1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * QLogic QLA3xxx NIC HBA Driver
4  * Copyright (c)  2003-2006 QLogic Corporation
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36 #include <linux/prefetch.h>
37 
38 #include "qla3xxx.h"
39 
40 #define DRV_NAME	"qla3xxx"
41 #define DRV_STRING	"QLogic ISP3XXX Network Driver"
42 #define DRV_VERSION	"v2.03.00-k5"
43 
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46 
47 #define TIMED_OUT_MSG							\
48 "Timed out waiting for management port to get free before issuing command\n"
49 
50 MODULE_AUTHOR("QLogic Corporation");
51 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54 
55 static const u32 default_msg
56     = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
57     | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
58 
59 static int debug = -1;		/* defaults above */
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62 
63 static int msi;
64 module_param(msi, int, 0);
65 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
66 
67 static const struct pci_device_id ql3xxx_pci_tbl[] = {
68 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
69 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
70 	/* required last entry */
71 	{0,}
72 };
73 
74 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
75 
76 /*
77  *  These are the known PHY's which are used
78  */
79 enum PHY_DEVICE_TYPE {
80    PHY_TYPE_UNKNOWN   = 0,
81    PHY_VITESSE_VSC8211,
82    PHY_AGERE_ET1011C,
83    MAX_PHY_DEV_TYPES
84 };
85 
86 struct PHY_DEVICE_INFO {
87 	const enum PHY_DEVICE_TYPE	phyDevice;
88 	const u32		phyIdOUI;
89 	const u16		phyIdModel;
90 	const char		*name;
91 };
92 
93 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
94 	{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
95 	{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
96 	{PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
97 };
98 
99 
100 /*
101  * Caller must take hw_lock.
102  */
103 static int ql_sem_spinlock(struct ql3_adapter *qdev,
104 			    u32 sem_mask, u32 sem_bits)
105 {
106 	struct ql3xxx_port_registers __iomem *port_regs =
107 		qdev->mem_map_registers;
108 	u32 value;
109 	unsigned int seconds = 3;
110 
111 	do {
112 		writel((sem_mask | sem_bits),
113 		       &port_regs->CommonRegs.semaphoreReg);
114 		value = readl(&port_regs->CommonRegs.semaphoreReg);
115 		if ((value & (sem_mask >> 16)) == sem_bits)
116 			return 0;
117 		ssleep(1);
118 	} while (--seconds);
119 	return -1;
120 }
121 
122 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
123 {
124 	struct ql3xxx_port_registers __iomem *port_regs =
125 		qdev->mem_map_registers;
126 	writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
127 	readl(&port_regs->CommonRegs.semaphoreReg);
128 }
129 
130 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
131 {
132 	struct ql3xxx_port_registers __iomem *port_regs =
133 		qdev->mem_map_registers;
134 	u32 value;
135 
136 	writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
137 	value = readl(&port_regs->CommonRegs.semaphoreReg);
138 	return ((value & (sem_mask >> 16)) == sem_bits);
139 }
140 
141 /*
142  * Caller holds hw_lock.
143  */
144 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
145 {
146 	int i = 0;
147 
148 	do {
149 		if (ql_sem_lock(qdev,
150 				QL_DRVR_SEM_MASK,
151 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
152 				 * 2) << 1)) {
153 			netdev_printk(KERN_DEBUG, qdev->ndev,
154 				      "driver lock acquired\n");
155 			return 1;
156 		}
157 		ssleep(1);
158 	} while (++i < 10);
159 
160 	netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
161 	return 0;
162 }
163 
164 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
165 {
166 	struct ql3xxx_port_registers __iomem *port_regs =
167 		qdev->mem_map_registers;
168 
169 	writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 			&port_regs->CommonRegs.ispControlStatus);
171 	readl(&port_regs->CommonRegs.ispControlStatus);
172 	qdev->current_page = page;
173 }
174 
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
176 {
177 	u32 value;
178 	unsigned long hw_flags;
179 
180 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
181 	value = readl(reg);
182 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
183 
184 	return value;
185 }
186 
187 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
188 {
189 	return readl(reg);
190 }
191 
192 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
193 {
194 	u32 value;
195 	unsigned long hw_flags;
196 
197 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
198 
199 	if (qdev->current_page != 0)
200 		ql_set_register_page(qdev, 0);
201 	value = readl(reg);
202 
203 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
204 	return value;
205 }
206 
207 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
208 {
209 	if (qdev->current_page != 0)
210 		ql_set_register_page(qdev, 0);
211 	return readl(reg);
212 }
213 
214 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
215 				u32 __iomem *reg, u32 value)
216 {
217 	unsigned long hw_flags;
218 
219 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
220 	writel(value, reg);
221 	readl(reg);
222 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
223 }
224 
225 static void ql_write_common_reg(struct ql3_adapter *qdev,
226 				u32 __iomem *reg, u32 value)
227 {
228 	writel(value, reg);
229 	readl(reg);
230 }
231 
232 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
233 				u32 __iomem *reg, u32 value)
234 {
235 	writel(value, reg);
236 	readl(reg);
237 	udelay(1);
238 }
239 
240 static void ql_write_page0_reg(struct ql3_adapter *qdev,
241 			       u32 __iomem *reg, u32 value)
242 {
243 	if (qdev->current_page != 0)
244 		ql_set_register_page(qdev, 0);
245 	writel(value, reg);
246 	readl(reg);
247 }
248 
249 /*
250  * Caller holds hw_lock. Only called during init.
251  */
252 static void ql_write_page1_reg(struct ql3_adapter *qdev,
253 			       u32 __iomem *reg, u32 value)
254 {
255 	if (qdev->current_page != 1)
256 		ql_set_register_page(qdev, 1);
257 	writel(value, reg);
258 	readl(reg);
259 }
260 
261 /*
262  * Caller holds hw_lock. Only called during init.
263  */
264 static void ql_write_page2_reg(struct ql3_adapter *qdev,
265 			       u32 __iomem *reg, u32 value)
266 {
267 	if (qdev->current_page != 2)
268 		ql_set_register_page(qdev, 2);
269 	writel(value, reg);
270 	readl(reg);
271 }
272 
273 static void ql_disable_interrupts(struct ql3_adapter *qdev)
274 {
275 	struct ql3xxx_port_registers __iomem *port_regs =
276 		qdev->mem_map_registers;
277 
278 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
279 			    (ISP_IMR_ENABLE_INT << 16));
280 
281 }
282 
283 static void ql_enable_interrupts(struct ql3_adapter *qdev)
284 {
285 	struct ql3xxx_port_registers __iomem *port_regs =
286 		qdev->mem_map_registers;
287 
288 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
289 			    ((0xff << 16) | ISP_IMR_ENABLE_INT));
290 
291 }
292 
293 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
294 					    struct ql_rcv_buf_cb *lrg_buf_cb)
295 {
296 	dma_addr_t map;
297 	int err;
298 	lrg_buf_cb->next = NULL;
299 
300 	if (qdev->lrg_buf_free_tail == NULL) {	/* The list is empty  */
301 		qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
302 	} else {
303 		qdev->lrg_buf_free_tail->next = lrg_buf_cb;
304 		qdev->lrg_buf_free_tail = lrg_buf_cb;
305 	}
306 
307 	if (!lrg_buf_cb->skb) {
308 		lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
309 						   qdev->lrg_buffer_len);
310 		if (unlikely(!lrg_buf_cb->skb)) {
311 			qdev->lrg_buf_skb_check++;
312 		} else {
313 			/*
314 			 * We save some space to copy the ethhdr from first
315 			 * buffer
316 			 */
317 			skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
318 			map = pci_map_single(qdev->pdev,
319 					     lrg_buf_cb->skb->data,
320 					     qdev->lrg_buffer_len -
321 					     QL_HEADER_SPACE,
322 					     PCI_DMA_FROMDEVICE);
323 			err = pci_dma_mapping_error(qdev->pdev, map);
324 			if (err) {
325 				netdev_err(qdev->ndev,
326 					   "PCI mapping failed with error: %d\n",
327 					   err);
328 				dev_kfree_skb(lrg_buf_cb->skb);
329 				lrg_buf_cb->skb = NULL;
330 
331 				qdev->lrg_buf_skb_check++;
332 				return;
333 			}
334 
335 			lrg_buf_cb->buf_phy_addr_low =
336 			    cpu_to_le32(LS_64BITS(map));
337 			lrg_buf_cb->buf_phy_addr_high =
338 			    cpu_to_le32(MS_64BITS(map));
339 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
340 			dma_unmap_len_set(lrg_buf_cb, maplen,
341 					  qdev->lrg_buffer_len -
342 					  QL_HEADER_SPACE);
343 		}
344 	}
345 
346 	qdev->lrg_buf_free_count++;
347 }
348 
349 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
350 							   *qdev)
351 {
352 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
353 
354 	if (lrg_buf_cb != NULL) {
355 		qdev->lrg_buf_free_head = lrg_buf_cb->next;
356 		if (qdev->lrg_buf_free_head == NULL)
357 			qdev->lrg_buf_free_tail = NULL;
358 		qdev->lrg_buf_free_count--;
359 	}
360 
361 	return lrg_buf_cb;
362 }
363 
364 static u32 addrBits = EEPROM_NO_ADDR_BITS;
365 static u32 dataBits = EEPROM_NO_DATA_BITS;
366 
367 static void fm93c56a_deselect(struct ql3_adapter *qdev);
368 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
369 			    unsigned short *value);
370 
371 /*
372  * Caller holds hw_lock.
373  */
374 static void fm93c56a_select(struct ql3_adapter *qdev)
375 {
376 	struct ql3xxx_port_registers __iomem *port_regs =
377 			qdev->mem_map_registers;
378 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
379 
380 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
381 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
382 }
383 
384 /*
385  * Caller holds hw_lock.
386  */
387 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
388 {
389 	int i;
390 	u32 mask;
391 	u32 dataBit;
392 	u32 previousBit;
393 	struct ql3xxx_port_registers __iomem *port_regs =
394 			qdev->mem_map_registers;
395 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
396 
397 	/* Clock in a zero, then do the start bit */
398 	ql_write_nvram_reg(qdev, spir,
399 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
400 			    AUBURN_EEPROM_DO_1));
401 	ql_write_nvram_reg(qdev, spir,
402 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
403 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
404 	ql_write_nvram_reg(qdev, spir,
405 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
406 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
407 
408 	mask = 1 << (FM93C56A_CMD_BITS - 1);
409 	/* Force the previous data bit to be different */
410 	previousBit = 0xffff;
411 	for (i = 0; i < FM93C56A_CMD_BITS; i++) {
412 		dataBit = (cmd & mask)
413 			? AUBURN_EEPROM_DO_1
414 			: AUBURN_EEPROM_DO_0;
415 		if (previousBit != dataBit) {
416 			/* If the bit changed, change the DO state to match */
417 			ql_write_nvram_reg(qdev, spir,
418 					   (ISP_NVRAM_MASK |
419 					    qdev->eeprom_cmd_data | dataBit));
420 			previousBit = dataBit;
421 		}
422 		ql_write_nvram_reg(qdev, spir,
423 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
424 				    dataBit | AUBURN_EEPROM_CLK_RISE));
425 		ql_write_nvram_reg(qdev, spir,
426 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
427 				    dataBit | AUBURN_EEPROM_CLK_FALL));
428 		cmd = cmd << 1;
429 	}
430 
431 	mask = 1 << (addrBits - 1);
432 	/* Force the previous data bit to be different */
433 	previousBit = 0xffff;
434 	for (i = 0; i < addrBits; i++) {
435 		dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
436 			: AUBURN_EEPROM_DO_0;
437 		if (previousBit != dataBit) {
438 			/*
439 			 * If the bit changed, then change the DO state to
440 			 * match
441 			 */
442 			ql_write_nvram_reg(qdev, spir,
443 					   (ISP_NVRAM_MASK |
444 					    qdev->eeprom_cmd_data | dataBit));
445 			previousBit = dataBit;
446 		}
447 		ql_write_nvram_reg(qdev, spir,
448 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
449 				    dataBit | AUBURN_EEPROM_CLK_RISE));
450 		ql_write_nvram_reg(qdev, spir,
451 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
452 				    dataBit | AUBURN_EEPROM_CLK_FALL));
453 		eepromAddr = eepromAddr << 1;
454 	}
455 }
456 
457 /*
458  * Caller holds hw_lock.
459  */
460 static void fm93c56a_deselect(struct ql3_adapter *qdev)
461 {
462 	struct ql3xxx_port_registers __iomem *port_regs =
463 			qdev->mem_map_registers;
464 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
465 
466 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
467 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
468 }
469 
470 /*
471  * Caller holds hw_lock.
472  */
473 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
474 {
475 	int i;
476 	u32 data = 0;
477 	u32 dataBit;
478 	struct ql3xxx_port_registers __iomem *port_regs =
479 			qdev->mem_map_registers;
480 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
481 
482 	/* Read the data bits */
483 	/* The first bit is a dummy.  Clock right over it. */
484 	for (i = 0; i < dataBits; i++) {
485 		ql_write_nvram_reg(qdev, spir,
486 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
487 				   AUBURN_EEPROM_CLK_RISE);
488 		ql_write_nvram_reg(qdev, spir,
489 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
490 				   AUBURN_EEPROM_CLK_FALL);
491 		dataBit = (ql_read_common_reg(qdev, spir) &
492 			   AUBURN_EEPROM_DI_1) ? 1 : 0;
493 		data = (data << 1) | dataBit;
494 	}
495 	*value = (u16)data;
496 }
497 
498 /*
499  * Caller holds hw_lock.
500  */
501 static void eeprom_readword(struct ql3_adapter *qdev,
502 			    u32 eepromAddr, unsigned short *value)
503 {
504 	fm93c56a_select(qdev);
505 	fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
506 	fm93c56a_datain(qdev, value);
507 	fm93c56a_deselect(qdev);
508 }
509 
510 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
511 {
512 	__le16 *p = (__le16 *)ndev->dev_addr;
513 	p[0] = cpu_to_le16(addr[0]);
514 	p[1] = cpu_to_le16(addr[1]);
515 	p[2] = cpu_to_le16(addr[2]);
516 }
517 
518 static int ql_get_nvram_params(struct ql3_adapter *qdev)
519 {
520 	u16 *pEEPROMData;
521 	u16 checksum = 0;
522 	u32 index;
523 	unsigned long hw_flags;
524 
525 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
526 
527 	pEEPROMData = (u16 *)&qdev->nvram_data;
528 	qdev->eeprom_cmd_data = 0;
529 	if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
530 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
531 			 2) << 10)) {
532 		pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
533 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
534 		return -1;
535 	}
536 
537 	for (index = 0; index < EEPROM_SIZE; index++) {
538 		eeprom_readword(qdev, index, pEEPROMData);
539 		checksum += *pEEPROMData;
540 		pEEPROMData++;
541 	}
542 	ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
543 
544 	if (checksum != 0) {
545 		netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
546 			   checksum);
547 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
548 		return -1;
549 	}
550 
551 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
552 	return checksum;
553 }
554 
555 static const u32 PHYAddr[2] = {
556 	PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
557 };
558 
559 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
560 {
561 	struct ql3xxx_port_registers __iomem *port_regs =
562 			qdev->mem_map_registers;
563 	u32 temp;
564 	int count = 1000;
565 
566 	while (count) {
567 		temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
568 		if (!(temp & MAC_MII_STATUS_BSY))
569 			return 0;
570 		udelay(10);
571 		count--;
572 	}
573 	return -1;
574 }
575 
576 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
577 {
578 	struct ql3xxx_port_registers __iomem *port_regs =
579 			qdev->mem_map_registers;
580 	u32 scanControl;
581 
582 	if (qdev->numPorts > 1) {
583 		/* Auto scan will cycle through multiple ports */
584 		scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
585 	} else {
586 		scanControl = MAC_MII_CONTROL_SC;
587 	}
588 
589 	/*
590 	 * Scan register 1 of PHY/PETBI,
591 	 * Set up to scan both devices
592 	 * The autoscan starts from the first register, completes
593 	 * the last one before rolling over to the first
594 	 */
595 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
596 			   PHYAddr[0] | MII_SCAN_REGISTER);
597 
598 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
599 			   (scanControl) |
600 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
601 }
602 
603 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
604 {
605 	u8 ret;
606 	struct ql3xxx_port_registers __iomem *port_regs =
607 					qdev->mem_map_registers;
608 
609 	/* See if scan mode is enabled before we turn it off */
610 	if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
611 	    (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
612 		/* Scan is enabled */
613 		ret = 1;
614 	} else {
615 		/* Scan is disabled */
616 		ret = 0;
617 	}
618 
619 	/*
620 	 * When disabling scan mode you must first change the MII register
621 	 * address
622 	 */
623 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
624 			   PHYAddr[0] | MII_SCAN_REGISTER);
625 
626 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
627 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
628 			     MAC_MII_CONTROL_RC) << 16));
629 
630 	return ret;
631 }
632 
633 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
634 			       u16 regAddr, u16 value, u32 phyAddr)
635 {
636 	struct ql3xxx_port_registers __iomem *port_regs =
637 			qdev->mem_map_registers;
638 	u8 scanWasEnabled;
639 
640 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
641 
642 	if (ql_wait_for_mii_ready(qdev)) {
643 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
644 		return -1;
645 	}
646 
647 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
648 			   phyAddr | regAddr);
649 
650 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
651 
652 	/* Wait for write to complete 9/10/04 SJP */
653 	if (ql_wait_for_mii_ready(qdev)) {
654 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
655 		return -1;
656 	}
657 
658 	if (scanWasEnabled)
659 		ql_mii_enable_scan_mode(qdev);
660 
661 	return 0;
662 }
663 
664 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
665 			      u16 *value, u32 phyAddr)
666 {
667 	struct ql3xxx_port_registers __iomem *port_regs =
668 			qdev->mem_map_registers;
669 	u8 scanWasEnabled;
670 	u32 temp;
671 
672 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
673 
674 	if (ql_wait_for_mii_ready(qdev)) {
675 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
676 		return -1;
677 	}
678 
679 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
680 			   phyAddr | regAddr);
681 
682 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
683 			   (MAC_MII_CONTROL_RC << 16));
684 
685 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
686 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
687 
688 	/* Wait for the read to complete */
689 	if (ql_wait_for_mii_ready(qdev)) {
690 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
691 		return -1;
692 	}
693 
694 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
695 	*value = (u16) temp;
696 
697 	if (scanWasEnabled)
698 		ql_mii_enable_scan_mode(qdev);
699 
700 	return 0;
701 }
702 
703 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
704 {
705 	struct ql3xxx_port_registers __iomem *port_regs =
706 			qdev->mem_map_registers;
707 
708 	ql_mii_disable_scan_mode(qdev);
709 
710 	if (ql_wait_for_mii_ready(qdev)) {
711 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
712 		return -1;
713 	}
714 
715 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
716 			   qdev->PHYAddr | regAddr);
717 
718 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
719 
720 	/* Wait for write to complete. */
721 	if (ql_wait_for_mii_ready(qdev)) {
722 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
723 		return -1;
724 	}
725 
726 	ql_mii_enable_scan_mode(qdev);
727 
728 	return 0;
729 }
730 
731 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
732 {
733 	u32 temp;
734 	struct ql3xxx_port_registers __iomem *port_regs =
735 			qdev->mem_map_registers;
736 
737 	ql_mii_disable_scan_mode(qdev);
738 
739 	if (ql_wait_for_mii_ready(qdev)) {
740 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
741 		return -1;
742 	}
743 
744 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
745 			   qdev->PHYAddr | regAddr);
746 
747 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
748 			   (MAC_MII_CONTROL_RC << 16));
749 
750 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
751 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
752 
753 	/* Wait for the read to complete */
754 	if (ql_wait_for_mii_ready(qdev)) {
755 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
756 		return -1;
757 	}
758 
759 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
760 	*value = (u16) temp;
761 
762 	ql_mii_enable_scan_mode(qdev);
763 
764 	return 0;
765 }
766 
767 static void ql_petbi_reset(struct ql3_adapter *qdev)
768 {
769 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
770 }
771 
772 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
773 {
774 	u16 reg;
775 
776 	/* Enable Auto-negotiation sense */
777 	ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
778 	reg |= PETBI_TBI_AUTO_SENSE;
779 	ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
780 
781 	ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
782 			 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
783 
784 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
785 			 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
786 			 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
787 
788 }
789 
790 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
791 {
792 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
793 			    PHYAddr[qdev->mac_index]);
794 }
795 
796 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
797 {
798 	u16 reg;
799 
800 	/* Enable Auto-negotiation sense */
801 	ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
802 			   PHYAddr[qdev->mac_index]);
803 	reg |= PETBI_TBI_AUTO_SENSE;
804 	ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
805 			    PHYAddr[qdev->mac_index]);
806 
807 	ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
808 			    PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
809 			    PHYAddr[qdev->mac_index]);
810 
811 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
812 			    PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
813 			    PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
814 			    PHYAddr[qdev->mac_index]);
815 }
816 
817 static void ql_petbi_init(struct ql3_adapter *qdev)
818 {
819 	ql_petbi_reset(qdev);
820 	ql_petbi_start_neg(qdev);
821 }
822 
823 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
824 {
825 	ql_petbi_reset_ex(qdev);
826 	ql_petbi_start_neg_ex(qdev);
827 }
828 
829 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
830 {
831 	u16 reg;
832 
833 	if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
834 		return 0;
835 
836 	return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
837 }
838 
839 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
840 {
841 	netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
842 	/* power down device bit 11 = 1 */
843 	ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
844 	/* enable diagnostic mode bit 2 = 1 */
845 	ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
846 	/* 1000MB amplitude adjust (see Agere errata) */
847 	ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
848 	/* 1000MB amplitude adjust (see Agere errata) */
849 	ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
850 	/* 100MB amplitude adjust (see Agere errata) */
851 	ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
852 	/* 100MB amplitude adjust (see Agere errata) */
853 	ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
854 	/* 10MB amplitude adjust (see Agere errata) */
855 	ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
856 	/* 10MB amplitude adjust (see Agere errata) */
857 	ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
858 	/* point to hidden reg 0x2806 */
859 	ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
860 	/* Write new PHYAD w/bit 5 set */
861 	ql_mii_write_reg_ex(qdev, 0x11,
862 			    0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
863 	/*
864 	 * Disable diagnostic mode bit 2 = 0
865 	 * Power up device bit 11 = 0
866 	 * Link up (on) and activity (blink)
867 	 */
868 	ql_mii_write_reg(qdev, 0x12, 0x840a);
869 	ql_mii_write_reg(qdev, 0x00, 0x1140);
870 	ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
871 }
872 
873 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
874 				       u16 phyIdReg0, u16 phyIdReg1)
875 {
876 	enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
877 	u32   oui;
878 	u16   model;
879 	int i;
880 
881 	if (phyIdReg0 == 0xffff)
882 		return result;
883 
884 	if (phyIdReg1 == 0xffff)
885 		return result;
886 
887 	/* oui is split between two registers */
888 	oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
889 
890 	model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
891 
892 	/* Scan table for this PHY */
893 	for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
894 		if ((oui == PHY_DEVICES[i].phyIdOUI) &&
895 		    (model == PHY_DEVICES[i].phyIdModel)) {
896 			netdev_info(qdev->ndev, "Phy: %s\n",
897 				    PHY_DEVICES[i].name);
898 			result = PHY_DEVICES[i].phyDevice;
899 			break;
900 		}
901 	}
902 
903 	return result;
904 }
905 
906 static int ql_phy_get_speed(struct ql3_adapter *qdev)
907 {
908 	u16 reg;
909 
910 	switch (qdev->phyType) {
911 	case PHY_AGERE_ET1011C: {
912 		if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
913 			return 0;
914 
915 		reg = (reg >> 8) & 3;
916 		break;
917 	}
918 	default:
919 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
920 			return 0;
921 
922 		reg = (((reg & 0x18) >> 3) & 3);
923 	}
924 
925 	switch (reg) {
926 	case 2:
927 		return SPEED_1000;
928 	case 1:
929 		return SPEED_100;
930 	case 0:
931 		return SPEED_10;
932 	default:
933 		return -1;
934 	}
935 }
936 
937 static int ql_is_full_dup(struct ql3_adapter *qdev)
938 {
939 	u16 reg;
940 
941 	switch (qdev->phyType) {
942 	case PHY_AGERE_ET1011C: {
943 		if (ql_mii_read_reg(qdev, 0x1A, &reg))
944 			return 0;
945 
946 		return ((reg & 0x0080) && (reg & 0x1000)) != 0;
947 	}
948 	case PHY_VITESSE_VSC8211:
949 	default: {
950 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
951 			return 0;
952 		return (reg & PHY_AUX_DUPLEX_STAT) != 0;
953 	}
954 	}
955 }
956 
957 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
958 {
959 	u16 reg;
960 
961 	if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
962 		return 0;
963 
964 	return (reg & PHY_NEG_PAUSE) != 0;
965 }
966 
967 static int PHY_Setup(struct ql3_adapter *qdev)
968 {
969 	u16   reg1;
970 	u16   reg2;
971 	bool  agereAddrChangeNeeded = false;
972 	u32 miiAddr = 0;
973 	int err;
974 
975 	/*  Determine the PHY we are using by reading the ID's */
976 	err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
977 	if (err != 0) {
978 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
979 		return err;
980 	}
981 
982 	err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
983 	if (err != 0) {
984 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
985 		return err;
986 	}
987 
988 	/*  Check if we have a Agere PHY */
989 	if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
990 
991 		/* Determine which MII address we should be using
992 		   determined by the index of the card */
993 		if (qdev->mac_index == 0)
994 			miiAddr = MII_AGERE_ADDR_1;
995 		else
996 			miiAddr = MII_AGERE_ADDR_2;
997 
998 		err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
999 		if (err != 0) {
1000 			netdev_err(qdev->ndev,
1001 				   "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1002 			return err;
1003 		}
1004 
1005 		err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1006 		if (err != 0) {
1007 			netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1008 			return err;
1009 		}
1010 
1011 		/*  We need to remember to initialize the Agere PHY */
1012 		agereAddrChangeNeeded = true;
1013 	}
1014 
1015 	/*  Determine the particular PHY we have on board to apply
1016 	    PHY specific initializations */
1017 	qdev->phyType = getPhyType(qdev, reg1, reg2);
1018 
1019 	if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1020 		/* need this here so address gets changed */
1021 		phyAgereSpecificInit(qdev, miiAddr);
1022 	} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1023 		netdev_err(qdev->ndev, "PHY is unknown\n");
1024 		return -EIO;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Caller holds hw_lock.
1032  */
1033 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1034 {
1035 	struct ql3xxx_port_registers __iomem *port_regs =
1036 			qdev->mem_map_registers;
1037 	u32 value;
1038 
1039 	if (enable)
1040 		value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1041 	else
1042 		value = (MAC_CONFIG_REG_PE << 16);
1043 
1044 	if (qdev->mac_index)
1045 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1046 	else
1047 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1048 }
1049 
1050 /*
1051  * Caller holds hw_lock.
1052  */
1053 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1054 {
1055 	struct ql3xxx_port_registers __iomem *port_regs =
1056 			qdev->mem_map_registers;
1057 	u32 value;
1058 
1059 	if (enable)
1060 		value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1061 	else
1062 		value = (MAC_CONFIG_REG_SR << 16);
1063 
1064 	if (qdev->mac_index)
1065 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1066 	else
1067 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1068 }
1069 
1070 /*
1071  * Caller holds hw_lock.
1072  */
1073 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1074 {
1075 	struct ql3xxx_port_registers __iomem *port_regs =
1076 			qdev->mem_map_registers;
1077 	u32 value;
1078 
1079 	if (enable)
1080 		value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1081 	else
1082 		value = (MAC_CONFIG_REG_GM << 16);
1083 
1084 	if (qdev->mac_index)
1085 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1086 	else
1087 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1088 }
1089 
1090 /*
1091  * Caller holds hw_lock.
1092  */
1093 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1094 {
1095 	struct ql3xxx_port_registers __iomem *port_regs =
1096 			qdev->mem_map_registers;
1097 	u32 value;
1098 
1099 	if (enable)
1100 		value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1101 	else
1102 		value = (MAC_CONFIG_REG_FD << 16);
1103 
1104 	if (qdev->mac_index)
1105 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1106 	else
1107 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1108 }
1109 
1110 /*
1111  * Caller holds hw_lock.
1112  */
1113 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1114 {
1115 	struct ql3xxx_port_registers __iomem *port_regs =
1116 			qdev->mem_map_registers;
1117 	u32 value;
1118 
1119 	if (enable)
1120 		value =
1121 		    ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1122 		     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1123 	else
1124 		value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1125 
1126 	if (qdev->mac_index)
1127 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1128 	else
1129 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1130 }
1131 
1132 /*
1133  * Caller holds hw_lock.
1134  */
1135 static int ql_is_fiber(struct ql3_adapter *qdev)
1136 {
1137 	struct ql3xxx_port_registers __iomem *port_regs =
1138 			qdev->mem_map_registers;
1139 	u32 bitToCheck = 0;
1140 	u32 temp;
1141 
1142 	switch (qdev->mac_index) {
1143 	case 0:
1144 		bitToCheck = PORT_STATUS_SM0;
1145 		break;
1146 	case 1:
1147 		bitToCheck = PORT_STATUS_SM1;
1148 		break;
1149 	}
1150 
1151 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1152 	return (temp & bitToCheck) != 0;
1153 }
1154 
1155 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1156 {
1157 	u16 reg;
1158 	ql_mii_read_reg(qdev, 0x00, &reg);
1159 	return (reg & 0x1000) != 0;
1160 }
1161 
1162 /*
1163  * Caller holds hw_lock.
1164  */
1165 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1166 {
1167 	struct ql3xxx_port_registers __iomem *port_regs =
1168 			qdev->mem_map_registers;
1169 	u32 bitToCheck = 0;
1170 	u32 temp;
1171 
1172 	switch (qdev->mac_index) {
1173 	case 0:
1174 		bitToCheck = PORT_STATUS_AC0;
1175 		break;
1176 	case 1:
1177 		bitToCheck = PORT_STATUS_AC1;
1178 		break;
1179 	}
1180 
1181 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1182 	if (temp & bitToCheck) {
1183 		netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1184 		return 1;
1185 	}
1186 	netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1187 	return 0;
1188 }
1189 
1190 /*
1191  *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
1192  */
1193 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1194 {
1195 	if (ql_is_fiber(qdev))
1196 		return ql_is_petbi_neg_pause(qdev);
1197 	else
1198 		return ql_is_phy_neg_pause(qdev);
1199 }
1200 
1201 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1202 {
1203 	struct ql3xxx_port_registers __iomem *port_regs =
1204 			qdev->mem_map_registers;
1205 	u32 bitToCheck = 0;
1206 	u32 temp;
1207 
1208 	switch (qdev->mac_index) {
1209 	case 0:
1210 		bitToCheck = PORT_STATUS_AE0;
1211 		break;
1212 	case 1:
1213 		bitToCheck = PORT_STATUS_AE1;
1214 		break;
1215 	}
1216 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1217 	return (temp & bitToCheck) != 0;
1218 }
1219 
1220 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1221 {
1222 	if (ql_is_fiber(qdev))
1223 		return SPEED_1000;
1224 	else
1225 		return ql_phy_get_speed(qdev);
1226 }
1227 
1228 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1229 {
1230 	if (ql_is_fiber(qdev))
1231 		return 1;
1232 	else
1233 		return ql_is_full_dup(qdev);
1234 }
1235 
1236 /*
1237  * Caller holds hw_lock.
1238  */
1239 static int ql_link_down_detect(struct ql3_adapter *qdev)
1240 {
1241 	struct ql3xxx_port_registers __iomem *port_regs =
1242 			qdev->mem_map_registers;
1243 	u32 bitToCheck = 0;
1244 	u32 temp;
1245 
1246 	switch (qdev->mac_index) {
1247 	case 0:
1248 		bitToCheck = ISP_CONTROL_LINK_DN_0;
1249 		break;
1250 	case 1:
1251 		bitToCheck = ISP_CONTROL_LINK_DN_1;
1252 		break;
1253 	}
1254 
1255 	temp =
1256 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1257 	return (temp & bitToCheck) != 0;
1258 }
1259 
1260 /*
1261  * Caller holds hw_lock.
1262  */
1263 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1264 {
1265 	struct ql3xxx_port_registers __iomem *port_regs =
1266 			qdev->mem_map_registers;
1267 
1268 	switch (qdev->mac_index) {
1269 	case 0:
1270 		ql_write_common_reg(qdev,
1271 				    &port_regs->CommonRegs.ispControlStatus,
1272 				    (ISP_CONTROL_LINK_DN_0) |
1273 				    (ISP_CONTROL_LINK_DN_0 << 16));
1274 		break;
1275 
1276 	case 1:
1277 		ql_write_common_reg(qdev,
1278 				    &port_regs->CommonRegs.ispControlStatus,
1279 				    (ISP_CONTROL_LINK_DN_1) |
1280 				    (ISP_CONTROL_LINK_DN_1 << 16));
1281 		break;
1282 
1283 	default:
1284 		return 1;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Caller holds hw_lock.
1292  */
1293 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1294 {
1295 	struct ql3xxx_port_registers __iomem *port_regs =
1296 			qdev->mem_map_registers;
1297 	u32 bitToCheck = 0;
1298 	u32 temp;
1299 
1300 	switch (qdev->mac_index) {
1301 	case 0:
1302 		bitToCheck = PORT_STATUS_F1_ENABLED;
1303 		break;
1304 	case 1:
1305 		bitToCheck = PORT_STATUS_F3_ENABLED;
1306 		break;
1307 	default:
1308 		break;
1309 	}
1310 
1311 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1312 	if (temp & bitToCheck) {
1313 		netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1314 			     "not link master\n");
1315 		return 0;
1316 	}
1317 
1318 	netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1319 	return 1;
1320 }
1321 
1322 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1323 {
1324 	ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1325 			    PHYAddr[qdev->mac_index]);
1326 }
1327 
1328 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1329 {
1330 	u16 reg;
1331 	u16 portConfiguration;
1332 
1333 	if (qdev->phyType == PHY_AGERE_ET1011C)
1334 		ql_mii_write_reg(qdev, 0x13, 0x0000);
1335 					/* turn off external loopback */
1336 
1337 	if (qdev->mac_index == 0)
1338 		portConfiguration =
1339 			qdev->nvram_data.macCfg_port0.portConfiguration;
1340 	else
1341 		portConfiguration =
1342 			qdev->nvram_data.macCfg_port1.portConfiguration;
1343 
1344 	/*  Some HBA's in the field are set to 0 and they need to
1345 	    be reinterpreted with a default value */
1346 	if (portConfiguration == 0)
1347 		portConfiguration = PORT_CONFIG_DEFAULT;
1348 
1349 	/* Set the 1000 advertisements */
1350 	ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1351 			   PHYAddr[qdev->mac_index]);
1352 	reg &= ~PHY_GIG_ALL_PARAMS;
1353 
1354 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1355 		if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1356 			reg |= PHY_GIG_ADV_1000F;
1357 		else
1358 			reg |= PHY_GIG_ADV_1000H;
1359 	}
1360 
1361 	ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1362 			    PHYAddr[qdev->mac_index]);
1363 
1364 	/* Set the 10/100 & pause negotiation advertisements */
1365 	ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1366 			   PHYAddr[qdev->mac_index]);
1367 	reg &= ~PHY_NEG_ALL_PARAMS;
1368 
1369 	if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1370 		reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1371 
1372 	if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1373 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1374 			reg |= PHY_NEG_ADV_100F;
1375 
1376 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1377 			reg |= PHY_NEG_ADV_10F;
1378 	}
1379 
1380 	if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1381 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1382 			reg |= PHY_NEG_ADV_100H;
1383 
1384 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1385 			reg |= PHY_NEG_ADV_10H;
1386 	}
1387 
1388 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1389 		reg |= 1;
1390 
1391 	ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1392 			    PHYAddr[qdev->mac_index]);
1393 
1394 	ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1395 
1396 	ql_mii_write_reg_ex(qdev, CONTROL_REG,
1397 			    reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1398 			    PHYAddr[qdev->mac_index]);
1399 }
1400 
1401 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1402 {
1403 	ql_phy_reset_ex(qdev);
1404 	PHY_Setup(qdev);
1405 	ql_phy_start_neg_ex(qdev);
1406 }
1407 
1408 /*
1409  * Caller holds hw_lock.
1410  */
1411 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1412 {
1413 	struct ql3xxx_port_registers __iomem *port_regs =
1414 			qdev->mem_map_registers;
1415 	u32 bitToCheck = 0;
1416 	u32 temp, linkState;
1417 
1418 	switch (qdev->mac_index) {
1419 	case 0:
1420 		bitToCheck = PORT_STATUS_UP0;
1421 		break;
1422 	case 1:
1423 		bitToCheck = PORT_STATUS_UP1;
1424 		break;
1425 	}
1426 
1427 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1428 	if (temp & bitToCheck)
1429 		linkState = LS_UP;
1430 	else
1431 		linkState = LS_DOWN;
1432 
1433 	return linkState;
1434 }
1435 
1436 static int ql_port_start(struct ql3_adapter *qdev)
1437 {
1438 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1439 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1440 			 2) << 7)) {
1441 		netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1442 		return -1;
1443 	}
1444 
1445 	if (ql_is_fiber(qdev)) {
1446 		ql_petbi_init(qdev);
1447 	} else {
1448 		/* Copper port */
1449 		ql_phy_init_ex(qdev);
1450 	}
1451 
1452 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1453 	return 0;
1454 }
1455 
1456 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1457 {
1458 
1459 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1460 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1461 			 2) << 7))
1462 		return -1;
1463 
1464 	if (!ql_auto_neg_error(qdev)) {
1465 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1466 			/* configure the MAC */
1467 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1468 				     "Configuring link\n");
1469 			ql_mac_cfg_soft_reset(qdev, 1);
1470 			ql_mac_cfg_gig(qdev,
1471 				       (ql_get_link_speed
1472 					(qdev) ==
1473 					SPEED_1000));
1474 			ql_mac_cfg_full_dup(qdev,
1475 					    ql_is_link_full_dup
1476 					    (qdev));
1477 			ql_mac_cfg_pause(qdev,
1478 					 ql_is_neg_pause
1479 					 (qdev));
1480 			ql_mac_cfg_soft_reset(qdev, 0);
1481 
1482 			/* enable the MAC */
1483 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1484 				     "Enabling mac\n");
1485 			ql_mac_enable(qdev, 1);
1486 		}
1487 
1488 		qdev->port_link_state = LS_UP;
1489 		netif_start_queue(qdev->ndev);
1490 		netif_carrier_on(qdev->ndev);
1491 		netif_info(qdev, link, qdev->ndev,
1492 			   "Link is up at %d Mbps, %s duplex\n",
1493 			   ql_get_link_speed(qdev),
1494 			   ql_is_link_full_dup(qdev) ? "full" : "half");
1495 
1496 	} else {	/* Remote error detected */
1497 
1498 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1499 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1500 				     "Remote error detected. Calling ql_port_start()\n");
1501 			/*
1502 			 * ql_port_start() is shared code and needs
1503 			 * to lock the PHY on it's own.
1504 			 */
1505 			ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1506 			if (ql_port_start(qdev))	/* Restart port */
1507 				return -1;
1508 			return 0;
1509 		}
1510 	}
1511 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1512 	return 0;
1513 }
1514 
1515 static void ql_link_state_machine_work(struct work_struct *work)
1516 {
1517 	struct ql3_adapter *qdev =
1518 		container_of(work, struct ql3_adapter, link_state_work.work);
1519 
1520 	u32 curr_link_state;
1521 	unsigned long hw_flags;
1522 
1523 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1524 
1525 	curr_link_state = ql_get_link_state(qdev);
1526 
1527 	if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1528 		netif_info(qdev, link, qdev->ndev,
1529 			   "Reset in progress, skip processing link state\n");
1530 
1531 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1532 
1533 		/* Restart timer on 2 second interval. */
1534 		mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1535 
1536 		return;
1537 	}
1538 
1539 	switch (qdev->port_link_state) {
1540 	default:
1541 		if (test_bit(QL_LINK_MASTER, &qdev->flags))
1542 			ql_port_start(qdev);
1543 		qdev->port_link_state = LS_DOWN;
1544 		fallthrough;
1545 
1546 	case LS_DOWN:
1547 		if (curr_link_state == LS_UP) {
1548 			netif_info(qdev, link, qdev->ndev, "Link is up\n");
1549 			if (ql_is_auto_neg_complete(qdev))
1550 				ql_finish_auto_neg(qdev);
1551 
1552 			if (qdev->port_link_state == LS_UP)
1553 				ql_link_down_detect_clear(qdev);
1554 
1555 			qdev->port_link_state = LS_UP;
1556 		}
1557 		break;
1558 
1559 	case LS_UP:
1560 		/*
1561 		 * See if the link is currently down or went down and came
1562 		 * back up
1563 		 */
1564 		if (curr_link_state == LS_DOWN) {
1565 			netif_info(qdev, link, qdev->ndev, "Link is down\n");
1566 			qdev->port_link_state = LS_DOWN;
1567 		}
1568 		if (ql_link_down_detect(qdev))
1569 			qdev->port_link_state = LS_DOWN;
1570 		break;
1571 	}
1572 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1573 
1574 	/* Restart timer on 2 second interval. */
1575 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1576 }
1577 
1578 /*
1579  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1580  */
1581 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1582 {
1583 	if (ql_this_adapter_controls_port(qdev))
1584 		set_bit(QL_LINK_MASTER, &qdev->flags);
1585 	else
1586 		clear_bit(QL_LINK_MASTER, &qdev->flags);
1587 }
1588 
1589 /*
1590  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1591  */
1592 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1593 {
1594 	ql_mii_enable_scan_mode(qdev);
1595 
1596 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1597 		if (ql_this_adapter_controls_port(qdev))
1598 			ql_petbi_init_ex(qdev);
1599 	} else {
1600 		if (ql_this_adapter_controls_port(qdev))
1601 			ql_phy_init_ex(qdev);
1602 	}
1603 }
1604 
1605 /*
1606  * MII_Setup needs to be called before taking the PHY out of reset
1607  * so that the management interface clock speed can be set properly.
1608  * It would be better if we had a way to disable MDC until after the
1609  * PHY is out of reset, but we don't have that capability.
1610  */
1611 static int ql_mii_setup(struct ql3_adapter *qdev)
1612 {
1613 	u32 reg;
1614 	struct ql3xxx_port_registers __iomem *port_regs =
1615 			qdev->mem_map_registers;
1616 
1617 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1618 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1619 			 2) << 7))
1620 		return -1;
1621 
1622 	if (qdev->device_id == QL3032_DEVICE_ID)
1623 		ql_write_page0_reg(qdev,
1624 			&port_regs->macMIIMgmtControlReg, 0x0f00000);
1625 
1626 	/* Divide 125MHz clock by 28 to meet PHY timing requirements */
1627 	reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1628 
1629 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1630 			   reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1631 
1632 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1633 	return 0;
1634 }
1635 
1636 #define SUPPORTED_OPTICAL_MODES	(SUPPORTED_1000baseT_Full |	\
1637 				 SUPPORTED_FIBRE |		\
1638 				 SUPPORTED_Autoneg)
1639 #define SUPPORTED_TP_MODES	(SUPPORTED_10baseT_Half |	\
1640 				 SUPPORTED_10baseT_Full |	\
1641 				 SUPPORTED_100baseT_Half |	\
1642 				 SUPPORTED_100baseT_Full |	\
1643 				 SUPPORTED_1000baseT_Half |	\
1644 				 SUPPORTED_1000baseT_Full |	\
1645 				 SUPPORTED_Autoneg |		\
1646 				 SUPPORTED_TP)			\
1647 
1648 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1649 {
1650 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1651 		return SUPPORTED_OPTICAL_MODES;
1652 
1653 	return SUPPORTED_TP_MODES;
1654 }
1655 
1656 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1657 {
1658 	int status;
1659 	unsigned long hw_flags;
1660 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1661 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1662 			    (QL_RESOURCE_BITS_BASE_CODE |
1663 			     (qdev->mac_index) * 2) << 7)) {
1664 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1665 		return 0;
1666 	}
1667 	status = ql_is_auto_cfg(qdev);
1668 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1669 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1670 	return status;
1671 }
1672 
1673 static u32 ql_get_speed(struct ql3_adapter *qdev)
1674 {
1675 	u32 status;
1676 	unsigned long hw_flags;
1677 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1678 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1679 			    (QL_RESOURCE_BITS_BASE_CODE |
1680 			     (qdev->mac_index) * 2) << 7)) {
1681 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1682 		return 0;
1683 	}
1684 	status = ql_get_link_speed(qdev);
1685 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1686 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1687 	return status;
1688 }
1689 
1690 static int ql_get_full_dup(struct ql3_adapter *qdev)
1691 {
1692 	int status;
1693 	unsigned long hw_flags;
1694 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1695 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1696 			    (QL_RESOURCE_BITS_BASE_CODE |
1697 			     (qdev->mac_index) * 2) << 7)) {
1698 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1699 		return 0;
1700 	}
1701 	status = ql_is_link_full_dup(qdev);
1702 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1703 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1704 	return status;
1705 }
1706 
1707 static int ql_get_link_ksettings(struct net_device *ndev,
1708 				 struct ethtool_link_ksettings *cmd)
1709 {
1710 	struct ql3_adapter *qdev = netdev_priv(ndev);
1711 	u32 supported, advertising;
1712 
1713 	supported = ql_supported_modes(qdev);
1714 
1715 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1716 		cmd->base.port = PORT_FIBRE;
1717 	} else {
1718 		cmd->base.port = PORT_TP;
1719 		cmd->base.phy_address = qdev->PHYAddr;
1720 	}
1721 	advertising = ql_supported_modes(qdev);
1722 	cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
1723 	cmd->base.speed = ql_get_speed(qdev);
1724 	cmd->base.duplex = ql_get_full_dup(qdev);
1725 
1726 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1727 						supported);
1728 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1729 						advertising);
1730 
1731 	return 0;
1732 }
1733 
1734 static void ql_get_drvinfo(struct net_device *ndev,
1735 			   struct ethtool_drvinfo *drvinfo)
1736 {
1737 	struct ql3_adapter *qdev = netdev_priv(ndev);
1738 	strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1739 	strlcpy(drvinfo->version, ql3xxx_driver_version,
1740 		sizeof(drvinfo->version));
1741 	strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1742 		sizeof(drvinfo->bus_info));
1743 }
1744 
1745 static u32 ql_get_msglevel(struct net_device *ndev)
1746 {
1747 	struct ql3_adapter *qdev = netdev_priv(ndev);
1748 	return qdev->msg_enable;
1749 }
1750 
1751 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1752 {
1753 	struct ql3_adapter *qdev = netdev_priv(ndev);
1754 	qdev->msg_enable = value;
1755 }
1756 
1757 static void ql_get_pauseparam(struct net_device *ndev,
1758 			      struct ethtool_pauseparam *pause)
1759 {
1760 	struct ql3_adapter *qdev = netdev_priv(ndev);
1761 	struct ql3xxx_port_registers __iomem *port_regs =
1762 		qdev->mem_map_registers;
1763 
1764 	u32 reg;
1765 	if (qdev->mac_index == 0)
1766 		reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1767 	else
1768 		reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1769 
1770 	pause->autoneg  = ql_get_auto_cfg_status(qdev);
1771 	pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1772 	pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1773 }
1774 
1775 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1776 	.get_drvinfo = ql_get_drvinfo,
1777 	.get_link = ethtool_op_get_link,
1778 	.get_msglevel = ql_get_msglevel,
1779 	.set_msglevel = ql_set_msglevel,
1780 	.get_pauseparam = ql_get_pauseparam,
1781 	.get_link_ksettings = ql_get_link_ksettings,
1782 };
1783 
1784 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1785 {
1786 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1787 	dma_addr_t map;
1788 	int err;
1789 
1790 	while (lrg_buf_cb) {
1791 		if (!lrg_buf_cb->skb) {
1792 			lrg_buf_cb->skb =
1793 				netdev_alloc_skb(qdev->ndev,
1794 						 qdev->lrg_buffer_len);
1795 			if (unlikely(!lrg_buf_cb->skb)) {
1796 				netdev_printk(KERN_DEBUG, qdev->ndev,
1797 					      "Failed netdev_alloc_skb()\n");
1798 				break;
1799 			} else {
1800 				/*
1801 				 * We save some space to copy the ethhdr from
1802 				 * first buffer
1803 				 */
1804 				skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1805 				map = pci_map_single(qdev->pdev,
1806 						     lrg_buf_cb->skb->data,
1807 						     qdev->lrg_buffer_len -
1808 						     QL_HEADER_SPACE,
1809 						     PCI_DMA_FROMDEVICE);
1810 
1811 				err = pci_dma_mapping_error(qdev->pdev, map);
1812 				if (err) {
1813 					netdev_err(qdev->ndev,
1814 						   "PCI mapping failed with error: %d\n",
1815 						   err);
1816 					dev_kfree_skb(lrg_buf_cb->skb);
1817 					lrg_buf_cb->skb = NULL;
1818 					break;
1819 				}
1820 
1821 
1822 				lrg_buf_cb->buf_phy_addr_low =
1823 					cpu_to_le32(LS_64BITS(map));
1824 				lrg_buf_cb->buf_phy_addr_high =
1825 					cpu_to_le32(MS_64BITS(map));
1826 				dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1827 				dma_unmap_len_set(lrg_buf_cb, maplen,
1828 						  qdev->lrg_buffer_len -
1829 						  QL_HEADER_SPACE);
1830 				--qdev->lrg_buf_skb_check;
1831 				if (!qdev->lrg_buf_skb_check)
1832 					return 1;
1833 			}
1834 		}
1835 		lrg_buf_cb = lrg_buf_cb->next;
1836 	}
1837 	return 0;
1838 }
1839 
1840 /*
1841  * Caller holds hw_lock.
1842  */
1843 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1844 {
1845 	struct ql3xxx_port_registers __iomem *port_regs =
1846 		qdev->mem_map_registers;
1847 
1848 	if (qdev->small_buf_release_cnt >= 16) {
1849 		while (qdev->small_buf_release_cnt >= 16) {
1850 			qdev->small_buf_q_producer_index++;
1851 
1852 			if (qdev->small_buf_q_producer_index ==
1853 			    NUM_SBUFQ_ENTRIES)
1854 				qdev->small_buf_q_producer_index = 0;
1855 			qdev->small_buf_release_cnt -= 8;
1856 		}
1857 		wmb();
1858 		writel_relaxed(qdev->small_buf_q_producer_index,
1859 			       &port_regs->CommonRegs.rxSmallQProducerIndex);
1860 	}
1861 }
1862 
1863 /*
1864  * Caller holds hw_lock.
1865  */
1866 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1867 {
1868 	struct bufq_addr_element *lrg_buf_q_ele;
1869 	int i;
1870 	struct ql_rcv_buf_cb *lrg_buf_cb;
1871 	struct ql3xxx_port_registers __iomem *port_regs =
1872 		qdev->mem_map_registers;
1873 
1874 	if ((qdev->lrg_buf_free_count >= 8) &&
1875 	    (qdev->lrg_buf_release_cnt >= 16)) {
1876 
1877 		if (qdev->lrg_buf_skb_check)
1878 			if (!ql_populate_free_queue(qdev))
1879 				return;
1880 
1881 		lrg_buf_q_ele = qdev->lrg_buf_next_free;
1882 
1883 		while ((qdev->lrg_buf_release_cnt >= 16) &&
1884 		       (qdev->lrg_buf_free_count >= 8)) {
1885 
1886 			for (i = 0; i < 8; i++) {
1887 				lrg_buf_cb =
1888 				    ql_get_from_lrg_buf_free_list(qdev);
1889 				lrg_buf_q_ele->addr_high =
1890 				    lrg_buf_cb->buf_phy_addr_high;
1891 				lrg_buf_q_ele->addr_low =
1892 				    lrg_buf_cb->buf_phy_addr_low;
1893 				lrg_buf_q_ele++;
1894 
1895 				qdev->lrg_buf_release_cnt--;
1896 			}
1897 
1898 			qdev->lrg_buf_q_producer_index++;
1899 
1900 			if (qdev->lrg_buf_q_producer_index ==
1901 			    qdev->num_lbufq_entries)
1902 				qdev->lrg_buf_q_producer_index = 0;
1903 
1904 			if (qdev->lrg_buf_q_producer_index ==
1905 			    (qdev->num_lbufq_entries - 1)) {
1906 				lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1907 			}
1908 		}
1909 		wmb();
1910 		qdev->lrg_buf_next_free = lrg_buf_q_ele;
1911 		writel(qdev->lrg_buf_q_producer_index,
1912 			&port_regs->CommonRegs.rxLargeQProducerIndex);
1913 	}
1914 }
1915 
1916 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1917 				   struct ob_mac_iocb_rsp *mac_rsp)
1918 {
1919 	struct ql_tx_buf_cb *tx_cb;
1920 	int i;
1921 
1922 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1923 		netdev_warn(qdev->ndev,
1924 			    "Frame too short but it was padded and sent\n");
1925 	}
1926 
1927 	tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1928 
1929 	/*  Check the transmit response flags for any errors */
1930 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1931 		netdev_err(qdev->ndev,
1932 			   "Frame too short to be legal, frame not sent\n");
1933 
1934 		qdev->ndev->stats.tx_errors++;
1935 		goto frame_not_sent;
1936 	}
1937 
1938 	if (tx_cb->seg_count == 0) {
1939 		netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1940 			   mac_rsp->transaction_id);
1941 
1942 		qdev->ndev->stats.tx_errors++;
1943 		goto invalid_seg_count;
1944 	}
1945 
1946 	pci_unmap_single(qdev->pdev,
1947 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1948 			 dma_unmap_len(&tx_cb->map[0], maplen),
1949 			 PCI_DMA_TODEVICE);
1950 	tx_cb->seg_count--;
1951 	if (tx_cb->seg_count) {
1952 		for (i = 1; i < tx_cb->seg_count; i++) {
1953 			pci_unmap_page(qdev->pdev,
1954 				       dma_unmap_addr(&tx_cb->map[i],
1955 						      mapaddr),
1956 				       dma_unmap_len(&tx_cb->map[i], maplen),
1957 				       PCI_DMA_TODEVICE);
1958 		}
1959 	}
1960 	qdev->ndev->stats.tx_packets++;
1961 	qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1962 
1963 frame_not_sent:
1964 	dev_kfree_skb_irq(tx_cb->skb);
1965 	tx_cb->skb = NULL;
1966 
1967 invalid_seg_count:
1968 	atomic_inc(&qdev->tx_count);
1969 }
1970 
1971 static void ql_get_sbuf(struct ql3_adapter *qdev)
1972 {
1973 	if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1974 		qdev->small_buf_index = 0;
1975 	qdev->small_buf_release_cnt++;
1976 }
1977 
1978 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1979 {
1980 	struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1981 	lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1982 	qdev->lrg_buf_release_cnt++;
1983 	if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1984 		qdev->lrg_buf_index = 0;
1985 	return lrg_buf_cb;
1986 }
1987 
1988 /*
1989  * The difference between 3022 and 3032 for inbound completions:
1990  * 3022 uses two buffers per completion.  The first buffer contains
1991  * (some) header info, the second the remainder of the headers plus
1992  * the data.  For this chip we reserve some space at the top of the
1993  * receive buffer so that the header info in buffer one can be
1994  * prepended to the buffer two.  Buffer two is the sent up while
1995  * buffer one is returned to the hardware to be reused.
1996  * 3032 receives all of it's data and headers in one buffer for a
1997  * simpler process.  3032 also supports checksum verification as
1998  * can be seen in ql_process_macip_rx_intr().
1999  */
2000 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2001 				   struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2002 {
2003 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2004 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2005 	struct sk_buff *skb;
2006 	u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2007 
2008 	/*
2009 	 * Get the inbound address list (small buffer).
2010 	 */
2011 	ql_get_sbuf(qdev);
2012 
2013 	if (qdev->device_id == QL3022_DEVICE_ID)
2014 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2015 
2016 	/* start of second buffer */
2017 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2018 	skb = lrg_buf_cb2->skb;
2019 
2020 	qdev->ndev->stats.rx_packets++;
2021 	qdev->ndev->stats.rx_bytes += length;
2022 
2023 	skb_put(skb, length);
2024 	pci_unmap_single(qdev->pdev,
2025 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2026 			 dma_unmap_len(lrg_buf_cb2, maplen),
2027 			 PCI_DMA_FROMDEVICE);
2028 	prefetch(skb->data);
2029 	skb_checksum_none_assert(skb);
2030 	skb->protocol = eth_type_trans(skb, qdev->ndev);
2031 
2032 	napi_gro_receive(&qdev->napi, skb);
2033 	lrg_buf_cb2->skb = NULL;
2034 
2035 	if (qdev->device_id == QL3022_DEVICE_ID)
2036 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2037 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2038 }
2039 
2040 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2041 				     struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2042 {
2043 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2044 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2045 	struct sk_buff *skb1 = NULL, *skb2;
2046 	struct net_device *ndev = qdev->ndev;
2047 	u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2048 	u16 size = 0;
2049 
2050 	/*
2051 	 * Get the inbound address list (small buffer).
2052 	 */
2053 
2054 	ql_get_sbuf(qdev);
2055 
2056 	if (qdev->device_id == QL3022_DEVICE_ID) {
2057 		/* start of first buffer on 3022 */
2058 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2059 		skb1 = lrg_buf_cb1->skb;
2060 		size = ETH_HLEN;
2061 		if (*((u16 *) skb1->data) != 0xFFFF)
2062 			size += VLAN_ETH_HLEN - ETH_HLEN;
2063 	}
2064 
2065 	/* start of second buffer */
2066 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2067 	skb2 = lrg_buf_cb2->skb;
2068 
2069 	skb_put(skb2, length);	/* Just the second buffer length here. */
2070 	pci_unmap_single(qdev->pdev,
2071 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2072 			 dma_unmap_len(lrg_buf_cb2, maplen),
2073 			 PCI_DMA_FROMDEVICE);
2074 	prefetch(skb2->data);
2075 
2076 	skb_checksum_none_assert(skb2);
2077 	if (qdev->device_id == QL3022_DEVICE_ID) {
2078 		/*
2079 		 * Copy the ethhdr from first buffer to second. This
2080 		 * is necessary for 3022 IP completions.
2081 		 */
2082 		skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2083 						 skb_push(skb2, size), size);
2084 	} else {
2085 		u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2086 		if (checksum &
2087 			(IB_IP_IOCB_RSP_3032_ICE |
2088 			 IB_IP_IOCB_RSP_3032_CE)) {
2089 			netdev_err(ndev,
2090 				   "%s: Bad checksum for this %s packet, checksum = %x\n",
2091 				   __func__,
2092 				   ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2093 				    "TCP" : "UDP"), checksum);
2094 		} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2095 				(checksum & IB_IP_IOCB_RSP_3032_UDP &&
2096 				!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2097 			skb2->ip_summed = CHECKSUM_UNNECESSARY;
2098 		}
2099 	}
2100 	skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2101 
2102 	napi_gro_receive(&qdev->napi, skb2);
2103 	ndev->stats.rx_packets++;
2104 	ndev->stats.rx_bytes += length;
2105 	lrg_buf_cb2->skb = NULL;
2106 
2107 	if (qdev->device_id == QL3022_DEVICE_ID)
2108 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2109 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2110 }
2111 
2112 static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
2113 {
2114 	struct net_rsp_iocb *net_rsp;
2115 	struct net_device *ndev = qdev->ndev;
2116 	int work_done = 0;
2117 
2118 	/* While there are entries in the completion queue. */
2119 	while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2120 		qdev->rsp_consumer_index) && (work_done < budget)) {
2121 
2122 		net_rsp = qdev->rsp_current;
2123 		rmb();
2124 		/*
2125 		 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2126 		 * if the inbound completion is for a VLAN.
2127 		 */
2128 		if (qdev->device_id == QL3032_DEVICE_ID)
2129 			net_rsp->opcode &= 0x7f;
2130 		switch (net_rsp->opcode) {
2131 
2132 		case OPCODE_OB_MAC_IOCB_FN0:
2133 		case OPCODE_OB_MAC_IOCB_FN2:
2134 			ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2135 					       net_rsp);
2136 			break;
2137 
2138 		case OPCODE_IB_MAC_IOCB:
2139 		case OPCODE_IB_3032_MAC_IOCB:
2140 			ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2141 					       net_rsp);
2142 			work_done++;
2143 			break;
2144 
2145 		case OPCODE_IB_IP_IOCB:
2146 		case OPCODE_IB_3032_IP_IOCB:
2147 			ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2148 						 net_rsp);
2149 			work_done++;
2150 			break;
2151 		default: {
2152 			u32 *tmp = (u32 *)net_rsp;
2153 			netdev_err(ndev,
2154 				   "Hit default case, not handled!\n"
2155 				   "	dropping the packet, opcode = %x\n"
2156 				   "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2157 				   net_rsp->opcode,
2158 				   (unsigned long int)tmp[0],
2159 				   (unsigned long int)tmp[1],
2160 				   (unsigned long int)tmp[2],
2161 				   (unsigned long int)tmp[3]);
2162 		}
2163 		}
2164 
2165 		qdev->rsp_consumer_index++;
2166 
2167 		if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2168 			qdev->rsp_consumer_index = 0;
2169 			qdev->rsp_current = qdev->rsp_q_virt_addr;
2170 		} else {
2171 			qdev->rsp_current++;
2172 		}
2173 
2174 	}
2175 
2176 	return work_done;
2177 }
2178 
2179 static int ql_poll(struct napi_struct *napi, int budget)
2180 {
2181 	struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2182 	struct ql3xxx_port_registers __iomem *port_regs =
2183 		qdev->mem_map_registers;
2184 	int work_done;
2185 
2186 	work_done = ql_tx_rx_clean(qdev, budget);
2187 
2188 	if (work_done < budget && napi_complete_done(napi, work_done)) {
2189 		unsigned long flags;
2190 
2191 		spin_lock_irqsave(&qdev->hw_lock, flags);
2192 		ql_update_small_bufq_prod_index(qdev);
2193 		ql_update_lrg_bufq_prod_index(qdev);
2194 		writel(qdev->rsp_consumer_index,
2195 			    &port_regs->CommonRegs.rspQConsumerIndex);
2196 		spin_unlock_irqrestore(&qdev->hw_lock, flags);
2197 
2198 		ql_enable_interrupts(qdev);
2199 	}
2200 	return work_done;
2201 }
2202 
2203 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2204 {
2205 
2206 	struct net_device *ndev = dev_id;
2207 	struct ql3_adapter *qdev = netdev_priv(ndev);
2208 	struct ql3xxx_port_registers __iomem *port_regs =
2209 		qdev->mem_map_registers;
2210 	u32 value;
2211 	int handled = 1;
2212 	u32 var;
2213 
2214 	value = ql_read_common_reg_l(qdev,
2215 				     &port_regs->CommonRegs.ispControlStatus);
2216 
2217 	if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2218 		spin_lock(&qdev->adapter_lock);
2219 		netif_stop_queue(qdev->ndev);
2220 		netif_carrier_off(qdev->ndev);
2221 		ql_disable_interrupts(qdev);
2222 		qdev->port_link_state = LS_DOWN;
2223 		set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2224 
2225 		if (value & ISP_CONTROL_FE) {
2226 			/*
2227 			 * Chip Fatal Error.
2228 			 */
2229 			var =
2230 			    ql_read_page0_reg_l(qdev,
2231 					      &port_regs->PortFatalErrStatus);
2232 			netdev_warn(ndev,
2233 				    "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2234 				    var);
2235 			set_bit(QL_RESET_START, &qdev->flags) ;
2236 		} else {
2237 			/*
2238 			 * Soft Reset Requested.
2239 			 */
2240 			set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2241 			netdev_err(ndev,
2242 				   "Another function issued a reset to the chip. ISR value = %x\n",
2243 				   value);
2244 		}
2245 		queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2246 		spin_unlock(&qdev->adapter_lock);
2247 	} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2248 		ql_disable_interrupts(qdev);
2249 		if (likely(napi_schedule_prep(&qdev->napi)))
2250 			__napi_schedule(&qdev->napi);
2251 	} else
2252 		return IRQ_NONE;
2253 
2254 	return IRQ_RETVAL(handled);
2255 }
2256 
2257 /*
2258  * Get the total number of segments needed for the given number of fragments.
2259  * This is necessary because outbound address lists (OAL) will be used when
2260  * more than two frags are given.  Each address list has 5 addr/len pairs.
2261  * The 5th pair in each OAL is used to  point to the next OAL if more frags
2262  * are coming.  That is why the frags:segment count ratio is not linear.
2263  */
2264 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2265 {
2266 	if (qdev->device_id == QL3022_DEVICE_ID)
2267 		return 1;
2268 
2269 	if (frags <= 2)
2270 		return frags + 1;
2271 	else if (frags <= 6)
2272 		return frags + 2;
2273 	else if (frags <= 10)
2274 		return frags + 3;
2275 	else if (frags <= 14)
2276 		return frags + 4;
2277 	else if (frags <= 18)
2278 		return frags + 5;
2279 	return -1;
2280 }
2281 
2282 static void ql_hw_csum_setup(const struct sk_buff *skb,
2283 			     struct ob_mac_iocb_req *mac_iocb_ptr)
2284 {
2285 	const struct iphdr *ip = ip_hdr(skb);
2286 
2287 	mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2288 	mac_iocb_ptr->ip_hdr_len = ip->ihl;
2289 
2290 	if (ip->protocol == IPPROTO_TCP) {
2291 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2292 			OB_3032MAC_IOCB_REQ_IC;
2293 	} else {
2294 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2295 			OB_3032MAC_IOCB_REQ_IC;
2296 	}
2297 
2298 }
2299 
2300 /*
2301  * Map the buffers for this transmit.
2302  * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2303  */
2304 static int ql_send_map(struct ql3_adapter *qdev,
2305 				struct ob_mac_iocb_req *mac_iocb_ptr,
2306 				struct ql_tx_buf_cb *tx_cb,
2307 				struct sk_buff *skb)
2308 {
2309 	struct oal *oal;
2310 	struct oal_entry *oal_entry;
2311 	int len = skb_headlen(skb);
2312 	dma_addr_t map;
2313 	int err;
2314 	int completed_segs, i;
2315 	int seg_cnt, seg = 0;
2316 	int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2317 
2318 	seg_cnt = tx_cb->seg_count;
2319 	/*
2320 	 * Map the skb buffer first.
2321 	 */
2322 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2323 
2324 	err = pci_dma_mapping_error(qdev->pdev, map);
2325 	if (err) {
2326 		netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2327 			   err);
2328 
2329 		return NETDEV_TX_BUSY;
2330 	}
2331 
2332 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2333 	oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2334 	oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2335 	oal_entry->len = cpu_to_le32(len);
2336 	dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2337 	dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2338 	seg++;
2339 
2340 	if (seg_cnt == 1) {
2341 		/* Terminate the last segment. */
2342 		oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2343 		return NETDEV_TX_OK;
2344 	}
2345 	oal = tx_cb->oal;
2346 	for (completed_segs = 0;
2347 	     completed_segs < frag_cnt;
2348 	     completed_segs++, seg++) {
2349 		skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2350 		oal_entry++;
2351 		/*
2352 		 * Check for continuation requirements.
2353 		 * It's strange but necessary.
2354 		 * Continuation entry points to outbound address list.
2355 		 */
2356 		if ((seg == 2 && seg_cnt > 3) ||
2357 		    (seg == 7 && seg_cnt > 8) ||
2358 		    (seg == 12 && seg_cnt > 13) ||
2359 		    (seg == 17 && seg_cnt > 18)) {
2360 			map = pci_map_single(qdev->pdev, oal,
2361 					     sizeof(struct oal),
2362 					     PCI_DMA_TODEVICE);
2363 
2364 			err = pci_dma_mapping_error(qdev->pdev, map);
2365 			if (err) {
2366 				netdev_err(qdev->ndev,
2367 					   "PCI mapping outbound address list with error: %d\n",
2368 					   err);
2369 				goto map_error;
2370 			}
2371 
2372 			oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2373 			oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2374 			oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2375 						     OAL_CONT_ENTRY);
2376 			dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2377 			dma_unmap_len_set(&tx_cb->map[seg], maplen,
2378 					  sizeof(struct oal));
2379 			oal_entry = (struct oal_entry *)oal;
2380 			oal++;
2381 			seg++;
2382 		}
2383 
2384 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2385 				       DMA_TO_DEVICE);
2386 
2387 		err = dma_mapping_error(&qdev->pdev->dev, map);
2388 		if (err) {
2389 			netdev_err(qdev->ndev,
2390 				   "PCI mapping frags failed with error: %d\n",
2391 				   err);
2392 			goto map_error;
2393 		}
2394 
2395 		oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2396 		oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2397 		oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2398 		dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2399 		dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2400 		}
2401 	/* Terminate the last segment. */
2402 	oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2403 	return NETDEV_TX_OK;
2404 
2405 map_error:
2406 	/* A PCI mapping failed and now we will need to back out
2407 	 * We need to traverse through the oal's and associated pages which
2408 	 * have been mapped and now we must unmap them to clean up properly
2409 	 */
2410 
2411 	seg = 1;
2412 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2413 	oal = tx_cb->oal;
2414 	for (i = 0; i < completed_segs; i++, seg++) {
2415 		oal_entry++;
2416 
2417 		/*
2418 		 * Check for continuation requirements.
2419 		 * It's strange but necessary.
2420 		 */
2421 
2422 		if ((seg == 2 && seg_cnt > 3) ||
2423 		    (seg == 7 && seg_cnt > 8) ||
2424 		    (seg == 12 && seg_cnt > 13) ||
2425 		    (seg == 17 && seg_cnt > 18)) {
2426 			pci_unmap_single(qdev->pdev,
2427 				dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2428 				dma_unmap_len(&tx_cb->map[seg], maplen),
2429 				 PCI_DMA_TODEVICE);
2430 			oal++;
2431 			seg++;
2432 		}
2433 
2434 		pci_unmap_page(qdev->pdev,
2435 			       dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2436 			       dma_unmap_len(&tx_cb->map[seg], maplen),
2437 			       PCI_DMA_TODEVICE);
2438 	}
2439 
2440 	pci_unmap_single(qdev->pdev,
2441 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2442 			 dma_unmap_addr(&tx_cb->map[0], maplen),
2443 			 PCI_DMA_TODEVICE);
2444 
2445 	return NETDEV_TX_BUSY;
2446 
2447 }
2448 
2449 /*
2450  * The difference between 3022 and 3032 sends:
2451  * 3022 only supports a simple single segment transmission.
2452  * 3032 supports checksumming and scatter/gather lists (fragments).
2453  * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2454  * in the IOCB plus a chain of outbound address lists (OAL) that
2455  * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
2456  * will be used to point to an OAL when more ALP entries are required.
2457  * The IOCB is always the top of the chain followed by one or more
2458  * OALs (when necessary).
2459  */
2460 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2461 			       struct net_device *ndev)
2462 {
2463 	struct ql3_adapter *qdev = netdev_priv(ndev);
2464 	struct ql3xxx_port_registers __iomem *port_regs =
2465 			qdev->mem_map_registers;
2466 	struct ql_tx_buf_cb *tx_cb;
2467 	u32 tot_len = skb->len;
2468 	struct ob_mac_iocb_req *mac_iocb_ptr;
2469 
2470 	if (unlikely(atomic_read(&qdev->tx_count) < 2))
2471 		return NETDEV_TX_BUSY;
2472 
2473 	tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2474 	tx_cb->seg_count = ql_get_seg_count(qdev,
2475 					     skb_shinfo(skb)->nr_frags);
2476 	if (tx_cb->seg_count == -1) {
2477 		netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2478 		return NETDEV_TX_OK;
2479 	}
2480 
2481 	mac_iocb_ptr = tx_cb->queue_entry;
2482 	memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2483 	mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2484 	mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2485 	mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2486 	mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2487 	mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2488 	tx_cb->skb = skb;
2489 	if (qdev->device_id == QL3032_DEVICE_ID &&
2490 	    skb->ip_summed == CHECKSUM_PARTIAL)
2491 		ql_hw_csum_setup(skb, mac_iocb_ptr);
2492 
2493 	if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2494 		netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2495 		return NETDEV_TX_BUSY;
2496 	}
2497 
2498 	wmb();
2499 	qdev->req_producer_index++;
2500 	if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2501 		qdev->req_producer_index = 0;
2502 	wmb();
2503 	ql_write_common_reg_l(qdev,
2504 			    &port_regs->CommonRegs.reqQProducerIndex,
2505 			    qdev->req_producer_index);
2506 
2507 	netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2508 		     "tx queued, slot %d, len %d\n",
2509 		     qdev->req_producer_index, skb->len);
2510 
2511 	atomic_dec(&qdev->tx_count);
2512 	return NETDEV_TX_OK;
2513 }
2514 
2515 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2516 {
2517 	qdev->req_q_size =
2518 	    (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2519 
2520 	qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2521 
2522 	/* The barrier is required to ensure request and response queue
2523 	 * addr writes to the registers.
2524 	 */
2525 	wmb();
2526 
2527 	qdev->req_q_virt_addr =
2528 	    pci_alloc_consistent(qdev->pdev,
2529 				 (size_t) qdev->req_q_size,
2530 				 &qdev->req_q_phy_addr);
2531 
2532 	if ((qdev->req_q_virt_addr == NULL) ||
2533 	    LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2534 		netdev_err(qdev->ndev, "reqQ failed\n");
2535 		return -ENOMEM;
2536 	}
2537 
2538 	qdev->rsp_q_virt_addr =
2539 	    pci_alloc_consistent(qdev->pdev,
2540 				 (size_t) qdev->rsp_q_size,
2541 				 &qdev->rsp_q_phy_addr);
2542 
2543 	if ((qdev->rsp_q_virt_addr == NULL) ||
2544 	    LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2545 		netdev_err(qdev->ndev, "rspQ allocation failed\n");
2546 		pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2547 				    qdev->req_q_virt_addr,
2548 				    qdev->req_q_phy_addr);
2549 		return -ENOMEM;
2550 	}
2551 
2552 	set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2553 
2554 	return 0;
2555 }
2556 
2557 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2558 {
2559 	if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2560 		netdev_info(qdev->ndev, "Already done\n");
2561 		return;
2562 	}
2563 
2564 	pci_free_consistent(qdev->pdev,
2565 			    qdev->req_q_size,
2566 			    qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2567 
2568 	qdev->req_q_virt_addr = NULL;
2569 
2570 	pci_free_consistent(qdev->pdev,
2571 			    qdev->rsp_q_size,
2572 			    qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2573 
2574 	qdev->rsp_q_virt_addr = NULL;
2575 
2576 	clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2577 }
2578 
2579 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2580 {
2581 	/* Create Large Buffer Queue */
2582 	qdev->lrg_buf_q_size =
2583 		qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2584 	if (qdev->lrg_buf_q_size < PAGE_SIZE)
2585 		qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2586 	else
2587 		qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2588 
2589 	qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2590 				      sizeof(struct ql_rcv_buf_cb),
2591 				      GFP_KERNEL);
2592 	if (qdev->lrg_buf == NULL)
2593 		return -ENOMEM;
2594 
2595 	qdev->lrg_buf_q_alloc_virt_addr =
2596 		pci_alloc_consistent(qdev->pdev,
2597 				     qdev->lrg_buf_q_alloc_size,
2598 				     &qdev->lrg_buf_q_alloc_phy_addr);
2599 
2600 	if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2601 		netdev_err(qdev->ndev, "lBufQ failed\n");
2602 		return -ENOMEM;
2603 	}
2604 	qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2605 	qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2606 
2607 	/* Create Small Buffer Queue */
2608 	qdev->small_buf_q_size =
2609 		NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2610 	if (qdev->small_buf_q_size < PAGE_SIZE)
2611 		qdev->small_buf_q_alloc_size = PAGE_SIZE;
2612 	else
2613 		qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2614 
2615 	qdev->small_buf_q_alloc_virt_addr =
2616 		pci_alloc_consistent(qdev->pdev,
2617 				     qdev->small_buf_q_alloc_size,
2618 				     &qdev->small_buf_q_alloc_phy_addr);
2619 
2620 	if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2621 		netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2622 		pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2623 				    qdev->lrg_buf_q_alloc_virt_addr,
2624 				    qdev->lrg_buf_q_alloc_phy_addr);
2625 		return -ENOMEM;
2626 	}
2627 
2628 	qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2629 	qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2630 	set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2631 	return 0;
2632 }
2633 
2634 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2635 {
2636 	if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2637 		netdev_info(qdev->ndev, "Already done\n");
2638 		return;
2639 	}
2640 	kfree(qdev->lrg_buf);
2641 	pci_free_consistent(qdev->pdev,
2642 			    qdev->lrg_buf_q_alloc_size,
2643 			    qdev->lrg_buf_q_alloc_virt_addr,
2644 			    qdev->lrg_buf_q_alloc_phy_addr);
2645 
2646 	qdev->lrg_buf_q_virt_addr = NULL;
2647 
2648 	pci_free_consistent(qdev->pdev,
2649 			    qdev->small_buf_q_alloc_size,
2650 			    qdev->small_buf_q_alloc_virt_addr,
2651 			    qdev->small_buf_q_alloc_phy_addr);
2652 
2653 	qdev->small_buf_q_virt_addr = NULL;
2654 
2655 	clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2656 }
2657 
2658 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2659 {
2660 	int i;
2661 	struct bufq_addr_element *small_buf_q_entry;
2662 
2663 	/* Currently we allocate on one of memory and use it for smallbuffers */
2664 	qdev->small_buf_total_size =
2665 		(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2666 		 QL_SMALL_BUFFER_SIZE);
2667 
2668 	qdev->small_buf_virt_addr =
2669 		pci_alloc_consistent(qdev->pdev,
2670 				     qdev->small_buf_total_size,
2671 				     &qdev->small_buf_phy_addr);
2672 
2673 	if (qdev->small_buf_virt_addr == NULL) {
2674 		netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2675 		return -ENOMEM;
2676 	}
2677 
2678 	qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2679 	qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2680 
2681 	small_buf_q_entry = qdev->small_buf_q_virt_addr;
2682 
2683 	/* Initialize the small buffer queue. */
2684 	for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2685 		small_buf_q_entry->addr_high =
2686 		    cpu_to_le32(qdev->small_buf_phy_addr_high);
2687 		small_buf_q_entry->addr_low =
2688 		    cpu_to_le32(qdev->small_buf_phy_addr_low +
2689 				(i * QL_SMALL_BUFFER_SIZE));
2690 		small_buf_q_entry++;
2691 	}
2692 	qdev->small_buf_index = 0;
2693 	set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2694 	return 0;
2695 }
2696 
2697 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2698 {
2699 	if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2700 		netdev_info(qdev->ndev, "Already done\n");
2701 		return;
2702 	}
2703 	if (qdev->small_buf_virt_addr != NULL) {
2704 		pci_free_consistent(qdev->pdev,
2705 				    qdev->small_buf_total_size,
2706 				    qdev->small_buf_virt_addr,
2707 				    qdev->small_buf_phy_addr);
2708 
2709 		qdev->small_buf_virt_addr = NULL;
2710 	}
2711 }
2712 
2713 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2714 {
2715 	int i = 0;
2716 	struct ql_rcv_buf_cb *lrg_buf_cb;
2717 
2718 	for (i = 0; i < qdev->num_large_buffers; i++) {
2719 		lrg_buf_cb = &qdev->lrg_buf[i];
2720 		if (lrg_buf_cb->skb) {
2721 			dev_kfree_skb(lrg_buf_cb->skb);
2722 			pci_unmap_single(qdev->pdev,
2723 					 dma_unmap_addr(lrg_buf_cb, mapaddr),
2724 					 dma_unmap_len(lrg_buf_cb, maplen),
2725 					 PCI_DMA_FROMDEVICE);
2726 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2727 		} else {
2728 			break;
2729 		}
2730 	}
2731 }
2732 
2733 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2734 {
2735 	int i;
2736 	struct ql_rcv_buf_cb *lrg_buf_cb;
2737 	struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2738 
2739 	for (i = 0; i < qdev->num_large_buffers; i++) {
2740 		lrg_buf_cb = &qdev->lrg_buf[i];
2741 		buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2742 		buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2743 		buf_addr_ele++;
2744 	}
2745 	qdev->lrg_buf_index = 0;
2746 	qdev->lrg_buf_skb_check = 0;
2747 }
2748 
2749 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2750 {
2751 	int i;
2752 	struct ql_rcv_buf_cb *lrg_buf_cb;
2753 	struct sk_buff *skb;
2754 	dma_addr_t map;
2755 	int err;
2756 
2757 	for (i = 0; i < qdev->num_large_buffers; i++) {
2758 		lrg_buf_cb = &qdev->lrg_buf[i];
2759 		memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2760 
2761 		skb = netdev_alloc_skb(qdev->ndev,
2762 				       qdev->lrg_buffer_len);
2763 		if (unlikely(!skb)) {
2764 			/* Better luck next round */
2765 			netdev_err(qdev->ndev,
2766 				   "large buff alloc failed for %d bytes at index %d\n",
2767 				   qdev->lrg_buffer_len * 2, i);
2768 			ql_free_large_buffers(qdev);
2769 			return -ENOMEM;
2770 		} else {
2771 			lrg_buf_cb->index = i;
2772 			/*
2773 			 * We save some space to copy the ethhdr from first
2774 			 * buffer
2775 			 */
2776 			skb_reserve(skb, QL_HEADER_SPACE);
2777 			map = pci_map_single(qdev->pdev,
2778 					     skb->data,
2779 					     qdev->lrg_buffer_len -
2780 					     QL_HEADER_SPACE,
2781 					     PCI_DMA_FROMDEVICE);
2782 
2783 			err = pci_dma_mapping_error(qdev->pdev, map);
2784 			if (err) {
2785 				netdev_err(qdev->ndev,
2786 					   "PCI mapping failed with error: %d\n",
2787 					   err);
2788 				dev_kfree_skb_irq(skb);
2789 				ql_free_large_buffers(qdev);
2790 				return -ENOMEM;
2791 			}
2792 
2793 			lrg_buf_cb->skb = skb;
2794 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2795 			dma_unmap_len_set(lrg_buf_cb, maplen,
2796 					  qdev->lrg_buffer_len -
2797 					  QL_HEADER_SPACE);
2798 			lrg_buf_cb->buf_phy_addr_low =
2799 			    cpu_to_le32(LS_64BITS(map));
2800 			lrg_buf_cb->buf_phy_addr_high =
2801 			    cpu_to_le32(MS_64BITS(map));
2802 		}
2803 	}
2804 	return 0;
2805 }
2806 
2807 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2808 {
2809 	struct ql_tx_buf_cb *tx_cb;
2810 	int i;
2811 
2812 	tx_cb = &qdev->tx_buf[0];
2813 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2814 		kfree(tx_cb->oal);
2815 		tx_cb->oal = NULL;
2816 		tx_cb++;
2817 	}
2818 }
2819 
2820 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2821 {
2822 	struct ql_tx_buf_cb *tx_cb;
2823 	int i;
2824 	struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2825 
2826 	/* Create free list of transmit buffers */
2827 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2828 
2829 		tx_cb = &qdev->tx_buf[i];
2830 		tx_cb->skb = NULL;
2831 		tx_cb->queue_entry = req_q_curr;
2832 		req_q_curr++;
2833 		tx_cb->oal = kmalloc(512, GFP_KERNEL);
2834 		if (tx_cb->oal == NULL)
2835 			return -ENOMEM;
2836 	}
2837 	return 0;
2838 }
2839 
2840 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2841 {
2842 	if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2843 		qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2844 		qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2845 	} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2846 		/*
2847 		 * Bigger buffers, so less of them.
2848 		 */
2849 		qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2850 		qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2851 	} else {
2852 		netdev_err(qdev->ndev, "Invalid mtu size: %d.  Only %d and %d are accepted.\n",
2853 			   qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2854 		return -ENOMEM;
2855 	}
2856 	qdev->num_large_buffers =
2857 		qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2858 	qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2859 	qdev->max_frame_size =
2860 		(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2861 
2862 	/*
2863 	 * First allocate a page of shared memory and use it for shadow
2864 	 * locations of Network Request Queue Consumer Address Register and
2865 	 * Network Completion Queue Producer Index Register
2866 	 */
2867 	qdev->shadow_reg_virt_addr =
2868 		pci_alloc_consistent(qdev->pdev,
2869 				     PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2870 
2871 	if (qdev->shadow_reg_virt_addr != NULL) {
2872 		qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2873 		qdev->req_consumer_index_phy_addr_high =
2874 			MS_64BITS(qdev->shadow_reg_phy_addr);
2875 		qdev->req_consumer_index_phy_addr_low =
2876 			LS_64BITS(qdev->shadow_reg_phy_addr);
2877 
2878 		qdev->prsp_producer_index =
2879 			(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2880 		qdev->rsp_producer_index_phy_addr_high =
2881 			qdev->req_consumer_index_phy_addr_high;
2882 		qdev->rsp_producer_index_phy_addr_low =
2883 			qdev->req_consumer_index_phy_addr_low + 8;
2884 	} else {
2885 		netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2886 		return -ENOMEM;
2887 	}
2888 
2889 	if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2890 		netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2891 		goto err_req_rsp;
2892 	}
2893 
2894 	if (ql_alloc_buffer_queues(qdev) != 0) {
2895 		netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2896 		goto err_buffer_queues;
2897 	}
2898 
2899 	if (ql_alloc_small_buffers(qdev) != 0) {
2900 		netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2901 		goto err_small_buffers;
2902 	}
2903 
2904 	if (ql_alloc_large_buffers(qdev) != 0) {
2905 		netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2906 		goto err_small_buffers;
2907 	}
2908 
2909 	/* Initialize the large buffer queue. */
2910 	ql_init_large_buffers(qdev);
2911 	if (ql_create_send_free_list(qdev))
2912 		goto err_free_list;
2913 
2914 	qdev->rsp_current = qdev->rsp_q_virt_addr;
2915 
2916 	return 0;
2917 err_free_list:
2918 	ql_free_send_free_list(qdev);
2919 err_small_buffers:
2920 	ql_free_buffer_queues(qdev);
2921 err_buffer_queues:
2922 	ql_free_net_req_rsp_queues(qdev);
2923 err_req_rsp:
2924 	pci_free_consistent(qdev->pdev,
2925 			    PAGE_SIZE,
2926 			    qdev->shadow_reg_virt_addr,
2927 			    qdev->shadow_reg_phy_addr);
2928 
2929 	return -ENOMEM;
2930 }
2931 
2932 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2933 {
2934 	ql_free_send_free_list(qdev);
2935 	ql_free_large_buffers(qdev);
2936 	ql_free_small_buffers(qdev);
2937 	ql_free_buffer_queues(qdev);
2938 	ql_free_net_req_rsp_queues(qdev);
2939 	if (qdev->shadow_reg_virt_addr != NULL) {
2940 		pci_free_consistent(qdev->pdev,
2941 				    PAGE_SIZE,
2942 				    qdev->shadow_reg_virt_addr,
2943 				    qdev->shadow_reg_phy_addr);
2944 		qdev->shadow_reg_virt_addr = NULL;
2945 	}
2946 }
2947 
2948 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2949 {
2950 	struct ql3xxx_local_ram_registers __iomem *local_ram =
2951 	    (void __iomem *)qdev->mem_map_registers;
2952 
2953 	if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2954 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2955 			 2) << 4))
2956 		return -1;
2957 
2958 	ql_write_page2_reg(qdev,
2959 			   &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2960 
2961 	ql_write_page2_reg(qdev,
2962 			   &local_ram->maxBufletCount,
2963 			   qdev->nvram_data.bufletCount);
2964 
2965 	ql_write_page2_reg(qdev,
2966 			   &local_ram->freeBufletThresholdLow,
2967 			   (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2968 			   (qdev->nvram_data.tcpWindowThreshold0));
2969 
2970 	ql_write_page2_reg(qdev,
2971 			   &local_ram->freeBufletThresholdHigh,
2972 			   qdev->nvram_data.tcpWindowThreshold50);
2973 
2974 	ql_write_page2_reg(qdev,
2975 			   &local_ram->ipHashTableBase,
2976 			   (qdev->nvram_data.ipHashTableBaseHi << 16) |
2977 			   qdev->nvram_data.ipHashTableBaseLo);
2978 	ql_write_page2_reg(qdev,
2979 			   &local_ram->ipHashTableCount,
2980 			   qdev->nvram_data.ipHashTableSize);
2981 	ql_write_page2_reg(qdev,
2982 			   &local_ram->tcpHashTableBase,
2983 			   (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2984 			   qdev->nvram_data.tcpHashTableBaseLo);
2985 	ql_write_page2_reg(qdev,
2986 			   &local_ram->tcpHashTableCount,
2987 			   qdev->nvram_data.tcpHashTableSize);
2988 	ql_write_page2_reg(qdev,
2989 			   &local_ram->ncbBase,
2990 			   (qdev->nvram_data.ncbTableBaseHi << 16) |
2991 			   qdev->nvram_data.ncbTableBaseLo);
2992 	ql_write_page2_reg(qdev,
2993 			   &local_ram->maxNcbCount,
2994 			   qdev->nvram_data.ncbTableSize);
2995 	ql_write_page2_reg(qdev,
2996 			   &local_ram->drbBase,
2997 			   (qdev->nvram_data.drbTableBaseHi << 16) |
2998 			   qdev->nvram_data.drbTableBaseLo);
2999 	ql_write_page2_reg(qdev,
3000 			   &local_ram->maxDrbCount,
3001 			   qdev->nvram_data.drbTableSize);
3002 	ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3003 	return 0;
3004 }
3005 
3006 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3007 {
3008 	u32 value;
3009 	struct ql3xxx_port_registers __iomem *port_regs =
3010 		qdev->mem_map_registers;
3011 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3012 	struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3013 		(void __iomem *)port_regs;
3014 	u32 delay = 10;
3015 	int status = 0;
3016 
3017 	if (ql_mii_setup(qdev))
3018 		return -1;
3019 
3020 	/* Bring out PHY out of reset */
3021 	ql_write_common_reg(qdev, spir,
3022 			    (ISP_SERIAL_PORT_IF_WE |
3023 			     (ISP_SERIAL_PORT_IF_WE << 16)));
3024 	/* Give the PHY time to come out of reset. */
3025 	mdelay(100);
3026 	qdev->port_link_state = LS_DOWN;
3027 	netif_carrier_off(qdev->ndev);
3028 
3029 	/* V2 chip fix for ARS-39168. */
3030 	ql_write_common_reg(qdev, spir,
3031 			    (ISP_SERIAL_PORT_IF_SDE |
3032 			     (ISP_SERIAL_PORT_IF_SDE << 16)));
3033 
3034 	/* Request Queue Registers */
3035 	*((u32 *)(qdev->preq_consumer_index)) = 0;
3036 	atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3037 	qdev->req_producer_index = 0;
3038 
3039 	ql_write_page1_reg(qdev,
3040 			   &hmem_regs->reqConsumerIndexAddrHigh,
3041 			   qdev->req_consumer_index_phy_addr_high);
3042 	ql_write_page1_reg(qdev,
3043 			   &hmem_regs->reqConsumerIndexAddrLow,
3044 			   qdev->req_consumer_index_phy_addr_low);
3045 
3046 	ql_write_page1_reg(qdev,
3047 			   &hmem_regs->reqBaseAddrHigh,
3048 			   MS_64BITS(qdev->req_q_phy_addr));
3049 	ql_write_page1_reg(qdev,
3050 			   &hmem_regs->reqBaseAddrLow,
3051 			   LS_64BITS(qdev->req_q_phy_addr));
3052 	ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3053 
3054 	/* Response Queue Registers */
3055 	*((__le16 *) (qdev->prsp_producer_index)) = 0;
3056 	qdev->rsp_consumer_index = 0;
3057 	qdev->rsp_current = qdev->rsp_q_virt_addr;
3058 
3059 	ql_write_page1_reg(qdev,
3060 			   &hmem_regs->rspProducerIndexAddrHigh,
3061 			   qdev->rsp_producer_index_phy_addr_high);
3062 
3063 	ql_write_page1_reg(qdev,
3064 			   &hmem_regs->rspProducerIndexAddrLow,
3065 			   qdev->rsp_producer_index_phy_addr_low);
3066 
3067 	ql_write_page1_reg(qdev,
3068 			   &hmem_regs->rspBaseAddrHigh,
3069 			   MS_64BITS(qdev->rsp_q_phy_addr));
3070 
3071 	ql_write_page1_reg(qdev,
3072 			   &hmem_regs->rspBaseAddrLow,
3073 			   LS_64BITS(qdev->rsp_q_phy_addr));
3074 
3075 	ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3076 
3077 	/* Large Buffer Queue */
3078 	ql_write_page1_reg(qdev,
3079 			   &hmem_regs->rxLargeQBaseAddrHigh,
3080 			   MS_64BITS(qdev->lrg_buf_q_phy_addr));
3081 
3082 	ql_write_page1_reg(qdev,
3083 			   &hmem_regs->rxLargeQBaseAddrLow,
3084 			   LS_64BITS(qdev->lrg_buf_q_phy_addr));
3085 
3086 	ql_write_page1_reg(qdev,
3087 			   &hmem_regs->rxLargeQLength,
3088 			   qdev->num_lbufq_entries);
3089 
3090 	ql_write_page1_reg(qdev,
3091 			   &hmem_regs->rxLargeBufferLength,
3092 			   qdev->lrg_buffer_len);
3093 
3094 	/* Small Buffer Queue */
3095 	ql_write_page1_reg(qdev,
3096 			   &hmem_regs->rxSmallQBaseAddrHigh,
3097 			   MS_64BITS(qdev->small_buf_q_phy_addr));
3098 
3099 	ql_write_page1_reg(qdev,
3100 			   &hmem_regs->rxSmallQBaseAddrLow,
3101 			   LS_64BITS(qdev->small_buf_q_phy_addr));
3102 
3103 	ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3104 	ql_write_page1_reg(qdev,
3105 			   &hmem_regs->rxSmallBufferLength,
3106 			   QL_SMALL_BUFFER_SIZE);
3107 
3108 	qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3109 	qdev->small_buf_release_cnt = 8;
3110 	qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3111 	qdev->lrg_buf_release_cnt = 8;
3112 	qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3113 	qdev->small_buf_index = 0;
3114 	qdev->lrg_buf_index = 0;
3115 	qdev->lrg_buf_free_count = 0;
3116 	qdev->lrg_buf_free_head = NULL;
3117 	qdev->lrg_buf_free_tail = NULL;
3118 
3119 	ql_write_common_reg(qdev,
3120 			    &port_regs->CommonRegs.
3121 			    rxSmallQProducerIndex,
3122 			    qdev->small_buf_q_producer_index);
3123 	ql_write_common_reg(qdev,
3124 			    &port_regs->CommonRegs.
3125 			    rxLargeQProducerIndex,
3126 			    qdev->lrg_buf_q_producer_index);
3127 
3128 	/*
3129 	 * Find out if the chip has already been initialized.  If it has, then
3130 	 * we skip some of the initialization.
3131 	 */
3132 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3133 	value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3134 	if ((value & PORT_STATUS_IC) == 0) {
3135 
3136 		/* Chip has not been configured yet, so let it rip. */
3137 		if (ql_init_misc_registers(qdev)) {
3138 			status = -1;
3139 			goto out;
3140 		}
3141 
3142 		value = qdev->nvram_data.tcpMaxWindowSize;
3143 		ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3144 
3145 		value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3146 
3147 		if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3148 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3149 				 * 2) << 13)) {
3150 			status = -1;
3151 			goto out;
3152 		}
3153 		ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3154 		ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3155 				   (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3156 				     16) | (INTERNAL_CHIP_SD |
3157 					    INTERNAL_CHIP_WE)));
3158 		ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3159 	}
3160 
3161 	if (qdev->mac_index)
3162 		ql_write_page0_reg(qdev,
3163 				   &port_regs->mac1MaxFrameLengthReg,
3164 				   qdev->max_frame_size);
3165 	else
3166 		ql_write_page0_reg(qdev,
3167 					   &port_regs->mac0MaxFrameLengthReg,
3168 					   qdev->max_frame_size);
3169 
3170 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3171 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3172 			 2) << 7)) {
3173 		status = -1;
3174 		goto out;
3175 	}
3176 
3177 	PHY_Setup(qdev);
3178 	ql_init_scan_mode(qdev);
3179 	ql_get_phy_owner(qdev);
3180 
3181 	/* Load the MAC Configuration */
3182 
3183 	/* Program lower 32 bits of the MAC address */
3184 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3185 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3186 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3187 			   ((qdev->ndev->dev_addr[2] << 24)
3188 			    | (qdev->ndev->dev_addr[3] << 16)
3189 			    | (qdev->ndev->dev_addr[4] << 8)
3190 			    | qdev->ndev->dev_addr[5]));
3191 
3192 	/* Program top 16 bits of the MAC address */
3193 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3194 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3195 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3196 			   ((qdev->ndev->dev_addr[0] << 8)
3197 			    | qdev->ndev->dev_addr[1]));
3198 
3199 	/* Enable Primary MAC */
3200 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3201 			   ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3202 			    MAC_ADDR_INDIRECT_PTR_REG_PE));
3203 
3204 	/* Clear Primary and Secondary IP addresses */
3205 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3206 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3207 			    (qdev->mac_index << 2)));
3208 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3209 
3210 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3211 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3212 			    ((qdev->mac_index << 2) + 1)));
3213 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3214 
3215 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3216 
3217 	/* Indicate Configuration Complete */
3218 	ql_write_page0_reg(qdev,
3219 			   &port_regs->portControl,
3220 			   ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3221 
3222 	do {
3223 		value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3224 		if (value & PORT_STATUS_IC)
3225 			break;
3226 		spin_unlock_irq(&qdev->hw_lock);
3227 		msleep(500);
3228 		spin_lock_irq(&qdev->hw_lock);
3229 	} while (--delay);
3230 
3231 	if (delay == 0) {
3232 		netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3233 		status = -1;
3234 		goto out;
3235 	}
3236 
3237 	/* Enable Ethernet Function */
3238 	if (qdev->device_id == QL3032_DEVICE_ID) {
3239 		value =
3240 		    (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3241 		     QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3242 			QL3032_PORT_CONTROL_ET);
3243 		ql_write_page0_reg(qdev, &port_regs->functionControl,
3244 				   ((value << 16) | value));
3245 	} else {
3246 		value =
3247 		    (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3248 		     PORT_CONTROL_HH);
3249 		ql_write_page0_reg(qdev, &port_regs->portControl,
3250 				   ((value << 16) | value));
3251 	}
3252 
3253 
3254 out:
3255 	return status;
3256 }
3257 
3258 /*
3259  * Caller holds hw_lock.
3260  */
3261 static int ql_adapter_reset(struct ql3_adapter *qdev)
3262 {
3263 	struct ql3xxx_port_registers __iomem *port_regs =
3264 		qdev->mem_map_registers;
3265 	int status = 0;
3266 	u16 value;
3267 	int max_wait_time;
3268 
3269 	set_bit(QL_RESET_ACTIVE, &qdev->flags);
3270 	clear_bit(QL_RESET_DONE, &qdev->flags);
3271 
3272 	/*
3273 	 * Issue soft reset to chip.
3274 	 */
3275 	netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3276 	ql_write_common_reg(qdev,
3277 			    &port_regs->CommonRegs.ispControlStatus,
3278 			    ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3279 
3280 	/* Wait 3 seconds for reset to complete. */
3281 	netdev_printk(KERN_DEBUG, qdev->ndev,
3282 		      "Wait 10 milliseconds for reset to complete\n");
3283 
3284 	/* Wait until the firmware tells us the Soft Reset is done */
3285 	max_wait_time = 5;
3286 	do {
3287 		value =
3288 		    ql_read_common_reg(qdev,
3289 				       &port_regs->CommonRegs.ispControlStatus);
3290 		if ((value & ISP_CONTROL_SR) == 0)
3291 			break;
3292 
3293 		ssleep(1);
3294 	} while ((--max_wait_time));
3295 
3296 	/*
3297 	 * Also, make sure that the Network Reset Interrupt bit has been
3298 	 * cleared after the soft reset has taken place.
3299 	 */
3300 	value =
3301 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3302 	if (value & ISP_CONTROL_RI) {
3303 		netdev_printk(KERN_DEBUG, qdev->ndev,
3304 			      "clearing RI after reset\n");
3305 		ql_write_common_reg(qdev,
3306 				    &port_regs->CommonRegs.
3307 				    ispControlStatus,
3308 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3309 	}
3310 
3311 	if (max_wait_time == 0) {
3312 		/* Issue Force Soft Reset */
3313 		ql_write_common_reg(qdev,
3314 				    &port_regs->CommonRegs.
3315 				    ispControlStatus,
3316 				    ((ISP_CONTROL_FSR << 16) |
3317 				     ISP_CONTROL_FSR));
3318 		/*
3319 		 * Wait until the firmware tells us the Force Soft Reset is
3320 		 * done
3321 		 */
3322 		max_wait_time = 5;
3323 		do {
3324 			value = ql_read_common_reg(qdev,
3325 						   &port_regs->CommonRegs.
3326 						   ispControlStatus);
3327 			if ((value & ISP_CONTROL_FSR) == 0)
3328 				break;
3329 			ssleep(1);
3330 		} while ((--max_wait_time));
3331 	}
3332 	if (max_wait_time == 0)
3333 		status = 1;
3334 
3335 	clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3336 	set_bit(QL_RESET_DONE, &qdev->flags);
3337 	return status;
3338 }
3339 
3340 static void ql_set_mac_info(struct ql3_adapter *qdev)
3341 {
3342 	struct ql3xxx_port_registers __iomem *port_regs =
3343 		qdev->mem_map_registers;
3344 	u32 value, port_status;
3345 	u8 func_number;
3346 
3347 	/* Get the function number */
3348 	value =
3349 	    ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3350 	func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3351 	port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3352 	switch (value & ISP_CONTROL_FN_MASK) {
3353 	case ISP_CONTROL_FN0_NET:
3354 		qdev->mac_index = 0;
3355 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3356 		qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3357 		qdev->PHYAddr = PORT0_PHY_ADDRESS;
3358 		if (port_status & PORT_STATUS_SM0)
3359 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3360 		else
3361 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3362 		break;
3363 
3364 	case ISP_CONTROL_FN1_NET:
3365 		qdev->mac_index = 1;
3366 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3367 		qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3368 		qdev->PHYAddr = PORT1_PHY_ADDRESS;
3369 		if (port_status & PORT_STATUS_SM1)
3370 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3371 		else
3372 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3373 		break;
3374 
3375 	case ISP_CONTROL_FN0_SCSI:
3376 	case ISP_CONTROL_FN1_SCSI:
3377 	default:
3378 		netdev_printk(KERN_DEBUG, qdev->ndev,
3379 			      "Invalid function number, ispControlStatus = 0x%x\n",
3380 			      value);
3381 		break;
3382 	}
3383 	qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3384 }
3385 
3386 static void ql_display_dev_info(struct net_device *ndev)
3387 {
3388 	struct ql3_adapter *qdev = netdev_priv(ndev);
3389 	struct pci_dev *pdev = qdev->pdev;
3390 
3391 	netdev_info(ndev,
3392 		    "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3393 		    DRV_NAME, qdev->index, qdev->chip_rev_id,
3394 		    qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3395 		    qdev->pci_slot);
3396 	netdev_info(ndev, "%s Interface\n",
3397 		test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3398 
3399 	/*
3400 	 * Print PCI bus width/type.
3401 	 */
3402 	netdev_info(ndev, "Bus interface is %s %s\n",
3403 		    ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3404 		    ((qdev->pci_x) ? "PCI-X" : "PCI"));
3405 
3406 	netdev_info(ndev, "mem  IO base address adjusted = 0x%p\n",
3407 		    qdev->mem_map_registers);
3408 	netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3409 
3410 	netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3411 }
3412 
3413 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3414 {
3415 	struct net_device *ndev = qdev->ndev;
3416 	int retval = 0;
3417 
3418 	netif_stop_queue(ndev);
3419 	netif_carrier_off(ndev);
3420 
3421 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3422 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3423 
3424 	ql_disable_interrupts(qdev);
3425 
3426 	free_irq(qdev->pdev->irq, ndev);
3427 
3428 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3429 		netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3430 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3431 		pci_disable_msi(qdev->pdev);
3432 	}
3433 
3434 	del_timer_sync(&qdev->adapter_timer);
3435 
3436 	napi_disable(&qdev->napi);
3437 
3438 	if (do_reset) {
3439 		int soft_reset;
3440 		unsigned long hw_flags;
3441 
3442 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3443 		if (ql_wait_for_drvr_lock(qdev)) {
3444 			soft_reset = ql_adapter_reset(qdev);
3445 			if (soft_reset) {
3446 				netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3447 					   qdev->index);
3448 			}
3449 			netdev_err(ndev,
3450 				   "Releasing driver lock via chip reset\n");
3451 		} else {
3452 			netdev_err(ndev,
3453 				   "Could not acquire driver lock to do reset!\n");
3454 			retval = -1;
3455 		}
3456 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3457 	}
3458 	ql_free_mem_resources(qdev);
3459 	return retval;
3460 }
3461 
3462 static int ql_adapter_up(struct ql3_adapter *qdev)
3463 {
3464 	struct net_device *ndev = qdev->ndev;
3465 	int err;
3466 	unsigned long irq_flags = IRQF_SHARED;
3467 	unsigned long hw_flags;
3468 
3469 	if (ql_alloc_mem_resources(qdev)) {
3470 		netdev_err(ndev, "Unable to  allocate buffers\n");
3471 		return -ENOMEM;
3472 	}
3473 
3474 	if (qdev->msi) {
3475 		if (pci_enable_msi(qdev->pdev)) {
3476 			netdev_err(ndev,
3477 				   "User requested MSI, but MSI failed to initialize.  Continuing without MSI.\n");
3478 			qdev->msi = 0;
3479 		} else {
3480 			netdev_info(ndev, "MSI Enabled...\n");
3481 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3482 			irq_flags &= ~IRQF_SHARED;
3483 		}
3484 	}
3485 
3486 	err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3487 			  irq_flags, ndev->name, ndev);
3488 	if (err) {
3489 		netdev_err(ndev,
3490 			   "Failed to reserve interrupt %d - already in use\n",
3491 			   qdev->pdev->irq);
3492 		goto err_irq;
3493 	}
3494 
3495 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3496 
3497 	err = ql_wait_for_drvr_lock(qdev);
3498 	if (err) {
3499 		err = ql_adapter_initialize(qdev);
3500 		if (err) {
3501 			netdev_err(ndev, "Unable to initialize adapter\n");
3502 			goto err_init;
3503 		}
3504 		netdev_err(ndev, "Releasing driver lock\n");
3505 		ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3506 	} else {
3507 		netdev_err(ndev, "Could not acquire driver lock\n");
3508 		goto err_lock;
3509 	}
3510 
3511 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3512 
3513 	set_bit(QL_ADAPTER_UP, &qdev->flags);
3514 
3515 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3516 
3517 	napi_enable(&qdev->napi);
3518 	ql_enable_interrupts(qdev);
3519 	return 0;
3520 
3521 err_init:
3522 	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3523 err_lock:
3524 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3525 	free_irq(qdev->pdev->irq, ndev);
3526 err_irq:
3527 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3528 		netdev_info(ndev, "calling pci_disable_msi()\n");
3529 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3530 		pci_disable_msi(qdev->pdev);
3531 	}
3532 	return err;
3533 }
3534 
3535 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3536 {
3537 	if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3538 		netdev_err(qdev->ndev,
3539 			   "Driver up/down cycle failed, closing device\n");
3540 		rtnl_lock();
3541 		dev_close(qdev->ndev);
3542 		rtnl_unlock();
3543 		return -1;
3544 	}
3545 	return 0;
3546 }
3547 
3548 static int ql3xxx_close(struct net_device *ndev)
3549 {
3550 	struct ql3_adapter *qdev = netdev_priv(ndev);
3551 
3552 	/*
3553 	 * Wait for device to recover from a reset.
3554 	 * (Rarely happens, but possible.)
3555 	 */
3556 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3557 		msleep(50);
3558 
3559 	ql_adapter_down(qdev, QL_DO_RESET);
3560 	return 0;
3561 }
3562 
3563 static int ql3xxx_open(struct net_device *ndev)
3564 {
3565 	struct ql3_adapter *qdev = netdev_priv(ndev);
3566 	return ql_adapter_up(qdev);
3567 }
3568 
3569 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3570 {
3571 	struct ql3_adapter *qdev = netdev_priv(ndev);
3572 	struct ql3xxx_port_registers __iomem *port_regs =
3573 			qdev->mem_map_registers;
3574 	struct sockaddr *addr = p;
3575 	unsigned long hw_flags;
3576 
3577 	if (netif_running(ndev))
3578 		return -EBUSY;
3579 
3580 	if (!is_valid_ether_addr(addr->sa_data))
3581 		return -EADDRNOTAVAIL;
3582 
3583 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3584 
3585 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3586 	/* Program lower 32 bits of the MAC address */
3587 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3588 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3589 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3590 			   ((ndev->dev_addr[2] << 24) | (ndev->
3591 							 dev_addr[3] << 16) |
3592 			    (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3593 
3594 	/* Program top 16 bits of the MAC address */
3595 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3596 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3597 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3598 			   ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3599 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3600 
3601 	return 0;
3602 }
3603 
3604 static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue)
3605 {
3606 	struct ql3_adapter *qdev = netdev_priv(ndev);
3607 
3608 	netdev_err(ndev, "Resetting...\n");
3609 	/*
3610 	 * Stop the queues, we've got a problem.
3611 	 */
3612 	netif_stop_queue(ndev);
3613 
3614 	/*
3615 	 * Wake up the worker to process this event.
3616 	 */
3617 	queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3618 }
3619 
3620 static void ql_reset_work(struct work_struct *work)
3621 {
3622 	struct ql3_adapter *qdev =
3623 		container_of(work, struct ql3_adapter, reset_work.work);
3624 	struct net_device *ndev = qdev->ndev;
3625 	u32 value;
3626 	struct ql_tx_buf_cb *tx_cb;
3627 	int max_wait_time, i;
3628 	struct ql3xxx_port_registers __iomem *port_regs =
3629 		qdev->mem_map_registers;
3630 	unsigned long hw_flags;
3631 
3632 	if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3633 		clear_bit(QL_LINK_MASTER, &qdev->flags);
3634 
3635 		/*
3636 		 * Loop through the active list and return the skb.
3637 		 */
3638 		for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3639 			int j;
3640 			tx_cb = &qdev->tx_buf[i];
3641 			if (tx_cb->skb) {
3642 				netdev_printk(KERN_DEBUG, ndev,
3643 					      "Freeing lost SKB\n");
3644 				pci_unmap_single(qdev->pdev,
3645 					 dma_unmap_addr(&tx_cb->map[0],
3646 							mapaddr),
3647 					 dma_unmap_len(&tx_cb->map[0], maplen),
3648 					 PCI_DMA_TODEVICE);
3649 				for (j = 1; j < tx_cb->seg_count; j++) {
3650 					pci_unmap_page(qdev->pdev,
3651 					       dma_unmap_addr(&tx_cb->map[j],
3652 							      mapaddr),
3653 					       dma_unmap_len(&tx_cb->map[j],
3654 							     maplen),
3655 					       PCI_DMA_TODEVICE);
3656 				}
3657 				dev_kfree_skb(tx_cb->skb);
3658 				tx_cb->skb = NULL;
3659 			}
3660 		}
3661 
3662 		netdev_err(ndev, "Clearing NRI after reset\n");
3663 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3664 		ql_write_common_reg(qdev,
3665 				    &port_regs->CommonRegs.
3666 				    ispControlStatus,
3667 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3668 		/*
3669 		 * Wait the for Soft Reset to Complete.
3670 		 */
3671 		max_wait_time = 10;
3672 		do {
3673 			value = ql_read_common_reg(qdev,
3674 						   &port_regs->CommonRegs.
3675 
3676 						   ispControlStatus);
3677 			if ((value & ISP_CONTROL_SR) == 0) {
3678 				netdev_printk(KERN_DEBUG, ndev,
3679 					      "reset completed\n");
3680 				break;
3681 			}
3682 
3683 			if (value & ISP_CONTROL_RI) {
3684 				netdev_printk(KERN_DEBUG, ndev,
3685 					      "clearing NRI after reset\n");
3686 				ql_write_common_reg(qdev,
3687 						    &port_regs->
3688 						    CommonRegs.
3689 						    ispControlStatus,
3690 						    ((ISP_CONTROL_RI <<
3691 						      16) | ISP_CONTROL_RI));
3692 			}
3693 
3694 			spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3695 			ssleep(1);
3696 			spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3697 		} while (--max_wait_time);
3698 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3699 
3700 		if (value & ISP_CONTROL_SR) {
3701 
3702 			/*
3703 			 * Set the reset flags and clear the board again.
3704 			 * Nothing else to do...
3705 			 */
3706 			netdev_err(ndev,
3707 				   "Timed out waiting for reset to complete\n");
3708 			netdev_err(ndev, "Do a reset\n");
3709 			clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3710 			clear_bit(QL_RESET_START, &qdev->flags);
3711 			ql_cycle_adapter(qdev, QL_DO_RESET);
3712 			return;
3713 		}
3714 
3715 		clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3716 		clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3717 		clear_bit(QL_RESET_START, &qdev->flags);
3718 		ql_cycle_adapter(qdev, QL_NO_RESET);
3719 	}
3720 }
3721 
3722 static void ql_tx_timeout_work(struct work_struct *work)
3723 {
3724 	struct ql3_adapter *qdev =
3725 		container_of(work, struct ql3_adapter, tx_timeout_work.work);
3726 
3727 	ql_cycle_adapter(qdev, QL_DO_RESET);
3728 }
3729 
3730 static void ql_get_board_info(struct ql3_adapter *qdev)
3731 {
3732 	struct ql3xxx_port_registers __iomem *port_regs =
3733 		qdev->mem_map_registers;
3734 	u32 value;
3735 
3736 	value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3737 
3738 	qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3739 	if (value & PORT_STATUS_64)
3740 		qdev->pci_width = 64;
3741 	else
3742 		qdev->pci_width = 32;
3743 	if (value & PORT_STATUS_X)
3744 		qdev->pci_x = 1;
3745 	else
3746 		qdev->pci_x = 0;
3747 	qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3748 }
3749 
3750 static void ql3xxx_timer(struct timer_list *t)
3751 {
3752 	struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer);
3753 	queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3754 }
3755 
3756 static const struct net_device_ops ql3xxx_netdev_ops = {
3757 	.ndo_open		= ql3xxx_open,
3758 	.ndo_start_xmit		= ql3xxx_send,
3759 	.ndo_stop		= ql3xxx_close,
3760 	.ndo_validate_addr	= eth_validate_addr,
3761 	.ndo_set_mac_address	= ql3xxx_set_mac_address,
3762 	.ndo_tx_timeout		= ql3xxx_tx_timeout,
3763 };
3764 
3765 static int ql3xxx_probe(struct pci_dev *pdev,
3766 			const struct pci_device_id *pci_entry)
3767 {
3768 	struct net_device *ndev = NULL;
3769 	struct ql3_adapter *qdev = NULL;
3770 	static int cards_found;
3771 	int pci_using_dac, err;
3772 
3773 	err = pci_enable_device(pdev);
3774 	if (err) {
3775 		pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3776 		goto err_out;
3777 	}
3778 
3779 	err = pci_request_regions(pdev, DRV_NAME);
3780 	if (err) {
3781 		pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3782 		goto err_out_disable_pdev;
3783 	}
3784 
3785 	pci_set_master(pdev);
3786 
3787 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3788 		pci_using_dac = 1;
3789 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3790 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3791 		pci_using_dac = 0;
3792 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3793 	}
3794 
3795 	if (err) {
3796 		pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3797 		goto err_out_free_regions;
3798 	}
3799 
3800 	ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3801 	if (!ndev) {
3802 		err = -ENOMEM;
3803 		goto err_out_free_regions;
3804 	}
3805 
3806 	SET_NETDEV_DEV(ndev, &pdev->dev);
3807 
3808 	pci_set_drvdata(pdev, ndev);
3809 
3810 	qdev = netdev_priv(ndev);
3811 	qdev->index = cards_found;
3812 	qdev->ndev = ndev;
3813 	qdev->pdev = pdev;
3814 	qdev->device_id = pci_entry->device;
3815 	qdev->port_link_state = LS_DOWN;
3816 	if (msi)
3817 		qdev->msi = 1;
3818 
3819 	qdev->msg_enable = netif_msg_init(debug, default_msg);
3820 
3821 	if (pci_using_dac)
3822 		ndev->features |= NETIF_F_HIGHDMA;
3823 	if (qdev->device_id == QL3032_DEVICE_ID)
3824 		ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3825 
3826 	qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3827 	if (!qdev->mem_map_registers) {
3828 		pr_err("%s: cannot map device registers\n", pci_name(pdev));
3829 		err = -EIO;
3830 		goto err_out_free_ndev;
3831 	}
3832 
3833 	spin_lock_init(&qdev->adapter_lock);
3834 	spin_lock_init(&qdev->hw_lock);
3835 
3836 	/* Set driver entry points */
3837 	ndev->netdev_ops = &ql3xxx_netdev_ops;
3838 	ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3839 	ndev->watchdog_timeo = 5 * HZ;
3840 
3841 	netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3842 
3843 	ndev->irq = pdev->irq;
3844 
3845 	/* make sure the EEPROM is good */
3846 	if (ql_get_nvram_params(qdev)) {
3847 		pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3848 			 __func__, qdev->index);
3849 		err = -EIO;
3850 		goto err_out_iounmap;
3851 	}
3852 
3853 	ql_set_mac_info(qdev);
3854 
3855 	/* Validate and set parameters */
3856 	if (qdev->mac_index) {
3857 		ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3858 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3859 	} else {
3860 		ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3861 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3862 	}
3863 
3864 	ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3865 
3866 	/* Record PCI bus information. */
3867 	ql_get_board_info(qdev);
3868 
3869 	/*
3870 	 * Set the Maximum Memory Read Byte Count value. We do this to handle
3871 	 * jumbo frames.
3872 	 */
3873 	if (qdev->pci_x)
3874 		pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3875 
3876 	err = register_netdev(ndev);
3877 	if (err) {
3878 		pr_err("%s: cannot register net device\n", pci_name(pdev));
3879 		goto err_out_iounmap;
3880 	}
3881 
3882 	/* we're going to reset, so assume we have no link for now */
3883 
3884 	netif_carrier_off(ndev);
3885 	netif_stop_queue(ndev);
3886 
3887 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
3888 	if (!qdev->workqueue) {
3889 		unregister_netdev(ndev);
3890 		err = -ENOMEM;
3891 		goto err_out_iounmap;
3892 	}
3893 
3894 	INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3895 	INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3896 	INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3897 
3898 	timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0);
3899 	qdev->adapter_timer.expires = jiffies + HZ * 2;	/* two second delay */
3900 
3901 	if (!cards_found) {
3902 		pr_alert("%s\n", DRV_STRING);
3903 		pr_alert("Driver name: %s, Version: %s\n",
3904 			 DRV_NAME, DRV_VERSION);
3905 	}
3906 	ql_display_dev_info(ndev);
3907 
3908 	cards_found++;
3909 	return 0;
3910 
3911 err_out_iounmap:
3912 	iounmap(qdev->mem_map_registers);
3913 err_out_free_ndev:
3914 	free_netdev(ndev);
3915 err_out_free_regions:
3916 	pci_release_regions(pdev);
3917 err_out_disable_pdev:
3918 	pci_disable_device(pdev);
3919 err_out:
3920 	return err;
3921 }
3922 
3923 static void ql3xxx_remove(struct pci_dev *pdev)
3924 {
3925 	struct net_device *ndev = pci_get_drvdata(pdev);
3926 	struct ql3_adapter *qdev = netdev_priv(ndev);
3927 
3928 	unregister_netdev(ndev);
3929 
3930 	ql_disable_interrupts(qdev);
3931 
3932 	if (qdev->workqueue) {
3933 		cancel_delayed_work(&qdev->reset_work);
3934 		cancel_delayed_work(&qdev->tx_timeout_work);
3935 		destroy_workqueue(qdev->workqueue);
3936 		qdev->workqueue = NULL;
3937 	}
3938 
3939 	iounmap(qdev->mem_map_registers);
3940 	pci_release_regions(pdev);
3941 	free_netdev(ndev);
3942 }
3943 
3944 static struct pci_driver ql3xxx_driver = {
3945 
3946 	.name = DRV_NAME,
3947 	.id_table = ql3xxx_pci_tbl,
3948 	.probe = ql3xxx_probe,
3949 	.remove = ql3xxx_remove,
3950 };
3951 
3952 module_pci_driver(ql3xxx_driver);
3953