1 /*
2  * QLogic QLA3xxx NIC HBA Driver
3  * Copyright (c)  2003-2006 QLogic Corporation
4  *
5  * See LICENSE.qla3xxx for copyright and licensing details.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/module.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/ip.h>
27 #include <linux/in.h>
28 #include <linux/if_arp.h>
29 #include <linux/if_ether.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <linux/prefetch.h>
39 
40 #include "qla3xxx.h"
41 
42 #define DRV_NAME	"qla3xxx"
43 #define DRV_STRING	"QLogic ISP3XXX Network Driver"
44 #define DRV_VERSION	"v2.03.00-k5"
45 
46 static const char ql3xxx_driver_name[] = DRV_NAME;
47 static const char ql3xxx_driver_version[] = DRV_VERSION;
48 
49 #define TIMED_OUT_MSG							\
50 "Timed out waiting for management port to get free before issuing command\n"
51 
52 MODULE_AUTHOR("QLogic Corporation");
53 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
54 MODULE_LICENSE("GPL");
55 MODULE_VERSION(DRV_VERSION);
56 
57 static const u32 default_msg
58     = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
59     | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
60 
61 static int debug = -1;		/* defaults above */
62 module_param(debug, int, 0);
63 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
64 
65 static int msi;
66 module_param(msi, int, 0);
67 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
68 
69 static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
70 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
71 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
72 	/* required last entry */
73 	{0,}
74 };
75 
76 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
77 
78 /*
79  *  These are the known PHY's which are used
80  */
81 enum PHY_DEVICE_TYPE {
82    PHY_TYPE_UNKNOWN   = 0,
83    PHY_VITESSE_VSC8211,
84    PHY_AGERE_ET1011C,
85    MAX_PHY_DEV_TYPES
86 };
87 
88 struct PHY_DEVICE_INFO {
89 	const enum PHY_DEVICE_TYPE	phyDevice;
90 	const u32		phyIdOUI;
91 	const u16		phyIdModel;
92 	const char		*name;
93 };
94 
95 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
96 	{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
97 	{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
98 	{PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
99 };
100 
101 
102 /*
103  * Caller must take hw_lock.
104  */
105 static int ql_sem_spinlock(struct ql3_adapter *qdev,
106 			    u32 sem_mask, u32 sem_bits)
107 {
108 	struct ql3xxx_port_registers __iomem *port_regs =
109 		qdev->mem_map_registers;
110 	u32 value;
111 	unsigned int seconds = 3;
112 
113 	do {
114 		writel((sem_mask | sem_bits),
115 		       &port_regs->CommonRegs.semaphoreReg);
116 		value = readl(&port_regs->CommonRegs.semaphoreReg);
117 		if ((value & (sem_mask >> 16)) == sem_bits)
118 			return 0;
119 		ssleep(1);
120 	} while (--seconds);
121 	return -1;
122 }
123 
124 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
125 {
126 	struct ql3xxx_port_registers __iomem *port_regs =
127 		qdev->mem_map_registers;
128 	writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
129 	readl(&port_regs->CommonRegs.semaphoreReg);
130 }
131 
132 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
133 {
134 	struct ql3xxx_port_registers __iomem *port_regs =
135 		qdev->mem_map_registers;
136 	u32 value;
137 
138 	writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
139 	value = readl(&port_regs->CommonRegs.semaphoreReg);
140 	return ((value & (sem_mask >> 16)) == sem_bits);
141 }
142 
143 /*
144  * Caller holds hw_lock.
145  */
146 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
147 {
148 	int i = 0;
149 
150 	while (i < 10) {
151 		if (i)
152 			ssleep(1);
153 
154 		if (ql_sem_lock(qdev,
155 				QL_DRVR_SEM_MASK,
156 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
157 				 * 2) << 1)) {
158 			netdev_printk(KERN_DEBUG, qdev->ndev,
159 				      "driver lock acquired\n");
160 			return 1;
161 		}
162 	}
163 
164 	netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
165 	return 0;
166 }
167 
168 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
169 {
170 	struct ql3xxx_port_registers __iomem *port_regs =
171 		qdev->mem_map_registers;
172 
173 	writel(((ISP_CONTROL_NP_MASK << 16) | page),
174 			&port_regs->CommonRegs.ispControlStatus);
175 	readl(&port_regs->CommonRegs.ispControlStatus);
176 	qdev->current_page = page;
177 }
178 
179 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
180 {
181 	u32 value;
182 	unsigned long hw_flags;
183 
184 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
185 	value = readl(reg);
186 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
187 
188 	return value;
189 }
190 
191 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
192 {
193 	return readl(reg);
194 }
195 
196 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
197 {
198 	u32 value;
199 	unsigned long hw_flags;
200 
201 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
202 
203 	if (qdev->current_page != 0)
204 		ql_set_register_page(qdev, 0);
205 	value = readl(reg);
206 
207 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
208 	return value;
209 }
210 
211 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
212 {
213 	if (qdev->current_page != 0)
214 		ql_set_register_page(qdev, 0);
215 	return readl(reg);
216 }
217 
218 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
219 				u32 __iomem *reg, u32 value)
220 {
221 	unsigned long hw_flags;
222 
223 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
224 	writel(value, reg);
225 	readl(reg);
226 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
227 }
228 
229 static void ql_write_common_reg(struct ql3_adapter *qdev,
230 				u32 __iomem *reg, u32 value)
231 {
232 	writel(value, reg);
233 	readl(reg);
234 }
235 
236 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
237 				u32 __iomem *reg, u32 value)
238 {
239 	writel(value, reg);
240 	readl(reg);
241 	udelay(1);
242 }
243 
244 static void ql_write_page0_reg(struct ql3_adapter *qdev,
245 			       u32 __iomem *reg, u32 value)
246 {
247 	if (qdev->current_page != 0)
248 		ql_set_register_page(qdev, 0);
249 	writel(value, reg);
250 	readl(reg);
251 }
252 
253 /*
254  * Caller holds hw_lock. Only called during init.
255  */
256 static void ql_write_page1_reg(struct ql3_adapter *qdev,
257 			       u32 __iomem *reg, u32 value)
258 {
259 	if (qdev->current_page != 1)
260 		ql_set_register_page(qdev, 1);
261 	writel(value, reg);
262 	readl(reg);
263 }
264 
265 /*
266  * Caller holds hw_lock. Only called during init.
267  */
268 static void ql_write_page2_reg(struct ql3_adapter *qdev,
269 			       u32 __iomem *reg, u32 value)
270 {
271 	if (qdev->current_page != 2)
272 		ql_set_register_page(qdev, 2);
273 	writel(value, reg);
274 	readl(reg);
275 }
276 
277 static void ql_disable_interrupts(struct ql3_adapter *qdev)
278 {
279 	struct ql3xxx_port_registers __iomem *port_regs =
280 		qdev->mem_map_registers;
281 
282 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
283 			    (ISP_IMR_ENABLE_INT << 16));
284 
285 }
286 
287 static void ql_enable_interrupts(struct ql3_adapter *qdev)
288 {
289 	struct ql3xxx_port_registers __iomem *port_regs =
290 		qdev->mem_map_registers;
291 
292 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
293 			    ((0xff << 16) | ISP_IMR_ENABLE_INT));
294 
295 }
296 
297 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
298 					    struct ql_rcv_buf_cb *lrg_buf_cb)
299 {
300 	dma_addr_t map;
301 	int err;
302 	lrg_buf_cb->next = NULL;
303 
304 	if (qdev->lrg_buf_free_tail == NULL) {	/* The list is empty  */
305 		qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
306 	} else {
307 		qdev->lrg_buf_free_tail->next = lrg_buf_cb;
308 		qdev->lrg_buf_free_tail = lrg_buf_cb;
309 	}
310 
311 	if (!lrg_buf_cb->skb) {
312 		lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
313 						   qdev->lrg_buffer_len);
314 		if (unlikely(!lrg_buf_cb->skb)) {
315 			netdev_err(qdev->ndev, "failed netdev_alloc_skb()\n");
316 			qdev->lrg_buf_skb_check++;
317 		} else {
318 			/*
319 			 * We save some space to copy the ethhdr from first
320 			 * buffer
321 			 */
322 			skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
323 			map = pci_map_single(qdev->pdev,
324 					     lrg_buf_cb->skb->data,
325 					     qdev->lrg_buffer_len -
326 					     QL_HEADER_SPACE,
327 					     PCI_DMA_FROMDEVICE);
328 			err = pci_dma_mapping_error(qdev->pdev, map);
329 			if (err) {
330 				netdev_err(qdev->ndev,
331 					   "PCI mapping failed with error: %d\n",
332 					   err);
333 				dev_kfree_skb(lrg_buf_cb->skb);
334 				lrg_buf_cb->skb = NULL;
335 
336 				qdev->lrg_buf_skb_check++;
337 				return;
338 			}
339 
340 			lrg_buf_cb->buf_phy_addr_low =
341 			    cpu_to_le32(LS_64BITS(map));
342 			lrg_buf_cb->buf_phy_addr_high =
343 			    cpu_to_le32(MS_64BITS(map));
344 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
345 			dma_unmap_len_set(lrg_buf_cb, maplen,
346 					  qdev->lrg_buffer_len -
347 					  QL_HEADER_SPACE);
348 		}
349 	}
350 
351 	qdev->lrg_buf_free_count++;
352 }
353 
354 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
355 							   *qdev)
356 {
357 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
358 
359 	if (lrg_buf_cb != NULL) {
360 		qdev->lrg_buf_free_head = lrg_buf_cb->next;
361 		if (qdev->lrg_buf_free_head == NULL)
362 			qdev->lrg_buf_free_tail = NULL;
363 		qdev->lrg_buf_free_count--;
364 	}
365 
366 	return lrg_buf_cb;
367 }
368 
369 static u32 addrBits = EEPROM_NO_ADDR_BITS;
370 static u32 dataBits = EEPROM_NO_DATA_BITS;
371 
372 static void fm93c56a_deselect(struct ql3_adapter *qdev);
373 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
374 			    unsigned short *value);
375 
376 /*
377  * Caller holds hw_lock.
378  */
379 static void fm93c56a_select(struct ql3_adapter *qdev)
380 {
381 	struct ql3xxx_port_registers __iomem *port_regs =
382 			qdev->mem_map_registers;
383 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
384 
385 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
386 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
387 	ql_write_nvram_reg(qdev, spir,
388 			   ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
389 }
390 
391 /*
392  * Caller holds hw_lock.
393  */
394 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
395 {
396 	int i;
397 	u32 mask;
398 	u32 dataBit;
399 	u32 previousBit;
400 	struct ql3xxx_port_registers __iomem *port_regs =
401 			qdev->mem_map_registers;
402 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
403 
404 	/* Clock in a zero, then do the start bit */
405 	ql_write_nvram_reg(qdev, spir,
406 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
407 			    AUBURN_EEPROM_DO_1));
408 	ql_write_nvram_reg(qdev, spir,
409 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
410 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
411 	ql_write_nvram_reg(qdev, spir,
412 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
413 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
414 
415 	mask = 1 << (FM93C56A_CMD_BITS - 1);
416 	/* Force the previous data bit to be different */
417 	previousBit = 0xffff;
418 	for (i = 0; i < FM93C56A_CMD_BITS; i++) {
419 		dataBit = (cmd & mask)
420 			? AUBURN_EEPROM_DO_1
421 			: AUBURN_EEPROM_DO_0;
422 		if (previousBit != dataBit) {
423 			/* If the bit changed, change the DO state to match */
424 			ql_write_nvram_reg(qdev, spir,
425 					   (ISP_NVRAM_MASK |
426 					    qdev->eeprom_cmd_data | dataBit));
427 			previousBit = dataBit;
428 		}
429 		ql_write_nvram_reg(qdev, spir,
430 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
431 				    dataBit | AUBURN_EEPROM_CLK_RISE));
432 		ql_write_nvram_reg(qdev, spir,
433 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
434 				    dataBit | AUBURN_EEPROM_CLK_FALL));
435 		cmd = cmd << 1;
436 	}
437 
438 	mask = 1 << (addrBits - 1);
439 	/* Force the previous data bit to be different */
440 	previousBit = 0xffff;
441 	for (i = 0; i < addrBits; i++) {
442 		dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
443 			: AUBURN_EEPROM_DO_0;
444 		if (previousBit != dataBit) {
445 			/*
446 			 * If the bit changed, then change the DO state to
447 			 * match
448 			 */
449 			ql_write_nvram_reg(qdev, spir,
450 					   (ISP_NVRAM_MASK |
451 					    qdev->eeprom_cmd_data | dataBit));
452 			previousBit = dataBit;
453 		}
454 		ql_write_nvram_reg(qdev, spir,
455 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
456 				    dataBit | AUBURN_EEPROM_CLK_RISE));
457 		ql_write_nvram_reg(qdev, spir,
458 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
459 				    dataBit | AUBURN_EEPROM_CLK_FALL));
460 		eepromAddr = eepromAddr << 1;
461 	}
462 }
463 
464 /*
465  * Caller holds hw_lock.
466  */
467 static void fm93c56a_deselect(struct ql3_adapter *qdev)
468 {
469 	struct ql3xxx_port_registers __iomem *port_regs =
470 			qdev->mem_map_registers;
471 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
472 
473 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
474 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
475 }
476 
477 /*
478  * Caller holds hw_lock.
479  */
480 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
481 {
482 	int i;
483 	u32 data = 0;
484 	u32 dataBit;
485 	struct ql3xxx_port_registers __iomem *port_regs =
486 			qdev->mem_map_registers;
487 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
488 
489 	/* Read the data bits */
490 	/* The first bit is a dummy.  Clock right over it. */
491 	for (i = 0; i < dataBits; i++) {
492 		ql_write_nvram_reg(qdev, spir,
493 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
494 				   AUBURN_EEPROM_CLK_RISE);
495 		ql_write_nvram_reg(qdev, spir,
496 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
497 				   AUBURN_EEPROM_CLK_FALL);
498 		dataBit = (ql_read_common_reg(qdev, spir) &
499 			   AUBURN_EEPROM_DI_1) ? 1 : 0;
500 		data = (data << 1) | dataBit;
501 	}
502 	*value = (u16)data;
503 }
504 
505 /*
506  * Caller holds hw_lock.
507  */
508 static void eeprom_readword(struct ql3_adapter *qdev,
509 			    u32 eepromAddr, unsigned short *value)
510 {
511 	fm93c56a_select(qdev);
512 	fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
513 	fm93c56a_datain(qdev, value);
514 	fm93c56a_deselect(qdev);
515 }
516 
517 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
518 {
519 	__le16 *p = (__le16 *)ndev->dev_addr;
520 	p[0] = cpu_to_le16(addr[0]);
521 	p[1] = cpu_to_le16(addr[1]);
522 	p[2] = cpu_to_le16(addr[2]);
523 }
524 
525 static int ql_get_nvram_params(struct ql3_adapter *qdev)
526 {
527 	u16 *pEEPROMData;
528 	u16 checksum = 0;
529 	u32 index;
530 	unsigned long hw_flags;
531 
532 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
533 
534 	pEEPROMData = (u16 *)&qdev->nvram_data;
535 	qdev->eeprom_cmd_data = 0;
536 	if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
537 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
538 			 2) << 10)) {
539 		pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
540 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
541 		return -1;
542 	}
543 
544 	for (index = 0; index < EEPROM_SIZE; index++) {
545 		eeprom_readword(qdev, index, pEEPROMData);
546 		checksum += *pEEPROMData;
547 		pEEPROMData++;
548 	}
549 	ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
550 
551 	if (checksum != 0) {
552 		netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
553 			   checksum);
554 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
555 		return -1;
556 	}
557 
558 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
559 	return checksum;
560 }
561 
562 static const u32 PHYAddr[2] = {
563 	PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
564 };
565 
566 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
567 {
568 	struct ql3xxx_port_registers __iomem *port_regs =
569 			qdev->mem_map_registers;
570 	u32 temp;
571 	int count = 1000;
572 
573 	while (count) {
574 		temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
575 		if (!(temp & MAC_MII_STATUS_BSY))
576 			return 0;
577 		udelay(10);
578 		count--;
579 	}
580 	return -1;
581 }
582 
583 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
584 {
585 	struct ql3xxx_port_registers __iomem *port_regs =
586 			qdev->mem_map_registers;
587 	u32 scanControl;
588 
589 	if (qdev->numPorts > 1) {
590 		/* Auto scan will cycle through multiple ports */
591 		scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
592 	} else {
593 		scanControl = MAC_MII_CONTROL_SC;
594 	}
595 
596 	/*
597 	 * Scan register 1 of PHY/PETBI,
598 	 * Set up to scan both devices
599 	 * The autoscan starts from the first register, completes
600 	 * the last one before rolling over to the first
601 	 */
602 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
603 			   PHYAddr[0] | MII_SCAN_REGISTER);
604 
605 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
606 			   (scanControl) |
607 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
608 }
609 
610 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
611 {
612 	u8 ret;
613 	struct ql3xxx_port_registers __iomem *port_regs =
614 					qdev->mem_map_registers;
615 
616 	/* See if scan mode is enabled before we turn it off */
617 	if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
618 	    (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
619 		/* Scan is enabled */
620 		ret = 1;
621 	} else {
622 		/* Scan is disabled */
623 		ret = 0;
624 	}
625 
626 	/*
627 	 * When disabling scan mode you must first change the MII register
628 	 * address
629 	 */
630 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
631 			   PHYAddr[0] | MII_SCAN_REGISTER);
632 
633 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
634 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
635 			     MAC_MII_CONTROL_RC) << 16));
636 
637 	return ret;
638 }
639 
640 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
641 			       u16 regAddr, u16 value, u32 phyAddr)
642 {
643 	struct ql3xxx_port_registers __iomem *port_regs =
644 			qdev->mem_map_registers;
645 	u8 scanWasEnabled;
646 
647 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
648 
649 	if (ql_wait_for_mii_ready(qdev)) {
650 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
651 		return -1;
652 	}
653 
654 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
655 			   phyAddr | regAddr);
656 
657 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
658 
659 	/* Wait for write to complete 9/10/04 SJP */
660 	if (ql_wait_for_mii_ready(qdev)) {
661 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
662 		return -1;
663 	}
664 
665 	if (scanWasEnabled)
666 		ql_mii_enable_scan_mode(qdev);
667 
668 	return 0;
669 }
670 
671 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
672 			      u16 *value, u32 phyAddr)
673 {
674 	struct ql3xxx_port_registers __iomem *port_regs =
675 			qdev->mem_map_registers;
676 	u8 scanWasEnabled;
677 	u32 temp;
678 
679 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
680 
681 	if (ql_wait_for_mii_ready(qdev)) {
682 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
683 		return -1;
684 	}
685 
686 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
687 			   phyAddr | regAddr);
688 
689 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
690 			   (MAC_MII_CONTROL_RC << 16));
691 
692 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
693 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
694 
695 	/* Wait for the read to complete */
696 	if (ql_wait_for_mii_ready(qdev)) {
697 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
698 		return -1;
699 	}
700 
701 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
702 	*value = (u16) temp;
703 
704 	if (scanWasEnabled)
705 		ql_mii_enable_scan_mode(qdev);
706 
707 	return 0;
708 }
709 
710 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
711 {
712 	struct ql3xxx_port_registers __iomem *port_regs =
713 			qdev->mem_map_registers;
714 
715 	ql_mii_disable_scan_mode(qdev);
716 
717 	if (ql_wait_for_mii_ready(qdev)) {
718 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
719 		return -1;
720 	}
721 
722 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
723 			   qdev->PHYAddr | regAddr);
724 
725 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
726 
727 	/* Wait for write to complete. */
728 	if (ql_wait_for_mii_ready(qdev)) {
729 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
730 		return -1;
731 	}
732 
733 	ql_mii_enable_scan_mode(qdev);
734 
735 	return 0;
736 }
737 
738 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
739 {
740 	u32 temp;
741 	struct ql3xxx_port_registers __iomem *port_regs =
742 			qdev->mem_map_registers;
743 
744 	ql_mii_disable_scan_mode(qdev);
745 
746 	if (ql_wait_for_mii_ready(qdev)) {
747 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
748 		return -1;
749 	}
750 
751 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
752 			   qdev->PHYAddr | regAddr);
753 
754 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
755 			   (MAC_MII_CONTROL_RC << 16));
756 
757 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
758 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
759 
760 	/* Wait for the read to complete */
761 	if (ql_wait_for_mii_ready(qdev)) {
762 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
763 		return -1;
764 	}
765 
766 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
767 	*value = (u16) temp;
768 
769 	ql_mii_enable_scan_mode(qdev);
770 
771 	return 0;
772 }
773 
774 static void ql_petbi_reset(struct ql3_adapter *qdev)
775 {
776 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
777 }
778 
779 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
780 {
781 	u16 reg;
782 
783 	/* Enable Auto-negotiation sense */
784 	ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
785 	reg |= PETBI_TBI_AUTO_SENSE;
786 	ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
787 
788 	ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
789 			 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
790 
791 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
792 			 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
793 			 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
794 
795 }
796 
797 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
798 {
799 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
800 			    PHYAddr[qdev->mac_index]);
801 }
802 
803 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
804 {
805 	u16 reg;
806 
807 	/* Enable Auto-negotiation sense */
808 	ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
809 			   PHYAddr[qdev->mac_index]);
810 	reg |= PETBI_TBI_AUTO_SENSE;
811 	ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
812 			    PHYAddr[qdev->mac_index]);
813 
814 	ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
815 			    PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
816 			    PHYAddr[qdev->mac_index]);
817 
818 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
819 			    PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
820 			    PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
821 			    PHYAddr[qdev->mac_index]);
822 }
823 
824 static void ql_petbi_init(struct ql3_adapter *qdev)
825 {
826 	ql_petbi_reset(qdev);
827 	ql_petbi_start_neg(qdev);
828 }
829 
830 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
831 {
832 	ql_petbi_reset_ex(qdev);
833 	ql_petbi_start_neg_ex(qdev);
834 }
835 
836 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
837 {
838 	u16 reg;
839 
840 	if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
841 		return 0;
842 
843 	return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
844 }
845 
846 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
847 {
848 	netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
849 	/* power down device bit 11 = 1 */
850 	ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
851 	/* enable diagnostic mode bit 2 = 1 */
852 	ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
853 	/* 1000MB amplitude adjust (see Agere errata) */
854 	ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
855 	/* 1000MB amplitude adjust (see Agere errata) */
856 	ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
857 	/* 100MB amplitude adjust (see Agere errata) */
858 	ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
859 	/* 100MB amplitude adjust (see Agere errata) */
860 	ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
861 	/* 10MB amplitude adjust (see Agere errata) */
862 	ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
863 	/* 10MB amplitude adjust (see Agere errata) */
864 	ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
865 	/* point to hidden reg 0x2806 */
866 	ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
867 	/* Write new PHYAD w/bit 5 set */
868 	ql_mii_write_reg_ex(qdev, 0x11,
869 			    0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
870 	/*
871 	 * Disable diagnostic mode bit 2 = 0
872 	 * Power up device bit 11 = 0
873 	 * Link up (on) and activity (blink)
874 	 */
875 	ql_mii_write_reg(qdev, 0x12, 0x840a);
876 	ql_mii_write_reg(qdev, 0x00, 0x1140);
877 	ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
878 }
879 
880 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
881 				       u16 phyIdReg0, u16 phyIdReg1)
882 {
883 	enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
884 	u32   oui;
885 	u16   model;
886 	int i;
887 
888 	if (phyIdReg0 == 0xffff)
889 		return result;
890 
891 	if (phyIdReg1 == 0xffff)
892 		return result;
893 
894 	/* oui is split between two registers */
895 	oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
896 
897 	model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
898 
899 	/* Scan table for this PHY */
900 	for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
901 		if ((oui == PHY_DEVICES[i].phyIdOUI) &&
902 		    (model == PHY_DEVICES[i].phyIdModel)) {
903 			netdev_info(qdev->ndev, "Phy: %s\n",
904 				    PHY_DEVICES[i].name);
905 			result = PHY_DEVICES[i].phyDevice;
906 			break;
907 		}
908 	}
909 
910 	return result;
911 }
912 
913 static int ql_phy_get_speed(struct ql3_adapter *qdev)
914 {
915 	u16 reg;
916 
917 	switch (qdev->phyType) {
918 	case PHY_AGERE_ET1011C: {
919 		if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
920 			return 0;
921 
922 		reg = (reg >> 8) & 3;
923 		break;
924 	}
925 	default:
926 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
927 			return 0;
928 
929 		reg = (((reg & 0x18) >> 3) & 3);
930 	}
931 
932 	switch (reg) {
933 	case 2:
934 		return SPEED_1000;
935 	case 1:
936 		return SPEED_100;
937 	case 0:
938 		return SPEED_10;
939 	default:
940 		return -1;
941 	}
942 }
943 
944 static int ql_is_full_dup(struct ql3_adapter *qdev)
945 {
946 	u16 reg;
947 
948 	switch (qdev->phyType) {
949 	case PHY_AGERE_ET1011C: {
950 		if (ql_mii_read_reg(qdev, 0x1A, &reg))
951 			return 0;
952 
953 		return ((reg & 0x0080) && (reg & 0x1000)) != 0;
954 	}
955 	case PHY_VITESSE_VSC8211:
956 	default: {
957 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
958 			return 0;
959 		return (reg & PHY_AUX_DUPLEX_STAT) != 0;
960 	}
961 	}
962 }
963 
964 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
965 {
966 	u16 reg;
967 
968 	if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
969 		return 0;
970 
971 	return (reg & PHY_NEG_PAUSE) != 0;
972 }
973 
974 static int PHY_Setup(struct ql3_adapter *qdev)
975 {
976 	u16   reg1;
977 	u16   reg2;
978 	bool  agereAddrChangeNeeded = false;
979 	u32 miiAddr = 0;
980 	int err;
981 
982 	/*  Determine the PHY we are using by reading the ID's */
983 	err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
984 	if (err != 0) {
985 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
986 		return err;
987 	}
988 
989 	err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
990 	if (err != 0) {
991 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
992 		return err;
993 	}
994 
995 	/*  Check if we have a Agere PHY */
996 	if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
997 
998 		/* Determine which MII address we should be using
999 		   determined by the index of the card */
1000 		if (qdev->mac_index == 0)
1001 			miiAddr = MII_AGERE_ADDR_1;
1002 		else
1003 			miiAddr = MII_AGERE_ADDR_2;
1004 
1005 		err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1006 		if (err != 0) {
1007 			netdev_err(qdev->ndev,
1008 				   "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1009 			return err;
1010 		}
1011 
1012 		err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1013 		if (err != 0) {
1014 			netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1015 			return err;
1016 		}
1017 
1018 		/*  We need to remember to initialize the Agere PHY */
1019 		agereAddrChangeNeeded = true;
1020 	}
1021 
1022 	/*  Determine the particular PHY we have on board to apply
1023 	    PHY specific initializations */
1024 	qdev->phyType = getPhyType(qdev, reg1, reg2);
1025 
1026 	if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1027 		/* need this here so address gets changed */
1028 		phyAgereSpecificInit(qdev, miiAddr);
1029 	} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1030 		netdev_err(qdev->ndev, "PHY is unknown\n");
1031 		return -EIO;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * Caller holds hw_lock.
1039  */
1040 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1041 {
1042 	struct ql3xxx_port_registers __iomem *port_regs =
1043 			qdev->mem_map_registers;
1044 	u32 value;
1045 
1046 	if (enable)
1047 		value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1048 	else
1049 		value = (MAC_CONFIG_REG_PE << 16);
1050 
1051 	if (qdev->mac_index)
1052 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1053 	else
1054 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1055 }
1056 
1057 /*
1058  * Caller holds hw_lock.
1059  */
1060 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1061 {
1062 	struct ql3xxx_port_registers __iomem *port_regs =
1063 			qdev->mem_map_registers;
1064 	u32 value;
1065 
1066 	if (enable)
1067 		value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1068 	else
1069 		value = (MAC_CONFIG_REG_SR << 16);
1070 
1071 	if (qdev->mac_index)
1072 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1073 	else
1074 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1075 }
1076 
1077 /*
1078  * Caller holds hw_lock.
1079  */
1080 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1081 {
1082 	struct ql3xxx_port_registers __iomem *port_regs =
1083 			qdev->mem_map_registers;
1084 	u32 value;
1085 
1086 	if (enable)
1087 		value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1088 	else
1089 		value = (MAC_CONFIG_REG_GM << 16);
1090 
1091 	if (qdev->mac_index)
1092 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1093 	else
1094 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1095 }
1096 
1097 /*
1098  * Caller holds hw_lock.
1099  */
1100 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1101 {
1102 	struct ql3xxx_port_registers __iomem *port_regs =
1103 			qdev->mem_map_registers;
1104 	u32 value;
1105 
1106 	if (enable)
1107 		value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1108 	else
1109 		value = (MAC_CONFIG_REG_FD << 16);
1110 
1111 	if (qdev->mac_index)
1112 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1113 	else
1114 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1115 }
1116 
1117 /*
1118  * Caller holds hw_lock.
1119  */
1120 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1121 {
1122 	struct ql3xxx_port_registers __iomem *port_regs =
1123 			qdev->mem_map_registers;
1124 	u32 value;
1125 
1126 	if (enable)
1127 		value =
1128 		    ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1129 		     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1130 	else
1131 		value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1132 
1133 	if (qdev->mac_index)
1134 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1135 	else
1136 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1137 }
1138 
1139 /*
1140  * Caller holds hw_lock.
1141  */
1142 static int ql_is_fiber(struct ql3_adapter *qdev)
1143 {
1144 	struct ql3xxx_port_registers __iomem *port_regs =
1145 			qdev->mem_map_registers;
1146 	u32 bitToCheck = 0;
1147 	u32 temp;
1148 
1149 	switch (qdev->mac_index) {
1150 	case 0:
1151 		bitToCheck = PORT_STATUS_SM0;
1152 		break;
1153 	case 1:
1154 		bitToCheck = PORT_STATUS_SM1;
1155 		break;
1156 	}
1157 
1158 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1159 	return (temp & bitToCheck) != 0;
1160 }
1161 
1162 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1163 {
1164 	u16 reg;
1165 	ql_mii_read_reg(qdev, 0x00, &reg);
1166 	return (reg & 0x1000) != 0;
1167 }
1168 
1169 /*
1170  * Caller holds hw_lock.
1171  */
1172 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1173 {
1174 	struct ql3xxx_port_registers __iomem *port_regs =
1175 			qdev->mem_map_registers;
1176 	u32 bitToCheck = 0;
1177 	u32 temp;
1178 
1179 	switch (qdev->mac_index) {
1180 	case 0:
1181 		bitToCheck = PORT_STATUS_AC0;
1182 		break;
1183 	case 1:
1184 		bitToCheck = PORT_STATUS_AC1;
1185 		break;
1186 	}
1187 
1188 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1189 	if (temp & bitToCheck) {
1190 		netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1191 		return 1;
1192 	}
1193 	netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1194 	return 0;
1195 }
1196 
1197 /*
1198  *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
1199  */
1200 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1201 {
1202 	if (ql_is_fiber(qdev))
1203 		return ql_is_petbi_neg_pause(qdev);
1204 	else
1205 		return ql_is_phy_neg_pause(qdev);
1206 }
1207 
1208 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1209 {
1210 	struct ql3xxx_port_registers __iomem *port_regs =
1211 			qdev->mem_map_registers;
1212 	u32 bitToCheck = 0;
1213 	u32 temp;
1214 
1215 	switch (qdev->mac_index) {
1216 	case 0:
1217 		bitToCheck = PORT_STATUS_AE0;
1218 		break;
1219 	case 1:
1220 		bitToCheck = PORT_STATUS_AE1;
1221 		break;
1222 	}
1223 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1224 	return (temp & bitToCheck) != 0;
1225 }
1226 
1227 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1228 {
1229 	if (ql_is_fiber(qdev))
1230 		return SPEED_1000;
1231 	else
1232 		return ql_phy_get_speed(qdev);
1233 }
1234 
1235 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1236 {
1237 	if (ql_is_fiber(qdev))
1238 		return 1;
1239 	else
1240 		return ql_is_full_dup(qdev);
1241 }
1242 
1243 /*
1244  * Caller holds hw_lock.
1245  */
1246 static int ql_link_down_detect(struct ql3_adapter *qdev)
1247 {
1248 	struct ql3xxx_port_registers __iomem *port_regs =
1249 			qdev->mem_map_registers;
1250 	u32 bitToCheck = 0;
1251 	u32 temp;
1252 
1253 	switch (qdev->mac_index) {
1254 	case 0:
1255 		bitToCheck = ISP_CONTROL_LINK_DN_0;
1256 		break;
1257 	case 1:
1258 		bitToCheck = ISP_CONTROL_LINK_DN_1;
1259 		break;
1260 	}
1261 
1262 	temp =
1263 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1264 	return (temp & bitToCheck) != 0;
1265 }
1266 
1267 /*
1268  * Caller holds hw_lock.
1269  */
1270 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1271 {
1272 	struct ql3xxx_port_registers __iomem *port_regs =
1273 			qdev->mem_map_registers;
1274 
1275 	switch (qdev->mac_index) {
1276 	case 0:
1277 		ql_write_common_reg(qdev,
1278 				    &port_regs->CommonRegs.ispControlStatus,
1279 				    (ISP_CONTROL_LINK_DN_0) |
1280 				    (ISP_CONTROL_LINK_DN_0 << 16));
1281 		break;
1282 
1283 	case 1:
1284 		ql_write_common_reg(qdev,
1285 				    &port_regs->CommonRegs.ispControlStatus,
1286 				    (ISP_CONTROL_LINK_DN_1) |
1287 				    (ISP_CONTROL_LINK_DN_1 << 16));
1288 		break;
1289 
1290 	default:
1291 		return 1;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Caller holds hw_lock.
1299  */
1300 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1301 {
1302 	struct ql3xxx_port_registers __iomem *port_regs =
1303 			qdev->mem_map_registers;
1304 	u32 bitToCheck = 0;
1305 	u32 temp;
1306 
1307 	switch (qdev->mac_index) {
1308 	case 0:
1309 		bitToCheck = PORT_STATUS_F1_ENABLED;
1310 		break;
1311 	case 1:
1312 		bitToCheck = PORT_STATUS_F3_ENABLED;
1313 		break;
1314 	default:
1315 		break;
1316 	}
1317 
1318 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1319 	if (temp & bitToCheck) {
1320 		netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1321 			     "not link master\n");
1322 		return 0;
1323 	}
1324 
1325 	netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1326 	return 1;
1327 }
1328 
1329 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1330 {
1331 	ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1332 			    PHYAddr[qdev->mac_index]);
1333 }
1334 
1335 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1336 {
1337 	u16 reg;
1338 	u16 portConfiguration;
1339 
1340 	if (qdev->phyType == PHY_AGERE_ET1011C)
1341 		ql_mii_write_reg(qdev, 0x13, 0x0000);
1342 					/* turn off external loopback */
1343 
1344 	if (qdev->mac_index == 0)
1345 		portConfiguration =
1346 			qdev->nvram_data.macCfg_port0.portConfiguration;
1347 	else
1348 		portConfiguration =
1349 			qdev->nvram_data.macCfg_port1.portConfiguration;
1350 
1351 	/*  Some HBA's in the field are set to 0 and they need to
1352 	    be reinterpreted with a default value */
1353 	if (portConfiguration == 0)
1354 		portConfiguration = PORT_CONFIG_DEFAULT;
1355 
1356 	/* Set the 1000 advertisements */
1357 	ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1358 			   PHYAddr[qdev->mac_index]);
1359 	reg &= ~PHY_GIG_ALL_PARAMS;
1360 
1361 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1362 		if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1363 			reg |= PHY_GIG_ADV_1000F;
1364 		else
1365 			reg |= PHY_GIG_ADV_1000H;
1366 	}
1367 
1368 	ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1369 			    PHYAddr[qdev->mac_index]);
1370 
1371 	/* Set the 10/100 & pause negotiation advertisements */
1372 	ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1373 			   PHYAddr[qdev->mac_index]);
1374 	reg &= ~PHY_NEG_ALL_PARAMS;
1375 
1376 	if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1377 		reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1378 
1379 	if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1380 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1381 			reg |= PHY_NEG_ADV_100F;
1382 
1383 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1384 			reg |= PHY_NEG_ADV_10F;
1385 	}
1386 
1387 	if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1388 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1389 			reg |= PHY_NEG_ADV_100H;
1390 
1391 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1392 			reg |= PHY_NEG_ADV_10H;
1393 	}
1394 
1395 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1396 		reg |= 1;
1397 
1398 	ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1399 			    PHYAddr[qdev->mac_index]);
1400 
1401 	ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1402 
1403 	ql_mii_write_reg_ex(qdev, CONTROL_REG,
1404 			    reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1405 			    PHYAddr[qdev->mac_index]);
1406 }
1407 
1408 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1409 {
1410 	ql_phy_reset_ex(qdev);
1411 	PHY_Setup(qdev);
1412 	ql_phy_start_neg_ex(qdev);
1413 }
1414 
1415 /*
1416  * Caller holds hw_lock.
1417  */
1418 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1419 {
1420 	struct ql3xxx_port_registers __iomem *port_regs =
1421 			qdev->mem_map_registers;
1422 	u32 bitToCheck = 0;
1423 	u32 temp, linkState;
1424 
1425 	switch (qdev->mac_index) {
1426 	case 0:
1427 		bitToCheck = PORT_STATUS_UP0;
1428 		break;
1429 	case 1:
1430 		bitToCheck = PORT_STATUS_UP1;
1431 		break;
1432 	}
1433 
1434 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1435 	if (temp & bitToCheck)
1436 		linkState = LS_UP;
1437 	else
1438 		linkState = LS_DOWN;
1439 
1440 	return linkState;
1441 }
1442 
1443 static int ql_port_start(struct ql3_adapter *qdev)
1444 {
1445 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1446 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1447 			 2) << 7)) {
1448 		netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1449 		return -1;
1450 	}
1451 
1452 	if (ql_is_fiber(qdev)) {
1453 		ql_petbi_init(qdev);
1454 	} else {
1455 		/* Copper port */
1456 		ql_phy_init_ex(qdev);
1457 	}
1458 
1459 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1460 	return 0;
1461 }
1462 
1463 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1464 {
1465 
1466 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1467 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1468 			 2) << 7))
1469 		return -1;
1470 
1471 	if (!ql_auto_neg_error(qdev)) {
1472 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1473 			/* configure the MAC */
1474 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1475 				     "Configuring link\n");
1476 			ql_mac_cfg_soft_reset(qdev, 1);
1477 			ql_mac_cfg_gig(qdev,
1478 				       (ql_get_link_speed
1479 					(qdev) ==
1480 					SPEED_1000));
1481 			ql_mac_cfg_full_dup(qdev,
1482 					    ql_is_link_full_dup
1483 					    (qdev));
1484 			ql_mac_cfg_pause(qdev,
1485 					 ql_is_neg_pause
1486 					 (qdev));
1487 			ql_mac_cfg_soft_reset(qdev, 0);
1488 
1489 			/* enable the MAC */
1490 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1491 				     "Enabling mac\n");
1492 			ql_mac_enable(qdev, 1);
1493 		}
1494 
1495 		qdev->port_link_state = LS_UP;
1496 		netif_start_queue(qdev->ndev);
1497 		netif_carrier_on(qdev->ndev);
1498 		netif_info(qdev, link, qdev->ndev,
1499 			   "Link is up at %d Mbps, %s duplex\n",
1500 			   ql_get_link_speed(qdev),
1501 			   ql_is_link_full_dup(qdev) ? "full" : "half");
1502 
1503 	} else {	/* Remote error detected */
1504 
1505 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1506 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1507 				     "Remote error detected. Calling ql_port_start()\n");
1508 			/*
1509 			 * ql_port_start() is shared code and needs
1510 			 * to lock the PHY on it's own.
1511 			 */
1512 			ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1513 			if (ql_port_start(qdev))	/* Restart port */
1514 				return -1;
1515 			return 0;
1516 		}
1517 	}
1518 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1519 	return 0;
1520 }
1521 
1522 static void ql_link_state_machine_work(struct work_struct *work)
1523 {
1524 	struct ql3_adapter *qdev =
1525 		container_of(work, struct ql3_adapter, link_state_work.work);
1526 
1527 	u32 curr_link_state;
1528 	unsigned long hw_flags;
1529 
1530 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1531 
1532 	curr_link_state = ql_get_link_state(qdev);
1533 
1534 	if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1535 		netif_info(qdev, link, qdev->ndev,
1536 			   "Reset in progress, skip processing link state\n");
1537 
1538 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1539 
1540 		/* Restart timer on 2 second interval. */
1541 		mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1542 
1543 		return;
1544 	}
1545 
1546 	switch (qdev->port_link_state) {
1547 	default:
1548 		if (test_bit(QL_LINK_MASTER, &qdev->flags))
1549 			ql_port_start(qdev);
1550 		qdev->port_link_state = LS_DOWN;
1551 		/* Fall Through */
1552 
1553 	case LS_DOWN:
1554 		if (curr_link_state == LS_UP) {
1555 			netif_info(qdev, link, qdev->ndev, "Link is up\n");
1556 			if (ql_is_auto_neg_complete(qdev))
1557 				ql_finish_auto_neg(qdev);
1558 
1559 			if (qdev->port_link_state == LS_UP)
1560 				ql_link_down_detect_clear(qdev);
1561 
1562 			qdev->port_link_state = LS_UP;
1563 		}
1564 		break;
1565 
1566 	case LS_UP:
1567 		/*
1568 		 * See if the link is currently down or went down and came
1569 		 * back up
1570 		 */
1571 		if (curr_link_state == LS_DOWN) {
1572 			netif_info(qdev, link, qdev->ndev, "Link is down\n");
1573 			qdev->port_link_state = LS_DOWN;
1574 		}
1575 		if (ql_link_down_detect(qdev))
1576 			qdev->port_link_state = LS_DOWN;
1577 		break;
1578 	}
1579 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1580 
1581 	/* Restart timer on 2 second interval. */
1582 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1583 }
1584 
1585 /*
1586  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1587  */
1588 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1589 {
1590 	if (ql_this_adapter_controls_port(qdev))
1591 		set_bit(QL_LINK_MASTER, &qdev->flags);
1592 	else
1593 		clear_bit(QL_LINK_MASTER, &qdev->flags);
1594 }
1595 
1596 /*
1597  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1598  */
1599 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1600 {
1601 	ql_mii_enable_scan_mode(qdev);
1602 
1603 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1604 		if (ql_this_adapter_controls_port(qdev))
1605 			ql_petbi_init_ex(qdev);
1606 	} else {
1607 		if (ql_this_adapter_controls_port(qdev))
1608 			ql_phy_init_ex(qdev);
1609 	}
1610 }
1611 
1612 /*
1613  * MII_Setup needs to be called before taking the PHY out of reset
1614  * so that the management interface clock speed can be set properly.
1615  * It would be better if we had a way to disable MDC until after the
1616  * PHY is out of reset, but we don't have that capability.
1617  */
1618 static int ql_mii_setup(struct ql3_adapter *qdev)
1619 {
1620 	u32 reg;
1621 	struct ql3xxx_port_registers __iomem *port_regs =
1622 			qdev->mem_map_registers;
1623 
1624 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1625 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1626 			 2) << 7))
1627 		return -1;
1628 
1629 	if (qdev->device_id == QL3032_DEVICE_ID)
1630 		ql_write_page0_reg(qdev,
1631 			&port_regs->macMIIMgmtControlReg, 0x0f00000);
1632 
1633 	/* Divide 125MHz clock by 28 to meet PHY timing requirements */
1634 	reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1635 
1636 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1637 			   reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1638 
1639 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1640 	return 0;
1641 }
1642 
1643 #define SUPPORTED_OPTICAL_MODES	(SUPPORTED_1000baseT_Full |	\
1644 				 SUPPORTED_FIBRE |		\
1645 				 SUPPORTED_Autoneg)
1646 #define SUPPORTED_TP_MODES	(SUPPORTED_10baseT_Half |	\
1647 				 SUPPORTED_10baseT_Full |	\
1648 				 SUPPORTED_100baseT_Half |	\
1649 				 SUPPORTED_100baseT_Full |	\
1650 				 SUPPORTED_1000baseT_Half |	\
1651 				 SUPPORTED_1000baseT_Full |	\
1652 				 SUPPORTED_Autoneg |		\
1653 				 SUPPORTED_TP)			\
1654 
1655 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1656 {
1657 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1658 		return SUPPORTED_OPTICAL_MODES;
1659 
1660 	return SUPPORTED_TP_MODES;
1661 }
1662 
1663 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1664 {
1665 	int status;
1666 	unsigned long hw_flags;
1667 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1668 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1669 			    (QL_RESOURCE_BITS_BASE_CODE |
1670 			     (qdev->mac_index) * 2) << 7)) {
1671 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1672 		return 0;
1673 	}
1674 	status = ql_is_auto_cfg(qdev);
1675 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1676 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1677 	return status;
1678 }
1679 
1680 static u32 ql_get_speed(struct ql3_adapter *qdev)
1681 {
1682 	u32 status;
1683 	unsigned long hw_flags;
1684 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1685 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1686 			    (QL_RESOURCE_BITS_BASE_CODE |
1687 			     (qdev->mac_index) * 2) << 7)) {
1688 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1689 		return 0;
1690 	}
1691 	status = ql_get_link_speed(qdev);
1692 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1693 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1694 	return status;
1695 }
1696 
1697 static int ql_get_full_dup(struct ql3_adapter *qdev)
1698 {
1699 	int status;
1700 	unsigned long hw_flags;
1701 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1702 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1703 			    (QL_RESOURCE_BITS_BASE_CODE |
1704 			     (qdev->mac_index) * 2) << 7)) {
1705 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1706 		return 0;
1707 	}
1708 	status = ql_is_link_full_dup(qdev);
1709 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1710 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1711 	return status;
1712 }
1713 
1714 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1715 {
1716 	struct ql3_adapter *qdev = netdev_priv(ndev);
1717 
1718 	ecmd->transceiver = XCVR_INTERNAL;
1719 	ecmd->supported = ql_supported_modes(qdev);
1720 
1721 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1722 		ecmd->port = PORT_FIBRE;
1723 	} else {
1724 		ecmd->port = PORT_TP;
1725 		ecmd->phy_address = qdev->PHYAddr;
1726 	}
1727 	ecmd->advertising = ql_supported_modes(qdev);
1728 	ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1729 	ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
1730 	ecmd->duplex = ql_get_full_dup(qdev);
1731 	return 0;
1732 }
1733 
1734 static void ql_get_drvinfo(struct net_device *ndev,
1735 			   struct ethtool_drvinfo *drvinfo)
1736 {
1737 	struct ql3_adapter *qdev = netdev_priv(ndev);
1738 	strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1739 	strlcpy(drvinfo->version, ql3xxx_driver_version,
1740 		sizeof(drvinfo->version));
1741 	strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1742 		sizeof(drvinfo->bus_info));
1743 	drvinfo->regdump_len = 0;
1744 	drvinfo->eedump_len = 0;
1745 }
1746 
1747 static u32 ql_get_msglevel(struct net_device *ndev)
1748 {
1749 	struct ql3_adapter *qdev = netdev_priv(ndev);
1750 	return qdev->msg_enable;
1751 }
1752 
1753 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1754 {
1755 	struct ql3_adapter *qdev = netdev_priv(ndev);
1756 	qdev->msg_enable = value;
1757 }
1758 
1759 static void ql_get_pauseparam(struct net_device *ndev,
1760 			      struct ethtool_pauseparam *pause)
1761 {
1762 	struct ql3_adapter *qdev = netdev_priv(ndev);
1763 	struct ql3xxx_port_registers __iomem *port_regs =
1764 		qdev->mem_map_registers;
1765 
1766 	u32 reg;
1767 	if (qdev->mac_index == 0)
1768 		reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1769 	else
1770 		reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1771 
1772 	pause->autoneg  = ql_get_auto_cfg_status(qdev);
1773 	pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1774 	pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1775 }
1776 
1777 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1778 	.get_settings = ql_get_settings,
1779 	.get_drvinfo = ql_get_drvinfo,
1780 	.get_link = ethtool_op_get_link,
1781 	.get_msglevel = ql_get_msglevel,
1782 	.set_msglevel = ql_set_msglevel,
1783 	.get_pauseparam = ql_get_pauseparam,
1784 };
1785 
1786 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1787 {
1788 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1789 	dma_addr_t map;
1790 	int err;
1791 
1792 	while (lrg_buf_cb) {
1793 		if (!lrg_buf_cb->skb) {
1794 			lrg_buf_cb->skb =
1795 				netdev_alloc_skb(qdev->ndev,
1796 						 qdev->lrg_buffer_len);
1797 			if (unlikely(!lrg_buf_cb->skb)) {
1798 				netdev_printk(KERN_DEBUG, qdev->ndev,
1799 					      "Failed netdev_alloc_skb()\n");
1800 				break;
1801 			} else {
1802 				/*
1803 				 * We save some space to copy the ethhdr from
1804 				 * first buffer
1805 				 */
1806 				skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1807 				map = pci_map_single(qdev->pdev,
1808 						     lrg_buf_cb->skb->data,
1809 						     qdev->lrg_buffer_len -
1810 						     QL_HEADER_SPACE,
1811 						     PCI_DMA_FROMDEVICE);
1812 
1813 				err = pci_dma_mapping_error(qdev->pdev, map);
1814 				if (err) {
1815 					netdev_err(qdev->ndev,
1816 						   "PCI mapping failed with error: %d\n",
1817 						   err);
1818 					dev_kfree_skb(lrg_buf_cb->skb);
1819 					lrg_buf_cb->skb = NULL;
1820 					break;
1821 				}
1822 
1823 
1824 				lrg_buf_cb->buf_phy_addr_low =
1825 					cpu_to_le32(LS_64BITS(map));
1826 				lrg_buf_cb->buf_phy_addr_high =
1827 					cpu_to_le32(MS_64BITS(map));
1828 				dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1829 				dma_unmap_len_set(lrg_buf_cb, maplen,
1830 						  qdev->lrg_buffer_len -
1831 						  QL_HEADER_SPACE);
1832 				--qdev->lrg_buf_skb_check;
1833 				if (!qdev->lrg_buf_skb_check)
1834 					return 1;
1835 			}
1836 		}
1837 		lrg_buf_cb = lrg_buf_cb->next;
1838 	}
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Caller holds hw_lock.
1844  */
1845 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1846 {
1847 	struct ql3xxx_port_registers __iomem *port_regs =
1848 		qdev->mem_map_registers;
1849 
1850 	if (qdev->small_buf_release_cnt >= 16) {
1851 		while (qdev->small_buf_release_cnt >= 16) {
1852 			qdev->small_buf_q_producer_index++;
1853 
1854 			if (qdev->small_buf_q_producer_index ==
1855 			    NUM_SBUFQ_ENTRIES)
1856 				qdev->small_buf_q_producer_index = 0;
1857 			qdev->small_buf_release_cnt -= 8;
1858 		}
1859 		wmb();
1860 		writel(qdev->small_buf_q_producer_index,
1861 			&port_regs->CommonRegs.rxSmallQProducerIndex);
1862 	}
1863 }
1864 
1865 /*
1866  * Caller holds hw_lock.
1867  */
1868 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1869 {
1870 	struct bufq_addr_element *lrg_buf_q_ele;
1871 	int i;
1872 	struct ql_rcv_buf_cb *lrg_buf_cb;
1873 	struct ql3xxx_port_registers __iomem *port_regs =
1874 		qdev->mem_map_registers;
1875 
1876 	if ((qdev->lrg_buf_free_count >= 8) &&
1877 	    (qdev->lrg_buf_release_cnt >= 16)) {
1878 
1879 		if (qdev->lrg_buf_skb_check)
1880 			if (!ql_populate_free_queue(qdev))
1881 				return;
1882 
1883 		lrg_buf_q_ele = qdev->lrg_buf_next_free;
1884 
1885 		while ((qdev->lrg_buf_release_cnt >= 16) &&
1886 		       (qdev->lrg_buf_free_count >= 8)) {
1887 
1888 			for (i = 0; i < 8; i++) {
1889 				lrg_buf_cb =
1890 				    ql_get_from_lrg_buf_free_list(qdev);
1891 				lrg_buf_q_ele->addr_high =
1892 				    lrg_buf_cb->buf_phy_addr_high;
1893 				lrg_buf_q_ele->addr_low =
1894 				    lrg_buf_cb->buf_phy_addr_low;
1895 				lrg_buf_q_ele++;
1896 
1897 				qdev->lrg_buf_release_cnt--;
1898 			}
1899 
1900 			qdev->lrg_buf_q_producer_index++;
1901 
1902 			if (qdev->lrg_buf_q_producer_index ==
1903 			    qdev->num_lbufq_entries)
1904 				qdev->lrg_buf_q_producer_index = 0;
1905 
1906 			if (qdev->lrg_buf_q_producer_index ==
1907 			    (qdev->num_lbufq_entries - 1)) {
1908 				lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1909 			}
1910 		}
1911 		wmb();
1912 		qdev->lrg_buf_next_free = lrg_buf_q_ele;
1913 		writel(qdev->lrg_buf_q_producer_index,
1914 			&port_regs->CommonRegs.rxLargeQProducerIndex);
1915 	}
1916 }
1917 
1918 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1919 				   struct ob_mac_iocb_rsp *mac_rsp)
1920 {
1921 	struct ql_tx_buf_cb *tx_cb;
1922 	int i;
1923 	int retval = 0;
1924 
1925 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1926 		netdev_warn(qdev->ndev,
1927 			    "Frame too short but it was padded and sent\n");
1928 	}
1929 
1930 	tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1931 
1932 	/*  Check the transmit response flags for any errors */
1933 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1934 		netdev_err(qdev->ndev,
1935 			   "Frame too short to be legal, frame not sent\n");
1936 
1937 		qdev->ndev->stats.tx_errors++;
1938 		retval = -EIO;
1939 		goto frame_not_sent;
1940 	}
1941 
1942 	if (tx_cb->seg_count == 0) {
1943 		netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1944 			   mac_rsp->transaction_id);
1945 
1946 		qdev->ndev->stats.tx_errors++;
1947 		retval = -EIO;
1948 		goto invalid_seg_count;
1949 	}
1950 
1951 	pci_unmap_single(qdev->pdev,
1952 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1953 			 dma_unmap_len(&tx_cb->map[0], maplen),
1954 			 PCI_DMA_TODEVICE);
1955 	tx_cb->seg_count--;
1956 	if (tx_cb->seg_count) {
1957 		for (i = 1; i < tx_cb->seg_count; i++) {
1958 			pci_unmap_page(qdev->pdev,
1959 				       dma_unmap_addr(&tx_cb->map[i],
1960 						      mapaddr),
1961 				       dma_unmap_len(&tx_cb->map[i], maplen),
1962 				       PCI_DMA_TODEVICE);
1963 		}
1964 	}
1965 	qdev->ndev->stats.tx_packets++;
1966 	qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1967 
1968 frame_not_sent:
1969 	dev_kfree_skb_irq(tx_cb->skb);
1970 	tx_cb->skb = NULL;
1971 
1972 invalid_seg_count:
1973 	atomic_inc(&qdev->tx_count);
1974 }
1975 
1976 static void ql_get_sbuf(struct ql3_adapter *qdev)
1977 {
1978 	if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1979 		qdev->small_buf_index = 0;
1980 	qdev->small_buf_release_cnt++;
1981 }
1982 
1983 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1984 {
1985 	struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1986 	lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1987 	qdev->lrg_buf_release_cnt++;
1988 	if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1989 		qdev->lrg_buf_index = 0;
1990 	return lrg_buf_cb;
1991 }
1992 
1993 /*
1994  * The difference between 3022 and 3032 for inbound completions:
1995  * 3022 uses two buffers per completion.  The first buffer contains
1996  * (some) header info, the second the remainder of the headers plus
1997  * the data.  For this chip we reserve some space at the top of the
1998  * receive buffer so that the header info in buffer one can be
1999  * prepended to the buffer two.  Buffer two is the sent up while
2000  * buffer one is returned to the hardware to be reused.
2001  * 3032 receives all of it's data and headers in one buffer for a
2002  * simpler process.  3032 also supports checksum verification as
2003  * can be seen in ql_process_macip_rx_intr().
2004  */
2005 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2006 				   struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2007 {
2008 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2009 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2010 	struct sk_buff *skb;
2011 	u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2012 
2013 	/*
2014 	 * Get the inbound address list (small buffer).
2015 	 */
2016 	ql_get_sbuf(qdev);
2017 
2018 	if (qdev->device_id == QL3022_DEVICE_ID)
2019 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2020 
2021 	/* start of second buffer */
2022 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2023 	skb = lrg_buf_cb2->skb;
2024 
2025 	qdev->ndev->stats.rx_packets++;
2026 	qdev->ndev->stats.rx_bytes += length;
2027 
2028 	skb_put(skb, length);
2029 	pci_unmap_single(qdev->pdev,
2030 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2031 			 dma_unmap_len(lrg_buf_cb2, maplen),
2032 			 PCI_DMA_FROMDEVICE);
2033 	prefetch(skb->data);
2034 	skb_checksum_none_assert(skb);
2035 	skb->protocol = eth_type_trans(skb, qdev->ndev);
2036 
2037 	netif_receive_skb(skb);
2038 	lrg_buf_cb2->skb = NULL;
2039 
2040 	if (qdev->device_id == QL3022_DEVICE_ID)
2041 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2042 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2043 }
2044 
2045 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2046 				     struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2047 {
2048 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2049 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2050 	struct sk_buff *skb1 = NULL, *skb2;
2051 	struct net_device *ndev = qdev->ndev;
2052 	u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2053 	u16 size = 0;
2054 
2055 	/*
2056 	 * Get the inbound address list (small buffer).
2057 	 */
2058 
2059 	ql_get_sbuf(qdev);
2060 
2061 	if (qdev->device_id == QL3022_DEVICE_ID) {
2062 		/* start of first buffer on 3022 */
2063 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2064 		skb1 = lrg_buf_cb1->skb;
2065 		size = ETH_HLEN;
2066 		if (*((u16 *) skb1->data) != 0xFFFF)
2067 			size += VLAN_ETH_HLEN - ETH_HLEN;
2068 	}
2069 
2070 	/* start of second buffer */
2071 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2072 	skb2 = lrg_buf_cb2->skb;
2073 
2074 	skb_put(skb2, length);	/* Just the second buffer length here. */
2075 	pci_unmap_single(qdev->pdev,
2076 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2077 			 dma_unmap_len(lrg_buf_cb2, maplen),
2078 			 PCI_DMA_FROMDEVICE);
2079 	prefetch(skb2->data);
2080 
2081 	skb_checksum_none_assert(skb2);
2082 	if (qdev->device_id == QL3022_DEVICE_ID) {
2083 		/*
2084 		 * Copy the ethhdr from first buffer to second. This
2085 		 * is necessary for 3022 IP completions.
2086 		 */
2087 		skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2088 						 skb_push(skb2, size), size);
2089 	} else {
2090 		u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2091 		if (checksum &
2092 			(IB_IP_IOCB_RSP_3032_ICE |
2093 			 IB_IP_IOCB_RSP_3032_CE)) {
2094 			netdev_err(ndev,
2095 				   "%s: Bad checksum for this %s packet, checksum = %x\n",
2096 				   __func__,
2097 				   ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2098 				    "TCP" : "UDP"), checksum);
2099 		} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2100 				(checksum & IB_IP_IOCB_RSP_3032_UDP &&
2101 				!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2102 			skb2->ip_summed = CHECKSUM_UNNECESSARY;
2103 		}
2104 	}
2105 	skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2106 
2107 	netif_receive_skb(skb2);
2108 	ndev->stats.rx_packets++;
2109 	ndev->stats.rx_bytes += length;
2110 	lrg_buf_cb2->skb = NULL;
2111 
2112 	if (qdev->device_id == QL3022_DEVICE_ID)
2113 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2114 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2115 }
2116 
2117 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2118 			  int *tx_cleaned, int *rx_cleaned, int work_to_do)
2119 {
2120 	struct net_rsp_iocb *net_rsp;
2121 	struct net_device *ndev = qdev->ndev;
2122 	int work_done = 0;
2123 
2124 	/* While there are entries in the completion queue. */
2125 	while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2126 		qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2127 
2128 		net_rsp = qdev->rsp_current;
2129 		rmb();
2130 		/*
2131 		 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2132 		 * if the inbound completion is for a VLAN.
2133 		 */
2134 		if (qdev->device_id == QL3032_DEVICE_ID)
2135 			net_rsp->opcode &= 0x7f;
2136 		switch (net_rsp->opcode) {
2137 
2138 		case OPCODE_OB_MAC_IOCB_FN0:
2139 		case OPCODE_OB_MAC_IOCB_FN2:
2140 			ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2141 					       net_rsp);
2142 			(*tx_cleaned)++;
2143 			break;
2144 
2145 		case OPCODE_IB_MAC_IOCB:
2146 		case OPCODE_IB_3032_MAC_IOCB:
2147 			ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2148 					       net_rsp);
2149 			(*rx_cleaned)++;
2150 			break;
2151 
2152 		case OPCODE_IB_IP_IOCB:
2153 		case OPCODE_IB_3032_IP_IOCB:
2154 			ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2155 						 net_rsp);
2156 			(*rx_cleaned)++;
2157 			break;
2158 		default: {
2159 			u32 *tmp = (u32 *)net_rsp;
2160 			netdev_err(ndev,
2161 				   "Hit default case, not handled!\n"
2162 				   "	dropping the packet, opcode = %x\n"
2163 				   "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2164 				   net_rsp->opcode,
2165 				   (unsigned long int)tmp[0],
2166 				   (unsigned long int)tmp[1],
2167 				   (unsigned long int)tmp[2],
2168 				   (unsigned long int)tmp[3]);
2169 		}
2170 		}
2171 
2172 		qdev->rsp_consumer_index++;
2173 
2174 		if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2175 			qdev->rsp_consumer_index = 0;
2176 			qdev->rsp_current = qdev->rsp_q_virt_addr;
2177 		} else {
2178 			qdev->rsp_current++;
2179 		}
2180 
2181 		work_done = *tx_cleaned + *rx_cleaned;
2182 	}
2183 
2184 	return work_done;
2185 }
2186 
2187 static int ql_poll(struct napi_struct *napi, int budget)
2188 {
2189 	struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2190 	int rx_cleaned = 0, tx_cleaned = 0;
2191 	unsigned long hw_flags;
2192 	struct ql3xxx_port_registers __iomem *port_regs =
2193 		qdev->mem_map_registers;
2194 
2195 	ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2196 
2197 	if (tx_cleaned + rx_cleaned != budget) {
2198 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2199 		__napi_complete(napi);
2200 		ql_update_small_bufq_prod_index(qdev);
2201 		ql_update_lrg_bufq_prod_index(qdev);
2202 		writel(qdev->rsp_consumer_index,
2203 			    &port_regs->CommonRegs.rspQConsumerIndex);
2204 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2205 
2206 		ql_enable_interrupts(qdev);
2207 	}
2208 	return tx_cleaned + rx_cleaned;
2209 }
2210 
2211 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2212 {
2213 
2214 	struct net_device *ndev = dev_id;
2215 	struct ql3_adapter *qdev = netdev_priv(ndev);
2216 	struct ql3xxx_port_registers __iomem *port_regs =
2217 		qdev->mem_map_registers;
2218 	u32 value;
2219 	int handled = 1;
2220 	u32 var;
2221 
2222 	value = ql_read_common_reg_l(qdev,
2223 				     &port_regs->CommonRegs.ispControlStatus);
2224 
2225 	if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2226 		spin_lock(&qdev->adapter_lock);
2227 		netif_stop_queue(qdev->ndev);
2228 		netif_carrier_off(qdev->ndev);
2229 		ql_disable_interrupts(qdev);
2230 		qdev->port_link_state = LS_DOWN;
2231 		set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2232 
2233 		if (value & ISP_CONTROL_FE) {
2234 			/*
2235 			 * Chip Fatal Error.
2236 			 */
2237 			var =
2238 			    ql_read_page0_reg_l(qdev,
2239 					      &port_regs->PortFatalErrStatus);
2240 			netdev_warn(ndev,
2241 				    "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2242 				    var);
2243 			set_bit(QL_RESET_START, &qdev->flags) ;
2244 		} else {
2245 			/*
2246 			 * Soft Reset Requested.
2247 			 */
2248 			set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2249 			netdev_err(ndev,
2250 				   "Another function issued a reset to the chip. ISR value = %x\n",
2251 				   value);
2252 		}
2253 		queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2254 		spin_unlock(&qdev->adapter_lock);
2255 	} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2256 		ql_disable_interrupts(qdev);
2257 		if (likely(napi_schedule_prep(&qdev->napi)))
2258 			__napi_schedule(&qdev->napi);
2259 	} else
2260 		return IRQ_NONE;
2261 
2262 	return IRQ_RETVAL(handled);
2263 }
2264 
2265 /*
2266  * Get the total number of segments needed for the given number of fragments.
2267  * This is necessary because outbound address lists (OAL) will be used when
2268  * more than two frags are given.  Each address list has 5 addr/len pairs.
2269  * The 5th pair in each OAL is used to  point to the next OAL if more frags
2270  * are coming.  That is why the frags:segment count ratio is not linear.
2271  */
2272 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2273 {
2274 	if (qdev->device_id == QL3022_DEVICE_ID)
2275 		return 1;
2276 
2277 	if (frags <= 2)
2278 		return frags + 1;
2279 	else if (frags <= 6)
2280 		return frags + 2;
2281 	else if (frags <= 10)
2282 		return frags + 3;
2283 	else if (frags <= 14)
2284 		return frags + 4;
2285 	else if (frags <= 18)
2286 		return frags + 5;
2287 	return -1;
2288 }
2289 
2290 static void ql_hw_csum_setup(const struct sk_buff *skb,
2291 			     struct ob_mac_iocb_req *mac_iocb_ptr)
2292 {
2293 	const struct iphdr *ip = ip_hdr(skb);
2294 
2295 	mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2296 	mac_iocb_ptr->ip_hdr_len = ip->ihl;
2297 
2298 	if (ip->protocol == IPPROTO_TCP) {
2299 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2300 			OB_3032MAC_IOCB_REQ_IC;
2301 	} else {
2302 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2303 			OB_3032MAC_IOCB_REQ_IC;
2304 	}
2305 
2306 }
2307 
2308 /*
2309  * Map the buffers for this transmit.
2310  * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2311  */
2312 static int ql_send_map(struct ql3_adapter *qdev,
2313 				struct ob_mac_iocb_req *mac_iocb_ptr,
2314 				struct ql_tx_buf_cb *tx_cb,
2315 				struct sk_buff *skb)
2316 {
2317 	struct oal *oal;
2318 	struct oal_entry *oal_entry;
2319 	int len = skb_headlen(skb);
2320 	dma_addr_t map;
2321 	int err;
2322 	int completed_segs, i;
2323 	int seg_cnt, seg = 0;
2324 	int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2325 
2326 	seg_cnt = tx_cb->seg_count;
2327 	/*
2328 	 * Map the skb buffer first.
2329 	 */
2330 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2331 
2332 	err = pci_dma_mapping_error(qdev->pdev, map);
2333 	if (err) {
2334 		netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2335 			   err);
2336 
2337 		return NETDEV_TX_BUSY;
2338 	}
2339 
2340 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2341 	oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2342 	oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2343 	oal_entry->len = cpu_to_le32(len);
2344 	dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2345 	dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2346 	seg++;
2347 
2348 	if (seg_cnt == 1) {
2349 		/* Terminate the last segment. */
2350 		oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2351 		return NETDEV_TX_OK;
2352 	}
2353 	oal = tx_cb->oal;
2354 	for (completed_segs = 0;
2355 	     completed_segs < frag_cnt;
2356 	     completed_segs++, seg++) {
2357 		skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2358 		oal_entry++;
2359 		/*
2360 		 * Check for continuation requirements.
2361 		 * It's strange but necessary.
2362 		 * Continuation entry points to outbound address list.
2363 		 */
2364 		if ((seg == 2 && seg_cnt > 3) ||
2365 		    (seg == 7 && seg_cnt > 8) ||
2366 		    (seg == 12 && seg_cnt > 13) ||
2367 		    (seg == 17 && seg_cnt > 18)) {
2368 			map = pci_map_single(qdev->pdev, oal,
2369 					     sizeof(struct oal),
2370 					     PCI_DMA_TODEVICE);
2371 
2372 			err = pci_dma_mapping_error(qdev->pdev, map);
2373 			if (err) {
2374 				netdev_err(qdev->ndev,
2375 					   "PCI mapping outbound address list with error: %d\n",
2376 					   err);
2377 				goto map_error;
2378 			}
2379 
2380 			oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2381 			oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2382 			oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2383 						     OAL_CONT_ENTRY);
2384 			dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2385 			dma_unmap_len_set(&tx_cb->map[seg], maplen,
2386 					  sizeof(struct oal));
2387 			oal_entry = (struct oal_entry *)oal;
2388 			oal++;
2389 			seg++;
2390 		}
2391 
2392 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2393 				       DMA_TO_DEVICE);
2394 
2395 		err = dma_mapping_error(&qdev->pdev->dev, map);
2396 		if (err) {
2397 			netdev_err(qdev->ndev,
2398 				   "PCI mapping frags failed with error: %d\n",
2399 				   err);
2400 			goto map_error;
2401 		}
2402 
2403 		oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2404 		oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2405 		oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2406 		dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2407 		dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2408 		}
2409 	/* Terminate the last segment. */
2410 	oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2411 	return NETDEV_TX_OK;
2412 
2413 map_error:
2414 	/* A PCI mapping failed and now we will need to back out
2415 	 * We need to traverse through the oal's and associated pages which
2416 	 * have been mapped and now we must unmap them to clean up properly
2417 	 */
2418 
2419 	seg = 1;
2420 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2421 	oal = tx_cb->oal;
2422 	for (i = 0; i < completed_segs; i++, seg++) {
2423 		oal_entry++;
2424 
2425 		/*
2426 		 * Check for continuation requirements.
2427 		 * It's strange but necessary.
2428 		 */
2429 
2430 		if ((seg == 2 && seg_cnt > 3) ||
2431 		    (seg == 7 && seg_cnt > 8) ||
2432 		    (seg == 12 && seg_cnt > 13) ||
2433 		    (seg == 17 && seg_cnt > 18)) {
2434 			pci_unmap_single(qdev->pdev,
2435 				dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2436 				dma_unmap_len(&tx_cb->map[seg], maplen),
2437 				 PCI_DMA_TODEVICE);
2438 			oal++;
2439 			seg++;
2440 		}
2441 
2442 		pci_unmap_page(qdev->pdev,
2443 			       dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2444 			       dma_unmap_len(&tx_cb->map[seg], maplen),
2445 			       PCI_DMA_TODEVICE);
2446 	}
2447 
2448 	pci_unmap_single(qdev->pdev,
2449 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2450 			 dma_unmap_addr(&tx_cb->map[0], maplen),
2451 			 PCI_DMA_TODEVICE);
2452 
2453 	return NETDEV_TX_BUSY;
2454 
2455 }
2456 
2457 /*
2458  * The difference between 3022 and 3032 sends:
2459  * 3022 only supports a simple single segment transmission.
2460  * 3032 supports checksumming and scatter/gather lists (fragments).
2461  * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2462  * in the IOCB plus a chain of outbound address lists (OAL) that
2463  * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
2464  * will be used to point to an OAL when more ALP entries are required.
2465  * The IOCB is always the top of the chain followed by one or more
2466  * OALs (when necessary).
2467  */
2468 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2469 			       struct net_device *ndev)
2470 {
2471 	struct ql3_adapter *qdev = netdev_priv(ndev);
2472 	struct ql3xxx_port_registers __iomem *port_regs =
2473 			qdev->mem_map_registers;
2474 	struct ql_tx_buf_cb *tx_cb;
2475 	u32 tot_len = skb->len;
2476 	struct ob_mac_iocb_req *mac_iocb_ptr;
2477 
2478 	if (unlikely(atomic_read(&qdev->tx_count) < 2))
2479 		return NETDEV_TX_BUSY;
2480 
2481 	tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2482 	tx_cb->seg_count = ql_get_seg_count(qdev,
2483 					     skb_shinfo(skb)->nr_frags);
2484 	if (tx_cb->seg_count == -1) {
2485 		netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2486 		return NETDEV_TX_OK;
2487 	}
2488 
2489 	mac_iocb_ptr = tx_cb->queue_entry;
2490 	memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2491 	mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2492 	mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2493 	mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2494 	mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2495 	mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2496 	tx_cb->skb = skb;
2497 	if (qdev->device_id == QL3032_DEVICE_ID &&
2498 	    skb->ip_summed == CHECKSUM_PARTIAL)
2499 		ql_hw_csum_setup(skb, mac_iocb_ptr);
2500 
2501 	if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2502 		netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2503 		return NETDEV_TX_BUSY;
2504 	}
2505 
2506 	wmb();
2507 	qdev->req_producer_index++;
2508 	if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2509 		qdev->req_producer_index = 0;
2510 	wmb();
2511 	ql_write_common_reg_l(qdev,
2512 			    &port_regs->CommonRegs.reqQProducerIndex,
2513 			    qdev->req_producer_index);
2514 
2515 	netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2516 		     "tx queued, slot %d, len %d\n",
2517 		     qdev->req_producer_index, skb->len);
2518 
2519 	atomic_dec(&qdev->tx_count);
2520 	return NETDEV_TX_OK;
2521 }
2522 
2523 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2524 {
2525 	qdev->req_q_size =
2526 	    (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2527 
2528 	qdev->req_q_virt_addr =
2529 	    pci_alloc_consistent(qdev->pdev,
2530 				 (size_t) qdev->req_q_size,
2531 				 &qdev->req_q_phy_addr);
2532 
2533 	if ((qdev->req_q_virt_addr == NULL) ||
2534 	    LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2535 		netdev_err(qdev->ndev, "reqQ failed\n");
2536 		return -ENOMEM;
2537 	}
2538 
2539 	qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2540 
2541 	qdev->rsp_q_virt_addr =
2542 	    pci_alloc_consistent(qdev->pdev,
2543 				 (size_t) qdev->rsp_q_size,
2544 				 &qdev->rsp_q_phy_addr);
2545 
2546 	if ((qdev->rsp_q_virt_addr == NULL) ||
2547 	    LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2548 		netdev_err(qdev->ndev, "rspQ allocation failed\n");
2549 		pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2550 				    qdev->req_q_virt_addr,
2551 				    qdev->req_q_phy_addr);
2552 		return -ENOMEM;
2553 	}
2554 
2555 	set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2556 
2557 	return 0;
2558 }
2559 
2560 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2561 {
2562 	if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2563 		netdev_info(qdev->ndev, "Already done\n");
2564 		return;
2565 	}
2566 
2567 	pci_free_consistent(qdev->pdev,
2568 			    qdev->req_q_size,
2569 			    qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2570 
2571 	qdev->req_q_virt_addr = NULL;
2572 
2573 	pci_free_consistent(qdev->pdev,
2574 			    qdev->rsp_q_size,
2575 			    qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2576 
2577 	qdev->rsp_q_virt_addr = NULL;
2578 
2579 	clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2580 }
2581 
2582 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2583 {
2584 	/* Create Large Buffer Queue */
2585 	qdev->lrg_buf_q_size =
2586 		qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2587 	if (qdev->lrg_buf_q_size < PAGE_SIZE)
2588 		qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2589 	else
2590 		qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2591 
2592 	qdev->lrg_buf =
2593 		kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),
2594 			GFP_KERNEL);
2595 	if (qdev->lrg_buf == NULL) {
2596 		netdev_err(qdev->ndev, "qdev->lrg_buf alloc failed\n");
2597 		return -ENOMEM;
2598 	}
2599 
2600 	qdev->lrg_buf_q_alloc_virt_addr =
2601 		pci_alloc_consistent(qdev->pdev,
2602 				     qdev->lrg_buf_q_alloc_size,
2603 				     &qdev->lrg_buf_q_alloc_phy_addr);
2604 
2605 	if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2606 		netdev_err(qdev->ndev, "lBufQ failed\n");
2607 		return -ENOMEM;
2608 	}
2609 	qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2610 	qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2611 
2612 	/* Create Small Buffer Queue */
2613 	qdev->small_buf_q_size =
2614 		NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2615 	if (qdev->small_buf_q_size < PAGE_SIZE)
2616 		qdev->small_buf_q_alloc_size = PAGE_SIZE;
2617 	else
2618 		qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2619 
2620 	qdev->small_buf_q_alloc_virt_addr =
2621 		pci_alloc_consistent(qdev->pdev,
2622 				     qdev->small_buf_q_alloc_size,
2623 				     &qdev->small_buf_q_alloc_phy_addr);
2624 
2625 	if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2626 		netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2627 		pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2628 				    qdev->lrg_buf_q_alloc_virt_addr,
2629 				    qdev->lrg_buf_q_alloc_phy_addr);
2630 		return -ENOMEM;
2631 	}
2632 
2633 	qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2634 	qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2635 	set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2636 	return 0;
2637 }
2638 
2639 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2640 {
2641 	if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2642 		netdev_info(qdev->ndev, "Already done\n");
2643 		return;
2644 	}
2645 	kfree(qdev->lrg_buf);
2646 	pci_free_consistent(qdev->pdev,
2647 			    qdev->lrg_buf_q_alloc_size,
2648 			    qdev->lrg_buf_q_alloc_virt_addr,
2649 			    qdev->lrg_buf_q_alloc_phy_addr);
2650 
2651 	qdev->lrg_buf_q_virt_addr = NULL;
2652 
2653 	pci_free_consistent(qdev->pdev,
2654 			    qdev->small_buf_q_alloc_size,
2655 			    qdev->small_buf_q_alloc_virt_addr,
2656 			    qdev->small_buf_q_alloc_phy_addr);
2657 
2658 	qdev->small_buf_q_virt_addr = NULL;
2659 
2660 	clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2661 }
2662 
2663 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2664 {
2665 	int i;
2666 	struct bufq_addr_element *small_buf_q_entry;
2667 
2668 	/* Currently we allocate on one of memory and use it for smallbuffers */
2669 	qdev->small_buf_total_size =
2670 		(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2671 		 QL_SMALL_BUFFER_SIZE);
2672 
2673 	qdev->small_buf_virt_addr =
2674 		pci_alloc_consistent(qdev->pdev,
2675 				     qdev->small_buf_total_size,
2676 				     &qdev->small_buf_phy_addr);
2677 
2678 	if (qdev->small_buf_virt_addr == NULL) {
2679 		netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2680 		return -ENOMEM;
2681 	}
2682 
2683 	qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2684 	qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2685 
2686 	small_buf_q_entry = qdev->small_buf_q_virt_addr;
2687 
2688 	/* Initialize the small buffer queue. */
2689 	for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2690 		small_buf_q_entry->addr_high =
2691 		    cpu_to_le32(qdev->small_buf_phy_addr_high);
2692 		small_buf_q_entry->addr_low =
2693 		    cpu_to_le32(qdev->small_buf_phy_addr_low +
2694 				(i * QL_SMALL_BUFFER_SIZE));
2695 		small_buf_q_entry++;
2696 	}
2697 	qdev->small_buf_index = 0;
2698 	set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2699 	return 0;
2700 }
2701 
2702 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2703 {
2704 	if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2705 		netdev_info(qdev->ndev, "Already done\n");
2706 		return;
2707 	}
2708 	if (qdev->small_buf_virt_addr != NULL) {
2709 		pci_free_consistent(qdev->pdev,
2710 				    qdev->small_buf_total_size,
2711 				    qdev->small_buf_virt_addr,
2712 				    qdev->small_buf_phy_addr);
2713 
2714 		qdev->small_buf_virt_addr = NULL;
2715 	}
2716 }
2717 
2718 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2719 {
2720 	int i = 0;
2721 	struct ql_rcv_buf_cb *lrg_buf_cb;
2722 
2723 	for (i = 0; i < qdev->num_large_buffers; i++) {
2724 		lrg_buf_cb = &qdev->lrg_buf[i];
2725 		if (lrg_buf_cb->skb) {
2726 			dev_kfree_skb(lrg_buf_cb->skb);
2727 			pci_unmap_single(qdev->pdev,
2728 					 dma_unmap_addr(lrg_buf_cb, mapaddr),
2729 					 dma_unmap_len(lrg_buf_cb, maplen),
2730 					 PCI_DMA_FROMDEVICE);
2731 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2732 		} else {
2733 			break;
2734 		}
2735 	}
2736 }
2737 
2738 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2739 {
2740 	int i;
2741 	struct ql_rcv_buf_cb *lrg_buf_cb;
2742 	struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2743 
2744 	for (i = 0; i < qdev->num_large_buffers; i++) {
2745 		lrg_buf_cb = &qdev->lrg_buf[i];
2746 		buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2747 		buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2748 		buf_addr_ele++;
2749 	}
2750 	qdev->lrg_buf_index = 0;
2751 	qdev->lrg_buf_skb_check = 0;
2752 }
2753 
2754 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2755 {
2756 	int i;
2757 	struct ql_rcv_buf_cb *lrg_buf_cb;
2758 	struct sk_buff *skb;
2759 	dma_addr_t map;
2760 	int err;
2761 
2762 	for (i = 0; i < qdev->num_large_buffers; i++) {
2763 		skb = netdev_alloc_skb(qdev->ndev,
2764 				       qdev->lrg_buffer_len);
2765 		if (unlikely(!skb)) {
2766 			/* Better luck next round */
2767 			netdev_err(qdev->ndev,
2768 				   "large buff alloc failed for %d bytes at index %d\n",
2769 				   qdev->lrg_buffer_len * 2, i);
2770 			ql_free_large_buffers(qdev);
2771 			return -ENOMEM;
2772 		} else {
2773 
2774 			lrg_buf_cb = &qdev->lrg_buf[i];
2775 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2776 			lrg_buf_cb->index = i;
2777 			lrg_buf_cb->skb = skb;
2778 			/*
2779 			 * We save some space to copy the ethhdr from first
2780 			 * buffer
2781 			 */
2782 			skb_reserve(skb, QL_HEADER_SPACE);
2783 			map = pci_map_single(qdev->pdev,
2784 					     skb->data,
2785 					     qdev->lrg_buffer_len -
2786 					     QL_HEADER_SPACE,
2787 					     PCI_DMA_FROMDEVICE);
2788 
2789 			err = pci_dma_mapping_error(qdev->pdev, map);
2790 			if (err) {
2791 				netdev_err(qdev->ndev,
2792 					   "PCI mapping failed with error: %d\n",
2793 					   err);
2794 				ql_free_large_buffers(qdev);
2795 				return -ENOMEM;
2796 			}
2797 
2798 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2799 			dma_unmap_len_set(lrg_buf_cb, maplen,
2800 					  qdev->lrg_buffer_len -
2801 					  QL_HEADER_SPACE);
2802 			lrg_buf_cb->buf_phy_addr_low =
2803 			    cpu_to_le32(LS_64BITS(map));
2804 			lrg_buf_cb->buf_phy_addr_high =
2805 			    cpu_to_le32(MS_64BITS(map));
2806 		}
2807 	}
2808 	return 0;
2809 }
2810 
2811 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2812 {
2813 	struct ql_tx_buf_cb *tx_cb;
2814 	int i;
2815 
2816 	tx_cb = &qdev->tx_buf[0];
2817 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2818 		kfree(tx_cb->oal);
2819 		tx_cb->oal = NULL;
2820 		tx_cb++;
2821 	}
2822 }
2823 
2824 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2825 {
2826 	struct ql_tx_buf_cb *tx_cb;
2827 	int i;
2828 	struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2829 
2830 	/* Create free list of transmit buffers */
2831 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2832 
2833 		tx_cb = &qdev->tx_buf[i];
2834 		tx_cb->skb = NULL;
2835 		tx_cb->queue_entry = req_q_curr;
2836 		req_q_curr++;
2837 		tx_cb->oal = kmalloc(512, GFP_KERNEL);
2838 		if (tx_cb->oal == NULL)
2839 			return -ENOMEM;
2840 	}
2841 	return 0;
2842 }
2843 
2844 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2845 {
2846 	if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2847 		qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2848 		qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2849 	} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2850 		/*
2851 		 * Bigger buffers, so less of them.
2852 		 */
2853 		qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2854 		qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2855 	} else {
2856 		netdev_err(qdev->ndev, "Invalid mtu size: %d.  Only %d and %d are accepted.\n",
2857 			   qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2858 		return -ENOMEM;
2859 	}
2860 	qdev->num_large_buffers =
2861 		qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2862 	qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2863 	qdev->max_frame_size =
2864 		(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2865 
2866 	/*
2867 	 * First allocate a page of shared memory and use it for shadow
2868 	 * locations of Network Request Queue Consumer Address Register and
2869 	 * Network Completion Queue Producer Index Register
2870 	 */
2871 	qdev->shadow_reg_virt_addr =
2872 		pci_alloc_consistent(qdev->pdev,
2873 				     PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2874 
2875 	if (qdev->shadow_reg_virt_addr != NULL) {
2876 		qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2877 		qdev->req_consumer_index_phy_addr_high =
2878 			MS_64BITS(qdev->shadow_reg_phy_addr);
2879 		qdev->req_consumer_index_phy_addr_low =
2880 			LS_64BITS(qdev->shadow_reg_phy_addr);
2881 
2882 		qdev->prsp_producer_index =
2883 			(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2884 		qdev->rsp_producer_index_phy_addr_high =
2885 			qdev->req_consumer_index_phy_addr_high;
2886 		qdev->rsp_producer_index_phy_addr_low =
2887 			qdev->req_consumer_index_phy_addr_low + 8;
2888 	} else {
2889 		netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2890 		return -ENOMEM;
2891 	}
2892 
2893 	if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2894 		netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2895 		goto err_req_rsp;
2896 	}
2897 
2898 	if (ql_alloc_buffer_queues(qdev) != 0) {
2899 		netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2900 		goto err_buffer_queues;
2901 	}
2902 
2903 	if (ql_alloc_small_buffers(qdev) != 0) {
2904 		netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2905 		goto err_small_buffers;
2906 	}
2907 
2908 	if (ql_alloc_large_buffers(qdev) != 0) {
2909 		netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2910 		goto err_small_buffers;
2911 	}
2912 
2913 	/* Initialize the large buffer queue. */
2914 	ql_init_large_buffers(qdev);
2915 	if (ql_create_send_free_list(qdev))
2916 		goto err_free_list;
2917 
2918 	qdev->rsp_current = qdev->rsp_q_virt_addr;
2919 
2920 	return 0;
2921 err_free_list:
2922 	ql_free_send_free_list(qdev);
2923 err_small_buffers:
2924 	ql_free_buffer_queues(qdev);
2925 err_buffer_queues:
2926 	ql_free_net_req_rsp_queues(qdev);
2927 err_req_rsp:
2928 	pci_free_consistent(qdev->pdev,
2929 			    PAGE_SIZE,
2930 			    qdev->shadow_reg_virt_addr,
2931 			    qdev->shadow_reg_phy_addr);
2932 
2933 	return -ENOMEM;
2934 }
2935 
2936 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2937 {
2938 	ql_free_send_free_list(qdev);
2939 	ql_free_large_buffers(qdev);
2940 	ql_free_small_buffers(qdev);
2941 	ql_free_buffer_queues(qdev);
2942 	ql_free_net_req_rsp_queues(qdev);
2943 	if (qdev->shadow_reg_virt_addr != NULL) {
2944 		pci_free_consistent(qdev->pdev,
2945 				    PAGE_SIZE,
2946 				    qdev->shadow_reg_virt_addr,
2947 				    qdev->shadow_reg_phy_addr);
2948 		qdev->shadow_reg_virt_addr = NULL;
2949 	}
2950 }
2951 
2952 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2953 {
2954 	struct ql3xxx_local_ram_registers __iomem *local_ram =
2955 	    (void __iomem *)qdev->mem_map_registers;
2956 
2957 	if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2958 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2959 			 2) << 4))
2960 		return -1;
2961 
2962 	ql_write_page2_reg(qdev,
2963 			   &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2964 
2965 	ql_write_page2_reg(qdev,
2966 			   &local_ram->maxBufletCount,
2967 			   qdev->nvram_data.bufletCount);
2968 
2969 	ql_write_page2_reg(qdev,
2970 			   &local_ram->freeBufletThresholdLow,
2971 			   (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2972 			   (qdev->nvram_data.tcpWindowThreshold0));
2973 
2974 	ql_write_page2_reg(qdev,
2975 			   &local_ram->freeBufletThresholdHigh,
2976 			   qdev->nvram_data.tcpWindowThreshold50);
2977 
2978 	ql_write_page2_reg(qdev,
2979 			   &local_ram->ipHashTableBase,
2980 			   (qdev->nvram_data.ipHashTableBaseHi << 16) |
2981 			   qdev->nvram_data.ipHashTableBaseLo);
2982 	ql_write_page2_reg(qdev,
2983 			   &local_ram->ipHashTableCount,
2984 			   qdev->nvram_data.ipHashTableSize);
2985 	ql_write_page2_reg(qdev,
2986 			   &local_ram->tcpHashTableBase,
2987 			   (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2988 			   qdev->nvram_data.tcpHashTableBaseLo);
2989 	ql_write_page2_reg(qdev,
2990 			   &local_ram->tcpHashTableCount,
2991 			   qdev->nvram_data.tcpHashTableSize);
2992 	ql_write_page2_reg(qdev,
2993 			   &local_ram->ncbBase,
2994 			   (qdev->nvram_data.ncbTableBaseHi << 16) |
2995 			   qdev->nvram_data.ncbTableBaseLo);
2996 	ql_write_page2_reg(qdev,
2997 			   &local_ram->maxNcbCount,
2998 			   qdev->nvram_data.ncbTableSize);
2999 	ql_write_page2_reg(qdev,
3000 			   &local_ram->drbBase,
3001 			   (qdev->nvram_data.drbTableBaseHi << 16) |
3002 			   qdev->nvram_data.drbTableBaseLo);
3003 	ql_write_page2_reg(qdev,
3004 			   &local_ram->maxDrbCount,
3005 			   qdev->nvram_data.drbTableSize);
3006 	ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3007 	return 0;
3008 }
3009 
3010 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3011 {
3012 	u32 value;
3013 	struct ql3xxx_port_registers __iomem *port_regs =
3014 		qdev->mem_map_registers;
3015 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3016 	struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3017 		(void __iomem *)port_regs;
3018 	u32 delay = 10;
3019 	int status = 0;
3020 
3021 	if (ql_mii_setup(qdev))
3022 		return -1;
3023 
3024 	/* Bring out PHY out of reset */
3025 	ql_write_common_reg(qdev, spir,
3026 			    (ISP_SERIAL_PORT_IF_WE |
3027 			     (ISP_SERIAL_PORT_IF_WE << 16)));
3028 	/* Give the PHY time to come out of reset. */
3029 	mdelay(100);
3030 	qdev->port_link_state = LS_DOWN;
3031 	netif_carrier_off(qdev->ndev);
3032 
3033 	/* V2 chip fix for ARS-39168. */
3034 	ql_write_common_reg(qdev, spir,
3035 			    (ISP_SERIAL_PORT_IF_SDE |
3036 			     (ISP_SERIAL_PORT_IF_SDE << 16)));
3037 
3038 	/* Request Queue Registers */
3039 	*((u32 *)(qdev->preq_consumer_index)) = 0;
3040 	atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3041 	qdev->req_producer_index = 0;
3042 
3043 	ql_write_page1_reg(qdev,
3044 			   &hmem_regs->reqConsumerIndexAddrHigh,
3045 			   qdev->req_consumer_index_phy_addr_high);
3046 	ql_write_page1_reg(qdev,
3047 			   &hmem_regs->reqConsumerIndexAddrLow,
3048 			   qdev->req_consumer_index_phy_addr_low);
3049 
3050 	ql_write_page1_reg(qdev,
3051 			   &hmem_regs->reqBaseAddrHigh,
3052 			   MS_64BITS(qdev->req_q_phy_addr));
3053 	ql_write_page1_reg(qdev,
3054 			   &hmem_regs->reqBaseAddrLow,
3055 			   LS_64BITS(qdev->req_q_phy_addr));
3056 	ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3057 
3058 	/* Response Queue Registers */
3059 	*((__le16 *) (qdev->prsp_producer_index)) = 0;
3060 	qdev->rsp_consumer_index = 0;
3061 	qdev->rsp_current = qdev->rsp_q_virt_addr;
3062 
3063 	ql_write_page1_reg(qdev,
3064 			   &hmem_regs->rspProducerIndexAddrHigh,
3065 			   qdev->rsp_producer_index_phy_addr_high);
3066 
3067 	ql_write_page1_reg(qdev,
3068 			   &hmem_regs->rspProducerIndexAddrLow,
3069 			   qdev->rsp_producer_index_phy_addr_low);
3070 
3071 	ql_write_page1_reg(qdev,
3072 			   &hmem_regs->rspBaseAddrHigh,
3073 			   MS_64BITS(qdev->rsp_q_phy_addr));
3074 
3075 	ql_write_page1_reg(qdev,
3076 			   &hmem_regs->rspBaseAddrLow,
3077 			   LS_64BITS(qdev->rsp_q_phy_addr));
3078 
3079 	ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3080 
3081 	/* Large Buffer Queue */
3082 	ql_write_page1_reg(qdev,
3083 			   &hmem_regs->rxLargeQBaseAddrHigh,
3084 			   MS_64BITS(qdev->lrg_buf_q_phy_addr));
3085 
3086 	ql_write_page1_reg(qdev,
3087 			   &hmem_regs->rxLargeQBaseAddrLow,
3088 			   LS_64BITS(qdev->lrg_buf_q_phy_addr));
3089 
3090 	ql_write_page1_reg(qdev,
3091 			   &hmem_regs->rxLargeQLength,
3092 			   qdev->num_lbufq_entries);
3093 
3094 	ql_write_page1_reg(qdev,
3095 			   &hmem_regs->rxLargeBufferLength,
3096 			   qdev->lrg_buffer_len);
3097 
3098 	/* Small Buffer Queue */
3099 	ql_write_page1_reg(qdev,
3100 			   &hmem_regs->rxSmallQBaseAddrHigh,
3101 			   MS_64BITS(qdev->small_buf_q_phy_addr));
3102 
3103 	ql_write_page1_reg(qdev,
3104 			   &hmem_regs->rxSmallQBaseAddrLow,
3105 			   LS_64BITS(qdev->small_buf_q_phy_addr));
3106 
3107 	ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3108 	ql_write_page1_reg(qdev,
3109 			   &hmem_regs->rxSmallBufferLength,
3110 			   QL_SMALL_BUFFER_SIZE);
3111 
3112 	qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3113 	qdev->small_buf_release_cnt = 8;
3114 	qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3115 	qdev->lrg_buf_release_cnt = 8;
3116 	qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3117 	qdev->small_buf_index = 0;
3118 	qdev->lrg_buf_index = 0;
3119 	qdev->lrg_buf_free_count = 0;
3120 	qdev->lrg_buf_free_head = NULL;
3121 	qdev->lrg_buf_free_tail = NULL;
3122 
3123 	ql_write_common_reg(qdev,
3124 			    &port_regs->CommonRegs.
3125 			    rxSmallQProducerIndex,
3126 			    qdev->small_buf_q_producer_index);
3127 	ql_write_common_reg(qdev,
3128 			    &port_regs->CommonRegs.
3129 			    rxLargeQProducerIndex,
3130 			    qdev->lrg_buf_q_producer_index);
3131 
3132 	/*
3133 	 * Find out if the chip has already been initialized.  If it has, then
3134 	 * we skip some of the initialization.
3135 	 */
3136 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3137 	value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3138 	if ((value & PORT_STATUS_IC) == 0) {
3139 
3140 		/* Chip has not been configured yet, so let it rip. */
3141 		if (ql_init_misc_registers(qdev)) {
3142 			status = -1;
3143 			goto out;
3144 		}
3145 
3146 		value = qdev->nvram_data.tcpMaxWindowSize;
3147 		ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3148 
3149 		value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3150 
3151 		if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3152 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3153 				 * 2) << 13)) {
3154 			status = -1;
3155 			goto out;
3156 		}
3157 		ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3158 		ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3159 				   (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3160 				     16) | (INTERNAL_CHIP_SD |
3161 					    INTERNAL_CHIP_WE)));
3162 		ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3163 	}
3164 
3165 	if (qdev->mac_index)
3166 		ql_write_page0_reg(qdev,
3167 				   &port_regs->mac1MaxFrameLengthReg,
3168 				   qdev->max_frame_size);
3169 	else
3170 		ql_write_page0_reg(qdev,
3171 					   &port_regs->mac0MaxFrameLengthReg,
3172 					   qdev->max_frame_size);
3173 
3174 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3175 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3176 			 2) << 7)) {
3177 		status = -1;
3178 		goto out;
3179 	}
3180 
3181 	PHY_Setup(qdev);
3182 	ql_init_scan_mode(qdev);
3183 	ql_get_phy_owner(qdev);
3184 
3185 	/* Load the MAC Configuration */
3186 
3187 	/* Program lower 32 bits of the MAC address */
3188 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3189 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3190 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3191 			   ((qdev->ndev->dev_addr[2] << 24)
3192 			    | (qdev->ndev->dev_addr[3] << 16)
3193 			    | (qdev->ndev->dev_addr[4] << 8)
3194 			    | qdev->ndev->dev_addr[5]));
3195 
3196 	/* Program top 16 bits of the MAC address */
3197 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3198 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3199 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3200 			   ((qdev->ndev->dev_addr[0] << 8)
3201 			    | qdev->ndev->dev_addr[1]));
3202 
3203 	/* Enable Primary MAC */
3204 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3205 			   ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3206 			    MAC_ADDR_INDIRECT_PTR_REG_PE));
3207 
3208 	/* Clear Primary and Secondary IP addresses */
3209 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3210 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3211 			    (qdev->mac_index << 2)));
3212 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3213 
3214 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3215 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3216 			    ((qdev->mac_index << 2) + 1)));
3217 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3218 
3219 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3220 
3221 	/* Indicate Configuration Complete */
3222 	ql_write_page0_reg(qdev,
3223 			   &port_regs->portControl,
3224 			   ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3225 
3226 	do {
3227 		value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3228 		if (value & PORT_STATUS_IC)
3229 			break;
3230 		spin_unlock_irq(&qdev->hw_lock);
3231 		msleep(500);
3232 		spin_lock_irq(&qdev->hw_lock);
3233 	} while (--delay);
3234 
3235 	if (delay == 0) {
3236 		netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3237 		status = -1;
3238 		goto out;
3239 	}
3240 
3241 	/* Enable Ethernet Function */
3242 	if (qdev->device_id == QL3032_DEVICE_ID) {
3243 		value =
3244 		    (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3245 		     QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3246 			QL3032_PORT_CONTROL_ET);
3247 		ql_write_page0_reg(qdev, &port_regs->functionControl,
3248 				   ((value << 16) | value));
3249 	} else {
3250 		value =
3251 		    (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3252 		     PORT_CONTROL_HH);
3253 		ql_write_page0_reg(qdev, &port_regs->portControl,
3254 				   ((value << 16) | value));
3255 	}
3256 
3257 
3258 out:
3259 	return status;
3260 }
3261 
3262 /*
3263  * Caller holds hw_lock.
3264  */
3265 static int ql_adapter_reset(struct ql3_adapter *qdev)
3266 {
3267 	struct ql3xxx_port_registers __iomem *port_regs =
3268 		qdev->mem_map_registers;
3269 	int status = 0;
3270 	u16 value;
3271 	int max_wait_time;
3272 
3273 	set_bit(QL_RESET_ACTIVE, &qdev->flags);
3274 	clear_bit(QL_RESET_DONE, &qdev->flags);
3275 
3276 	/*
3277 	 * Issue soft reset to chip.
3278 	 */
3279 	netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3280 	ql_write_common_reg(qdev,
3281 			    &port_regs->CommonRegs.ispControlStatus,
3282 			    ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3283 
3284 	/* Wait 3 seconds for reset to complete. */
3285 	netdev_printk(KERN_DEBUG, qdev->ndev,
3286 		      "Wait 10 milliseconds for reset to complete\n");
3287 
3288 	/* Wait until the firmware tells us the Soft Reset is done */
3289 	max_wait_time = 5;
3290 	do {
3291 		value =
3292 		    ql_read_common_reg(qdev,
3293 				       &port_regs->CommonRegs.ispControlStatus);
3294 		if ((value & ISP_CONTROL_SR) == 0)
3295 			break;
3296 
3297 		ssleep(1);
3298 	} while ((--max_wait_time));
3299 
3300 	/*
3301 	 * Also, make sure that the Network Reset Interrupt bit has been
3302 	 * cleared after the soft reset has taken place.
3303 	 */
3304 	value =
3305 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3306 	if (value & ISP_CONTROL_RI) {
3307 		netdev_printk(KERN_DEBUG, qdev->ndev,
3308 			      "clearing RI after reset\n");
3309 		ql_write_common_reg(qdev,
3310 				    &port_regs->CommonRegs.
3311 				    ispControlStatus,
3312 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3313 	}
3314 
3315 	if (max_wait_time == 0) {
3316 		/* Issue Force Soft Reset */
3317 		ql_write_common_reg(qdev,
3318 				    &port_regs->CommonRegs.
3319 				    ispControlStatus,
3320 				    ((ISP_CONTROL_FSR << 16) |
3321 				     ISP_CONTROL_FSR));
3322 		/*
3323 		 * Wait until the firmware tells us the Force Soft Reset is
3324 		 * done
3325 		 */
3326 		max_wait_time = 5;
3327 		do {
3328 			value = ql_read_common_reg(qdev,
3329 						   &port_regs->CommonRegs.
3330 						   ispControlStatus);
3331 			if ((value & ISP_CONTROL_FSR) == 0)
3332 				break;
3333 			ssleep(1);
3334 		} while ((--max_wait_time));
3335 	}
3336 	if (max_wait_time == 0)
3337 		status = 1;
3338 
3339 	clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3340 	set_bit(QL_RESET_DONE, &qdev->flags);
3341 	return status;
3342 }
3343 
3344 static void ql_set_mac_info(struct ql3_adapter *qdev)
3345 {
3346 	struct ql3xxx_port_registers __iomem *port_regs =
3347 		qdev->mem_map_registers;
3348 	u32 value, port_status;
3349 	u8 func_number;
3350 
3351 	/* Get the function number */
3352 	value =
3353 	    ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3354 	func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3355 	port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3356 	switch (value & ISP_CONTROL_FN_MASK) {
3357 	case ISP_CONTROL_FN0_NET:
3358 		qdev->mac_index = 0;
3359 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3360 		qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3361 		qdev->PHYAddr = PORT0_PHY_ADDRESS;
3362 		if (port_status & PORT_STATUS_SM0)
3363 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3364 		else
3365 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3366 		break;
3367 
3368 	case ISP_CONTROL_FN1_NET:
3369 		qdev->mac_index = 1;
3370 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3371 		qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3372 		qdev->PHYAddr = PORT1_PHY_ADDRESS;
3373 		if (port_status & PORT_STATUS_SM1)
3374 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3375 		else
3376 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3377 		break;
3378 
3379 	case ISP_CONTROL_FN0_SCSI:
3380 	case ISP_CONTROL_FN1_SCSI:
3381 	default:
3382 		netdev_printk(KERN_DEBUG, qdev->ndev,
3383 			      "Invalid function number, ispControlStatus = 0x%x\n",
3384 			      value);
3385 		break;
3386 	}
3387 	qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3388 }
3389 
3390 static void ql_display_dev_info(struct net_device *ndev)
3391 {
3392 	struct ql3_adapter *qdev = netdev_priv(ndev);
3393 	struct pci_dev *pdev = qdev->pdev;
3394 
3395 	netdev_info(ndev,
3396 		    "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3397 		    DRV_NAME, qdev->index, qdev->chip_rev_id,
3398 		    qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3399 		    qdev->pci_slot);
3400 	netdev_info(ndev, "%s Interface\n",
3401 		test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3402 
3403 	/*
3404 	 * Print PCI bus width/type.
3405 	 */
3406 	netdev_info(ndev, "Bus interface is %s %s\n",
3407 		    ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3408 		    ((qdev->pci_x) ? "PCI-X" : "PCI"));
3409 
3410 	netdev_info(ndev, "mem  IO base address adjusted = 0x%p\n",
3411 		    qdev->mem_map_registers);
3412 	netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3413 
3414 	netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3415 }
3416 
3417 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3418 {
3419 	struct net_device *ndev = qdev->ndev;
3420 	int retval = 0;
3421 
3422 	netif_stop_queue(ndev);
3423 	netif_carrier_off(ndev);
3424 
3425 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3426 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3427 
3428 	ql_disable_interrupts(qdev);
3429 
3430 	free_irq(qdev->pdev->irq, ndev);
3431 
3432 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3433 		netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3434 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3435 		pci_disable_msi(qdev->pdev);
3436 	}
3437 
3438 	del_timer_sync(&qdev->adapter_timer);
3439 
3440 	napi_disable(&qdev->napi);
3441 
3442 	if (do_reset) {
3443 		int soft_reset;
3444 		unsigned long hw_flags;
3445 
3446 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3447 		if (ql_wait_for_drvr_lock(qdev)) {
3448 			soft_reset = ql_adapter_reset(qdev);
3449 			if (soft_reset) {
3450 				netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3451 					   qdev->index);
3452 			}
3453 			netdev_err(ndev,
3454 				   "Releasing driver lock via chip reset\n");
3455 		} else {
3456 			netdev_err(ndev,
3457 				   "Could not acquire driver lock to do reset!\n");
3458 			retval = -1;
3459 		}
3460 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3461 	}
3462 	ql_free_mem_resources(qdev);
3463 	return retval;
3464 }
3465 
3466 static int ql_adapter_up(struct ql3_adapter *qdev)
3467 {
3468 	struct net_device *ndev = qdev->ndev;
3469 	int err;
3470 	unsigned long irq_flags = IRQF_SHARED;
3471 	unsigned long hw_flags;
3472 
3473 	if (ql_alloc_mem_resources(qdev)) {
3474 		netdev_err(ndev, "Unable to  allocate buffers\n");
3475 		return -ENOMEM;
3476 	}
3477 
3478 	if (qdev->msi) {
3479 		if (pci_enable_msi(qdev->pdev)) {
3480 			netdev_err(ndev,
3481 				   "User requested MSI, but MSI failed to initialize.  Continuing without MSI.\n");
3482 			qdev->msi = 0;
3483 		} else {
3484 			netdev_info(ndev, "MSI Enabled...\n");
3485 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3486 			irq_flags &= ~IRQF_SHARED;
3487 		}
3488 	}
3489 
3490 	err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3491 			  irq_flags, ndev->name, ndev);
3492 	if (err) {
3493 		netdev_err(ndev,
3494 			   "Failed to reserve interrupt %d - already in use\n",
3495 			   qdev->pdev->irq);
3496 		goto err_irq;
3497 	}
3498 
3499 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3500 
3501 	err = ql_wait_for_drvr_lock(qdev);
3502 	if (err) {
3503 		err = ql_adapter_initialize(qdev);
3504 		if (err) {
3505 			netdev_err(ndev, "Unable to initialize adapter\n");
3506 			goto err_init;
3507 		}
3508 		netdev_err(ndev, "Releasing driver lock\n");
3509 		ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3510 	} else {
3511 		netdev_err(ndev, "Could not acquire driver lock\n");
3512 		goto err_lock;
3513 	}
3514 
3515 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3516 
3517 	set_bit(QL_ADAPTER_UP, &qdev->flags);
3518 
3519 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3520 
3521 	napi_enable(&qdev->napi);
3522 	ql_enable_interrupts(qdev);
3523 	return 0;
3524 
3525 err_init:
3526 	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3527 err_lock:
3528 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3529 	free_irq(qdev->pdev->irq, ndev);
3530 err_irq:
3531 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3532 		netdev_info(ndev, "calling pci_disable_msi()\n");
3533 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3534 		pci_disable_msi(qdev->pdev);
3535 	}
3536 	return err;
3537 }
3538 
3539 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3540 {
3541 	if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3542 		netdev_err(qdev->ndev,
3543 			   "Driver up/down cycle failed, closing device\n");
3544 		rtnl_lock();
3545 		dev_close(qdev->ndev);
3546 		rtnl_unlock();
3547 		return -1;
3548 	}
3549 	return 0;
3550 }
3551 
3552 static int ql3xxx_close(struct net_device *ndev)
3553 {
3554 	struct ql3_adapter *qdev = netdev_priv(ndev);
3555 
3556 	/*
3557 	 * Wait for device to recover from a reset.
3558 	 * (Rarely happens, but possible.)
3559 	 */
3560 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3561 		msleep(50);
3562 
3563 	ql_adapter_down(qdev, QL_DO_RESET);
3564 	return 0;
3565 }
3566 
3567 static int ql3xxx_open(struct net_device *ndev)
3568 {
3569 	struct ql3_adapter *qdev = netdev_priv(ndev);
3570 	return ql_adapter_up(qdev);
3571 }
3572 
3573 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3574 {
3575 	struct ql3_adapter *qdev = netdev_priv(ndev);
3576 	struct ql3xxx_port_registers __iomem *port_regs =
3577 			qdev->mem_map_registers;
3578 	struct sockaddr *addr = p;
3579 	unsigned long hw_flags;
3580 
3581 	if (netif_running(ndev))
3582 		return -EBUSY;
3583 
3584 	if (!is_valid_ether_addr(addr->sa_data))
3585 		return -EADDRNOTAVAIL;
3586 
3587 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3588 
3589 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3590 	/* Program lower 32 bits of the MAC address */
3591 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3592 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3593 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3594 			   ((ndev->dev_addr[2] << 24) | (ndev->
3595 							 dev_addr[3] << 16) |
3596 			    (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3597 
3598 	/* Program top 16 bits of the MAC address */
3599 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3600 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3601 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3602 			   ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3603 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3604 
3605 	return 0;
3606 }
3607 
3608 static void ql3xxx_tx_timeout(struct net_device *ndev)
3609 {
3610 	struct ql3_adapter *qdev = netdev_priv(ndev);
3611 
3612 	netdev_err(ndev, "Resetting...\n");
3613 	/*
3614 	 * Stop the queues, we've got a problem.
3615 	 */
3616 	netif_stop_queue(ndev);
3617 
3618 	/*
3619 	 * Wake up the worker to process this event.
3620 	 */
3621 	queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3622 }
3623 
3624 static void ql_reset_work(struct work_struct *work)
3625 {
3626 	struct ql3_adapter *qdev =
3627 		container_of(work, struct ql3_adapter, reset_work.work);
3628 	struct net_device *ndev = qdev->ndev;
3629 	u32 value;
3630 	struct ql_tx_buf_cb *tx_cb;
3631 	int max_wait_time, i;
3632 	struct ql3xxx_port_registers __iomem *port_regs =
3633 		qdev->mem_map_registers;
3634 	unsigned long hw_flags;
3635 
3636 	if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3637 		clear_bit(QL_LINK_MASTER, &qdev->flags);
3638 
3639 		/*
3640 		 * Loop through the active list and return the skb.
3641 		 */
3642 		for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3643 			int j;
3644 			tx_cb = &qdev->tx_buf[i];
3645 			if (tx_cb->skb) {
3646 				netdev_printk(KERN_DEBUG, ndev,
3647 					      "Freeing lost SKB\n");
3648 				pci_unmap_single(qdev->pdev,
3649 					 dma_unmap_addr(&tx_cb->map[0],
3650 							mapaddr),
3651 					 dma_unmap_len(&tx_cb->map[0], maplen),
3652 					 PCI_DMA_TODEVICE);
3653 				for (j = 1; j < tx_cb->seg_count; j++) {
3654 					pci_unmap_page(qdev->pdev,
3655 					       dma_unmap_addr(&tx_cb->map[j],
3656 							      mapaddr),
3657 					       dma_unmap_len(&tx_cb->map[j],
3658 							     maplen),
3659 					       PCI_DMA_TODEVICE);
3660 				}
3661 				dev_kfree_skb(tx_cb->skb);
3662 				tx_cb->skb = NULL;
3663 			}
3664 		}
3665 
3666 		netdev_err(ndev, "Clearing NRI after reset\n");
3667 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3668 		ql_write_common_reg(qdev,
3669 				    &port_regs->CommonRegs.
3670 				    ispControlStatus,
3671 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3672 		/*
3673 		 * Wait the for Soft Reset to Complete.
3674 		 */
3675 		max_wait_time = 10;
3676 		do {
3677 			value = ql_read_common_reg(qdev,
3678 						   &port_regs->CommonRegs.
3679 
3680 						   ispControlStatus);
3681 			if ((value & ISP_CONTROL_SR) == 0) {
3682 				netdev_printk(KERN_DEBUG, ndev,
3683 					      "reset completed\n");
3684 				break;
3685 			}
3686 
3687 			if (value & ISP_CONTROL_RI) {
3688 				netdev_printk(KERN_DEBUG, ndev,
3689 					      "clearing NRI after reset\n");
3690 				ql_write_common_reg(qdev,
3691 						    &port_regs->
3692 						    CommonRegs.
3693 						    ispControlStatus,
3694 						    ((ISP_CONTROL_RI <<
3695 						      16) | ISP_CONTROL_RI));
3696 			}
3697 
3698 			spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3699 			ssleep(1);
3700 			spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3701 		} while (--max_wait_time);
3702 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3703 
3704 		if (value & ISP_CONTROL_SR) {
3705 
3706 			/*
3707 			 * Set the reset flags and clear the board again.
3708 			 * Nothing else to do...
3709 			 */
3710 			netdev_err(ndev,
3711 				   "Timed out waiting for reset to complete\n");
3712 			netdev_err(ndev, "Do a reset\n");
3713 			clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3714 			clear_bit(QL_RESET_START, &qdev->flags);
3715 			ql_cycle_adapter(qdev, QL_DO_RESET);
3716 			return;
3717 		}
3718 
3719 		clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3720 		clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3721 		clear_bit(QL_RESET_START, &qdev->flags);
3722 		ql_cycle_adapter(qdev, QL_NO_RESET);
3723 	}
3724 }
3725 
3726 static void ql_tx_timeout_work(struct work_struct *work)
3727 {
3728 	struct ql3_adapter *qdev =
3729 		container_of(work, struct ql3_adapter, tx_timeout_work.work);
3730 
3731 	ql_cycle_adapter(qdev, QL_DO_RESET);
3732 }
3733 
3734 static void ql_get_board_info(struct ql3_adapter *qdev)
3735 {
3736 	struct ql3xxx_port_registers __iomem *port_regs =
3737 		qdev->mem_map_registers;
3738 	u32 value;
3739 
3740 	value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3741 
3742 	qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3743 	if (value & PORT_STATUS_64)
3744 		qdev->pci_width = 64;
3745 	else
3746 		qdev->pci_width = 32;
3747 	if (value & PORT_STATUS_X)
3748 		qdev->pci_x = 1;
3749 	else
3750 		qdev->pci_x = 0;
3751 	qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3752 }
3753 
3754 static void ql3xxx_timer(unsigned long ptr)
3755 {
3756 	struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3757 	queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3758 }
3759 
3760 static const struct net_device_ops ql3xxx_netdev_ops = {
3761 	.ndo_open		= ql3xxx_open,
3762 	.ndo_start_xmit		= ql3xxx_send,
3763 	.ndo_stop		= ql3xxx_close,
3764 	.ndo_change_mtu		= eth_change_mtu,
3765 	.ndo_validate_addr	= eth_validate_addr,
3766 	.ndo_set_mac_address	= ql3xxx_set_mac_address,
3767 	.ndo_tx_timeout		= ql3xxx_tx_timeout,
3768 };
3769 
3770 static int __devinit ql3xxx_probe(struct pci_dev *pdev,
3771 				  const struct pci_device_id *pci_entry)
3772 {
3773 	struct net_device *ndev = NULL;
3774 	struct ql3_adapter *qdev = NULL;
3775 	static int cards_found;
3776 	int uninitialized_var(pci_using_dac), err;
3777 
3778 	err = pci_enable_device(pdev);
3779 	if (err) {
3780 		pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3781 		goto err_out;
3782 	}
3783 
3784 	err = pci_request_regions(pdev, DRV_NAME);
3785 	if (err) {
3786 		pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3787 		goto err_out_disable_pdev;
3788 	}
3789 
3790 	pci_set_master(pdev);
3791 
3792 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3793 		pci_using_dac = 1;
3794 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3795 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3796 		pci_using_dac = 0;
3797 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3798 	}
3799 
3800 	if (err) {
3801 		pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3802 		goto err_out_free_regions;
3803 	}
3804 
3805 	ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3806 	if (!ndev) {
3807 		err = -ENOMEM;
3808 		goto err_out_free_regions;
3809 	}
3810 
3811 	SET_NETDEV_DEV(ndev, &pdev->dev);
3812 
3813 	pci_set_drvdata(pdev, ndev);
3814 
3815 	qdev = netdev_priv(ndev);
3816 	qdev->index = cards_found;
3817 	qdev->ndev = ndev;
3818 	qdev->pdev = pdev;
3819 	qdev->device_id = pci_entry->device;
3820 	qdev->port_link_state = LS_DOWN;
3821 	if (msi)
3822 		qdev->msi = 1;
3823 
3824 	qdev->msg_enable = netif_msg_init(debug, default_msg);
3825 
3826 	if (pci_using_dac)
3827 		ndev->features |= NETIF_F_HIGHDMA;
3828 	if (qdev->device_id == QL3032_DEVICE_ID)
3829 		ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3830 
3831 	qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3832 	if (!qdev->mem_map_registers) {
3833 		pr_err("%s: cannot map device registers\n", pci_name(pdev));
3834 		err = -EIO;
3835 		goto err_out_free_ndev;
3836 	}
3837 
3838 	spin_lock_init(&qdev->adapter_lock);
3839 	spin_lock_init(&qdev->hw_lock);
3840 
3841 	/* Set driver entry points */
3842 	ndev->netdev_ops = &ql3xxx_netdev_ops;
3843 	SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
3844 	ndev->watchdog_timeo = 5 * HZ;
3845 
3846 	netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3847 
3848 	ndev->irq = pdev->irq;
3849 
3850 	/* make sure the EEPROM is good */
3851 	if (ql_get_nvram_params(qdev)) {
3852 		pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3853 			 __func__, qdev->index);
3854 		err = -EIO;
3855 		goto err_out_iounmap;
3856 	}
3857 
3858 	ql_set_mac_info(qdev);
3859 
3860 	/* Validate and set parameters */
3861 	if (qdev->mac_index) {
3862 		ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3863 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3864 	} else {
3865 		ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3866 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3867 	}
3868 	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3869 
3870 	ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3871 
3872 	/* Record PCI bus information. */
3873 	ql_get_board_info(qdev);
3874 
3875 	/*
3876 	 * Set the Maximum Memory Read Byte Count value. We do this to handle
3877 	 * jumbo frames.
3878 	 */
3879 	if (qdev->pci_x)
3880 		pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3881 
3882 	err = register_netdev(ndev);
3883 	if (err) {
3884 		pr_err("%s: cannot register net device\n", pci_name(pdev));
3885 		goto err_out_iounmap;
3886 	}
3887 
3888 	/* we're going to reset, so assume we have no link for now */
3889 
3890 	netif_carrier_off(ndev);
3891 	netif_stop_queue(ndev);
3892 
3893 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
3894 	INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3895 	INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3896 	INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3897 
3898 	init_timer(&qdev->adapter_timer);
3899 	qdev->adapter_timer.function = ql3xxx_timer;
3900 	qdev->adapter_timer.expires = jiffies + HZ * 2;	/* two second delay */
3901 	qdev->adapter_timer.data = (unsigned long)qdev;
3902 
3903 	if (!cards_found) {
3904 		pr_alert("%s\n", DRV_STRING);
3905 		pr_alert("Driver name: %s, Version: %s\n",
3906 			 DRV_NAME, DRV_VERSION);
3907 	}
3908 	ql_display_dev_info(ndev);
3909 
3910 	cards_found++;
3911 	return 0;
3912 
3913 err_out_iounmap:
3914 	iounmap(qdev->mem_map_registers);
3915 err_out_free_ndev:
3916 	free_netdev(ndev);
3917 err_out_free_regions:
3918 	pci_release_regions(pdev);
3919 err_out_disable_pdev:
3920 	pci_disable_device(pdev);
3921 	pci_set_drvdata(pdev, NULL);
3922 err_out:
3923 	return err;
3924 }
3925 
3926 static void __devexit ql3xxx_remove(struct pci_dev *pdev)
3927 {
3928 	struct net_device *ndev = pci_get_drvdata(pdev);
3929 	struct ql3_adapter *qdev = netdev_priv(ndev);
3930 
3931 	unregister_netdev(ndev);
3932 
3933 	ql_disable_interrupts(qdev);
3934 
3935 	if (qdev->workqueue) {
3936 		cancel_delayed_work(&qdev->reset_work);
3937 		cancel_delayed_work(&qdev->tx_timeout_work);
3938 		destroy_workqueue(qdev->workqueue);
3939 		qdev->workqueue = NULL;
3940 	}
3941 
3942 	iounmap(qdev->mem_map_registers);
3943 	pci_release_regions(pdev);
3944 	pci_set_drvdata(pdev, NULL);
3945 	free_netdev(ndev);
3946 }
3947 
3948 static struct pci_driver ql3xxx_driver = {
3949 
3950 	.name = DRV_NAME,
3951 	.id_table = ql3xxx_pci_tbl,
3952 	.probe = ql3xxx_probe,
3953 	.remove = __devexit_p(ql3xxx_remove),
3954 };
3955 
3956 static int __init ql3xxx_init_module(void)
3957 {
3958 	return pci_register_driver(&ql3xxx_driver);
3959 }
3960 
3961 static void __exit ql3xxx_exit(void)
3962 {
3963 	pci_unregister_driver(&ql3xxx_driver);
3964 }
3965 
3966 module_init(ql3xxx_init_module);
3967 module_exit(ql3xxx_exit);
3968