xref: /openbmc/linux/drivers/net/ethernet/qlogic/qla3xxx.c (revision 339031bafe6b281cf2dcb8364217288b9fdab555)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * QLogic QLA3xxx NIC HBA Driver
4  * Copyright (c)  2003-2006 QLogic Corporation
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36 #include <linux/prefetch.h>
37 
38 #include "qla3xxx.h"
39 
40 #define DRV_NAME	"qla3xxx"
41 #define DRV_STRING	"QLogic ISP3XXX Network Driver"
42 #define DRV_VERSION	"v2.03.00-k5"
43 
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46 
47 #define TIMED_OUT_MSG							\
48 "Timed out waiting for management port to get free before issuing command\n"
49 
50 MODULE_AUTHOR("QLogic Corporation");
51 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54 
55 static const u32 default_msg
56     = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
57     | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
58 
59 static int debug = -1;		/* defaults above */
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62 
63 static int msi;
64 module_param(msi, int, 0);
65 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
66 
67 static const struct pci_device_id ql3xxx_pci_tbl[] = {
68 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
69 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
70 	/* required last entry */
71 	{0,}
72 };
73 
74 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
75 
76 /*
77  *  These are the known PHY's which are used
78  */
79 enum PHY_DEVICE_TYPE {
80    PHY_TYPE_UNKNOWN   = 0,
81    PHY_VITESSE_VSC8211,
82    PHY_AGERE_ET1011C,
83    MAX_PHY_DEV_TYPES
84 };
85 
86 struct PHY_DEVICE_INFO {
87 	const enum PHY_DEVICE_TYPE	phyDevice;
88 	const u32		phyIdOUI;
89 	const u16		phyIdModel;
90 	const char		*name;
91 };
92 
93 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
94 	{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
95 	{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
96 	{PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
97 };
98 
99 
100 /*
101  * Caller must take hw_lock.
102  */
103 static int ql_sem_spinlock(struct ql3_adapter *qdev,
104 			    u32 sem_mask, u32 sem_bits)
105 {
106 	struct ql3xxx_port_registers __iomem *port_regs =
107 		qdev->mem_map_registers;
108 	u32 value;
109 	unsigned int seconds = 3;
110 
111 	do {
112 		writel((sem_mask | sem_bits),
113 		       &port_regs->CommonRegs.semaphoreReg);
114 		value = readl(&port_regs->CommonRegs.semaphoreReg);
115 		if ((value & (sem_mask >> 16)) == sem_bits)
116 			return 0;
117 		mdelay(1000);
118 	} while (--seconds);
119 	return -1;
120 }
121 
122 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
123 {
124 	struct ql3xxx_port_registers __iomem *port_regs =
125 		qdev->mem_map_registers;
126 	writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
127 	readl(&port_regs->CommonRegs.semaphoreReg);
128 }
129 
130 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
131 {
132 	struct ql3xxx_port_registers __iomem *port_regs =
133 		qdev->mem_map_registers;
134 	u32 value;
135 
136 	writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
137 	value = readl(&port_regs->CommonRegs.semaphoreReg);
138 	return ((value & (sem_mask >> 16)) == sem_bits);
139 }
140 
141 /*
142  * Caller holds hw_lock.
143  */
144 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
145 {
146 	int i = 0;
147 
148 	do {
149 		if (ql_sem_lock(qdev,
150 				QL_DRVR_SEM_MASK,
151 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
152 				 * 2) << 1)) {
153 			netdev_printk(KERN_DEBUG, qdev->ndev,
154 				      "driver lock acquired\n");
155 			return 1;
156 		}
157 		mdelay(1000);
158 	} while (++i < 10);
159 
160 	netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
161 	return 0;
162 }
163 
164 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
165 {
166 	struct ql3xxx_port_registers __iomem *port_regs =
167 		qdev->mem_map_registers;
168 
169 	writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 			&port_regs->CommonRegs.ispControlStatus);
171 	readl(&port_regs->CommonRegs.ispControlStatus);
172 	qdev->current_page = page;
173 }
174 
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
176 {
177 	u32 value;
178 	unsigned long hw_flags;
179 
180 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
181 	value = readl(reg);
182 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
183 
184 	return value;
185 }
186 
187 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
188 {
189 	return readl(reg);
190 }
191 
192 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
193 {
194 	u32 value;
195 	unsigned long hw_flags;
196 
197 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
198 
199 	if (qdev->current_page != 0)
200 		ql_set_register_page(qdev, 0);
201 	value = readl(reg);
202 
203 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
204 	return value;
205 }
206 
207 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
208 {
209 	if (qdev->current_page != 0)
210 		ql_set_register_page(qdev, 0);
211 	return readl(reg);
212 }
213 
214 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
215 				u32 __iomem *reg, u32 value)
216 {
217 	unsigned long hw_flags;
218 
219 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
220 	writel(value, reg);
221 	readl(reg);
222 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
223 }
224 
225 static void ql_write_common_reg(struct ql3_adapter *qdev,
226 				u32 __iomem *reg, u32 value)
227 {
228 	writel(value, reg);
229 	readl(reg);
230 }
231 
232 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
233 				u32 __iomem *reg, u32 value)
234 {
235 	writel(value, reg);
236 	readl(reg);
237 	udelay(1);
238 }
239 
240 static void ql_write_page0_reg(struct ql3_adapter *qdev,
241 			       u32 __iomem *reg, u32 value)
242 {
243 	if (qdev->current_page != 0)
244 		ql_set_register_page(qdev, 0);
245 	writel(value, reg);
246 	readl(reg);
247 }
248 
249 /*
250  * Caller holds hw_lock. Only called during init.
251  */
252 static void ql_write_page1_reg(struct ql3_adapter *qdev,
253 			       u32 __iomem *reg, u32 value)
254 {
255 	if (qdev->current_page != 1)
256 		ql_set_register_page(qdev, 1);
257 	writel(value, reg);
258 	readl(reg);
259 }
260 
261 /*
262  * Caller holds hw_lock. Only called during init.
263  */
264 static void ql_write_page2_reg(struct ql3_adapter *qdev,
265 			       u32 __iomem *reg, u32 value)
266 {
267 	if (qdev->current_page != 2)
268 		ql_set_register_page(qdev, 2);
269 	writel(value, reg);
270 	readl(reg);
271 }
272 
273 static void ql_disable_interrupts(struct ql3_adapter *qdev)
274 {
275 	struct ql3xxx_port_registers __iomem *port_regs =
276 		qdev->mem_map_registers;
277 
278 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
279 			    (ISP_IMR_ENABLE_INT << 16));
280 
281 }
282 
283 static void ql_enable_interrupts(struct ql3_adapter *qdev)
284 {
285 	struct ql3xxx_port_registers __iomem *port_regs =
286 		qdev->mem_map_registers;
287 
288 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
289 			    ((0xff << 16) | ISP_IMR_ENABLE_INT));
290 
291 }
292 
293 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
294 					    struct ql_rcv_buf_cb *lrg_buf_cb)
295 {
296 	dma_addr_t map;
297 	int err;
298 	lrg_buf_cb->next = NULL;
299 
300 	if (qdev->lrg_buf_free_tail == NULL) {	/* The list is empty  */
301 		qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
302 	} else {
303 		qdev->lrg_buf_free_tail->next = lrg_buf_cb;
304 		qdev->lrg_buf_free_tail = lrg_buf_cb;
305 	}
306 
307 	if (!lrg_buf_cb->skb) {
308 		lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
309 						   qdev->lrg_buffer_len);
310 		if (unlikely(!lrg_buf_cb->skb)) {
311 			qdev->lrg_buf_skb_check++;
312 		} else {
313 			/*
314 			 * We save some space to copy the ethhdr from first
315 			 * buffer
316 			 */
317 			skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
318 			map = dma_map_single(&qdev->pdev->dev,
319 					     lrg_buf_cb->skb->data,
320 					     qdev->lrg_buffer_len - QL_HEADER_SPACE,
321 					     DMA_FROM_DEVICE);
322 			err = dma_mapping_error(&qdev->pdev->dev, map);
323 			if (err) {
324 				netdev_err(qdev->ndev,
325 					   "PCI mapping failed with error: %d\n",
326 					   err);
327 				dev_kfree_skb(lrg_buf_cb->skb);
328 				lrg_buf_cb->skb = NULL;
329 
330 				qdev->lrg_buf_skb_check++;
331 				return;
332 			}
333 
334 			lrg_buf_cb->buf_phy_addr_low =
335 			    cpu_to_le32(LS_64BITS(map));
336 			lrg_buf_cb->buf_phy_addr_high =
337 			    cpu_to_le32(MS_64BITS(map));
338 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
339 			dma_unmap_len_set(lrg_buf_cb, maplen,
340 					  qdev->lrg_buffer_len -
341 					  QL_HEADER_SPACE);
342 		}
343 	}
344 
345 	qdev->lrg_buf_free_count++;
346 }
347 
348 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
349 							   *qdev)
350 {
351 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
352 
353 	if (lrg_buf_cb != NULL) {
354 		qdev->lrg_buf_free_head = lrg_buf_cb->next;
355 		if (qdev->lrg_buf_free_head == NULL)
356 			qdev->lrg_buf_free_tail = NULL;
357 		qdev->lrg_buf_free_count--;
358 	}
359 
360 	return lrg_buf_cb;
361 }
362 
363 static u32 addrBits = EEPROM_NO_ADDR_BITS;
364 static u32 dataBits = EEPROM_NO_DATA_BITS;
365 
366 static void fm93c56a_deselect(struct ql3_adapter *qdev);
367 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
368 			    unsigned short *value);
369 
370 /*
371  * Caller holds hw_lock.
372  */
373 static void fm93c56a_select(struct ql3_adapter *qdev)
374 {
375 	struct ql3xxx_port_registers __iomem *port_regs =
376 			qdev->mem_map_registers;
377 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
378 
379 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
380 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
381 }
382 
383 /*
384  * Caller holds hw_lock.
385  */
386 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
387 {
388 	int i;
389 	u32 mask;
390 	u32 dataBit;
391 	u32 previousBit;
392 	struct ql3xxx_port_registers __iomem *port_regs =
393 			qdev->mem_map_registers;
394 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
395 
396 	/* Clock in a zero, then do the start bit */
397 	ql_write_nvram_reg(qdev, spir,
398 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
399 			    AUBURN_EEPROM_DO_1));
400 	ql_write_nvram_reg(qdev, spir,
401 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
402 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
403 	ql_write_nvram_reg(qdev, spir,
404 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
405 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
406 
407 	mask = 1 << (FM93C56A_CMD_BITS - 1);
408 	/* Force the previous data bit to be different */
409 	previousBit = 0xffff;
410 	for (i = 0; i < FM93C56A_CMD_BITS; i++) {
411 		dataBit = (cmd & mask)
412 			? AUBURN_EEPROM_DO_1
413 			: AUBURN_EEPROM_DO_0;
414 		if (previousBit != dataBit) {
415 			/* If the bit changed, change the DO state to match */
416 			ql_write_nvram_reg(qdev, spir,
417 					   (ISP_NVRAM_MASK |
418 					    qdev->eeprom_cmd_data | dataBit));
419 			previousBit = dataBit;
420 		}
421 		ql_write_nvram_reg(qdev, spir,
422 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
423 				    dataBit | AUBURN_EEPROM_CLK_RISE));
424 		ql_write_nvram_reg(qdev, spir,
425 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
426 				    dataBit | AUBURN_EEPROM_CLK_FALL));
427 		cmd = cmd << 1;
428 	}
429 
430 	mask = 1 << (addrBits - 1);
431 	/* Force the previous data bit to be different */
432 	previousBit = 0xffff;
433 	for (i = 0; i < addrBits; i++) {
434 		dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
435 			: AUBURN_EEPROM_DO_0;
436 		if (previousBit != dataBit) {
437 			/*
438 			 * If the bit changed, then change the DO state to
439 			 * match
440 			 */
441 			ql_write_nvram_reg(qdev, spir,
442 					   (ISP_NVRAM_MASK |
443 					    qdev->eeprom_cmd_data | dataBit));
444 			previousBit = dataBit;
445 		}
446 		ql_write_nvram_reg(qdev, spir,
447 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
448 				    dataBit | AUBURN_EEPROM_CLK_RISE));
449 		ql_write_nvram_reg(qdev, spir,
450 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
451 				    dataBit | AUBURN_EEPROM_CLK_FALL));
452 		eepromAddr = eepromAddr << 1;
453 	}
454 }
455 
456 /*
457  * Caller holds hw_lock.
458  */
459 static void fm93c56a_deselect(struct ql3_adapter *qdev)
460 {
461 	struct ql3xxx_port_registers __iomem *port_regs =
462 			qdev->mem_map_registers;
463 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
464 
465 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
466 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
467 }
468 
469 /*
470  * Caller holds hw_lock.
471  */
472 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
473 {
474 	int i;
475 	u32 data = 0;
476 	u32 dataBit;
477 	struct ql3xxx_port_registers __iomem *port_regs =
478 			qdev->mem_map_registers;
479 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
480 
481 	/* Read the data bits */
482 	/* The first bit is a dummy.  Clock right over it. */
483 	for (i = 0; i < dataBits; i++) {
484 		ql_write_nvram_reg(qdev, spir,
485 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
486 				   AUBURN_EEPROM_CLK_RISE);
487 		ql_write_nvram_reg(qdev, spir,
488 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
489 				   AUBURN_EEPROM_CLK_FALL);
490 		dataBit = (ql_read_common_reg(qdev, spir) &
491 			   AUBURN_EEPROM_DI_1) ? 1 : 0;
492 		data = (data << 1) | dataBit;
493 	}
494 	*value = (u16)data;
495 }
496 
497 /*
498  * Caller holds hw_lock.
499  */
500 static void eeprom_readword(struct ql3_adapter *qdev,
501 			    u32 eepromAddr, unsigned short *value)
502 {
503 	fm93c56a_select(qdev);
504 	fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
505 	fm93c56a_datain(qdev, value);
506 	fm93c56a_deselect(qdev);
507 }
508 
509 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
510 {
511 	__le16 *p = (__le16 *)ndev->dev_addr;
512 	p[0] = cpu_to_le16(addr[0]);
513 	p[1] = cpu_to_le16(addr[1]);
514 	p[2] = cpu_to_le16(addr[2]);
515 }
516 
517 static int ql_get_nvram_params(struct ql3_adapter *qdev)
518 {
519 	u16 *pEEPROMData;
520 	u16 checksum = 0;
521 	u32 index;
522 	unsigned long hw_flags;
523 
524 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
525 
526 	pEEPROMData = (u16 *)&qdev->nvram_data;
527 	qdev->eeprom_cmd_data = 0;
528 	if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
529 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
530 			 2) << 10)) {
531 		pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
532 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
533 		return -1;
534 	}
535 
536 	for (index = 0; index < EEPROM_SIZE; index++) {
537 		eeprom_readword(qdev, index, pEEPROMData);
538 		checksum += *pEEPROMData;
539 		pEEPROMData++;
540 	}
541 	ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
542 
543 	if (checksum != 0) {
544 		netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
545 			   checksum);
546 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
547 		return -1;
548 	}
549 
550 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
551 	return checksum;
552 }
553 
554 static const u32 PHYAddr[2] = {
555 	PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
556 };
557 
558 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
559 {
560 	struct ql3xxx_port_registers __iomem *port_regs =
561 			qdev->mem_map_registers;
562 	u32 temp;
563 	int count = 1000;
564 
565 	while (count) {
566 		temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
567 		if (!(temp & MAC_MII_STATUS_BSY))
568 			return 0;
569 		udelay(10);
570 		count--;
571 	}
572 	return -1;
573 }
574 
575 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
576 {
577 	struct ql3xxx_port_registers __iomem *port_regs =
578 			qdev->mem_map_registers;
579 	u32 scanControl;
580 
581 	if (qdev->numPorts > 1) {
582 		/* Auto scan will cycle through multiple ports */
583 		scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
584 	} else {
585 		scanControl = MAC_MII_CONTROL_SC;
586 	}
587 
588 	/*
589 	 * Scan register 1 of PHY/PETBI,
590 	 * Set up to scan both devices
591 	 * The autoscan starts from the first register, completes
592 	 * the last one before rolling over to the first
593 	 */
594 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
595 			   PHYAddr[0] | MII_SCAN_REGISTER);
596 
597 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
598 			   (scanControl) |
599 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
600 }
601 
602 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
603 {
604 	u8 ret;
605 	struct ql3xxx_port_registers __iomem *port_regs =
606 					qdev->mem_map_registers;
607 
608 	/* See if scan mode is enabled before we turn it off */
609 	if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
610 	    (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
611 		/* Scan is enabled */
612 		ret = 1;
613 	} else {
614 		/* Scan is disabled */
615 		ret = 0;
616 	}
617 
618 	/*
619 	 * When disabling scan mode you must first change the MII register
620 	 * address
621 	 */
622 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
623 			   PHYAddr[0] | MII_SCAN_REGISTER);
624 
625 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
626 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
627 			     MAC_MII_CONTROL_RC) << 16));
628 
629 	return ret;
630 }
631 
632 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
633 			       u16 regAddr, u16 value, u32 phyAddr)
634 {
635 	struct ql3xxx_port_registers __iomem *port_regs =
636 			qdev->mem_map_registers;
637 	u8 scanWasEnabled;
638 
639 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
640 
641 	if (ql_wait_for_mii_ready(qdev)) {
642 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
643 		return -1;
644 	}
645 
646 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
647 			   phyAddr | regAddr);
648 
649 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
650 
651 	/* Wait for write to complete 9/10/04 SJP */
652 	if (ql_wait_for_mii_ready(qdev)) {
653 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
654 		return -1;
655 	}
656 
657 	if (scanWasEnabled)
658 		ql_mii_enable_scan_mode(qdev);
659 
660 	return 0;
661 }
662 
663 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
664 			      u16 *value, u32 phyAddr)
665 {
666 	struct ql3xxx_port_registers __iomem *port_regs =
667 			qdev->mem_map_registers;
668 	u8 scanWasEnabled;
669 	u32 temp;
670 
671 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
672 
673 	if (ql_wait_for_mii_ready(qdev)) {
674 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
675 		return -1;
676 	}
677 
678 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
679 			   phyAddr | regAddr);
680 
681 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
682 			   (MAC_MII_CONTROL_RC << 16));
683 
684 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
685 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
686 
687 	/* Wait for the read to complete */
688 	if (ql_wait_for_mii_ready(qdev)) {
689 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
690 		return -1;
691 	}
692 
693 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
694 	*value = (u16) temp;
695 
696 	if (scanWasEnabled)
697 		ql_mii_enable_scan_mode(qdev);
698 
699 	return 0;
700 }
701 
702 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
703 {
704 	struct ql3xxx_port_registers __iomem *port_regs =
705 			qdev->mem_map_registers;
706 
707 	ql_mii_disable_scan_mode(qdev);
708 
709 	if (ql_wait_for_mii_ready(qdev)) {
710 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
711 		return -1;
712 	}
713 
714 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
715 			   qdev->PHYAddr | regAddr);
716 
717 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
718 
719 	/* Wait for write to complete. */
720 	if (ql_wait_for_mii_ready(qdev)) {
721 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
722 		return -1;
723 	}
724 
725 	ql_mii_enable_scan_mode(qdev);
726 
727 	return 0;
728 }
729 
730 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
731 {
732 	u32 temp;
733 	struct ql3xxx_port_registers __iomem *port_regs =
734 			qdev->mem_map_registers;
735 
736 	ql_mii_disable_scan_mode(qdev);
737 
738 	if (ql_wait_for_mii_ready(qdev)) {
739 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
740 		return -1;
741 	}
742 
743 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
744 			   qdev->PHYAddr | regAddr);
745 
746 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
747 			   (MAC_MII_CONTROL_RC << 16));
748 
749 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
750 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
751 
752 	/* Wait for the read to complete */
753 	if (ql_wait_for_mii_ready(qdev)) {
754 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
755 		return -1;
756 	}
757 
758 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
759 	*value = (u16) temp;
760 
761 	ql_mii_enable_scan_mode(qdev);
762 
763 	return 0;
764 }
765 
766 static void ql_petbi_reset(struct ql3_adapter *qdev)
767 {
768 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
769 }
770 
771 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
772 {
773 	u16 reg;
774 
775 	/* Enable Auto-negotiation sense */
776 	ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
777 	reg |= PETBI_TBI_AUTO_SENSE;
778 	ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
779 
780 	ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
781 			 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
782 
783 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
784 			 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
785 			 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
786 
787 }
788 
789 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
790 {
791 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
792 			    PHYAddr[qdev->mac_index]);
793 }
794 
795 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
796 {
797 	u16 reg;
798 
799 	/* Enable Auto-negotiation sense */
800 	ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
801 			   PHYAddr[qdev->mac_index]);
802 	reg |= PETBI_TBI_AUTO_SENSE;
803 	ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
804 			    PHYAddr[qdev->mac_index]);
805 
806 	ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
807 			    PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
808 			    PHYAddr[qdev->mac_index]);
809 
810 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
811 			    PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
812 			    PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
813 			    PHYAddr[qdev->mac_index]);
814 }
815 
816 static void ql_petbi_init(struct ql3_adapter *qdev)
817 {
818 	ql_petbi_reset(qdev);
819 	ql_petbi_start_neg(qdev);
820 }
821 
822 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
823 {
824 	ql_petbi_reset_ex(qdev);
825 	ql_petbi_start_neg_ex(qdev);
826 }
827 
828 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
829 {
830 	u16 reg;
831 
832 	if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
833 		return 0;
834 
835 	return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
836 }
837 
838 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
839 {
840 	netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
841 	/* power down device bit 11 = 1 */
842 	ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
843 	/* enable diagnostic mode bit 2 = 1 */
844 	ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
845 	/* 1000MB amplitude adjust (see Agere errata) */
846 	ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
847 	/* 1000MB amplitude adjust (see Agere errata) */
848 	ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
849 	/* 100MB amplitude adjust (see Agere errata) */
850 	ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
851 	/* 100MB amplitude adjust (see Agere errata) */
852 	ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
853 	/* 10MB amplitude adjust (see Agere errata) */
854 	ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
855 	/* 10MB amplitude adjust (see Agere errata) */
856 	ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
857 	/* point to hidden reg 0x2806 */
858 	ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
859 	/* Write new PHYAD w/bit 5 set */
860 	ql_mii_write_reg_ex(qdev, 0x11,
861 			    0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
862 	/*
863 	 * Disable diagnostic mode bit 2 = 0
864 	 * Power up device bit 11 = 0
865 	 * Link up (on) and activity (blink)
866 	 */
867 	ql_mii_write_reg(qdev, 0x12, 0x840a);
868 	ql_mii_write_reg(qdev, 0x00, 0x1140);
869 	ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
870 }
871 
872 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
873 				       u16 phyIdReg0, u16 phyIdReg1)
874 {
875 	enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
876 	u32   oui;
877 	u16   model;
878 	int i;
879 
880 	if (phyIdReg0 == 0xffff)
881 		return result;
882 
883 	if (phyIdReg1 == 0xffff)
884 		return result;
885 
886 	/* oui is split between two registers */
887 	oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
888 
889 	model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
890 
891 	/* Scan table for this PHY */
892 	for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
893 		if ((oui == PHY_DEVICES[i].phyIdOUI) &&
894 		    (model == PHY_DEVICES[i].phyIdModel)) {
895 			netdev_info(qdev->ndev, "Phy: %s\n",
896 				    PHY_DEVICES[i].name);
897 			result = PHY_DEVICES[i].phyDevice;
898 			break;
899 		}
900 	}
901 
902 	return result;
903 }
904 
905 static int ql_phy_get_speed(struct ql3_adapter *qdev)
906 {
907 	u16 reg;
908 
909 	switch (qdev->phyType) {
910 	case PHY_AGERE_ET1011C: {
911 		if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
912 			return 0;
913 
914 		reg = (reg >> 8) & 3;
915 		break;
916 	}
917 	default:
918 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
919 			return 0;
920 
921 		reg = (((reg & 0x18) >> 3) & 3);
922 	}
923 
924 	switch (reg) {
925 	case 2:
926 		return SPEED_1000;
927 	case 1:
928 		return SPEED_100;
929 	case 0:
930 		return SPEED_10;
931 	default:
932 		return -1;
933 	}
934 }
935 
936 static int ql_is_full_dup(struct ql3_adapter *qdev)
937 {
938 	u16 reg;
939 
940 	switch (qdev->phyType) {
941 	case PHY_AGERE_ET1011C: {
942 		if (ql_mii_read_reg(qdev, 0x1A, &reg))
943 			return 0;
944 
945 		return ((reg & 0x0080) && (reg & 0x1000)) != 0;
946 	}
947 	case PHY_VITESSE_VSC8211:
948 	default: {
949 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
950 			return 0;
951 		return (reg & PHY_AUX_DUPLEX_STAT) != 0;
952 	}
953 	}
954 }
955 
956 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
957 {
958 	u16 reg;
959 
960 	if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
961 		return 0;
962 
963 	return (reg & PHY_NEG_PAUSE) != 0;
964 }
965 
966 static int PHY_Setup(struct ql3_adapter *qdev)
967 {
968 	u16   reg1;
969 	u16   reg2;
970 	bool  agereAddrChangeNeeded = false;
971 	u32 miiAddr = 0;
972 	int err;
973 
974 	/*  Determine the PHY we are using by reading the ID's */
975 	err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
976 	if (err != 0) {
977 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
978 		return err;
979 	}
980 
981 	err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
982 	if (err != 0) {
983 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
984 		return err;
985 	}
986 
987 	/*  Check if we have a Agere PHY */
988 	if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
989 
990 		/* Determine which MII address we should be using
991 		   determined by the index of the card */
992 		if (qdev->mac_index == 0)
993 			miiAddr = MII_AGERE_ADDR_1;
994 		else
995 			miiAddr = MII_AGERE_ADDR_2;
996 
997 		err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
998 		if (err != 0) {
999 			netdev_err(qdev->ndev,
1000 				   "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1001 			return err;
1002 		}
1003 
1004 		err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1005 		if (err != 0) {
1006 			netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1007 			return err;
1008 		}
1009 
1010 		/*  We need to remember to initialize the Agere PHY */
1011 		agereAddrChangeNeeded = true;
1012 	}
1013 
1014 	/*  Determine the particular PHY we have on board to apply
1015 	    PHY specific initializations */
1016 	qdev->phyType = getPhyType(qdev, reg1, reg2);
1017 
1018 	if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1019 		/* need this here so address gets changed */
1020 		phyAgereSpecificInit(qdev, miiAddr);
1021 	} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1022 		netdev_err(qdev->ndev, "PHY is unknown\n");
1023 		return -EIO;
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Caller holds hw_lock.
1031  */
1032 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1033 {
1034 	struct ql3xxx_port_registers __iomem *port_regs =
1035 			qdev->mem_map_registers;
1036 	u32 value;
1037 
1038 	if (enable)
1039 		value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1040 	else
1041 		value = (MAC_CONFIG_REG_PE << 16);
1042 
1043 	if (qdev->mac_index)
1044 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1045 	else
1046 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1047 }
1048 
1049 /*
1050  * Caller holds hw_lock.
1051  */
1052 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1053 {
1054 	struct ql3xxx_port_registers __iomem *port_regs =
1055 			qdev->mem_map_registers;
1056 	u32 value;
1057 
1058 	if (enable)
1059 		value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1060 	else
1061 		value = (MAC_CONFIG_REG_SR << 16);
1062 
1063 	if (qdev->mac_index)
1064 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1065 	else
1066 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1067 }
1068 
1069 /*
1070  * Caller holds hw_lock.
1071  */
1072 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1073 {
1074 	struct ql3xxx_port_registers __iomem *port_regs =
1075 			qdev->mem_map_registers;
1076 	u32 value;
1077 
1078 	if (enable)
1079 		value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1080 	else
1081 		value = (MAC_CONFIG_REG_GM << 16);
1082 
1083 	if (qdev->mac_index)
1084 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1085 	else
1086 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1087 }
1088 
1089 /*
1090  * Caller holds hw_lock.
1091  */
1092 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1093 {
1094 	struct ql3xxx_port_registers __iomem *port_regs =
1095 			qdev->mem_map_registers;
1096 	u32 value;
1097 
1098 	if (enable)
1099 		value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1100 	else
1101 		value = (MAC_CONFIG_REG_FD << 16);
1102 
1103 	if (qdev->mac_index)
1104 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1105 	else
1106 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1107 }
1108 
1109 /*
1110  * Caller holds hw_lock.
1111  */
1112 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1113 {
1114 	struct ql3xxx_port_registers __iomem *port_regs =
1115 			qdev->mem_map_registers;
1116 	u32 value;
1117 
1118 	if (enable)
1119 		value =
1120 		    ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1121 		     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1122 	else
1123 		value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1124 
1125 	if (qdev->mac_index)
1126 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1127 	else
1128 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1129 }
1130 
1131 /*
1132  * Caller holds hw_lock.
1133  */
1134 static int ql_is_fiber(struct ql3_adapter *qdev)
1135 {
1136 	struct ql3xxx_port_registers __iomem *port_regs =
1137 			qdev->mem_map_registers;
1138 	u32 bitToCheck = 0;
1139 	u32 temp;
1140 
1141 	switch (qdev->mac_index) {
1142 	case 0:
1143 		bitToCheck = PORT_STATUS_SM0;
1144 		break;
1145 	case 1:
1146 		bitToCheck = PORT_STATUS_SM1;
1147 		break;
1148 	}
1149 
1150 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1151 	return (temp & bitToCheck) != 0;
1152 }
1153 
1154 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1155 {
1156 	u16 reg;
1157 	ql_mii_read_reg(qdev, 0x00, &reg);
1158 	return (reg & 0x1000) != 0;
1159 }
1160 
1161 /*
1162  * Caller holds hw_lock.
1163  */
1164 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1165 {
1166 	struct ql3xxx_port_registers __iomem *port_regs =
1167 			qdev->mem_map_registers;
1168 	u32 bitToCheck = 0;
1169 	u32 temp;
1170 
1171 	switch (qdev->mac_index) {
1172 	case 0:
1173 		bitToCheck = PORT_STATUS_AC0;
1174 		break;
1175 	case 1:
1176 		bitToCheck = PORT_STATUS_AC1;
1177 		break;
1178 	}
1179 
1180 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1181 	if (temp & bitToCheck) {
1182 		netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1183 		return 1;
1184 	}
1185 	netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1186 	return 0;
1187 }
1188 
1189 /*
1190  *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
1191  */
1192 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1193 {
1194 	if (ql_is_fiber(qdev))
1195 		return ql_is_petbi_neg_pause(qdev);
1196 	else
1197 		return ql_is_phy_neg_pause(qdev);
1198 }
1199 
1200 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1201 {
1202 	struct ql3xxx_port_registers __iomem *port_regs =
1203 			qdev->mem_map_registers;
1204 	u32 bitToCheck = 0;
1205 	u32 temp;
1206 
1207 	switch (qdev->mac_index) {
1208 	case 0:
1209 		bitToCheck = PORT_STATUS_AE0;
1210 		break;
1211 	case 1:
1212 		bitToCheck = PORT_STATUS_AE1;
1213 		break;
1214 	}
1215 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1216 	return (temp & bitToCheck) != 0;
1217 }
1218 
1219 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1220 {
1221 	if (ql_is_fiber(qdev))
1222 		return SPEED_1000;
1223 	else
1224 		return ql_phy_get_speed(qdev);
1225 }
1226 
1227 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1228 {
1229 	if (ql_is_fiber(qdev))
1230 		return 1;
1231 	else
1232 		return ql_is_full_dup(qdev);
1233 }
1234 
1235 /*
1236  * Caller holds hw_lock.
1237  */
1238 static int ql_link_down_detect(struct ql3_adapter *qdev)
1239 {
1240 	struct ql3xxx_port_registers __iomem *port_regs =
1241 			qdev->mem_map_registers;
1242 	u32 bitToCheck = 0;
1243 	u32 temp;
1244 
1245 	switch (qdev->mac_index) {
1246 	case 0:
1247 		bitToCheck = ISP_CONTROL_LINK_DN_0;
1248 		break;
1249 	case 1:
1250 		bitToCheck = ISP_CONTROL_LINK_DN_1;
1251 		break;
1252 	}
1253 
1254 	temp =
1255 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1256 	return (temp & bitToCheck) != 0;
1257 }
1258 
1259 /*
1260  * Caller holds hw_lock.
1261  */
1262 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1263 {
1264 	struct ql3xxx_port_registers __iomem *port_regs =
1265 			qdev->mem_map_registers;
1266 
1267 	switch (qdev->mac_index) {
1268 	case 0:
1269 		ql_write_common_reg(qdev,
1270 				    &port_regs->CommonRegs.ispControlStatus,
1271 				    (ISP_CONTROL_LINK_DN_0) |
1272 				    (ISP_CONTROL_LINK_DN_0 << 16));
1273 		break;
1274 
1275 	case 1:
1276 		ql_write_common_reg(qdev,
1277 				    &port_regs->CommonRegs.ispControlStatus,
1278 				    (ISP_CONTROL_LINK_DN_1) |
1279 				    (ISP_CONTROL_LINK_DN_1 << 16));
1280 		break;
1281 
1282 	default:
1283 		return 1;
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  * Caller holds hw_lock.
1291  */
1292 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1293 {
1294 	struct ql3xxx_port_registers __iomem *port_regs =
1295 			qdev->mem_map_registers;
1296 	u32 bitToCheck = 0;
1297 	u32 temp;
1298 
1299 	switch (qdev->mac_index) {
1300 	case 0:
1301 		bitToCheck = PORT_STATUS_F1_ENABLED;
1302 		break;
1303 	case 1:
1304 		bitToCheck = PORT_STATUS_F3_ENABLED;
1305 		break;
1306 	default:
1307 		break;
1308 	}
1309 
1310 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1311 	if (temp & bitToCheck) {
1312 		netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1313 			     "not link master\n");
1314 		return 0;
1315 	}
1316 
1317 	netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1318 	return 1;
1319 }
1320 
1321 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1322 {
1323 	ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1324 			    PHYAddr[qdev->mac_index]);
1325 }
1326 
1327 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1328 {
1329 	u16 reg;
1330 	u16 portConfiguration;
1331 
1332 	if (qdev->phyType == PHY_AGERE_ET1011C)
1333 		ql_mii_write_reg(qdev, 0x13, 0x0000);
1334 					/* turn off external loopback */
1335 
1336 	if (qdev->mac_index == 0)
1337 		portConfiguration =
1338 			qdev->nvram_data.macCfg_port0.portConfiguration;
1339 	else
1340 		portConfiguration =
1341 			qdev->nvram_data.macCfg_port1.portConfiguration;
1342 
1343 	/*  Some HBA's in the field are set to 0 and they need to
1344 	    be reinterpreted with a default value */
1345 	if (portConfiguration == 0)
1346 		portConfiguration = PORT_CONFIG_DEFAULT;
1347 
1348 	/* Set the 1000 advertisements */
1349 	ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1350 			   PHYAddr[qdev->mac_index]);
1351 	reg &= ~PHY_GIG_ALL_PARAMS;
1352 
1353 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1354 		if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1355 			reg |= PHY_GIG_ADV_1000F;
1356 		else
1357 			reg |= PHY_GIG_ADV_1000H;
1358 	}
1359 
1360 	ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1361 			    PHYAddr[qdev->mac_index]);
1362 
1363 	/* Set the 10/100 & pause negotiation advertisements */
1364 	ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1365 			   PHYAddr[qdev->mac_index]);
1366 	reg &= ~PHY_NEG_ALL_PARAMS;
1367 
1368 	if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1369 		reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1370 
1371 	if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1372 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1373 			reg |= PHY_NEG_ADV_100F;
1374 
1375 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1376 			reg |= PHY_NEG_ADV_10F;
1377 	}
1378 
1379 	if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1380 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1381 			reg |= PHY_NEG_ADV_100H;
1382 
1383 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1384 			reg |= PHY_NEG_ADV_10H;
1385 	}
1386 
1387 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1388 		reg |= 1;
1389 
1390 	ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1391 			    PHYAddr[qdev->mac_index]);
1392 
1393 	ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1394 
1395 	ql_mii_write_reg_ex(qdev, CONTROL_REG,
1396 			    reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1397 			    PHYAddr[qdev->mac_index]);
1398 }
1399 
1400 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1401 {
1402 	ql_phy_reset_ex(qdev);
1403 	PHY_Setup(qdev);
1404 	ql_phy_start_neg_ex(qdev);
1405 }
1406 
1407 /*
1408  * Caller holds hw_lock.
1409  */
1410 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1411 {
1412 	struct ql3xxx_port_registers __iomem *port_regs =
1413 			qdev->mem_map_registers;
1414 	u32 bitToCheck = 0;
1415 	u32 temp, linkState;
1416 
1417 	switch (qdev->mac_index) {
1418 	case 0:
1419 		bitToCheck = PORT_STATUS_UP0;
1420 		break;
1421 	case 1:
1422 		bitToCheck = PORT_STATUS_UP1;
1423 		break;
1424 	}
1425 
1426 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1427 	if (temp & bitToCheck)
1428 		linkState = LS_UP;
1429 	else
1430 		linkState = LS_DOWN;
1431 
1432 	return linkState;
1433 }
1434 
1435 static int ql_port_start(struct ql3_adapter *qdev)
1436 {
1437 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1438 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1439 			 2) << 7)) {
1440 		netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1441 		return -1;
1442 	}
1443 
1444 	if (ql_is_fiber(qdev)) {
1445 		ql_petbi_init(qdev);
1446 	} else {
1447 		/* Copper port */
1448 		ql_phy_init_ex(qdev);
1449 	}
1450 
1451 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1452 	return 0;
1453 }
1454 
1455 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1456 {
1457 
1458 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1459 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1460 			 2) << 7))
1461 		return -1;
1462 
1463 	if (!ql_auto_neg_error(qdev)) {
1464 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1465 			/* configure the MAC */
1466 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1467 				     "Configuring link\n");
1468 			ql_mac_cfg_soft_reset(qdev, 1);
1469 			ql_mac_cfg_gig(qdev,
1470 				       (ql_get_link_speed
1471 					(qdev) ==
1472 					SPEED_1000));
1473 			ql_mac_cfg_full_dup(qdev,
1474 					    ql_is_link_full_dup
1475 					    (qdev));
1476 			ql_mac_cfg_pause(qdev,
1477 					 ql_is_neg_pause
1478 					 (qdev));
1479 			ql_mac_cfg_soft_reset(qdev, 0);
1480 
1481 			/* enable the MAC */
1482 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1483 				     "Enabling mac\n");
1484 			ql_mac_enable(qdev, 1);
1485 		}
1486 
1487 		qdev->port_link_state = LS_UP;
1488 		netif_start_queue(qdev->ndev);
1489 		netif_carrier_on(qdev->ndev);
1490 		netif_info(qdev, link, qdev->ndev,
1491 			   "Link is up at %d Mbps, %s duplex\n",
1492 			   ql_get_link_speed(qdev),
1493 			   ql_is_link_full_dup(qdev) ? "full" : "half");
1494 
1495 	} else {	/* Remote error detected */
1496 
1497 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1498 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1499 				     "Remote error detected. Calling ql_port_start()\n");
1500 			/*
1501 			 * ql_port_start() is shared code and needs
1502 			 * to lock the PHY on it's own.
1503 			 */
1504 			ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1505 			if (ql_port_start(qdev))	/* Restart port */
1506 				return -1;
1507 			return 0;
1508 		}
1509 	}
1510 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1511 	return 0;
1512 }
1513 
1514 static void ql_link_state_machine_work(struct work_struct *work)
1515 {
1516 	struct ql3_adapter *qdev =
1517 		container_of(work, struct ql3_adapter, link_state_work.work);
1518 
1519 	u32 curr_link_state;
1520 	unsigned long hw_flags;
1521 
1522 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1523 
1524 	curr_link_state = ql_get_link_state(qdev);
1525 
1526 	if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1527 		netif_info(qdev, link, qdev->ndev,
1528 			   "Reset in progress, skip processing link state\n");
1529 
1530 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1531 
1532 		/* Restart timer on 2 second interval. */
1533 		mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1534 
1535 		return;
1536 	}
1537 
1538 	switch (qdev->port_link_state) {
1539 	default:
1540 		if (test_bit(QL_LINK_MASTER, &qdev->flags))
1541 			ql_port_start(qdev);
1542 		qdev->port_link_state = LS_DOWN;
1543 		fallthrough;
1544 
1545 	case LS_DOWN:
1546 		if (curr_link_state == LS_UP) {
1547 			netif_info(qdev, link, qdev->ndev, "Link is up\n");
1548 			if (ql_is_auto_neg_complete(qdev))
1549 				ql_finish_auto_neg(qdev);
1550 
1551 			if (qdev->port_link_state == LS_UP)
1552 				ql_link_down_detect_clear(qdev);
1553 
1554 			qdev->port_link_state = LS_UP;
1555 		}
1556 		break;
1557 
1558 	case LS_UP:
1559 		/*
1560 		 * See if the link is currently down or went down and came
1561 		 * back up
1562 		 */
1563 		if (curr_link_state == LS_DOWN) {
1564 			netif_info(qdev, link, qdev->ndev, "Link is down\n");
1565 			qdev->port_link_state = LS_DOWN;
1566 		}
1567 		if (ql_link_down_detect(qdev))
1568 			qdev->port_link_state = LS_DOWN;
1569 		break;
1570 	}
1571 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1572 
1573 	/* Restart timer on 2 second interval. */
1574 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1575 }
1576 
1577 /*
1578  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1579  */
1580 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1581 {
1582 	if (ql_this_adapter_controls_port(qdev))
1583 		set_bit(QL_LINK_MASTER, &qdev->flags);
1584 	else
1585 		clear_bit(QL_LINK_MASTER, &qdev->flags);
1586 }
1587 
1588 /*
1589  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1590  */
1591 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1592 {
1593 	ql_mii_enable_scan_mode(qdev);
1594 
1595 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1596 		if (ql_this_adapter_controls_port(qdev))
1597 			ql_petbi_init_ex(qdev);
1598 	} else {
1599 		if (ql_this_adapter_controls_port(qdev))
1600 			ql_phy_init_ex(qdev);
1601 	}
1602 }
1603 
1604 /*
1605  * MII_Setup needs to be called before taking the PHY out of reset
1606  * so that the management interface clock speed can be set properly.
1607  * It would be better if we had a way to disable MDC until after the
1608  * PHY is out of reset, but we don't have that capability.
1609  */
1610 static int ql_mii_setup(struct ql3_adapter *qdev)
1611 {
1612 	u32 reg;
1613 	struct ql3xxx_port_registers __iomem *port_regs =
1614 			qdev->mem_map_registers;
1615 
1616 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1617 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1618 			 2) << 7))
1619 		return -1;
1620 
1621 	if (qdev->device_id == QL3032_DEVICE_ID)
1622 		ql_write_page0_reg(qdev,
1623 			&port_regs->macMIIMgmtControlReg, 0x0f00000);
1624 
1625 	/* Divide 125MHz clock by 28 to meet PHY timing requirements */
1626 	reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1627 
1628 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1629 			   reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1630 
1631 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1632 	return 0;
1633 }
1634 
1635 #define SUPPORTED_OPTICAL_MODES	(SUPPORTED_1000baseT_Full |	\
1636 				 SUPPORTED_FIBRE |		\
1637 				 SUPPORTED_Autoneg)
1638 #define SUPPORTED_TP_MODES	(SUPPORTED_10baseT_Half |	\
1639 				 SUPPORTED_10baseT_Full |	\
1640 				 SUPPORTED_100baseT_Half |	\
1641 				 SUPPORTED_100baseT_Full |	\
1642 				 SUPPORTED_1000baseT_Half |	\
1643 				 SUPPORTED_1000baseT_Full |	\
1644 				 SUPPORTED_Autoneg |		\
1645 				 SUPPORTED_TP)			\
1646 
1647 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1648 {
1649 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1650 		return SUPPORTED_OPTICAL_MODES;
1651 
1652 	return SUPPORTED_TP_MODES;
1653 }
1654 
1655 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1656 {
1657 	int status;
1658 	unsigned long hw_flags;
1659 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1660 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1661 			    (QL_RESOURCE_BITS_BASE_CODE |
1662 			     (qdev->mac_index) * 2) << 7)) {
1663 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1664 		return 0;
1665 	}
1666 	status = ql_is_auto_cfg(qdev);
1667 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1668 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1669 	return status;
1670 }
1671 
1672 static u32 ql_get_speed(struct ql3_adapter *qdev)
1673 {
1674 	u32 status;
1675 	unsigned long hw_flags;
1676 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1677 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1678 			    (QL_RESOURCE_BITS_BASE_CODE |
1679 			     (qdev->mac_index) * 2) << 7)) {
1680 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1681 		return 0;
1682 	}
1683 	status = ql_get_link_speed(qdev);
1684 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1685 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1686 	return status;
1687 }
1688 
1689 static int ql_get_full_dup(struct ql3_adapter *qdev)
1690 {
1691 	int status;
1692 	unsigned long hw_flags;
1693 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1694 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1695 			    (QL_RESOURCE_BITS_BASE_CODE |
1696 			     (qdev->mac_index) * 2) << 7)) {
1697 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1698 		return 0;
1699 	}
1700 	status = ql_is_link_full_dup(qdev);
1701 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1702 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1703 	return status;
1704 }
1705 
1706 static int ql_get_link_ksettings(struct net_device *ndev,
1707 				 struct ethtool_link_ksettings *cmd)
1708 {
1709 	struct ql3_adapter *qdev = netdev_priv(ndev);
1710 	u32 supported, advertising;
1711 
1712 	supported = ql_supported_modes(qdev);
1713 
1714 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1715 		cmd->base.port = PORT_FIBRE;
1716 	} else {
1717 		cmd->base.port = PORT_TP;
1718 		cmd->base.phy_address = qdev->PHYAddr;
1719 	}
1720 	advertising = ql_supported_modes(qdev);
1721 	cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
1722 	cmd->base.speed = ql_get_speed(qdev);
1723 	cmd->base.duplex = ql_get_full_dup(qdev);
1724 
1725 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1726 						supported);
1727 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1728 						advertising);
1729 
1730 	return 0;
1731 }
1732 
1733 static void ql_get_drvinfo(struct net_device *ndev,
1734 			   struct ethtool_drvinfo *drvinfo)
1735 {
1736 	struct ql3_adapter *qdev = netdev_priv(ndev);
1737 	strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1738 	strlcpy(drvinfo->version, ql3xxx_driver_version,
1739 		sizeof(drvinfo->version));
1740 	strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1741 		sizeof(drvinfo->bus_info));
1742 }
1743 
1744 static u32 ql_get_msglevel(struct net_device *ndev)
1745 {
1746 	struct ql3_adapter *qdev = netdev_priv(ndev);
1747 	return qdev->msg_enable;
1748 }
1749 
1750 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1751 {
1752 	struct ql3_adapter *qdev = netdev_priv(ndev);
1753 	qdev->msg_enable = value;
1754 }
1755 
1756 static void ql_get_pauseparam(struct net_device *ndev,
1757 			      struct ethtool_pauseparam *pause)
1758 {
1759 	struct ql3_adapter *qdev = netdev_priv(ndev);
1760 	struct ql3xxx_port_registers __iomem *port_regs =
1761 		qdev->mem_map_registers;
1762 
1763 	u32 reg;
1764 	if (qdev->mac_index == 0)
1765 		reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1766 	else
1767 		reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1768 
1769 	pause->autoneg  = ql_get_auto_cfg_status(qdev);
1770 	pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1771 	pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1772 }
1773 
1774 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1775 	.get_drvinfo = ql_get_drvinfo,
1776 	.get_link = ethtool_op_get_link,
1777 	.get_msglevel = ql_get_msglevel,
1778 	.set_msglevel = ql_set_msglevel,
1779 	.get_pauseparam = ql_get_pauseparam,
1780 	.get_link_ksettings = ql_get_link_ksettings,
1781 };
1782 
1783 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1784 {
1785 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1786 	dma_addr_t map;
1787 	int err;
1788 
1789 	while (lrg_buf_cb) {
1790 		if (!lrg_buf_cb->skb) {
1791 			lrg_buf_cb->skb =
1792 				netdev_alloc_skb(qdev->ndev,
1793 						 qdev->lrg_buffer_len);
1794 			if (unlikely(!lrg_buf_cb->skb)) {
1795 				netdev_printk(KERN_DEBUG, qdev->ndev,
1796 					      "Failed netdev_alloc_skb()\n");
1797 				break;
1798 			} else {
1799 				/*
1800 				 * We save some space to copy the ethhdr from
1801 				 * first buffer
1802 				 */
1803 				skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1804 				map = dma_map_single(&qdev->pdev->dev,
1805 						     lrg_buf_cb->skb->data,
1806 						     qdev->lrg_buffer_len - QL_HEADER_SPACE,
1807 						     DMA_FROM_DEVICE);
1808 
1809 				err = dma_mapping_error(&qdev->pdev->dev, map);
1810 				if (err) {
1811 					netdev_err(qdev->ndev,
1812 						   "PCI mapping failed with error: %d\n",
1813 						   err);
1814 					dev_kfree_skb(lrg_buf_cb->skb);
1815 					lrg_buf_cb->skb = NULL;
1816 					break;
1817 				}
1818 
1819 
1820 				lrg_buf_cb->buf_phy_addr_low =
1821 					cpu_to_le32(LS_64BITS(map));
1822 				lrg_buf_cb->buf_phy_addr_high =
1823 					cpu_to_le32(MS_64BITS(map));
1824 				dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1825 				dma_unmap_len_set(lrg_buf_cb, maplen,
1826 						  qdev->lrg_buffer_len -
1827 						  QL_HEADER_SPACE);
1828 				--qdev->lrg_buf_skb_check;
1829 				if (!qdev->lrg_buf_skb_check)
1830 					return 1;
1831 			}
1832 		}
1833 		lrg_buf_cb = lrg_buf_cb->next;
1834 	}
1835 	return 0;
1836 }
1837 
1838 /*
1839  * Caller holds hw_lock.
1840  */
1841 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1842 {
1843 	struct ql3xxx_port_registers __iomem *port_regs =
1844 		qdev->mem_map_registers;
1845 
1846 	if (qdev->small_buf_release_cnt >= 16) {
1847 		while (qdev->small_buf_release_cnt >= 16) {
1848 			qdev->small_buf_q_producer_index++;
1849 
1850 			if (qdev->small_buf_q_producer_index ==
1851 			    NUM_SBUFQ_ENTRIES)
1852 				qdev->small_buf_q_producer_index = 0;
1853 			qdev->small_buf_release_cnt -= 8;
1854 		}
1855 		wmb();
1856 		writel_relaxed(qdev->small_buf_q_producer_index,
1857 			       &port_regs->CommonRegs.rxSmallQProducerIndex);
1858 	}
1859 }
1860 
1861 /*
1862  * Caller holds hw_lock.
1863  */
1864 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1865 {
1866 	struct bufq_addr_element *lrg_buf_q_ele;
1867 	int i;
1868 	struct ql_rcv_buf_cb *lrg_buf_cb;
1869 	struct ql3xxx_port_registers __iomem *port_regs =
1870 		qdev->mem_map_registers;
1871 
1872 	if ((qdev->lrg_buf_free_count >= 8) &&
1873 	    (qdev->lrg_buf_release_cnt >= 16)) {
1874 
1875 		if (qdev->lrg_buf_skb_check)
1876 			if (!ql_populate_free_queue(qdev))
1877 				return;
1878 
1879 		lrg_buf_q_ele = qdev->lrg_buf_next_free;
1880 
1881 		while ((qdev->lrg_buf_release_cnt >= 16) &&
1882 		       (qdev->lrg_buf_free_count >= 8)) {
1883 
1884 			for (i = 0; i < 8; i++) {
1885 				lrg_buf_cb =
1886 				    ql_get_from_lrg_buf_free_list(qdev);
1887 				lrg_buf_q_ele->addr_high =
1888 				    lrg_buf_cb->buf_phy_addr_high;
1889 				lrg_buf_q_ele->addr_low =
1890 				    lrg_buf_cb->buf_phy_addr_low;
1891 				lrg_buf_q_ele++;
1892 
1893 				qdev->lrg_buf_release_cnt--;
1894 			}
1895 
1896 			qdev->lrg_buf_q_producer_index++;
1897 
1898 			if (qdev->lrg_buf_q_producer_index ==
1899 			    qdev->num_lbufq_entries)
1900 				qdev->lrg_buf_q_producer_index = 0;
1901 
1902 			if (qdev->lrg_buf_q_producer_index ==
1903 			    (qdev->num_lbufq_entries - 1)) {
1904 				lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1905 			}
1906 		}
1907 		wmb();
1908 		qdev->lrg_buf_next_free = lrg_buf_q_ele;
1909 		writel(qdev->lrg_buf_q_producer_index,
1910 			&port_regs->CommonRegs.rxLargeQProducerIndex);
1911 	}
1912 }
1913 
1914 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1915 				   struct ob_mac_iocb_rsp *mac_rsp)
1916 {
1917 	struct ql_tx_buf_cb *tx_cb;
1918 	int i;
1919 
1920 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1921 		netdev_warn(qdev->ndev,
1922 			    "Frame too short but it was padded and sent\n");
1923 	}
1924 
1925 	tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1926 
1927 	/*  Check the transmit response flags for any errors */
1928 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1929 		netdev_err(qdev->ndev,
1930 			   "Frame too short to be legal, frame not sent\n");
1931 
1932 		qdev->ndev->stats.tx_errors++;
1933 		goto frame_not_sent;
1934 	}
1935 
1936 	if (tx_cb->seg_count == 0) {
1937 		netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1938 			   mac_rsp->transaction_id);
1939 
1940 		qdev->ndev->stats.tx_errors++;
1941 		goto invalid_seg_count;
1942 	}
1943 
1944 	dma_unmap_single(&qdev->pdev->dev,
1945 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1946 			 dma_unmap_len(&tx_cb->map[0], maplen), DMA_TO_DEVICE);
1947 	tx_cb->seg_count--;
1948 	if (tx_cb->seg_count) {
1949 		for (i = 1; i < tx_cb->seg_count; i++) {
1950 			dma_unmap_page(&qdev->pdev->dev,
1951 				       dma_unmap_addr(&tx_cb->map[i], mapaddr),
1952 				       dma_unmap_len(&tx_cb->map[i], maplen),
1953 				       DMA_TO_DEVICE);
1954 		}
1955 	}
1956 	qdev->ndev->stats.tx_packets++;
1957 	qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1958 
1959 frame_not_sent:
1960 	dev_kfree_skb_irq(tx_cb->skb);
1961 	tx_cb->skb = NULL;
1962 
1963 invalid_seg_count:
1964 	atomic_inc(&qdev->tx_count);
1965 }
1966 
1967 static void ql_get_sbuf(struct ql3_adapter *qdev)
1968 {
1969 	if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1970 		qdev->small_buf_index = 0;
1971 	qdev->small_buf_release_cnt++;
1972 }
1973 
1974 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1975 {
1976 	struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1977 	lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1978 	qdev->lrg_buf_release_cnt++;
1979 	if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1980 		qdev->lrg_buf_index = 0;
1981 	return lrg_buf_cb;
1982 }
1983 
1984 /*
1985  * The difference between 3022 and 3032 for inbound completions:
1986  * 3022 uses two buffers per completion.  The first buffer contains
1987  * (some) header info, the second the remainder of the headers plus
1988  * the data.  For this chip we reserve some space at the top of the
1989  * receive buffer so that the header info in buffer one can be
1990  * prepended to the buffer two.  Buffer two is the sent up while
1991  * buffer one is returned to the hardware to be reused.
1992  * 3032 receives all of it's data and headers in one buffer for a
1993  * simpler process.  3032 also supports checksum verification as
1994  * can be seen in ql_process_macip_rx_intr().
1995  */
1996 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
1997 				   struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
1998 {
1999 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2000 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2001 	struct sk_buff *skb;
2002 	u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2003 
2004 	/*
2005 	 * Get the inbound address list (small buffer).
2006 	 */
2007 	ql_get_sbuf(qdev);
2008 
2009 	if (qdev->device_id == QL3022_DEVICE_ID)
2010 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2011 
2012 	/* start of second buffer */
2013 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2014 	skb = lrg_buf_cb2->skb;
2015 
2016 	qdev->ndev->stats.rx_packets++;
2017 	qdev->ndev->stats.rx_bytes += length;
2018 
2019 	skb_put(skb, length);
2020 	dma_unmap_single(&qdev->pdev->dev,
2021 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2022 			 dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
2023 	prefetch(skb->data);
2024 	skb_checksum_none_assert(skb);
2025 	skb->protocol = eth_type_trans(skb, qdev->ndev);
2026 
2027 	napi_gro_receive(&qdev->napi, skb);
2028 	lrg_buf_cb2->skb = NULL;
2029 
2030 	if (qdev->device_id == QL3022_DEVICE_ID)
2031 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2032 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2033 }
2034 
2035 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2036 				     struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2037 {
2038 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2039 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2040 	struct sk_buff *skb1 = NULL, *skb2;
2041 	struct net_device *ndev = qdev->ndev;
2042 	u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2043 	u16 size = 0;
2044 
2045 	/*
2046 	 * Get the inbound address list (small buffer).
2047 	 */
2048 
2049 	ql_get_sbuf(qdev);
2050 
2051 	if (qdev->device_id == QL3022_DEVICE_ID) {
2052 		/* start of first buffer on 3022 */
2053 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2054 		skb1 = lrg_buf_cb1->skb;
2055 		size = ETH_HLEN;
2056 		if (*((u16 *) skb1->data) != 0xFFFF)
2057 			size += VLAN_ETH_HLEN - ETH_HLEN;
2058 	}
2059 
2060 	/* start of second buffer */
2061 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2062 	skb2 = lrg_buf_cb2->skb;
2063 
2064 	skb_put(skb2, length);	/* Just the second buffer length here. */
2065 	dma_unmap_single(&qdev->pdev->dev,
2066 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2067 			 dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
2068 	prefetch(skb2->data);
2069 
2070 	skb_checksum_none_assert(skb2);
2071 	if (qdev->device_id == QL3022_DEVICE_ID) {
2072 		/*
2073 		 * Copy the ethhdr from first buffer to second. This
2074 		 * is necessary for 3022 IP completions.
2075 		 */
2076 		skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2077 						 skb_push(skb2, size), size);
2078 	} else {
2079 		u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2080 		if (checksum &
2081 			(IB_IP_IOCB_RSP_3032_ICE |
2082 			 IB_IP_IOCB_RSP_3032_CE)) {
2083 			netdev_err(ndev,
2084 				   "%s: Bad checksum for this %s packet, checksum = %x\n",
2085 				   __func__,
2086 				   ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2087 				    "TCP" : "UDP"), checksum);
2088 		} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2089 				(checksum & IB_IP_IOCB_RSP_3032_UDP &&
2090 				!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2091 			skb2->ip_summed = CHECKSUM_UNNECESSARY;
2092 		}
2093 	}
2094 	skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2095 
2096 	napi_gro_receive(&qdev->napi, skb2);
2097 	ndev->stats.rx_packets++;
2098 	ndev->stats.rx_bytes += length;
2099 	lrg_buf_cb2->skb = NULL;
2100 
2101 	if (qdev->device_id == QL3022_DEVICE_ID)
2102 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2103 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2104 }
2105 
2106 static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
2107 {
2108 	struct net_rsp_iocb *net_rsp;
2109 	struct net_device *ndev = qdev->ndev;
2110 	int work_done = 0;
2111 
2112 	/* While there are entries in the completion queue. */
2113 	while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2114 		qdev->rsp_consumer_index) && (work_done < budget)) {
2115 
2116 		net_rsp = qdev->rsp_current;
2117 		rmb();
2118 		/*
2119 		 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2120 		 * if the inbound completion is for a VLAN.
2121 		 */
2122 		if (qdev->device_id == QL3032_DEVICE_ID)
2123 			net_rsp->opcode &= 0x7f;
2124 		switch (net_rsp->opcode) {
2125 
2126 		case OPCODE_OB_MAC_IOCB_FN0:
2127 		case OPCODE_OB_MAC_IOCB_FN2:
2128 			ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2129 					       net_rsp);
2130 			break;
2131 
2132 		case OPCODE_IB_MAC_IOCB:
2133 		case OPCODE_IB_3032_MAC_IOCB:
2134 			ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2135 					       net_rsp);
2136 			work_done++;
2137 			break;
2138 
2139 		case OPCODE_IB_IP_IOCB:
2140 		case OPCODE_IB_3032_IP_IOCB:
2141 			ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2142 						 net_rsp);
2143 			work_done++;
2144 			break;
2145 		default: {
2146 			u32 *tmp = (u32 *)net_rsp;
2147 			netdev_err(ndev,
2148 				   "Hit default case, not handled!\n"
2149 				   "	dropping the packet, opcode = %x\n"
2150 				   "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2151 				   net_rsp->opcode,
2152 				   (unsigned long int)tmp[0],
2153 				   (unsigned long int)tmp[1],
2154 				   (unsigned long int)tmp[2],
2155 				   (unsigned long int)tmp[3]);
2156 		}
2157 		}
2158 
2159 		qdev->rsp_consumer_index++;
2160 
2161 		if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2162 			qdev->rsp_consumer_index = 0;
2163 			qdev->rsp_current = qdev->rsp_q_virt_addr;
2164 		} else {
2165 			qdev->rsp_current++;
2166 		}
2167 
2168 	}
2169 
2170 	return work_done;
2171 }
2172 
2173 static int ql_poll(struct napi_struct *napi, int budget)
2174 {
2175 	struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2176 	struct ql3xxx_port_registers __iomem *port_regs =
2177 		qdev->mem_map_registers;
2178 	int work_done;
2179 
2180 	work_done = ql_tx_rx_clean(qdev, budget);
2181 
2182 	if (work_done < budget && napi_complete_done(napi, work_done)) {
2183 		unsigned long flags;
2184 
2185 		spin_lock_irqsave(&qdev->hw_lock, flags);
2186 		ql_update_small_bufq_prod_index(qdev);
2187 		ql_update_lrg_bufq_prod_index(qdev);
2188 		writel(qdev->rsp_consumer_index,
2189 			    &port_regs->CommonRegs.rspQConsumerIndex);
2190 		spin_unlock_irqrestore(&qdev->hw_lock, flags);
2191 
2192 		ql_enable_interrupts(qdev);
2193 	}
2194 	return work_done;
2195 }
2196 
2197 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2198 {
2199 
2200 	struct net_device *ndev = dev_id;
2201 	struct ql3_adapter *qdev = netdev_priv(ndev);
2202 	struct ql3xxx_port_registers __iomem *port_regs =
2203 		qdev->mem_map_registers;
2204 	u32 value;
2205 	int handled = 1;
2206 	u32 var;
2207 
2208 	value = ql_read_common_reg_l(qdev,
2209 				     &port_regs->CommonRegs.ispControlStatus);
2210 
2211 	if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2212 		spin_lock(&qdev->adapter_lock);
2213 		netif_stop_queue(qdev->ndev);
2214 		netif_carrier_off(qdev->ndev);
2215 		ql_disable_interrupts(qdev);
2216 		qdev->port_link_state = LS_DOWN;
2217 		set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2218 
2219 		if (value & ISP_CONTROL_FE) {
2220 			/*
2221 			 * Chip Fatal Error.
2222 			 */
2223 			var =
2224 			    ql_read_page0_reg_l(qdev,
2225 					      &port_regs->PortFatalErrStatus);
2226 			netdev_warn(ndev,
2227 				    "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2228 				    var);
2229 			set_bit(QL_RESET_START, &qdev->flags) ;
2230 		} else {
2231 			/*
2232 			 * Soft Reset Requested.
2233 			 */
2234 			set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2235 			netdev_err(ndev,
2236 				   "Another function issued a reset to the chip. ISR value = %x\n",
2237 				   value);
2238 		}
2239 		queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2240 		spin_unlock(&qdev->adapter_lock);
2241 	} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2242 		ql_disable_interrupts(qdev);
2243 		if (likely(napi_schedule_prep(&qdev->napi)))
2244 			__napi_schedule(&qdev->napi);
2245 	} else
2246 		return IRQ_NONE;
2247 
2248 	return IRQ_RETVAL(handled);
2249 }
2250 
2251 /*
2252  * Get the total number of segments needed for the given number of fragments.
2253  * This is necessary because outbound address lists (OAL) will be used when
2254  * more than two frags are given.  Each address list has 5 addr/len pairs.
2255  * The 5th pair in each OAL is used to  point to the next OAL if more frags
2256  * are coming.  That is why the frags:segment count ratio is not linear.
2257  */
2258 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2259 {
2260 	if (qdev->device_id == QL3022_DEVICE_ID)
2261 		return 1;
2262 
2263 	if (frags <= 2)
2264 		return frags + 1;
2265 	else if (frags <= 6)
2266 		return frags + 2;
2267 	else if (frags <= 10)
2268 		return frags + 3;
2269 	else if (frags <= 14)
2270 		return frags + 4;
2271 	else if (frags <= 18)
2272 		return frags + 5;
2273 	return -1;
2274 }
2275 
2276 static void ql_hw_csum_setup(const struct sk_buff *skb,
2277 			     struct ob_mac_iocb_req *mac_iocb_ptr)
2278 {
2279 	const struct iphdr *ip = ip_hdr(skb);
2280 
2281 	mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2282 	mac_iocb_ptr->ip_hdr_len = ip->ihl;
2283 
2284 	if (ip->protocol == IPPROTO_TCP) {
2285 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2286 			OB_3032MAC_IOCB_REQ_IC;
2287 	} else {
2288 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2289 			OB_3032MAC_IOCB_REQ_IC;
2290 	}
2291 
2292 }
2293 
2294 /*
2295  * Map the buffers for this transmit.
2296  * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2297  */
2298 static int ql_send_map(struct ql3_adapter *qdev,
2299 				struct ob_mac_iocb_req *mac_iocb_ptr,
2300 				struct ql_tx_buf_cb *tx_cb,
2301 				struct sk_buff *skb)
2302 {
2303 	struct oal *oal;
2304 	struct oal_entry *oal_entry;
2305 	int len = skb_headlen(skb);
2306 	dma_addr_t map;
2307 	int err;
2308 	int completed_segs, i;
2309 	int seg_cnt, seg = 0;
2310 	int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2311 
2312 	seg_cnt = tx_cb->seg_count;
2313 	/*
2314 	 * Map the skb buffer first.
2315 	 */
2316 	map = dma_map_single(&qdev->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2317 
2318 	err = dma_mapping_error(&qdev->pdev->dev, map);
2319 	if (err) {
2320 		netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2321 			   err);
2322 
2323 		return NETDEV_TX_BUSY;
2324 	}
2325 
2326 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2327 	oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2328 	oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2329 	oal_entry->len = cpu_to_le32(len);
2330 	dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2331 	dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2332 	seg++;
2333 
2334 	if (seg_cnt == 1) {
2335 		/* Terminate the last segment. */
2336 		oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2337 		return NETDEV_TX_OK;
2338 	}
2339 	oal = tx_cb->oal;
2340 	for (completed_segs = 0;
2341 	     completed_segs < frag_cnt;
2342 	     completed_segs++, seg++) {
2343 		skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2344 		oal_entry++;
2345 		/*
2346 		 * Check for continuation requirements.
2347 		 * It's strange but necessary.
2348 		 * Continuation entry points to outbound address list.
2349 		 */
2350 		if ((seg == 2 && seg_cnt > 3) ||
2351 		    (seg == 7 && seg_cnt > 8) ||
2352 		    (seg == 12 && seg_cnt > 13) ||
2353 		    (seg == 17 && seg_cnt > 18)) {
2354 			map = dma_map_single(&qdev->pdev->dev, oal,
2355 					     sizeof(struct oal),
2356 					     DMA_TO_DEVICE);
2357 
2358 			err = dma_mapping_error(&qdev->pdev->dev, map);
2359 			if (err) {
2360 				netdev_err(qdev->ndev,
2361 					   "PCI mapping outbound address list with error: %d\n",
2362 					   err);
2363 				goto map_error;
2364 			}
2365 
2366 			oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2367 			oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2368 			oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2369 						     OAL_CONT_ENTRY);
2370 			dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2371 			dma_unmap_len_set(&tx_cb->map[seg], maplen,
2372 					  sizeof(struct oal));
2373 			oal_entry = (struct oal_entry *)oal;
2374 			oal++;
2375 			seg++;
2376 		}
2377 
2378 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2379 				       DMA_TO_DEVICE);
2380 
2381 		err = dma_mapping_error(&qdev->pdev->dev, map);
2382 		if (err) {
2383 			netdev_err(qdev->ndev,
2384 				   "PCI mapping frags failed with error: %d\n",
2385 				   err);
2386 			goto map_error;
2387 		}
2388 
2389 		oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2390 		oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2391 		oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2392 		dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2393 		dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2394 		}
2395 	/* Terminate the last segment. */
2396 	oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2397 	return NETDEV_TX_OK;
2398 
2399 map_error:
2400 	/* A PCI mapping failed and now we will need to back out
2401 	 * We need to traverse through the oal's and associated pages which
2402 	 * have been mapped and now we must unmap them to clean up properly
2403 	 */
2404 
2405 	seg = 1;
2406 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2407 	oal = tx_cb->oal;
2408 	for (i = 0; i < completed_segs; i++, seg++) {
2409 		oal_entry++;
2410 
2411 		/*
2412 		 * Check for continuation requirements.
2413 		 * It's strange but necessary.
2414 		 */
2415 
2416 		if ((seg == 2 && seg_cnt > 3) ||
2417 		    (seg == 7 && seg_cnt > 8) ||
2418 		    (seg == 12 && seg_cnt > 13) ||
2419 		    (seg == 17 && seg_cnt > 18)) {
2420 			dma_unmap_single(&qdev->pdev->dev,
2421 					 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2422 					 dma_unmap_len(&tx_cb->map[seg], maplen),
2423 					 DMA_TO_DEVICE);
2424 			oal++;
2425 			seg++;
2426 		}
2427 
2428 		dma_unmap_page(&qdev->pdev->dev,
2429 			       dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2430 			       dma_unmap_len(&tx_cb->map[seg], maplen),
2431 			       DMA_TO_DEVICE);
2432 	}
2433 
2434 	dma_unmap_single(&qdev->pdev->dev,
2435 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2436 			 dma_unmap_addr(&tx_cb->map[0], maplen),
2437 			 DMA_TO_DEVICE);
2438 
2439 	return NETDEV_TX_BUSY;
2440 
2441 }
2442 
2443 /*
2444  * The difference between 3022 and 3032 sends:
2445  * 3022 only supports a simple single segment transmission.
2446  * 3032 supports checksumming and scatter/gather lists (fragments).
2447  * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2448  * in the IOCB plus a chain of outbound address lists (OAL) that
2449  * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
2450  * will be used to point to an OAL when more ALP entries are required.
2451  * The IOCB is always the top of the chain followed by one or more
2452  * OALs (when necessary).
2453  */
2454 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2455 			       struct net_device *ndev)
2456 {
2457 	struct ql3_adapter *qdev = netdev_priv(ndev);
2458 	struct ql3xxx_port_registers __iomem *port_regs =
2459 			qdev->mem_map_registers;
2460 	struct ql_tx_buf_cb *tx_cb;
2461 	u32 tot_len = skb->len;
2462 	struct ob_mac_iocb_req *mac_iocb_ptr;
2463 
2464 	if (unlikely(atomic_read(&qdev->tx_count) < 2))
2465 		return NETDEV_TX_BUSY;
2466 
2467 	tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2468 	tx_cb->seg_count = ql_get_seg_count(qdev,
2469 					     skb_shinfo(skb)->nr_frags);
2470 	if (tx_cb->seg_count == -1) {
2471 		netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2472 		return NETDEV_TX_OK;
2473 	}
2474 
2475 	mac_iocb_ptr = tx_cb->queue_entry;
2476 	memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2477 	mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2478 	mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2479 	mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2480 	mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2481 	mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2482 	tx_cb->skb = skb;
2483 	if (qdev->device_id == QL3032_DEVICE_ID &&
2484 	    skb->ip_summed == CHECKSUM_PARTIAL)
2485 		ql_hw_csum_setup(skb, mac_iocb_ptr);
2486 
2487 	if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2488 		netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2489 		return NETDEV_TX_BUSY;
2490 	}
2491 
2492 	wmb();
2493 	qdev->req_producer_index++;
2494 	if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2495 		qdev->req_producer_index = 0;
2496 	wmb();
2497 	ql_write_common_reg_l(qdev,
2498 			    &port_regs->CommonRegs.reqQProducerIndex,
2499 			    qdev->req_producer_index);
2500 
2501 	netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2502 		     "tx queued, slot %d, len %d\n",
2503 		     qdev->req_producer_index, skb->len);
2504 
2505 	atomic_dec(&qdev->tx_count);
2506 	return NETDEV_TX_OK;
2507 }
2508 
2509 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2510 {
2511 	qdev->req_q_size =
2512 	    (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2513 
2514 	qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2515 
2516 	/* The barrier is required to ensure request and response queue
2517 	 * addr writes to the registers.
2518 	 */
2519 	wmb();
2520 
2521 	qdev->req_q_virt_addr =
2522 	    dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
2523 			       &qdev->req_q_phy_addr, GFP_KERNEL);
2524 
2525 	if ((qdev->req_q_virt_addr == NULL) ||
2526 	    LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2527 		netdev_err(qdev->ndev, "reqQ failed\n");
2528 		return -ENOMEM;
2529 	}
2530 
2531 	qdev->rsp_q_virt_addr =
2532 	    dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->rsp_q_size,
2533 			       &qdev->rsp_q_phy_addr, GFP_KERNEL);
2534 
2535 	if ((qdev->rsp_q_virt_addr == NULL) ||
2536 	    LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2537 		netdev_err(qdev->ndev, "rspQ allocation failed\n");
2538 		dma_free_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
2539 				  qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2540 		return -ENOMEM;
2541 	}
2542 
2543 	set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2544 
2545 	return 0;
2546 }
2547 
2548 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2549 {
2550 	if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2551 		netdev_info(qdev->ndev, "Already done\n");
2552 		return;
2553 	}
2554 
2555 	dma_free_coherent(&qdev->pdev->dev, qdev->req_q_size,
2556 			  qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2557 
2558 	qdev->req_q_virt_addr = NULL;
2559 
2560 	dma_free_coherent(&qdev->pdev->dev, qdev->rsp_q_size,
2561 			  qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2562 
2563 	qdev->rsp_q_virt_addr = NULL;
2564 
2565 	clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2566 }
2567 
2568 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2569 {
2570 	/* Create Large Buffer Queue */
2571 	qdev->lrg_buf_q_size =
2572 		qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2573 	if (qdev->lrg_buf_q_size < PAGE_SIZE)
2574 		qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2575 	else
2576 		qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2577 
2578 	qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2579 				      sizeof(struct ql_rcv_buf_cb),
2580 				      GFP_KERNEL);
2581 	if (qdev->lrg_buf == NULL)
2582 		return -ENOMEM;
2583 
2584 	qdev->lrg_buf_q_alloc_virt_addr =
2585 		dma_alloc_coherent(&qdev->pdev->dev,
2586 				   qdev->lrg_buf_q_alloc_size,
2587 				   &qdev->lrg_buf_q_alloc_phy_addr, GFP_KERNEL);
2588 
2589 	if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2590 		netdev_err(qdev->ndev, "lBufQ failed\n");
2591 		return -ENOMEM;
2592 	}
2593 	qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2594 	qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2595 
2596 	/* Create Small Buffer Queue */
2597 	qdev->small_buf_q_size =
2598 		NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2599 	if (qdev->small_buf_q_size < PAGE_SIZE)
2600 		qdev->small_buf_q_alloc_size = PAGE_SIZE;
2601 	else
2602 		qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2603 
2604 	qdev->small_buf_q_alloc_virt_addr =
2605 		dma_alloc_coherent(&qdev->pdev->dev,
2606 				   qdev->small_buf_q_alloc_size,
2607 				   &qdev->small_buf_q_alloc_phy_addr, GFP_KERNEL);
2608 
2609 	if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2610 		netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2611 		dma_free_coherent(&qdev->pdev->dev,
2612 				  qdev->lrg_buf_q_alloc_size,
2613 				  qdev->lrg_buf_q_alloc_virt_addr,
2614 				  qdev->lrg_buf_q_alloc_phy_addr);
2615 		return -ENOMEM;
2616 	}
2617 
2618 	qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2619 	qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2620 	set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2621 	return 0;
2622 }
2623 
2624 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2625 {
2626 	if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2627 		netdev_info(qdev->ndev, "Already done\n");
2628 		return;
2629 	}
2630 	kfree(qdev->lrg_buf);
2631 	dma_free_coherent(&qdev->pdev->dev, qdev->lrg_buf_q_alloc_size,
2632 			  qdev->lrg_buf_q_alloc_virt_addr,
2633 			  qdev->lrg_buf_q_alloc_phy_addr);
2634 
2635 	qdev->lrg_buf_q_virt_addr = NULL;
2636 
2637 	dma_free_coherent(&qdev->pdev->dev, qdev->small_buf_q_alloc_size,
2638 			  qdev->small_buf_q_alloc_virt_addr,
2639 			  qdev->small_buf_q_alloc_phy_addr);
2640 
2641 	qdev->small_buf_q_virt_addr = NULL;
2642 
2643 	clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2644 }
2645 
2646 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2647 {
2648 	int i;
2649 	struct bufq_addr_element *small_buf_q_entry;
2650 
2651 	/* Currently we allocate on one of memory and use it for smallbuffers */
2652 	qdev->small_buf_total_size =
2653 		(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2654 		 QL_SMALL_BUFFER_SIZE);
2655 
2656 	qdev->small_buf_virt_addr =
2657 		dma_alloc_coherent(&qdev->pdev->dev,
2658 				   qdev->small_buf_total_size,
2659 				   &qdev->small_buf_phy_addr, GFP_KERNEL);
2660 
2661 	if (qdev->small_buf_virt_addr == NULL) {
2662 		netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2663 		return -ENOMEM;
2664 	}
2665 
2666 	qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2667 	qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2668 
2669 	small_buf_q_entry = qdev->small_buf_q_virt_addr;
2670 
2671 	/* Initialize the small buffer queue. */
2672 	for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2673 		small_buf_q_entry->addr_high =
2674 		    cpu_to_le32(qdev->small_buf_phy_addr_high);
2675 		small_buf_q_entry->addr_low =
2676 		    cpu_to_le32(qdev->small_buf_phy_addr_low +
2677 				(i * QL_SMALL_BUFFER_SIZE));
2678 		small_buf_q_entry++;
2679 	}
2680 	qdev->small_buf_index = 0;
2681 	set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2682 	return 0;
2683 }
2684 
2685 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2686 {
2687 	if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2688 		netdev_info(qdev->ndev, "Already done\n");
2689 		return;
2690 	}
2691 	if (qdev->small_buf_virt_addr != NULL) {
2692 		dma_free_coherent(&qdev->pdev->dev,
2693 				  qdev->small_buf_total_size,
2694 				  qdev->small_buf_virt_addr,
2695 				  qdev->small_buf_phy_addr);
2696 
2697 		qdev->small_buf_virt_addr = NULL;
2698 	}
2699 }
2700 
2701 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2702 {
2703 	int i = 0;
2704 	struct ql_rcv_buf_cb *lrg_buf_cb;
2705 
2706 	for (i = 0; i < qdev->num_large_buffers; i++) {
2707 		lrg_buf_cb = &qdev->lrg_buf[i];
2708 		if (lrg_buf_cb->skb) {
2709 			dev_kfree_skb(lrg_buf_cb->skb);
2710 			dma_unmap_single(&qdev->pdev->dev,
2711 					 dma_unmap_addr(lrg_buf_cb, mapaddr),
2712 					 dma_unmap_len(lrg_buf_cb, maplen),
2713 					 DMA_FROM_DEVICE);
2714 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2715 		} else {
2716 			break;
2717 		}
2718 	}
2719 }
2720 
2721 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2722 {
2723 	int i;
2724 	struct ql_rcv_buf_cb *lrg_buf_cb;
2725 	struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2726 
2727 	for (i = 0; i < qdev->num_large_buffers; i++) {
2728 		lrg_buf_cb = &qdev->lrg_buf[i];
2729 		buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2730 		buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2731 		buf_addr_ele++;
2732 	}
2733 	qdev->lrg_buf_index = 0;
2734 	qdev->lrg_buf_skb_check = 0;
2735 }
2736 
2737 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2738 {
2739 	int i;
2740 	struct ql_rcv_buf_cb *lrg_buf_cb;
2741 	struct sk_buff *skb;
2742 	dma_addr_t map;
2743 	int err;
2744 
2745 	for (i = 0; i < qdev->num_large_buffers; i++) {
2746 		lrg_buf_cb = &qdev->lrg_buf[i];
2747 		memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2748 
2749 		skb = netdev_alloc_skb(qdev->ndev,
2750 				       qdev->lrg_buffer_len);
2751 		if (unlikely(!skb)) {
2752 			/* Better luck next round */
2753 			netdev_err(qdev->ndev,
2754 				   "large buff alloc failed for %d bytes at index %d\n",
2755 				   qdev->lrg_buffer_len * 2, i);
2756 			ql_free_large_buffers(qdev);
2757 			return -ENOMEM;
2758 		} else {
2759 			lrg_buf_cb->index = i;
2760 			/*
2761 			 * We save some space to copy the ethhdr from first
2762 			 * buffer
2763 			 */
2764 			skb_reserve(skb, QL_HEADER_SPACE);
2765 			map = dma_map_single(&qdev->pdev->dev, skb->data,
2766 					     qdev->lrg_buffer_len - QL_HEADER_SPACE,
2767 					     DMA_FROM_DEVICE);
2768 
2769 			err = dma_mapping_error(&qdev->pdev->dev, map);
2770 			if (err) {
2771 				netdev_err(qdev->ndev,
2772 					   "PCI mapping failed with error: %d\n",
2773 					   err);
2774 				dev_kfree_skb_irq(skb);
2775 				ql_free_large_buffers(qdev);
2776 				return -ENOMEM;
2777 			}
2778 
2779 			lrg_buf_cb->skb = skb;
2780 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2781 			dma_unmap_len_set(lrg_buf_cb, maplen,
2782 					  qdev->lrg_buffer_len -
2783 					  QL_HEADER_SPACE);
2784 			lrg_buf_cb->buf_phy_addr_low =
2785 			    cpu_to_le32(LS_64BITS(map));
2786 			lrg_buf_cb->buf_phy_addr_high =
2787 			    cpu_to_le32(MS_64BITS(map));
2788 		}
2789 	}
2790 	return 0;
2791 }
2792 
2793 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2794 {
2795 	struct ql_tx_buf_cb *tx_cb;
2796 	int i;
2797 
2798 	tx_cb = &qdev->tx_buf[0];
2799 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2800 		kfree(tx_cb->oal);
2801 		tx_cb->oal = NULL;
2802 		tx_cb++;
2803 	}
2804 }
2805 
2806 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2807 {
2808 	struct ql_tx_buf_cb *tx_cb;
2809 	int i;
2810 	struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2811 
2812 	/* Create free list of transmit buffers */
2813 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2814 
2815 		tx_cb = &qdev->tx_buf[i];
2816 		tx_cb->skb = NULL;
2817 		tx_cb->queue_entry = req_q_curr;
2818 		req_q_curr++;
2819 		tx_cb->oal = kmalloc(512, GFP_KERNEL);
2820 		if (tx_cb->oal == NULL)
2821 			return -ENOMEM;
2822 	}
2823 	return 0;
2824 }
2825 
2826 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2827 {
2828 	if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2829 		qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2830 		qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2831 	} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2832 		/*
2833 		 * Bigger buffers, so less of them.
2834 		 */
2835 		qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2836 		qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2837 	} else {
2838 		netdev_err(qdev->ndev, "Invalid mtu size: %d.  Only %d and %d are accepted.\n",
2839 			   qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2840 		return -ENOMEM;
2841 	}
2842 	qdev->num_large_buffers =
2843 		qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2844 	qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2845 	qdev->max_frame_size =
2846 		(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2847 
2848 	/*
2849 	 * First allocate a page of shared memory and use it for shadow
2850 	 * locations of Network Request Queue Consumer Address Register and
2851 	 * Network Completion Queue Producer Index Register
2852 	 */
2853 	qdev->shadow_reg_virt_addr =
2854 		dma_alloc_coherent(&qdev->pdev->dev, PAGE_SIZE,
2855 				   &qdev->shadow_reg_phy_addr, GFP_KERNEL);
2856 
2857 	if (qdev->shadow_reg_virt_addr != NULL) {
2858 		qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2859 		qdev->req_consumer_index_phy_addr_high =
2860 			MS_64BITS(qdev->shadow_reg_phy_addr);
2861 		qdev->req_consumer_index_phy_addr_low =
2862 			LS_64BITS(qdev->shadow_reg_phy_addr);
2863 
2864 		qdev->prsp_producer_index =
2865 			(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2866 		qdev->rsp_producer_index_phy_addr_high =
2867 			qdev->req_consumer_index_phy_addr_high;
2868 		qdev->rsp_producer_index_phy_addr_low =
2869 			qdev->req_consumer_index_phy_addr_low + 8;
2870 	} else {
2871 		netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2872 		return -ENOMEM;
2873 	}
2874 
2875 	if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2876 		netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2877 		goto err_req_rsp;
2878 	}
2879 
2880 	if (ql_alloc_buffer_queues(qdev) != 0) {
2881 		netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2882 		goto err_buffer_queues;
2883 	}
2884 
2885 	if (ql_alloc_small_buffers(qdev) != 0) {
2886 		netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2887 		goto err_small_buffers;
2888 	}
2889 
2890 	if (ql_alloc_large_buffers(qdev) != 0) {
2891 		netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2892 		goto err_small_buffers;
2893 	}
2894 
2895 	/* Initialize the large buffer queue. */
2896 	ql_init_large_buffers(qdev);
2897 	if (ql_create_send_free_list(qdev))
2898 		goto err_free_list;
2899 
2900 	qdev->rsp_current = qdev->rsp_q_virt_addr;
2901 
2902 	return 0;
2903 err_free_list:
2904 	ql_free_send_free_list(qdev);
2905 err_small_buffers:
2906 	ql_free_buffer_queues(qdev);
2907 err_buffer_queues:
2908 	ql_free_net_req_rsp_queues(qdev);
2909 err_req_rsp:
2910 	dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
2911 			  qdev->shadow_reg_virt_addr,
2912 			  qdev->shadow_reg_phy_addr);
2913 
2914 	return -ENOMEM;
2915 }
2916 
2917 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2918 {
2919 	ql_free_send_free_list(qdev);
2920 	ql_free_large_buffers(qdev);
2921 	ql_free_small_buffers(qdev);
2922 	ql_free_buffer_queues(qdev);
2923 	ql_free_net_req_rsp_queues(qdev);
2924 	if (qdev->shadow_reg_virt_addr != NULL) {
2925 		dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
2926 				  qdev->shadow_reg_virt_addr,
2927 				  qdev->shadow_reg_phy_addr);
2928 		qdev->shadow_reg_virt_addr = NULL;
2929 	}
2930 }
2931 
2932 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2933 {
2934 	struct ql3xxx_local_ram_registers __iomem *local_ram =
2935 	    (void __iomem *)qdev->mem_map_registers;
2936 
2937 	if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2938 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2939 			 2) << 4))
2940 		return -1;
2941 
2942 	ql_write_page2_reg(qdev,
2943 			   &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2944 
2945 	ql_write_page2_reg(qdev,
2946 			   &local_ram->maxBufletCount,
2947 			   qdev->nvram_data.bufletCount);
2948 
2949 	ql_write_page2_reg(qdev,
2950 			   &local_ram->freeBufletThresholdLow,
2951 			   (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2952 			   (qdev->nvram_data.tcpWindowThreshold0));
2953 
2954 	ql_write_page2_reg(qdev,
2955 			   &local_ram->freeBufletThresholdHigh,
2956 			   qdev->nvram_data.tcpWindowThreshold50);
2957 
2958 	ql_write_page2_reg(qdev,
2959 			   &local_ram->ipHashTableBase,
2960 			   (qdev->nvram_data.ipHashTableBaseHi << 16) |
2961 			   qdev->nvram_data.ipHashTableBaseLo);
2962 	ql_write_page2_reg(qdev,
2963 			   &local_ram->ipHashTableCount,
2964 			   qdev->nvram_data.ipHashTableSize);
2965 	ql_write_page2_reg(qdev,
2966 			   &local_ram->tcpHashTableBase,
2967 			   (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2968 			   qdev->nvram_data.tcpHashTableBaseLo);
2969 	ql_write_page2_reg(qdev,
2970 			   &local_ram->tcpHashTableCount,
2971 			   qdev->nvram_data.tcpHashTableSize);
2972 	ql_write_page2_reg(qdev,
2973 			   &local_ram->ncbBase,
2974 			   (qdev->nvram_data.ncbTableBaseHi << 16) |
2975 			   qdev->nvram_data.ncbTableBaseLo);
2976 	ql_write_page2_reg(qdev,
2977 			   &local_ram->maxNcbCount,
2978 			   qdev->nvram_data.ncbTableSize);
2979 	ql_write_page2_reg(qdev,
2980 			   &local_ram->drbBase,
2981 			   (qdev->nvram_data.drbTableBaseHi << 16) |
2982 			   qdev->nvram_data.drbTableBaseLo);
2983 	ql_write_page2_reg(qdev,
2984 			   &local_ram->maxDrbCount,
2985 			   qdev->nvram_data.drbTableSize);
2986 	ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
2987 	return 0;
2988 }
2989 
2990 static int ql_adapter_initialize(struct ql3_adapter *qdev)
2991 {
2992 	u32 value;
2993 	struct ql3xxx_port_registers __iomem *port_regs =
2994 		qdev->mem_map_registers;
2995 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
2996 	struct ql3xxx_host_memory_registers __iomem *hmem_regs =
2997 		(void __iomem *)port_regs;
2998 	u32 delay = 10;
2999 	int status = 0;
3000 
3001 	if (ql_mii_setup(qdev))
3002 		return -1;
3003 
3004 	/* Bring out PHY out of reset */
3005 	ql_write_common_reg(qdev, spir,
3006 			    (ISP_SERIAL_PORT_IF_WE |
3007 			     (ISP_SERIAL_PORT_IF_WE << 16)));
3008 	/* Give the PHY time to come out of reset. */
3009 	mdelay(100);
3010 	qdev->port_link_state = LS_DOWN;
3011 	netif_carrier_off(qdev->ndev);
3012 
3013 	/* V2 chip fix for ARS-39168. */
3014 	ql_write_common_reg(qdev, spir,
3015 			    (ISP_SERIAL_PORT_IF_SDE |
3016 			     (ISP_SERIAL_PORT_IF_SDE << 16)));
3017 
3018 	/* Request Queue Registers */
3019 	*((u32 *)(qdev->preq_consumer_index)) = 0;
3020 	atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3021 	qdev->req_producer_index = 0;
3022 
3023 	ql_write_page1_reg(qdev,
3024 			   &hmem_regs->reqConsumerIndexAddrHigh,
3025 			   qdev->req_consumer_index_phy_addr_high);
3026 	ql_write_page1_reg(qdev,
3027 			   &hmem_regs->reqConsumerIndexAddrLow,
3028 			   qdev->req_consumer_index_phy_addr_low);
3029 
3030 	ql_write_page1_reg(qdev,
3031 			   &hmem_regs->reqBaseAddrHigh,
3032 			   MS_64BITS(qdev->req_q_phy_addr));
3033 	ql_write_page1_reg(qdev,
3034 			   &hmem_regs->reqBaseAddrLow,
3035 			   LS_64BITS(qdev->req_q_phy_addr));
3036 	ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3037 
3038 	/* Response Queue Registers */
3039 	*((__le16 *) (qdev->prsp_producer_index)) = 0;
3040 	qdev->rsp_consumer_index = 0;
3041 	qdev->rsp_current = qdev->rsp_q_virt_addr;
3042 
3043 	ql_write_page1_reg(qdev,
3044 			   &hmem_regs->rspProducerIndexAddrHigh,
3045 			   qdev->rsp_producer_index_phy_addr_high);
3046 
3047 	ql_write_page1_reg(qdev,
3048 			   &hmem_regs->rspProducerIndexAddrLow,
3049 			   qdev->rsp_producer_index_phy_addr_low);
3050 
3051 	ql_write_page1_reg(qdev,
3052 			   &hmem_regs->rspBaseAddrHigh,
3053 			   MS_64BITS(qdev->rsp_q_phy_addr));
3054 
3055 	ql_write_page1_reg(qdev,
3056 			   &hmem_regs->rspBaseAddrLow,
3057 			   LS_64BITS(qdev->rsp_q_phy_addr));
3058 
3059 	ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3060 
3061 	/* Large Buffer Queue */
3062 	ql_write_page1_reg(qdev,
3063 			   &hmem_regs->rxLargeQBaseAddrHigh,
3064 			   MS_64BITS(qdev->lrg_buf_q_phy_addr));
3065 
3066 	ql_write_page1_reg(qdev,
3067 			   &hmem_regs->rxLargeQBaseAddrLow,
3068 			   LS_64BITS(qdev->lrg_buf_q_phy_addr));
3069 
3070 	ql_write_page1_reg(qdev,
3071 			   &hmem_regs->rxLargeQLength,
3072 			   qdev->num_lbufq_entries);
3073 
3074 	ql_write_page1_reg(qdev,
3075 			   &hmem_regs->rxLargeBufferLength,
3076 			   qdev->lrg_buffer_len);
3077 
3078 	/* Small Buffer Queue */
3079 	ql_write_page1_reg(qdev,
3080 			   &hmem_regs->rxSmallQBaseAddrHigh,
3081 			   MS_64BITS(qdev->small_buf_q_phy_addr));
3082 
3083 	ql_write_page1_reg(qdev,
3084 			   &hmem_regs->rxSmallQBaseAddrLow,
3085 			   LS_64BITS(qdev->small_buf_q_phy_addr));
3086 
3087 	ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3088 	ql_write_page1_reg(qdev,
3089 			   &hmem_regs->rxSmallBufferLength,
3090 			   QL_SMALL_BUFFER_SIZE);
3091 
3092 	qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3093 	qdev->small_buf_release_cnt = 8;
3094 	qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3095 	qdev->lrg_buf_release_cnt = 8;
3096 	qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3097 	qdev->small_buf_index = 0;
3098 	qdev->lrg_buf_index = 0;
3099 	qdev->lrg_buf_free_count = 0;
3100 	qdev->lrg_buf_free_head = NULL;
3101 	qdev->lrg_buf_free_tail = NULL;
3102 
3103 	ql_write_common_reg(qdev,
3104 			    &port_regs->CommonRegs.
3105 			    rxSmallQProducerIndex,
3106 			    qdev->small_buf_q_producer_index);
3107 	ql_write_common_reg(qdev,
3108 			    &port_regs->CommonRegs.
3109 			    rxLargeQProducerIndex,
3110 			    qdev->lrg_buf_q_producer_index);
3111 
3112 	/*
3113 	 * Find out if the chip has already been initialized.  If it has, then
3114 	 * we skip some of the initialization.
3115 	 */
3116 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3117 	value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3118 	if ((value & PORT_STATUS_IC) == 0) {
3119 
3120 		/* Chip has not been configured yet, so let it rip. */
3121 		if (ql_init_misc_registers(qdev)) {
3122 			status = -1;
3123 			goto out;
3124 		}
3125 
3126 		value = qdev->nvram_data.tcpMaxWindowSize;
3127 		ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3128 
3129 		value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3130 
3131 		if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3132 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3133 				 * 2) << 13)) {
3134 			status = -1;
3135 			goto out;
3136 		}
3137 		ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3138 		ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3139 				   (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3140 				     16) | (INTERNAL_CHIP_SD |
3141 					    INTERNAL_CHIP_WE)));
3142 		ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3143 	}
3144 
3145 	if (qdev->mac_index)
3146 		ql_write_page0_reg(qdev,
3147 				   &port_regs->mac1MaxFrameLengthReg,
3148 				   qdev->max_frame_size);
3149 	else
3150 		ql_write_page0_reg(qdev,
3151 					   &port_regs->mac0MaxFrameLengthReg,
3152 					   qdev->max_frame_size);
3153 
3154 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3155 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3156 			 2) << 7)) {
3157 		status = -1;
3158 		goto out;
3159 	}
3160 
3161 	PHY_Setup(qdev);
3162 	ql_init_scan_mode(qdev);
3163 	ql_get_phy_owner(qdev);
3164 
3165 	/* Load the MAC Configuration */
3166 
3167 	/* Program lower 32 bits of the MAC address */
3168 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3169 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3170 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3171 			   ((qdev->ndev->dev_addr[2] << 24)
3172 			    | (qdev->ndev->dev_addr[3] << 16)
3173 			    | (qdev->ndev->dev_addr[4] << 8)
3174 			    | qdev->ndev->dev_addr[5]));
3175 
3176 	/* Program top 16 bits of the MAC address */
3177 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3178 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3179 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3180 			   ((qdev->ndev->dev_addr[0] << 8)
3181 			    | qdev->ndev->dev_addr[1]));
3182 
3183 	/* Enable Primary MAC */
3184 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3185 			   ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3186 			    MAC_ADDR_INDIRECT_PTR_REG_PE));
3187 
3188 	/* Clear Primary and Secondary IP addresses */
3189 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3190 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3191 			    (qdev->mac_index << 2)));
3192 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3193 
3194 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3195 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3196 			    ((qdev->mac_index << 2) + 1)));
3197 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3198 
3199 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3200 
3201 	/* Indicate Configuration Complete */
3202 	ql_write_page0_reg(qdev,
3203 			   &port_regs->portControl,
3204 			   ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3205 
3206 	do {
3207 		value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3208 		if (value & PORT_STATUS_IC)
3209 			break;
3210 		spin_unlock_irq(&qdev->hw_lock);
3211 		msleep(500);
3212 		spin_lock_irq(&qdev->hw_lock);
3213 	} while (--delay);
3214 
3215 	if (delay == 0) {
3216 		netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3217 		status = -1;
3218 		goto out;
3219 	}
3220 
3221 	/* Enable Ethernet Function */
3222 	if (qdev->device_id == QL3032_DEVICE_ID) {
3223 		value =
3224 		    (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3225 		     QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3226 			QL3032_PORT_CONTROL_ET);
3227 		ql_write_page0_reg(qdev, &port_regs->functionControl,
3228 				   ((value << 16) | value));
3229 	} else {
3230 		value =
3231 		    (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3232 		     PORT_CONTROL_HH);
3233 		ql_write_page0_reg(qdev, &port_regs->portControl,
3234 				   ((value << 16) | value));
3235 	}
3236 
3237 
3238 out:
3239 	return status;
3240 }
3241 
3242 /*
3243  * Caller holds hw_lock.
3244  */
3245 static int ql_adapter_reset(struct ql3_adapter *qdev)
3246 {
3247 	struct ql3xxx_port_registers __iomem *port_regs =
3248 		qdev->mem_map_registers;
3249 	int status = 0;
3250 	u16 value;
3251 	int max_wait_time;
3252 
3253 	set_bit(QL_RESET_ACTIVE, &qdev->flags);
3254 	clear_bit(QL_RESET_DONE, &qdev->flags);
3255 
3256 	/*
3257 	 * Issue soft reset to chip.
3258 	 */
3259 	netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3260 	ql_write_common_reg(qdev,
3261 			    &port_regs->CommonRegs.ispControlStatus,
3262 			    ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3263 
3264 	/* Wait 3 seconds for reset to complete. */
3265 	netdev_printk(KERN_DEBUG, qdev->ndev,
3266 		      "Wait 10 milliseconds for reset to complete\n");
3267 
3268 	/* Wait until the firmware tells us the Soft Reset is done */
3269 	max_wait_time = 5;
3270 	do {
3271 		value =
3272 		    ql_read_common_reg(qdev,
3273 				       &port_regs->CommonRegs.ispControlStatus);
3274 		if ((value & ISP_CONTROL_SR) == 0)
3275 			break;
3276 
3277 		mdelay(1000);
3278 	} while ((--max_wait_time));
3279 
3280 	/*
3281 	 * Also, make sure that the Network Reset Interrupt bit has been
3282 	 * cleared after the soft reset has taken place.
3283 	 */
3284 	value =
3285 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3286 	if (value & ISP_CONTROL_RI) {
3287 		netdev_printk(KERN_DEBUG, qdev->ndev,
3288 			      "clearing RI after reset\n");
3289 		ql_write_common_reg(qdev,
3290 				    &port_regs->CommonRegs.
3291 				    ispControlStatus,
3292 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3293 	}
3294 
3295 	if (max_wait_time == 0) {
3296 		/* Issue Force Soft Reset */
3297 		ql_write_common_reg(qdev,
3298 				    &port_regs->CommonRegs.
3299 				    ispControlStatus,
3300 				    ((ISP_CONTROL_FSR << 16) |
3301 				     ISP_CONTROL_FSR));
3302 		/*
3303 		 * Wait until the firmware tells us the Force Soft Reset is
3304 		 * done
3305 		 */
3306 		max_wait_time = 5;
3307 		do {
3308 			value = ql_read_common_reg(qdev,
3309 						   &port_regs->CommonRegs.
3310 						   ispControlStatus);
3311 			if ((value & ISP_CONTROL_FSR) == 0)
3312 				break;
3313 			mdelay(1000);
3314 		} while ((--max_wait_time));
3315 	}
3316 	if (max_wait_time == 0)
3317 		status = 1;
3318 
3319 	clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3320 	set_bit(QL_RESET_DONE, &qdev->flags);
3321 	return status;
3322 }
3323 
3324 static void ql_set_mac_info(struct ql3_adapter *qdev)
3325 {
3326 	struct ql3xxx_port_registers __iomem *port_regs =
3327 		qdev->mem_map_registers;
3328 	u32 value, port_status;
3329 	u8 func_number;
3330 
3331 	/* Get the function number */
3332 	value =
3333 	    ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3334 	func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3335 	port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3336 	switch (value & ISP_CONTROL_FN_MASK) {
3337 	case ISP_CONTROL_FN0_NET:
3338 		qdev->mac_index = 0;
3339 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3340 		qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3341 		qdev->PHYAddr = PORT0_PHY_ADDRESS;
3342 		if (port_status & PORT_STATUS_SM0)
3343 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3344 		else
3345 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3346 		break;
3347 
3348 	case ISP_CONTROL_FN1_NET:
3349 		qdev->mac_index = 1;
3350 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3351 		qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3352 		qdev->PHYAddr = PORT1_PHY_ADDRESS;
3353 		if (port_status & PORT_STATUS_SM1)
3354 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3355 		else
3356 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3357 		break;
3358 
3359 	case ISP_CONTROL_FN0_SCSI:
3360 	case ISP_CONTROL_FN1_SCSI:
3361 	default:
3362 		netdev_printk(KERN_DEBUG, qdev->ndev,
3363 			      "Invalid function number, ispControlStatus = 0x%x\n",
3364 			      value);
3365 		break;
3366 	}
3367 	qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3368 }
3369 
3370 static void ql_display_dev_info(struct net_device *ndev)
3371 {
3372 	struct ql3_adapter *qdev = netdev_priv(ndev);
3373 	struct pci_dev *pdev = qdev->pdev;
3374 
3375 	netdev_info(ndev,
3376 		    "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3377 		    DRV_NAME, qdev->index, qdev->chip_rev_id,
3378 		    qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3379 		    qdev->pci_slot);
3380 	netdev_info(ndev, "%s Interface\n",
3381 		test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3382 
3383 	/*
3384 	 * Print PCI bus width/type.
3385 	 */
3386 	netdev_info(ndev, "Bus interface is %s %s\n",
3387 		    ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3388 		    ((qdev->pci_x) ? "PCI-X" : "PCI"));
3389 
3390 	netdev_info(ndev, "mem  IO base address adjusted = 0x%p\n",
3391 		    qdev->mem_map_registers);
3392 	netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3393 
3394 	netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3395 }
3396 
3397 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3398 {
3399 	struct net_device *ndev = qdev->ndev;
3400 	int retval = 0;
3401 
3402 	netif_stop_queue(ndev);
3403 	netif_carrier_off(ndev);
3404 
3405 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3406 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3407 
3408 	ql_disable_interrupts(qdev);
3409 
3410 	free_irq(qdev->pdev->irq, ndev);
3411 
3412 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3413 		netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3414 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3415 		pci_disable_msi(qdev->pdev);
3416 	}
3417 
3418 	del_timer_sync(&qdev->adapter_timer);
3419 
3420 	napi_disable(&qdev->napi);
3421 
3422 	if (do_reset) {
3423 		int soft_reset;
3424 		unsigned long hw_flags;
3425 
3426 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3427 		if (ql_wait_for_drvr_lock(qdev)) {
3428 			soft_reset = ql_adapter_reset(qdev);
3429 			if (soft_reset) {
3430 				netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3431 					   qdev->index);
3432 			}
3433 			netdev_err(ndev,
3434 				   "Releasing driver lock via chip reset\n");
3435 		} else {
3436 			netdev_err(ndev,
3437 				   "Could not acquire driver lock to do reset!\n");
3438 			retval = -1;
3439 		}
3440 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3441 	}
3442 	ql_free_mem_resources(qdev);
3443 	return retval;
3444 }
3445 
3446 static int ql_adapter_up(struct ql3_adapter *qdev)
3447 {
3448 	struct net_device *ndev = qdev->ndev;
3449 	int err;
3450 	unsigned long irq_flags = IRQF_SHARED;
3451 	unsigned long hw_flags;
3452 
3453 	if (ql_alloc_mem_resources(qdev)) {
3454 		netdev_err(ndev, "Unable to  allocate buffers\n");
3455 		return -ENOMEM;
3456 	}
3457 
3458 	if (qdev->msi) {
3459 		if (pci_enable_msi(qdev->pdev)) {
3460 			netdev_err(ndev,
3461 				   "User requested MSI, but MSI failed to initialize.  Continuing without MSI.\n");
3462 			qdev->msi = 0;
3463 		} else {
3464 			netdev_info(ndev, "MSI Enabled...\n");
3465 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3466 			irq_flags &= ~IRQF_SHARED;
3467 		}
3468 	}
3469 
3470 	err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3471 			  irq_flags, ndev->name, ndev);
3472 	if (err) {
3473 		netdev_err(ndev,
3474 			   "Failed to reserve interrupt %d - already in use\n",
3475 			   qdev->pdev->irq);
3476 		goto err_irq;
3477 	}
3478 
3479 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3480 
3481 	err = ql_wait_for_drvr_lock(qdev);
3482 	if (err) {
3483 		err = ql_adapter_initialize(qdev);
3484 		if (err) {
3485 			netdev_err(ndev, "Unable to initialize adapter\n");
3486 			goto err_init;
3487 		}
3488 		netdev_err(ndev, "Releasing driver lock\n");
3489 		ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3490 	} else {
3491 		netdev_err(ndev, "Could not acquire driver lock\n");
3492 		goto err_lock;
3493 	}
3494 
3495 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3496 
3497 	set_bit(QL_ADAPTER_UP, &qdev->flags);
3498 
3499 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3500 
3501 	napi_enable(&qdev->napi);
3502 	ql_enable_interrupts(qdev);
3503 	return 0;
3504 
3505 err_init:
3506 	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3507 err_lock:
3508 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3509 	free_irq(qdev->pdev->irq, ndev);
3510 err_irq:
3511 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3512 		netdev_info(ndev, "calling pci_disable_msi()\n");
3513 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3514 		pci_disable_msi(qdev->pdev);
3515 	}
3516 	return err;
3517 }
3518 
3519 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3520 {
3521 	if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3522 		netdev_err(qdev->ndev,
3523 			   "Driver up/down cycle failed, closing device\n");
3524 		rtnl_lock();
3525 		dev_close(qdev->ndev);
3526 		rtnl_unlock();
3527 		return -1;
3528 	}
3529 	return 0;
3530 }
3531 
3532 static int ql3xxx_close(struct net_device *ndev)
3533 {
3534 	struct ql3_adapter *qdev = netdev_priv(ndev);
3535 
3536 	/*
3537 	 * Wait for device to recover from a reset.
3538 	 * (Rarely happens, but possible.)
3539 	 */
3540 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3541 		msleep(50);
3542 
3543 	ql_adapter_down(qdev, QL_DO_RESET);
3544 	return 0;
3545 }
3546 
3547 static int ql3xxx_open(struct net_device *ndev)
3548 {
3549 	struct ql3_adapter *qdev = netdev_priv(ndev);
3550 	return ql_adapter_up(qdev);
3551 }
3552 
3553 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3554 {
3555 	struct ql3_adapter *qdev = netdev_priv(ndev);
3556 	struct ql3xxx_port_registers __iomem *port_regs =
3557 			qdev->mem_map_registers;
3558 	struct sockaddr *addr = p;
3559 	unsigned long hw_flags;
3560 
3561 	if (netif_running(ndev))
3562 		return -EBUSY;
3563 
3564 	if (!is_valid_ether_addr(addr->sa_data))
3565 		return -EADDRNOTAVAIL;
3566 
3567 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3568 
3569 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3570 	/* Program lower 32 bits of the MAC address */
3571 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3572 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3573 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3574 			   ((ndev->dev_addr[2] << 24) | (ndev->
3575 							 dev_addr[3] << 16) |
3576 			    (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3577 
3578 	/* Program top 16 bits of the MAC address */
3579 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3580 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3581 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3582 			   ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3583 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3584 
3585 	return 0;
3586 }
3587 
3588 static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue)
3589 {
3590 	struct ql3_adapter *qdev = netdev_priv(ndev);
3591 
3592 	netdev_err(ndev, "Resetting...\n");
3593 	/*
3594 	 * Stop the queues, we've got a problem.
3595 	 */
3596 	netif_stop_queue(ndev);
3597 
3598 	/*
3599 	 * Wake up the worker to process this event.
3600 	 */
3601 	queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3602 }
3603 
3604 static void ql_reset_work(struct work_struct *work)
3605 {
3606 	struct ql3_adapter *qdev =
3607 		container_of(work, struct ql3_adapter, reset_work.work);
3608 	struct net_device *ndev = qdev->ndev;
3609 	u32 value;
3610 	struct ql_tx_buf_cb *tx_cb;
3611 	int max_wait_time, i;
3612 	struct ql3xxx_port_registers __iomem *port_regs =
3613 		qdev->mem_map_registers;
3614 	unsigned long hw_flags;
3615 
3616 	if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3617 		clear_bit(QL_LINK_MASTER, &qdev->flags);
3618 
3619 		/*
3620 		 * Loop through the active list and return the skb.
3621 		 */
3622 		for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3623 			int j;
3624 			tx_cb = &qdev->tx_buf[i];
3625 			if (tx_cb->skb) {
3626 				netdev_printk(KERN_DEBUG, ndev,
3627 					      "Freeing lost SKB\n");
3628 				dma_unmap_single(&qdev->pdev->dev,
3629 						 dma_unmap_addr(&tx_cb->map[0], mapaddr),
3630 						 dma_unmap_len(&tx_cb->map[0], maplen),
3631 						 DMA_TO_DEVICE);
3632 				for (j = 1; j < tx_cb->seg_count; j++) {
3633 					dma_unmap_page(&qdev->pdev->dev,
3634 						       dma_unmap_addr(&tx_cb->map[j], mapaddr),
3635 						       dma_unmap_len(&tx_cb->map[j], maplen),
3636 						       DMA_TO_DEVICE);
3637 				}
3638 				dev_kfree_skb(tx_cb->skb);
3639 				tx_cb->skb = NULL;
3640 			}
3641 		}
3642 
3643 		netdev_err(ndev, "Clearing NRI after reset\n");
3644 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3645 		ql_write_common_reg(qdev,
3646 				    &port_regs->CommonRegs.
3647 				    ispControlStatus,
3648 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3649 		/*
3650 		 * Wait the for Soft Reset to Complete.
3651 		 */
3652 		max_wait_time = 10;
3653 		do {
3654 			value = ql_read_common_reg(qdev,
3655 						   &port_regs->CommonRegs.
3656 
3657 						   ispControlStatus);
3658 			if ((value & ISP_CONTROL_SR) == 0) {
3659 				netdev_printk(KERN_DEBUG, ndev,
3660 					      "reset completed\n");
3661 				break;
3662 			}
3663 
3664 			if (value & ISP_CONTROL_RI) {
3665 				netdev_printk(KERN_DEBUG, ndev,
3666 					      "clearing NRI after reset\n");
3667 				ql_write_common_reg(qdev,
3668 						    &port_regs->
3669 						    CommonRegs.
3670 						    ispControlStatus,
3671 						    ((ISP_CONTROL_RI <<
3672 						      16) | ISP_CONTROL_RI));
3673 			}
3674 
3675 			spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3676 			ssleep(1);
3677 			spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3678 		} while (--max_wait_time);
3679 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3680 
3681 		if (value & ISP_CONTROL_SR) {
3682 
3683 			/*
3684 			 * Set the reset flags and clear the board again.
3685 			 * Nothing else to do...
3686 			 */
3687 			netdev_err(ndev,
3688 				   "Timed out waiting for reset to complete\n");
3689 			netdev_err(ndev, "Do a reset\n");
3690 			clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3691 			clear_bit(QL_RESET_START, &qdev->flags);
3692 			ql_cycle_adapter(qdev, QL_DO_RESET);
3693 			return;
3694 		}
3695 
3696 		clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3697 		clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3698 		clear_bit(QL_RESET_START, &qdev->flags);
3699 		ql_cycle_adapter(qdev, QL_NO_RESET);
3700 	}
3701 }
3702 
3703 static void ql_tx_timeout_work(struct work_struct *work)
3704 {
3705 	struct ql3_adapter *qdev =
3706 		container_of(work, struct ql3_adapter, tx_timeout_work.work);
3707 
3708 	ql_cycle_adapter(qdev, QL_DO_RESET);
3709 }
3710 
3711 static void ql_get_board_info(struct ql3_adapter *qdev)
3712 {
3713 	struct ql3xxx_port_registers __iomem *port_regs =
3714 		qdev->mem_map_registers;
3715 	u32 value;
3716 
3717 	value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3718 
3719 	qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3720 	if (value & PORT_STATUS_64)
3721 		qdev->pci_width = 64;
3722 	else
3723 		qdev->pci_width = 32;
3724 	if (value & PORT_STATUS_X)
3725 		qdev->pci_x = 1;
3726 	else
3727 		qdev->pci_x = 0;
3728 	qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3729 }
3730 
3731 static void ql3xxx_timer(struct timer_list *t)
3732 {
3733 	struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer);
3734 	queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3735 }
3736 
3737 static const struct net_device_ops ql3xxx_netdev_ops = {
3738 	.ndo_open		= ql3xxx_open,
3739 	.ndo_start_xmit		= ql3xxx_send,
3740 	.ndo_stop		= ql3xxx_close,
3741 	.ndo_validate_addr	= eth_validate_addr,
3742 	.ndo_set_mac_address	= ql3xxx_set_mac_address,
3743 	.ndo_tx_timeout		= ql3xxx_tx_timeout,
3744 };
3745 
3746 static int ql3xxx_probe(struct pci_dev *pdev,
3747 			const struct pci_device_id *pci_entry)
3748 {
3749 	struct net_device *ndev = NULL;
3750 	struct ql3_adapter *qdev = NULL;
3751 	static int cards_found;
3752 	int pci_using_dac, err;
3753 
3754 	err = pci_enable_device(pdev);
3755 	if (err) {
3756 		pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3757 		goto err_out;
3758 	}
3759 
3760 	err = pci_request_regions(pdev, DRV_NAME);
3761 	if (err) {
3762 		pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3763 		goto err_out_disable_pdev;
3764 	}
3765 
3766 	pci_set_master(pdev);
3767 
3768 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)))
3769 		pci_using_dac = 1;
3770 	else if (!(err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))))
3771 		pci_using_dac = 0;
3772 
3773 	if (err) {
3774 		pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3775 		goto err_out_free_regions;
3776 	}
3777 
3778 	ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3779 	if (!ndev) {
3780 		err = -ENOMEM;
3781 		goto err_out_free_regions;
3782 	}
3783 
3784 	SET_NETDEV_DEV(ndev, &pdev->dev);
3785 
3786 	pci_set_drvdata(pdev, ndev);
3787 
3788 	qdev = netdev_priv(ndev);
3789 	qdev->index = cards_found;
3790 	qdev->ndev = ndev;
3791 	qdev->pdev = pdev;
3792 	qdev->device_id = pci_entry->device;
3793 	qdev->port_link_state = LS_DOWN;
3794 	if (msi)
3795 		qdev->msi = 1;
3796 
3797 	qdev->msg_enable = netif_msg_init(debug, default_msg);
3798 
3799 	if (pci_using_dac)
3800 		ndev->features |= NETIF_F_HIGHDMA;
3801 	if (qdev->device_id == QL3032_DEVICE_ID)
3802 		ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3803 
3804 	qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3805 	if (!qdev->mem_map_registers) {
3806 		pr_err("%s: cannot map device registers\n", pci_name(pdev));
3807 		err = -EIO;
3808 		goto err_out_free_ndev;
3809 	}
3810 
3811 	spin_lock_init(&qdev->adapter_lock);
3812 	spin_lock_init(&qdev->hw_lock);
3813 
3814 	/* Set driver entry points */
3815 	ndev->netdev_ops = &ql3xxx_netdev_ops;
3816 	ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3817 	ndev->watchdog_timeo = 5 * HZ;
3818 
3819 	netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3820 
3821 	ndev->irq = pdev->irq;
3822 
3823 	/* make sure the EEPROM is good */
3824 	if (ql_get_nvram_params(qdev)) {
3825 		pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3826 			 __func__, qdev->index);
3827 		err = -EIO;
3828 		goto err_out_iounmap;
3829 	}
3830 
3831 	ql_set_mac_info(qdev);
3832 
3833 	/* Validate and set parameters */
3834 	if (qdev->mac_index) {
3835 		ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3836 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3837 	} else {
3838 		ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3839 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3840 	}
3841 
3842 	ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3843 
3844 	/* Record PCI bus information. */
3845 	ql_get_board_info(qdev);
3846 
3847 	/*
3848 	 * Set the Maximum Memory Read Byte Count value. We do this to handle
3849 	 * jumbo frames.
3850 	 */
3851 	if (qdev->pci_x)
3852 		pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3853 
3854 	err = register_netdev(ndev);
3855 	if (err) {
3856 		pr_err("%s: cannot register net device\n", pci_name(pdev));
3857 		goto err_out_iounmap;
3858 	}
3859 
3860 	/* we're going to reset, so assume we have no link for now */
3861 
3862 	netif_carrier_off(ndev);
3863 	netif_stop_queue(ndev);
3864 
3865 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
3866 	if (!qdev->workqueue) {
3867 		unregister_netdev(ndev);
3868 		err = -ENOMEM;
3869 		goto err_out_iounmap;
3870 	}
3871 
3872 	INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3873 	INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3874 	INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3875 
3876 	timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0);
3877 	qdev->adapter_timer.expires = jiffies + HZ * 2;	/* two second delay */
3878 
3879 	if (!cards_found) {
3880 		pr_alert("%s\n", DRV_STRING);
3881 		pr_alert("Driver name: %s, Version: %s\n",
3882 			 DRV_NAME, DRV_VERSION);
3883 	}
3884 	ql_display_dev_info(ndev);
3885 
3886 	cards_found++;
3887 	return 0;
3888 
3889 err_out_iounmap:
3890 	iounmap(qdev->mem_map_registers);
3891 err_out_free_ndev:
3892 	free_netdev(ndev);
3893 err_out_free_regions:
3894 	pci_release_regions(pdev);
3895 err_out_disable_pdev:
3896 	pci_disable_device(pdev);
3897 err_out:
3898 	return err;
3899 }
3900 
3901 static void ql3xxx_remove(struct pci_dev *pdev)
3902 {
3903 	struct net_device *ndev = pci_get_drvdata(pdev);
3904 	struct ql3_adapter *qdev = netdev_priv(ndev);
3905 
3906 	unregister_netdev(ndev);
3907 
3908 	ql_disable_interrupts(qdev);
3909 
3910 	if (qdev->workqueue) {
3911 		cancel_delayed_work(&qdev->reset_work);
3912 		cancel_delayed_work(&qdev->tx_timeout_work);
3913 		destroy_workqueue(qdev->workqueue);
3914 		qdev->workqueue = NULL;
3915 	}
3916 
3917 	iounmap(qdev->mem_map_registers);
3918 	pci_release_regions(pdev);
3919 	free_netdev(ndev);
3920 }
3921 
3922 static struct pci_driver ql3xxx_driver = {
3923 
3924 	.name = DRV_NAME,
3925 	.id_table = ql3xxx_pci_tbl,
3926 	.probe = ql3xxx_probe,
3927 	.remove = ql3xxx_remove,
3928 };
3929 
3930 module_pci_driver(ql3xxx_driver);
3931