1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015 QLogic Corporation 3 * 4 * This software is available under the terms of the GNU General Public License 5 * (GPL) Version 2, available from the file COPYING in the main directory of 6 * this source tree. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/version.h> 12 #include <linux/device.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/skbuff.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/string.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/interrupt.h> 21 #include <asm/byteorder.h> 22 #include <asm/param.h> 23 #include <linux/io.h> 24 #include <linux/netdev_features.h> 25 #include <linux/udp.h> 26 #include <linux/tcp.h> 27 #include <net/udp_tunnel.h> 28 #include <linux/ip.h> 29 #include <net/ipv6.h> 30 #include <net/tcp.h> 31 #include <linux/if_ether.h> 32 #include <linux/if_vlan.h> 33 #include <linux/pkt_sched.h> 34 #include <linux/ethtool.h> 35 #include <linux/in.h> 36 #include <linux/random.h> 37 #include <net/ip6_checksum.h> 38 #include <linux/bitops.h> 39 40 #include "qede.h" 41 42 static char version[] = 43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 44 45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 static uint debug; 50 module_param(debug, uint, 0); 51 MODULE_PARM_DESC(debug, " Default debug msglevel"); 52 53 static const struct qed_eth_ops *qed_ops; 54 55 #define CHIP_NUM_57980S_40 0x1634 56 #define CHIP_NUM_57980S_10 0x1666 57 #define CHIP_NUM_57980S_MF 0x1636 58 #define CHIP_NUM_57980S_100 0x1644 59 #define CHIP_NUM_57980S_50 0x1654 60 #define CHIP_NUM_57980S_25 0x1656 61 #define CHIP_NUM_57980S_IOV 0x1664 62 63 #ifndef PCI_DEVICE_ID_NX2_57980E 64 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 65 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 66 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 67 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 68 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 69 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 70 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 71 #endif 72 73 enum qede_pci_private { 74 QEDE_PRIVATE_PF, 75 QEDE_PRIVATE_VF 76 }; 77 78 static const struct pci_device_id qede_pci_tbl[] = { 79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 85 #ifdef CONFIG_QED_SRIOV 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 87 #endif 88 { 0 } 89 }; 90 91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 92 93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 94 95 #define TX_TIMEOUT (5 * HZ) 96 97 static void qede_remove(struct pci_dev *pdev); 98 static int qede_alloc_rx_buffer(struct qede_dev *edev, 99 struct qede_rx_queue *rxq); 100 static void qede_link_update(void *dev, struct qed_link_output *link); 101 102 #ifdef CONFIG_QED_SRIOV 103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos) 104 { 105 struct qede_dev *edev = netdev_priv(ndev); 106 107 if (vlan > 4095) { 108 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 109 return -EINVAL; 110 } 111 112 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 113 vlan, vf); 114 115 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 116 } 117 118 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 119 { 120 struct qede_dev *edev = netdev_priv(ndev); 121 122 DP_VERBOSE(edev, QED_MSG_IOV, 123 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 124 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 125 126 if (!is_valid_ether_addr(mac)) { 127 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 128 return -EINVAL; 129 } 130 131 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 132 } 133 134 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 135 { 136 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 137 struct qed_dev_info *qed_info = &edev->dev_info.common; 138 int rc; 139 140 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 141 142 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 143 144 /* Enable/Disable Tx switching for PF */ 145 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 146 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) { 147 struct qed_update_vport_params params; 148 149 memset(¶ms, 0, sizeof(params)); 150 params.vport_id = 0; 151 params.update_tx_switching_flg = 1; 152 params.tx_switching_flg = num_vfs_param ? 1 : 0; 153 edev->ops->vport_update(edev->cdev, ¶ms); 154 } 155 156 return rc; 157 } 158 #endif 159 160 static struct pci_driver qede_pci_driver = { 161 .name = "qede", 162 .id_table = qede_pci_tbl, 163 .probe = qede_probe, 164 .remove = qede_remove, 165 #ifdef CONFIG_QED_SRIOV 166 .sriov_configure = qede_sriov_configure, 167 #endif 168 }; 169 170 static void qede_force_mac(void *dev, u8 *mac) 171 { 172 struct qede_dev *edev = dev; 173 174 ether_addr_copy(edev->ndev->dev_addr, mac); 175 ether_addr_copy(edev->primary_mac, mac); 176 } 177 178 static struct qed_eth_cb_ops qede_ll_ops = { 179 { 180 .link_update = qede_link_update, 181 }, 182 .force_mac = qede_force_mac, 183 }; 184 185 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 186 void *ptr) 187 { 188 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 189 struct ethtool_drvinfo drvinfo; 190 struct qede_dev *edev; 191 192 /* Currently only support name change */ 193 if (event != NETDEV_CHANGENAME) 194 goto done; 195 196 /* Check whether this is a qede device */ 197 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 198 goto done; 199 200 memset(&drvinfo, 0, sizeof(drvinfo)); 201 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 202 if (strcmp(drvinfo.driver, "qede")) 203 goto done; 204 edev = netdev_priv(ndev); 205 206 /* Notify qed of the name change */ 207 if (!edev->ops || !edev->ops->common) 208 goto done; 209 edev->ops->common->set_id(edev->cdev, edev->ndev->name, 210 "qede"); 211 212 done: 213 return NOTIFY_DONE; 214 } 215 216 static struct notifier_block qede_netdev_notifier = { 217 .notifier_call = qede_netdev_event, 218 }; 219 220 static 221 int __init qede_init(void) 222 { 223 int ret; 224 225 pr_notice("qede_init: %s\n", version); 226 227 qed_ops = qed_get_eth_ops(); 228 if (!qed_ops) { 229 pr_notice("Failed to get qed ethtool operations\n"); 230 return -EINVAL; 231 } 232 233 /* Must register notifier before pci ops, since we might miss 234 * interface rename after pci probe and netdev registeration. 235 */ 236 ret = register_netdevice_notifier(&qede_netdev_notifier); 237 if (ret) { 238 pr_notice("Failed to register netdevice_notifier\n"); 239 qed_put_eth_ops(); 240 return -EINVAL; 241 } 242 243 ret = pci_register_driver(&qede_pci_driver); 244 if (ret) { 245 pr_notice("Failed to register driver\n"); 246 unregister_netdevice_notifier(&qede_netdev_notifier); 247 qed_put_eth_ops(); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 static void __exit qede_cleanup(void) 255 { 256 pr_notice("qede_cleanup called\n"); 257 258 unregister_netdevice_notifier(&qede_netdev_notifier); 259 pci_unregister_driver(&qede_pci_driver); 260 qed_put_eth_ops(); 261 } 262 263 module_init(qede_init); 264 module_exit(qede_cleanup); 265 266 /* ------------------------------------------------------------------------- 267 * START OF FAST-PATH 268 * ------------------------------------------------------------------------- 269 */ 270 271 /* Unmap the data and free skb */ 272 static int qede_free_tx_pkt(struct qede_dev *edev, 273 struct qede_tx_queue *txq, 274 int *len) 275 { 276 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; 277 struct sk_buff *skb = txq->sw_tx_ring[idx].skb; 278 struct eth_tx_1st_bd *first_bd; 279 struct eth_tx_bd *tx_data_bd; 280 int bds_consumed = 0; 281 int nbds; 282 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD; 283 int i, split_bd_len = 0; 284 285 if (unlikely(!skb)) { 286 DP_ERR(edev, 287 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", 288 idx, txq->sw_tx_cons, txq->sw_tx_prod); 289 return -1; 290 } 291 292 *len = skb->len; 293 294 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 295 296 bds_consumed++; 297 298 nbds = first_bd->data.nbds; 299 300 if (data_split) { 301 struct eth_tx_bd *split = (struct eth_tx_bd *) 302 qed_chain_consume(&txq->tx_pbl); 303 split_bd_len = BD_UNMAP_LEN(split); 304 bds_consumed++; 305 } 306 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 307 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 308 309 /* Unmap the data of the skb frags */ 310 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { 311 tx_data_bd = (struct eth_tx_bd *) 312 qed_chain_consume(&txq->tx_pbl); 313 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 314 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 315 } 316 317 while (bds_consumed++ < nbds) 318 qed_chain_consume(&txq->tx_pbl); 319 320 /* Free skb */ 321 dev_kfree_skb_any(skb); 322 txq->sw_tx_ring[idx].skb = NULL; 323 txq->sw_tx_ring[idx].flags = 0; 324 325 return 0; 326 } 327 328 /* Unmap the data and free skb when mapping failed during start_xmit */ 329 static void qede_free_failed_tx_pkt(struct qede_dev *edev, 330 struct qede_tx_queue *txq, 331 struct eth_tx_1st_bd *first_bd, 332 int nbd, 333 bool data_split) 334 { 335 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 336 struct sk_buff *skb = txq->sw_tx_ring[idx].skb; 337 struct eth_tx_bd *tx_data_bd; 338 int i, split_bd_len = 0; 339 340 /* Return prod to its position before this skb was handled */ 341 qed_chain_set_prod(&txq->tx_pbl, 342 le16_to_cpu(txq->tx_db.data.bd_prod), 343 first_bd); 344 345 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 346 347 if (data_split) { 348 struct eth_tx_bd *split = (struct eth_tx_bd *) 349 qed_chain_produce(&txq->tx_pbl); 350 split_bd_len = BD_UNMAP_LEN(split); 351 nbd--; 352 } 353 354 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 355 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 356 357 /* Unmap the data of the skb frags */ 358 for (i = 0; i < nbd; i++) { 359 tx_data_bd = (struct eth_tx_bd *) 360 qed_chain_produce(&txq->tx_pbl); 361 if (tx_data_bd->nbytes) 362 dma_unmap_page(&edev->pdev->dev, 363 BD_UNMAP_ADDR(tx_data_bd), 364 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 365 } 366 367 /* Return again prod to its position before this skb was handled */ 368 qed_chain_set_prod(&txq->tx_pbl, 369 le16_to_cpu(txq->tx_db.data.bd_prod), 370 first_bd); 371 372 /* Free skb */ 373 dev_kfree_skb_any(skb); 374 txq->sw_tx_ring[idx].skb = NULL; 375 txq->sw_tx_ring[idx].flags = 0; 376 } 377 378 static u32 qede_xmit_type(struct qede_dev *edev, 379 struct sk_buff *skb, 380 int *ipv6_ext) 381 { 382 u32 rc = XMIT_L4_CSUM; 383 __be16 l3_proto; 384 385 if (skb->ip_summed != CHECKSUM_PARTIAL) 386 return XMIT_PLAIN; 387 388 l3_proto = vlan_get_protocol(skb); 389 if (l3_proto == htons(ETH_P_IPV6) && 390 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) 391 *ipv6_ext = 1; 392 393 if (skb->encapsulation) 394 rc |= XMIT_ENC; 395 396 if (skb_is_gso(skb)) 397 rc |= XMIT_LSO; 398 399 return rc; 400 } 401 402 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, 403 struct eth_tx_2nd_bd *second_bd, 404 struct eth_tx_3rd_bd *third_bd) 405 { 406 u8 l4_proto; 407 u16 bd2_bits1 = 0, bd2_bits2 = 0; 408 409 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); 410 411 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & 412 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 413 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 414 415 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 416 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); 417 418 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) 419 l4_proto = ipv6_hdr(skb)->nexthdr; 420 else 421 l4_proto = ip_hdr(skb)->protocol; 422 423 if (l4_proto == IPPROTO_UDP) 424 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 425 426 if (third_bd) 427 third_bd->data.bitfields |= 428 cpu_to_le16(((tcp_hdrlen(skb) / 4) & 429 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << 430 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); 431 432 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); 433 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); 434 } 435 436 static int map_frag_to_bd(struct qede_dev *edev, 437 skb_frag_t *frag, 438 struct eth_tx_bd *bd) 439 { 440 dma_addr_t mapping; 441 442 /* Map skb non-linear frag data for DMA */ 443 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0, 444 skb_frag_size(frag), 445 DMA_TO_DEVICE); 446 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 447 DP_NOTICE(edev, "Unable to map frag - dropping packet\n"); 448 return -ENOMEM; 449 } 450 451 /* Setup the data pointer of the frag data */ 452 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); 453 454 return 0; 455 } 456 457 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) 458 { 459 if (is_encap_pkt) 460 return (skb_inner_transport_header(skb) + 461 inner_tcp_hdrlen(skb) - skb->data); 462 else 463 return (skb_transport_header(skb) + 464 tcp_hdrlen(skb) - skb->data); 465 } 466 467 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ 468 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 469 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb, 470 u8 xmit_type) 471 { 472 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; 473 474 if (xmit_type & XMIT_LSO) { 475 int hlen; 476 477 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); 478 479 /* linear payload would require its own BD */ 480 if (skb_headlen(skb) > hlen) 481 allowed_frags--; 482 } 483 484 return (skb_shinfo(skb)->nr_frags > allowed_frags); 485 } 486 #endif 487 488 static inline void qede_update_tx_producer(struct qede_tx_queue *txq) 489 { 490 /* wmb makes sure that the BDs data is updated before updating the 491 * producer, otherwise FW may read old data from the BDs. 492 */ 493 wmb(); 494 barrier(); 495 writel(txq->tx_db.raw, txq->doorbell_addr); 496 497 /* mmiowb is needed to synchronize doorbell writes from more than one 498 * processor. It guarantees that the write arrives to the device before 499 * the queue lock is released and another start_xmit is called (possibly 500 * on another CPU). Without this barrier, the next doorbell can bypass 501 * this doorbell. This is applicable to IA64/Altix systems. 502 */ 503 mmiowb(); 504 } 505 506 /* Main transmit function */ 507 static 508 netdev_tx_t qede_start_xmit(struct sk_buff *skb, 509 struct net_device *ndev) 510 { 511 struct qede_dev *edev = netdev_priv(ndev); 512 struct netdev_queue *netdev_txq; 513 struct qede_tx_queue *txq; 514 struct eth_tx_1st_bd *first_bd; 515 struct eth_tx_2nd_bd *second_bd = NULL; 516 struct eth_tx_3rd_bd *third_bd = NULL; 517 struct eth_tx_bd *tx_data_bd = NULL; 518 u16 txq_index; 519 u8 nbd = 0; 520 dma_addr_t mapping; 521 int rc, frag_idx = 0, ipv6_ext = 0; 522 u8 xmit_type; 523 u16 idx; 524 u16 hlen; 525 bool data_split = false; 526 527 /* Get tx-queue context and netdev index */ 528 txq_index = skb_get_queue_mapping(skb); 529 WARN_ON(txq_index >= QEDE_TSS_CNT(edev)); 530 txq = QEDE_TX_QUEUE(edev, txq_index); 531 netdev_txq = netdev_get_tx_queue(ndev, txq_index); 532 533 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < 534 (MAX_SKB_FRAGS + 1)); 535 536 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext); 537 538 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 539 if (qede_pkt_req_lin(edev, skb, xmit_type)) { 540 if (skb_linearize(skb)) { 541 DP_NOTICE(edev, 542 "SKB linearization failed - silently dropping this SKB\n"); 543 dev_kfree_skb_any(skb); 544 return NETDEV_TX_OK; 545 } 546 } 547 #endif 548 549 /* Fill the entry in the SW ring and the BDs in the FW ring */ 550 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 551 txq->sw_tx_ring[idx].skb = skb; 552 first_bd = (struct eth_tx_1st_bd *) 553 qed_chain_produce(&txq->tx_pbl); 554 memset(first_bd, 0, sizeof(*first_bd)); 555 first_bd->data.bd_flags.bitfields = 556 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 557 558 /* Map skb linear data for DMA and set in the first BD */ 559 mapping = dma_map_single(&edev->pdev->dev, skb->data, 560 skb_headlen(skb), DMA_TO_DEVICE); 561 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 562 DP_NOTICE(edev, "SKB mapping failed\n"); 563 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false); 564 qede_update_tx_producer(txq); 565 return NETDEV_TX_OK; 566 } 567 nbd++; 568 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); 569 570 /* In case there is IPv6 with extension headers or LSO we need 2nd and 571 * 3rd BDs. 572 */ 573 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { 574 second_bd = (struct eth_tx_2nd_bd *) 575 qed_chain_produce(&txq->tx_pbl); 576 memset(second_bd, 0, sizeof(*second_bd)); 577 578 nbd++; 579 third_bd = (struct eth_tx_3rd_bd *) 580 qed_chain_produce(&txq->tx_pbl); 581 memset(third_bd, 0, sizeof(*third_bd)); 582 583 nbd++; 584 /* We need to fill in additional data in second_bd... */ 585 tx_data_bd = (struct eth_tx_bd *)second_bd; 586 } 587 588 if (skb_vlan_tag_present(skb)) { 589 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 590 first_bd->data.bd_flags.bitfields |= 591 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 592 } 593 594 /* Fill the parsing flags & params according to the requested offload */ 595 if (xmit_type & XMIT_L4_CSUM) { 596 /* We don't re-calculate IP checksum as it is already done by 597 * the upper stack 598 */ 599 first_bd->data.bd_flags.bitfields |= 600 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 601 602 if (xmit_type & XMIT_ENC) { 603 first_bd->data.bd_flags.bitfields |= 604 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 605 first_bd->data.bitfields |= 606 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; 607 } 608 609 /* If the packet is IPv6 with extension header, indicate that 610 * to FW and pass few params, since the device cracker doesn't 611 * support parsing IPv6 with extension header/s. 612 */ 613 if (unlikely(ipv6_ext)) 614 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); 615 } 616 617 if (xmit_type & XMIT_LSO) { 618 first_bd->data.bd_flags.bitfields |= 619 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); 620 third_bd->data.lso_mss = 621 cpu_to_le16(skb_shinfo(skb)->gso_size); 622 623 if (unlikely(xmit_type & XMIT_ENC)) { 624 first_bd->data.bd_flags.bitfields |= 625 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; 626 hlen = qede_get_skb_hlen(skb, true); 627 } else { 628 first_bd->data.bd_flags.bitfields |= 629 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 630 hlen = qede_get_skb_hlen(skb, false); 631 } 632 633 /* @@@TBD - if will not be removed need to check */ 634 third_bd->data.bitfields |= 635 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT)); 636 637 /* Make life easier for FW guys who can't deal with header and 638 * data on same BD. If we need to split, use the second bd... 639 */ 640 if (unlikely(skb_headlen(skb) > hlen)) { 641 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 642 "TSO split header size is %d (%x:%x)\n", 643 first_bd->nbytes, first_bd->addr.hi, 644 first_bd->addr.lo); 645 646 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), 647 le32_to_cpu(first_bd->addr.lo)) + 648 hlen; 649 650 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, 651 le16_to_cpu(first_bd->nbytes) - 652 hlen); 653 654 /* this marks the BD as one that has no 655 * individual mapping 656 */ 657 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD; 658 659 first_bd->nbytes = cpu_to_le16(hlen); 660 661 tx_data_bd = (struct eth_tx_bd *)third_bd; 662 data_split = true; 663 } 664 } else { 665 first_bd->data.bitfields |= 666 (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 667 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 668 } 669 670 /* Handle fragmented skb */ 671 /* special handle for frags inside 2nd and 3rd bds.. */ 672 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { 673 rc = map_frag_to_bd(edev, 674 &skb_shinfo(skb)->frags[frag_idx], 675 tx_data_bd); 676 if (rc) { 677 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, 678 data_split); 679 qede_update_tx_producer(txq); 680 return NETDEV_TX_OK; 681 } 682 683 if (tx_data_bd == (struct eth_tx_bd *)second_bd) 684 tx_data_bd = (struct eth_tx_bd *)third_bd; 685 else 686 tx_data_bd = NULL; 687 688 frag_idx++; 689 } 690 691 /* map last frags into 4th, 5th .... */ 692 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { 693 tx_data_bd = (struct eth_tx_bd *) 694 qed_chain_produce(&txq->tx_pbl); 695 696 memset(tx_data_bd, 0, sizeof(*tx_data_bd)); 697 698 rc = map_frag_to_bd(edev, 699 &skb_shinfo(skb)->frags[frag_idx], 700 tx_data_bd); 701 if (rc) { 702 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, 703 data_split); 704 qede_update_tx_producer(txq); 705 return NETDEV_TX_OK; 706 } 707 } 708 709 /* update the first BD with the actual num BDs */ 710 first_bd->data.nbds = nbd; 711 712 netdev_tx_sent_queue(netdev_txq, skb->len); 713 714 skb_tx_timestamp(skb); 715 716 /* Advance packet producer only before sending the packet since mapping 717 * of pages may fail. 718 */ 719 txq->sw_tx_prod++; 720 721 /* 'next page' entries are counted in the producer value */ 722 txq->tx_db.data.bd_prod = 723 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); 724 725 if (!skb->xmit_more || netif_tx_queue_stopped(netdev_txq)) 726 qede_update_tx_producer(txq); 727 728 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) 729 < (MAX_SKB_FRAGS + 1))) { 730 netif_tx_stop_queue(netdev_txq); 731 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 732 "Stop queue was called\n"); 733 /* paired memory barrier is in qede_tx_int(), we have to keep 734 * ordering of set_bit() in netif_tx_stop_queue() and read of 735 * fp->bd_tx_cons 736 */ 737 smp_mb(); 738 739 if (qed_chain_get_elem_left(&txq->tx_pbl) 740 >= (MAX_SKB_FRAGS + 1) && 741 (edev->state == QEDE_STATE_OPEN)) { 742 netif_tx_wake_queue(netdev_txq); 743 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 744 "Wake queue was called\n"); 745 } 746 } 747 748 return NETDEV_TX_OK; 749 } 750 751 int qede_txq_has_work(struct qede_tx_queue *txq) 752 { 753 u16 hw_bd_cons; 754 755 /* Tell compiler that consumer and producer can change */ 756 barrier(); 757 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 758 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) 759 return 0; 760 761 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); 762 } 763 764 static int qede_tx_int(struct qede_dev *edev, 765 struct qede_tx_queue *txq) 766 { 767 struct netdev_queue *netdev_txq; 768 u16 hw_bd_cons; 769 unsigned int pkts_compl = 0, bytes_compl = 0; 770 int rc; 771 772 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 773 774 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 775 barrier(); 776 777 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 778 int len = 0; 779 780 rc = qede_free_tx_pkt(edev, txq, &len); 781 if (rc) { 782 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", 783 hw_bd_cons, 784 qed_chain_get_cons_idx(&txq->tx_pbl)); 785 break; 786 } 787 788 bytes_compl += len; 789 pkts_compl++; 790 txq->sw_tx_cons++; 791 } 792 793 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 794 795 /* Need to make the tx_bd_cons update visible to start_xmit() 796 * before checking for netif_tx_queue_stopped(). Without the 797 * memory barrier, there is a small possibility that 798 * start_xmit() will miss it and cause the queue to be stopped 799 * forever. 800 * On the other hand we need an rmb() here to ensure the proper 801 * ordering of bit testing in the following 802 * netif_tx_queue_stopped(txq) call. 803 */ 804 smp_mb(); 805 806 if (unlikely(netif_tx_queue_stopped(netdev_txq))) { 807 /* Taking tx_lock is needed to prevent reenabling the queue 808 * while it's empty. This could have happen if rx_action() gets 809 * suspended in qede_tx_int() after the condition before 810 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): 811 * 812 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 813 * sends some packets consuming the whole queue again-> 814 * stops the queue 815 */ 816 817 __netif_tx_lock(netdev_txq, smp_processor_id()); 818 819 if ((netif_tx_queue_stopped(netdev_txq)) && 820 (edev->state == QEDE_STATE_OPEN) && 821 (qed_chain_get_elem_left(&txq->tx_pbl) 822 >= (MAX_SKB_FRAGS + 1))) { 823 netif_tx_wake_queue(netdev_txq); 824 DP_VERBOSE(edev, NETIF_MSG_TX_DONE, 825 "Wake queue was called\n"); 826 } 827 828 __netif_tx_unlock(netdev_txq); 829 } 830 831 return 0; 832 } 833 834 bool qede_has_rx_work(struct qede_rx_queue *rxq) 835 { 836 u16 hw_comp_cons, sw_comp_cons; 837 838 /* Tell compiler that status block fields can change */ 839 barrier(); 840 841 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 842 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 843 844 return hw_comp_cons != sw_comp_cons; 845 } 846 847 static bool qede_has_tx_work(struct qede_fastpath *fp) 848 { 849 u8 tc; 850 851 for (tc = 0; tc < fp->edev->num_tc; tc++) 852 if (qede_txq_has_work(&fp->txqs[tc])) 853 return true; 854 return false; 855 } 856 857 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) 858 { 859 qed_chain_consume(&rxq->rx_bd_ring); 860 rxq->sw_rx_cons++; 861 } 862 863 /* This function reuses the buffer(from an offset) from 864 * consumer index to producer index in the bd ring 865 */ 866 static inline void qede_reuse_page(struct qede_dev *edev, 867 struct qede_rx_queue *rxq, 868 struct sw_rx_data *curr_cons) 869 { 870 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 871 struct sw_rx_data *curr_prod; 872 dma_addr_t new_mapping; 873 874 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 875 *curr_prod = *curr_cons; 876 877 new_mapping = curr_prod->mapping + curr_prod->page_offset; 878 879 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); 880 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping)); 881 882 rxq->sw_rx_prod++; 883 curr_cons->data = NULL; 884 } 885 886 /* In case of allocation failures reuse buffers 887 * from consumer index to produce buffers for firmware 888 */ 889 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, 890 struct qede_dev *edev, u8 count) 891 { 892 struct sw_rx_data *curr_cons; 893 894 for (; count > 0; count--) { 895 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 896 qede_reuse_page(edev, rxq, curr_cons); 897 qede_rx_bd_ring_consume(rxq); 898 } 899 } 900 901 static inline int qede_realloc_rx_buffer(struct qede_dev *edev, 902 struct qede_rx_queue *rxq, 903 struct sw_rx_data *curr_cons) 904 { 905 /* Move to the next segment in the page */ 906 curr_cons->page_offset += rxq->rx_buf_seg_size; 907 908 if (curr_cons->page_offset == PAGE_SIZE) { 909 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) { 910 /* Since we failed to allocate new buffer 911 * current buffer can be used again. 912 */ 913 curr_cons->page_offset -= rxq->rx_buf_seg_size; 914 915 return -ENOMEM; 916 } 917 918 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping, 919 PAGE_SIZE, DMA_FROM_DEVICE); 920 } else { 921 /* Increment refcount of the page as we don't want 922 * network stack to take the ownership of the page 923 * which can be recycled multiple times by the driver. 924 */ 925 page_ref_inc(curr_cons->data); 926 qede_reuse_page(edev, rxq, curr_cons); 927 } 928 929 return 0; 930 } 931 932 static inline void qede_update_rx_prod(struct qede_dev *edev, 933 struct qede_rx_queue *rxq) 934 { 935 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); 936 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); 937 struct eth_rx_prod_data rx_prods = {0}; 938 939 /* Update producers */ 940 rx_prods.bd_prod = cpu_to_le16(bd_prod); 941 rx_prods.cqe_prod = cpu_to_le16(cqe_prod); 942 943 /* Make sure that the BD and SGE data is updated before updating the 944 * producers since FW might read the BD/SGE right after the producer 945 * is updated. 946 */ 947 wmb(); 948 949 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 950 (u32 *)&rx_prods); 951 952 /* mmiowb is needed to synchronize doorbell writes from more than one 953 * processor. It guarantees that the write arrives to the device before 954 * the napi lock is released and another qede_poll is called (possibly 955 * on another CPU). Without this barrier, the next doorbell can bypass 956 * this doorbell. This is applicable to IA64/Altix systems. 957 */ 958 mmiowb(); 959 } 960 961 static u32 qede_get_rxhash(struct qede_dev *edev, 962 u8 bitfields, 963 __le32 rss_hash, 964 enum pkt_hash_types *rxhash_type) 965 { 966 enum rss_hash_type htype; 967 968 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); 969 970 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) { 971 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) || 972 (htype == RSS_HASH_TYPE_IPV6)) ? 973 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; 974 return le32_to_cpu(rss_hash); 975 } 976 *rxhash_type = PKT_HASH_TYPE_NONE; 977 return 0; 978 } 979 980 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) 981 { 982 skb_checksum_none_assert(skb); 983 984 if (csum_flag & QEDE_CSUM_UNNECESSARY) 985 skb->ip_summed = CHECKSUM_UNNECESSARY; 986 987 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) 988 skb->csum_level = 1; 989 } 990 991 static inline void qede_skb_receive(struct qede_dev *edev, 992 struct qede_fastpath *fp, 993 struct sk_buff *skb, 994 u16 vlan_tag) 995 { 996 if (vlan_tag) 997 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 998 vlan_tag); 999 1000 napi_gro_receive(&fp->napi, skb); 1001 } 1002 1003 static void qede_set_gro_params(struct qede_dev *edev, 1004 struct sk_buff *skb, 1005 struct eth_fast_path_rx_tpa_start_cqe *cqe) 1006 { 1007 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); 1008 1009 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & 1010 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) 1011 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 1012 else 1013 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 1014 1015 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - 1016 cqe->header_len; 1017 } 1018 1019 static int qede_fill_frag_skb(struct qede_dev *edev, 1020 struct qede_rx_queue *rxq, 1021 u8 tpa_agg_index, 1022 u16 len_on_bd) 1023 { 1024 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & 1025 NUM_RX_BDS_MAX]; 1026 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; 1027 struct sk_buff *skb = tpa_info->skb; 1028 1029 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) 1030 goto out; 1031 1032 /* Add one frag and update the appropriate fields in the skb */ 1033 skb_fill_page_desc(skb, tpa_info->frag_id++, 1034 current_bd->data, current_bd->page_offset, 1035 len_on_bd); 1036 1037 if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) { 1038 /* Incr page ref count to reuse on allocation failure 1039 * so that it doesn't get freed while freeing SKB. 1040 */ 1041 page_ref_inc(current_bd->data); 1042 goto out; 1043 } 1044 1045 qed_chain_consume(&rxq->rx_bd_ring); 1046 rxq->sw_rx_cons++; 1047 1048 skb->data_len += len_on_bd; 1049 skb->truesize += rxq->rx_buf_seg_size; 1050 skb->len += len_on_bd; 1051 1052 return 0; 1053 1054 out: 1055 tpa_info->agg_state = QEDE_AGG_STATE_ERROR; 1056 qede_recycle_rx_bd_ring(rxq, edev, 1); 1057 return -ENOMEM; 1058 } 1059 1060 static void qede_tpa_start(struct qede_dev *edev, 1061 struct qede_rx_queue *rxq, 1062 struct eth_fast_path_rx_tpa_start_cqe *cqe) 1063 { 1064 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 1065 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); 1066 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 1067 struct sw_rx_data *replace_buf = &tpa_info->replace_buf; 1068 dma_addr_t mapping = tpa_info->replace_buf_mapping; 1069 struct sw_rx_data *sw_rx_data_cons; 1070 struct sw_rx_data *sw_rx_data_prod; 1071 enum pkt_hash_types rxhash_type; 1072 u32 rxhash; 1073 1074 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 1075 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 1076 1077 /* Use pre-allocated replacement buffer - we can't release the agg. 1078 * start until its over and we don't want to risk allocation failing 1079 * here, so re-allocate when aggregation will be over. 1080 */ 1081 sw_rx_data_prod->mapping = replace_buf->mapping; 1082 1083 sw_rx_data_prod->data = replace_buf->data; 1084 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 1085 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 1086 sw_rx_data_prod->page_offset = replace_buf->page_offset; 1087 1088 rxq->sw_rx_prod++; 1089 1090 /* move partial skb from cons to pool (don't unmap yet) 1091 * save mapping, incase we drop the packet later on. 1092 */ 1093 tpa_info->start_buf = *sw_rx_data_cons; 1094 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), 1095 le32_to_cpu(rx_bd_cons->addr.lo)); 1096 1097 tpa_info->start_buf_mapping = mapping; 1098 rxq->sw_rx_cons++; 1099 1100 /* set tpa state to start only if we are able to allocate skb 1101 * for this aggregation, otherwise mark as error and aggregation will 1102 * be dropped 1103 */ 1104 tpa_info->skb = netdev_alloc_skb(edev->ndev, 1105 le16_to_cpu(cqe->len_on_first_bd)); 1106 if (unlikely(!tpa_info->skb)) { 1107 DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); 1108 tpa_info->agg_state = QEDE_AGG_STATE_ERROR; 1109 goto cons_buf; 1110 } 1111 1112 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); 1113 memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe)); 1114 1115 /* Start filling in the aggregation info */ 1116 tpa_info->frag_id = 0; 1117 tpa_info->agg_state = QEDE_AGG_STATE_START; 1118 1119 rxhash = qede_get_rxhash(edev, cqe->bitfields, 1120 cqe->rss_hash, &rxhash_type); 1121 skb_set_hash(tpa_info->skb, rxhash, rxhash_type); 1122 if ((le16_to_cpu(cqe->pars_flags.flags) >> 1123 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & 1124 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) 1125 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 1126 else 1127 tpa_info->vlan_tag = 0; 1128 1129 /* This is needed in order to enable forwarding support */ 1130 qede_set_gro_params(edev, tpa_info->skb, cqe); 1131 1132 cons_buf: /* We still need to handle bd_len_list to consume buffers */ 1133 if (likely(cqe->ext_bd_len_list[0])) 1134 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1135 le16_to_cpu(cqe->ext_bd_len_list[0])); 1136 1137 if (unlikely(cqe->ext_bd_len_list[1])) { 1138 DP_ERR(edev, 1139 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); 1140 tpa_info->agg_state = QEDE_AGG_STATE_ERROR; 1141 } 1142 } 1143 1144 #ifdef CONFIG_INET 1145 static void qede_gro_ip_csum(struct sk_buff *skb) 1146 { 1147 const struct iphdr *iph = ip_hdr(skb); 1148 struct tcphdr *th; 1149 1150 skb_set_transport_header(skb, sizeof(struct iphdr)); 1151 th = tcp_hdr(skb); 1152 1153 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 1154 iph->saddr, iph->daddr, 0); 1155 1156 tcp_gro_complete(skb); 1157 } 1158 1159 static void qede_gro_ipv6_csum(struct sk_buff *skb) 1160 { 1161 struct ipv6hdr *iph = ipv6_hdr(skb); 1162 struct tcphdr *th; 1163 1164 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 1165 th = tcp_hdr(skb); 1166 1167 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 1168 &iph->saddr, &iph->daddr, 0); 1169 tcp_gro_complete(skb); 1170 } 1171 #endif 1172 1173 static void qede_gro_receive(struct qede_dev *edev, 1174 struct qede_fastpath *fp, 1175 struct sk_buff *skb, 1176 u16 vlan_tag) 1177 { 1178 /* FW can send a single MTU sized packet from gro flow 1179 * due to aggregation timeout/last segment etc. which 1180 * is not expected to be a gro packet. If a skb has zero 1181 * frags then simply push it in the stack as non gso skb. 1182 */ 1183 if (unlikely(!skb->data_len)) { 1184 skb_shinfo(skb)->gso_type = 0; 1185 skb_shinfo(skb)->gso_size = 0; 1186 goto send_skb; 1187 } 1188 1189 #ifdef CONFIG_INET 1190 if (skb_shinfo(skb)->gso_size) { 1191 skb_set_network_header(skb, 0); 1192 1193 switch (skb->protocol) { 1194 case htons(ETH_P_IP): 1195 qede_gro_ip_csum(skb); 1196 break; 1197 case htons(ETH_P_IPV6): 1198 qede_gro_ipv6_csum(skb); 1199 break; 1200 default: 1201 DP_ERR(edev, 1202 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 1203 ntohs(skb->protocol)); 1204 } 1205 } 1206 #endif 1207 1208 send_skb: 1209 skb_record_rx_queue(skb, fp->rss_id); 1210 qede_skb_receive(edev, fp, skb, vlan_tag); 1211 } 1212 1213 static inline void qede_tpa_cont(struct qede_dev *edev, 1214 struct qede_rx_queue *rxq, 1215 struct eth_fast_path_rx_tpa_cont_cqe *cqe) 1216 { 1217 int i; 1218 1219 for (i = 0; cqe->len_list[i]; i++) 1220 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1221 le16_to_cpu(cqe->len_list[i])); 1222 1223 if (unlikely(i > 1)) 1224 DP_ERR(edev, 1225 "Strange - TPA cont with more than a single len_list entry\n"); 1226 } 1227 1228 static void qede_tpa_end(struct qede_dev *edev, 1229 struct qede_fastpath *fp, 1230 struct eth_fast_path_rx_tpa_end_cqe *cqe) 1231 { 1232 struct qede_rx_queue *rxq = fp->rxq; 1233 struct qede_agg_info *tpa_info; 1234 struct sk_buff *skb; 1235 int i; 1236 1237 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 1238 skb = tpa_info->skb; 1239 1240 for (i = 0; cqe->len_list[i]; i++) 1241 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1242 le16_to_cpu(cqe->len_list[i])); 1243 if (unlikely(i > 1)) 1244 DP_ERR(edev, 1245 "Strange - TPA emd with more than a single len_list entry\n"); 1246 1247 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) 1248 goto err; 1249 1250 /* Sanity */ 1251 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) 1252 DP_ERR(edev, 1253 "Strange - TPA had %02x BDs, but SKB has only %d frags\n", 1254 cqe->num_of_bds, tpa_info->frag_id); 1255 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) 1256 DP_ERR(edev, 1257 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", 1258 le16_to_cpu(cqe->total_packet_len), skb->len); 1259 1260 memcpy(skb->data, 1261 page_address(tpa_info->start_buf.data) + 1262 tpa_info->start_cqe.placement_offset + 1263 tpa_info->start_buf.page_offset, 1264 le16_to_cpu(tpa_info->start_cqe.len_on_first_bd)); 1265 1266 /* Recycle [mapped] start buffer for the next replacement */ 1267 tpa_info->replace_buf = tpa_info->start_buf; 1268 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; 1269 1270 /* Finalize the SKB */ 1271 skb->protocol = eth_type_trans(skb, edev->ndev); 1272 skb->ip_summed = CHECKSUM_UNNECESSARY; 1273 1274 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 1275 * to skb_shinfo(skb)->gso_segs 1276 */ 1277 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); 1278 1279 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); 1280 1281 tpa_info->agg_state = QEDE_AGG_STATE_NONE; 1282 1283 return; 1284 err: 1285 /* The BD starting the aggregation is still mapped; Re-use it for 1286 * future aggregations [as replacement buffer] 1287 */ 1288 memcpy(&tpa_info->replace_buf, &tpa_info->start_buf, 1289 sizeof(struct sw_rx_data)); 1290 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; 1291 tpa_info->start_buf.data = NULL; 1292 tpa_info->agg_state = QEDE_AGG_STATE_NONE; 1293 dev_kfree_skb_any(tpa_info->skb); 1294 tpa_info->skb = NULL; 1295 } 1296 1297 static bool qede_tunn_exist(u16 flag) 1298 { 1299 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << 1300 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); 1301 } 1302 1303 static u8 qede_check_tunn_csum(u16 flag) 1304 { 1305 u16 csum_flag = 0; 1306 u8 tcsum = 0; 1307 1308 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << 1309 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) 1310 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << 1311 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; 1312 1313 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1314 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 1315 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1316 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 1317 tcsum = QEDE_TUNN_CSUM_UNNECESSARY; 1318 } 1319 1320 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << 1321 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | 1322 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1323 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 1324 1325 if (csum_flag & flag) 1326 return QEDE_CSUM_ERROR; 1327 1328 return QEDE_CSUM_UNNECESSARY | tcsum; 1329 } 1330 1331 static u8 qede_check_notunn_csum(u16 flag) 1332 { 1333 u16 csum_flag = 0; 1334 u8 csum = 0; 1335 1336 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1337 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 1338 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1339 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 1340 csum = QEDE_CSUM_UNNECESSARY; 1341 } 1342 1343 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1344 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 1345 1346 if (csum_flag & flag) 1347 return QEDE_CSUM_ERROR; 1348 1349 return csum; 1350 } 1351 1352 static u8 qede_check_csum(u16 flag) 1353 { 1354 if (!qede_tunn_exist(flag)) 1355 return qede_check_notunn_csum(flag); 1356 else 1357 return qede_check_tunn_csum(flag); 1358 } 1359 1360 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, 1361 u16 flag) 1362 { 1363 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; 1364 1365 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << 1366 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || 1367 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << 1368 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) 1369 return true; 1370 1371 return false; 1372 } 1373 1374 static int qede_rx_int(struct qede_fastpath *fp, int budget) 1375 { 1376 struct qede_dev *edev = fp->edev; 1377 struct qede_rx_queue *rxq = fp->rxq; 1378 1379 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag; 1380 int rx_pkt = 0; 1381 u8 csum_flag; 1382 1383 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 1384 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1385 1386 /* Memory barrier to prevent the CPU from doing speculative reads of CQE 1387 * / BD in the while-loop before reading hw_comp_cons. If the CQE is 1388 * read before it is written by FW, then FW writes CQE and SB, and then 1389 * the CPU reads the hw_comp_cons, it will use an old CQE. 1390 */ 1391 rmb(); 1392 1393 /* Loop to complete all indicated BDs */ 1394 while (sw_comp_cons != hw_comp_cons) { 1395 struct eth_fast_path_rx_reg_cqe *fp_cqe; 1396 enum pkt_hash_types rxhash_type; 1397 enum eth_rx_cqe_type cqe_type; 1398 struct sw_rx_data *sw_rx_data; 1399 union eth_rx_cqe *cqe; 1400 struct sk_buff *skb; 1401 struct page *data; 1402 __le16 flags; 1403 u16 len, pad; 1404 u32 rx_hash; 1405 1406 /* Get the CQE from the completion ring */ 1407 cqe = (union eth_rx_cqe *) 1408 qed_chain_consume(&rxq->rx_comp_ring); 1409 cqe_type = cqe->fast_path_regular.type; 1410 1411 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { 1412 edev->ops->eth_cqe_completion( 1413 edev->cdev, fp->rss_id, 1414 (struct eth_slow_path_rx_cqe *)cqe); 1415 goto next_cqe; 1416 } 1417 1418 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) { 1419 switch (cqe_type) { 1420 case ETH_RX_CQE_TYPE_TPA_START: 1421 qede_tpa_start(edev, rxq, 1422 &cqe->fast_path_tpa_start); 1423 goto next_cqe; 1424 case ETH_RX_CQE_TYPE_TPA_CONT: 1425 qede_tpa_cont(edev, rxq, 1426 &cqe->fast_path_tpa_cont); 1427 goto next_cqe; 1428 case ETH_RX_CQE_TYPE_TPA_END: 1429 qede_tpa_end(edev, fp, 1430 &cqe->fast_path_tpa_end); 1431 goto next_rx_only; 1432 default: 1433 break; 1434 } 1435 } 1436 1437 /* Get the data from the SW ring */ 1438 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1439 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; 1440 data = sw_rx_data->data; 1441 1442 fp_cqe = &cqe->fast_path_regular; 1443 len = le16_to_cpu(fp_cqe->len_on_first_bd); 1444 pad = fp_cqe->placement_offset; 1445 flags = cqe->fast_path_regular.pars_flags.flags; 1446 1447 /* If this is an error packet then drop it */ 1448 parse_flag = le16_to_cpu(flags); 1449 1450 csum_flag = qede_check_csum(parse_flag); 1451 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { 1452 if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular, 1453 parse_flag)) { 1454 rxq->rx_ip_frags++; 1455 goto alloc_skb; 1456 } 1457 1458 DP_NOTICE(edev, 1459 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n", 1460 sw_comp_cons, parse_flag); 1461 rxq->rx_hw_errors++; 1462 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num); 1463 goto next_cqe; 1464 } 1465 1466 alloc_skb: 1467 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); 1468 if (unlikely(!skb)) { 1469 DP_NOTICE(edev, 1470 "Build_skb failed, dropping incoming packet\n"); 1471 qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num); 1472 rxq->rx_alloc_errors++; 1473 goto next_cqe; 1474 } 1475 1476 /* Copy data into SKB */ 1477 if (len + pad <= edev->rx_copybreak) { 1478 memcpy(skb_put(skb, len), 1479 page_address(data) + pad + 1480 sw_rx_data->page_offset, len); 1481 qede_reuse_page(edev, rxq, sw_rx_data); 1482 } else { 1483 struct skb_frag_struct *frag; 1484 unsigned int pull_len; 1485 unsigned char *va; 1486 1487 frag = &skb_shinfo(skb)->frags[0]; 1488 1489 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data, 1490 pad + sw_rx_data->page_offset, 1491 len, rxq->rx_buf_seg_size); 1492 1493 va = skb_frag_address(frag); 1494 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); 1495 1496 /* Align the pull_len to optimize memcpy */ 1497 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); 1498 1499 skb_frag_size_sub(frag, pull_len); 1500 frag->page_offset += pull_len; 1501 skb->data_len -= pull_len; 1502 skb->tail += pull_len; 1503 1504 if (unlikely(qede_realloc_rx_buffer(edev, rxq, 1505 sw_rx_data))) { 1506 DP_ERR(edev, "Failed to allocate rx buffer\n"); 1507 /* Incr page ref count to reuse on allocation 1508 * failure so that it doesn't get freed while 1509 * freeing SKB. 1510 */ 1511 1512 page_ref_inc(sw_rx_data->data); 1513 rxq->rx_alloc_errors++; 1514 qede_recycle_rx_bd_ring(rxq, edev, 1515 fp_cqe->bd_num); 1516 dev_kfree_skb_any(skb); 1517 goto next_cqe; 1518 } 1519 } 1520 1521 qede_rx_bd_ring_consume(rxq); 1522 1523 if (fp_cqe->bd_num != 1) { 1524 u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len); 1525 u8 num_frags; 1526 1527 pkt_len -= len; 1528 1529 for (num_frags = fp_cqe->bd_num - 1; num_frags > 0; 1530 num_frags--) { 1531 u16 cur_size = pkt_len > rxq->rx_buf_size ? 1532 rxq->rx_buf_size : pkt_len; 1533 if (unlikely(!cur_size)) { 1534 DP_ERR(edev, 1535 "Still got %d BDs for mapping jumbo, but length became 0\n", 1536 num_frags); 1537 qede_recycle_rx_bd_ring(rxq, edev, 1538 num_frags); 1539 dev_kfree_skb_any(skb); 1540 goto next_cqe; 1541 } 1542 1543 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) { 1544 qede_recycle_rx_bd_ring(rxq, edev, 1545 num_frags); 1546 dev_kfree_skb_any(skb); 1547 goto next_cqe; 1548 } 1549 1550 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1551 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; 1552 qede_rx_bd_ring_consume(rxq); 1553 1554 dma_unmap_page(&edev->pdev->dev, 1555 sw_rx_data->mapping, 1556 PAGE_SIZE, DMA_FROM_DEVICE); 1557 1558 skb_fill_page_desc(skb, 1559 skb_shinfo(skb)->nr_frags++, 1560 sw_rx_data->data, 0, 1561 cur_size); 1562 1563 skb->truesize += PAGE_SIZE; 1564 skb->data_len += cur_size; 1565 skb->len += cur_size; 1566 pkt_len -= cur_size; 1567 } 1568 1569 if (unlikely(pkt_len)) 1570 DP_ERR(edev, 1571 "Mapped all BDs of jumbo, but still have %d bytes\n", 1572 pkt_len); 1573 } 1574 1575 skb->protocol = eth_type_trans(skb, edev->ndev); 1576 1577 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields, 1578 fp_cqe->rss_hash, 1579 &rxhash_type); 1580 1581 skb_set_hash(skb, rx_hash, rxhash_type); 1582 1583 qede_set_skb_csum(skb, csum_flag); 1584 1585 skb_record_rx_queue(skb, fp->rss_id); 1586 1587 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag)); 1588 next_rx_only: 1589 rx_pkt++; 1590 1591 next_cqe: /* don't consume bd rx buffer */ 1592 qed_chain_recycle_consumed(&rxq->rx_comp_ring); 1593 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1594 /* CR TPA - revisit how to handle budget in TPA perhaps 1595 * increase on "end" 1596 */ 1597 if (rx_pkt == budget) 1598 break; 1599 } /* repeat while sw_comp_cons != hw_comp_cons... */ 1600 1601 /* Update producers */ 1602 qede_update_rx_prod(edev, rxq); 1603 1604 return rx_pkt; 1605 } 1606 1607 static int qede_poll(struct napi_struct *napi, int budget) 1608 { 1609 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, 1610 napi); 1611 struct qede_dev *edev = fp->edev; 1612 int rx_work_done = 0; 1613 u8 tc; 1614 1615 for (tc = 0; tc < edev->num_tc; tc++) 1616 if (qede_txq_has_work(&fp->txqs[tc])) 1617 qede_tx_int(edev, &fp->txqs[tc]); 1618 1619 rx_work_done = qede_has_rx_work(fp->rxq) ? 1620 qede_rx_int(fp, budget) : 0; 1621 if (rx_work_done < budget) { 1622 qed_sb_update_sb_idx(fp->sb_info); 1623 /* *_has_*_work() reads the status block, 1624 * thus we need to ensure that status block indices 1625 * have been actually read (qed_sb_update_sb_idx) 1626 * prior to this check (*_has_*_work) so that 1627 * we won't write the "newer" value of the status block 1628 * to HW (if there was a DMA right after 1629 * qede_has_rx_work and if there is no rmb, the memory 1630 * reading (qed_sb_update_sb_idx) may be postponed 1631 * to right before *_ack_sb). In this case there 1632 * will never be another interrupt until there is 1633 * another update of the status block, while there 1634 * is still unhandled work. 1635 */ 1636 rmb(); 1637 1638 /* Fall out from the NAPI loop if needed */ 1639 if (!(qede_has_rx_work(fp->rxq) || 1640 qede_has_tx_work(fp))) { 1641 napi_complete(napi); 1642 1643 /* Update and reenable interrupts */ 1644 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1645 1 /*update*/); 1646 } else { 1647 rx_work_done = budget; 1648 } 1649 } 1650 1651 return rx_work_done; 1652 } 1653 1654 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) 1655 { 1656 struct qede_fastpath *fp = fp_cookie; 1657 1658 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); 1659 1660 napi_schedule_irqoff(&fp->napi); 1661 return IRQ_HANDLED; 1662 } 1663 1664 /* ------------------------------------------------------------------------- 1665 * END OF FAST-PATH 1666 * ------------------------------------------------------------------------- 1667 */ 1668 1669 static int qede_open(struct net_device *ndev); 1670 static int qede_close(struct net_device *ndev); 1671 static int qede_set_mac_addr(struct net_device *ndev, void *p); 1672 static void qede_set_rx_mode(struct net_device *ndev); 1673 static void qede_config_rx_mode(struct net_device *ndev); 1674 1675 static int qede_set_ucast_rx_mac(struct qede_dev *edev, 1676 enum qed_filter_xcast_params_type opcode, 1677 unsigned char mac[ETH_ALEN]) 1678 { 1679 struct qed_filter_params filter_cmd; 1680 1681 memset(&filter_cmd, 0, sizeof(filter_cmd)); 1682 filter_cmd.type = QED_FILTER_TYPE_UCAST; 1683 filter_cmd.filter.ucast.type = opcode; 1684 filter_cmd.filter.ucast.mac_valid = 1; 1685 ether_addr_copy(filter_cmd.filter.ucast.mac, mac); 1686 1687 return edev->ops->filter_config(edev->cdev, &filter_cmd); 1688 } 1689 1690 static int qede_set_ucast_rx_vlan(struct qede_dev *edev, 1691 enum qed_filter_xcast_params_type opcode, 1692 u16 vid) 1693 { 1694 struct qed_filter_params filter_cmd; 1695 1696 memset(&filter_cmd, 0, sizeof(filter_cmd)); 1697 filter_cmd.type = QED_FILTER_TYPE_UCAST; 1698 filter_cmd.filter.ucast.type = opcode; 1699 filter_cmd.filter.ucast.vlan_valid = 1; 1700 filter_cmd.filter.ucast.vlan = vid; 1701 1702 return edev->ops->filter_config(edev->cdev, &filter_cmd); 1703 } 1704 1705 void qede_fill_by_demand_stats(struct qede_dev *edev) 1706 { 1707 struct qed_eth_stats stats; 1708 1709 edev->ops->get_vport_stats(edev->cdev, &stats); 1710 edev->stats.no_buff_discards = stats.no_buff_discards; 1711 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes; 1712 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes; 1713 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes; 1714 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts; 1715 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts; 1716 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts; 1717 edev->stats.mftag_filter_discards = stats.mftag_filter_discards; 1718 edev->stats.mac_filter_discards = stats.mac_filter_discards; 1719 1720 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes; 1721 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes; 1722 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes; 1723 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts; 1724 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts; 1725 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts; 1726 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts; 1727 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts; 1728 edev->stats.coalesced_events = stats.tpa_coalesced_events; 1729 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num; 1730 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts; 1731 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes; 1732 1733 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets; 1734 edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets; 1735 edev->stats.rx_128_to_255_byte_packets = 1736 stats.rx_128_to_255_byte_packets; 1737 edev->stats.rx_256_to_511_byte_packets = 1738 stats.rx_256_to_511_byte_packets; 1739 edev->stats.rx_512_to_1023_byte_packets = 1740 stats.rx_512_to_1023_byte_packets; 1741 edev->stats.rx_1024_to_1518_byte_packets = 1742 stats.rx_1024_to_1518_byte_packets; 1743 edev->stats.rx_1519_to_1522_byte_packets = 1744 stats.rx_1519_to_1522_byte_packets; 1745 edev->stats.rx_1519_to_2047_byte_packets = 1746 stats.rx_1519_to_2047_byte_packets; 1747 edev->stats.rx_2048_to_4095_byte_packets = 1748 stats.rx_2048_to_4095_byte_packets; 1749 edev->stats.rx_4096_to_9216_byte_packets = 1750 stats.rx_4096_to_9216_byte_packets; 1751 edev->stats.rx_9217_to_16383_byte_packets = 1752 stats.rx_9217_to_16383_byte_packets; 1753 edev->stats.rx_crc_errors = stats.rx_crc_errors; 1754 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames; 1755 edev->stats.rx_pause_frames = stats.rx_pause_frames; 1756 edev->stats.rx_pfc_frames = stats.rx_pfc_frames; 1757 edev->stats.rx_align_errors = stats.rx_align_errors; 1758 edev->stats.rx_carrier_errors = stats.rx_carrier_errors; 1759 edev->stats.rx_oversize_packets = stats.rx_oversize_packets; 1760 edev->stats.rx_jabbers = stats.rx_jabbers; 1761 edev->stats.rx_undersize_packets = stats.rx_undersize_packets; 1762 edev->stats.rx_fragments = stats.rx_fragments; 1763 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets; 1764 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets; 1765 edev->stats.tx_128_to_255_byte_packets = 1766 stats.tx_128_to_255_byte_packets; 1767 edev->stats.tx_256_to_511_byte_packets = 1768 stats.tx_256_to_511_byte_packets; 1769 edev->stats.tx_512_to_1023_byte_packets = 1770 stats.tx_512_to_1023_byte_packets; 1771 edev->stats.tx_1024_to_1518_byte_packets = 1772 stats.tx_1024_to_1518_byte_packets; 1773 edev->stats.tx_1519_to_2047_byte_packets = 1774 stats.tx_1519_to_2047_byte_packets; 1775 edev->stats.tx_2048_to_4095_byte_packets = 1776 stats.tx_2048_to_4095_byte_packets; 1777 edev->stats.tx_4096_to_9216_byte_packets = 1778 stats.tx_4096_to_9216_byte_packets; 1779 edev->stats.tx_9217_to_16383_byte_packets = 1780 stats.tx_9217_to_16383_byte_packets; 1781 edev->stats.tx_pause_frames = stats.tx_pause_frames; 1782 edev->stats.tx_pfc_frames = stats.tx_pfc_frames; 1783 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count; 1784 edev->stats.tx_total_collisions = stats.tx_total_collisions; 1785 edev->stats.brb_truncates = stats.brb_truncates; 1786 edev->stats.brb_discards = stats.brb_discards; 1787 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames; 1788 } 1789 1790 static struct rtnl_link_stats64 *qede_get_stats64( 1791 struct net_device *dev, 1792 struct rtnl_link_stats64 *stats) 1793 { 1794 struct qede_dev *edev = netdev_priv(dev); 1795 1796 qede_fill_by_demand_stats(edev); 1797 1798 stats->rx_packets = edev->stats.rx_ucast_pkts + 1799 edev->stats.rx_mcast_pkts + 1800 edev->stats.rx_bcast_pkts; 1801 stats->tx_packets = edev->stats.tx_ucast_pkts + 1802 edev->stats.tx_mcast_pkts + 1803 edev->stats.tx_bcast_pkts; 1804 1805 stats->rx_bytes = edev->stats.rx_ucast_bytes + 1806 edev->stats.rx_mcast_bytes + 1807 edev->stats.rx_bcast_bytes; 1808 1809 stats->tx_bytes = edev->stats.tx_ucast_bytes + 1810 edev->stats.tx_mcast_bytes + 1811 edev->stats.tx_bcast_bytes; 1812 1813 stats->tx_errors = edev->stats.tx_err_drop_pkts; 1814 stats->multicast = edev->stats.rx_mcast_pkts + 1815 edev->stats.rx_bcast_pkts; 1816 1817 stats->rx_fifo_errors = edev->stats.no_buff_discards; 1818 1819 stats->collisions = edev->stats.tx_total_collisions; 1820 stats->rx_crc_errors = edev->stats.rx_crc_errors; 1821 stats->rx_frame_errors = edev->stats.rx_align_errors; 1822 1823 return stats; 1824 } 1825 1826 #ifdef CONFIG_QED_SRIOV 1827 static int qede_get_vf_config(struct net_device *dev, int vfidx, 1828 struct ifla_vf_info *ivi) 1829 { 1830 struct qede_dev *edev = netdev_priv(dev); 1831 1832 if (!edev->ops) 1833 return -EINVAL; 1834 1835 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 1836 } 1837 1838 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 1839 int min_tx_rate, int max_tx_rate) 1840 { 1841 struct qede_dev *edev = netdev_priv(dev); 1842 1843 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 1844 max_tx_rate); 1845 } 1846 1847 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 1848 { 1849 struct qede_dev *edev = netdev_priv(dev); 1850 1851 if (!edev->ops) 1852 return -EINVAL; 1853 1854 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 1855 } 1856 1857 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 1858 int link_state) 1859 { 1860 struct qede_dev *edev = netdev_priv(dev); 1861 1862 if (!edev->ops) 1863 return -EINVAL; 1864 1865 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 1866 } 1867 #endif 1868 1869 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action) 1870 { 1871 struct qed_update_vport_params params; 1872 int rc; 1873 1874 /* Proceed only if action actually needs to be performed */ 1875 if (edev->accept_any_vlan == action) 1876 return; 1877 1878 memset(¶ms, 0, sizeof(params)); 1879 1880 params.vport_id = 0; 1881 params.accept_any_vlan = action; 1882 params.update_accept_any_vlan_flg = 1; 1883 1884 rc = edev->ops->vport_update(edev->cdev, ¶ms); 1885 if (rc) { 1886 DP_ERR(edev, "Failed to %s accept-any-vlan\n", 1887 action ? "enable" : "disable"); 1888 } else { 1889 DP_INFO(edev, "%s accept-any-vlan\n", 1890 action ? "enabled" : "disabled"); 1891 edev->accept_any_vlan = action; 1892 } 1893 } 1894 1895 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 1896 { 1897 struct qede_dev *edev = netdev_priv(dev); 1898 struct qede_vlan *vlan, *tmp; 1899 int rc; 1900 1901 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid); 1902 1903 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 1904 if (!vlan) { 1905 DP_INFO(edev, "Failed to allocate struct for vlan\n"); 1906 return -ENOMEM; 1907 } 1908 INIT_LIST_HEAD(&vlan->list); 1909 vlan->vid = vid; 1910 vlan->configured = false; 1911 1912 /* Verify vlan isn't already configured */ 1913 list_for_each_entry(tmp, &edev->vlan_list, list) { 1914 if (tmp->vid == vlan->vid) { 1915 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), 1916 "vlan already configured\n"); 1917 kfree(vlan); 1918 return -EEXIST; 1919 } 1920 } 1921 1922 /* If interface is down, cache this VLAN ID and return */ 1923 if (edev->state != QEDE_STATE_OPEN) { 1924 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1925 "Interface is down, VLAN %d will be configured when interface is up\n", 1926 vid); 1927 if (vid != 0) 1928 edev->non_configured_vlans++; 1929 list_add(&vlan->list, &edev->vlan_list); 1930 1931 return 0; 1932 } 1933 1934 /* Check for the filter limit. 1935 * Note - vlan0 has a reserved filter and can be added without 1936 * worrying about quota 1937 */ 1938 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) || 1939 (vlan->vid == 0)) { 1940 rc = qede_set_ucast_rx_vlan(edev, 1941 QED_FILTER_XCAST_TYPE_ADD, 1942 vlan->vid); 1943 if (rc) { 1944 DP_ERR(edev, "Failed to configure VLAN %d\n", 1945 vlan->vid); 1946 kfree(vlan); 1947 return -EINVAL; 1948 } 1949 vlan->configured = true; 1950 1951 /* vlan0 filter isn't consuming out of our quota */ 1952 if (vlan->vid != 0) 1953 edev->configured_vlans++; 1954 } else { 1955 /* Out of quota; Activate accept-any-VLAN mode */ 1956 if (!edev->non_configured_vlans) 1957 qede_config_accept_any_vlan(edev, true); 1958 1959 edev->non_configured_vlans++; 1960 } 1961 1962 list_add(&vlan->list, &edev->vlan_list); 1963 1964 return 0; 1965 } 1966 1967 static void qede_del_vlan_from_list(struct qede_dev *edev, 1968 struct qede_vlan *vlan) 1969 { 1970 /* vlan0 filter isn't consuming out of our quota */ 1971 if (vlan->vid != 0) { 1972 if (vlan->configured) 1973 edev->configured_vlans--; 1974 else 1975 edev->non_configured_vlans--; 1976 } 1977 1978 list_del(&vlan->list); 1979 kfree(vlan); 1980 } 1981 1982 static int qede_configure_vlan_filters(struct qede_dev *edev) 1983 { 1984 int rc = 0, real_rc = 0, accept_any_vlan = 0; 1985 struct qed_dev_eth_info *dev_info; 1986 struct qede_vlan *vlan = NULL; 1987 1988 if (list_empty(&edev->vlan_list)) 1989 return 0; 1990 1991 dev_info = &edev->dev_info; 1992 1993 /* Configure non-configured vlans */ 1994 list_for_each_entry(vlan, &edev->vlan_list, list) { 1995 if (vlan->configured) 1996 continue; 1997 1998 /* We have used all our credits, now enable accept_any_vlan */ 1999 if ((vlan->vid != 0) && 2000 (edev->configured_vlans == dev_info->num_vlan_filters)) { 2001 accept_any_vlan = 1; 2002 continue; 2003 } 2004 2005 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid); 2006 2007 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, 2008 vlan->vid); 2009 if (rc) { 2010 DP_ERR(edev, "Failed to configure VLAN %u\n", 2011 vlan->vid); 2012 real_rc = rc; 2013 continue; 2014 } 2015 2016 vlan->configured = true; 2017 /* vlan0 filter doesn't consume our VLAN filter's quota */ 2018 if (vlan->vid != 0) { 2019 edev->non_configured_vlans--; 2020 edev->configured_vlans++; 2021 } 2022 } 2023 2024 /* enable accept_any_vlan mode if we have more VLANs than credits, 2025 * or remove accept_any_vlan mode if we've actually removed 2026 * a non-configured vlan, and all remaining vlans are truly configured. 2027 */ 2028 2029 if (accept_any_vlan) 2030 qede_config_accept_any_vlan(edev, true); 2031 else if (!edev->non_configured_vlans) 2032 qede_config_accept_any_vlan(edev, false); 2033 2034 return real_rc; 2035 } 2036 2037 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 2038 { 2039 struct qede_dev *edev = netdev_priv(dev); 2040 struct qede_vlan *vlan = NULL; 2041 int rc; 2042 2043 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid); 2044 2045 /* Find whether entry exists */ 2046 list_for_each_entry(vlan, &edev->vlan_list, list) 2047 if (vlan->vid == vid) 2048 break; 2049 2050 if (!vlan || (vlan->vid != vid)) { 2051 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), 2052 "Vlan isn't configured\n"); 2053 return 0; 2054 } 2055 2056 if (edev->state != QEDE_STATE_OPEN) { 2057 /* As interface is already down, we don't have a VPORT 2058 * instance to remove vlan filter. So just update vlan list 2059 */ 2060 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 2061 "Interface is down, removing VLAN from list only\n"); 2062 qede_del_vlan_from_list(edev, vlan); 2063 return 0; 2064 } 2065 2066 /* Remove vlan */ 2067 if (vlan->configured) { 2068 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, 2069 vid); 2070 if (rc) { 2071 DP_ERR(edev, "Failed to remove VLAN %d\n", vid); 2072 return -EINVAL; 2073 } 2074 } 2075 2076 qede_del_vlan_from_list(edev, vlan); 2077 2078 /* We have removed a VLAN - try to see if we can 2079 * configure non-configured VLAN from the list. 2080 */ 2081 rc = qede_configure_vlan_filters(edev); 2082 2083 return rc; 2084 } 2085 2086 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev) 2087 { 2088 struct qede_vlan *vlan = NULL; 2089 2090 if (list_empty(&edev->vlan_list)) 2091 return; 2092 2093 list_for_each_entry(vlan, &edev->vlan_list, list) { 2094 if (!vlan->configured) 2095 continue; 2096 2097 vlan->configured = false; 2098 2099 /* vlan0 filter isn't consuming out of our quota */ 2100 if (vlan->vid != 0) { 2101 edev->non_configured_vlans++; 2102 edev->configured_vlans--; 2103 } 2104 2105 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 2106 "marked vlan %d as non-configured\n", 2107 vlan->vid); 2108 } 2109 2110 edev->accept_any_vlan = false; 2111 } 2112 2113 int qede_set_features(struct net_device *dev, netdev_features_t features) 2114 { 2115 struct qede_dev *edev = netdev_priv(dev); 2116 netdev_features_t changes = features ^ dev->features; 2117 bool need_reload = false; 2118 2119 /* No action needed if hardware GRO is disabled during driver load */ 2120 if (changes & NETIF_F_GRO) { 2121 if (dev->features & NETIF_F_GRO) 2122 need_reload = !edev->gro_disable; 2123 else 2124 need_reload = edev->gro_disable; 2125 } 2126 2127 if (need_reload && netif_running(edev->ndev)) { 2128 dev->features = features; 2129 qede_reload(edev, NULL, NULL); 2130 return 1; 2131 } 2132 2133 return 0; 2134 } 2135 2136 static void qede_udp_tunnel_add(struct net_device *dev, 2137 struct udp_tunnel_info *ti) 2138 { 2139 struct qede_dev *edev = netdev_priv(dev); 2140 u16 t_port = ntohs(ti->port); 2141 2142 switch (ti->type) { 2143 case UDP_TUNNEL_TYPE_VXLAN: 2144 if (edev->vxlan_dst_port) 2145 return; 2146 2147 edev->vxlan_dst_port = t_port; 2148 2149 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", 2150 t_port); 2151 2152 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); 2153 break; 2154 case UDP_TUNNEL_TYPE_GENEVE: 2155 if (edev->geneve_dst_port) 2156 return; 2157 2158 edev->geneve_dst_port = t_port; 2159 2160 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", 2161 t_port); 2162 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); 2163 break; 2164 default: 2165 return; 2166 } 2167 2168 schedule_delayed_work(&edev->sp_task, 0); 2169 } 2170 2171 static void qede_udp_tunnel_del(struct net_device *dev, 2172 struct udp_tunnel_info *ti) 2173 { 2174 struct qede_dev *edev = netdev_priv(dev); 2175 u16 t_port = ntohs(ti->port); 2176 2177 switch (ti->type) { 2178 case UDP_TUNNEL_TYPE_VXLAN: 2179 if (t_port != edev->vxlan_dst_port) 2180 return; 2181 2182 edev->vxlan_dst_port = 0; 2183 2184 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", 2185 t_port); 2186 2187 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); 2188 break; 2189 case UDP_TUNNEL_TYPE_GENEVE: 2190 if (t_port != edev->geneve_dst_port) 2191 return; 2192 2193 edev->geneve_dst_port = 0; 2194 2195 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", 2196 t_port); 2197 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); 2198 break; 2199 default: 2200 return; 2201 } 2202 2203 schedule_delayed_work(&edev->sp_task, 0); 2204 } 2205 2206 static const struct net_device_ops qede_netdev_ops = { 2207 .ndo_open = qede_open, 2208 .ndo_stop = qede_close, 2209 .ndo_start_xmit = qede_start_xmit, 2210 .ndo_set_rx_mode = qede_set_rx_mode, 2211 .ndo_set_mac_address = qede_set_mac_addr, 2212 .ndo_validate_addr = eth_validate_addr, 2213 .ndo_change_mtu = qede_change_mtu, 2214 #ifdef CONFIG_QED_SRIOV 2215 .ndo_set_vf_mac = qede_set_vf_mac, 2216 .ndo_set_vf_vlan = qede_set_vf_vlan, 2217 #endif 2218 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 2219 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 2220 .ndo_set_features = qede_set_features, 2221 .ndo_get_stats64 = qede_get_stats64, 2222 #ifdef CONFIG_QED_SRIOV 2223 .ndo_set_vf_link_state = qede_set_vf_link_state, 2224 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 2225 .ndo_get_vf_config = qede_get_vf_config, 2226 .ndo_set_vf_rate = qede_set_vf_rate, 2227 #endif 2228 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 2229 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 2230 }; 2231 2232 /* ------------------------------------------------------------------------- 2233 * START OF PROBE / REMOVE 2234 * ------------------------------------------------------------------------- 2235 */ 2236 2237 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 2238 struct pci_dev *pdev, 2239 struct qed_dev_eth_info *info, 2240 u32 dp_module, 2241 u8 dp_level) 2242 { 2243 struct net_device *ndev; 2244 struct qede_dev *edev; 2245 2246 ndev = alloc_etherdev_mqs(sizeof(*edev), 2247 info->num_queues, 2248 info->num_queues); 2249 if (!ndev) { 2250 pr_err("etherdev allocation failed\n"); 2251 return NULL; 2252 } 2253 2254 edev = netdev_priv(ndev); 2255 edev->ndev = ndev; 2256 edev->cdev = cdev; 2257 edev->pdev = pdev; 2258 edev->dp_module = dp_module; 2259 edev->dp_level = dp_level; 2260 edev->ops = qed_ops; 2261 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 2262 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 2263 2264 SET_NETDEV_DEV(ndev, &pdev->dev); 2265 2266 memset(&edev->stats, 0, sizeof(edev->stats)); 2267 memcpy(&edev->dev_info, info, sizeof(*info)); 2268 2269 edev->num_tc = edev->dev_info.num_tc; 2270 2271 INIT_LIST_HEAD(&edev->vlan_list); 2272 2273 return edev; 2274 } 2275 2276 static void qede_init_ndev(struct qede_dev *edev) 2277 { 2278 struct net_device *ndev = edev->ndev; 2279 struct pci_dev *pdev = edev->pdev; 2280 u32 hw_features; 2281 2282 pci_set_drvdata(pdev, ndev); 2283 2284 ndev->mem_start = edev->dev_info.common.pci_mem_start; 2285 ndev->base_addr = ndev->mem_start; 2286 ndev->mem_end = edev->dev_info.common.pci_mem_end; 2287 ndev->irq = edev->dev_info.common.pci_irq; 2288 2289 ndev->watchdog_timeo = TX_TIMEOUT; 2290 2291 ndev->netdev_ops = &qede_netdev_ops; 2292 2293 qede_set_ethtool_ops(ndev); 2294 2295 /* user-changeble features */ 2296 hw_features = NETIF_F_GRO | NETIF_F_SG | 2297 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2298 NETIF_F_TSO | NETIF_F_TSO6; 2299 2300 /* Encap features*/ 2301 hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | 2302 NETIF_F_TSO_ECN; 2303 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2304 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN | 2305 NETIF_F_TSO6 | NETIF_F_GSO_GRE | 2306 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM; 2307 2308 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 2309 NETIF_F_HIGHDMA; 2310 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 2311 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 2312 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 2313 2314 ndev->hw_features = hw_features; 2315 2316 /* Set network device HW mac */ 2317 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 2318 } 2319 2320 /* This function converts from 32b param to two params of level and module 2321 * Input 32b decoding: 2322 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 2323 * 'happy' flow, e.g. memory allocation failed. 2324 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 2325 * and provide important parameters. 2326 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 2327 * module. VERBOSE prints are for tracking the specific flow in low level. 2328 * 2329 * Notice that the level should be that of the lowest required logs. 2330 */ 2331 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 2332 { 2333 *p_dp_level = QED_LEVEL_NOTICE; 2334 *p_dp_module = 0; 2335 2336 if (debug & QED_LOG_VERBOSE_MASK) { 2337 *p_dp_level = QED_LEVEL_VERBOSE; 2338 *p_dp_module = (debug & 0x3FFFFFFF); 2339 } else if (debug & QED_LOG_INFO_MASK) { 2340 *p_dp_level = QED_LEVEL_INFO; 2341 } else if (debug & QED_LOG_NOTICE_MASK) { 2342 *p_dp_level = QED_LEVEL_NOTICE; 2343 } 2344 } 2345 2346 static void qede_free_fp_array(struct qede_dev *edev) 2347 { 2348 if (edev->fp_array) { 2349 struct qede_fastpath *fp; 2350 int i; 2351 2352 for_each_rss(i) { 2353 fp = &edev->fp_array[i]; 2354 2355 kfree(fp->sb_info); 2356 kfree(fp->rxq); 2357 kfree(fp->txqs); 2358 } 2359 kfree(edev->fp_array); 2360 } 2361 edev->num_rss = 0; 2362 } 2363 2364 static int qede_alloc_fp_array(struct qede_dev *edev) 2365 { 2366 struct qede_fastpath *fp; 2367 int i; 2368 2369 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev), 2370 sizeof(*edev->fp_array), GFP_KERNEL); 2371 if (!edev->fp_array) { 2372 DP_NOTICE(edev, "fp array allocation failed\n"); 2373 goto err; 2374 } 2375 2376 for_each_rss(i) { 2377 fp = &edev->fp_array[i]; 2378 2379 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL); 2380 if (!fp->sb_info) { 2381 DP_NOTICE(edev, "sb info struct allocation failed\n"); 2382 goto err; 2383 } 2384 2385 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL); 2386 if (!fp->rxq) { 2387 DP_NOTICE(edev, "RXQ struct allocation failed\n"); 2388 goto err; 2389 } 2390 2391 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL); 2392 if (!fp->txqs) { 2393 DP_NOTICE(edev, "TXQ array allocation failed\n"); 2394 goto err; 2395 } 2396 } 2397 2398 return 0; 2399 err: 2400 qede_free_fp_array(edev); 2401 return -ENOMEM; 2402 } 2403 2404 static void qede_sp_task(struct work_struct *work) 2405 { 2406 struct qede_dev *edev = container_of(work, struct qede_dev, 2407 sp_task.work); 2408 struct qed_dev *cdev = edev->cdev; 2409 2410 mutex_lock(&edev->qede_lock); 2411 2412 if (edev->state == QEDE_STATE_OPEN) { 2413 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 2414 qede_config_rx_mode(edev->ndev); 2415 } 2416 2417 if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) { 2418 struct qed_tunn_params tunn_params; 2419 2420 memset(&tunn_params, 0, sizeof(tunn_params)); 2421 tunn_params.update_vxlan_port = 1; 2422 tunn_params.vxlan_port = edev->vxlan_dst_port; 2423 qed_ops->tunn_config(cdev, &tunn_params); 2424 } 2425 2426 if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) { 2427 struct qed_tunn_params tunn_params; 2428 2429 memset(&tunn_params, 0, sizeof(tunn_params)); 2430 tunn_params.update_geneve_port = 1; 2431 tunn_params.geneve_port = edev->geneve_dst_port; 2432 qed_ops->tunn_config(cdev, &tunn_params); 2433 } 2434 2435 mutex_unlock(&edev->qede_lock); 2436 } 2437 2438 static void qede_update_pf_params(struct qed_dev *cdev) 2439 { 2440 struct qed_pf_params pf_params; 2441 2442 /* 64 rx + 64 tx */ 2443 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 2444 pf_params.eth_pf_params.num_cons = 128; 2445 qed_ops->common->update_pf_params(cdev, &pf_params); 2446 } 2447 2448 enum qede_probe_mode { 2449 QEDE_PROBE_NORMAL, 2450 }; 2451 2452 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 2453 bool is_vf, enum qede_probe_mode mode) 2454 { 2455 struct qed_probe_params probe_params; 2456 struct qed_slowpath_params params; 2457 struct qed_dev_eth_info dev_info; 2458 struct qede_dev *edev; 2459 struct qed_dev *cdev; 2460 int rc; 2461 2462 if (unlikely(dp_level & QED_LEVEL_INFO)) 2463 pr_notice("Starting qede probe\n"); 2464 2465 memset(&probe_params, 0, sizeof(probe_params)); 2466 probe_params.protocol = QED_PROTOCOL_ETH; 2467 probe_params.dp_module = dp_module; 2468 probe_params.dp_level = dp_level; 2469 probe_params.is_vf = is_vf; 2470 cdev = qed_ops->common->probe(pdev, &probe_params); 2471 if (!cdev) { 2472 rc = -ENODEV; 2473 goto err0; 2474 } 2475 2476 qede_update_pf_params(cdev); 2477 2478 /* Start the Slowpath-process */ 2479 memset(¶ms, 0, sizeof(struct qed_slowpath_params)); 2480 params.int_mode = QED_INT_MODE_MSIX; 2481 params.drv_major = QEDE_MAJOR_VERSION; 2482 params.drv_minor = QEDE_MINOR_VERSION; 2483 params.drv_rev = QEDE_REVISION_VERSION; 2484 params.drv_eng = QEDE_ENGINEERING_VERSION; 2485 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 2486 rc = qed_ops->common->slowpath_start(cdev, ¶ms); 2487 if (rc) { 2488 pr_notice("Cannot start slowpath\n"); 2489 goto err1; 2490 } 2491 2492 /* Learn information crucial for qede to progress */ 2493 rc = qed_ops->fill_dev_info(cdev, &dev_info); 2494 if (rc) 2495 goto err2; 2496 2497 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 2498 dp_level); 2499 if (!edev) { 2500 rc = -ENOMEM; 2501 goto err2; 2502 } 2503 2504 if (is_vf) 2505 edev->flags |= QEDE_FLAG_IS_VF; 2506 2507 qede_init_ndev(edev); 2508 2509 rc = register_netdev(edev->ndev); 2510 if (rc) { 2511 DP_NOTICE(edev, "Cannot register net-device\n"); 2512 goto err3; 2513 } 2514 2515 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); 2516 2517 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 2518 2519 #ifdef CONFIG_DCB 2520 qede_set_dcbnl_ops(edev->ndev); 2521 #endif 2522 2523 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 2524 mutex_init(&edev->qede_lock); 2525 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 2526 2527 DP_INFO(edev, "Ending successfully qede probe\n"); 2528 2529 return 0; 2530 2531 err3: 2532 free_netdev(edev->ndev); 2533 err2: 2534 qed_ops->common->slowpath_stop(cdev); 2535 err1: 2536 qed_ops->common->remove(cdev); 2537 err0: 2538 return rc; 2539 } 2540 2541 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2542 { 2543 bool is_vf = false; 2544 u32 dp_module = 0; 2545 u8 dp_level = 0; 2546 2547 switch ((enum qede_pci_private)id->driver_data) { 2548 case QEDE_PRIVATE_VF: 2549 if (debug & QED_LOG_VERBOSE_MASK) 2550 dev_err(&pdev->dev, "Probing a VF\n"); 2551 is_vf = true; 2552 break; 2553 default: 2554 if (debug & QED_LOG_VERBOSE_MASK) 2555 dev_err(&pdev->dev, "Probing a PF\n"); 2556 } 2557 2558 qede_config_debug(debug, &dp_module, &dp_level); 2559 2560 return __qede_probe(pdev, dp_module, dp_level, is_vf, 2561 QEDE_PROBE_NORMAL); 2562 } 2563 2564 enum qede_remove_mode { 2565 QEDE_REMOVE_NORMAL, 2566 }; 2567 2568 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 2569 { 2570 struct net_device *ndev = pci_get_drvdata(pdev); 2571 struct qede_dev *edev = netdev_priv(ndev); 2572 struct qed_dev *cdev = edev->cdev; 2573 2574 DP_INFO(edev, "Starting qede_remove\n"); 2575 2576 cancel_delayed_work_sync(&edev->sp_task); 2577 unregister_netdev(ndev); 2578 2579 edev->ops->common->set_power_state(cdev, PCI_D0); 2580 2581 pci_set_drvdata(pdev, NULL); 2582 2583 free_netdev(ndev); 2584 2585 /* Use global ops since we've freed edev */ 2586 qed_ops->common->slowpath_stop(cdev); 2587 qed_ops->common->remove(cdev); 2588 2589 pr_notice("Ending successfully qede_remove\n"); 2590 } 2591 2592 static void qede_remove(struct pci_dev *pdev) 2593 { 2594 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 2595 } 2596 2597 /* ------------------------------------------------------------------------- 2598 * START OF LOAD / UNLOAD 2599 * ------------------------------------------------------------------------- 2600 */ 2601 2602 static int qede_set_num_queues(struct qede_dev *edev) 2603 { 2604 int rc; 2605 u16 rss_num; 2606 2607 /* Setup queues according to possible resources*/ 2608 if (edev->req_rss) 2609 rss_num = edev->req_rss; 2610 else 2611 rss_num = netif_get_num_default_rss_queues() * 2612 edev->dev_info.common.num_hwfns; 2613 2614 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 2615 2616 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 2617 if (rc > 0) { 2618 /* Managed to request interrupts for our queues */ 2619 edev->num_rss = rc; 2620 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 2621 QEDE_RSS_CNT(edev), rss_num); 2622 rc = 0; 2623 } 2624 return rc; 2625 } 2626 2627 static void qede_free_mem_sb(struct qede_dev *edev, 2628 struct qed_sb_info *sb_info) 2629 { 2630 if (sb_info->sb_virt) 2631 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 2632 (void *)sb_info->sb_virt, sb_info->sb_phys); 2633 } 2634 2635 /* This function allocates fast-path status block memory */ 2636 static int qede_alloc_mem_sb(struct qede_dev *edev, 2637 struct qed_sb_info *sb_info, 2638 u16 sb_id) 2639 { 2640 struct status_block *sb_virt; 2641 dma_addr_t sb_phys; 2642 int rc; 2643 2644 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 2645 sizeof(*sb_virt), 2646 &sb_phys, GFP_KERNEL); 2647 if (!sb_virt) { 2648 DP_ERR(edev, "Status block allocation failed\n"); 2649 return -ENOMEM; 2650 } 2651 2652 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 2653 sb_virt, sb_phys, sb_id, 2654 QED_SB_TYPE_L2_QUEUE); 2655 if (rc) { 2656 DP_ERR(edev, "Status block initialization failed\n"); 2657 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 2658 sb_virt, sb_phys); 2659 return rc; 2660 } 2661 2662 return 0; 2663 } 2664 2665 static void qede_free_rx_buffers(struct qede_dev *edev, 2666 struct qede_rx_queue *rxq) 2667 { 2668 u16 i; 2669 2670 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 2671 struct sw_rx_data *rx_buf; 2672 struct page *data; 2673 2674 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 2675 data = rx_buf->data; 2676 2677 dma_unmap_page(&edev->pdev->dev, 2678 rx_buf->mapping, 2679 PAGE_SIZE, DMA_FROM_DEVICE); 2680 2681 rx_buf->data = NULL; 2682 __free_page(data); 2683 } 2684 } 2685 2686 static void qede_free_sge_mem(struct qede_dev *edev, 2687 struct qede_rx_queue *rxq) { 2688 int i; 2689 2690 if (edev->gro_disable) 2691 return; 2692 2693 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 2694 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 2695 struct sw_rx_data *replace_buf = &tpa_info->replace_buf; 2696 2697 if (replace_buf->data) { 2698 dma_unmap_page(&edev->pdev->dev, 2699 replace_buf->mapping, 2700 PAGE_SIZE, DMA_FROM_DEVICE); 2701 __free_page(replace_buf->data); 2702 } 2703 } 2704 } 2705 2706 static void qede_free_mem_rxq(struct qede_dev *edev, 2707 struct qede_rx_queue *rxq) 2708 { 2709 qede_free_sge_mem(edev, rxq); 2710 2711 /* Free rx buffers */ 2712 qede_free_rx_buffers(edev, rxq); 2713 2714 /* Free the parallel SW ring */ 2715 kfree(rxq->sw_rx_ring); 2716 2717 /* Free the real RQ ring used by FW */ 2718 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 2719 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 2720 } 2721 2722 static int qede_alloc_rx_buffer(struct qede_dev *edev, 2723 struct qede_rx_queue *rxq) 2724 { 2725 struct sw_rx_data *sw_rx_data; 2726 struct eth_rx_bd *rx_bd; 2727 dma_addr_t mapping; 2728 struct page *data; 2729 u16 rx_buf_size; 2730 2731 rx_buf_size = rxq->rx_buf_size; 2732 2733 data = alloc_pages(GFP_ATOMIC, 0); 2734 if (unlikely(!data)) { 2735 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n"); 2736 return -ENOMEM; 2737 } 2738 2739 /* Map the entire page as it would be used 2740 * for multiple RX buffer segment size mapping. 2741 */ 2742 mapping = dma_map_page(&edev->pdev->dev, data, 0, 2743 PAGE_SIZE, DMA_FROM_DEVICE); 2744 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 2745 __free_page(data); 2746 DP_NOTICE(edev, "Failed to map Rx buffer\n"); 2747 return -ENOMEM; 2748 } 2749 2750 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 2751 sw_rx_data->page_offset = 0; 2752 sw_rx_data->data = data; 2753 sw_rx_data->mapping = mapping; 2754 2755 /* Advance PROD and get BD pointer */ 2756 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); 2757 WARN_ON(!rx_bd); 2758 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 2759 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 2760 2761 rxq->sw_rx_prod++; 2762 2763 return 0; 2764 } 2765 2766 static int qede_alloc_sge_mem(struct qede_dev *edev, 2767 struct qede_rx_queue *rxq) 2768 { 2769 dma_addr_t mapping; 2770 int i; 2771 2772 if (edev->gro_disable) 2773 return 0; 2774 2775 if (edev->ndev->mtu > PAGE_SIZE) { 2776 edev->gro_disable = 1; 2777 return 0; 2778 } 2779 2780 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 2781 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 2782 struct sw_rx_data *replace_buf = &tpa_info->replace_buf; 2783 2784 replace_buf->data = alloc_pages(GFP_ATOMIC, 0); 2785 if (unlikely(!replace_buf->data)) { 2786 DP_NOTICE(edev, 2787 "Failed to allocate TPA skb pool [replacement buffer]\n"); 2788 goto err; 2789 } 2790 2791 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0, 2792 rxq->rx_buf_size, DMA_FROM_DEVICE); 2793 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 2794 DP_NOTICE(edev, 2795 "Failed to map TPA replacement buffer\n"); 2796 goto err; 2797 } 2798 2799 replace_buf->mapping = mapping; 2800 tpa_info->replace_buf.page_offset = 0; 2801 2802 tpa_info->replace_buf_mapping = mapping; 2803 tpa_info->agg_state = QEDE_AGG_STATE_NONE; 2804 } 2805 2806 return 0; 2807 err: 2808 qede_free_sge_mem(edev, rxq); 2809 edev->gro_disable = 1; 2810 return -ENOMEM; 2811 } 2812 2813 /* This function allocates all memory needed per Rx queue */ 2814 static int qede_alloc_mem_rxq(struct qede_dev *edev, 2815 struct qede_rx_queue *rxq) 2816 { 2817 int i, rc, size; 2818 2819 rxq->num_rx_buffers = edev->q_num_rx_buffers; 2820 2821 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + 2822 edev->ndev->mtu; 2823 if (rxq->rx_buf_size > PAGE_SIZE) 2824 rxq->rx_buf_size = PAGE_SIZE; 2825 2826 /* Segment size to spilt a page in multiple equal parts */ 2827 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size); 2828 2829 /* Allocate the parallel driver ring for Rx buffers */ 2830 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 2831 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 2832 if (!rxq->sw_rx_ring) { 2833 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 2834 rc = -ENOMEM; 2835 goto err; 2836 } 2837 2838 /* Allocate FW Rx ring */ 2839 rc = edev->ops->common->chain_alloc(edev->cdev, 2840 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 2841 QED_CHAIN_MODE_NEXT_PTR, 2842 QED_CHAIN_CNT_TYPE_U16, 2843 RX_RING_SIZE, 2844 sizeof(struct eth_rx_bd), 2845 &rxq->rx_bd_ring); 2846 2847 if (rc) 2848 goto err; 2849 2850 /* Allocate FW completion ring */ 2851 rc = edev->ops->common->chain_alloc(edev->cdev, 2852 QED_CHAIN_USE_TO_CONSUME, 2853 QED_CHAIN_MODE_PBL, 2854 QED_CHAIN_CNT_TYPE_U16, 2855 RX_RING_SIZE, 2856 sizeof(union eth_rx_cqe), 2857 &rxq->rx_comp_ring); 2858 if (rc) 2859 goto err; 2860 2861 /* Allocate buffers for the Rx ring */ 2862 for (i = 0; i < rxq->num_rx_buffers; i++) { 2863 rc = qede_alloc_rx_buffer(edev, rxq); 2864 if (rc) { 2865 DP_ERR(edev, 2866 "Rx buffers allocation failed at index %d\n", i); 2867 goto err; 2868 } 2869 } 2870 2871 rc = qede_alloc_sge_mem(edev, rxq); 2872 err: 2873 return rc; 2874 } 2875 2876 static void qede_free_mem_txq(struct qede_dev *edev, 2877 struct qede_tx_queue *txq) 2878 { 2879 /* Free the parallel SW ring */ 2880 kfree(txq->sw_tx_ring); 2881 2882 /* Free the real RQ ring used by FW */ 2883 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 2884 } 2885 2886 /* This function allocates all memory needed per Tx queue */ 2887 static int qede_alloc_mem_txq(struct qede_dev *edev, 2888 struct qede_tx_queue *txq) 2889 { 2890 int size, rc; 2891 union eth_tx_bd_types *p_virt; 2892 2893 txq->num_tx_buffers = edev->q_num_tx_buffers; 2894 2895 /* Allocate the parallel driver ring for Tx buffers */ 2896 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX; 2897 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL); 2898 if (!txq->sw_tx_ring) { 2899 DP_NOTICE(edev, "Tx buffers ring allocation failed\n"); 2900 goto err; 2901 } 2902 2903 rc = edev->ops->common->chain_alloc(edev->cdev, 2904 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 2905 QED_CHAIN_MODE_PBL, 2906 QED_CHAIN_CNT_TYPE_U16, 2907 NUM_TX_BDS_MAX, 2908 sizeof(*p_virt), &txq->tx_pbl); 2909 if (rc) 2910 goto err; 2911 2912 return 0; 2913 2914 err: 2915 qede_free_mem_txq(edev, txq); 2916 return -ENOMEM; 2917 } 2918 2919 /* This function frees all memory of a single fp */ 2920 static void qede_free_mem_fp(struct qede_dev *edev, 2921 struct qede_fastpath *fp) 2922 { 2923 int tc; 2924 2925 qede_free_mem_sb(edev, fp->sb_info); 2926 2927 qede_free_mem_rxq(edev, fp->rxq); 2928 2929 for (tc = 0; tc < edev->num_tc; tc++) 2930 qede_free_mem_txq(edev, &fp->txqs[tc]); 2931 } 2932 2933 /* This function allocates all memory needed for a single fp (i.e. an entity 2934 * which contains status block, one rx queue and multiple per-TC tx queues. 2935 */ 2936 static int qede_alloc_mem_fp(struct qede_dev *edev, 2937 struct qede_fastpath *fp) 2938 { 2939 int rc, tc; 2940 2941 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id); 2942 if (rc) 2943 goto err; 2944 2945 rc = qede_alloc_mem_rxq(edev, fp->rxq); 2946 if (rc) 2947 goto err; 2948 2949 for (tc = 0; tc < edev->num_tc; tc++) { 2950 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]); 2951 if (rc) 2952 goto err; 2953 } 2954 2955 return 0; 2956 err: 2957 return rc; 2958 } 2959 2960 static void qede_free_mem_load(struct qede_dev *edev) 2961 { 2962 int i; 2963 2964 for_each_rss(i) { 2965 struct qede_fastpath *fp = &edev->fp_array[i]; 2966 2967 qede_free_mem_fp(edev, fp); 2968 } 2969 } 2970 2971 /* This function allocates all qede memory at NIC load. */ 2972 static int qede_alloc_mem_load(struct qede_dev *edev) 2973 { 2974 int rc = 0, rss_id; 2975 2976 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) { 2977 struct qede_fastpath *fp = &edev->fp_array[rss_id]; 2978 2979 rc = qede_alloc_mem_fp(edev, fp); 2980 if (rc) { 2981 DP_ERR(edev, 2982 "Failed to allocate memory for fastpath - rss id = %d\n", 2983 rss_id); 2984 qede_free_mem_load(edev); 2985 return rc; 2986 } 2987 } 2988 2989 return 0; 2990 } 2991 2992 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 2993 static void qede_init_fp(struct qede_dev *edev) 2994 { 2995 int rss_id, txq_index, tc; 2996 struct qede_fastpath *fp; 2997 2998 for_each_rss(rss_id) { 2999 fp = &edev->fp_array[rss_id]; 3000 3001 fp->edev = edev; 3002 fp->rss_id = rss_id; 3003 3004 memset((void *)&fp->napi, 0, sizeof(fp->napi)); 3005 3006 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info)); 3007 3008 memset((void *)fp->rxq, 0, sizeof(*fp->rxq)); 3009 fp->rxq->rxq_id = rss_id; 3010 3011 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs))); 3012 for (tc = 0; tc < edev->num_tc; tc++) { 3013 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id; 3014 fp->txqs[tc].index = txq_index; 3015 } 3016 3017 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 3018 edev->ndev->name, rss_id); 3019 } 3020 3021 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO); 3022 } 3023 3024 static int qede_set_real_num_queues(struct qede_dev *edev) 3025 { 3026 int rc = 0; 3027 3028 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev)); 3029 if (rc) { 3030 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 3031 return rc; 3032 } 3033 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev)); 3034 if (rc) { 3035 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 3036 return rc; 3037 } 3038 3039 return 0; 3040 } 3041 3042 static void qede_napi_disable_remove(struct qede_dev *edev) 3043 { 3044 int i; 3045 3046 for_each_rss(i) { 3047 napi_disable(&edev->fp_array[i].napi); 3048 3049 netif_napi_del(&edev->fp_array[i].napi); 3050 } 3051 } 3052 3053 static void qede_napi_add_enable(struct qede_dev *edev) 3054 { 3055 int i; 3056 3057 /* Add NAPI objects */ 3058 for_each_rss(i) { 3059 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 3060 qede_poll, NAPI_POLL_WEIGHT); 3061 napi_enable(&edev->fp_array[i].napi); 3062 } 3063 } 3064 3065 static void qede_sync_free_irqs(struct qede_dev *edev) 3066 { 3067 int i; 3068 3069 for (i = 0; i < edev->int_info.used_cnt; i++) { 3070 if (edev->int_info.msix_cnt) { 3071 synchronize_irq(edev->int_info.msix[i].vector); 3072 free_irq(edev->int_info.msix[i].vector, 3073 &edev->fp_array[i]); 3074 } else { 3075 edev->ops->common->simd_handler_clean(edev->cdev, i); 3076 } 3077 } 3078 3079 edev->int_info.used_cnt = 0; 3080 } 3081 3082 static int qede_req_msix_irqs(struct qede_dev *edev) 3083 { 3084 int i, rc; 3085 3086 /* Sanitize number of interrupts == number of prepared RSS queues */ 3087 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) { 3088 DP_ERR(edev, 3089 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 3090 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt); 3091 return -EINVAL; 3092 } 3093 3094 for (i = 0; i < QEDE_RSS_CNT(edev); i++) { 3095 rc = request_irq(edev->int_info.msix[i].vector, 3096 qede_msix_fp_int, 0, edev->fp_array[i].name, 3097 &edev->fp_array[i]); 3098 if (rc) { 3099 DP_ERR(edev, "Request fp %d irq failed\n", i); 3100 qede_sync_free_irqs(edev); 3101 return rc; 3102 } 3103 DP_VERBOSE(edev, NETIF_MSG_INTR, 3104 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 3105 edev->fp_array[i].name, i, 3106 &edev->fp_array[i]); 3107 edev->int_info.used_cnt++; 3108 } 3109 3110 return 0; 3111 } 3112 3113 static void qede_simd_fp_handler(void *cookie) 3114 { 3115 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 3116 3117 napi_schedule_irqoff(&fp->napi); 3118 } 3119 3120 static int qede_setup_irqs(struct qede_dev *edev) 3121 { 3122 int i, rc = 0; 3123 3124 /* Learn Interrupt configuration */ 3125 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 3126 if (rc) 3127 return rc; 3128 3129 if (edev->int_info.msix_cnt) { 3130 rc = qede_req_msix_irqs(edev); 3131 if (rc) 3132 return rc; 3133 edev->ndev->irq = edev->int_info.msix[0].vector; 3134 } else { 3135 const struct qed_common_ops *ops; 3136 3137 /* qed should learn receive the RSS ids and callbacks */ 3138 ops = edev->ops->common; 3139 for (i = 0; i < QEDE_RSS_CNT(edev); i++) 3140 ops->simd_handler_config(edev->cdev, 3141 &edev->fp_array[i], i, 3142 qede_simd_fp_handler); 3143 edev->int_info.used_cnt = QEDE_RSS_CNT(edev); 3144 } 3145 return 0; 3146 } 3147 3148 static int qede_drain_txq(struct qede_dev *edev, 3149 struct qede_tx_queue *txq, 3150 bool allow_drain) 3151 { 3152 int rc, cnt = 1000; 3153 3154 while (txq->sw_tx_cons != txq->sw_tx_prod) { 3155 if (!cnt) { 3156 if (allow_drain) { 3157 DP_NOTICE(edev, 3158 "Tx queue[%d] is stuck, requesting MCP to drain\n", 3159 txq->index); 3160 rc = edev->ops->common->drain(edev->cdev); 3161 if (rc) 3162 return rc; 3163 return qede_drain_txq(edev, txq, false); 3164 } 3165 DP_NOTICE(edev, 3166 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 3167 txq->index, txq->sw_tx_prod, 3168 txq->sw_tx_cons); 3169 return -ENODEV; 3170 } 3171 cnt--; 3172 usleep_range(1000, 2000); 3173 barrier(); 3174 } 3175 3176 /* FW finished processing, wait for HW to transmit all tx packets */ 3177 usleep_range(1000, 2000); 3178 3179 return 0; 3180 } 3181 3182 static int qede_stop_queues(struct qede_dev *edev) 3183 { 3184 struct qed_update_vport_params vport_update_params; 3185 struct qed_dev *cdev = edev->cdev; 3186 int rc, tc, i; 3187 3188 /* Disable the vport */ 3189 memset(&vport_update_params, 0, sizeof(vport_update_params)); 3190 vport_update_params.vport_id = 0; 3191 vport_update_params.update_vport_active_flg = 1; 3192 vport_update_params.vport_active_flg = 0; 3193 vport_update_params.update_rss_flg = 0; 3194 3195 rc = edev->ops->vport_update(cdev, &vport_update_params); 3196 if (rc) { 3197 DP_ERR(edev, "Failed to update vport\n"); 3198 return rc; 3199 } 3200 3201 /* Flush Tx queues. If needed, request drain from MCP */ 3202 for_each_rss(i) { 3203 struct qede_fastpath *fp = &edev->fp_array[i]; 3204 3205 for (tc = 0; tc < edev->num_tc; tc++) { 3206 struct qede_tx_queue *txq = &fp->txqs[tc]; 3207 3208 rc = qede_drain_txq(edev, txq, true); 3209 if (rc) 3210 return rc; 3211 } 3212 } 3213 3214 /* Stop all Queues in reverse order*/ 3215 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) { 3216 struct qed_stop_rxq_params rx_params; 3217 3218 /* Stop the Tx Queue(s)*/ 3219 for (tc = 0; tc < edev->num_tc; tc++) { 3220 struct qed_stop_txq_params tx_params; 3221 3222 tx_params.rss_id = i; 3223 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i; 3224 rc = edev->ops->q_tx_stop(cdev, &tx_params); 3225 if (rc) { 3226 DP_ERR(edev, "Failed to stop TXQ #%d\n", 3227 tx_params.tx_queue_id); 3228 return rc; 3229 } 3230 } 3231 3232 /* Stop the Rx Queue*/ 3233 memset(&rx_params, 0, sizeof(rx_params)); 3234 rx_params.rss_id = i; 3235 rx_params.rx_queue_id = i; 3236 3237 rc = edev->ops->q_rx_stop(cdev, &rx_params); 3238 if (rc) { 3239 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 3240 return rc; 3241 } 3242 } 3243 3244 /* Stop the vport */ 3245 rc = edev->ops->vport_stop(cdev, 0); 3246 if (rc) 3247 DP_ERR(edev, "Failed to stop VPORT\n"); 3248 3249 return rc; 3250 } 3251 3252 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 3253 { 3254 int rc, tc, i; 3255 int vlan_removal_en = 1; 3256 struct qed_dev *cdev = edev->cdev; 3257 struct qed_update_vport_params vport_update_params; 3258 struct qed_queue_start_common_params q_params; 3259 struct qed_dev_info *qed_info = &edev->dev_info.common; 3260 struct qed_start_vport_params start = {0}; 3261 bool reset_rss_indir = false; 3262 3263 if (!edev->num_rss) { 3264 DP_ERR(edev, 3265 "Cannot update V-VPORT as active as there are no Rx queues\n"); 3266 return -EINVAL; 3267 } 3268 3269 start.gro_enable = !edev->gro_disable; 3270 start.mtu = edev->ndev->mtu; 3271 start.vport_id = 0; 3272 start.drop_ttl0 = true; 3273 start.remove_inner_vlan = vlan_removal_en; 3274 start.clear_stats = clear_stats; 3275 3276 rc = edev->ops->vport_start(cdev, &start); 3277 3278 if (rc) { 3279 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 3280 return rc; 3281 } 3282 3283 DP_VERBOSE(edev, NETIF_MSG_IFUP, 3284 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 3285 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 3286 3287 for_each_rss(i) { 3288 struct qede_fastpath *fp = &edev->fp_array[i]; 3289 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table; 3290 3291 memset(&q_params, 0, sizeof(q_params)); 3292 q_params.rss_id = i; 3293 q_params.queue_id = i; 3294 q_params.vport_id = 0; 3295 q_params.sb = fp->sb_info->igu_sb_id; 3296 q_params.sb_idx = RX_PI; 3297 3298 rc = edev->ops->q_rx_start(cdev, &q_params, 3299 fp->rxq->rx_buf_size, 3300 fp->rxq->rx_bd_ring.p_phys_addr, 3301 phys_table, 3302 fp->rxq->rx_comp_ring.page_cnt, 3303 &fp->rxq->hw_rxq_prod_addr); 3304 if (rc) { 3305 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc); 3306 return rc; 3307 } 3308 3309 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI]; 3310 3311 qede_update_rx_prod(edev, fp->rxq); 3312 3313 for (tc = 0; tc < edev->num_tc; tc++) { 3314 struct qede_tx_queue *txq = &fp->txqs[tc]; 3315 int txq_index = tc * QEDE_RSS_CNT(edev) + i; 3316 3317 memset(&q_params, 0, sizeof(q_params)); 3318 q_params.rss_id = i; 3319 q_params.queue_id = txq_index; 3320 q_params.vport_id = 0; 3321 q_params.sb = fp->sb_info->igu_sb_id; 3322 q_params.sb_idx = TX_PI(tc); 3323 3324 rc = edev->ops->q_tx_start(cdev, &q_params, 3325 txq->tx_pbl.pbl.p_phys_table, 3326 txq->tx_pbl.page_cnt, 3327 &txq->doorbell_addr); 3328 if (rc) { 3329 DP_ERR(edev, "Start TXQ #%d failed %d\n", 3330 txq_index, rc); 3331 return rc; 3332 } 3333 3334 txq->hw_cons_ptr = 3335 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)]; 3336 SET_FIELD(txq->tx_db.data.params, 3337 ETH_DB_DATA_DEST, DB_DEST_XCM); 3338 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, 3339 DB_AGG_CMD_SET); 3340 SET_FIELD(txq->tx_db.data.params, 3341 ETH_DB_DATA_AGG_VAL_SEL, 3342 DQ_XCM_ETH_TX_BD_PROD_CMD); 3343 3344 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 3345 } 3346 } 3347 3348 /* Prepare and send the vport enable */ 3349 memset(&vport_update_params, 0, sizeof(vport_update_params)); 3350 vport_update_params.vport_id = start.vport_id; 3351 vport_update_params.update_vport_active_flg = 1; 3352 vport_update_params.vport_active_flg = 1; 3353 3354 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) && 3355 qed_info->tx_switching) { 3356 vport_update_params.update_tx_switching_flg = 1; 3357 vport_update_params.tx_switching_flg = 1; 3358 } 3359 3360 /* Fill struct with RSS params */ 3361 if (QEDE_RSS_CNT(edev) > 1) { 3362 vport_update_params.update_rss_flg = 1; 3363 3364 /* Need to validate current RSS config uses valid entries */ 3365 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { 3366 if (edev->rss_params.rss_ind_table[i] >= 3367 edev->num_rss) { 3368 reset_rss_indir = true; 3369 break; 3370 } 3371 } 3372 3373 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || 3374 reset_rss_indir) { 3375 u16 val; 3376 3377 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { 3378 u16 indir_val; 3379 3380 val = QEDE_RSS_CNT(edev); 3381 indir_val = ethtool_rxfh_indir_default(i, val); 3382 edev->rss_params.rss_ind_table[i] = indir_val; 3383 } 3384 edev->rss_params_inited |= QEDE_RSS_INDIR_INITED; 3385 } 3386 3387 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) { 3388 netdev_rss_key_fill(edev->rss_params.rss_key, 3389 sizeof(edev->rss_params.rss_key)); 3390 edev->rss_params_inited |= QEDE_RSS_KEY_INITED; 3391 } 3392 3393 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) { 3394 edev->rss_params.rss_caps = QED_RSS_IPV4 | 3395 QED_RSS_IPV6 | 3396 QED_RSS_IPV4_TCP | 3397 QED_RSS_IPV6_TCP; 3398 edev->rss_params_inited |= QEDE_RSS_CAPS_INITED; 3399 } 3400 3401 memcpy(&vport_update_params.rss_params, &edev->rss_params, 3402 sizeof(vport_update_params.rss_params)); 3403 } else { 3404 memset(&vport_update_params.rss_params, 0, 3405 sizeof(vport_update_params.rss_params)); 3406 } 3407 3408 rc = edev->ops->vport_update(cdev, &vport_update_params); 3409 if (rc) { 3410 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 3411 return rc; 3412 } 3413 3414 return 0; 3415 } 3416 3417 static int qede_set_mcast_rx_mac(struct qede_dev *edev, 3418 enum qed_filter_xcast_params_type opcode, 3419 unsigned char *mac, int num_macs) 3420 { 3421 struct qed_filter_params filter_cmd; 3422 int i; 3423 3424 memset(&filter_cmd, 0, sizeof(filter_cmd)); 3425 filter_cmd.type = QED_FILTER_TYPE_MCAST; 3426 filter_cmd.filter.mcast.type = opcode; 3427 filter_cmd.filter.mcast.num = num_macs; 3428 3429 for (i = 0; i < num_macs; i++, mac += ETH_ALEN) 3430 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac); 3431 3432 return edev->ops->filter_config(edev->cdev, &filter_cmd); 3433 } 3434 3435 enum qede_unload_mode { 3436 QEDE_UNLOAD_NORMAL, 3437 }; 3438 3439 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode) 3440 { 3441 struct qed_link_params link_params; 3442 int rc; 3443 3444 DP_INFO(edev, "Starting qede unload\n"); 3445 3446 mutex_lock(&edev->qede_lock); 3447 edev->state = QEDE_STATE_CLOSED; 3448 3449 /* Close OS Tx */ 3450 netif_tx_disable(edev->ndev); 3451 netif_carrier_off(edev->ndev); 3452 3453 /* Reset the link */ 3454 memset(&link_params, 0, sizeof(link_params)); 3455 link_params.link_up = false; 3456 edev->ops->common->set_link(edev->cdev, &link_params); 3457 rc = qede_stop_queues(edev); 3458 if (rc) { 3459 qede_sync_free_irqs(edev); 3460 goto out; 3461 } 3462 3463 DP_INFO(edev, "Stopped Queues\n"); 3464 3465 qede_vlan_mark_nonconfigured(edev); 3466 edev->ops->fastpath_stop(edev->cdev); 3467 3468 /* Release the interrupts */ 3469 qede_sync_free_irqs(edev); 3470 edev->ops->common->set_fp_int(edev->cdev, 0); 3471 3472 qede_napi_disable_remove(edev); 3473 3474 qede_free_mem_load(edev); 3475 qede_free_fp_array(edev); 3476 3477 out: 3478 mutex_unlock(&edev->qede_lock); 3479 DP_INFO(edev, "Ending qede unload\n"); 3480 } 3481 3482 enum qede_load_mode { 3483 QEDE_LOAD_NORMAL, 3484 QEDE_LOAD_RELOAD, 3485 }; 3486 3487 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode) 3488 { 3489 struct qed_link_params link_params; 3490 struct qed_link_output link_output; 3491 int rc; 3492 3493 DP_INFO(edev, "Starting qede load\n"); 3494 3495 rc = qede_set_num_queues(edev); 3496 if (rc) 3497 goto err0; 3498 3499 rc = qede_alloc_fp_array(edev); 3500 if (rc) 3501 goto err0; 3502 3503 qede_init_fp(edev); 3504 3505 rc = qede_alloc_mem_load(edev); 3506 if (rc) 3507 goto err1; 3508 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n", 3509 QEDE_RSS_CNT(edev), edev->num_tc); 3510 3511 rc = qede_set_real_num_queues(edev); 3512 if (rc) 3513 goto err2; 3514 3515 qede_napi_add_enable(edev); 3516 DP_INFO(edev, "Napi added and enabled\n"); 3517 3518 rc = qede_setup_irqs(edev); 3519 if (rc) 3520 goto err3; 3521 DP_INFO(edev, "Setup IRQs succeeded\n"); 3522 3523 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 3524 if (rc) 3525 goto err4; 3526 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 3527 3528 /* Add primary mac and set Rx filters */ 3529 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); 3530 3531 mutex_lock(&edev->qede_lock); 3532 edev->state = QEDE_STATE_OPEN; 3533 mutex_unlock(&edev->qede_lock); 3534 3535 /* Program un-configured VLANs */ 3536 qede_configure_vlan_filters(edev); 3537 3538 /* Ask for link-up using current configuration */ 3539 memset(&link_params, 0, sizeof(link_params)); 3540 link_params.link_up = true; 3541 edev->ops->common->set_link(edev->cdev, &link_params); 3542 3543 /* Query whether link is already-up */ 3544 memset(&link_output, 0, sizeof(link_output)); 3545 edev->ops->common->get_link(edev->cdev, &link_output); 3546 qede_link_update(edev, &link_output); 3547 3548 DP_INFO(edev, "Ending successfully qede load\n"); 3549 3550 return 0; 3551 3552 err4: 3553 qede_sync_free_irqs(edev); 3554 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 3555 err3: 3556 qede_napi_disable_remove(edev); 3557 err2: 3558 qede_free_mem_load(edev); 3559 err1: 3560 edev->ops->common->set_fp_int(edev->cdev, 0); 3561 qede_free_fp_array(edev); 3562 edev->num_rss = 0; 3563 err0: 3564 return rc; 3565 } 3566 3567 void qede_reload(struct qede_dev *edev, 3568 void (*func)(struct qede_dev *, union qede_reload_args *), 3569 union qede_reload_args *args) 3570 { 3571 qede_unload(edev, QEDE_UNLOAD_NORMAL); 3572 /* Call function handler to update parameters 3573 * needed for function load. 3574 */ 3575 if (func) 3576 func(edev, args); 3577 3578 qede_load(edev, QEDE_LOAD_RELOAD); 3579 3580 mutex_lock(&edev->qede_lock); 3581 qede_config_rx_mode(edev->ndev); 3582 mutex_unlock(&edev->qede_lock); 3583 } 3584 3585 /* called with rtnl_lock */ 3586 static int qede_open(struct net_device *ndev) 3587 { 3588 struct qede_dev *edev = netdev_priv(ndev); 3589 int rc; 3590 3591 netif_carrier_off(ndev); 3592 3593 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 3594 3595 rc = qede_load(edev, QEDE_LOAD_NORMAL); 3596 3597 if (rc) 3598 return rc; 3599 3600 udp_tunnel_get_rx_info(ndev); 3601 3602 return 0; 3603 } 3604 3605 static int qede_close(struct net_device *ndev) 3606 { 3607 struct qede_dev *edev = netdev_priv(ndev); 3608 3609 qede_unload(edev, QEDE_UNLOAD_NORMAL); 3610 3611 return 0; 3612 } 3613 3614 static void qede_link_update(void *dev, struct qed_link_output *link) 3615 { 3616 struct qede_dev *edev = dev; 3617 3618 if (!netif_running(edev->ndev)) { 3619 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 3620 return; 3621 } 3622 3623 if (link->link_up) { 3624 if (!netif_carrier_ok(edev->ndev)) { 3625 DP_NOTICE(edev, "Link is up\n"); 3626 netif_tx_start_all_queues(edev->ndev); 3627 netif_carrier_on(edev->ndev); 3628 } 3629 } else { 3630 if (netif_carrier_ok(edev->ndev)) { 3631 DP_NOTICE(edev, "Link is down\n"); 3632 netif_tx_disable(edev->ndev); 3633 netif_carrier_off(edev->ndev); 3634 } 3635 } 3636 } 3637 3638 static int qede_set_mac_addr(struct net_device *ndev, void *p) 3639 { 3640 struct qede_dev *edev = netdev_priv(ndev); 3641 struct sockaddr *addr = p; 3642 int rc; 3643 3644 ASSERT_RTNL(); /* @@@TBD To be removed */ 3645 3646 DP_INFO(edev, "Set_mac_addr called\n"); 3647 3648 if (!is_valid_ether_addr(addr->sa_data)) { 3649 DP_NOTICE(edev, "The MAC address is not valid\n"); 3650 return -EFAULT; 3651 } 3652 3653 if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) { 3654 DP_NOTICE(edev, "qed prevents setting MAC\n"); 3655 return -EINVAL; 3656 } 3657 3658 ether_addr_copy(ndev->dev_addr, addr->sa_data); 3659 3660 if (!netif_running(ndev)) { 3661 DP_NOTICE(edev, "The device is currently down\n"); 3662 return 0; 3663 } 3664 3665 /* Remove the previous primary mac */ 3666 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 3667 edev->primary_mac); 3668 if (rc) 3669 return rc; 3670 3671 /* Add MAC filter according to the new unicast HW MAC address */ 3672 ether_addr_copy(edev->primary_mac, ndev->dev_addr); 3673 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 3674 edev->primary_mac); 3675 } 3676 3677 static int 3678 qede_configure_mcast_filtering(struct net_device *ndev, 3679 enum qed_filter_rx_mode_type *accept_flags) 3680 { 3681 struct qede_dev *edev = netdev_priv(ndev); 3682 unsigned char *mc_macs, *temp; 3683 struct netdev_hw_addr *ha; 3684 int rc = 0, mc_count; 3685 size_t size; 3686 3687 size = 64 * ETH_ALEN; 3688 3689 mc_macs = kzalloc(size, GFP_KERNEL); 3690 if (!mc_macs) { 3691 DP_NOTICE(edev, 3692 "Failed to allocate memory for multicast MACs\n"); 3693 rc = -ENOMEM; 3694 goto exit; 3695 } 3696 3697 temp = mc_macs; 3698 3699 /* Remove all previously configured MAC filters */ 3700 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 3701 mc_macs, 1); 3702 if (rc) 3703 goto exit; 3704 3705 netif_addr_lock_bh(ndev); 3706 3707 mc_count = netdev_mc_count(ndev); 3708 if (mc_count < 64) { 3709 netdev_for_each_mc_addr(ha, ndev) { 3710 ether_addr_copy(temp, ha->addr); 3711 temp += ETH_ALEN; 3712 } 3713 } 3714 3715 netif_addr_unlock_bh(ndev); 3716 3717 /* Check for all multicast @@@TBD resource allocation */ 3718 if ((ndev->flags & IFF_ALLMULTI) || 3719 (mc_count > 64)) { 3720 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR) 3721 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; 3722 } else { 3723 /* Add all multicast MAC filters */ 3724 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 3725 mc_macs, mc_count); 3726 } 3727 3728 exit: 3729 kfree(mc_macs); 3730 return rc; 3731 } 3732 3733 static void qede_set_rx_mode(struct net_device *ndev) 3734 { 3735 struct qede_dev *edev = netdev_priv(ndev); 3736 3737 DP_INFO(edev, "qede_set_rx_mode called\n"); 3738 3739 if (edev->state != QEDE_STATE_OPEN) { 3740 DP_INFO(edev, 3741 "qede_set_rx_mode called while interface is down\n"); 3742 } else { 3743 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags); 3744 schedule_delayed_work(&edev->sp_task, 0); 3745 } 3746 } 3747 3748 /* Must be called with qede_lock held */ 3749 static void qede_config_rx_mode(struct net_device *ndev) 3750 { 3751 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST; 3752 struct qede_dev *edev = netdev_priv(ndev); 3753 struct qed_filter_params rx_mode; 3754 unsigned char *uc_macs, *temp; 3755 struct netdev_hw_addr *ha; 3756 int rc, uc_count; 3757 size_t size; 3758 3759 netif_addr_lock_bh(ndev); 3760 3761 uc_count = netdev_uc_count(ndev); 3762 size = uc_count * ETH_ALEN; 3763 3764 uc_macs = kzalloc(size, GFP_ATOMIC); 3765 if (!uc_macs) { 3766 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n"); 3767 netif_addr_unlock_bh(ndev); 3768 return; 3769 } 3770 3771 temp = uc_macs; 3772 netdev_for_each_uc_addr(ha, ndev) { 3773 ether_addr_copy(temp, ha->addr); 3774 temp += ETH_ALEN; 3775 } 3776 3777 netif_addr_unlock_bh(ndev); 3778 3779 /* Configure the struct for the Rx mode */ 3780 memset(&rx_mode, 0, sizeof(struct qed_filter_params)); 3781 rx_mode.type = QED_FILTER_TYPE_RX_MODE; 3782 3783 /* Remove all previous unicast secondary macs and multicast macs 3784 * (configrue / leave the primary mac) 3785 */ 3786 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE, 3787 edev->primary_mac); 3788 if (rc) 3789 goto out; 3790 3791 /* Check for promiscuous */ 3792 if ((ndev->flags & IFF_PROMISC) || 3793 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */ 3794 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; 3795 } else { 3796 /* Add MAC filters according to the unicast secondary macs */ 3797 int i; 3798 3799 temp = uc_macs; 3800 for (i = 0; i < uc_count; i++) { 3801 rc = qede_set_ucast_rx_mac(edev, 3802 QED_FILTER_XCAST_TYPE_ADD, 3803 temp); 3804 if (rc) 3805 goto out; 3806 3807 temp += ETH_ALEN; 3808 } 3809 3810 rc = qede_configure_mcast_filtering(ndev, &accept_flags); 3811 if (rc) 3812 goto out; 3813 } 3814 3815 /* take care of VLAN mode */ 3816 if (ndev->flags & IFF_PROMISC) { 3817 qede_config_accept_any_vlan(edev, true); 3818 } else if (!edev->non_configured_vlans) { 3819 /* It's possible that accept_any_vlan mode is set due to a 3820 * previous setting of IFF_PROMISC. If vlan credits are 3821 * sufficient, disable accept_any_vlan. 3822 */ 3823 qede_config_accept_any_vlan(edev, false); 3824 } 3825 3826 rx_mode.filter.accept_flags = accept_flags; 3827 edev->ops->filter_config(edev->cdev, &rx_mode); 3828 out: 3829 kfree(uc_macs); 3830 } 3831