1 /*
2  * QLogic QLA3xxx NIC HBA Driver
3  * Copyright (c)  2003-2006 QLogic Corporation
4  *
5  * See LICENSE.qla3xxx for copyright and licensing details.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/ip.h>
26 #include <linux/in.h>
27 #include <linux/if_arp.h>
28 #include <linux/if_ether.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/if_vlan.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/prefetch.h>
38 
39 #include "qla3xxx.h"
40 
41 #define DRV_NAME	"qla3xxx"
42 #define DRV_STRING	"QLogic ISP3XXX Network Driver"
43 #define DRV_VERSION	"v2.03.00-k5"
44 
45 static const char ql3xxx_driver_name[] = DRV_NAME;
46 static const char ql3xxx_driver_version[] = DRV_VERSION;
47 
48 #define TIMED_OUT_MSG							\
49 "Timed out waiting for management port to get free before issuing command\n"
50 
51 MODULE_AUTHOR("QLogic Corporation");
52 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_VERSION);
55 
56 static const u32 default_msg
57     = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
58     | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
59 
60 static int debug = -1;		/* defaults above */
61 module_param(debug, int, 0);
62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63 
64 static int msi;
65 module_param(msi, int, 0);
66 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
67 
68 static const struct pci_device_id ql3xxx_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
70 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
71 	/* required last entry */
72 	{0,}
73 };
74 
75 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
76 
77 /*
78  *  These are the known PHY's which are used
79  */
80 enum PHY_DEVICE_TYPE {
81    PHY_TYPE_UNKNOWN   = 0,
82    PHY_VITESSE_VSC8211,
83    PHY_AGERE_ET1011C,
84    MAX_PHY_DEV_TYPES
85 };
86 
87 struct PHY_DEVICE_INFO {
88 	const enum PHY_DEVICE_TYPE	phyDevice;
89 	const u32		phyIdOUI;
90 	const u16		phyIdModel;
91 	const char		*name;
92 };
93 
94 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
95 	{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
96 	{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
97 	{PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 };
99 
100 
101 /*
102  * Caller must take hw_lock.
103  */
104 static int ql_sem_spinlock(struct ql3_adapter *qdev,
105 			    u32 sem_mask, u32 sem_bits)
106 {
107 	struct ql3xxx_port_registers __iomem *port_regs =
108 		qdev->mem_map_registers;
109 	u32 value;
110 	unsigned int seconds = 3;
111 
112 	do {
113 		writel((sem_mask | sem_bits),
114 		       &port_regs->CommonRegs.semaphoreReg);
115 		value = readl(&port_regs->CommonRegs.semaphoreReg);
116 		if ((value & (sem_mask >> 16)) == sem_bits)
117 			return 0;
118 		ssleep(1);
119 	} while (--seconds);
120 	return -1;
121 }
122 
123 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
124 {
125 	struct ql3xxx_port_registers __iomem *port_regs =
126 		qdev->mem_map_registers;
127 	writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
128 	readl(&port_regs->CommonRegs.semaphoreReg);
129 }
130 
131 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
132 {
133 	struct ql3xxx_port_registers __iomem *port_regs =
134 		qdev->mem_map_registers;
135 	u32 value;
136 
137 	writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
138 	value = readl(&port_regs->CommonRegs.semaphoreReg);
139 	return ((value & (sem_mask >> 16)) == sem_bits);
140 }
141 
142 /*
143  * Caller holds hw_lock.
144  */
145 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
146 {
147 	int i = 0;
148 
149 	while (i < 10) {
150 		if (i)
151 			ssleep(1);
152 
153 		if (ql_sem_lock(qdev,
154 				QL_DRVR_SEM_MASK,
155 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
156 				 * 2) << 1)) {
157 			netdev_printk(KERN_DEBUG, qdev->ndev,
158 				      "driver lock acquired\n");
159 			return 1;
160 		}
161 	}
162 
163 	netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
164 	return 0;
165 }
166 
167 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
168 {
169 	struct ql3xxx_port_registers __iomem *port_regs =
170 		qdev->mem_map_registers;
171 
172 	writel(((ISP_CONTROL_NP_MASK << 16) | page),
173 			&port_regs->CommonRegs.ispControlStatus);
174 	readl(&port_regs->CommonRegs.ispControlStatus);
175 	qdev->current_page = page;
176 }
177 
178 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
179 {
180 	u32 value;
181 	unsigned long hw_flags;
182 
183 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
184 	value = readl(reg);
185 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
186 
187 	return value;
188 }
189 
190 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
191 {
192 	return readl(reg);
193 }
194 
195 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
196 {
197 	u32 value;
198 	unsigned long hw_flags;
199 
200 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
201 
202 	if (qdev->current_page != 0)
203 		ql_set_register_page(qdev, 0);
204 	value = readl(reg);
205 
206 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
207 	return value;
208 }
209 
210 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
211 {
212 	if (qdev->current_page != 0)
213 		ql_set_register_page(qdev, 0);
214 	return readl(reg);
215 }
216 
217 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
218 				u32 __iomem *reg, u32 value)
219 {
220 	unsigned long hw_flags;
221 
222 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
223 	writel(value, reg);
224 	readl(reg);
225 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
226 }
227 
228 static void ql_write_common_reg(struct ql3_adapter *qdev,
229 				u32 __iomem *reg, u32 value)
230 {
231 	writel(value, reg);
232 	readl(reg);
233 }
234 
235 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
236 				u32 __iomem *reg, u32 value)
237 {
238 	writel(value, reg);
239 	readl(reg);
240 	udelay(1);
241 }
242 
243 static void ql_write_page0_reg(struct ql3_adapter *qdev,
244 			       u32 __iomem *reg, u32 value)
245 {
246 	if (qdev->current_page != 0)
247 		ql_set_register_page(qdev, 0);
248 	writel(value, reg);
249 	readl(reg);
250 }
251 
252 /*
253  * Caller holds hw_lock. Only called during init.
254  */
255 static void ql_write_page1_reg(struct ql3_adapter *qdev,
256 			       u32 __iomem *reg, u32 value)
257 {
258 	if (qdev->current_page != 1)
259 		ql_set_register_page(qdev, 1);
260 	writel(value, reg);
261 	readl(reg);
262 }
263 
264 /*
265  * Caller holds hw_lock. Only called during init.
266  */
267 static void ql_write_page2_reg(struct ql3_adapter *qdev,
268 			       u32 __iomem *reg, u32 value)
269 {
270 	if (qdev->current_page != 2)
271 		ql_set_register_page(qdev, 2);
272 	writel(value, reg);
273 	readl(reg);
274 }
275 
276 static void ql_disable_interrupts(struct ql3_adapter *qdev)
277 {
278 	struct ql3xxx_port_registers __iomem *port_regs =
279 		qdev->mem_map_registers;
280 
281 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
282 			    (ISP_IMR_ENABLE_INT << 16));
283 
284 }
285 
286 static void ql_enable_interrupts(struct ql3_adapter *qdev)
287 {
288 	struct ql3xxx_port_registers __iomem *port_regs =
289 		qdev->mem_map_registers;
290 
291 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
292 			    ((0xff << 16) | ISP_IMR_ENABLE_INT));
293 
294 }
295 
296 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
297 					    struct ql_rcv_buf_cb *lrg_buf_cb)
298 {
299 	dma_addr_t map;
300 	int err;
301 	lrg_buf_cb->next = NULL;
302 
303 	if (qdev->lrg_buf_free_tail == NULL) {	/* The list is empty  */
304 		qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
305 	} else {
306 		qdev->lrg_buf_free_tail->next = lrg_buf_cb;
307 		qdev->lrg_buf_free_tail = lrg_buf_cb;
308 	}
309 
310 	if (!lrg_buf_cb->skb) {
311 		lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
312 						   qdev->lrg_buffer_len);
313 		if (unlikely(!lrg_buf_cb->skb)) {
314 			qdev->lrg_buf_skb_check++;
315 		} else {
316 			/*
317 			 * We save some space to copy the ethhdr from first
318 			 * buffer
319 			 */
320 			skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
321 			map = pci_map_single(qdev->pdev,
322 					     lrg_buf_cb->skb->data,
323 					     qdev->lrg_buffer_len -
324 					     QL_HEADER_SPACE,
325 					     PCI_DMA_FROMDEVICE);
326 			err = pci_dma_mapping_error(qdev->pdev, map);
327 			if (err) {
328 				netdev_err(qdev->ndev,
329 					   "PCI mapping failed with error: %d\n",
330 					   err);
331 				dev_kfree_skb(lrg_buf_cb->skb);
332 				lrg_buf_cb->skb = NULL;
333 
334 				qdev->lrg_buf_skb_check++;
335 				return;
336 			}
337 
338 			lrg_buf_cb->buf_phy_addr_low =
339 			    cpu_to_le32(LS_64BITS(map));
340 			lrg_buf_cb->buf_phy_addr_high =
341 			    cpu_to_le32(MS_64BITS(map));
342 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
343 			dma_unmap_len_set(lrg_buf_cb, maplen,
344 					  qdev->lrg_buffer_len -
345 					  QL_HEADER_SPACE);
346 		}
347 	}
348 
349 	qdev->lrg_buf_free_count++;
350 }
351 
352 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
353 							   *qdev)
354 {
355 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
356 
357 	if (lrg_buf_cb != NULL) {
358 		qdev->lrg_buf_free_head = lrg_buf_cb->next;
359 		if (qdev->lrg_buf_free_head == NULL)
360 			qdev->lrg_buf_free_tail = NULL;
361 		qdev->lrg_buf_free_count--;
362 	}
363 
364 	return lrg_buf_cb;
365 }
366 
367 static u32 addrBits = EEPROM_NO_ADDR_BITS;
368 static u32 dataBits = EEPROM_NO_DATA_BITS;
369 
370 static void fm93c56a_deselect(struct ql3_adapter *qdev);
371 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
372 			    unsigned short *value);
373 
374 /*
375  * Caller holds hw_lock.
376  */
377 static void fm93c56a_select(struct ql3_adapter *qdev)
378 {
379 	struct ql3xxx_port_registers __iomem *port_regs =
380 			qdev->mem_map_registers;
381 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
382 
383 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
384 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
385 	ql_write_nvram_reg(qdev, spir,
386 			   ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
387 }
388 
389 /*
390  * Caller holds hw_lock.
391  */
392 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
393 {
394 	int i;
395 	u32 mask;
396 	u32 dataBit;
397 	u32 previousBit;
398 	struct ql3xxx_port_registers __iomem *port_regs =
399 			qdev->mem_map_registers;
400 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
401 
402 	/* Clock in a zero, then do the start bit */
403 	ql_write_nvram_reg(qdev, spir,
404 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
405 			    AUBURN_EEPROM_DO_1));
406 	ql_write_nvram_reg(qdev, spir,
407 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
408 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
409 	ql_write_nvram_reg(qdev, spir,
410 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
411 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
412 
413 	mask = 1 << (FM93C56A_CMD_BITS - 1);
414 	/* Force the previous data bit to be different */
415 	previousBit = 0xffff;
416 	for (i = 0; i < FM93C56A_CMD_BITS; i++) {
417 		dataBit = (cmd & mask)
418 			? AUBURN_EEPROM_DO_1
419 			: AUBURN_EEPROM_DO_0;
420 		if (previousBit != dataBit) {
421 			/* If the bit changed, change the DO state to match */
422 			ql_write_nvram_reg(qdev, spir,
423 					   (ISP_NVRAM_MASK |
424 					    qdev->eeprom_cmd_data | dataBit));
425 			previousBit = dataBit;
426 		}
427 		ql_write_nvram_reg(qdev, spir,
428 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
429 				    dataBit | AUBURN_EEPROM_CLK_RISE));
430 		ql_write_nvram_reg(qdev, spir,
431 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
432 				    dataBit | AUBURN_EEPROM_CLK_FALL));
433 		cmd = cmd << 1;
434 	}
435 
436 	mask = 1 << (addrBits - 1);
437 	/* Force the previous data bit to be different */
438 	previousBit = 0xffff;
439 	for (i = 0; i < addrBits; i++) {
440 		dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
441 			: AUBURN_EEPROM_DO_0;
442 		if (previousBit != dataBit) {
443 			/*
444 			 * If the bit changed, then change the DO state to
445 			 * match
446 			 */
447 			ql_write_nvram_reg(qdev, spir,
448 					   (ISP_NVRAM_MASK |
449 					    qdev->eeprom_cmd_data | dataBit));
450 			previousBit = dataBit;
451 		}
452 		ql_write_nvram_reg(qdev, spir,
453 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
454 				    dataBit | AUBURN_EEPROM_CLK_RISE));
455 		ql_write_nvram_reg(qdev, spir,
456 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
457 				    dataBit | AUBURN_EEPROM_CLK_FALL));
458 		eepromAddr = eepromAddr << 1;
459 	}
460 }
461 
462 /*
463  * Caller holds hw_lock.
464  */
465 static void fm93c56a_deselect(struct ql3_adapter *qdev)
466 {
467 	struct ql3xxx_port_registers __iomem *port_regs =
468 			qdev->mem_map_registers;
469 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
470 
471 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
472 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
473 }
474 
475 /*
476  * Caller holds hw_lock.
477  */
478 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
479 {
480 	int i;
481 	u32 data = 0;
482 	u32 dataBit;
483 	struct ql3xxx_port_registers __iomem *port_regs =
484 			qdev->mem_map_registers;
485 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
486 
487 	/* Read the data bits */
488 	/* The first bit is a dummy.  Clock right over it. */
489 	for (i = 0; i < dataBits; i++) {
490 		ql_write_nvram_reg(qdev, spir,
491 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
492 				   AUBURN_EEPROM_CLK_RISE);
493 		ql_write_nvram_reg(qdev, spir,
494 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
495 				   AUBURN_EEPROM_CLK_FALL);
496 		dataBit = (ql_read_common_reg(qdev, spir) &
497 			   AUBURN_EEPROM_DI_1) ? 1 : 0;
498 		data = (data << 1) | dataBit;
499 	}
500 	*value = (u16)data;
501 }
502 
503 /*
504  * Caller holds hw_lock.
505  */
506 static void eeprom_readword(struct ql3_adapter *qdev,
507 			    u32 eepromAddr, unsigned short *value)
508 {
509 	fm93c56a_select(qdev);
510 	fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
511 	fm93c56a_datain(qdev, value);
512 	fm93c56a_deselect(qdev);
513 }
514 
515 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
516 {
517 	__le16 *p = (__le16 *)ndev->dev_addr;
518 	p[0] = cpu_to_le16(addr[0]);
519 	p[1] = cpu_to_le16(addr[1]);
520 	p[2] = cpu_to_le16(addr[2]);
521 }
522 
523 static int ql_get_nvram_params(struct ql3_adapter *qdev)
524 {
525 	u16 *pEEPROMData;
526 	u16 checksum = 0;
527 	u32 index;
528 	unsigned long hw_flags;
529 
530 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
531 
532 	pEEPROMData = (u16 *)&qdev->nvram_data;
533 	qdev->eeprom_cmd_data = 0;
534 	if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
535 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
536 			 2) << 10)) {
537 		pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
538 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
539 		return -1;
540 	}
541 
542 	for (index = 0; index < EEPROM_SIZE; index++) {
543 		eeprom_readword(qdev, index, pEEPROMData);
544 		checksum += *pEEPROMData;
545 		pEEPROMData++;
546 	}
547 	ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
548 
549 	if (checksum != 0) {
550 		netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
551 			   checksum);
552 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
553 		return -1;
554 	}
555 
556 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
557 	return checksum;
558 }
559 
560 static const u32 PHYAddr[2] = {
561 	PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
562 };
563 
564 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
565 {
566 	struct ql3xxx_port_registers __iomem *port_regs =
567 			qdev->mem_map_registers;
568 	u32 temp;
569 	int count = 1000;
570 
571 	while (count) {
572 		temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
573 		if (!(temp & MAC_MII_STATUS_BSY))
574 			return 0;
575 		udelay(10);
576 		count--;
577 	}
578 	return -1;
579 }
580 
581 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
582 {
583 	struct ql3xxx_port_registers __iomem *port_regs =
584 			qdev->mem_map_registers;
585 	u32 scanControl;
586 
587 	if (qdev->numPorts > 1) {
588 		/* Auto scan will cycle through multiple ports */
589 		scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
590 	} else {
591 		scanControl = MAC_MII_CONTROL_SC;
592 	}
593 
594 	/*
595 	 * Scan register 1 of PHY/PETBI,
596 	 * Set up to scan both devices
597 	 * The autoscan starts from the first register, completes
598 	 * the last one before rolling over to the first
599 	 */
600 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
601 			   PHYAddr[0] | MII_SCAN_REGISTER);
602 
603 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
604 			   (scanControl) |
605 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
606 }
607 
608 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
609 {
610 	u8 ret;
611 	struct ql3xxx_port_registers __iomem *port_regs =
612 					qdev->mem_map_registers;
613 
614 	/* See if scan mode is enabled before we turn it off */
615 	if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
616 	    (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
617 		/* Scan is enabled */
618 		ret = 1;
619 	} else {
620 		/* Scan is disabled */
621 		ret = 0;
622 	}
623 
624 	/*
625 	 * When disabling scan mode you must first change the MII register
626 	 * address
627 	 */
628 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
629 			   PHYAddr[0] | MII_SCAN_REGISTER);
630 
631 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
632 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
633 			     MAC_MII_CONTROL_RC) << 16));
634 
635 	return ret;
636 }
637 
638 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
639 			       u16 regAddr, u16 value, u32 phyAddr)
640 {
641 	struct ql3xxx_port_registers __iomem *port_regs =
642 			qdev->mem_map_registers;
643 	u8 scanWasEnabled;
644 
645 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
646 
647 	if (ql_wait_for_mii_ready(qdev)) {
648 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
649 		return -1;
650 	}
651 
652 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
653 			   phyAddr | regAddr);
654 
655 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
656 
657 	/* Wait for write to complete 9/10/04 SJP */
658 	if (ql_wait_for_mii_ready(qdev)) {
659 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
660 		return -1;
661 	}
662 
663 	if (scanWasEnabled)
664 		ql_mii_enable_scan_mode(qdev);
665 
666 	return 0;
667 }
668 
669 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
670 			      u16 *value, u32 phyAddr)
671 {
672 	struct ql3xxx_port_registers __iomem *port_regs =
673 			qdev->mem_map_registers;
674 	u8 scanWasEnabled;
675 	u32 temp;
676 
677 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
678 
679 	if (ql_wait_for_mii_ready(qdev)) {
680 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
681 		return -1;
682 	}
683 
684 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
685 			   phyAddr | regAddr);
686 
687 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
688 			   (MAC_MII_CONTROL_RC << 16));
689 
690 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
691 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
692 
693 	/* Wait for the read to complete */
694 	if (ql_wait_for_mii_ready(qdev)) {
695 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
696 		return -1;
697 	}
698 
699 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
700 	*value = (u16) temp;
701 
702 	if (scanWasEnabled)
703 		ql_mii_enable_scan_mode(qdev);
704 
705 	return 0;
706 }
707 
708 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
709 {
710 	struct ql3xxx_port_registers __iomem *port_regs =
711 			qdev->mem_map_registers;
712 
713 	ql_mii_disable_scan_mode(qdev);
714 
715 	if (ql_wait_for_mii_ready(qdev)) {
716 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
717 		return -1;
718 	}
719 
720 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
721 			   qdev->PHYAddr | regAddr);
722 
723 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
724 
725 	/* Wait for write to complete. */
726 	if (ql_wait_for_mii_ready(qdev)) {
727 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
728 		return -1;
729 	}
730 
731 	ql_mii_enable_scan_mode(qdev);
732 
733 	return 0;
734 }
735 
736 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
737 {
738 	u32 temp;
739 	struct ql3xxx_port_registers __iomem *port_regs =
740 			qdev->mem_map_registers;
741 
742 	ql_mii_disable_scan_mode(qdev);
743 
744 	if (ql_wait_for_mii_ready(qdev)) {
745 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
746 		return -1;
747 	}
748 
749 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
750 			   qdev->PHYAddr | regAddr);
751 
752 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
753 			   (MAC_MII_CONTROL_RC << 16));
754 
755 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
756 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
757 
758 	/* Wait for the read to complete */
759 	if (ql_wait_for_mii_ready(qdev)) {
760 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
761 		return -1;
762 	}
763 
764 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
765 	*value = (u16) temp;
766 
767 	ql_mii_enable_scan_mode(qdev);
768 
769 	return 0;
770 }
771 
772 static void ql_petbi_reset(struct ql3_adapter *qdev)
773 {
774 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
775 }
776 
777 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
778 {
779 	u16 reg;
780 
781 	/* Enable Auto-negotiation sense */
782 	ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
783 	reg |= PETBI_TBI_AUTO_SENSE;
784 	ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
785 
786 	ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
787 			 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
788 
789 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
790 			 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
791 			 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
792 
793 }
794 
795 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
796 {
797 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
798 			    PHYAddr[qdev->mac_index]);
799 }
800 
801 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
802 {
803 	u16 reg;
804 
805 	/* Enable Auto-negotiation sense */
806 	ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
807 			   PHYAddr[qdev->mac_index]);
808 	reg |= PETBI_TBI_AUTO_SENSE;
809 	ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
810 			    PHYAddr[qdev->mac_index]);
811 
812 	ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
813 			    PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
814 			    PHYAddr[qdev->mac_index]);
815 
816 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
817 			    PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
818 			    PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
819 			    PHYAddr[qdev->mac_index]);
820 }
821 
822 static void ql_petbi_init(struct ql3_adapter *qdev)
823 {
824 	ql_petbi_reset(qdev);
825 	ql_petbi_start_neg(qdev);
826 }
827 
828 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
829 {
830 	ql_petbi_reset_ex(qdev);
831 	ql_petbi_start_neg_ex(qdev);
832 }
833 
834 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
835 {
836 	u16 reg;
837 
838 	if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
839 		return 0;
840 
841 	return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
842 }
843 
844 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
845 {
846 	netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
847 	/* power down device bit 11 = 1 */
848 	ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
849 	/* enable diagnostic mode bit 2 = 1 */
850 	ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
851 	/* 1000MB amplitude adjust (see Agere errata) */
852 	ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
853 	/* 1000MB amplitude adjust (see Agere errata) */
854 	ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
855 	/* 100MB amplitude adjust (see Agere errata) */
856 	ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
857 	/* 100MB amplitude adjust (see Agere errata) */
858 	ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
859 	/* 10MB amplitude adjust (see Agere errata) */
860 	ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
861 	/* 10MB amplitude adjust (see Agere errata) */
862 	ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
863 	/* point to hidden reg 0x2806 */
864 	ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
865 	/* Write new PHYAD w/bit 5 set */
866 	ql_mii_write_reg_ex(qdev, 0x11,
867 			    0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
868 	/*
869 	 * Disable diagnostic mode bit 2 = 0
870 	 * Power up device bit 11 = 0
871 	 * Link up (on) and activity (blink)
872 	 */
873 	ql_mii_write_reg(qdev, 0x12, 0x840a);
874 	ql_mii_write_reg(qdev, 0x00, 0x1140);
875 	ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
876 }
877 
878 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
879 				       u16 phyIdReg0, u16 phyIdReg1)
880 {
881 	enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
882 	u32   oui;
883 	u16   model;
884 	int i;
885 
886 	if (phyIdReg0 == 0xffff)
887 		return result;
888 
889 	if (phyIdReg1 == 0xffff)
890 		return result;
891 
892 	/* oui is split between two registers */
893 	oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
894 
895 	model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
896 
897 	/* Scan table for this PHY */
898 	for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
899 		if ((oui == PHY_DEVICES[i].phyIdOUI) &&
900 		    (model == PHY_DEVICES[i].phyIdModel)) {
901 			netdev_info(qdev->ndev, "Phy: %s\n",
902 				    PHY_DEVICES[i].name);
903 			result = PHY_DEVICES[i].phyDevice;
904 			break;
905 		}
906 	}
907 
908 	return result;
909 }
910 
911 static int ql_phy_get_speed(struct ql3_adapter *qdev)
912 {
913 	u16 reg;
914 
915 	switch (qdev->phyType) {
916 	case PHY_AGERE_ET1011C: {
917 		if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
918 			return 0;
919 
920 		reg = (reg >> 8) & 3;
921 		break;
922 	}
923 	default:
924 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
925 			return 0;
926 
927 		reg = (((reg & 0x18) >> 3) & 3);
928 	}
929 
930 	switch (reg) {
931 	case 2:
932 		return SPEED_1000;
933 	case 1:
934 		return SPEED_100;
935 	case 0:
936 		return SPEED_10;
937 	default:
938 		return -1;
939 	}
940 }
941 
942 static int ql_is_full_dup(struct ql3_adapter *qdev)
943 {
944 	u16 reg;
945 
946 	switch (qdev->phyType) {
947 	case PHY_AGERE_ET1011C: {
948 		if (ql_mii_read_reg(qdev, 0x1A, &reg))
949 			return 0;
950 
951 		return ((reg & 0x0080) && (reg & 0x1000)) != 0;
952 	}
953 	case PHY_VITESSE_VSC8211:
954 	default: {
955 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
956 			return 0;
957 		return (reg & PHY_AUX_DUPLEX_STAT) != 0;
958 	}
959 	}
960 }
961 
962 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
963 {
964 	u16 reg;
965 
966 	if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
967 		return 0;
968 
969 	return (reg & PHY_NEG_PAUSE) != 0;
970 }
971 
972 static int PHY_Setup(struct ql3_adapter *qdev)
973 {
974 	u16   reg1;
975 	u16   reg2;
976 	bool  agereAddrChangeNeeded = false;
977 	u32 miiAddr = 0;
978 	int err;
979 
980 	/*  Determine the PHY we are using by reading the ID's */
981 	err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
982 	if (err != 0) {
983 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
984 		return err;
985 	}
986 
987 	err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
988 	if (err != 0) {
989 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
990 		return err;
991 	}
992 
993 	/*  Check if we have a Agere PHY */
994 	if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
995 
996 		/* Determine which MII address we should be using
997 		   determined by the index of the card */
998 		if (qdev->mac_index == 0)
999 			miiAddr = MII_AGERE_ADDR_1;
1000 		else
1001 			miiAddr = MII_AGERE_ADDR_2;
1002 
1003 		err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1004 		if (err != 0) {
1005 			netdev_err(qdev->ndev,
1006 				   "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1007 			return err;
1008 		}
1009 
1010 		err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1011 		if (err != 0) {
1012 			netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1013 			return err;
1014 		}
1015 
1016 		/*  We need to remember to initialize the Agere PHY */
1017 		agereAddrChangeNeeded = true;
1018 	}
1019 
1020 	/*  Determine the particular PHY we have on board to apply
1021 	    PHY specific initializations */
1022 	qdev->phyType = getPhyType(qdev, reg1, reg2);
1023 
1024 	if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1025 		/* need this here so address gets changed */
1026 		phyAgereSpecificInit(qdev, miiAddr);
1027 	} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1028 		netdev_err(qdev->ndev, "PHY is unknown\n");
1029 		return -EIO;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 /*
1036  * Caller holds hw_lock.
1037  */
1038 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1039 {
1040 	struct ql3xxx_port_registers __iomem *port_regs =
1041 			qdev->mem_map_registers;
1042 	u32 value;
1043 
1044 	if (enable)
1045 		value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1046 	else
1047 		value = (MAC_CONFIG_REG_PE << 16);
1048 
1049 	if (qdev->mac_index)
1050 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1051 	else
1052 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1053 }
1054 
1055 /*
1056  * Caller holds hw_lock.
1057  */
1058 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1059 {
1060 	struct ql3xxx_port_registers __iomem *port_regs =
1061 			qdev->mem_map_registers;
1062 	u32 value;
1063 
1064 	if (enable)
1065 		value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1066 	else
1067 		value = (MAC_CONFIG_REG_SR << 16);
1068 
1069 	if (qdev->mac_index)
1070 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1071 	else
1072 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1073 }
1074 
1075 /*
1076  * Caller holds hw_lock.
1077  */
1078 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1079 {
1080 	struct ql3xxx_port_registers __iomem *port_regs =
1081 			qdev->mem_map_registers;
1082 	u32 value;
1083 
1084 	if (enable)
1085 		value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1086 	else
1087 		value = (MAC_CONFIG_REG_GM << 16);
1088 
1089 	if (qdev->mac_index)
1090 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1091 	else
1092 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1093 }
1094 
1095 /*
1096  * Caller holds hw_lock.
1097  */
1098 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1099 {
1100 	struct ql3xxx_port_registers __iomem *port_regs =
1101 			qdev->mem_map_registers;
1102 	u32 value;
1103 
1104 	if (enable)
1105 		value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1106 	else
1107 		value = (MAC_CONFIG_REG_FD << 16);
1108 
1109 	if (qdev->mac_index)
1110 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1111 	else
1112 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1113 }
1114 
1115 /*
1116  * Caller holds hw_lock.
1117  */
1118 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1119 {
1120 	struct ql3xxx_port_registers __iomem *port_regs =
1121 			qdev->mem_map_registers;
1122 	u32 value;
1123 
1124 	if (enable)
1125 		value =
1126 		    ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1127 		     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1128 	else
1129 		value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1130 
1131 	if (qdev->mac_index)
1132 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1133 	else
1134 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1135 }
1136 
1137 /*
1138  * Caller holds hw_lock.
1139  */
1140 static int ql_is_fiber(struct ql3_adapter *qdev)
1141 {
1142 	struct ql3xxx_port_registers __iomem *port_regs =
1143 			qdev->mem_map_registers;
1144 	u32 bitToCheck = 0;
1145 	u32 temp;
1146 
1147 	switch (qdev->mac_index) {
1148 	case 0:
1149 		bitToCheck = PORT_STATUS_SM0;
1150 		break;
1151 	case 1:
1152 		bitToCheck = PORT_STATUS_SM1;
1153 		break;
1154 	}
1155 
1156 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1157 	return (temp & bitToCheck) != 0;
1158 }
1159 
1160 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1161 {
1162 	u16 reg;
1163 	ql_mii_read_reg(qdev, 0x00, &reg);
1164 	return (reg & 0x1000) != 0;
1165 }
1166 
1167 /*
1168  * Caller holds hw_lock.
1169  */
1170 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1171 {
1172 	struct ql3xxx_port_registers __iomem *port_regs =
1173 			qdev->mem_map_registers;
1174 	u32 bitToCheck = 0;
1175 	u32 temp;
1176 
1177 	switch (qdev->mac_index) {
1178 	case 0:
1179 		bitToCheck = PORT_STATUS_AC0;
1180 		break;
1181 	case 1:
1182 		bitToCheck = PORT_STATUS_AC1;
1183 		break;
1184 	}
1185 
1186 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1187 	if (temp & bitToCheck) {
1188 		netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1189 		return 1;
1190 	}
1191 	netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1192 	return 0;
1193 }
1194 
1195 /*
1196  *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
1197  */
1198 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1199 {
1200 	if (ql_is_fiber(qdev))
1201 		return ql_is_petbi_neg_pause(qdev);
1202 	else
1203 		return ql_is_phy_neg_pause(qdev);
1204 }
1205 
1206 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1207 {
1208 	struct ql3xxx_port_registers __iomem *port_regs =
1209 			qdev->mem_map_registers;
1210 	u32 bitToCheck = 0;
1211 	u32 temp;
1212 
1213 	switch (qdev->mac_index) {
1214 	case 0:
1215 		bitToCheck = PORT_STATUS_AE0;
1216 		break;
1217 	case 1:
1218 		bitToCheck = PORT_STATUS_AE1;
1219 		break;
1220 	}
1221 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1222 	return (temp & bitToCheck) != 0;
1223 }
1224 
1225 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1226 {
1227 	if (ql_is_fiber(qdev))
1228 		return SPEED_1000;
1229 	else
1230 		return ql_phy_get_speed(qdev);
1231 }
1232 
1233 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1234 {
1235 	if (ql_is_fiber(qdev))
1236 		return 1;
1237 	else
1238 		return ql_is_full_dup(qdev);
1239 }
1240 
1241 /*
1242  * Caller holds hw_lock.
1243  */
1244 static int ql_link_down_detect(struct ql3_adapter *qdev)
1245 {
1246 	struct ql3xxx_port_registers __iomem *port_regs =
1247 			qdev->mem_map_registers;
1248 	u32 bitToCheck = 0;
1249 	u32 temp;
1250 
1251 	switch (qdev->mac_index) {
1252 	case 0:
1253 		bitToCheck = ISP_CONTROL_LINK_DN_0;
1254 		break;
1255 	case 1:
1256 		bitToCheck = ISP_CONTROL_LINK_DN_1;
1257 		break;
1258 	}
1259 
1260 	temp =
1261 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1262 	return (temp & bitToCheck) != 0;
1263 }
1264 
1265 /*
1266  * Caller holds hw_lock.
1267  */
1268 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1269 {
1270 	struct ql3xxx_port_registers __iomem *port_regs =
1271 			qdev->mem_map_registers;
1272 
1273 	switch (qdev->mac_index) {
1274 	case 0:
1275 		ql_write_common_reg(qdev,
1276 				    &port_regs->CommonRegs.ispControlStatus,
1277 				    (ISP_CONTROL_LINK_DN_0) |
1278 				    (ISP_CONTROL_LINK_DN_0 << 16));
1279 		break;
1280 
1281 	case 1:
1282 		ql_write_common_reg(qdev,
1283 				    &port_regs->CommonRegs.ispControlStatus,
1284 				    (ISP_CONTROL_LINK_DN_1) |
1285 				    (ISP_CONTROL_LINK_DN_1 << 16));
1286 		break;
1287 
1288 	default:
1289 		return 1;
1290 	}
1291 
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Caller holds hw_lock.
1297  */
1298 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1299 {
1300 	struct ql3xxx_port_registers __iomem *port_regs =
1301 			qdev->mem_map_registers;
1302 	u32 bitToCheck = 0;
1303 	u32 temp;
1304 
1305 	switch (qdev->mac_index) {
1306 	case 0:
1307 		bitToCheck = PORT_STATUS_F1_ENABLED;
1308 		break;
1309 	case 1:
1310 		bitToCheck = PORT_STATUS_F3_ENABLED;
1311 		break;
1312 	default:
1313 		break;
1314 	}
1315 
1316 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1317 	if (temp & bitToCheck) {
1318 		netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1319 			     "not link master\n");
1320 		return 0;
1321 	}
1322 
1323 	netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1324 	return 1;
1325 }
1326 
1327 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1328 {
1329 	ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1330 			    PHYAddr[qdev->mac_index]);
1331 }
1332 
1333 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1334 {
1335 	u16 reg;
1336 	u16 portConfiguration;
1337 
1338 	if (qdev->phyType == PHY_AGERE_ET1011C)
1339 		ql_mii_write_reg(qdev, 0x13, 0x0000);
1340 					/* turn off external loopback */
1341 
1342 	if (qdev->mac_index == 0)
1343 		portConfiguration =
1344 			qdev->nvram_data.macCfg_port0.portConfiguration;
1345 	else
1346 		portConfiguration =
1347 			qdev->nvram_data.macCfg_port1.portConfiguration;
1348 
1349 	/*  Some HBA's in the field are set to 0 and they need to
1350 	    be reinterpreted with a default value */
1351 	if (portConfiguration == 0)
1352 		portConfiguration = PORT_CONFIG_DEFAULT;
1353 
1354 	/* Set the 1000 advertisements */
1355 	ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1356 			   PHYAddr[qdev->mac_index]);
1357 	reg &= ~PHY_GIG_ALL_PARAMS;
1358 
1359 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1360 		if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1361 			reg |= PHY_GIG_ADV_1000F;
1362 		else
1363 			reg |= PHY_GIG_ADV_1000H;
1364 	}
1365 
1366 	ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1367 			    PHYAddr[qdev->mac_index]);
1368 
1369 	/* Set the 10/100 & pause negotiation advertisements */
1370 	ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1371 			   PHYAddr[qdev->mac_index]);
1372 	reg &= ~PHY_NEG_ALL_PARAMS;
1373 
1374 	if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1375 		reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1376 
1377 	if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1378 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1379 			reg |= PHY_NEG_ADV_100F;
1380 
1381 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1382 			reg |= PHY_NEG_ADV_10F;
1383 	}
1384 
1385 	if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1386 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1387 			reg |= PHY_NEG_ADV_100H;
1388 
1389 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1390 			reg |= PHY_NEG_ADV_10H;
1391 	}
1392 
1393 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1394 		reg |= 1;
1395 
1396 	ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1397 			    PHYAddr[qdev->mac_index]);
1398 
1399 	ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1400 
1401 	ql_mii_write_reg_ex(qdev, CONTROL_REG,
1402 			    reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1403 			    PHYAddr[qdev->mac_index]);
1404 }
1405 
1406 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1407 {
1408 	ql_phy_reset_ex(qdev);
1409 	PHY_Setup(qdev);
1410 	ql_phy_start_neg_ex(qdev);
1411 }
1412 
1413 /*
1414  * Caller holds hw_lock.
1415  */
1416 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1417 {
1418 	struct ql3xxx_port_registers __iomem *port_regs =
1419 			qdev->mem_map_registers;
1420 	u32 bitToCheck = 0;
1421 	u32 temp, linkState;
1422 
1423 	switch (qdev->mac_index) {
1424 	case 0:
1425 		bitToCheck = PORT_STATUS_UP0;
1426 		break;
1427 	case 1:
1428 		bitToCheck = PORT_STATUS_UP1;
1429 		break;
1430 	}
1431 
1432 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1433 	if (temp & bitToCheck)
1434 		linkState = LS_UP;
1435 	else
1436 		linkState = LS_DOWN;
1437 
1438 	return linkState;
1439 }
1440 
1441 static int ql_port_start(struct ql3_adapter *qdev)
1442 {
1443 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1444 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1445 			 2) << 7)) {
1446 		netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1447 		return -1;
1448 	}
1449 
1450 	if (ql_is_fiber(qdev)) {
1451 		ql_petbi_init(qdev);
1452 	} else {
1453 		/* Copper port */
1454 		ql_phy_init_ex(qdev);
1455 	}
1456 
1457 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1458 	return 0;
1459 }
1460 
1461 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1462 {
1463 
1464 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1465 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1466 			 2) << 7))
1467 		return -1;
1468 
1469 	if (!ql_auto_neg_error(qdev)) {
1470 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1471 			/* configure the MAC */
1472 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1473 				     "Configuring link\n");
1474 			ql_mac_cfg_soft_reset(qdev, 1);
1475 			ql_mac_cfg_gig(qdev,
1476 				       (ql_get_link_speed
1477 					(qdev) ==
1478 					SPEED_1000));
1479 			ql_mac_cfg_full_dup(qdev,
1480 					    ql_is_link_full_dup
1481 					    (qdev));
1482 			ql_mac_cfg_pause(qdev,
1483 					 ql_is_neg_pause
1484 					 (qdev));
1485 			ql_mac_cfg_soft_reset(qdev, 0);
1486 
1487 			/* enable the MAC */
1488 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1489 				     "Enabling mac\n");
1490 			ql_mac_enable(qdev, 1);
1491 		}
1492 
1493 		qdev->port_link_state = LS_UP;
1494 		netif_start_queue(qdev->ndev);
1495 		netif_carrier_on(qdev->ndev);
1496 		netif_info(qdev, link, qdev->ndev,
1497 			   "Link is up at %d Mbps, %s duplex\n",
1498 			   ql_get_link_speed(qdev),
1499 			   ql_is_link_full_dup(qdev) ? "full" : "half");
1500 
1501 	} else {	/* Remote error detected */
1502 
1503 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1504 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1505 				     "Remote error detected. Calling ql_port_start()\n");
1506 			/*
1507 			 * ql_port_start() is shared code and needs
1508 			 * to lock the PHY on it's own.
1509 			 */
1510 			ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1511 			if (ql_port_start(qdev))	/* Restart port */
1512 				return -1;
1513 			return 0;
1514 		}
1515 	}
1516 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1517 	return 0;
1518 }
1519 
1520 static void ql_link_state_machine_work(struct work_struct *work)
1521 {
1522 	struct ql3_adapter *qdev =
1523 		container_of(work, struct ql3_adapter, link_state_work.work);
1524 
1525 	u32 curr_link_state;
1526 	unsigned long hw_flags;
1527 
1528 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1529 
1530 	curr_link_state = ql_get_link_state(qdev);
1531 
1532 	if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1533 		netif_info(qdev, link, qdev->ndev,
1534 			   "Reset in progress, skip processing link state\n");
1535 
1536 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1537 
1538 		/* Restart timer on 2 second interval. */
1539 		mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1540 
1541 		return;
1542 	}
1543 
1544 	switch (qdev->port_link_state) {
1545 	default:
1546 		if (test_bit(QL_LINK_MASTER, &qdev->flags))
1547 			ql_port_start(qdev);
1548 		qdev->port_link_state = LS_DOWN;
1549 		/* Fall Through */
1550 
1551 	case LS_DOWN:
1552 		if (curr_link_state == LS_UP) {
1553 			netif_info(qdev, link, qdev->ndev, "Link is up\n");
1554 			if (ql_is_auto_neg_complete(qdev))
1555 				ql_finish_auto_neg(qdev);
1556 
1557 			if (qdev->port_link_state == LS_UP)
1558 				ql_link_down_detect_clear(qdev);
1559 
1560 			qdev->port_link_state = LS_UP;
1561 		}
1562 		break;
1563 
1564 	case LS_UP:
1565 		/*
1566 		 * See if the link is currently down or went down and came
1567 		 * back up
1568 		 */
1569 		if (curr_link_state == LS_DOWN) {
1570 			netif_info(qdev, link, qdev->ndev, "Link is down\n");
1571 			qdev->port_link_state = LS_DOWN;
1572 		}
1573 		if (ql_link_down_detect(qdev))
1574 			qdev->port_link_state = LS_DOWN;
1575 		break;
1576 	}
1577 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1578 
1579 	/* Restart timer on 2 second interval. */
1580 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1581 }
1582 
1583 /*
1584  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1585  */
1586 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1587 {
1588 	if (ql_this_adapter_controls_port(qdev))
1589 		set_bit(QL_LINK_MASTER, &qdev->flags);
1590 	else
1591 		clear_bit(QL_LINK_MASTER, &qdev->flags);
1592 }
1593 
1594 /*
1595  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1596  */
1597 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1598 {
1599 	ql_mii_enable_scan_mode(qdev);
1600 
1601 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1602 		if (ql_this_adapter_controls_port(qdev))
1603 			ql_petbi_init_ex(qdev);
1604 	} else {
1605 		if (ql_this_adapter_controls_port(qdev))
1606 			ql_phy_init_ex(qdev);
1607 	}
1608 }
1609 
1610 /*
1611  * MII_Setup needs to be called before taking the PHY out of reset
1612  * so that the management interface clock speed can be set properly.
1613  * It would be better if we had a way to disable MDC until after the
1614  * PHY is out of reset, but we don't have that capability.
1615  */
1616 static int ql_mii_setup(struct ql3_adapter *qdev)
1617 {
1618 	u32 reg;
1619 	struct ql3xxx_port_registers __iomem *port_regs =
1620 			qdev->mem_map_registers;
1621 
1622 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1623 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1624 			 2) << 7))
1625 		return -1;
1626 
1627 	if (qdev->device_id == QL3032_DEVICE_ID)
1628 		ql_write_page0_reg(qdev,
1629 			&port_regs->macMIIMgmtControlReg, 0x0f00000);
1630 
1631 	/* Divide 125MHz clock by 28 to meet PHY timing requirements */
1632 	reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1633 
1634 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1635 			   reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1636 
1637 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1638 	return 0;
1639 }
1640 
1641 #define SUPPORTED_OPTICAL_MODES	(SUPPORTED_1000baseT_Full |	\
1642 				 SUPPORTED_FIBRE |		\
1643 				 SUPPORTED_Autoneg)
1644 #define SUPPORTED_TP_MODES	(SUPPORTED_10baseT_Half |	\
1645 				 SUPPORTED_10baseT_Full |	\
1646 				 SUPPORTED_100baseT_Half |	\
1647 				 SUPPORTED_100baseT_Full |	\
1648 				 SUPPORTED_1000baseT_Half |	\
1649 				 SUPPORTED_1000baseT_Full |	\
1650 				 SUPPORTED_Autoneg |		\
1651 				 SUPPORTED_TP)			\
1652 
1653 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1654 {
1655 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1656 		return SUPPORTED_OPTICAL_MODES;
1657 
1658 	return SUPPORTED_TP_MODES;
1659 }
1660 
1661 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1662 {
1663 	int status;
1664 	unsigned long hw_flags;
1665 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1666 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1667 			    (QL_RESOURCE_BITS_BASE_CODE |
1668 			     (qdev->mac_index) * 2) << 7)) {
1669 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1670 		return 0;
1671 	}
1672 	status = ql_is_auto_cfg(qdev);
1673 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1674 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1675 	return status;
1676 }
1677 
1678 static u32 ql_get_speed(struct ql3_adapter *qdev)
1679 {
1680 	u32 status;
1681 	unsigned long hw_flags;
1682 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1683 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1684 			    (QL_RESOURCE_BITS_BASE_CODE |
1685 			     (qdev->mac_index) * 2) << 7)) {
1686 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1687 		return 0;
1688 	}
1689 	status = ql_get_link_speed(qdev);
1690 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1691 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1692 	return status;
1693 }
1694 
1695 static int ql_get_full_dup(struct ql3_adapter *qdev)
1696 {
1697 	int status;
1698 	unsigned long hw_flags;
1699 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1700 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1701 			    (QL_RESOURCE_BITS_BASE_CODE |
1702 			     (qdev->mac_index) * 2) << 7)) {
1703 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1704 		return 0;
1705 	}
1706 	status = ql_is_link_full_dup(qdev);
1707 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1708 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1709 	return status;
1710 }
1711 
1712 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1713 {
1714 	struct ql3_adapter *qdev = netdev_priv(ndev);
1715 
1716 	ecmd->transceiver = XCVR_INTERNAL;
1717 	ecmd->supported = ql_supported_modes(qdev);
1718 
1719 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1720 		ecmd->port = PORT_FIBRE;
1721 	} else {
1722 		ecmd->port = PORT_TP;
1723 		ecmd->phy_address = qdev->PHYAddr;
1724 	}
1725 	ecmd->advertising = ql_supported_modes(qdev);
1726 	ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1727 	ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
1728 	ecmd->duplex = ql_get_full_dup(qdev);
1729 	return 0;
1730 }
1731 
1732 static void ql_get_drvinfo(struct net_device *ndev,
1733 			   struct ethtool_drvinfo *drvinfo)
1734 {
1735 	struct ql3_adapter *qdev = netdev_priv(ndev);
1736 	strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1737 	strlcpy(drvinfo->version, ql3xxx_driver_version,
1738 		sizeof(drvinfo->version));
1739 	strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1740 		sizeof(drvinfo->bus_info));
1741 	drvinfo->regdump_len = 0;
1742 	drvinfo->eedump_len = 0;
1743 }
1744 
1745 static u32 ql_get_msglevel(struct net_device *ndev)
1746 {
1747 	struct ql3_adapter *qdev = netdev_priv(ndev);
1748 	return qdev->msg_enable;
1749 }
1750 
1751 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1752 {
1753 	struct ql3_adapter *qdev = netdev_priv(ndev);
1754 	qdev->msg_enable = value;
1755 }
1756 
1757 static void ql_get_pauseparam(struct net_device *ndev,
1758 			      struct ethtool_pauseparam *pause)
1759 {
1760 	struct ql3_adapter *qdev = netdev_priv(ndev);
1761 	struct ql3xxx_port_registers __iomem *port_regs =
1762 		qdev->mem_map_registers;
1763 
1764 	u32 reg;
1765 	if (qdev->mac_index == 0)
1766 		reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1767 	else
1768 		reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1769 
1770 	pause->autoneg  = ql_get_auto_cfg_status(qdev);
1771 	pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1772 	pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1773 }
1774 
1775 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1776 	.get_settings = ql_get_settings,
1777 	.get_drvinfo = ql_get_drvinfo,
1778 	.get_link = ethtool_op_get_link,
1779 	.get_msglevel = ql_get_msglevel,
1780 	.set_msglevel = ql_set_msglevel,
1781 	.get_pauseparam = ql_get_pauseparam,
1782 };
1783 
1784 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1785 {
1786 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1787 	dma_addr_t map;
1788 	int err;
1789 
1790 	while (lrg_buf_cb) {
1791 		if (!lrg_buf_cb->skb) {
1792 			lrg_buf_cb->skb =
1793 				netdev_alloc_skb(qdev->ndev,
1794 						 qdev->lrg_buffer_len);
1795 			if (unlikely(!lrg_buf_cb->skb)) {
1796 				netdev_printk(KERN_DEBUG, qdev->ndev,
1797 					      "Failed netdev_alloc_skb()\n");
1798 				break;
1799 			} else {
1800 				/*
1801 				 * We save some space to copy the ethhdr from
1802 				 * first buffer
1803 				 */
1804 				skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1805 				map = pci_map_single(qdev->pdev,
1806 						     lrg_buf_cb->skb->data,
1807 						     qdev->lrg_buffer_len -
1808 						     QL_HEADER_SPACE,
1809 						     PCI_DMA_FROMDEVICE);
1810 
1811 				err = pci_dma_mapping_error(qdev->pdev, map);
1812 				if (err) {
1813 					netdev_err(qdev->ndev,
1814 						   "PCI mapping failed with error: %d\n",
1815 						   err);
1816 					dev_kfree_skb(lrg_buf_cb->skb);
1817 					lrg_buf_cb->skb = NULL;
1818 					break;
1819 				}
1820 
1821 
1822 				lrg_buf_cb->buf_phy_addr_low =
1823 					cpu_to_le32(LS_64BITS(map));
1824 				lrg_buf_cb->buf_phy_addr_high =
1825 					cpu_to_le32(MS_64BITS(map));
1826 				dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1827 				dma_unmap_len_set(lrg_buf_cb, maplen,
1828 						  qdev->lrg_buffer_len -
1829 						  QL_HEADER_SPACE);
1830 				--qdev->lrg_buf_skb_check;
1831 				if (!qdev->lrg_buf_skb_check)
1832 					return 1;
1833 			}
1834 		}
1835 		lrg_buf_cb = lrg_buf_cb->next;
1836 	}
1837 	return 0;
1838 }
1839 
1840 /*
1841  * Caller holds hw_lock.
1842  */
1843 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1844 {
1845 	struct ql3xxx_port_registers __iomem *port_regs =
1846 		qdev->mem_map_registers;
1847 
1848 	if (qdev->small_buf_release_cnt >= 16) {
1849 		while (qdev->small_buf_release_cnt >= 16) {
1850 			qdev->small_buf_q_producer_index++;
1851 
1852 			if (qdev->small_buf_q_producer_index ==
1853 			    NUM_SBUFQ_ENTRIES)
1854 				qdev->small_buf_q_producer_index = 0;
1855 			qdev->small_buf_release_cnt -= 8;
1856 		}
1857 		wmb();
1858 		writel(qdev->small_buf_q_producer_index,
1859 			&port_regs->CommonRegs.rxSmallQProducerIndex);
1860 	}
1861 }
1862 
1863 /*
1864  * Caller holds hw_lock.
1865  */
1866 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1867 {
1868 	struct bufq_addr_element *lrg_buf_q_ele;
1869 	int i;
1870 	struct ql_rcv_buf_cb *lrg_buf_cb;
1871 	struct ql3xxx_port_registers __iomem *port_regs =
1872 		qdev->mem_map_registers;
1873 
1874 	if ((qdev->lrg_buf_free_count >= 8) &&
1875 	    (qdev->lrg_buf_release_cnt >= 16)) {
1876 
1877 		if (qdev->lrg_buf_skb_check)
1878 			if (!ql_populate_free_queue(qdev))
1879 				return;
1880 
1881 		lrg_buf_q_ele = qdev->lrg_buf_next_free;
1882 
1883 		while ((qdev->lrg_buf_release_cnt >= 16) &&
1884 		       (qdev->lrg_buf_free_count >= 8)) {
1885 
1886 			for (i = 0; i < 8; i++) {
1887 				lrg_buf_cb =
1888 				    ql_get_from_lrg_buf_free_list(qdev);
1889 				lrg_buf_q_ele->addr_high =
1890 				    lrg_buf_cb->buf_phy_addr_high;
1891 				lrg_buf_q_ele->addr_low =
1892 				    lrg_buf_cb->buf_phy_addr_low;
1893 				lrg_buf_q_ele++;
1894 
1895 				qdev->lrg_buf_release_cnt--;
1896 			}
1897 
1898 			qdev->lrg_buf_q_producer_index++;
1899 
1900 			if (qdev->lrg_buf_q_producer_index ==
1901 			    qdev->num_lbufq_entries)
1902 				qdev->lrg_buf_q_producer_index = 0;
1903 
1904 			if (qdev->lrg_buf_q_producer_index ==
1905 			    (qdev->num_lbufq_entries - 1)) {
1906 				lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1907 			}
1908 		}
1909 		wmb();
1910 		qdev->lrg_buf_next_free = lrg_buf_q_ele;
1911 		writel(qdev->lrg_buf_q_producer_index,
1912 			&port_regs->CommonRegs.rxLargeQProducerIndex);
1913 	}
1914 }
1915 
1916 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1917 				   struct ob_mac_iocb_rsp *mac_rsp)
1918 {
1919 	struct ql_tx_buf_cb *tx_cb;
1920 	int i;
1921 
1922 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1923 		netdev_warn(qdev->ndev,
1924 			    "Frame too short but it was padded and sent\n");
1925 	}
1926 
1927 	tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1928 
1929 	/*  Check the transmit response flags for any errors */
1930 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1931 		netdev_err(qdev->ndev,
1932 			   "Frame too short to be legal, frame not sent\n");
1933 
1934 		qdev->ndev->stats.tx_errors++;
1935 		goto frame_not_sent;
1936 	}
1937 
1938 	if (tx_cb->seg_count == 0) {
1939 		netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1940 			   mac_rsp->transaction_id);
1941 
1942 		qdev->ndev->stats.tx_errors++;
1943 		goto invalid_seg_count;
1944 	}
1945 
1946 	pci_unmap_single(qdev->pdev,
1947 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1948 			 dma_unmap_len(&tx_cb->map[0], maplen),
1949 			 PCI_DMA_TODEVICE);
1950 	tx_cb->seg_count--;
1951 	if (tx_cb->seg_count) {
1952 		for (i = 1; i < tx_cb->seg_count; i++) {
1953 			pci_unmap_page(qdev->pdev,
1954 				       dma_unmap_addr(&tx_cb->map[i],
1955 						      mapaddr),
1956 				       dma_unmap_len(&tx_cb->map[i], maplen),
1957 				       PCI_DMA_TODEVICE);
1958 		}
1959 	}
1960 	qdev->ndev->stats.tx_packets++;
1961 	qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1962 
1963 frame_not_sent:
1964 	dev_kfree_skb_irq(tx_cb->skb);
1965 	tx_cb->skb = NULL;
1966 
1967 invalid_seg_count:
1968 	atomic_inc(&qdev->tx_count);
1969 }
1970 
1971 static void ql_get_sbuf(struct ql3_adapter *qdev)
1972 {
1973 	if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1974 		qdev->small_buf_index = 0;
1975 	qdev->small_buf_release_cnt++;
1976 }
1977 
1978 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1979 {
1980 	struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1981 	lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1982 	qdev->lrg_buf_release_cnt++;
1983 	if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1984 		qdev->lrg_buf_index = 0;
1985 	return lrg_buf_cb;
1986 }
1987 
1988 /*
1989  * The difference between 3022 and 3032 for inbound completions:
1990  * 3022 uses two buffers per completion.  The first buffer contains
1991  * (some) header info, the second the remainder of the headers plus
1992  * the data.  For this chip we reserve some space at the top of the
1993  * receive buffer so that the header info in buffer one can be
1994  * prepended to the buffer two.  Buffer two is the sent up while
1995  * buffer one is returned to the hardware to be reused.
1996  * 3032 receives all of it's data and headers in one buffer for a
1997  * simpler process.  3032 also supports checksum verification as
1998  * can be seen in ql_process_macip_rx_intr().
1999  */
2000 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2001 				   struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2002 {
2003 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2004 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2005 	struct sk_buff *skb;
2006 	u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2007 
2008 	/*
2009 	 * Get the inbound address list (small buffer).
2010 	 */
2011 	ql_get_sbuf(qdev);
2012 
2013 	if (qdev->device_id == QL3022_DEVICE_ID)
2014 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2015 
2016 	/* start of second buffer */
2017 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2018 	skb = lrg_buf_cb2->skb;
2019 
2020 	qdev->ndev->stats.rx_packets++;
2021 	qdev->ndev->stats.rx_bytes += length;
2022 
2023 	skb_put(skb, length);
2024 	pci_unmap_single(qdev->pdev,
2025 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2026 			 dma_unmap_len(lrg_buf_cb2, maplen),
2027 			 PCI_DMA_FROMDEVICE);
2028 	prefetch(skb->data);
2029 	skb_checksum_none_assert(skb);
2030 	skb->protocol = eth_type_trans(skb, qdev->ndev);
2031 
2032 	netif_receive_skb(skb);
2033 	lrg_buf_cb2->skb = NULL;
2034 
2035 	if (qdev->device_id == QL3022_DEVICE_ID)
2036 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2037 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2038 }
2039 
2040 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2041 				     struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2042 {
2043 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2044 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2045 	struct sk_buff *skb1 = NULL, *skb2;
2046 	struct net_device *ndev = qdev->ndev;
2047 	u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2048 	u16 size = 0;
2049 
2050 	/*
2051 	 * Get the inbound address list (small buffer).
2052 	 */
2053 
2054 	ql_get_sbuf(qdev);
2055 
2056 	if (qdev->device_id == QL3022_DEVICE_ID) {
2057 		/* start of first buffer on 3022 */
2058 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2059 		skb1 = lrg_buf_cb1->skb;
2060 		size = ETH_HLEN;
2061 		if (*((u16 *) skb1->data) != 0xFFFF)
2062 			size += VLAN_ETH_HLEN - ETH_HLEN;
2063 	}
2064 
2065 	/* start of second buffer */
2066 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2067 	skb2 = lrg_buf_cb2->skb;
2068 
2069 	skb_put(skb2, length);	/* Just the second buffer length here. */
2070 	pci_unmap_single(qdev->pdev,
2071 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2072 			 dma_unmap_len(lrg_buf_cb2, maplen),
2073 			 PCI_DMA_FROMDEVICE);
2074 	prefetch(skb2->data);
2075 
2076 	skb_checksum_none_assert(skb2);
2077 	if (qdev->device_id == QL3022_DEVICE_ID) {
2078 		/*
2079 		 * Copy the ethhdr from first buffer to second. This
2080 		 * is necessary for 3022 IP completions.
2081 		 */
2082 		skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2083 						 skb_push(skb2, size), size);
2084 	} else {
2085 		u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2086 		if (checksum &
2087 			(IB_IP_IOCB_RSP_3032_ICE |
2088 			 IB_IP_IOCB_RSP_3032_CE)) {
2089 			netdev_err(ndev,
2090 				   "%s: Bad checksum for this %s packet, checksum = %x\n",
2091 				   __func__,
2092 				   ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2093 				    "TCP" : "UDP"), checksum);
2094 		} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2095 				(checksum & IB_IP_IOCB_RSP_3032_UDP &&
2096 				!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2097 			skb2->ip_summed = CHECKSUM_UNNECESSARY;
2098 		}
2099 	}
2100 	skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2101 
2102 	netif_receive_skb(skb2);
2103 	ndev->stats.rx_packets++;
2104 	ndev->stats.rx_bytes += length;
2105 	lrg_buf_cb2->skb = NULL;
2106 
2107 	if (qdev->device_id == QL3022_DEVICE_ID)
2108 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2109 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2110 }
2111 
2112 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2113 			  int *tx_cleaned, int *rx_cleaned, int work_to_do)
2114 {
2115 	struct net_rsp_iocb *net_rsp;
2116 	struct net_device *ndev = qdev->ndev;
2117 	int work_done = 0;
2118 
2119 	/* While there are entries in the completion queue. */
2120 	while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2121 		qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2122 
2123 		net_rsp = qdev->rsp_current;
2124 		rmb();
2125 		/*
2126 		 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2127 		 * if the inbound completion is for a VLAN.
2128 		 */
2129 		if (qdev->device_id == QL3032_DEVICE_ID)
2130 			net_rsp->opcode &= 0x7f;
2131 		switch (net_rsp->opcode) {
2132 
2133 		case OPCODE_OB_MAC_IOCB_FN0:
2134 		case OPCODE_OB_MAC_IOCB_FN2:
2135 			ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2136 					       net_rsp);
2137 			(*tx_cleaned)++;
2138 			break;
2139 
2140 		case OPCODE_IB_MAC_IOCB:
2141 		case OPCODE_IB_3032_MAC_IOCB:
2142 			ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2143 					       net_rsp);
2144 			(*rx_cleaned)++;
2145 			break;
2146 
2147 		case OPCODE_IB_IP_IOCB:
2148 		case OPCODE_IB_3032_IP_IOCB:
2149 			ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2150 						 net_rsp);
2151 			(*rx_cleaned)++;
2152 			break;
2153 		default: {
2154 			u32 *tmp = (u32 *)net_rsp;
2155 			netdev_err(ndev,
2156 				   "Hit default case, not handled!\n"
2157 				   "	dropping the packet, opcode = %x\n"
2158 				   "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2159 				   net_rsp->opcode,
2160 				   (unsigned long int)tmp[0],
2161 				   (unsigned long int)tmp[1],
2162 				   (unsigned long int)tmp[2],
2163 				   (unsigned long int)tmp[3]);
2164 		}
2165 		}
2166 
2167 		qdev->rsp_consumer_index++;
2168 
2169 		if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2170 			qdev->rsp_consumer_index = 0;
2171 			qdev->rsp_current = qdev->rsp_q_virt_addr;
2172 		} else {
2173 			qdev->rsp_current++;
2174 		}
2175 
2176 		work_done = *tx_cleaned + *rx_cleaned;
2177 	}
2178 
2179 	return work_done;
2180 }
2181 
2182 static int ql_poll(struct napi_struct *napi, int budget)
2183 {
2184 	struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2185 	int rx_cleaned = 0, tx_cleaned = 0;
2186 	unsigned long hw_flags;
2187 	struct ql3xxx_port_registers __iomem *port_regs =
2188 		qdev->mem_map_registers;
2189 
2190 	ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2191 
2192 	if (tx_cleaned + rx_cleaned != budget) {
2193 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2194 		__napi_complete(napi);
2195 		ql_update_small_bufq_prod_index(qdev);
2196 		ql_update_lrg_bufq_prod_index(qdev);
2197 		writel(qdev->rsp_consumer_index,
2198 			    &port_regs->CommonRegs.rspQConsumerIndex);
2199 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2200 
2201 		ql_enable_interrupts(qdev);
2202 	}
2203 	return tx_cleaned + rx_cleaned;
2204 }
2205 
2206 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2207 {
2208 
2209 	struct net_device *ndev = dev_id;
2210 	struct ql3_adapter *qdev = netdev_priv(ndev);
2211 	struct ql3xxx_port_registers __iomem *port_regs =
2212 		qdev->mem_map_registers;
2213 	u32 value;
2214 	int handled = 1;
2215 	u32 var;
2216 
2217 	value = ql_read_common_reg_l(qdev,
2218 				     &port_regs->CommonRegs.ispControlStatus);
2219 
2220 	if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2221 		spin_lock(&qdev->adapter_lock);
2222 		netif_stop_queue(qdev->ndev);
2223 		netif_carrier_off(qdev->ndev);
2224 		ql_disable_interrupts(qdev);
2225 		qdev->port_link_state = LS_DOWN;
2226 		set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2227 
2228 		if (value & ISP_CONTROL_FE) {
2229 			/*
2230 			 * Chip Fatal Error.
2231 			 */
2232 			var =
2233 			    ql_read_page0_reg_l(qdev,
2234 					      &port_regs->PortFatalErrStatus);
2235 			netdev_warn(ndev,
2236 				    "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2237 				    var);
2238 			set_bit(QL_RESET_START, &qdev->flags) ;
2239 		} else {
2240 			/*
2241 			 * Soft Reset Requested.
2242 			 */
2243 			set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2244 			netdev_err(ndev,
2245 				   "Another function issued a reset to the chip. ISR value = %x\n",
2246 				   value);
2247 		}
2248 		queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2249 		spin_unlock(&qdev->adapter_lock);
2250 	} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2251 		ql_disable_interrupts(qdev);
2252 		if (likely(napi_schedule_prep(&qdev->napi)))
2253 			__napi_schedule(&qdev->napi);
2254 	} else
2255 		return IRQ_NONE;
2256 
2257 	return IRQ_RETVAL(handled);
2258 }
2259 
2260 /*
2261  * Get the total number of segments needed for the given number of fragments.
2262  * This is necessary because outbound address lists (OAL) will be used when
2263  * more than two frags are given.  Each address list has 5 addr/len pairs.
2264  * The 5th pair in each OAL is used to  point to the next OAL if more frags
2265  * are coming.  That is why the frags:segment count ratio is not linear.
2266  */
2267 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2268 {
2269 	if (qdev->device_id == QL3022_DEVICE_ID)
2270 		return 1;
2271 
2272 	if (frags <= 2)
2273 		return frags + 1;
2274 	else if (frags <= 6)
2275 		return frags + 2;
2276 	else if (frags <= 10)
2277 		return frags + 3;
2278 	else if (frags <= 14)
2279 		return frags + 4;
2280 	else if (frags <= 18)
2281 		return frags + 5;
2282 	return -1;
2283 }
2284 
2285 static void ql_hw_csum_setup(const struct sk_buff *skb,
2286 			     struct ob_mac_iocb_req *mac_iocb_ptr)
2287 {
2288 	const struct iphdr *ip = ip_hdr(skb);
2289 
2290 	mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2291 	mac_iocb_ptr->ip_hdr_len = ip->ihl;
2292 
2293 	if (ip->protocol == IPPROTO_TCP) {
2294 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2295 			OB_3032MAC_IOCB_REQ_IC;
2296 	} else {
2297 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2298 			OB_3032MAC_IOCB_REQ_IC;
2299 	}
2300 
2301 }
2302 
2303 /*
2304  * Map the buffers for this transmit.
2305  * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2306  */
2307 static int ql_send_map(struct ql3_adapter *qdev,
2308 				struct ob_mac_iocb_req *mac_iocb_ptr,
2309 				struct ql_tx_buf_cb *tx_cb,
2310 				struct sk_buff *skb)
2311 {
2312 	struct oal *oal;
2313 	struct oal_entry *oal_entry;
2314 	int len = skb_headlen(skb);
2315 	dma_addr_t map;
2316 	int err;
2317 	int completed_segs, i;
2318 	int seg_cnt, seg = 0;
2319 	int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2320 
2321 	seg_cnt = tx_cb->seg_count;
2322 	/*
2323 	 * Map the skb buffer first.
2324 	 */
2325 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2326 
2327 	err = pci_dma_mapping_error(qdev->pdev, map);
2328 	if (err) {
2329 		netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2330 			   err);
2331 
2332 		return NETDEV_TX_BUSY;
2333 	}
2334 
2335 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2336 	oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2337 	oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2338 	oal_entry->len = cpu_to_le32(len);
2339 	dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2340 	dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2341 	seg++;
2342 
2343 	if (seg_cnt == 1) {
2344 		/* Terminate the last segment. */
2345 		oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2346 		return NETDEV_TX_OK;
2347 	}
2348 	oal = tx_cb->oal;
2349 	for (completed_segs = 0;
2350 	     completed_segs < frag_cnt;
2351 	     completed_segs++, seg++) {
2352 		skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2353 		oal_entry++;
2354 		/*
2355 		 * Check for continuation requirements.
2356 		 * It's strange but necessary.
2357 		 * Continuation entry points to outbound address list.
2358 		 */
2359 		if ((seg == 2 && seg_cnt > 3) ||
2360 		    (seg == 7 && seg_cnt > 8) ||
2361 		    (seg == 12 && seg_cnt > 13) ||
2362 		    (seg == 17 && seg_cnt > 18)) {
2363 			map = pci_map_single(qdev->pdev, oal,
2364 					     sizeof(struct oal),
2365 					     PCI_DMA_TODEVICE);
2366 
2367 			err = pci_dma_mapping_error(qdev->pdev, map);
2368 			if (err) {
2369 				netdev_err(qdev->ndev,
2370 					   "PCI mapping outbound address list with error: %d\n",
2371 					   err);
2372 				goto map_error;
2373 			}
2374 
2375 			oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2376 			oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2377 			oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2378 						     OAL_CONT_ENTRY);
2379 			dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2380 			dma_unmap_len_set(&tx_cb->map[seg], maplen,
2381 					  sizeof(struct oal));
2382 			oal_entry = (struct oal_entry *)oal;
2383 			oal++;
2384 			seg++;
2385 		}
2386 
2387 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2388 				       DMA_TO_DEVICE);
2389 
2390 		err = dma_mapping_error(&qdev->pdev->dev, map);
2391 		if (err) {
2392 			netdev_err(qdev->ndev,
2393 				   "PCI mapping frags failed with error: %d\n",
2394 				   err);
2395 			goto map_error;
2396 		}
2397 
2398 		oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2399 		oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2400 		oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2401 		dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2402 		dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2403 		}
2404 	/* Terminate the last segment. */
2405 	oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2406 	return NETDEV_TX_OK;
2407 
2408 map_error:
2409 	/* A PCI mapping failed and now we will need to back out
2410 	 * We need to traverse through the oal's and associated pages which
2411 	 * have been mapped and now we must unmap them to clean up properly
2412 	 */
2413 
2414 	seg = 1;
2415 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2416 	oal = tx_cb->oal;
2417 	for (i = 0; i < completed_segs; i++, seg++) {
2418 		oal_entry++;
2419 
2420 		/*
2421 		 * Check for continuation requirements.
2422 		 * It's strange but necessary.
2423 		 */
2424 
2425 		if ((seg == 2 && seg_cnt > 3) ||
2426 		    (seg == 7 && seg_cnt > 8) ||
2427 		    (seg == 12 && seg_cnt > 13) ||
2428 		    (seg == 17 && seg_cnt > 18)) {
2429 			pci_unmap_single(qdev->pdev,
2430 				dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2431 				dma_unmap_len(&tx_cb->map[seg], maplen),
2432 				 PCI_DMA_TODEVICE);
2433 			oal++;
2434 			seg++;
2435 		}
2436 
2437 		pci_unmap_page(qdev->pdev,
2438 			       dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2439 			       dma_unmap_len(&tx_cb->map[seg], maplen),
2440 			       PCI_DMA_TODEVICE);
2441 	}
2442 
2443 	pci_unmap_single(qdev->pdev,
2444 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2445 			 dma_unmap_addr(&tx_cb->map[0], maplen),
2446 			 PCI_DMA_TODEVICE);
2447 
2448 	return NETDEV_TX_BUSY;
2449 
2450 }
2451 
2452 /*
2453  * The difference between 3022 and 3032 sends:
2454  * 3022 only supports a simple single segment transmission.
2455  * 3032 supports checksumming and scatter/gather lists (fragments).
2456  * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2457  * in the IOCB plus a chain of outbound address lists (OAL) that
2458  * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
2459  * will be used to point to an OAL when more ALP entries are required.
2460  * The IOCB is always the top of the chain followed by one or more
2461  * OALs (when necessary).
2462  */
2463 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2464 			       struct net_device *ndev)
2465 {
2466 	struct ql3_adapter *qdev = netdev_priv(ndev);
2467 	struct ql3xxx_port_registers __iomem *port_regs =
2468 			qdev->mem_map_registers;
2469 	struct ql_tx_buf_cb *tx_cb;
2470 	u32 tot_len = skb->len;
2471 	struct ob_mac_iocb_req *mac_iocb_ptr;
2472 
2473 	if (unlikely(atomic_read(&qdev->tx_count) < 2))
2474 		return NETDEV_TX_BUSY;
2475 
2476 	tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2477 	tx_cb->seg_count = ql_get_seg_count(qdev,
2478 					     skb_shinfo(skb)->nr_frags);
2479 	if (tx_cb->seg_count == -1) {
2480 		netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2481 		return NETDEV_TX_OK;
2482 	}
2483 
2484 	mac_iocb_ptr = tx_cb->queue_entry;
2485 	memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2486 	mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2487 	mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2488 	mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2489 	mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2490 	mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2491 	tx_cb->skb = skb;
2492 	if (qdev->device_id == QL3032_DEVICE_ID &&
2493 	    skb->ip_summed == CHECKSUM_PARTIAL)
2494 		ql_hw_csum_setup(skb, mac_iocb_ptr);
2495 
2496 	if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2497 		netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2498 		return NETDEV_TX_BUSY;
2499 	}
2500 
2501 	wmb();
2502 	qdev->req_producer_index++;
2503 	if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2504 		qdev->req_producer_index = 0;
2505 	wmb();
2506 	ql_write_common_reg_l(qdev,
2507 			    &port_regs->CommonRegs.reqQProducerIndex,
2508 			    qdev->req_producer_index);
2509 
2510 	netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2511 		     "tx queued, slot %d, len %d\n",
2512 		     qdev->req_producer_index, skb->len);
2513 
2514 	atomic_dec(&qdev->tx_count);
2515 	return NETDEV_TX_OK;
2516 }
2517 
2518 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2519 {
2520 	qdev->req_q_size =
2521 	    (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2522 
2523 	qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2524 
2525 	/* The barrier is required to ensure request and response queue
2526 	 * addr writes to the registers.
2527 	 */
2528 	wmb();
2529 
2530 	qdev->req_q_virt_addr =
2531 	    pci_alloc_consistent(qdev->pdev,
2532 				 (size_t) qdev->req_q_size,
2533 				 &qdev->req_q_phy_addr);
2534 
2535 	if ((qdev->req_q_virt_addr == NULL) ||
2536 	    LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2537 		netdev_err(qdev->ndev, "reqQ failed\n");
2538 		return -ENOMEM;
2539 	}
2540 
2541 	qdev->rsp_q_virt_addr =
2542 	    pci_alloc_consistent(qdev->pdev,
2543 				 (size_t) qdev->rsp_q_size,
2544 				 &qdev->rsp_q_phy_addr);
2545 
2546 	if ((qdev->rsp_q_virt_addr == NULL) ||
2547 	    LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2548 		netdev_err(qdev->ndev, "rspQ allocation failed\n");
2549 		pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2550 				    qdev->req_q_virt_addr,
2551 				    qdev->req_q_phy_addr);
2552 		return -ENOMEM;
2553 	}
2554 
2555 	set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2556 
2557 	return 0;
2558 }
2559 
2560 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2561 {
2562 	if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2563 		netdev_info(qdev->ndev, "Already done\n");
2564 		return;
2565 	}
2566 
2567 	pci_free_consistent(qdev->pdev,
2568 			    qdev->req_q_size,
2569 			    qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2570 
2571 	qdev->req_q_virt_addr = NULL;
2572 
2573 	pci_free_consistent(qdev->pdev,
2574 			    qdev->rsp_q_size,
2575 			    qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2576 
2577 	qdev->rsp_q_virt_addr = NULL;
2578 
2579 	clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2580 }
2581 
2582 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2583 {
2584 	/* Create Large Buffer Queue */
2585 	qdev->lrg_buf_q_size =
2586 		qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2587 	if (qdev->lrg_buf_q_size < PAGE_SIZE)
2588 		qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2589 	else
2590 		qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2591 
2592 	qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2593 				      sizeof(struct ql_rcv_buf_cb),
2594 				      GFP_KERNEL);
2595 	if (qdev->lrg_buf == NULL)
2596 		return -ENOMEM;
2597 
2598 	qdev->lrg_buf_q_alloc_virt_addr =
2599 		pci_alloc_consistent(qdev->pdev,
2600 				     qdev->lrg_buf_q_alloc_size,
2601 				     &qdev->lrg_buf_q_alloc_phy_addr);
2602 
2603 	if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2604 		netdev_err(qdev->ndev, "lBufQ failed\n");
2605 		return -ENOMEM;
2606 	}
2607 	qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2608 	qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2609 
2610 	/* Create Small Buffer Queue */
2611 	qdev->small_buf_q_size =
2612 		NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2613 	if (qdev->small_buf_q_size < PAGE_SIZE)
2614 		qdev->small_buf_q_alloc_size = PAGE_SIZE;
2615 	else
2616 		qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2617 
2618 	qdev->small_buf_q_alloc_virt_addr =
2619 		pci_alloc_consistent(qdev->pdev,
2620 				     qdev->small_buf_q_alloc_size,
2621 				     &qdev->small_buf_q_alloc_phy_addr);
2622 
2623 	if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2624 		netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2625 		pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2626 				    qdev->lrg_buf_q_alloc_virt_addr,
2627 				    qdev->lrg_buf_q_alloc_phy_addr);
2628 		return -ENOMEM;
2629 	}
2630 
2631 	qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2632 	qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2633 	set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2634 	return 0;
2635 }
2636 
2637 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2638 {
2639 	if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2640 		netdev_info(qdev->ndev, "Already done\n");
2641 		return;
2642 	}
2643 	kfree(qdev->lrg_buf);
2644 	pci_free_consistent(qdev->pdev,
2645 			    qdev->lrg_buf_q_alloc_size,
2646 			    qdev->lrg_buf_q_alloc_virt_addr,
2647 			    qdev->lrg_buf_q_alloc_phy_addr);
2648 
2649 	qdev->lrg_buf_q_virt_addr = NULL;
2650 
2651 	pci_free_consistent(qdev->pdev,
2652 			    qdev->small_buf_q_alloc_size,
2653 			    qdev->small_buf_q_alloc_virt_addr,
2654 			    qdev->small_buf_q_alloc_phy_addr);
2655 
2656 	qdev->small_buf_q_virt_addr = NULL;
2657 
2658 	clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2659 }
2660 
2661 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2662 {
2663 	int i;
2664 	struct bufq_addr_element *small_buf_q_entry;
2665 
2666 	/* Currently we allocate on one of memory and use it for smallbuffers */
2667 	qdev->small_buf_total_size =
2668 		(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2669 		 QL_SMALL_BUFFER_SIZE);
2670 
2671 	qdev->small_buf_virt_addr =
2672 		pci_alloc_consistent(qdev->pdev,
2673 				     qdev->small_buf_total_size,
2674 				     &qdev->small_buf_phy_addr);
2675 
2676 	if (qdev->small_buf_virt_addr == NULL) {
2677 		netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2678 		return -ENOMEM;
2679 	}
2680 
2681 	qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2682 	qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2683 
2684 	small_buf_q_entry = qdev->small_buf_q_virt_addr;
2685 
2686 	/* Initialize the small buffer queue. */
2687 	for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2688 		small_buf_q_entry->addr_high =
2689 		    cpu_to_le32(qdev->small_buf_phy_addr_high);
2690 		small_buf_q_entry->addr_low =
2691 		    cpu_to_le32(qdev->small_buf_phy_addr_low +
2692 				(i * QL_SMALL_BUFFER_SIZE));
2693 		small_buf_q_entry++;
2694 	}
2695 	qdev->small_buf_index = 0;
2696 	set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2697 	return 0;
2698 }
2699 
2700 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2701 {
2702 	if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2703 		netdev_info(qdev->ndev, "Already done\n");
2704 		return;
2705 	}
2706 	if (qdev->small_buf_virt_addr != NULL) {
2707 		pci_free_consistent(qdev->pdev,
2708 				    qdev->small_buf_total_size,
2709 				    qdev->small_buf_virt_addr,
2710 				    qdev->small_buf_phy_addr);
2711 
2712 		qdev->small_buf_virt_addr = NULL;
2713 	}
2714 }
2715 
2716 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2717 {
2718 	int i = 0;
2719 	struct ql_rcv_buf_cb *lrg_buf_cb;
2720 
2721 	for (i = 0; i < qdev->num_large_buffers; i++) {
2722 		lrg_buf_cb = &qdev->lrg_buf[i];
2723 		if (lrg_buf_cb->skb) {
2724 			dev_kfree_skb(lrg_buf_cb->skb);
2725 			pci_unmap_single(qdev->pdev,
2726 					 dma_unmap_addr(lrg_buf_cb, mapaddr),
2727 					 dma_unmap_len(lrg_buf_cb, maplen),
2728 					 PCI_DMA_FROMDEVICE);
2729 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2730 		} else {
2731 			break;
2732 		}
2733 	}
2734 }
2735 
2736 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2737 {
2738 	int i;
2739 	struct ql_rcv_buf_cb *lrg_buf_cb;
2740 	struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2741 
2742 	for (i = 0; i < qdev->num_large_buffers; i++) {
2743 		lrg_buf_cb = &qdev->lrg_buf[i];
2744 		buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2745 		buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2746 		buf_addr_ele++;
2747 	}
2748 	qdev->lrg_buf_index = 0;
2749 	qdev->lrg_buf_skb_check = 0;
2750 }
2751 
2752 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2753 {
2754 	int i;
2755 	struct ql_rcv_buf_cb *lrg_buf_cb;
2756 	struct sk_buff *skb;
2757 	dma_addr_t map;
2758 	int err;
2759 
2760 	for (i = 0; i < qdev->num_large_buffers; i++) {
2761 		skb = netdev_alloc_skb(qdev->ndev,
2762 				       qdev->lrg_buffer_len);
2763 		if (unlikely(!skb)) {
2764 			/* Better luck next round */
2765 			netdev_err(qdev->ndev,
2766 				   "large buff alloc failed for %d bytes at index %d\n",
2767 				   qdev->lrg_buffer_len * 2, i);
2768 			ql_free_large_buffers(qdev);
2769 			return -ENOMEM;
2770 		} else {
2771 
2772 			lrg_buf_cb = &qdev->lrg_buf[i];
2773 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2774 			lrg_buf_cb->index = i;
2775 			lrg_buf_cb->skb = skb;
2776 			/*
2777 			 * We save some space to copy the ethhdr from first
2778 			 * buffer
2779 			 */
2780 			skb_reserve(skb, QL_HEADER_SPACE);
2781 			map = pci_map_single(qdev->pdev,
2782 					     skb->data,
2783 					     qdev->lrg_buffer_len -
2784 					     QL_HEADER_SPACE,
2785 					     PCI_DMA_FROMDEVICE);
2786 
2787 			err = pci_dma_mapping_error(qdev->pdev, map);
2788 			if (err) {
2789 				netdev_err(qdev->ndev,
2790 					   "PCI mapping failed with error: %d\n",
2791 					   err);
2792 				ql_free_large_buffers(qdev);
2793 				return -ENOMEM;
2794 			}
2795 
2796 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2797 			dma_unmap_len_set(lrg_buf_cb, maplen,
2798 					  qdev->lrg_buffer_len -
2799 					  QL_HEADER_SPACE);
2800 			lrg_buf_cb->buf_phy_addr_low =
2801 			    cpu_to_le32(LS_64BITS(map));
2802 			lrg_buf_cb->buf_phy_addr_high =
2803 			    cpu_to_le32(MS_64BITS(map));
2804 		}
2805 	}
2806 	return 0;
2807 }
2808 
2809 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2810 {
2811 	struct ql_tx_buf_cb *tx_cb;
2812 	int i;
2813 
2814 	tx_cb = &qdev->tx_buf[0];
2815 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2816 		kfree(tx_cb->oal);
2817 		tx_cb->oal = NULL;
2818 		tx_cb++;
2819 	}
2820 }
2821 
2822 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2823 {
2824 	struct ql_tx_buf_cb *tx_cb;
2825 	int i;
2826 	struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2827 
2828 	/* Create free list of transmit buffers */
2829 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2830 
2831 		tx_cb = &qdev->tx_buf[i];
2832 		tx_cb->skb = NULL;
2833 		tx_cb->queue_entry = req_q_curr;
2834 		req_q_curr++;
2835 		tx_cb->oal = kmalloc(512, GFP_KERNEL);
2836 		if (tx_cb->oal == NULL)
2837 			return -ENOMEM;
2838 	}
2839 	return 0;
2840 }
2841 
2842 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2843 {
2844 	if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2845 		qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2846 		qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2847 	} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2848 		/*
2849 		 * Bigger buffers, so less of them.
2850 		 */
2851 		qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2852 		qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2853 	} else {
2854 		netdev_err(qdev->ndev, "Invalid mtu size: %d.  Only %d and %d are accepted.\n",
2855 			   qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2856 		return -ENOMEM;
2857 	}
2858 	qdev->num_large_buffers =
2859 		qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2860 	qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2861 	qdev->max_frame_size =
2862 		(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2863 
2864 	/*
2865 	 * First allocate a page of shared memory and use it for shadow
2866 	 * locations of Network Request Queue Consumer Address Register and
2867 	 * Network Completion Queue Producer Index Register
2868 	 */
2869 	qdev->shadow_reg_virt_addr =
2870 		pci_alloc_consistent(qdev->pdev,
2871 				     PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2872 
2873 	if (qdev->shadow_reg_virt_addr != NULL) {
2874 		qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2875 		qdev->req_consumer_index_phy_addr_high =
2876 			MS_64BITS(qdev->shadow_reg_phy_addr);
2877 		qdev->req_consumer_index_phy_addr_low =
2878 			LS_64BITS(qdev->shadow_reg_phy_addr);
2879 
2880 		qdev->prsp_producer_index =
2881 			(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2882 		qdev->rsp_producer_index_phy_addr_high =
2883 			qdev->req_consumer_index_phy_addr_high;
2884 		qdev->rsp_producer_index_phy_addr_low =
2885 			qdev->req_consumer_index_phy_addr_low + 8;
2886 	} else {
2887 		netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2888 		return -ENOMEM;
2889 	}
2890 
2891 	if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2892 		netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2893 		goto err_req_rsp;
2894 	}
2895 
2896 	if (ql_alloc_buffer_queues(qdev) != 0) {
2897 		netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2898 		goto err_buffer_queues;
2899 	}
2900 
2901 	if (ql_alloc_small_buffers(qdev) != 0) {
2902 		netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2903 		goto err_small_buffers;
2904 	}
2905 
2906 	if (ql_alloc_large_buffers(qdev) != 0) {
2907 		netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2908 		goto err_small_buffers;
2909 	}
2910 
2911 	/* Initialize the large buffer queue. */
2912 	ql_init_large_buffers(qdev);
2913 	if (ql_create_send_free_list(qdev))
2914 		goto err_free_list;
2915 
2916 	qdev->rsp_current = qdev->rsp_q_virt_addr;
2917 
2918 	return 0;
2919 err_free_list:
2920 	ql_free_send_free_list(qdev);
2921 err_small_buffers:
2922 	ql_free_buffer_queues(qdev);
2923 err_buffer_queues:
2924 	ql_free_net_req_rsp_queues(qdev);
2925 err_req_rsp:
2926 	pci_free_consistent(qdev->pdev,
2927 			    PAGE_SIZE,
2928 			    qdev->shadow_reg_virt_addr,
2929 			    qdev->shadow_reg_phy_addr);
2930 
2931 	return -ENOMEM;
2932 }
2933 
2934 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2935 {
2936 	ql_free_send_free_list(qdev);
2937 	ql_free_large_buffers(qdev);
2938 	ql_free_small_buffers(qdev);
2939 	ql_free_buffer_queues(qdev);
2940 	ql_free_net_req_rsp_queues(qdev);
2941 	if (qdev->shadow_reg_virt_addr != NULL) {
2942 		pci_free_consistent(qdev->pdev,
2943 				    PAGE_SIZE,
2944 				    qdev->shadow_reg_virt_addr,
2945 				    qdev->shadow_reg_phy_addr);
2946 		qdev->shadow_reg_virt_addr = NULL;
2947 	}
2948 }
2949 
2950 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2951 {
2952 	struct ql3xxx_local_ram_registers __iomem *local_ram =
2953 	    (void __iomem *)qdev->mem_map_registers;
2954 
2955 	if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2956 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2957 			 2) << 4))
2958 		return -1;
2959 
2960 	ql_write_page2_reg(qdev,
2961 			   &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2962 
2963 	ql_write_page2_reg(qdev,
2964 			   &local_ram->maxBufletCount,
2965 			   qdev->nvram_data.bufletCount);
2966 
2967 	ql_write_page2_reg(qdev,
2968 			   &local_ram->freeBufletThresholdLow,
2969 			   (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2970 			   (qdev->nvram_data.tcpWindowThreshold0));
2971 
2972 	ql_write_page2_reg(qdev,
2973 			   &local_ram->freeBufletThresholdHigh,
2974 			   qdev->nvram_data.tcpWindowThreshold50);
2975 
2976 	ql_write_page2_reg(qdev,
2977 			   &local_ram->ipHashTableBase,
2978 			   (qdev->nvram_data.ipHashTableBaseHi << 16) |
2979 			   qdev->nvram_data.ipHashTableBaseLo);
2980 	ql_write_page2_reg(qdev,
2981 			   &local_ram->ipHashTableCount,
2982 			   qdev->nvram_data.ipHashTableSize);
2983 	ql_write_page2_reg(qdev,
2984 			   &local_ram->tcpHashTableBase,
2985 			   (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2986 			   qdev->nvram_data.tcpHashTableBaseLo);
2987 	ql_write_page2_reg(qdev,
2988 			   &local_ram->tcpHashTableCount,
2989 			   qdev->nvram_data.tcpHashTableSize);
2990 	ql_write_page2_reg(qdev,
2991 			   &local_ram->ncbBase,
2992 			   (qdev->nvram_data.ncbTableBaseHi << 16) |
2993 			   qdev->nvram_data.ncbTableBaseLo);
2994 	ql_write_page2_reg(qdev,
2995 			   &local_ram->maxNcbCount,
2996 			   qdev->nvram_data.ncbTableSize);
2997 	ql_write_page2_reg(qdev,
2998 			   &local_ram->drbBase,
2999 			   (qdev->nvram_data.drbTableBaseHi << 16) |
3000 			   qdev->nvram_data.drbTableBaseLo);
3001 	ql_write_page2_reg(qdev,
3002 			   &local_ram->maxDrbCount,
3003 			   qdev->nvram_data.drbTableSize);
3004 	ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3005 	return 0;
3006 }
3007 
3008 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3009 {
3010 	u32 value;
3011 	struct ql3xxx_port_registers __iomem *port_regs =
3012 		qdev->mem_map_registers;
3013 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3014 	struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3015 		(void __iomem *)port_regs;
3016 	u32 delay = 10;
3017 	int status = 0;
3018 
3019 	if (ql_mii_setup(qdev))
3020 		return -1;
3021 
3022 	/* Bring out PHY out of reset */
3023 	ql_write_common_reg(qdev, spir,
3024 			    (ISP_SERIAL_PORT_IF_WE |
3025 			     (ISP_SERIAL_PORT_IF_WE << 16)));
3026 	/* Give the PHY time to come out of reset. */
3027 	mdelay(100);
3028 	qdev->port_link_state = LS_DOWN;
3029 	netif_carrier_off(qdev->ndev);
3030 
3031 	/* V2 chip fix for ARS-39168. */
3032 	ql_write_common_reg(qdev, spir,
3033 			    (ISP_SERIAL_PORT_IF_SDE |
3034 			     (ISP_SERIAL_PORT_IF_SDE << 16)));
3035 
3036 	/* Request Queue Registers */
3037 	*((u32 *)(qdev->preq_consumer_index)) = 0;
3038 	atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3039 	qdev->req_producer_index = 0;
3040 
3041 	ql_write_page1_reg(qdev,
3042 			   &hmem_regs->reqConsumerIndexAddrHigh,
3043 			   qdev->req_consumer_index_phy_addr_high);
3044 	ql_write_page1_reg(qdev,
3045 			   &hmem_regs->reqConsumerIndexAddrLow,
3046 			   qdev->req_consumer_index_phy_addr_low);
3047 
3048 	ql_write_page1_reg(qdev,
3049 			   &hmem_regs->reqBaseAddrHigh,
3050 			   MS_64BITS(qdev->req_q_phy_addr));
3051 	ql_write_page1_reg(qdev,
3052 			   &hmem_regs->reqBaseAddrLow,
3053 			   LS_64BITS(qdev->req_q_phy_addr));
3054 	ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3055 
3056 	/* Response Queue Registers */
3057 	*((__le16 *) (qdev->prsp_producer_index)) = 0;
3058 	qdev->rsp_consumer_index = 0;
3059 	qdev->rsp_current = qdev->rsp_q_virt_addr;
3060 
3061 	ql_write_page1_reg(qdev,
3062 			   &hmem_regs->rspProducerIndexAddrHigh,
3063 			   qdev->rsp_producer_index_phy_addr_high);
3064 
3065 	ql_write_page1_reg(qdev,
3066 			   &hmem_regs->rspProducerIndexAddrLow,
3067 			   qdev->rsp_producer_index_phy_addr_low);
3068 
3069 	ql_write_page1_reg(qdev,
3070 			   &hmem_regs->rspBaseAddrHigh,
3071 			   MS_64BITS(qdev->rsp_q_phy_addr));
3072 
3073 	ql_write_page1_reg(qdev,
3074 			   &hmem_regs->rspBaseAddrLow,
3075 			   LS_64BITS(qdev->rsp_q_phy_addr));
3076 
3077 	ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3078 
3079 	/* Large Buffer Queue */
3080 	ql_write_page1_reg(qdev,
3081 			   &hmem_regs->rxLargeQBaseAddrHigh,
3082 			   MS_64BITS(qdev->lrg_buf_q_phy_addr));
3083 
3084 	ql_write_page1_reg(qdev,
3085 			   &hmem_regs->rxLargeQBaseAddrLow,
3086 			   LS_64BITS(qdev->lrg_buf_q_phy_addr));
3087 
3088 	ql_write_page1_reg(qdev,
3089 			   &hmem_regs->rxLargeQLength,
3090 			   qdev->num_lbufq_entries);
3091 
3092 	ql_write_page1_reg(qdev,
3093 			   &hmem_regs->rxLargeBufferLength,
3094 			   qdev->lrg_buffer_len);
3095 
3096 	/* Small Buffer Queue */
3097 	ql_write_page1_reg(qdev,
3098 			   &hmem_regs->rxSmallQBaseAddrHigh,
3099 			   MS_64BITS(qdev->small_buf_q_phy_addr));
3100 
3101 	ql_write_page1_reg(qdev,
3102 			   &hmem_regs->rxSmallQBaseAddrLow,
3103 			   LS_64BITS(qdev->small_buf_q_phy_addr));
3104 
3105 	ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3106 	ql_write_page1_reg(qdev,
3107 			   &hmem_regs->rxSmallBufferLength,
3108 			   QL_SMALL_BUFFER_SIZE);
3109 
3110 	qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3111 	qdev->small_buf_release_cnt = 8;
3112 	qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3113 	qdev->lrg_buf_release_cnt = 8;
3114 	qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3115 	qdev->small_buf_index = 0;
3116 	qdev->lrg_buf_index = 0;
3117 	qdev->lrg_buf_free_count = 0;
3118 	qdev->lrg_buf_free_head = NULL;
3119 	qdev->lrg_buf_free_tail = NULL;
3120 
3121 	ql_write_common_reg(qdev,
3122 			    &port_regs->CommonRegs.
3123 			    rxSmallQProducerIndex,
3124 			    qdev->small_buf_q_producer_index);
3125 	ql_write_common_reg(qdev,
3126 			    &port_regs->CommonRegs.
3127 			    rxLargeQProducerIndex,
3128 			    qdev->lrg_buf_q_producer_index);
3129 
3130 	/*
3131 	 * Find out if the chip has already been initialized.  If it has, then
3132 	 * we skip some of the initialization.
3133 	 */
3134 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3135 	value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3136 	if ((value & PORT_STATUS_IC) == 0) {
3137 
3138 		/* Chip has not been configured yet, so let it rip. */
3139 		if (ql_init_misc_registers(qdev)) {
3140 			status = -1;
3141 			goto out;
3142 		}
3143 
3144 		value = qdev->nvram_data.tcpMaxWindowSize;
3145 		ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3146 
3147 		value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3148 
3149 		if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3150 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3151 				 * 2) << 13)) {
3152 			status = -1;
3153 			goto out;
3154 		}
3155 		ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3156 		ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3157 				   (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3158 				     16) | (INTERNAL_CHIP_SD |
3159 					    INTERNAL_CHIP_WE)));
3160 		ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3161 	}
3162 
3163 	if (qdev->mac_index)
3164 		ql_write_page0_reg(qdev,
3165 				   &port_regs->mac1MaxFrameLengthReg,
3166 				   qdev->max_frame_size);
3167 	else
3168 		ql_write_page0_reg(qdev,
3169 					   &port_regs->mac0MaxFrameLengthReg,
3170 					   qdev->max_frame_size);
3171 
3172 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3173 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3174 			 2) << 7)) {
3175 		status = -1;
3176 		goto out;
3177 	}
3178 
3179 	PHY_Setup(qdev);
3180 	ql_init_scan_mode(qdev);
3181 	ql_get_phy_owner(qdev);
3182 
3183 	/* Load the MAC Configuration */
3184 
3185 	/* Program lower 32 bits of the MAC address */
3186 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3187 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3188 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3189 			   ((qdev->ndev->dev_addr[2] << 24)
3190 			    | (qdev->ndev->dev_addr[3] << 16)
3191 			    | (qdev->ndev->dev_addr[4] << 8)
3192 			    | qdev->ndev->dev_addr[5]));
3193 
3194 	/* Program top 16 bits of the MAC address */
3195 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3196 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3197 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3198 			   ((qdev->ndev->dev_addr[0] << 8)
3199 			    | qdev->ndev->dev_addr[1]));
3200 
3201 	/* Enable Primary MAC */
3202 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3203 			   ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3204 			    MAC_ADDR_INDIRECT_PTR_REG_PE));
3205 
3206 	/* Clear Primary and Secondary IP addresses */
3207 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3208 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3209 			    (qdev->mac_index << 2)));
3210 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3211 
3212 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3213 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3214 			    ((qdev->mac_index << 2) + 1)));
3215 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3216 
3217 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3218 
3219 	/* Indicate Configuration Complete */
3220 	ql_write_page0_reg(qdev,
3221 			   &port_regs->portControl,
3222 			   ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3223 
3224 	do {
3225 		value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3226 		if (value & PORT_STATUS_IC)
3227 			break;
3228 		spin_unlock_irq(&qdev->hw_lock);
3229 		msleep(500);
3230 		spin_lock_irq(&qdev->hw_lock);
3231 	} while (--delay);
3232 
3233 	if (delay == 0) {
3234 		netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3235 		status = -1;
3236 		goto out;
3237 	}
3238 
3239 	/* Enable Ethernet Function */
3240 	if (qdev->device_id == QL3032_DEVICE_ID) {
3241 		value =
3242 		    (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3243 		     QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3244 			QL3032_PORT_CONTROL_ET);
3245 		ql_write_page0_reg(qdev, &port_regs->functionControl,
3246 				   ((value << 16) | value));
3247 	} else {
3248 		value =
3249 		    (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3250 		     PORT_CONTROL_HH);
3251 		ql_write_page0_reg(qdev, &port_regs->portControl,
3252 				   ((value << 16) | value));
3253 	}
3254 
3255 
3256 out:
3257 	return status;
3258 }
3259 
3260 /*
3261  * Caller holds hw_lock.
3262  */
3263 static int ql_adapter_reset(struct ql3_adapter *qdev)
3264 {
3265 	struct ql3xxx_port_registers __iomem *port_regs =
3266 		qdev->mem_map_registers;
3267 	int status = 0;
3268 	u16 value;
3269 	int max_wait_time;
3270 
3271 	set_bit(QL_RESET_ACTIVE, &qdev->flags);
3272 	clear_bit(QL_RESET_DONE, &qdev->flags);
3273 
3274 	/*
3275 	 * Issue soft reset to chip.
3276 	 */
3277 	netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3278 	ql_write_common_reg(qdev,
3279 			    &port_regs->CommonRegs.ispControlStatus,
3280 			    ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3281 
3282 	/* Wait 3 seconds for reset to complete. */
3283 	netdev_printk(KERN_DEBUG, qdev->ndev,
3284 		      "Wait 10 milliseconds for reset to complete\n");
3285 
3286 	/* Wait until the firmware tells us the Soft Reset is done */
3287 	max_wait_time = 5;
3288 	do {
3289 		value =
3290 		    ql_read_common_reg(qdev,
3291 				       &port_regs->CommonRegs.ispControlStatus);
3292 		if ((value & ISP_CONTROL_SR) == 0)
3293 			break;
3294 
3295 		ssleep(1);
3296 	} while ((--max_wait_time));
3297 
3298 	/*
3299 	 * Also, make sure that the Network Reset Interrupt bit has been
3300 	 * cleared after the soft reset has taken place.
3301 	 */
3302 	value =
3303 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3304 	if (value & ISP_CONTROL_RI) {
3305 		netdev_printk(KERN_DEBUG, qdev->ndev,
3306 			      "clearing RI after reset\n");
3307 		ql_write_common_reg(qdev,
3308 				    &port_regs->CommonRegs.
3309 				    ispControlStatus,
3310 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3311 	}
3312 
3313 	if (max_wait_time == 0) {
3314 		/* Issue Force Soft Reset */
3315 		ql_write_common_reg(qdev,
3316 				    &port_regs->CommonRegs.
3317 				    ispControlStatus,
3318 				    ((ISP_CONTROL_FSR << 16) |
3319 				     ISP_CONTROL_FSR));
3320 		/*
3321 		 * Wait until the firmware tells us the Force Soft Reset is
3322 		 * done
3323 		 */
3324 		max_wait_time = 5;
3325 		do {
3326 			value = ql_read_common_reg(qdev,
3327 						   &port_regs->CommonRegs.
3328 						   ispControlStatus);
3329 			if ((value & ISP_CONTROL_FSR) == 0)
3330 				break;
3331 			ssleep(1);
3332 		} while ((--max_wait_time));
3333 	}
3334 	if (max_wait_time == 0)
3335 		status = 1;
3336 
3337 	clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3338 	set_bit(QL_RESET_DONE, &qdev->flags);
3339 	return status;
3340 }
3341 
3342 static void ql_set_mac_info(struct ql3_adapter *qdev)
3343 {
3344 	struct ql3xxx_port_registers __iomem *port_regs =
3345 		qdev->mem_map_registers;
3346 	u32 value, port_status;
3347 	u8 func_number;
3348 
3349 	/* Get the function number */
3350 	value =
3351 	    ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3352 	func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3353 	port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3354 	switch (value & ISP_CONTROL_FN_MASK) {
3355 	case ISP_CONTROL_FN0_NET:
3356 		qdev->mac_index = 0;
3357 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3358 		qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3359 		qdev->PHYAddr = PORT0_PHY_ADDRESS;
3360 		if (port_status & PORT_STATUS_SM0)
3361 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3362 		else
3363 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3364 		break;
3365 
3366 	case ISP_CONTROL_FN1_NET:
3367 		qdev->mac_index = 1;
3368 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3369 		qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3370 		qdev->PHYAddr = PORT1_PHY_ADDRESS;
3371 		if (port_status & PORT_STATUS_SM1)
3372 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3373 		else
3374 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3375 		break;
3376 
3377 	case ISP_CONTROL_FN0_SCSI:
3378 	case ISP_CONTROL_FN1_SCSI:
3379 	default:
3380 		netdev_printk(KERN_DEBUG, qdev->ndev,
3381 			      "Invalid function number, ispControlStatus = 0x%x\n",
3382 			      value);
3383 		break;
3384 	}
3385 	qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3386 }
3387 
3388 static void ql_display_dev_info(struct net_device *ndev)
3389 {
3390 	struct ql3_adapter *qdev = netdev_priv(ndev);
3391 	struct pci_dev *pdev = qdev->pdev;
3392 
3393 	netdev_info(ndev,
3394 		    "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3395 		    DRV_NAME, qdev->index, qdev->chip_rev_id,
3396 		    qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3397 		    qdev->pci_slot);
3398 	netdev_info(ndev, "%s Interface\n",
3399 		test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3400 
3401 	/*
3402 	 * Print PCI bus width/type.
3403 	 */
3404 	netdev_info(ndev, "Bus interface is %s %s\n",
3405 		    ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3406 		    ((qdev->pci_x) ? "PCI-X" : "PCI"));
3407 
3408 	netdev_info(ndev, "mem  IO base address adjusted = 0x%p\n",
3409 		    qdev->mem_map_registers);
3410 	netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3411 
3412 	netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3413 }
3414 
3415 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3416 {
3417 	struct net_device *ndev = qdev->ndev;
3418 	int retval = 0;
3419 
3420 	netif_stop_queue(ndev);
3421 	netif_carrier_off(ndev);
3422 
3423 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3424 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3425 
3426 	ql_disable_interrupts(qdev);
3427 
3428 	free_irq(qdev->pdev->irq, ndev);
3429 
3430 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3431 		netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3432 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3433 		pci_disable_msi(qdev->pdev);
3434 	}
3435 
3436 	del_timer_sync(&qdev->adapter_timer);
3437 
3438 	napi_disable(&qdev->napi);
3439 
3440 	if (do_reset) {
3441 		int soft_reset;
3442 		unsigned long hw_flags;
3443 
3444 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3445 		if (ql_wait_for_drvr_lock(qdev)) {
3446 			soft_reset = ql_adapter_reset(qdev);
3447 			if (soft_reset) {
3448 				netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3449 					   qdev->index);
3450 			}
3451 			netdev_err(ndev,
3452 				   "Releasing driver lock via chip reset\n");
3453 		} else {
3454 			netdev_err(ndev,
3455 				   "Could not acquire driver lock to do reset!\n");
3456 			retval = -1;
3457 		}
3458 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3459 	}
3460 	ql_free_mem_resources(qdev);
3461 	return retval;
3462 }
3463 
3464 static int ql_adapter_up(struct ql3_adapter *qdev)
3465 {
3466 	struct net_device *ndev = qdev->ndev;
3467 	int err;
3468 	unsigned long irq_flags = IRQF_SHARED;
3469 	unsigned long hw_flags;
3470 
3471 	if (ql_alloc_mem_resources(qdev)) {
3472 		netdev_err(ndev, "Unable to  allocate buffers\n");
3473 		return -ENOMEM;
3474 	}
3475 
3476 	if (qdev->msi) {
3477 		if (pci_enable_msi(qdev->pdev)) {
3478 			netdev_err(ndev,
3479 				   "User requested MSI, but MSI failed to initialize.  Continuing without MSI.\n");
3480 			qdev->msi = 0;
3481 		} else {
3482 			netdev_info(ndev, "MSI Enabled...\n");
3483 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3484 			irq_flags &= ~IRQF_SHARED;
3485 		}
3486 	}
3487 
3488 	err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3489 			  irq_flags, ndev->name, ndev);
3490 	if (err) {
3491 		netdev_err(ndev,
3492 			   "Failed to reserve interrupt %d - already in use\n",
3493 			   qdev->pdev->irq);
3494 		goto err_irq;
3495 	}
3496 
3497 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3498 
3499 	err = ql_wait_for_drvr_lock(qdev);
3500 	if (err) {
3501 		err = ql_adapter_initialize(qdev);
3502 		if (err) {
3503 			netdev_err(ndev, "Unable to initialize adapter\n");
3504 			goto err_init;
3505 		}
3506 		netdev_err(ndev, "Releasing driver lock\n");
3507 		ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3508 	} else {
3509 		netdev_err(ndev, "Could not acquire driver lock\n");
3510 		goto err_lock;
3511 	}
3512 
3513 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3514 
3515 	set_bit(QL_ADAPTER_UP, &qdev->flags);
3516 
3517 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3518 
3519 	napi_enable(&qdev->napi);
3520 	ql_enable_interrupts(qdev);
3521 	return 0;
3522 
3523 err_init:
3524 	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3525 err_lock:
3526 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3527 	free_irq(qdev->pdev->irq, ndev);
3528 err_irq:
3529 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3530 		netdev_info(ndev, "calling pci_disable_msi()\n");
3531 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3532 		pci_disable_msi(qdev->pdev);
3533 	}
3534 	return err;
3535 }
3536 
3537 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3538 {
3539 	if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3540 		netdev_err(qdev->ndev,
3541 			   "Driver up/down cycle failed, closing device\n");
3542 		rtnl_lock();
3543 		dev_close(qdev->ndev);
3544 		rtnl_unlock();
3545 		return -1;
3546 	}
3547 	return 0;
3548 }
3549 
3550 static int ql3xxx_close(struct net_device *ndev)
3551 {
3552 	struct ql3_adapter *qdev = netdev_priv(ndev);
3553 
3554 	/*
3555 	 * Wait for device to recover from a reset.
3556 	 * (Rarely happens, but possible.)
3557 	 */
3558 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3559 		msleep(50);
3560 
3561 	ql_adapter_down(qdev, QL_DO_RESET);
3562 	return 0;
3563 }
3564 
3565 static int ql3xxx_open(struct net_device *ndev)
3566 {
3567 	struct ql3_adapter *qdev = netdev_priv(ndev);
3568 	return ql_adapter_up(qdev);
3569 }
3570 
3571 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3572 {
3573 	struct ql3_adapter *qdev = netdev_priv(ndev);
3574 	struct ql3xxx_port_registers __iomem *port_regs =
3575 			qdev->mem_map_registers;
3576 	struct sockaddr *addr = p;
3577 	unsigned long hw_flags;
3578 
3579 	if (netif_running(ndev))
3580 		return -EBUSY;
3581 
3582 	if (!is_valid_ether_addr(addr->sa_data))
3583 		return -EADDRNOTAVAIL;
3584 
3585 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3586 
3587 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3588 	/* Program lower 32 bits of the MAC address */
3589 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3590 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3591 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3592 			   ((ndev->dev_addr[2] << 24) | (ndev->
3593 							 dev_addr[3] << 16) |
3594 			    (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3595 
3596 	/* Program top 16 bits of the MAC address */
3597 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3598 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3599 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3600 			   ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3601 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3602 
3603 	return 0;
3604 }
3605 
3606 static void ql3xxx_tx_timeout(struct net_device *ndev)
3607 {
3608 	struct ql3_adapter *qdev = netdev_priv(ndev);
3609 
3610 	netdev_err(ndev, "Resetting...\n");
3611 	/*
3612 	 * Stop the queues, we've got a problem.
3613 	 */
3614 	netif_stop_queue(ndev);
3615 
3616 	/*
3617 	 * Wake up the worker to process this event.
3618 	 */
3619 	queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3620 }
3621 
3622 static void ql_reset_work(struct work_struct *work)
3623 {
3624 	struct ql3_adapter *qdev =
3625 		container_of(work, struct ql3_adapter, reset_work.work);
3626 	struct net_device *ndev = qdev->ndev;
3627 	u32 value;
3628 	struct ql_tx_buf_cb *tx_cb;
3629 	int max_wait_time, i;
3630 	struct ql3xxx_port_registers __iomem *port_regs =
3631 		qdev->mem_map_registers;
3632 	unsigned long hw_flags;
3633 
3634 	if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3635 		clear_bit(QL_LINK_MASTER, &qdev->flags);
3636 
3637 		/*
3638 		 * Loop through the active list and return the skb.
3639 		 */
3640 		for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3641 			int j;
3642 			tx_cb = &qdev->tx_buf[i];
3643 			if (tx_cb->skb) {
3644 				netdev_printk(KERN_DEBUG, ndev,
3645 					      "Freeing lost SKB\n");
3646 				pci_unmap_single(qdev->pdev,
3647 					 dma_unmap_addr(&tx_cb->map[0],
3648 							mapaddr),
3649 					 dma_unmap_len(&tx_cb->map[0], maplen),
3650 					 PCI_DMA_TODEVICE);
3651 				for (j = 1; j < tx_cb->seg_count; j++) {
3652 					pci_unmap_page(qdev->pdev,
3653 					       dma_unmap_addr(&tx_cb->map[j],
3654 							      mapaddr),
3655 					       dma_unmap_len(&tx_cb->map[j],
3656 							     maplen),
3657 					       PCI_DMA_TODEVICE);
3658 				}
3659 				dev_kfree_skb(tx_cb->skb);
3660 				tx_cb->skb = NULL;
3661 			}
3662 		}
3663 
3664 		netdev_err(ndev, "Clearing NRI after reset\n");
3665 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3666 		ql_write_common_reg(qdev,
3667 				    &port_regs->CommonRegs.
3668 				    ispControlStatus,
3669 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3670 		/*
3671 		 * Wait the for Soft Reset to Complete.
3672 		 */
3673 		max_wait_time = 10;
3674 		do {
3675 			value = ql_read_common_reg(qdev,
3676 						   &port_regs->CommonRegs.
3677 
3678 						   ispControlStatus);
3679 			if ((value & ISP_CONTROL_SR) == 0) {
3680 				netdev_printk(KERN_DEBUG, ndev,
3681 					      "reset completed\n");
3682 				break;
3683 			}
3684 
3685 			if (value & ISP_CONTROL_RI) {
3686 				netdev_printk(KERN_DEBUG, ndev,
3687 					      "clearing NRI after reset\n");
3688 				ql_write_common_reg(qdev,
3689 						    &port_regs->
3690 						    CommonRegs.
3691 						    ispControlStatus,
3692 						    ((ISP_CONTROL_RI <<
3693 						      16) | ISP_CONTROL_RI));
3694 			}
3695 
3696 			spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3697 			ssleep(1);
3698 			spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3699 		} while (--max_wait_time);
3700 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3701 
3702 		if (value & ISP_CONTROL_SR) {
3703 
3704 			/*
3705 			 * Set the reset flags and clear the board again.
3706 			 * Nothing else to do...
3707 			 */
3708 			netdev_err(ndev,
3709 				   "Timed out waiting for reset to complete\n");
3710 			netdev_err(ndev, "Do a reset\n");
3711 			clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3712 			clear_bit(QL_RESET_START, &qdev->flags);
3713 			ql_cycle_adapter(qdev, QL_DO_RESET);
3714 			return;
3715 		}
3716 
3717 		clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3718 		clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3719 		clear_bit(QL_RESET_START, &qdev->flags);
3720 		ql_cycle_adapter(qdev, QL_NO_RESET);
3721 	}
3722 }
3723 
3724 static void ql_tx_timeout_work(struct work_struct *work)
3725 {
3726 	struct ql3_adapter *qdev =
3727 		container_of(work, struct ql3_adapter, tx_timeout_work.work);
3728 
3729 	ql_cycle_adapter(qdev, QL_DO_RESET);
3730 }
3731 
3732 static void ql_get_board_info(struct ql3_adapter *qdev)
3733 {
3734 	struct ql3xxx_port_registers __iomem *port_regs =
3735 		qdev->mem_map_registers;
3736 	u32 value;
3737 
3738 	value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3739 
3740 	qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3741 	if (value & PORT_STATUS_64)
3742 		qdev->pci_width = 64;
3743 	else
3744 		qdev->pci_width = 32;
3745 	if (value & PORT_STATUS_X)
3746 		qdev->pci_x = 1;
3747 	else
3748 		qdev->pci_x = 0;
3749 	qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3750 }
3751 
3752 static void ql3xxx_timer(unsigned long ptr)
3753 {
3754 	struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3755 	queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3756 }
3757 
3758 static const struct net_device_ops ql3xxx_netdev_ops = {
3759 	.ndo_open		= ql3xxx_open,
3760 	.ndo_start_xmit		= ql3xxx_send,
3761 	.ndo_stop		= ql3xxx_close,
3762 	.ndo_change_mtu		= eth_change_mtu,
3763 	.ndo_validate_addr	= eth_validate_addr,
3764 	.ndo_set_mac_address	= ql3xxx_set_mac_address,
3765 	.ndo_tx_timeout		= ql3xxx_tx_timeout,
3766 };
3767 
3768 static int ql3xxx_probe(struct pci_dev *pdev,
3769 			const struct pci_device_id *pci_entry)
3770 {
3771 	struct net_device *ndev = NULL;
3772 	struct ql3_adapter *qdev = NULL;
3773 	static int cards_found;
3774 	int uninitialized_var(pci_using_dac), err;
3775 
3776 	err = pci_enable_device(pdev);
3777 	if (err) {
3778 		pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3779 		goto err_out;
3780 	}
3781 
3782 	err = pci_request_regions(pdev, DRV_NAME);
3783 	if (err) {
3784 		pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3785 		goto err_out_disable_pdev;
3786 	}
3787 
3788 	pci_set_master(pdev);
3789 
3790 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3791 		pci_using_dac = 1;
3792 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3793 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3794 		pci_using_dac = 0;
3795 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3796 	}
3797 
3798 	if (err) {
3799 		pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3800 		goto err_out_free_regions;
3801 	}
3802 
3803 	ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3804 	if (!ndev) {
3805 		err = -ENOMEM;
3806 		goto err_out_free_regions;
3807 	}
3808 
3809 	SET_NETDEV_DEV(ndev, &pdev->dev);
3810 
3811 	pci_set_drvdata(pdev, ndev);
3812 
3813 	qdev = netdev_priv(ndev);
3814 	qdev->index = cards_found;
3815 	qdev->ndev = ndev;
3816 	qdev->pdev = pdev;
3817 	qdev->device_id = pci_entry->device;
3818 	qdev->port_link_state = LS_DOWN;
3819 	if (msi)
3820 		qdev->msi = 1;
3821 
3822 	qdev->msg_enable = netif_msg_init(debug, default_msg);
3823 
3824 	if (pci_using_dac)
3825 		ndev->features |= NETIF_F_HIGHDMA;
3826 	if (qdev->device_id == QL3032_DEVICE_ID)
3827 		ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3828 
3829 	qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3830 	if (!qdev->mem_map_registers) {
3831 		pr_err("%s: cannot map device registers\n", pci_name(pdev));
3832 		err = -EIO;
3833 		goto err_out_free_ndev;
3834 	}
3835 
3836 	spin_lock_init(&qdev->adapter_lock);
3837 	spin_lock_init(&qdev->hw_lock);
3838 
3839 	/* Set driver entry points */
3840 	ndev->netdev_ops = &ql3xxx_netdev_ops;
3841 	ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3842 	ndev->watchdog_timeo = 5 * HZ;
3843 
3844 	netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3845 
3846 	ndev->irq = pdev->irq;
3847 
3848 	/* make sure the EEPROM is good */
3849 	if (ql_get_nvram_params(qdev)) {
3850 		pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3851 			 __func__, qdev->index);
3852 		err = -EIO;
3853 		goto err_out_iounmap;
3854 	}
3855 
3856 	ql_set_mac_info(qdev);
3857 
3858 	/* Validate and set parameters */
3859 	if (qdev->mac_index) {
3860 		ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3861 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3862 	} else {
3863 		ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3864 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3865 	}
3866 
3867 	ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3868 
3869 	/* Record PCI bus information. */
3870 	ql_get_board_info(qdev);
3871 
3872 	/*
3873 	 * Set the Maximum Memory Read Byte Count value. We do this to handle
3874 	 * jumbo frames.
3875 	 */
3876 	if (qdev->pci_x)
3877 		pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3878 
3879 	err = register_netdev(ndev);
3880 	if (err) {
3881 		pr_err("%s: cannot register net device\n", pci_name(pdev));
3882 		goto err_out_iounmap;
3883 	}
3884 
3885 	/* we're going to reset, so assume we have no link for now */
3886 
3887 	netif_carrier_off(ndev);
3888 	netif_stop_queue(ndev);
3889 
3890 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
3891 	INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3892 	INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3893 	INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3894 
3895 	init_timer(&qdev->adapter_timer);
3896 	qdev->adapter_timer.function = ql3xxx_timer;
3897 	qdev->adapter_timer.expires = jiffies + HZ * 2;	/* two second delay */
3898 	qdev->adapter_timer.data = (unsigned long)qdev;
3899 
3900 	if (!cards_found) {
3901 		pr_alert("%s\n", DRV_STRING);
3902 		pr_alert("Driver name: %s, Version: %s\n",
3903 			 DRV_NAME, DRV_VERSION);
3904 	}
3905 	ql_display_dev_info(ndev);
3906 
3907 	cards_found++;
3908 	return 0;
3909 
3910 err_out_iounmap:
3911 	iounmap(qdev->mem_map_registers);
3912 err_out_free_ndev:
3913 	free_netdev(ndev);
3914 err_out_free_regions:
3915 	pci_release_regions(pdev);
3916 err_out_disable_pdev:
3917 	pci_disable_device(pdev);
3918 err_out:
3919 	return err;
3920 }
3921 
3922 static void ql3xxx_remove(struct pci_dev *pdev)
3923 {
3924 	struct net_device *ndev = pci_get_drvdata(pdev);
3925 	struct ql3_adapter *qdev = netdev_priv(ndev);
3926 
3927 	unregister_netdev(ndev);
3928 
3929 	ql_disable_interrupts(qdev);
3930 
3931 	if (qdev->workqueue) {
3932 		cancel_delayed_work(&qdev->reset_work);
3933 		cancel_delayed_work(&qdev->tx_timeout_work);
3934 		destroy_workqueue(qdev->workqueue);
3935 		qdev->workqueue = NULL;
3936 	}
3937 
3938 	iounmap(qdev->mem_map_registers);
3939 	pci_release_regions(pdev);
3940 	free_netdev(ndev);
3941 }
3942 
3943 static struct pci_driver ql3xxx_driver = {
3944 
3945 	.name = DRV_NAME,
3946 	.id_table = ql3xxx_pci_tbl,
3947 	.probe = ql3xxx_probe,
3948 	.remove = ql3xxx_remove,
3949 };
3950 
3951 module_pci_driver(ql3xxx_driver);
3952