1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include "qede.h"
39 #include "qede_ptp.h"
40 
41 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
42 MODULE_LICENSE("GPL");
43 
44 static uint debug;
45 module_param(debug, uint, 0);
46 MODULE_PARM_DESC(debug, " Default debug msglevel");
47 
48 static const struct qed_eth_ops *qed_ops;
49 
50 #define CHIP_NUM_57980S_40		0x1634
51 #define CHIP_NUM_57980S_10		0x1666
52 #define CHIP_NUM_57980S_MF		0x1636
53 #define CHIP_NUM_57980S_100		0x1644
54 #define CHIP_NUM_57980S_50		0x1654
55 #define CHIP_NUM_57980S_25		0x1656
56 #define CHIP_NUM_57980S_IOV		0x1664
57 #define CHIP_NUM_AH			0x8070
58 #define CHIP_NUM_AH_IOV			0x8090
59 
60 #ifndef PCI_DEVICE_ID_NX2_57980E
61 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
62 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
63 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
64 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
65 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
66 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
67 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
68 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
69 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
70 
71 #endif
72 
73 enum qede_pci_private {
74 	QEDE_PRIVATE_PF,
75 	QEDE_PRIVATE_VF
76 };
77 
78 static const struct pci_device_id qede_pci_tbl[] = {
79 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
89 #ifdef CONFIG_QED_SRIOV
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
91 #endif
92 	{ 0 }
93 };
94 
95 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
96 
97 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
98 static pci_ers_result_t
99 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
100 
101 #define TX_TIMEOUT		(5 * HZ)
102 
103 /* Utilize last protocol index for XDP */
104 #define XDP_PI	11
105 
106 static void qede_remove(struct pci_dev *pdev);
107 static void qede_shutdown(struct pci_dev *pdev);
108 static void qede_link_update(void *dev, struct qed_link_output *link);
109 static void qede_schedule_recovery_handler(void *dev);
110 static void qede_recovery_handler(struct qede_dev *edev);
111 static void qede_schedule_hw_err_handler(void *dev,
112 					 enum qed_hw_err_type err_type);
113 static void qede_get_eth_tlv_data(void *edev, void *data);
114 static void qede_get_generic_tlv_data(void *edev,
115 				      struct qed_generic_tlvs *data);
116 static void qede_generic_hw_err_handler(struct qede_dev *edev);
117 #ifdef CONFIG_QED_SRIOV
118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
119 			    __be16 vlan_proto)
120 {
121 	struct qede_dev *edev = netdev_priv(ndev);
122 
123 	if (vlan > 4095) {
124 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
125 		return -EINVAL;
126 	}
127 
128 	if (vlan_proto != htons(ETH_P_8021Q))
129 		return -EPROTONOSUPPORT;
130 
131 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
132 		   vlan, vf);
133 
134 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
135 }
136 
137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
138 {
139 	struct qede_dev *edev = netdev_priv(ndev);
140 
141 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
142 
143 	if (!is_valid_ether_addr(mac)) {
144 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
145 		return -EINVAL;
146 	}
147 
148 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
149 }
150 
151 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
152 {
153 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
154 	struct qed_dev_info *qed_info = &edev->dev_info.common;
155 	struct qed_update_vport_params *vport_params;
156 	int rc;
157 
158 	vport_params = vzalloc(sizeof(*vport_params));
159 	if (!vport_params)
160 		return -ENOMEM;
161 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
162 
163 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
164 
165 	/* Enable/Disable Tx switching for PF */
166 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
167 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
168 		vport_params->vport_id = 0;
169 		vport_params->update_tx_switching_flg = 1;
170 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
171 		edev->ops->vport_update(edev->cdev, vport_params);
172 	}
173 
174 	vfree(vport_params);
175 	return rc;
176 }
177 #endif
178 
179 static const struct pci_error_handlers qede_err_handler = {
180 	.error_detected = qede_io_error_detected,
181 };
182 
183 static struct pci_driver qede_pci_driver = {
184 	.name = "qede",
185 	.id_table = qede_pci_tbl,
186 	.probe = qede_probe,
187 	.remove = qede_remove,
188 	.shutdown = qede_shutdown,
189 #ifdef CONFIG_QED_SRIOV
190 	.sriov_configure = qede_sriov_configure,
191 #endif
192 	.err_handler = &qede_err_handler,
193 };
194 
195 static struct qed_eth_cb_ops qede_ll_ops = {
196 	{
197 #ifdef CONFIG_RFS_ACCEL
198 		.arfs_filter_op = qede_arfs_filter_op,
199 #endif
200 		.link_update = qede_link_update,
201 		.schedule_recovery_handler = qede_schedule_recovery_handler,
202 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
203 		.get_generic_tlv_data = qede_get_generic_tlv_data,
204 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
205 	},
206 	.force_mac = qede_force_mac,
207 	.ports_update = qede_udp_ports_update,
208 };
209 
210 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
211 			     void *ptr)
212 {
213 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
214 	struct ethtool_drvinfo drvinfo;
215 	struct qede_dev *edev;
216 
217 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
218 		goto done;
219 
220 	/* Check whether this is a qede device */
221 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
222 		goto done;
223 
224 	memset(&drvinfo, 0, sizeof(drvinfo));
225 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
226 	if (strcmp(drvinfo.driver, "qede"))
227 		goto done;
228 	edev = netdev_priv(ndev);
229 
230 	switch (event) {
231 	case NETDEV_CHANGENAME:
232 		/* Notify qed of the name change */
233 		if (!edev->ops || !edev->ops->common)
234 			goto done;
235 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
236 		break;
237 	case NETDEV_CHANGEADDR:
238 		edev = netdev_priv(ndev);
239 		qede_rdma_event_changeaddr(edev);
240 		break;
241 	}
242 
243 done:
244 	return NOTIFY_DONE;
245 }
246 
247 static struct notifier_block qede_netdev_notifier = {
248 	.notifier_call = qede_netdev_event,
249 };
250 
251 static
252 int __init qede_init(void)
253 {
254 	int ret;
255 
256 	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
257 
258 	qede_forced_speed_maps_init();
259 
260 	qed_ops = qed_get_eth_ops();
261 	if (!qed_ops) {
262 		pr_notice("Failed to get qed ethtool operations\n");
263 		return -EINVAL;
264 	}
265 
266 	/* Must register notifier before pci ops, since we might miss
267 	 * interface rename after pci probe and netdev registration.
268 	 */
269 	ret = register_netdevice_notifier(&qede_netdev_notifier);
270 	if (ret) {
271 		pr_notice("Failed to register netdevice_notifier\n");
272 		qed_put_eth_ops();
273 		return -EINVAL;
274 	}
275 
276 	ret = pci_register_driver(&qede_pci_driver);
277 	if (ret) {
278 		pr_notice("Failed to register driver\n");
279 		unregister_netdevice_notifier(&qede_netdev_notifier);
280 		qed_put_eth_ops();
281 		return -EINVAL;
282 	}
283 
284 	return 0;
285 }
286 
287 static void __exit qede_cleanup(void)
288 {
289 	if (debug & QED_LOG_INFO_MASK)
290 		pr_info("qede_cleanup called\n");
291 
292 	unregister_netdevice_notifier(&qede_netdev_notifier);
293 	pci_unregister_driver(&qede_pci_driver);
294 	qed_put_eth_ops();
295 }
296 
297 module_init(qede_init);
298 module_exit(qede_cleanup);
299 
300 static int qede_open(struct net_device *ndev);
301 static int qede_close(struct net_device *ndev);
302 
303 void qede_fill_by_demand_stats(struct qede_dev *edev)
304 {
305 	struct qede_stats_common *p_common = &edev->stats.common;
306 	struct qed_eth_stats stats;
307 
308 	edev->ops->get_vport_stats(edev->cdev, &stats);
309 
310 	p_common->no_buff_discards = stats.common.no_buff_discards;
311 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
312 	p_common->ttl0_discard = stats.common.ttl0_discard;
313 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
314 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
315 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
316 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
317 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
318 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
319 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
320 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
321 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
322 
323 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
324 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
325 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
326 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
327 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
328 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
329 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
330 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
331 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
332 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
333 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
334 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
335 
336 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
337 	p_common->rx_65_to_127_byte_packets =
338 	    stats.common.rx_65_to_127_byte_packets;
339 	p_common->rx_128_to_255_byte_packets =
340 	    stats.common.rx_128_to_255_byte_packets;
341 	p_common->rx_256_to_511_byte_packets =
342 	    stats.common.rx_256_to_511_byte_packets;
343 	p_common->rx_512_to_1023_byte_packets =
344 	    stats.common.rx_512_to_1023_byte_packets;
345 	p_common->rx_1024_to_1518_byte_packets =
346 	    stats.common.rx_1024_to_1518_byte_packets;
347 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
348 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
349 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
350 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
351 	p_common->rx_align_errors = stats.common.rx_align_errors;
352 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
353 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
354 	p_common->rx_jabbers = stats.common.rx_jabbers;
355 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
356 	p_common->rx_fragments = stats.common.rx_fragments;
357 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
358 	p_common->tx_65_to_127_byte_packets =
359 	    stats.common.tx_65_to_127_byte_packets;
360 	p_common->tx_128_to_255_byte_packets =
361 	    stats.common.tx_128_to_255_byte_packets;
362 	p_common->tx_256_to_511_byte_packets =
363 	    stats.common.tx_256_to_511_byte_packets;
364 	p_common->tx_512_to_1023_byte_packets =
365 	    stats.common.tx_512_to_1023_byte_packets;
366 	p_common->tx_1024_to_1518_byte_packets =
367 	    stats.common.tx_1024_to_1518_byte_packets;
368 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
369 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
370 	p_common->brb_truncates = stats.common.brb_truncates;
371 	p_common->brb_discards = stats.common.brb_discards;
372 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
373 	p_common->link_change_count = stats.common.link_change_count;
374 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
375 
376 	if (QEDE_IS_BB(edev)) {
377 		struct qede_stats_bb *p_bb = &edev->stats.bb;
378 
379 		p_bb->rx_1519_to_1522_byte_packets =
380 		    stats.bb.rx_1519_to_1522_byte_packets;
381 		p_bb->rx_1519_to_2047_byte_packets =
382 		    stats.bb.rx_1519_to_2047_byte_packets;
383 		p_bb->rx_2048_to_4095_byte_packets =
384 		    stats.bb.rx_2048_to_4095_byte_packets;
385 		p_bb->rx_4096_to_9216_byte_packets =
386 		    stats.bb.rx_4096_to_9216_byte_packets;
387 		p_bb->rx_9217_to_16383_byte_packets =
388 		    stats.bb.rx_9217_to_16383_byte_packets;
389 		p_bb->tx_1519_to_2047_byte_packets =
390 		    stats.bb.tx_1519_to_2047_byte_packets;
391 		p_bb->tx_2048_to_4095_byte_packets =
392 		    stats.bb.tx_2048_to_4095_byte_packets;
393 		p_bb->tx_4096_to_9216_byte_packets =
394 		    stats.bb.tx_4096_to_9216_byte_packets;
395 		p_bb->tx_9217_to_16383_byte_packets =
396 		    stats.bb.tx_9217_to_16383_byte_packets;
397 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
398 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
399 	} else {
400 		struct qede_stats_ah *p_ah = &edev->stats.ah;
401 
402 		p_ah->rx_1519_to_max_byte_packets =
403 		    stats.ah.rx_1519_to_max_byte_packets;
404 		p_ah->tx_1519_to_max_byte_packets =
405 		    stats.ah.tx_1519_to_max_byte_packets;
406 	}
407 }
408 
409 static void qede_get_stats64(struct net_device *dev,
410 			     struct rtnl_link_stats64 *stats)
411 {
412 	struct qede_dev *edev = netdev_priv(dev);
413 	struct qede_stats_common *p_common;
414 
415 	qede_fill_by_demand_stats(edev);
416 	p_common = &edev->stats.common;
417 
418 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
419 			    p_common->rx_bcast_pkts;
420 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
421 			    p_common->tx_bcast_pkts;
422 
423 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
424 			  p_common->rx_bcast_bytes;
425 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
426 			  p_common->tx_bcast_bytes;
427 
428 	stats->tx_errors = p_common->tx_err_drop_pkts;
429 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
430 
431 	stats->rx_fifo_errors = p_common->no_buff_discards;
432 
433 	if (QEDE_IS_BB(edev))
434 		stats->collisions = edev->stats.bb.tx_total_collisions;
435 	stats->rx_crc_errors = p_common->rx_crc_errors;
436 	stats->rx_frame_errors = p_common->rx_align_errors;
437 }
438 
439 #ifdef CONFIG_QED_SRIOV
440 static int qede_get_vf_config(struct net_device *dev, int vfidx,
441 			      struct ifla_vf_info *ivi)
442 {
443 	struct qede_dev *edev = netdev_priv(dev);
444 
445 	if (!edev->ops)
446 		return -EINVAL;
447 
448 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
449 }
450 
451 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
452 			    int min_tx_rate, int max_tx_rate)
453 {
454 	struct qede_dev *edev = netdev_priv(dev);
455 
456 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
457 					max_tx_rate);
458 }
459 
460 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
461 {
462 	struct qede_dev *edev = netdev_priv(dev);
463 
464 	if (!edev->ops)
465 		return -EINVAL;
466 
467 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
468 }
469 
470 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
471 				  int link_state)
472 {
473 	struct qede_dev *edev = netdev_priv(dev);
474 
475 	if (!edev->ops)
476 		return -EINVAL;
477 
478 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
479 }
480 
481 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
482 {
483 	struct qede_dev *edev = netdev_priv(dev);
484 
485 	if (!edev->ops)
486 		return -EINVAL;
487 
488 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
489 }
490 #endif
491 
492 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
493 {
494 	struct qede_dev *edev = netdev_priv(dev);
495 
496 	if (!netif_running(dev))
497 		return -EAGAIN;
498 
499 	switch (cmd) {
500 	case SIOCSHWTSTAMP:
501 		return qede_ptp_hw_ts(edev, ifr);
502 	default:
503 		DP_VERBOSE(edev, QED_MSG_DEBUG,
504 			   "default IOCTL cmd 0x%x\n", cmd);
505 		return -EOPNOTSUPP;
506 	}
507 
508 	return 0;
509 }
510 
511 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
512 {
513 	char *p_sb = (char *)fp->sb_info->sb_virt;
514 	u32 sb_size, i;
515 
516 	sb_size = sizeof(struct status_block);
517 
518 	for (i = 0; i < sb_size; i += 8)
519 		DP_NOTICE(edev,
520 			  "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
521 			  p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
522 			  p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
523 }
524 
525 static void
526 qede_txq_fp_log_metadata(struct qede_dev *edev,
527 			 struct qede_fastpath *fp, struct qede_tx_queue *txq)
528 {
529 	struct qed_chain *p_chain = &txq->tx_pbl;
530 
531 	/* Dump txq/fp/sb ids etc. other metadata */
532 	DP_NOTICE(edev,
533 		  "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
534 		  fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
535 		  p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
536 
537 	/* Dump all the relevant prod/cons indexes */
538 	DP_NOTICE(edev,
539 		  "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
540 		  le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
541 		  qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
542 }
543 
544 static void
545 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
546 {
547 	struct qed_sb_info_dbg sb_dbg;
548 	int rc;
549 
550 	/* sb info */
551 	qede_fp_sb_dump(edev, fp);
552 
553 	memset(&sb_dbg, 0, sizeof(sb_dbg));
554 	rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
555 
556 	DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
557 		  sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
558 
559 	/* report to mfw */
560 	edev->ops->common->mfw_report(edev->cdev,
561 				      "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
562 				      txq->index, le16_to_cpu(*txq->hw_cons_ptr),
563 				      qed_chain_get_cons_idx(&txq->tx_pbl),
564 				      qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
565 	if (!rc)
566 		edev->ops->common->mfw_report(edev->cdev,
567 					      "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
568 					      txq->index, fp->sb_info->igu_sb_id,
569 					      sb_dbg.igu_prod, sb_dbg.igu_cons,
570 					      sb_dbg.pi[TX_PI(txq->cos)]);
571 }
572 
573 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
574 {
575 	struct qede_dev *edev = netdev_priv(dev);
576 	int i;
577 
578 	netif_carrier_off(dev);
579 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
580 
581 	for_each_queue(i) {
582 		struct qede_tx_queue *txq;
583 		struct qede_fastpath *fp;
584 		int cos;
585 
586 		fp = &edev->fp_array[i];
587 		if (!(fp->type & QEDE_FASTPATH_TX))
588 			continue;
589 
590 		for_each_cos_in_txq(edev, cos) {
591 			txq = &fp->txq[cos];
592 
593 			/* Dump basic metadata for all queues */
594 			qede_txq_fp_log_metadata(edev, fp, txq);
595 
596 			if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
597 			    qed_chain_get_prod_idx(&txq->tx_pbl))
598 				qede_tx_log_print(edev, fp, txq);
599 		}
600 	}
601 
602 	if (IS_VF(edev))
603 		return;
604 
605 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
606 	    edev->state == QEDE_STATE_RECOVERY) {
607 		DP_INFO(edev,
608 			"Avoid handling a Tx timeout while another HW error is being handled\n");
609 		return;
610 	}
611 
612 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
613 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
614 	schedule_delayed_work(&edev->sp_task, 0);
615 }
616 
617 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
618 {
619 	struct qede_dev *edev = netdev_priv(ndev);
620 	int cos, count, offset;
621 
622 	if (num_tc > edev->dev_info.num_tc)
623 		return -EINVAL;
624 
625 	netdev_reset_tc(ndev);
626 	netdev_set_num_tc(ndev, num_tc);
627 
628 	for_each_cos_in_txq(edev, cos) {
629 		count = QEDE_TSS_COUNT(edev);
630 		offset = cos * QEDE_TSS_COUNT(edev);
631 		netdev_set_tc_queue(ndev, cos, count, offset);
632 	}
633 
634 	return 0;
635 }
636 
637 static int
638 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
639 		__be16 proto)
640 {
641 	switch (f->command) {
642 	case FLOW_CLS_REPLACE:
643 		return qede_add_tc_flower_fltr(edev, proto, f);
644 	case FLOW_CLS_DESTROY:
645 		return qede_delete_flow_filter(edev, f->cookie);
646 	default:
647 		return -EOPNOTSUPP;
648 	}
649 }
650 
651 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
652 				  void *cb_priv)
653 {
654 	struct flow_cls_offload *f;
655 	struct qede_dev *edev = cb_priv;
656 
657 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
658 		return -EOPNOTSUPP;
659 
660 	switch (type) {
661 	case TC_SETUP_CLSFLOWER:
662 		f = type_data;
663 		return qede_set_flower(edev, f, f->common.protocol);
664 	default:
665 		return -EOPNOTSUPP;
666 	}
667 }
668 
669 static LIST_HEAD(qede_block_cb_list);
670 
671 static int
672 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
673 		      void *type_data)
674 {
675 	struct qede_dev *edev = netdev_priv(dev);
676 	struct tc_mqprio_qopt *mqprio;
677 
678 	switch (type) {
679 	case TC_SETUP_BLOCK:
680 		return flow_block_cb_setup_simple(type_data,
681 						  &qede_block_cb_list,
682 						  qede_setup_tc_block_cb,
683 						  edev, edev, true);
684 	case TC_SETUP_QDISC_MQPRIO:
685 		mqprio = type_data;
686 
687 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
688 		return qede_setup_tc(dev, mqprio->num_tc);
689 	default:
690 		return -EOPNOTSUPP;
691 	}
692 }
693 
694 static const struct net_device_ops qede_netdev_ops = {
695 	.ndo_open		= qede_open,
696 	.ndo_stop		= qede_close,
697 	.ndo_start_xmit		= qede_start_xmit,
698 	.ndo_select_queue	= qede_select_queue,
699 	.ndo_set_rx_mode	= qede_set_rx_mode,
700 	.ndo_set_mac_address	= qede_set_mac_addr,
701 	.ndo_validate_addr	= eth_validate_addr,
702 	.ndo_change_mtu		= qede_change_mtu,
703 	.ndo_eth_ioctl		= qede_ioctl,
704 	.ndo_tx_timeout		= qede_tx_timeout,
705 #ifdef CONFIG_QED_SRIOV
706 	.ndo_set_vf_mac		= qede_set_vf_mac,
707 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
708 	.ndo_set_vf_trust	= qede_set_vf_trust,
709 #endif
710 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
711 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
712 	.ndo_fix_features	= qede_fix_features,
713 	.ndo_set_features	= qede_set_features,
714 	.ndo_get_stats64	= qede_get_stats64,
715 #ifdef CONFIG_QED_SRIOV
716 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
717 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
718 	.ndo_get_vf_config	= qede_get_vf_config,
719 	.ndo_set_vf_rate	= qede_set_vf_rate,
720 #endif
721 	.ndo_features_check	= qede_features_check,
722 	.ndo_bpf		= qede_xdp,
723 #ifdef CONFIG_RFS_ACCEL
724 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
725 #endif
726 	.ndo_xdp_xmit		= qede_xdp_transmit,
727 	.ndo_setup_tc		= qede_setup_tc_offload,
728 };
729 
730 static const struct net_device_ops qede_netdev_vf_ops = {
731 	.ndo_open		= qede_open,
732 	.ndo_stop		= qede_close,
733 	.ndo_start_xmit		= qede_start_xmit,
734 	.ndo_select_queue	= qede_select_queue,
735 	.ndo_set_rx_mode	= qede_set_rx_mode,
736 	.ndo_set_mac_address	= qede_set_mac_addr,
737 	.ndo_validate_addr	= eth_validate_addr,
738 	.ndo_change_mtu		= qede_change_mtu,
739 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
740 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
741 	.ndo_fix_features	= qede_fix_features,
742 	.ndo_set_features	= qede_set_features,
743 	.ndo_get_stats64	= qede_get_stats64,
744 	.ndo_features_check	= qede_features_check,
745 };
746 
747 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
748 	.ndo_open		= qede_open,
749 	.ndo_stop		= qede_close,
750 	.ndo_start_xmit		= qede_start_xmit,
751 	.ndo_select_queue	= qede_select_queue,
752 	.ndo_set_rx_mode	= qede_set_rx_mode,
753 	.ndo_set_mac_address	= qede_set_mac_addr,
754 	.ndo_validate_addr	= eth_validate_addr,
755 	.ndo_change_mtu		= qede_change_mtu,
756 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
757 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
758 	.ndo_fix_features	= qede_fix_features,
759 	.ndo_set_features	= qede_set_features,
760 	.ndo_get_stats64	= qede_get_stats64,
761 	.ndo_features_check	= qede_features_check,
762 	.ndo_bpf		= qede_xdp,
763 	.ndo_xdp_xmit		= qede_xdp_transmit,
764 };
765 
766 /* -------------------------------------------------------------------------
767  * START OF PROBE / REMOVE
768  * -------------------------------------------------------------------------
769  */
770 
771 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
772 					    struct pci_dev *pdev,
773 					    struct qed_dev_eth_info *info,
774 					    u32 dp_module, u8 dp_level)
775 {
776 	struct net_device *ndev;
777 	struct qede_dev *edev;
778 
779 	ndev = alloc_etherdev_mqs(sizeof(*edev),
780 				  info->num_queues * info->num_tc,
781 				  info->num_queues);
782 	if (!ndev) {
783 		pr_err("etherdev allocation failed\n");
784 		return NULL;
785 	}
786 
787 	edev = netdev_priv(ndev);
788 	edev->ndev = ndev;
789 	edev->cdev = cdev;
790 	edev->pdev = pdev;
791 	edev->dp_module = dp_module;
792 	edev->dp_level = dp_level;
793 	edev->ops = qed_ops;
794 
795 	if (is_kdump_kernel()) {
796 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
797 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
798 	} else {
799 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
800 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
801 	}
802 
803 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
804 		info->num_queues, info->num_queues);
805 
806 	SET_NETDEV_DEV(ndev, &pdev->dev);
807 
808 	memset(&edev->stats, 0, sizeof(edev->stats));
809 	memcpy(&edev->dev_info, info, sizeof(*info));
810 
811 	/* As ethtool doesn't have the ability to show WoL behavior as
812 	 * 'default', if device supports it declare it's enabled.
813 	 */
814 	if (edev->dev_info.common.wol_support)
815 		edev->wol_enabled = true;
816 
817 	INIT_LIST_HEAD(&edev->vlan_list);
818 
819 	return edev;
820 }
821 
822 static void qede_init_ndev(struct qede_dev *edev)
823 {
824 	struct net_device *ndev = edev->ndev;
825 	struct pci_dev *pdev = edev->pdev;
826 	bool udp_tunnel_enable = false;
827 	netdev_features_t hw_features;
828 
829 	pci_set_drvdata(pdev, ndev);
830 
831 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
832 	ndev->base_addr = ndev->mem_start;
833 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
834 	ndev->irq = edev->dev_info.common.pci_irq;
835 
836 	ndev->watchdog_timeo = TX_TIMEOUT;
837 
838 	if (IS_VF(edev)) {
839 		if (edev->dev_info.xdp_supported)
840 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
841 		else
842 			ndev->netdev_ops = &qede_netdev_vf_ops;
843 	} else {
844 		ndev->netdev_ops = &qede_netdev_ops;
845 	}
846 
847 	qede_set_ethtool_ops(ndev);
848 
849 	ndev->priv_flags |= IFF_UNICAST_FLT;
850 
851 	/* user-changeble features */
852 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
853 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
854 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
855 
856 	if (edev->dev_info.common.b_arfs_capable)
857 		hw_features |= NETIF_F_NTUPLE;
858 
859 	if (edev->dev_info.common.vxlan_enable ||
860 	    edev->dev_info.common.geneve_enable)
861 		udp_tunnel_enable = true;
862 
863 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
864 		hw_features |= NETIF_F_TSO_ECN;
865 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
866 					NETIF_F_SG | NETIF_F_TSO |
867 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
868 					NETIF_F_RXCSUM;
869 	}
870 
871 	if (udp_tunnel_enable) {
872 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
873 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
874 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
875 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
876 
877 		qede_set_udp_tunnels(edev);
878 	}
879 
880 	if (edev->dev_info.common.gre_enable) {
881 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
882 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
883 					  NETIF_F_GSO_GRE_CSUM);
884 	}
885 
886 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
887 			      NETIF_F_HIGHDMA;
888 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
889 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
890 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
891 
892 	ndev->hw_features = hw_features;
893 
894 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
895 			     NETDEV_XDP_ACT_NDO_XMIT;
896 
897 	/* MTU range: 46 - 9600 */
898 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
899 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
900 
901 	/* Set network device HW mac */
902 	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
903 
904 	ndev->mtu = edev->dev_info.common.mtu;
905 }
906 
907 /* This function converts from 32b param to two params of level and module
908  * Input 32b decoding:
909  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
910  * 'happy' flow, e.g. memory allocation failed.
911  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
912  * and provide important parameters.
913  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
914  * module. VERBOSE prints are for tracking the specific flow in low level.
915  *
916  * Notice that the level should be that of the lowest required logs.
917  */
918 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
919 {
920 	*p_dp_level = QED_LEVEL_NOTICE;
921 	*p_dp_module = 0;
922 
923 	if (debug & QED_LOG_VERBOSE_MASK) {
924 		*p_dp_level = QED_LEVEL_VERBOSE;
925 		*p_dp_module = (debug & 0x3FFFFFFF);
926 	} else if (debug & QED_LOG_INFO_MASK) {
927 		*p_dp_level = QED_LEVEL_INFO;
928 	} else if (debug & QED_LOG_NOTICE_MASK) {
929 		*p_dp_level = QED_LEVEL_NOTICE;
930 	}
931 }
932 
933 static void qede_free_fp_array(struct qede_dev *edev)
934 {
935 	if (edev->fp_array) {
936 		struct qede_fastpath *fp;
937 		int i;
938 
939 		for_each_queue(i) {
940 			fp = &edev->fp_array[i];
941 
942 			kfree(fp->sb_info);
943 			/* Handle mem alloc failure case where qede_init_fp
944 			 * didn't register xdp_rxq_info yet.
945 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
946 			 */
947 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
948 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
949 			kfree(fp->rxq);
950 			kfree(fp->xdp_tx);
951 			kfree(fp->txq);
952 		}
953 		kfree(edev->fp_array);
954 	}
955 
956 	edev->num_queues = 0;
957 	edev->fp_num_tx = 0;
958 	edev->fp_num_rx = 0;
959 }
960 
961 static int qede_alloc_fp_array(struct qede_dev *edev)
962 {
963 	u8 fp_combined, fp_rx = edev->fp_num_rx;
964 	struct qede_fastpath *fp;
965 	int i;
966 
967 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
968 				 sizeof(*edev->fp_array), GFP_KERNEL);
969 	if (!edev->fp_array) {
970 		DP_NOTICE(edev, "fp array allocation failed\n");
971 		goto err;
972 	}
973 
974 	if (!edev->coal_entry) {
975 		edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
976 					   sizeof(*edev->coal_entry),
977 					   GFP_KERNEL);
978 		if (!edev->coal_entry) {
979 			DP_ERR(edev, "coalesce entry allocation failed\n");
980 			goto err;
981 		}
982 	}
983 
984 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
985 
986 	/* Allocate the FP elements for Rx queues followed by combined and then
987 	 * the Tx. This ordering should be maintained so that the respective
988 	 * queues (Rx or Tx) will be together in the fastpath array and the
989 	 * associated ids will be sequential.
990 	 */
991 	for_each_queue(i) {
992 		fp = &edev->fp_array[i];
993 
994 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
995 		if (!fp->sb_info) {
996 			DP_NOTICE(edev, "sb info struct allocation failed\n");
997 			goto err;
998 		}
999 
1000 		if (fp_rx) {
1001 			fp->type = QEDE_FASTPATH_RX;
1002 			fp_rx--;
1003 		} else if (fp_combined) {
1004 			fp->type = QEDE_FASTPATH_COMBINED;
1005 			fp_combined--;
1006 		} else {
1007 			fp->type = QEDE_FASTPATH_TX;
1008 		}
1009 
1010 		if (fp->type & QEDE_FASTPATH_TX) {
1011 			fp->txq = kcalloc(edev->dev_info.num_tc,
1012 					  sizeof(*fp->txq), GFP_KERNEL);
1013 			if (!fp->txq)
1014 				goto err;
1015 		}
1016 
1017 		if (fp->type & QEDE_FASTPATH_RX) {
1018 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1019 			if (!fp->rxq)
1020 				goto err;
1021 
1022 			if (edev->xdp_prog) {
1023 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1024 						     GFP_KERNEL);
1025 				if (!fp->xdp_tx)
1026 					goto err;
1027 				fp->type |= QEDE_FASTPATH_XDP;
1028 			}
1029 		}
1030 	}
1031 
1032 	return 0;
1033 err:
1034 	qede_free_fp_array(edev);
1035 	return -ENOMEM;
1036 }
1037 
1038 /* The qede lock is used to protect driver state change and driver flows that
1039  * are not reentrant.
1040  */
1041 void __qede_lock(struct qede_dev *edev)
1042 {
1043 	mutex_lock(&edev->qede_lock);
1044 }
1045 
1046 void __qede_unlock(struct qede_dev *edev)
1047 {
1048 	mutex_unlock(&edev->qede_lock);
1049 }
1050 
1051 /* This version of the lock should be used when acquiring the RTNL lock is also
1052  * needed in addition to the internal qede lock.
1053  */
1054 static void qede_lock(struct qede_dev *edev)
1055 {
1056 	rtnl_lock();
1057 	__qede_lock(edev);
1058 }
1059 
1060 static void qede_unlock(struct qede_dev *edev)
1061 {
1062 	__qede_unlock(edev);
1063 	rtnl_unlock();
1064 }
1065 
1066 static void qede_sp_task(struct work_struct *work)
1067 {
1068 	struct qede_dev *edev = container_of(work, struct qede_dev,
1069 					     sp_task.work);
1070 
1071 	/* Disable execution of this deferred work once
1072 	 * qede removal is in progress, this stop any future
1073 	 * scheduling of sp_task.
1074 	 */
1075 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1076 		return;
1077 
1078 	/* The locking scheme depends on the specific flag:
1079 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1080 	 * ensure that ongoing flows are ended and new ones are not started.
1081 	 * In other cases - only the internal qede lock should be acquired.
1082 	 */
1083 
1084 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1085 #ifdef CONFIG_QED_SRIOV
1086 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1087 		 * The recovery of the active VFs is currently not supported.
1088 		 */
1089 		if (pci_num_vf(edev->pdev))
1090 			qede_sriov_configure(edev->pdev, 0);
1091 #endif
1092 		qede_lock(edev);
1093 		qede_recovery_handler(edev);
1094 		qede_unlock(edev);
1095 	}
1096 
1097 	__qede_lock(edev);
1098 
1099 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1100 		if (edev->state == QEDE_STATE_OPEN)
1101 			qede_config_rx_mode(edev->ndev);
1102 
1103 #ifdef CONFIG_RFS_ACCEL
1104 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1105 		if (edev->state == QEDE_STATE_OPEN)
1106 			qede_process_arfs_filters(edev, false);
1107 	}
1108 #endif
1109 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1110 		qede_generic_hw_err_handler(edev);
1111 	__qede_unlock(edev);
1112 
1113 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1114 #ifdef CONFIG_QED_SRIOV
1115 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1116 		 * The recovery of the active VFs is currently not supported.
1117 		 */
1118 		if (pci_num_vf(edev->pdev))
1119 			qede_sriov_configure(edev->pdev, 0);
1120 #endif
1121 		edev->ops->common->recovery_process(edev->cdev);
1122 	}
1123 }
1124 
1125 static void qede_update_pf_params(struct qed_dev *cdev)
1126 {
1127 	struct qed_pf_params pf_params;
1128 	u16 num_cons;
1129 
1130 	/* 64 rx + 64 tx + 64 XDP */
1131 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1132 
1133 	/* 1 rx + 1 xdp + max tx cos */
1134 	num_cons = QED_MIN_L2_CONS;
1135 
1136 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1137 
1138 	/* Same for VFs - make sure they'll have sufficient connections
1139 	 * to support XDP Tx queues.
1140 	 */
1141 	pf_params.eth_pf_params.num_vf_cons = 48;
1142 
1143 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1144 	qed_ops->common->update_pf_params(cdev, &pf_params);
1145 }
1146 
1147 #define QEDE_FW_VER_STR_SIZE	80
1148 
1149 static void qede_log_probe(struct qede_dev *edev)
1150 {
1151 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1152 	u8 buf[QEDE_FW_VER_STR_SIZE];
1153 	size_t left_size;
1154 
1155 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1156 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1157 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1158 		 p_dev_info->fw_eng,
1159 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1160 		 QED_MFW_VERSION_3_OFFSET,
1161 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1162 		 QED_MFW_VERSION_2_OFFSET,
1163 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1164 		 QED_MFW_VERSION_1_OFFSET,
1165 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1166 		 QED_MFW_VERSION_0_OFFSET);
1167 
1168 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1169 	if (p_dev_info->mbi_version && left_size)
1170 		snprintf(buf + strlen(buf), left_size,
1171 			 " [MBI %d.%d.%d]",
1172 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1173 			 QED_MBI_VERSION_2_OFFSET,
1174 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1175 			 QED_MBI_VERSION_1_OFFSET,
1176 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1177 			 QED_MBI_VERSION_0_OFFSET);
1178 
1179 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1180 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1181 		buf, edev->ndev->name);
1182 }
1183 
1184 enum qede_probe_mode {
1185 	QEDE_PROBE_NORMAL,
1186 	QEDE_PROBE_RECOVERY,
1187 };
1188 
1189 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1190 			bool is_vf, enum qede_probe_mode mode)
1191 {
1192 	struct qed_probe_params probe_params;
1193 	struct qed_slowpath_params sp_params;
1194 	struct qed_dev_eth_info dev_info;
1195 	struct qede_dev *edev;
1196 	struct qed_dev *cdev;
1197 	int rc;
1198 
1199 	if (unlikely(dp_level & QED_LEVEL_INFO))
1200 		pr_notice("Starting qede probe\n");
1201 
1202 	memset(&probe_params, 0, sizeof(probe_params));
1203 	probe_params.protocol = QED_PROTOCOL_ETH;
1204 	probe_params.dp_module = dp_module;
1205 	probe_params.dp_level = dp_level;
1206 	probe_params.is_vf = is_vf;
1207 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1208 	cdev = qed_ops->common->probe(pdev, &probe_params);
1209 	if (!cdev) {
1210 		rc = -ENODEV;
1211 		goto err0;
1212 	}
1213 
1214 	qede_update_pf_params(cdev);
1215 
1216 	/* Start the Slowpath-process */
1217 	memset(&sp_params, 0, sizeof(sp_params));
1218 	sp_params.int_mode = QED_INT_MODE_MSIX;
1219 	strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1220 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1221 	if (rc) {
1222 		pr_notice("Cannot start slowpath\n");
1223 		goto err1;
1224 	}
1225 
1226 	/* Learn information crucial for qede to progress */
1227 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1228 	if (rc)
1229 		goto err2;
1230 
1231 	if (mode != QEDE_PROBE_RECOVERY) {
1232 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1233 					   dp_level);
1234 		if (!edev) {
1235 			rc = -ENOMEM;
1236 			goto err2;
1237 		}
1238 
1239 		edev->devlink = qed_ops->common->devlink_register(cdev);
1240 		if (IS_ERR(edev->devlink)) {
1241 			DP_NOTICE(edev, "Cannot register devlink\n");
1242 			rc = PTR_ERR(edev->devlink);
1243 			edev->devlink = NULL;
1244 			goto err3;
1245 		}
1246 	} else {
1247 		struct net_device *ndev = pci_get_drvdata(pdev);
1248 		struct qed_devlink *qdl;
1249 
1250 		edev = netdev_priv(ndev);
1251 		qdl = devlink_priv(edev->devlink);
1252 		qdl->cdev = cdev;
1253 		edev->cdev = cdev;
1254 		memset(&edev->stats, 0, sizeof(edev->stats));
1255 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1256 	}
1257 
1258 	if (is_vf)
1259 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1260 
1261 	qede_init_ndev(edev);
1262 
1263 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1264 	if (rc)
1265 		goto err3;
1266 
1267 	if (mode != QEDE_PROBE_RECOVERY) {
1268 		/* Prepare the lock prior to the registration of the netdev,
1269 		 * as once it's registered we might reach flows requiring it
1270 		 * [it's even possible to reach a flow needing it directly
1271 		 * from there, although it's unlikely].
1272 		 */
1273 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1274 		mutex_init(&edev->qede_lock);
1275 
1276 		rc = register_netdev(edev->ndev);
1277 		if (rc) {
1278 			DP_NOTICE(edev, "Cannot register net-device\n");
1279 			goto err4;
1280 		}
1281 	}
1282 
1283 	edev->ops->common->set_name(cdev, edev->ndev->name);
1284 
1285 	/* PTP not supported on VFs */
1286 	if (!is_vf)
1287 		qede_ptp_enable(edev);
1288 
1289 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1290 
1291 #ifdef CONFIG_DCB
1292 	if (!IS_VF(edev))
1293 		qede_set_dcbnl_ops(edev->ndev);
1294 #endif
1295 
1296 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1297 
1298 	qede_log_probe(edev);
1299 	return 0;
1300 
1301 err4:
1302 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1303 err3:
1304 	if (mode != QEDE_PROBE_RECOVERY)
1305 		free_netdev(edev->ndev);
1306 	else
1307 		edev->cdev = NULL;
1308 err2:
1309 	qed_ops->common->slowpath_stop(cdev);
1310 err1:
1311 	qed_ops->common->remove(cdev);
1312 err0:
1313 	return rc;
1314 }
1315 
1316 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1317 {
1318 	bool is_vf = false;
1319 	u32 dp_module = 0;
1320 	u8 dp_level = 0;
1321 
1322 	switch ((enum qede_pci_private)id->driver_data) {
1323 	case QEDE_PRIVATE_VF:
1324 		if (debug & QED_LOG_VERBOSE_MASK)
1325 			dev_err(&pdev->dev, "Probing a VF\n");
1326 		is_vf = true;
1327 		break;
1328 	default:
1329 		if (debug & QED_LOG_VERBOSE_MASK)
1330 			dev_err(&pdev->dev, "Probing a PF\n");
1331 	}
1332 
1333 	qede_config_debug(debug, &dp_module, &dp_level);
1334 
1335 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1336 			    QEDE_PROBE_NORMAL);
1337 }
1338 
1339 enum qede_remove_mode {
1340 	QEDE_REMOVE_NORMAL,
1341 	QEDE_REMOVE_RECOVERY,
1342 };
1343 
1344 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1345 {
1346 	struct net_device *ndev = pci_get_drvdata(pdev);
1347 	struct qede_dev *edev;
1348 	struct qed_dev *cdev;
1349 
1350 	if (!ndev) {
1351 		dev_info(&pdev->dev, "Device has already been removed\n");
1352 		return;
1353 	}
1354 
1355 	edev = netdev_priv(ndev);
1356 	cdev = edev->cdev;
1357 
1358 	DP_INFO(edev, "Starting qede_remove\n");
1359 
1360 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1361 
1362 	if (mode != QEDE_REMOVE_RECOVERY) {
1363 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1364 		unregister_netdev(ndev);
1365 
1366 		cancel_delayed_work_sync(&edev->sp_task);
1367 
1368 		edev->ops->common->set_power_state(cdev, PCI_D0);
1369 
1370 		pci_set_drvdata(pdev, NULL);
1371 	}
1372 
1373 	qede_ptp_disable(edev);
1374 
1375 	/* Use global ops since we've freed edev */
1376 	qed_ops->common->slowpath_stop(cdev);
1377 	if (system_state == SYSTEM_POWER_OFF)
1378 		return;
1379 
1380 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1381 		qed_ops->common->devlink_unregister(edev->devlink);
1382 		edev->devlink = NULL;
1383 	}
1384 	qed_ops->common->remove(cdev);
1385 	edev->cdev = NULL;
1386 
1387 	/* Since this can happen out-of-sync with other flows,
1388 	 * don't release the netdevice until after slowpath stop
1389 	 * has been called to guarantee various other contexts
1390 	 * [e.g., QED register callbacks] won't break anything when
1391 	 * accessing the netdevice.
1392 	 */
1393 	if (mode != QEDE_REMOVE_RECOVERY) {
1394 		kfree(edev->coal_entry);
1395 		free_netdev(ndev);
1396 	}
1397 
1398 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1399 }
1400 
1401 static void qede_remove(struct pci_dev *pdev)
1402 {
1403 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1404 }
1405 
1406 static void qede_shutdown(struct pci_dev *pdev)
1407 {
1408 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1409 }
1410 
1411 /* -------------------------------------------------------------------------
1412  * START OF LOAD / UNLOAD
1413  * -------------------------------------------------------------------------
1414  */
1415 
1416 static int qede_set_num_queues(struct qede_dev *edev)
1417 {
1418 	int rc;
1419 	u16 rss_num;
1420 
1421 	/* Setup queues according to possible resources*/
1422 	if (edev->req_queues)
1423 		rss_num = edev->req_queues;
1424 	else
1425 		rss_num = netif_get_num_default_rss_queues() *
1426 			  edev->dev_info.common.num_hwfns;
1427 
1428 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1429 
1430 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1431 	if (rc > 0) {
1432 		/* Managed to request interrupts for our queues */
1433 		edev->num_queues = rc;
1434 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1435 			QEDE_QUEUE_CNT(edev), rss_num);
1436 		rc = 0;
1437 	}
1438 
1439 	edev->fp_num_tx = edev->req_num_tx;
1440 	edev->fp_num_rx = edev->req_num_rx;
1441 
1442 	return rc;
1443 }
1444 
1445 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1446 			     u16 sb_id)
1447 {
1448 	if (sb_info->sb_virt) {
1449 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1450 					      QED_SB_TYPE_L2_QUEUE);
1451 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1452 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1453 		memset(sb_info, 0, sizeof(*sb_info));
1454 	}
1455 }
1456 
1457 /* This function allocates fast-path status block memory */
1458 static int qede_alloc_mem_sb(struct qede_dev *edev,
1459 			     struct qed_sb_info *sb_info, u16 sb_id)
1460 {
1461 	struct status_block *sb_virt;
1462 	dma_addr_t sb_phys;
1463 	int rc;
1464 
1465 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1466 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1467 	if (!sb_virt) {
1468 		DP_ERR(edev, "Status block allocation failed\n");
1469 		return -ENOMEM;
1470 	}
1471 
1472 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1473 					sb_virt, sb_phys, sb_id,
1474 					QED_SB_TYPE_L2_QUEUE);
1475 	if (rc) {
1476 		DP_ERR(edev, "Status block initialization failed\n");
1477 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1478 				  sb_virt, sb_phys);
1479 		return rc;
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 static void qede_free_rx_buffers(struct qede_dev *edev,
1486 				 struct qede_rx_queue *rxq)
1487 {
1488 	u16 i;
1489 
1490 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1491 		struct sw_rx_data *rx_buf;
1492 		struct page *data;
1493 
1494 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1495 		data = rx_buf->data;
1496 
1497 		dma_unmap_page(&edev->pdev->dev,
1498 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1499 
1500 		rx_buf->data = NULL;
1501 		__free_page(data);
1502 	}
1503 }
1504 
1505 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1506 {
1507 	/* Free rx buffers */
1508 	qede_free_rx_buffers(edev, rxq);
1509 
1510 	/* Free the parallel SW ring */
1511 	kfree(rxq->sw_rx_ring);
1512 
1513 	/* Free the real RQ ring used by FW */
1514 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1515 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1516 }
1517 
1518 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1519 {
1520 	int i;
1521 
1522 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1523 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1524 
1525 		tpa_info->state = QEDE_AGG_STATE_NONE;
1526 	}
1527 }
1528 
1529 /* This function allocates all memory needed per Rx queue */
1530 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1531 {
1532 	struct qed_chain_init_params params = {
1533 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1534 		.num_elems	= RX_RING_SIZE,
1535 	};
1536 	struct qed_dev *cdev = edev->cdev;
1537 	int i, rc, size;
1538 
1539 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1540 
1541 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1542 
1543 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1544 	size = rxq->rx_headroom +
1545 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1546 
1547 	/* Make sure that the headroom and  payload fit in a single page */
1548 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1549 		rxq->rx_buf_size = PAGE_SIZE - size;
1550 
1551 	/* Segment size to split a page in multiple equal parts,
1552 	 * unless XDP is used in which case we'd use the entire page.
1553 	 */
1554 	if (!edev->xdp_prog) {
1555 		size = size + rxq->rx_buf_size;
1556 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1557 	} else {
1558 		rxq->rx_buf_seg_size = PAGE_SIZE;
1559 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1560 	}
1561 
1562 	/* Allocate the parallel driver ring for Rx buffers */
1563 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1564 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1565 	if (!rxq->sw_rx_ring) {
1566 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1567 		rc = -ENOMEM;
1568 		goto err;
1569 	}
1570 
1571 	/* Allocate FW Rx ring  */
1572 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1573 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1574 	params.elem_size = sizeof(struct eth_rx_bd);
1575 
1576 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1577 	if (rc)
1578 		goto err;
1579 
1580 	/* Allocate FW completion ring */
1581 	params.mode = QED_CHAIN_MODE_PBL;
1582 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1583 	params.elem_size = sizeof(union eth_rx_cqe);
1584 
1585 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1586 	if (rc)
1587 		goto err;
1588 
1589 	/* Allocate buffers for the Rx ring */
1590 	rxq->filled_buffers = 0;
1591 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1592 		rc = qede_alloc_rx_buffer(rxq, false);
1593 		if (rc) {
1594 			DP_ERR(edev,
1595 			       "Rx buffers allocation failed at index %d\n", i);
1596 			goto err;
1597 		}
1598 	}
1599 
1600 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1601 	if (!edev->gro_disable)
1602 		qede_set_tpa_param(rxq);
1603 err:
1604 	return rc;
1605 }
1606 
1607 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1608 {
1609 	/* Free the parallel SW ring */
1610 	if (txq->is_xdp)
1611 		kfree(txq->sw_tx_ring.xdp);
1612 	else
1613 		kfree(txq->sw_tx_ring.skbs);
1614 
1615 	/* Free the real RQ ring used by FW */
1616 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1617 }
1618 
1619 /* This function allocates all memory needed per Tx queue */
1620 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1621 {
1622 	struct qed_chain_init_params params = {
1623 		.mode		= QED_CHAIN_MODE_PBL,
1624 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1625 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1626 		.num_elems	= edev->q_num_tx_buffers,
1627 		.elem_size	= sizeof(union eth_tx_bd_types),
1628 	};
1629 	int size, rc;
1630 
1631 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1632 
1633 	/* Allocate the parallel driver ring for Tx buffers */
1634 	if (txq->is_xdp) {
1635 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1636 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1637 		if (!txq->sw_tx_ring.xdp)
1638 			goto err;
1639 	} else {
1640 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1641 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1642 		if (!txq->sw_tx_ring.skbs)
1643 			goto err;
1644 	}
1645 
1646 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1647 	if (rc)
1648 		goto err;
1649 
1650 	return 0;
1651 
1652 err:
1653 	qede_free_mem_txq(edev, txq);
1654 	return -ENOMEM;
1655 }
1656 
1657 /* This function frees all memory of a single fp */
1658 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1659 {
1660 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1661 
1662 	if (fp->type & QEDE_FASTPATH_RX)
1663 		qede_free_mem_rxq(edev, fp->rxq);
1664 
1665 	if (fp->type & QEDE_FASTPATH_XDP)
1666 		qede_free_mem_txq(edev, fp->xdp_tx);
1667 
1668 	if (fp->type & QEDE_FASTPATH_TX) {
1669 		int cos;
1670 
1671 		for_each_cos_in_txq(edev, cos)
1672 			qede_free_mem_txq(edev, &fp->txq[cos]);
1673 	}
1674 }
1675 
1676 /* This function allocates all memory needed for a single fp (i.e. an entity
1677  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1678  */
1679 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1680 {
1681 	int rc = 0;
1682 
1683 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1684 	if (rc)
1685 		goto out;
1686 
1687 	if (fp->type & QEDE_FASTPATH_RX) {
1688 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1689 		if (rc)
1690 			goto out;
1691 	}
1692 
1693 	if (fp->type & QEDE_FASTPATH_XDP) {
1694 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1695 		if (rc)
1696 			goto out;
1697 	}
1698 
1699 	if (fp->type & QEDE_FASTPATH_TX) {
1700 		int cos;
1701 
1702 		for_each_cos_in_txq(edev, cos) {
1703 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1704 			if (rc)
1705 				goto out;
1706 		}
1707 	}
1708 
1709 out:
1710 	return rc;
1711 }
1712 
1713 static void qede_free_mem_load(struct qede_dev *edev)
1714 {
1715 	int i;
1716 
1717 	for_each_queue(i) {
1718 		struct qede_fastpath *fp = &edev->fp_array[i];
1719 
1720 		qede_free_mem_fp(edev, fp);
1721 	}
1722 }
1723 
1724 /* This function allocates all qede memory at NIC load. */
1725 static int qede_alloc_mem_load(struct qede_dev *edev)
1726 {
1727 	int rc = 0, queue_id;
1728 
1729 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1730 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1731 
1732 		rc = qede_alloc_mem_fp(edev, fp);
1733 		if (rc) {
1734 			DP_ERR(edev,
1735 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1736 			       queue_id);
1737 			qede_free_mem_load(edev);
1738 			return rc;
1739 		}
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 static void qede_empty_tx_queue(struct qede_dev *edev,
1746 				struct qede_tx_queue *txq)
1747 {
1748 	unsigned int pkts_compl = 0, bytes_compl = 0;
1749 	struct netdev_queue *netdev_txq;
1750 	int rc, len = 0;
1751 
1752 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1753 
1754 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1755 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1756 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1757 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1758 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1759 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1760 
1761 		rc = qede_free_tx_pkt(edev, txq, &len);
1762 		if (rc) {
1763 			DP_NOTICE(edev,
1764 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1765 				  txq->index,
1766 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1767 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1768 			break;
1769 		}
1770 
1771 		bytes_compl += len;
1772 		pkts_compl++;
1773 		txq->sw_tx_cons++;
1774 	}
1775 
1776 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1777 }
1778 
1779 static void qede_empty_tx_queues(struct qede_dev *edev)
1780 {
1781 	int i;
1782 
1783 	for_each_queue(i)
1784 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1785 			int cos;
1786 
1787 			for_each_cos_in_txq(edev, cos) {
1788 				struct qede_fastpath *fp;
1789 
1790 				fp = &edev->fp_array[i];
1791 				qede_empty_tx_queue(edev,
1792 						    &fp->txq[cos]);
1793 			}
1794 		}
1795 }
1796 
1797 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1798 static void qede_init_fp(struct qede_dev *edev)
1799 {
1800 	int queue_id, rxq_index = 0, txq_index = 0;
1801 	struct qede_fastpath *fp;
1802 	bool init_xdp = false;
1803 
1804 	for_each_queue(queue_id) {
1805 		fp = &edev->fp_array[queue_id];
1806 
1807 		fp->edev = edev;
1808 		fp->id = queue_id;
1809 
1810 		if (fp->type & QEDE_FASTPATH_XDP) {
1811 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1812 								rxq_index);
1813 			fp->xdp_tx->is_xdp = 1;
1814 
1815 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1816 			init_xdp = true;
1817 		}
1818 
1819 		if (fp->type & QEDE_FASTPATH_RX) {
1820 			fp->rxq->rxq_id = rxq_index++;
1821 
1822 			/* Determine how to map buffers for this queue */
1823 			if (fp->type & QEDE_FASTPATH_XDP)
1824 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1825 			else
1826 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1827 			fp->rxq->dev = &edev->pdev->dev;
1828 
1829 			/* Driver have no error path from here */
1830 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1831 						 fp->rxq->rxq_id, 0) < 0);
1832 
1833 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1834 						       MEM_TYPE_PAGE_ORDER0,
1835 						       NULL)) {
1836 				DP_NOTICE(edev,
1837 					  "Failed to register XDP memory model\n");
1838 			}
1839 		}
1840 
1841 		if (fp->type & QEDE_FASTPATH_TX) {
1842 			int cos;
1843 
1844 			for_each_cos_in_txq(edev, cos) {
1845 				struct qede_tx_queue *txq = &fp->txq[cos];
1846 				u16 ndev_tx_id;
1847 
1848 				txq->cos = cos;
1849 				txq->index = txq_index;
1850 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1851 				txq->ndev_txq_id = ndev_tx_id;
1852 
1853 				if (edev->dev_info.is_legacy)
1854 					txq->is_legacy = true;
1855 				txq->dev = &edev->pdev->dev;
1856 			}
1857 
1858 			txq_index++;
1859 		}
1860 
1861 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1862 			 edev->ndev->name, queue_id);
1863 	}
1864 
1865 	if (init_xdp) {
1866 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1867 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1868 	}
1869 }
1870 
1871 static int qede_set_real_num_queues(struct qede_dev *edev)
1872 {
1873 	int rc = 0;
1874 
1875 	rc = netif_set_real_num_tx_queues(edev->ndev,
1876 					  QEDE_TSS_COUNT(edev) *
1877 					  edev->dev_info.num_tc);
1878 	if (rc) {
1879 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1880 		return rc;
1881 	}
1882 
1883 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1884 	if (rc) {
1885 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1886 		return rc;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static void qede_napi_disable_remove(struct qede_dev *edev)
1893 {
1894 	int i;
1895 
1896 	for_each_queue(i) {
1897 		napi_disable(&edev->fp_array[i].napi);
1898 
1899 		netif_napi_del(&edev->fp_array[i].napi);
1900 	}
1901 }
1902 
1903 static void qede_napi_add_enable(struct qede_dev *edev)
1904 {
1905 	int i;
1906 
1907 	/* Add NAPI objects */
1908 	for_each_queue(i) {
1909 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
1910 		napi_enable(&edev->fp_array[i].napi);
1911 	}
1912 }
1913 
1914 static void qede_sync_free_irqs(struct qede_dev *edev)
1915 {
1916 	int i;
1917 
1918 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1919 		if (edev->int_info.msix_cnt) {
1920 			free_irq(edev->int_info.msix[i].vector,
1921 				 &edev->fp_array[i]);
1922 		} else {
1923 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1924 		}
1925 	}
1926 
1927 	edev->int_info.used_cnt = 0;
1928 	edev->int_info.msix_cnt = 0;
1929 }
1930 
1931 static int qede_req_msix_irqs(struct qede_dev *edev)
1932 {
1933 	int i, rc;
1934 
1935 	/* Sanitize number of interrupts == number of prepared RSS queues */
1936 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1937 		DP_ERR(edev,
1938 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1939 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1940 		return -EINVAL;
1941 	}
1942 
1943 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1944 #ifdef CONFIG_RFS_ACCEL
1945 		struct qede_fastpath *fp = &edev->fp_array[i];
1946 
1947 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1948 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1949 					      edev->int_info.msix[i].vector);
1950 			if (rc) {
1951 				DP_ERR(edev, "Failed to add CPU rmap\n");
1952 				qede_free_arfs(edev);
1953 			}
1954 		}
1955 #endif
1956 		rc = request_irq(edev->int_info.msix[i].vector,
1957 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1958 				 &edev->fp_array[i]);
1959 		if (rc) {
1960 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1961 #ifdef CONFIG_RFS_ACCEL
1962 			if (edev->ndev->rx_cpu_rmap)
1963 				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1964 
1965 			edev->ndev->rx_cpu_rmap = NULL;
1966 #endif
1967 			qede_sync_free_irqs(edev);
1968 			return rc;
1969 		}
1970 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1971 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1972 			   edev->fp_array[i].name, i,
1973 			   &edev->fp_array[i]);
1974 		edev->int_info.used_cnt++;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static void qede_simd_fp_handler(void *cookie)
1981 {
1982 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1983 
1984 	napi_schedule_irqoff(&fp->napi);
1985 }
1986 
1987 static int qede_setup_irqs(struct qede_dev *edev)
1988 {
1989 	int i, rc = 0;
1990 
1991 	/* Learn Interrupt configuration */
1992 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1993 	if (rc)
1994 		return rc;
1995 
1996 	if (edev->int_info.msix_cnt) {
1997 		rc = qede_req_msix_irqs(edev);
1998 		if (rc)
1999 			return rc;
2000 		edev->ndev->irq = edev->int_info.msix[0].vector;
2001 	} else {
2002 		const struct qed_common_ops *ops;
2003 
2004 		/* qed should learn receive the RSS ids and callbacks */
2005 		ops = edev->ops->common;
2006 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2007 			ops->simd_handler_config(edev->cdev,
2008 						 &edev->fp_array[i], i,
2009 						 qede_simd_fp_handler);
2010 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2011 	}
2012 	return 0;
2013 }
2014 
2015 static int qede_drain_txq(struct qede_dev *edev,
2016 			  struct qede_tx_queue *txq, bool allow_drain)
2017 {
2018 	int rc, cnt = 1000;
2019 
2020 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2021 		if (!cnt) {
2022 			if (allow_drain) {
2023 				DP_NOTICE(edev,
2024 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2025 					  txq->index);
2026 				rc = edev->ops->common->drain(edev->cdev);
2027 				if (rc)
2028 					return rc;
2029 				return qede_drain_txq(edev, txq, false);
2030 			}
2031 			DP_NOTICE(edev,
2032 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2033 				  txq->index, txq->sw_tx_prod,
2034 				  txq->sw_tx_cons);
2035 			return -ENODEV;
2036 		}
2037 		cnt--;
2038 		usleep_range(1000, 2000);
2039 		barrier();
2040 	}
2041 
2042 	/* FW finished processing, wait for HW to transmit all tx packets */
2043 	usleep_range(1000, 2000);
2044 
2045 	return 0;
2046 }
2047 
2048 static int qede_stop_txq(struct qede_dev *edev,
2049 			 struct qede_tx_queue *txq, int rss_id)
2050 {
2051 	/* delete doorbell from doorbell recovery mechanism */
2052 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2053 					   &txq->tx_db);
2054 
2055 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2056 }
2057 
2058 static int qede_stop_queues(struct qede_dev *edev)
2059 {
2060 	struct qed_update_vport_params *vport_update_params;
2061 	struct qed_dev *cdev = edev->cdev;
2062 	struct qede_fastpath *fp;
2063 	int rc, i;
2064 
2065 	/* Disable the vport */
2066 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2067 	if (!vport_update_params)
2068 		return -ENOMEM;
2069 
2070 	vport_update_params->vport_id = 0;
2071 	vport_update_params->update_vport_active_flg = 1;
2072 	vport_update_params->vport_active_flg = 0;
2073 	vport_update_params->update_rss_flg = 0;
2074 
2075 	rc = edev->ops->vport_update(cdev, vport_update_params);
2076 	vfree(vport_update_params);
2077 
2078 	if (rc) {
2079 		DP_ERR(edev, "Failed to update vport\n");
2080 		return rc;
2081 	}
2082 
2083 	/* Flush Tx queues. If needed, request drain from MCP */
2084 	for_each_queue(i) {
2085 		fp = &edev->fp_array[i];
2086 
2087 		if (fp->type & QEDE_FASTPATH_TX) {
2088 			int cos;
2089 
2090 			for_each_cos_in_txq(edev, cos) {
2091 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2092 				if (rc)
2093 					return rc;
2094 			}
2095 		}
2096 
2097 		if (fp->type & QEDE_FASTPATH_XDP) {
2098 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2099 			if (rc)
2100 				return rc;
2101 		}
2102 	}
2103 
2104 	/* Stop all Queues in reverse order */
2105 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2106 		fp = &edev->fp_array[i];
2107 
2108 		/* Stop the Tx Queue(s) */
2109 		if (fp->type & QEDE_FASTPATH_TX) {
2110 			int cos;
2111 
2112 			for_each_cos_in_txq(edev, cos) {
2113 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2114 				if (rc)
2115 					return rc;
2116 			}
2117 		}
2118 
2119 		/* Stop the Rx Queue */
2120 		if (fp->type & QEDE_FASTPATH_RX) {
2121 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2122 			if (rc) {
2123 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2124 				return rc;
2125 			}
2126 		}
2127 
2128 		/* Stop the XDP forwarding queue */
2129 		if (fp->type & QEDE_FASTPATH_XDP) {
2130 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2131 			if (rc)
2132 				return rc;
2133 
2134 			bpf_prog_put(fp->rxq->xdp_prog);
2135 		}
2136 	}
2137 
2138 	/* Stop the vport */
2139 	rc = edev->ops->vport_stop(cdev, 0);
2140 	if (rc)
2141 		DP_ERR(edev, "Failed to stop VPORT\n");
2142 
2143 	return rc;
2144 }
2145 
2146 static int qede_start_txq(struct qede_dev *edev,
2147 			  struct qede_fastpath *fp,
2148 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2149 {
2150 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2151 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2152 	struct qed_queue_start_common_params params;
2153 	struct qed_txq_start_ret_params ret_params;
2154 	int rc;
2155 
2156 	memset(&params, 0, sizeof(params));
2157 	memset(&ret_params, 0, sizeof(ret_params));
2158 
2159 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2160 	 * We don't really care about its coalescing.
2161 	 */
2162 	if (txq->is_xdp)
2163 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2164 	else
2165 		params.queue_id = txq->index;
2166 
2167 	params.p_sb = fp->sb_info;
2168 	params.sb_idx = sb_idx;
2169 	params.tc = txq->cos;
2170 
2171 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2172 				   page_cnt, &ret_params);
2173 	if (rc) {
2174 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2175 		return rc;
2176 	}
2177 
2178 	txq->doorbell_addr = ret_params.p_doorbell;
2179 	txq->handle = ret_params.p_handle;
2180 
2181 	/* Determine the FW consumer address associated */
2182 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2183 
2184 	/* Prepare the doorbell parameters */
2185 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2186 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2187 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2188 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2189 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2190 
2191 	/* register doorbell with doorbell recovery mechanism */
2192 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2193 						&txq->tx_db, DB_REC_WIDTH_32B,
2194 						DB_REC_KERNEL);
2195 
2196 	return rc;
2197 }
2198 
2199 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2200 {
2201 	int vlan_removal_en = 1;
2202 	struct qed_dev *cdev = edev->cdev;
2203 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2204 	struct qed_update_vport_params *vport_update_params;
2205 	struct qed_queue_start_common_params q_params;
2206 	struct qed_start_vport_params start = {0};
2207 	int rc, i;
2208 
2209 	if (!edev->num_queues) {
2210 		DP_ERR(edev,
2211 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2212 		return -EINVAL;
2213 	}
2214 
2215 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2216 	if (!vport_update_params)
2217 		return -ENOMEM;
2218 
2219 	start.handle_ptp_pkts = !!(edev->ptp);
2220 	start.gro_enable = !edev->gro_disable;
2221 	start.mtu = edev->ndev->mtu;
2222 	start.vport_id = 0;
2223 	start.drop_ttl0 = true;
2224 	start.remove_inner_vlan = vlan_removal_en;
2225 	start.clear_stats = clear_stats;
2226 
2227 	rc = edev->ops->vport_start(cdev, &start);
2228 
2229 	if (rc) {
2230 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2231 		goto out;
2232 	}
2233 
2234 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2235 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2236 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2237 
2238 	for_each_queue(i) {
2239 		struct qede_fastpath *fp = &edev->fp_array[i];
2240 		dma_addr_t p_phys_table;
2241 		u32 page_cnt;
2242 
2243 		if (fp->type & QEDE_FASTPATH_RX) {
2244 			struct qed_rxq_start_ret_params ret_params;
2245 			struct qede_rx_queue *rxq = fp->rxq;
2246 			__le16 *val;
2247 
2248 			memset(&ret_params, 0, sizeof(ret_params));
2249 			memset(&q_params, 0, sizeof(q_params));
2250 			q_params.queue_id = rxq->rxq_id;
2251 			q_params.vport_id = 0;
2252 			q_params.p_sb = fp->sb_info;
2253 			q_params.sb_idx = RX_PI;
2254 
2255 			p_phys_table =
2256 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2257 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2258 
2259 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2260 						   rxq->rx_buf_size,
2261 						   rxq->rx_bd_ring.p_phys_addr,
2262 						   p_phys_table,
2263 						   page_cnt, &ret_params);
2264 			if (rc) {
2265 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2266 				       rc);
2267 				goto out;
2268 			}
2269 
2270 			/* Use the return parameters */
2271 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2272 			rxq->handle = ret_params.p_handle;
2273 
2274 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2275 			rxq->hw_cons_ptr = val;
2276 
2277 			qede_update_rx_prod(edev, rxq);
2278 		}
2279 
2280 		if (fp->type & QEDE_FASTPATH_XDP) {
2281 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2282 			if (rc)
2283 				goto out;
2284 
2285 			bpf_prog_add(edev->xdp_prog, 1);
2286 			fp->rxq->xdp_prog = edev->xdp_prog;
2287 		}
2288 
2289 		if (fp->type & QEDE_FASTPATH_TX) {
2290 			int cos;
2291 
2292 			for_each_cos_in_txq(edev, cos) {
2293 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2294 						    TX_PI(cos));
2295 				if (rc)
2296 					goto out;
2297 			}
2298 		}
2299 	}
2300 
2301 	/* Prepare and send the vport enable */
2302 	vport_update_params->vport_id = start.vport_id;
2303 	vport_update_params->update_vport_active_flg = 1;
2304 	vport_update_params->vport_active_flg = 1;
2305 
2306 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2307 	    qed_info->tx_switching) {
2308 		vport_update_params->update_tx_switching_flg = 1;
2309 		vport_update_params->tx_switching_flg = 1;
2310 	}
2311 
2312 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2313 			     &vport_update_params->update_rss_flg);
2314 
2315 	rc = edev->ops->vport_update(cdev, vport_update_params);
2316 	if (rc)
2317 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2318 
2319 out:
2320 	vfree(vport_update_params);
2321 	return rc;
2322 }
2323 
2324 enum qede_unload_mode {
2325 	QEDE_UNLOAD_NORMAL,
2326 	QEDE_UNLOAD_RECOVERY,
2327 };
2328 
2329 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2330 			bool is_locked)
2331 {
2332 	struct qed_link_params link_params;
2333 	int rc;
2334 
2335 	DP_INFO(edev, "Starting qede unload\n");
2336 
2337 	if (!is_locked)
2338 		__qede_lock(edev);
2339 
2340 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2341 
2342 	if (mode != QEDE_UNLOAD_RECOVERY)
2343 		edev->state = QEDE_STATE_CLOSED;
2344 
2345 	qede_rdma_dev_event_close(edev);
2346 
2347 	/* Close OS Tx */
2348 	netif_tx_disable(edev->ndev);
2349 	netif_carrier_off(edev->ndev);
2350 
2351 	if (mode != QEDE_UNLOAD_RECOVERY) {
2352 		/* Reset the link */
2353 		memset(&link_params, 0, sizeof(link_params));
2354 		link_params.link_up = false;
2355 		edev->ops->common->set_link(edev->cdev, &link_params);
2356 
2357 		rc = qede_stop_queues(edev);
2358 		if (rc) {
2359 #ifdef CONFIG_RFS_ACCEL
2360 			if (edev->dev_info.common.b_arfs_capable) {
2361 				qede_poll_for_freeing_arfs_filters(edev);
2362 				if (edev->ndev->rx_cpu_rmap)
2363 					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2364 
2365 				edev->ndev->rx_cpu_rmap = NULL;
2366 			}
2367 #endif
2368 			qede_sync_free_irqs(edev);
2369 			goto out;
2370 		}
2371 
2372 		DP_INFO(edev, "Stopped Queues\n");
2373 	}
2374 
2375 	qede_vlan_mark_nonconfigured(edev);
2376 	edev->ops->fastpath_stop(edev->cdev);
2377 
2378 	if (edev->dev_info.common.b_arfs_capable) {
2379 		qede_poll_for_freeing_arfs_filters(edev);
2380 		qede_free_arfs(edev);
2381 	}
2382 
2383 	/* Release the interrupts */
2384 	qede_sync_free_irqs(edev);
2385 	edev->ops->common->set_fp_int(edev->cdev, 0);
2386 
2387 	qede_napi_disable_remove(edev);
2388 
2389 	if (mode == QEDE_UNLOAD_RECOVERY)
2390 		qede_empty_tx_queues(edev);
2391 
2392 	qede_free_mem_load(edev);
2393 	qede_free_fp_array(edev);
2394 
2395 out:
2396 	if (!is_locked)
2397 		__qede_unlock(edev);
2398 
2399 	if (mode != QEDE_UNLOAD_RECOVERY)
2400 		DP_NOTICE(edev, "Link is down\n");
2401 
2402 	edev->ptp_skip_txts = 0;
2403 
2404 	DP_INFO(edev, "Ending qede unload\n");
2405 }
2406 
2407 enum qede_load_mode {
2408 	QEDE_LOAD_NORMAL,
2409 	QEDE_LOAD_RELOAD,
2410 	QEDE_LOAD_RECOVERY,
2411 };
2412 
2413 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2414 		     bool is_locked)
2415 {
2416 	struct qed_link_params link_params;
2417 	struct ethtool_coalesce coal = {};
2418 	u8 num_tc;
2419 	int rc, i;
2420 
2421 	DP_INFO(edev, "Starting qede load\n");
2422 
2423 	if (!is_locked)
2424 		__qede_lock(edev);
2425 
2426 	rc = qede_set_num_queues(edev);
2427 	if (rc)
2428 		goto out;
2429 
2430 	rc = qede_alloc_fp_array(edev);
2431 	if (rc)
2432 		goto out;
2433 
2434 	qede_init_fp(edev);
2435 
2436 	rc = qede_alloc_mem_load(edev);
2437 	if (rc)
2438 		goto err1;
2439 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2440 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2441 
2442 	rc = qede_set_real_num_queues(edev);
2443 	if (rc)
2444 		goto err2;
2445 
2446 	if (qede_alloc_arfs(edev)) {
2447 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2448 		edev->dev_info.common.b_arfs_capable = false;
2449 	}
2450 
2451 	qede_napi_add_enable(edev);
2452 	DP_INFO(edev, "Napi added and enabled\n");
2453 
2454 	rc = qede_setup_irqs(edev);
2455 	if (rc)
2456 		goto err3;
2457 	DP_INFO(edev, "Setup IRQs succeeded\n");
2458 
2459 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2460 	if (rc)
2461 		goto err4;
2462 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2463 
2464 	num_tc = netdev_get_num_tc(edev->ndev);
2465 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2466 	qede_setup_tc(edev->ndev, num_tc);
2467 
2468 	/* Program un-configured VLANs */
2469 	qede_configure_vlan_filters(edev);
2470 
2471 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2472 
2473 	/* Ask for link-up using current configuration */
2474 	memset(&link_params, 0, sizeof(link_params));
2475 	link_params.link_up = true;
2476 	edev->ops->common->set_link(edev->cdev, &link_params);
2477 
2478 	edev->state = QEDE_STATE_OPEN;
2479 
2480 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2481 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2482 
2483 	for_each_queue(i) {
2484 		if (edev->coal_entry[i].isvalid) {
2485 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2486 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2487 		}
2488 		__qede_unlock(edev);
2489 		qede_set_per_coalesce(edev->ndev, i, &coal);
2490 		__qede_lock(edev);
2491 	}
2492 	DP_INFO(edev, "Ending successfully qede load\n");
2493 
2494 	goto out;
2495 err4:
2496 	qede_sync_free_irqs(edev);
2497 err3:
2498 	qede_napi_disable_remove(edev);
2499 err2:
2500 	qede_free_mem_load(edev);
2501 err1:
2502 	edev->ops->common->set_fp_int(edev->cdev, 0);
2503 	qede_free_fp_array(edev);
2504 	edev->num_queues = 0;
2505 	edev->fp_num_tx = 0;
2506 	edev->fp_num_rx = 0;
2507 out:
2508 	if (!is_locked)
2509 		__qede_unlock(edev);
2510 
2511 	return rc;
2512 }
2513 
2514 /* 'func' should be able to run between unload and reload assuming interface
2515  * is actually running, or afterwards in case it's currently DOWN.
2516  */
2517 void qede_reload(struct qede_dev *edev,
2518 		 struct qede_reload_args *args, bool is_locked)
2519 {
2520 	if (!is_locked)
2521 		__qede_lock(edev);
2522 
2523 	/* Since qede_lock is held, internal state wouldn't change even
2524 	 * if netdev state would start transitioning. Check whether current
2525 	 * internal configuration indicates device is up, then reload.
2526 	 */
2527 	if (edev->state == QEDE_STATE_OPEN) {
2528 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2529 		if (args)
2530 			args->func(edev, args);
2531 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2532 
2533 		/* Since no one is going to do it for us, re-configure */
2534 		qede_config_rx_mode(edev->ndev);
2535 	} else if (args) {
2536 		args->func(edev, args);
2537 	}
2538 
2539 	if (!is_locked)
2540 		__qede_unlock(edev);
2541 }
2542 
2543 /* called with rtnl_lock */
2544 static int qede_open(struct net_device *ndev)
2545 {
2546 	struct qede_dev *edev = netdev_priv(ndev);
2547 	int rc;
2548 
2549 	netif_carrier_off(ndev);
2550 
2551 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2552 
2553 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2554 	if (rc)
2555 		return rc;
2556 
2557 	udp_tunnel_nic_reset_ntf(ndev);
2558 
2559 	edev->ops->common->update_drv_state(edev->cdev, true);
2560 
2561 	return 0;
2562 }
2563 
2564 static int qede_close(struct net_device *ndev)
2565 {
2566 	struct qede_dev *edev = netdev_priv(ndev);
2567 
2568 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2569 
2570 	if (edev->cdev)
2571 		edev->ops->common->update_drv_state(edev->cdev, false);
2572 
2573 	return 0;
2574 }
2575 
2576 static void qede_link_update(void *dev, struct qed_link_output *link)
2577 {
2578 	struct qede_dev *edev = dev;
2579 
2580 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2581 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2582 		return;
2583 	}
2584 
2585 	if (link->link_up) {
2586 		if (!netif_carrier_ok(edev->ndev)) {
2587 			DP_NOTICE(edev, "Link is up\n");
2588 			netif_tx_start_all_queues(edev->ndev);
2589 			netif_carrier_on(edev->ndev);
2590 			qede_rdma_dev_event_open(edev);
2591 		}
2592 	} else {
2593 		if (netif_carrier_ok(edev->ndev)) {
2594 			DP_NOTICE(edev, "Link is down\n");
2595 			netif_tx_disable(edev->ndev);
2596 			netif_carrier_off(edev->ndev);
2597 			qede_rdma_dev_event_close(edev);
2598 		}
2599 	}
2600 }
2601 
2602 static void qede_schedule_recovery_handler(void *dev)
2603 {
2604 	struct qede_dev *edev = dev;
2605 
2606 	if (edev->state == QEDE_STATE_RECOVERY) {
2607 		DP_NOTICE(edev,
2608 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2609 		return;
2610 	}
2611 
2612 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2613 	schedule_delayed_work(&edev->sp_task, 0);
2614 
2615 	DP_INFO(edev, "Scheduled a recovery handler\n");
2616 }
2617 
2618 static void qede_recovery_failed(struct qede_dev *edev)
2619 {
2620 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2621 
2622 	netif_device_detach(edev->ndev);
2623 
2624 	if (edev->cdev)
2625 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2626 }
2627 
2628 static void qede_recovery_handler(struct qede_dev *edev)
2629 {
2630 	u32 curr_state = edev->state;
2631 	int rc;
2632 
2633 	DP_NOTICE(edev, "Starting a recovery process\n");
2634 
2635 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2636 	 * before calling this function.
2637 	 */
2638 	edev->state = QEDE_STATE_RECOVERY;
2639 
2640 	edev->ops->common->recovery_prolog(edev->cdev);
2641 
2642 	if (curr_state == QEDE_STATE_OPEN)
2643 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2644 
2645 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2646 
2647 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2648 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2649 	if (rc) {
2650 		edev->cdev = NULL;
2651 		goto err;
2652 	}
2653 
2654 	if (curr_state == QEDE_STATE_OPEN) {
2655 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2656 		if (rc)
2657 			goto err;
2658 
2659 		qede_config_rx_mode(edev->ndev);
2660 		udp_tunnel_nic_reset_ntf(edev->ndev);
2661 	}
2662 
2663 	edev->state = curr_state;
2664 
2665 	DP_NOTICE(edev, "Recovery handling is done\n");
2666 
2667 	return;
2668 
2669 err:
2670 	qede_recovery_failed(edev);
2671 }
2672 
2673 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2674 {
2675 	struct qed_dev *cdev = edev->cdev;
2676 
2677 	DP_NOTICE(edev,
2678 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2679 		  edev->err_flags);
2680 
2681 	/* Get a call trace of the flow that led to the error */
2682 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2683 
2684 	/* Prevent HW attentions from being reasserted */
2685 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2686 		edev->ops->common->attn_clr_enable(cdev, true);
2687 
2688 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2689 }
2690 
2691 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2692 {
2693 	DP_NOTICE(edev,
2694 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2695 		  edev->err_flags);
2696 
2697 	if (edev->devlink) {
2698 		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2699 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2700 	}
2701 
2702 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2703 
2704 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2705 }
2706 
2707 static void qede_set_hw_err_flags(struct qede_dev *edev,
2708 				  enum qed_hw_err_type err_type)
2709 {
2710 	unsigned long err_flags = 0;
2711 
2712 	switch (err_type) {
2713 	case QED_HW_ERR_DMAE_FAIL:
2714 		set_bit(QEDE_ERR_WARN, &err_flags);
2715 		fallthrough;
2716 	case QED_HW_ERR_MFW_RESP_FAIL:
2717 	case QED_HW_ERR_HW_ATTN:
2718 	case QED_HW_ERR_RAMROD_FAIL:
2719 	case QED_HW_ERR_FW_ASSERT:
2720 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2721 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2722 		/* make this error as recoverable and start recovery*/
2723 		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2724 		break;
2725 
2726 	default:
2727 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2728 		break;
2729 	}
2730 
2731 	edev->err_flags |= err_flags;
2732 }
2733 
2734 static void qede_schedule_hw_err_handler(void *dev,
2735 					 enum qed_hw_err_type err_type)
2736 {
2737 	struct qede_dev *edev = dev;
2738 
2739 	/* Fan failure cannot be masked by handling of another HW error or by a
2740 	 * concurrent recovery process.
2741 	 */
2742 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2743 	     edev->state == QEDE_STATE_RECOVERY) &&
2744 	     err_type != QED_HW_ERR_FAN_FAIL) {
2745 		DP_INFO(edev,
2746 			"Avoid scheduling an error handling while another HW error is being handled\n");
2747 		return;
2748 	}
2749 
2750 	if (err_type >= QED_HW_ERR_LAST) {
2751 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2752 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2753 		return;
2754 	}
2755 
2756 	edev->last_err_type = err_type;
2757 	qede_set_hw_err_flags(edev, err_type);
2758 	qede_atomic_hw_err_handler(edev);
2759 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2760 	schedule_delayed_work(&edev->sp_task, 0);
2761 
2762 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2763 }
2764 
2765 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2766 {
2767 	struct netdev_queue *netdev_txq;
2768 
2769 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2770 	if (netif_xmit_stopped(netdev_txq))
2771 		return true;
2772 
2773 	return false;
2774 }
2775 
2776 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2777 {
2778 	struct qede_dev *edev = dev;
2779 	struct netdev_hw_addr *ha;
2780 	int i;
2781 
2782 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2783 		data->feat_flags |= QED_TLV_IP_CSUM;
2784 	if (edev->ndev->features & NETIF_F_TSO)
2785 		data->feat_flags |= QED_TLV_LSO;
2786 
2787 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2788 	eth_zero_addr(data->mac[1]);
2789 	eth_zero_addr(data->mac[2]);
2790 	/* Copy the first two UC macs */
2791 	netif_addr_lock_bh(edev->ndev);
2792 	i = 1;
2793 	netdev_for_each_uc_addr(ha, edev->ndev) {
2794 		ether_addr_copy(data->mac[i++], ha->addr);
2795 		if (i == QED_TLV_MAC_COUNT)
2796 			break;
2797 	}
2798 
2799 	netif_addr_unlock_bh(edev->ndev);
2800 }
2801 
2802 static void qede_get_eth_tlv_data(void *dev, void *data)
2803 {
2804 	struct qed_mfw_tlv_eth *etlv = data;
2805 	struct qede_dev *edev = dev;
2806 	struct qede_fastpath *fp;
2807 	int i;
2808 
2809 	etlv->lso_maxoff_size = 0XFFFF;
2810 	etlv->lso_maxoff_size_set = true;
2811 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2812 	etlv->lso_minseg_size_set = true;
2813 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2814 	etlv->prom_mode_set = true;
2815 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2816 	etlv->tx_descr_size_set = true;
2817 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2818 	etlv->rx_descr_size_set = true;
2819 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2820 	etlv->iov_offload_set = true;
2821 
2822 	/* Fill information regarding queues; Should be done under the qede
2823 	 * lock to guarantee those don't change beneath our feet.
2824 	 */
2825 	etlv->txqs_empty = true;
2826 	etlv->rxqs_empty = true;
2827 	etlv->num_txqs_full = 0;
2828 	etlv->num_rxqs_full = 0;
2829 
2830 	__qede_lock(edev);
2831 	for_each_queue(i) {
2832 		fp = &edev->fp_array[i];
2833 		if (fp->type & QEDE_FASTPATH_TX) {
2834 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2835 
2836 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2837 				etlv->txqs_empty = false;
2838 			if (qede_is_txq_full(edev, txq))
2839 				etlv->num_txqs_full++;
2840 		}
2841 		if (fp->type & QEDE_FASTPATH_RX) {
2842 			if (qede_has_rx_work(fp->rxq))
2843 				etlv->rxqs_empty = false;
2844 
2845 			/* This one is a bit tricky; Firmware might stop
2846 			 * placing packets if ring is not yet full.
2847 			 * Give an approximation.
2848 			 */
2849 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2850 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2851 			    RX_RING_SIZE - 100)
2852 				etlv->num_rxqs_full++;
2853 		}
2854 	}
2855 	__qede_unlock(edev);
2856 
2857 	etlv->txqs_empty_set = true;
2858 	etlv->rxqs_empty_set = true;
2859 	etlv->num_txqs_full_set = true;
2860 	etlv->num_rxqs_full_set = true;
2861 }
2862 
2863 /**
2864  * qede_io_error_detected(): Called when PCI error is detected
2865  *
2866  * @pdev: Pointer to PCI device
2867  * @state: The current pci connection state
2868  *
2869  *Return: pci_ers_result_t.
2870  *
2871  * This function is called after a PCI bus error affecting
2872  * this device has been detected.
2873  */
2874 static pci_ers_result_t
2875 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2876 {
2877 	struct net_device *dev = pci_get_drvdata(pdev);
2878 	struct qede_dev *edev = netdev_priv(dev);
2879 
2880 	if (!edev)
2881 		return PCI_ERS_RESULT_NONE;
2882 
2883 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2884 
2885 	__qede_lock(edev);
2886 	if (edev->state == QEDE_STATE_RECOVERY) {
2887 		DP_NOTICE(edev, "Device already in the recovery state\n");
2888 		__qede_unlock(edev);
2889 		return PCI_ERS_RESULT_NONE;
2890 	}
2891 
2892 	/* PF handles the recovery of its VFs */
2893 	if (IS_VF(edev)) {
2894 		DP_VERBOSE(edev, QED_MSG_IOV,
2895 			   "VF recovery is handled by its PF\n");
2896 		__qede_unlock(edev);
2897 		return PCI_ERS_RESULT_RECOVERED;
2898 	}
2899 
2900 	/* Close OS Tx */
2901 	netif_tx_disable(edev->ndev);
2902 	netif_carrier_off(edev->ndev);
2903 
2904 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2905 	schedule_delayed_work(&edev->sp_task, 0);
2906 
2907 	__qede_unlock(edev);
2908 
2909 	return PCI_ERS_RESULT_CAN_RECOVER;
2910 }
2911