 
1376 	for (i = 0; i < nr_frags; i++) {
1377 		struct skb_frag_struct *frag;
1378 
1379 		frag = &skb_shinfo(skb)->frags[i];
1380 
1381 		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1382 		tpbuf->length = frag->size;
1383 		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1384 					       frag->page.p, frag->page_offset,
1385 					       tpbuf->length, DMA_TO_DEVICE);
1386 		ret = dma_mapping_error(adpt->netdev->dev.parent,
1387 					tpbuf->dma_addr);
1388 		if (ret)
1389 			goto error;
1390 
1391 		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1392 		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1393 		TPD_BUF_LEN_SET(tpd, tpbuf->length);
1394 		emac_tx_tpd_create(adpt, tx_q, tpd);
1395 		count++;
1396 	}
1397 
1398 	/* The last tpd */
1399 	wmb();
1400 	emac_tx_tpd_mark_last(adpt, tx_q);
1401 
1402 	/* The last buffer info contain the skb address,
1403 	 * so it will be freed after unmap
1404 	 */
1405 	tpbuf->skb = skb;
1406 
1407 	return;
1408 
1409 error:
1410 	/* One of the memory mappings failed, so undo everything */
1411 	tx_q->tpd.produce_idx = first;
1412 
1413 	while (count--) {
1414 		tpbuf = GET_TPD_BUFFER(tx_q, first);
1415 		dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1416 			       tpbuf->length, DMA_TO_DEVICE);
1417 		tpbuf->dma_addr = 0;
1418 		tpbuf->length = 0;
1419 
1420 		if (++first == tx_q->tpd.count)
1421 			first = 0;
1422 	}
1423 
1424 	dev_kfree_skb(skb);
1425 }
1426 
1427 /* Transmit the packet using specified transmit queue */
1428 int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
1429 			 struct sk_buff *skb)
1430 {
1431 	struct emac_tpd tpd;
1432 	u32 prod_idx;
1433 
1434 	memset(&tpd, 0, sizeof(tpd));
1435 
1436 	if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1437 		dev_kfree_skb_any(skb);
1438 		return NETDEV_TX_OK;
1439 	}
1440 
1441 	if (skb_vlan_tag_present(skb)) {
1442 		u16 tag;
1443 
1444 		EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1445 		TPD_CVLAN_TAG_SET(&tpd, tag);
1446 		TPD_INSTC_SET(&tpd, 1);
1447 	}
1448 
1449 	if (skb_network_offset(skb) != ETH_HLEN)
1450 		TPD_TYP_SET(&tpd, 1);
1451 
1452 	emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1453 
1454 	netdev_sent_queue(adpt->netdev, skb->len);
1455 
1456 	/* Make sure the are enough free descriptors to hold one
1457 	 * maximum-sized SKB.  We need one desc for each fragment,
1458 	 * one for the checksum (emac_tso_csum), one for TSO, and
1459 	 * and one for the SKB header.
1460 	 */
1461 	if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1462 		netif_stop_queue(adpt->netdev);
1463 
1464 	/* update produce idx */
1465 	prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1466 		    tx_q->produce_mask;
1467 	emac_reg_update32(adpt->base + tx_q->produce_reg,
1468 			  tx_q->produce_mask, prod_idx);
1469 
1470 	return NETDEV_TX_OK;
1471 }
1472