xref: /openbmc/linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41 
42 static char version[] =
43 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44 
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52 
53 static const struct qed_eth_ops *qed_ops;
54 
55 #define CHIP_NUM_57980S_40		0x1634
56 #define CHIP_NUM_57980S_10		0x1666
57 #define CHIP_NUM_57980S_MF		0x1636
58 #define CHIP_NUM_57980S_100		0x1644
59 #define CHIP_NUM_57980S_50		0x1654
60 #define CHIP_NUM_57980S_25		0x1656
61 #define CHIP_NUM_57980S_IOV		0x1664
62 #define CHIP_NUM_AH			0x8070
63 #define CHIP_NUM_AH_IOV			0x8090
64 
65 #ifndef PCI_DEVICE_ID_NX2_57980E
66 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
67 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
68 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
69 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
70 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
71 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
72 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
73 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
74 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
75 
76 #endif
77 
78 enum qede_pci_private {
79 	QEDE_PRIVATE_PF,
80 	QEDE_PRIVATE_VF
81 };
82 
83 static const struct pci_device_id qede_pci_tbl[] = {
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
92 #endif
93 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
94 #ifdef CONFIG_QED_SRIOV
95 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
96 #endif
97 	{ 0 }
98 };
99 
100 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
101 
102 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
103 static pci_ers_result_t
104 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
105 
106 #define TX_TIMEOUT		(5 * HZ)
107 
108 /* Utilize last protocol index for XDP */
109 #define XDP_PI	11
110 
111 static void qede_remove(struct pci_dev *pdev);
112 static void qede_shutdown(struct pci_dev *pdev);
113 static void qede_link_update(void *dev, struct qed_link_output *link);
114 static void qede_schedule_recovery_handler(void *dev);
115 static void qede_recovery_handler(struct qede_dev *edev);
116 static void qede_schedule_hw_err_handler(void *dev,
117 					 enum qed_hw_err_type err_type);
118 static void qede_get_eth_tlv_data(void *edev, void *data);
119 static void qede_get_generic_tlv_data(void *edev,
120 				      struct qed_generic_tlvs *data);
121 static void qede_generic_hw_err_handler(struct qede_dev *edev);
122 #ifdef CONFIG_QED_SRIOV
123 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
124 			    __be16 vlan_proto)
125 {
126 	struct qede_dev *edev = netdev_priv(ndev);
127 
128 	if (vlan > 4095) {
129 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
130 		return -EINVAL;
131 	}
132 
133 	if (vlan_proto != htons(ETH_P_8021Q))
134 		return -EPROTONOSUPPORT;
135 
136 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
137 		   vlan, vf);
138 
139 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
140 }
141 
142 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
143 {
144 	struct qede_dev *edev = netdev_priv(ndev);
145 
146 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
147 
148 	if (!is_valid_ether_addr(mac)) {
149 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
150 		return -EINVAL;
151 	}
152 
153 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
154 }
155 
156 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
157 {
158 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
159 	struct qed_dev_info *qed_info = &edev->dev_info.common;
160 	struct qed_update_vport_params *vport_params;
161 	int rc;
162 
163 	vport_params = vzalloc(sizeof(*vport_params));
164 	if (!vport_params)
165 		return -ENOMEM;
166 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
167 
168 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
169 
170 	/* Enable/Disable Tx switching for PF */
171 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
172 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
173 		vport_params->vport_id = 0;
174 		vport_params->update_tx_switching_flg = 1;
175 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
176 		edev->ops->vport_update(edev->cdev, vport_params);
177 	}
178 
179 	vfree(vport_params);
180 	return rc;
181 }
182 #endif
183 
184 static const struct pci_error_handlers qede_err_handler = {
185 	.error_detected = qede_io_error_detected,
186 };
187 
188 static struct pci_driver qede_pci_driver = {
189 	.name = "qede",
190 	.id_table = qede_pci_tbl,
191 	.probe = qede_probe,
192 	.remove = qede_remove,
193 	.shutdown = qede_shutdown,
194 #ifdef CONFIG_QED_SRIOV
195 	.sriov_configure = qede_sriov_configure,
196 #endif
197 	.err_handler = &qede_err_handler,
198 };
199 
200 static struct qed_eth_cb_ops qede_ll_ops = {
201 	{
202 #ifdef CONFIG_RFS_ACCEL
203 		.arfs_filter_op = qede_arfs_filter_op,
204 #endif
205 		.link_update = qede_link_update,
206 		.schedule_recovery_handler = qede_schedule_recovery_handler,
207 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
208 		.get_generic_tlv_data = qede_get_generic_tlv_data,
209 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
210 	},
211 	.force_mac = qede_force_mac,
212 	.ports_update = qede_udp_ports_update,
213 };
214 
215 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
216 			     void *ptr)
217 {
218 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
219 	struct ethtool_drvinfo drvinfo;
220 	struct qede_dev *edev;
221 
222 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
223 		goto done;
224 
225 	/* Check whether this is a qede device */
226 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
227 		goto done;
228 
229 	memset(&drvinfo, 0, sizeof(drvinfo));
230 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
231 	if (strcmp(drvinfo.driver, "qede"))
232 		goto done;
233 	edev = netdev_priv(ndev);
234 
235 	switch (event) {
236 	case NETDEV_CHANGENAME:
237 		/* Notify qed of the name change */
238 		if (!edev->ops || !edev->ops->common)
239 			goto done;
240 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
241 		break;
242 	case NETDEV_CHANGEADDR:
243 		edev = netdev_priv(ndev);
244 		qede_rdma_event_changeaddr(edev);
245 		break;
246 	}
247 
248 done:
249 	return NOTIFY_DONE;
250 }
251 
252 static struct notifier_block qede_netdev_notifier = {
253 	.notifier_call = qede_netdev_event,
254 };
255 
256 static
257 int __init qede_init(void)
258 {
259 	int ret;
260 
261 	pr_info("qede_init: %s\n", version);
262 
263 	qede_forced_speed_maps_init();
264 
265 	qed_ops = qed_get_eth_ops();
266 	if (!qed_ops) {
267 		pr_notice("Failed to get qed ethtool operations\n");
268 		return -EINVAL;
269 	}
270 
271 	/* Must register notifier before pci ops, since we might miss
272 	 * interface rename after pci probe and netdev registration.
273 	 */
274 	ret = register_netdevice_notifier(&qede_netdev_notifier);
275 	if (ret) {
276 		pr_notice("Failed to register netdevice_notifier\n");
277 		qed_put_eth_ops();
278 		return -EINVAL;
279 	}
280 
281 	ret = pci_register_driver(&qede_pci_driver);
282 	if (ret) {
283 		pr_notice("Failed to register driver\n");
284 		unregister_netdevice_notifier(&qede_netdev_notifier);
285 		qed_put_eth_ops();
286 		return -EINVAL;
287 	}
288 
289 	return 0;
290 }
291 
292 static void __exit qede_cleanup(void)
293 {
294 	if (debug & QED_LOG_INFO_MASK)
295 		pr_info("qede_cleanup called\n");
296 
297 	unregister_netdevice_notifier(&qede_netdev_notifier);
298 	pci_unregister_driver(&qede_pci_driver);
299 	qed_put_eth_ops();
300 }
301 
302 module_init(qede_init);
303 module_exit(qede_cleanup);
304 
305 static int qede_open(struct net_device *ndev);
306 static int qede_close(struct net_device *ndev);
307 
308 void qede_fill_by_demand_stats(struct qede_dev *edev)
309 {
310 	struct qede_stats_common *p_common = &edev->stats.common;
311 	struct qed_eth_stats stats;
312 
313 	edev->ops->get_vport_stats(edev->cdev, &stats);
314 
315 	p_common->no_buff_discards = stats.common.no_buff_discards;
316 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
317 	p_common->ttl0_discard = stats.common.ttl0_discard;
318 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
319 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
320 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
321 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
322 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
323 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
324 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
325 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
326 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
327 
328 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
329 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
330 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
331 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
332 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
333 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
334 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
335 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
336 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
337 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
338 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
339 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
340 
341 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
342 	p_common->rx_65_to_127_byte_packets =
343 	    stats.common.rx_65_to_127_byte_packets;
344 	p_common->rx_128_to_255_byte_packets =
345 	    stats.common.rx_128_to_255_byte_packets;
346 	p_common->rx_256_to_511_byte_packets =
347 	    stats.common.rx_256_to_511_byte_packets;
348 	p_common->rx_512_to_1023_byte_packets =
349 	    stats.common.rx_512_to_1023_byte_packets;
350 	p_common->rx_1024_to_1518_byte_packets =
351 	    stats.common.rx_1024_to_1518_byte_packets;
352 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
353 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
354 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
355 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
356 	p_common->rx_align_errors = stats.common.rx_align_errors;
357 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
358 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
359 	p_common->rx_jabbers = stats.common.rx_jabbers;
360 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
361 	p_common->rx_fragments = stats.common.rx_fragments;
362 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
363 	p_common->tx_65_to_127_byte_packets =
364 	    stats.common.tx_65_to_127_byte_packets;
365 	p_common->tx_128_to_255_byte_packets =
366 	    stats.common.tx_128_to_255_byte_packets;
367 	p_common->tx_256_to_511_byte_packets =
368 	    stats.common.tx_256_to_511_byte_packets;
369 	p_common->tx_512_to_1023_byte_packets =
370 	    stats.common.tx_512_to_1023_byte_packets;
371 	p_common->tx_1024_to_1518_byte_packets =
372 	    stats.common.tx_1024_to_1518_byte_packets;
373 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
374 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
375 	p_common->brb_truncates = stats.common.brb_truncates;
376 	p_common->brb_discards = stats.common.brb_discards;
377 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
378 	p_common->link_change_count = stats.common.link_change_count;
379 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
380 
381 	if (QEDE_IS_BB(edev)) {
382 		struct qede_stats_bb *p_bb = &edev->stats.bb;
383 
384 		p_bb->rx_1519_to_1522_byte_packets =
385 		    stats.bb.rx_1519_to_1522_byte_packets;
386 		p_bb->rx_1519_to_2047_byte_packets =
387 		    stats.bb.rx_1519_to_2047_byte_packets;
388 		p_bb->rx_2048_to_4095_byte_packets =
389 		    stats.bb.rx_2048_to_4095_byte_packets;
390 		p_bb->rx_4096_to_9216_byte_packets =
391 		    stats.bb.rx_4096_to_9216_byte_packets;
392 		p_bb->rx_9217_to_16383_byte_packets =
393 		    stats.bb.rx_9217_to_16383_byte_packets;
394 		p_bb->tx_1519_to_2047_byte_packets =
395 		    stats.bb.tx_1519_to_2047_byte_packets;
396 		p_bb->tx_2048_to_4095_byte_packets =
397 		    stats.bb.tx_2048_to_4095_byte_packets;
398 		p_bb->tx_4096_to_9216_byte_packets =
399 		    stats.bb.tx_4096_to_9216_byte_packets;
400 		p_bb->tx_9217_to_16383_byte_packets =
401 		    stats.bb.tx_9217_to_16383_byte_packets;
402 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
403 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
404 	} else {
405 		struct qede_stats_ah *p_ah = &edev->stats.ah;
406 
407 		p_ah->rx_1519_to_max_byte_packets =
408 		    stats.ah.rx_1519_to_max_byte_packets;
409 		p_ah->tx_1519_to_max_byte_packets =
410 		    stats.ah.tx_1519_to_max_byte_packets;
411 	}
412 }
413 
414 static void qede_get_stats64(struct net_device *dev,
415 			     struct rtnl_link_stats64 *stats)
416 {
417 	struct qede_dev *edev = netdev_priv(dev);
418 	struct qede_stats_common *p_common;
419 
420 	qede_fill_by_demand_stats(edev);
421 	p_common = &edev->stats.common;
422 
423 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
424 			    p_common->rx_bcast_pkts;
425 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
426 			    p_common->tx_bcast_pkts;
427 
428 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
429 			  p_common->rx_bcast_bytes;
430 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
431 			  p_common->tx_bcast_bytes;
432 
433 	stats->tx_errors = p_common->tx_err_drop_pkts;
434 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
435 
436 	stats->rx_fifo_errors = p_common->no_buff_discards;
437 
438 	if (QEDE_IS_BB(edev))
439 		stats->collisions = edev->stats.bb.tx_total_collisions;
440 	stats->rx_crc_errors = p_common->rx_crc_errors;
441 	stats->rx_frame_errors = p_common->rx_align_errors;
442 }
443 
444 #ifdef CONFIG_QED_SRIOV
445 static int qede_get_vf_config(struct net_device *dev, int vfidx,
446 			      struct ifla_vf_info *ivi)
447 {
448 	struct qede_dev *edev = netdev_priv(dev);
449 
450 	if (!edev->ops)
451 		return -EINVAL;
452 
453 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
454 }
455 
456 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
457 			    int min_tx_rate, int max_tx_rate)
458 {
459 	struct qede_dev *edev = netdev_priv(dev);
460 
461 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
462 					max_tx_rate);
463 }
464 
465 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
466 {
467 	struct qede_dev *edev = netdev_priv(dev);
468 
469 	if (!edev->ops)
470 		return -EINVAL;
471 
472 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
473 }
474 
475 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
476 				  int link_state)
477 {
478 	struct qede_dev *edev = netdev_priv(dev);
479 
480 	if (!edev->ops)
481 		return -EINVAL;
482 
483 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
484 }
485 
486 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
487 {
488 	struct qede_dev *edev = netdev_priv(dev);
489 
490 	if (!edev->ops)
491 		return -EINVAL;
492 
493 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
494 }
495 #endif
496 
497 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
498 {
499 	struct qede_dev *edev = netdev_priv(dev);
500 
501 	if (!netif_running(dev))
502 		return -EAGAIN;
503 
504 	switch (cmd) {
505 	case SIOCSHWTSTAMP:
506 		return qede_ptp_hw_ts(edev, ifr);
507 	default:
508 		DP_VERBOSE(edev, QED_MSG_DEBUG,
509 			   "default IOCTL cmd 0x%x\n", cmd);
510 		return -EOPNOTSUPP;
511 	}
512 
513 	return 0;
514 }
515 
516 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
517 {
518 	DP_NOTICE(edev,
519 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
520 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
521 		  qed_chain_get_cons_idx(&txq->tx_pbl),
522 		  qed_chain_get_prod_idx(&txq->tx_pbl),
523 		  jiffies);
524 }
525 
526 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
527 {
528 	struct qede_dev *edev = netdev_priv(dev);
529 	struct qede_tx_queue *txq;
530 	int cos;
531 
532 	netif_carrier_off(dev);
533 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
534 
535 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
536 		return;
537 
538 	for_each_cos_in_txq(edev, cos) {
539 		txq = &edev->fp_array[txqueue].txq[cos];
540 
541 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
542 		    qed_chain_get_prod_idx(&txq->tx_pbl))
543 			qede_tx_log_print(edev, txq);
544 	}
545 
546 	if (IS_VF(edev))
547 		return;
548 
549 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
550 	    edev->state == QEDE_STATE_RECOVERY) {
551 		DP_INFO(edev,
552 			"Avoid handling a Tx timeout while another HW error is being handled\n");
553 		return;
554 	}
555 
556 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
557 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
558 	schedule_delayed_work(&edev->sp_task, 0);
559 }
560 
561 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
562 {
563 	struct qede_dev *edev = netdev_priv(ndev);
564 	int cos, count, offset;
565 
566 	if (num_tc > edev->dev_info.num_tc)
567 		return -EINVAL;
568 
569 	netdev_reset_tc(ndev);
570 	netdev_set_num_tc(ndev, num_tc);
571 
572 	for_each_cos_in_txq(edev, cos) {
573 		count = QEDE_TSS_COUNT(edev);
574 		offset = cos * QEDE_TSS_COUNT(edev);
575 		netdev_set_tc_queue(ndev, cos, count, offset);
576 	}
577 
578 	return 0;
579 }
580 
581 static int
582 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
583 		__be16 proto)
584 {
585 	switch (f->command) {
586 	case FLOW_CLS_REPLACE:
587 		return qede_add_tc_flower_fltr(edev, proto, f);
588 	case FLOW_CLS_DESTROY:
589 		return qede_delete_flow_filter(edev, f->cookie);
590 	default:
591 		return -EOPNOTSUPP;
592 	}
593 }
594 
595 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
596 				  void *cb_priv)
597 {
598 	struct flow_cls_offload *f;
599 	struct qede_dev *edev = cb_priv;
600 
601 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
602 		return -EOPNOTSUPP;
603 
604 	switch (type) {
605 	case TC_SETUP_CLSFLOWER:
606 		f = type_data;
607 		return qede_set_flower(edev, f, f->common.protocol);
608 	default:
609 		return -EOPNOTSUPP;
610 	}
611 }
612 
613 static LIST_HEAD(qede_block_cb_list);
614 
615 static int
616 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
617 		      void *type_data)
618 {
619 	struct qede_dev *edev = netdev_priv(dev);
620 	struct tc_mqprio_qopt *mqprio;
621 
622 	switch (type) {
623 	case TC_SETUP_BLOCK:
624 		return flow_block_cb_setup_simple(type_data,
625 						  &qede_block_cb_list,
626 						  qede_setup_tc_block_cb,
627 						  edev, edev, true);
628 	case TC_SETUP_QDISC_MQPRIO:
629 		mqprio = type_data;
630 
631 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
632 		return qede_setup_tc(dev, mqprio->num_tc);
633 	default:
634 		return -EOPNOTSUPP;
635 	}
636 }
637 
638 static const struct net_device_ops qede_netdev_ops = {
639 	.ndo_open		= qede_open,
640 	.ndo_stop		= qede_close,
641 	.ndo_start_xmit		= qede_start_xmit,
642 	.ndo_select_queue	= qede_select_queue,
643 	.ndo_set_rx_mode	= qede_set_rx_mode,
644 	.ndo_set_mac_address	= qede_set_mac_addr,
645 	.ndo_validate_addr	= eth_validate_addr,
646 	.ndo_change_mtu		= qede_change_mtu,
647 	.ndo_do_ioctl		= qede_ioctl,
648 	.ndo_tx_timeout		= qede_tx_timeout,
649 #ifdef CONFIG_QED_SRIOV
650 	.ndo_set_vf_mac		= qede_set_vf_mac,
651 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
652 	.ndo_set_vf_trust	= qede_set_vf_trust,
653 #endif
654 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
655 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
656 	.ndo_fix_features	= qede_fix_features,
657 	.ndo_set_features	= qede_set_features,
658 	.ndo_get_stats64	= qede_get_stats64,
659 #ifdef CONFIG_QED_SRIOV
660 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
661 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
662 	.ndo_get_vf_config	= qede_get_vf_config,
663 	.ndo_set_vf_rate	= qede_set_vf_rate,
664 #endif
665 	.ndo_features_check	= qede_features_check,
666 	.ndo_bpf		= qede_xdp,
667 #ifdef CONFIG_RFS_ACCEL
668 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
669 #endif
670 	.ndo_xdp_xmit		= qede_xdp_transmit,
671 	.ndo_setup_tc		= qede_setup_tc_offload,
672 };
673 
674 static const struct net_device_ops qede_netdev_vf_ops = {
675 	.ndo_open		= qede_open,
676 	.ndo_stop		= qede_close,
677 	.ndo_start_xmit		= qede_start_xmit,
678 	.ndo_select_queue	= qede_select_queue,
679 	.ndo_set_rx_mode	= qede_set_rx_mode,
680 	.ndo_set_mac_address	= qede_set_mac_addr,
681 	.ndo_validate_addr	= eth_validate_addr,
682 	.ndo_change_mtu		= qede_change_mtu,
683 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
684 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
685 	.ndo_fix_features	= qede_fix_features,
686 	.ndo_set_features	= qede_set_features,
687 	.ndo_get_stats64	= qede_get_stats64,
688 	.ndo_features_check	= qede_features_check,
689 };
690 
691 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
692 	.ndo_open		= qede_open,
693 	.ndo_stop		= qede_close,
694 	.ndo_start_xmit		= qede_start_xmit,
695 	.ndo_select_queue	= qede_select_queue,
696 	.ndo_set_rx_mode	= qede_set_rx_mode,
697 	.ndo_set_mac_address	= qede_set_mac_addr,
698 	.ndo_validate_addr	= eth_validate_addr,
699 	.ndo_change_mtu		= qede_change_mtu,
700 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
701 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
702 	.ndo_fix_features	= qede_fix_features,
703 	.ndo_set_features	= qede_set_features,
704 	.ndo_get_stats64	= qede_get_stats64,
705 	.ndo_features_check	= qede_features_check,
706 	.ndo_bpf		= qede_xdp,
707 	.ndo_xdp_xmit		= qede_xdp_transmit,
708 };
709 
710 /* -------------------------------------------------------------------------
711  * START OF PROBE / REMOVE
712  * -------------------------------------------------------------------------
713  */
714 
715 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
716 					    struct pci_dev *pdev,
717 					    struct qed_dev_eth_info *info,
718 					    u32 dp_module, u8 dp_level)
719 {
720 	struct net_device *ndev;
721 	struct qede_dev *edev;
722 
723 	ndev = alloc_etherdev_mqs(sizeof(*edev),
724 				  info->num_queues * info->num_tc,
725 				  info->num_queues);
726 	if (!ndev) {
727 		pr_err("etherdev allocation failed\n");
728 		return NULL;
729 	}
730 
731 	edev = netdev_priv(ndev);
732 	edev->ndev = ndev;
733 	edev->cdev = cdev;
734 	edev->pdev = pdev;
735 	edev->dp_module = dp_module;
736 	edev->dp_level = dp_level;
737 	edev->ops = qed_ops;
738 
739 	if (is_kdump_kernel()) {
740 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
741 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
742 	} else {
743 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
744 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
745 	}
746 
747 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
748 		info->num_queues, info->num_queues);
749 
750 	SET_NETDEV_DEV(ndev, &pdev->dev);
751 
752 	memset(&edev->stats, 0, sizeof(edev->stats));
753 	memcpy(&edev->dev_info, info, sizeof(*info));
754 
755 	/* As ethtool doesn't have the ability to show WoL behavior as
756 	 * 'default', if device supports it declare it's enabled.
757 	 */
758 	if (edev->dev_info.common.wol_support)
759 		edev->wol_enabled = true;
760 
761 	INIT_LIST_HEAD(&edev->vlan_list);
762 
763 	return edev;
764 }
765 
766 static void qede_init_ndev(struct qede_dev *edev)
767 {
768 	struct net_device *ndev = edev->ndev;
769 	struct pci_dev *pdev = edev->pdev;
770 	bool udp_tunnel_enable = false;
771 	netdev_features_t hw_features;
772 
773 	pci_set_drvdata(pdev, ndev);
774 
775 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
776 	ndev->base_addr = ndev->mem_start;
777 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
778 	ndev->irq = edev->dev_info.common.pci_irq;
779 
780 	ndev->watchdog_timeo = TX_TIMEOUT;
781 
782 	if (IS_VF(edev)) {
783 		if (edev->dev_info.xdp_supported)
784 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
785 		else
786 			ndev->netdev_ops = &qede_netdev_vf_ops;
787 	} else {
788 		ndev->netdev_ops = &qede_netdev_ops;
789 	}
790 
791 	qede_set_ethtool_ops(ndev);
792 
793 	ndev->priv_flags |= IFF_UNICAST_FLT;
794 
795 	/* user-changeble features */
796 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
797 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
798 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
799 
800 	if (edev->dev_info.common.b_arfs_capable)
801 		hw_features |= NETIF_F_NTUPLE;
802 
803 	if (edev->dev_info.common.vxlan_enable ||
804 	    edev->dev_info.common.geneve_enable)
805 		udp_tunnel_enable = true;
806 
807 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
808 		hw_features |= NETIF_F_TSO_ECN;
809 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
810 					NETIF_F_SG | NETIF_F_TSO |
811 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
812 					NETIF_F_RXCSUM;
813 	}
814 
815 	if (udp_tunnel_enable) {
816 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
817 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
818 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
819 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
820 
821 		qede_set_udp_tunnels(edev);
822 	}
823 
824 	if (edev->dev_info.common.gre_enable) {
825 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
826 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
827 					  NETIF_F_GSO_GRE_CSUM);
828 	}
829 
830 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
831 			      NETIF_F_HIGHDMA;
832 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
833 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
834 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
835 
836 	ndev->hw_features = hw_features;
837 
838 	/* MTU range: 46 - 9600 */
839 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
840 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
841 
842 	/* Set network device HW mac */
843 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
844 
845 	ndev->mtu = edev->dev_info.common.mtu;
846 }
847 
848 /* This function converts from 32b param to two params of level and module
849  * Input 32b decoding:
850  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
851  * 'happy' flow, e.g. memory allocation failed.
852  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
853  * and provide important parameters.
854  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
855  * module. VERBOSE prints are for tracking the specific flow in low level.
856  *
857  * Notice that the level should be that of the lowest required logs.
858  */
859 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
860 {
861 	*p_dp_level = QED_LEVEL_NOTICE;
862 	*p_dp_module = 0;
863 
864 	if (debug & QED_LOG_VERBOSE_MASK) {
865 		*p_dp_level = QED_LEVEL_VERBOSE;
866 		*p_dp_module = (debug & 0x3FFFFFFF);
867 	} else if (debug & QED_LOG_INFO_MASK) {
868 		*p_dp_level = QED_LEVEL_INFO;
869 	} else if (debug & QED_LOG_NOTICE_MASK) {
870 		*p_dp_level = QED_LEVEL_NOTICE;
871 	}
872 }
873 
874 static void qede_free_fp_array(struct qede_dev *edev)
875 {
876 	if (edev->fp_array) {
877 		struct qede_fastpath *fp;
878 		int i;
879 
880 		for_each_queue(i) {
881 			fp = &edev->fp_array[i];
882 
883 			kfree(fp->sb_info);
884 			/* Handle mem alloc failure case where qede_init_fp
885 			 * didn't register xdp_rxq_info yet.
886 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
887 			 */
888 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
889 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
890 			kfree(fp->rxq);
891 			kfree(fp->xdp_tx);
892 			kfree(fp->txq);
893 		}
894 		kfree(edev->fp_array);
895 	}
896 
897 	edev->num_queues = 0;
898 	edev->fp_num_tx = 0;
899 	edev->fp_num_rx = 0;
900 }
901 
902 static int qede_alloc_fp_array(struct qede_dev *edev)
903 {
904 	u8 fp_combined, fp_rx = edev->fp_num_rx;
905 	struct qede_fastpath *fp;
906 	void *mem;
907 	int i;
908 
909 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
910 				 sizeof(*edev->fp_array), GFP_KERNEL);
911 	if (!edev->fp_array) {
912 		DP_NOTICE(edev, "fp array allocation failed\n");
913 		goto err;
914 	}
915 
916 	mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
917 		       sizeof(*edev->coal_entry), GFP_KERNEL);
918 	if (!mem) {
919 		DP_ERR(edev, "coalesce entry allocation failed\n");
920 		kfree(edev->coal_entry);
921 		goto err;
922 	}
923 	edev->coal_entry = mem;
924 
925 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
926 
927 	/* Allocate the FP elements for Rx queues followed by combined and then
928 	 * the Tx. This ordering should be maintained so that the respective
929 	 * queues (Rx or Tx) will be together in the fastpath array and the
930 	 * associated ids will be sequential.
931 	 */
932 	for_each_queue(i) {
933 		fp = &edev->fp_array[i];
934 
935 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
936 		if (!fp->sb_info) {
937 			DP_NOTICE(edev, "sb info struct allocation failed\n");
938 			goto err;
939 		}
940 
941 		if (fp_rx) {
942 			fp->type = QEDE_FASTPATH_RX;
943 			fp_rx--;
944 		} else if (fp_combined) {
945 			fp->type = QEDE_FASTPATH_COMBINED;
946 			fp_combined--;
947 		} else {
948 			fp->type = QEDE_FASTPATH_TX;
949 		}
950 
951 		if (fp->type & QEDE_FASTPATH_TX) {
952 			fp->txq = kcalloc(edev->dev_info.num_tc,
953 					  sizeof(*fp->txq), GFP_KERNEL);
954 			if (!fp->txq)
955 				goto err;
956 		}
957 
958 		if (fp->type & QEDE_FASTPATH_RX) {
959 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
960 			if (!fp->rxq)
961 				goto err;
962 
963 			if (edev->xdp_prog) {
964 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
965 						     GFP_KERNEL);
966 				if (!fp->xdp_tx)
967 					goto err;
968 				fp->type |= QEDE_FASTPATH_XDP;
969 			}
970 		}
971 	}
972 
973 	return 0;
974 err:
975 	qede_free_fp_array(edev);
976 	return -ENOMEM;
977 }
978 
979 /* The qede lock is used to protect driver state change and driver flows that
980  * are not reentrant.
981  */
982 void __qede_lock(struct qede_dev *edev)
983 {
984 	mutex_lock(&edev->qede_lock);
985 }
986 
987 void __qede_unlock(struct qede_dev *edev)
988 {
989 	mutex_unlock(&edev->qede_lock);
990 }
991 
992 /* This version of the lock should be used when acquiring the RTNL lock is also
993  * needed in addition to the internal qede lock.
994  */
995 static void qede_lock(struct qede_dev *edev)
996 {
997 	rtnl_lock();
998 	__qede_lock(edev);
999 }
1000 
1001 static void qede_unlock(struct qede_dev *edev)
1002 {
1003 	__qede_unlock(edev);
1004 	rtnl_unlock();
1005 }
1006 
1007 static void qede_sp_task(struct work_struct *work)
1008 {
1009 	struct qede_dev *edev = container_of(work, struct qede_dev,
1010 					     sp_task.work);
1011 
1012 	/* The locking scheme depends on the specific flag:
1013 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1014 	 * ensure that ongoing flows are ended and new ones are not started.
1015 	 * In other cases - only the internal qede lock should be acquired.
1016 	 */
1017 
1018 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1019 #ifdef CONFIG_QED_SRIOV
1020 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1021 		 * The recovery of the active VFs is currently not supported.
1022 		 */
1023 		if (pci_num_vf(edev->pdev))
1024 			qede_sriov_configure(edev->pdev, 0);
1025 #endif
1026 		qede_lock(edev);
1027 		qede_recovery_handler(edev);
1028 		qede_unlock(edev);
1029 	}
1030 
1031 	__qede_lock(edev);
1032 
1033 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1034 		if (edev->state == QEDE_STATE_OPEN)
1035 			qede_config_rx_mode(edev->ndev);
1036 
1037 #ifdef CONFIG_RFS_ACCEL
1038 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1039 		if (edev->state == QEDE_STATE_OPEN)
1040 			qede_process_arfs_filters(edev, false);
1041 	}
1042 #endif
1043 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1044 		qede_generic_hw_err_handler(edev);
1045 	__qede_unlock(edev);
1046 
1047 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1048 #ifdef CONFIG_QED_SRIOV
1049 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1050 		 * The recovery of the active VFs is currently not supported.
1051 		 */
1052 		if (pci_num_vf(edev->pdev))
1053 			qede_sriov_configure(edev->pdev, 0);
1054 #endif
1055 		edev->ops->common->recovery_process(edev->cdev);
1056 	}
1057 }
1058 
1059 static void qede_update_pf_params(struct qed_dev *cdev)
1060 {
1061 	struct qed_pf_params pf_params;
1062 	u16 num_cons;
1063 
1064 	/* 64 rx + 64 tx + 64 XDP */
1065 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1066 
1067 	/* 1 rx + 1 xdp + max tx cos */
1068 	num_cons = QED_MIN_L2_CONS;
1069 
1070 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1071 
1072 	/* Same for VFs - make sure they'll have sufficient connections
1073 	 * to support XDP Tx queues.
1074 	 */
1075 	pf_params.eth_pf_params.num_vf_cons = 48;
1076 
1077 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1078 	qed_ops->common->update_pf_params(cdev, &pf_params);
1079 }
1080 
1081 #define QEDE_FW_VER_STR_SIZE	80
1082 
1083 static void qede_log_probe(struct qede_dev *edev)
1084 {
1085 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1086 	u8 buf[QEDE_FW_VER_STR_SIZE];
1087 	size_t left_size;
1088 
1089 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1090 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1091 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1092 		 p_dev_info->fw_eng,
1093 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1094 		 QED_MFW_VERSION_3_OFFSET,
1095 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1096 		 QED_MFW_VERSION_2_OFFSET,
1097 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1098 		 QED_MFW_VERSION_1_OFFSET,
1099 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1100 		 QED_MFW_VERSION_0_OFFSET);
1101 
1102 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1103 	if (p_dev_info->mbi_version && left_size)
1104 		snprintf(buf + strlen(buf), left_size,
1105 			 " [MBI %d.%d.%d]",
1106 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1107 			 QED_MBI_VERSION_2_OFFSET,
1108 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1109 			 QED_MBI_VERSION_1_OFFSET,
1110 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1111 			 QED_MBI_VERSION_0_OFFSET);
1112 
1113 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1114 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1115 		buf, edev->ndev->name);
1116 }
1117 
1118 enum qede_probe_mode {
1119 	QEDE_PROBE_NORMAL,
1120 	QEDE_PROBE_RECOVERY,
1121 };
1122 
1123 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1124 			bool is_vf, enum qede_probe_mode mode)
1125 {
1126 	struct qed_probe_params probe_params;
1127 	struct qed_slowpath_params sp_params;
1128 	struct qed_dev_eth_info dev_info;
1129 	struct qede_dev *edev;
1130 	struct qed_dev *cdev;
1131 	int rc;
1132 
1133 	if (unlikely(dp_level & QED_LEVEL_INFO))
1134 		pr_notice("Starting qede probe\n");
1135 
1136 	memset(&probe_params, 0, sizeof(probe_params));
1137 	probe_params.protocol = QED_PROTOCOL_ETH;
1138 	probe_params.dp_module = dp_module;
1139 	probe_params.dp_level = dp_level;
1140 	probe_params.is_vf = is_vf;
1141 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1142 	cdev = qed_ops->common->probe(pdev, &probe_params);
1143 	if (!cdev) {
1144 		rc = -ENODEV;
1145 		goto err0;
1146 	}
1147 
1148 	qede_update_pf_params(cdev);
1149 
1150 	/* Start the Slowpath-process */
1151 	memset(&sp_params, 0, sizeof(sp_params));
1152 	sp_params.int_mode = QED_INT_MODE_MSIX;
1153 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1154 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1155 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1156 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1157 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1158 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1159 	if (rc) {
1160 		pr_notice("Cannot start slowpath\n");
1161 		goto err1;
1162 	}
1163 
1164 	/* Learn information crucial for qede to progress */
1165 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1166 	if (rc)
1167 		goto err2;
1168 
1169 	if (mode != QEDE_PROBE_RECOVERY) {
1170 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1171 					   dp_level);
1172 		if (!edev) {
1173 			rc = -ENOMEM;
1174 			goto err2;
1175 		}
1176 
1177 		edev->devlink = qed_ops->common->devlink_register(cdev);
1178 		if (IS_ERR(edev->devlink)) {
1179 			DP_NOTICE(edev, "Cannot register devlink\n");
1180 			edev->devlink = NULL;
1181 			/* Go on, we can live without devlink */
1182 		}
1183 	} else {
1184 		struct net_device *ndev = pci_get_drvdata(pdev);
1185 
1186 		edev = netdev_priv(ndev);
1187 
1188 		if (edev->devlink) {
1189 			struct qed_devlink *qdl = devlink_priv(edev->devlink);
1190 
1191 			qdl->cdev = cdev;
1192 		}
1193 		edev->cdev = cdev;
1194 		memset(&edev->stats, 0, sizeof(edev->stats));
1195 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1196 	}
1197 
1198 	if (is_vf)
1199 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1200 
1201 	qede_init_ndev(edev);
1202 
1203 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1204 	if (rc)
1205 		goto err3;
1206 
1207 	if (mode != QEDE_PROBE_RECOVERY) {
1208 		/* Prepare the lock prior to the registration of the netdev,
1209 		 * as once it's registered we might reach flows requiring it
1210 		 * [it's even possible to reach a flow needing it directly
1211 		 * from there, although it's unlikely].
1212 		 */
1213 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1214 		mutex_init(&edev->qede_lock);
1215 
1216 		rc = register_netdev(edev->ndev);
1217 		if (rc) {
1218 			DP_NOTICE(edev, "Cannot register net-device\n");
1219 			goto err4;
1220 		}
1221 	}
1222 
1223 	edev->ops->common->set_name(cdev, edev->ndev->name);
1224 
1225 	/* PTP not supported on VFs */
1226 	if (!is_vf)
1227 		qede_ptp_enable(edev);
1228 
1229 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1230 
1231 #ifdef CONFIG_DCB
1232 	if (!IS_VF(edev))
1233 		qede_set_dcbnl_ops(edev->ndev);
1234 #endif
1235 
1236 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1237 
1238 	qede_log_probe(edev);
1239 	return 0;
1240 
1241 err4:
1242 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1243 err3:
1244 	if (mode != QEDE_PROBE_RECOVERY)
1245 		free_netdev(edev->ndev);
1246 	else
1247 		edev->cdev = NULL;
1248 err2:
1249 	qed_ops->common->slowpath_stop(cdev);
1250 err1:
1251 	qed_ops->common->remove(cdev);
1252 err0:
1253 	return rc;
1254 }
1255 
1256 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1257 {
1258 	bool is_vf = false;
1259 	u32 dp_module = 0;
1260 	u8 dp_level = 0;
1261 
1262 	switch ((enum qede_pci_private)id->driver_data) {
1263 	case QEDE_PRIVATE_VF:
1264 		if (debug & QED_LOG_VERBOSE_MASK)
1265 			dev_err(&pdev->dev, "Probing a VF\n");
1266 		is_vf = true;
1267 		break;
1268 	default:
1269 		if (debug & QED_LOG_VERBOSE_MASK)
1270 			dev_err(&pdev->dev, "Probing a PF\n");
1271 	}
1272 
1273 	qede_config_debug(debug, &dp_module, &dp_level);
1274 
1275 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1276 			    QEDE_PROBE_NORMAL);
1277 }
1278 
1279 enum qede_remove_mode {
1280 	QEDE_REMOVE_NORMAL,
1281 	QEDE_REMOVE_RECOVERY,
1282 };
1283 
1284 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1285 {
1286 	struct net_device *ndev = pci_get_drvdata(pdev);
1287 	struct qede_dev *edev;
1288 	struct qed_dev *cdev;
1289 
1290 	if (!ndev) {
1291 		dev_info(&pdev->dev, "Device has already been removed\n");
1292 		return;
1293 	}
1294 
1295 	edev = netdev_priv(ndev);
1296 	cdev = edev->cdev;
1297 
1298 	DP_INFO(edev, "Starting qede_remove\n");
1299 
1300 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1301 
1302 	if (mode != QEDE_REMOVE_RECOVERY) {
1303 		unregister_netdev(ndev);
1304 
1305 		cancel_delayed_work_sync(&edev->sp_task);
1306 
1307 		edev->ops->common->set_power_state(cdev, PCI_D0);
1308 
1309 		pci_set_drvdata(pdev, NULL);
1310 	}
1311 
1312 	qede_ptp_disable(edev);
1313 
1314 	/* Use global ops since we've freed edev */
1315 	qed_ops->common->slowpath_stop(cdev);
1316 	if (system_state == SYSTEM_POWER_OFF)
1317 		return;
1318 
1319 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1320 		qed_ops->common->devlink_unregister(edev->devlink);
1321 		edev->devlink = NULL;
1322 	}
1323 	qed_ops->common->remove(cdev);
1324 	edev->cdev = NULL;
1325 
1326 	/* Since this can happen out-of-sync with other flows,
1327 	 * don't release the netdevice until after slowpath stop
1328 	 * has been called to guarantee various other contexts
1329 	 * [e.g., QED register callbacks] won't break anything when
1330 	 * accessing the netdevice.
1331 	 */
1332 	if (mode != QEDE_REMOVE_RECOVERY) {
1333 		kfree(edev->coal_entry);
1334 		free_netdev(ndev);
1335 	}
1336 
1337 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1338 }
1339 
1340 static void qede_remove(struct pci_dev *pdev)
1341 {
1342 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1343 }
1344 
1345 static void qede_shutdown(struct pci_dev *pdev)
1346 {
1347 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1348 }
1349 
1350 /* -------------------------------------------------------------------------
1351  * START OF LOAD / UNLOAD
1352  * -------------------------------------------------------------------------
1353  */
1354 
1355 static int qede_set_num_queues(struct qede_dev *edev)
1356 {
1357 	int rc;
1358 	u16 rss_num;
1359 
1360 	/* Setup queues according to possible resources*/
1361 	if (edev->req_queues)
1362 		rss_num = edev->req_queues;
1363 	else
1364 		rss_num = netif_get_num_default_rss_queues() *
1365 			  edev->dev_info.common.num_hwfns;
1366 
1367 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1368 
1369 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1370 	if (rc > 0) {
1371 		/* Managed to request interrupts for our queues */
1372 		edev->num_queues = rc;
1373 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1374 			QEDE_QUEUE_CNT(edev), rss_num);
1375 		rc = 0;
1376 	}
1377 
1378 	edev->fp_num_tx = edev->req_num_tx;
1379 	edev->fp_num_rx = edev->req_num_rx;
1380 
1381 	return rc;
1382 }
1383 
1384 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1385 			     u16 sb_id)
1386 {
1387 	if (sb_info->sb_virt) {
1388 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1389 					      QED_SB_TYPE_L2_QUEUE);
1390 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1391 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1392 		memset(sb_info, 0, sizeof(*sb_info));
1393 	}
1394 }
1395 
1396 /* This function allocates fast-path status block memory */
1397 static int qede_alloc_mem_sb(struct qede_dev *edev,
1398 			     struct qed_sb_info *sb_info, u16 sb_id)
1399 {
1400 	struct status_block_e4 *sb_virt;
1401 	dma_addr_t sb_phys;
1402 	int rc;
1403 
1404 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1405 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1406 	if (!sb_virt) {
1407 		DP_ERR(edev, "Status block allocation failed\n");
1408 		return -ENOMEM;
1409 	}
1410 
1411 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1412 					sb_virt, sb_phys, sb_id,
1413 					QED_SB_TYPE_L2_QUEUE);
1414 	if (rc) {
1415 		DP_ERR(edev, "Status block initialization failed\n");
1416 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1417 				  sb_virt, sb_phys);
1418 		return rc;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 static void qede_free_rx_buffers(struct qede_dev *edev,
1425 				 struct qede_rx_queue *rxq)
1426 {
1427 	u16 i;
1428 
1429 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1430 		struct sw_rx_data *rx_buf;
1431 		struct page *data;
1432 
1433 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1434 		data = rx_buf->data;
1435 
1436 		dma_unmap_page(&edev->pdev->dev,
1437 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1438 
1439 		rx_buf->data = NULL;
1440 		__free_page(data);
1441 	}
1442 }
1443 
1444 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1445 {
1446 	/* Free rx buffers */
1447 	qede_free_rx_buffers(edev, rxq);
1448 
1449 	/* Free the parallel SW ring */
1450 	kfree(rxq->sw_rx_ring);
1451 
1452 	/* Free the real RQ ring used by FW */
1453 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1454 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1455 }
1456 
1457 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1458 {
1459 	int i;
1460 
1461 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1462 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1463 
1464 		tpa_info->state = QEDE_AGG_STATE_NONE;
1465 	}
1466 }
1467 
1468 /* This function allocates all memory needed per Rx queue */
1469 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1470 {
1471 	struct qed_chain_init_params params = {
1472 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1473 		.num_elems	= RX_RING_SIZE,
1474 	};
1475 	struct qed_dev *cdev = edev->cdev;
1476 	int i, rc, size;
1477 
1478 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1479 
1480 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1481 
1482 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1483 	size = rxq->rx_headroom +
1484 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1485 
1486 	/* Make sure that the headroom and  payload fit in a single page */
1487 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1488 		rxq->rx_buf_size = PAGE_SIZE - size;
1489 
1490 	/* Segment size to split a page in multiple equal parts,
1491 	 * unless XDP is used in which case we'd use the entire page.
1492 	 */
1493 	if (!edev->xdp_prog) {
1494 		size = size + rxq->rx_buf_size;
1495 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1496 	} else {
1497 		rxq->rx_buf_seg_size = PAGE_SIZE;
1498 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1499 	}
1500 
1501 	/* Allocate the parallel driver ring for Rx buffers */
1502 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1503 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1504 	if (!rxq->sw_rx_ring) {
1505 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1506 		rc = -ENOMEM;
1507 		goto err;
1508 	}
1509 
1510 	/* Allocate FW Rx ring  */
1511 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1512 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1513 	params.elem_size = sizeof(struct eth_rx_bd);
1514 
1515 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1516 	if (rc)
1517 		goto err;
1518 
1519 	/* Allocate FW completion ring */
1520 	params.mode = QED_CHAIN_MODE_PBL;
1521 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1522 	params.elem_size = sizeof(union eth_rx_cqe);
1523 
1524 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1525 	if (rc)
1526 		goto err;
1527 
1528 	/* Allocate buffers for the Rx ring */
1529 	rxq->filled_buffers = 0;
1530 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1531 		rc = qede_alloc_rx_buffer(rxq, false);
1532 		if (rc) {
1533 			DP_ERR(edev,
1534 			       "Rx buffers allocation failed at index %d\n", i);
1535 			goto err;
1536 		}
1537 	}
1538 
1539 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1540 	if (!edev->gro_disable)
1541 		qede_set_tpa_param(rxq);
1542 err:
1543 	return rc;
1544 }
1545 
1546 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1547 {
1548 	/* Free the parallel SW ring */
1549 	if (txq->is_xdp)
1550 		kfree(txq->sw_tx_ring.xdp);
1551 	else
1552 		kfree(txq->sw_tx_ring.skbs);
1553 
1554 	/* Free the real RQ ring used by FW */
1555 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1556 }
1557 
1558 /* This function allocates all memory needed per Tx queue */
1559 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1560 {
1561 	struct qed_chain_init_params params = {
1562 		.mode		= QED_CHAIN_MODE_PBL,
1563 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1564 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1565 		.num_elems	= edev->q_num_tx_buffers,
1566 		.elem_size	= sizeof(union eth_tx_bd_types),
1567 	};
1568 	int size, rc;
1569 
1570 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1571 
1572 	/* Allocate the parallel driver ring for Tx buffers */
1573 	if (txq->is_xdp) {
1574 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1575 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1576 		if (!txq->sw_tx_ring.xdp)
1577 			goto err;
1578 	} else {
1579 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1580 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1581 		if (!txq->sw_tx_ring.skbs)
1582 			goto err;
1583 	}
1584 
1585 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1586 	if (rc)
1587 		goto err;
1588 
1589 	return 0;
1590 
1591 err:
1592 	qede_free_mem_txq(edev, txq);
1593 	return -ENOMEM;
1594 }
1595 
1596 /* This function frees all memory of a single fp */
1597 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1598 {
1599 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1600 
1601 	if (fp->type & QEDE_FASTPATH_RX)
1602 		qede_free_mem_rxq(edev, fp->rxq);
1603 
1604 	if (fp->type & QEDE_FASTPATH_XDP)
1605 		qede_free_mem_txq(edev, fp->xdp_tx);
1606 
1607 	if (fp->type & QEDE_FASTPATH_TX) {
1608 		int cos;
1609 
1610 		for_each_cos_in_txq(edev, cos)
1611 			qede_free_mem_txq(edev, &fp->txq[cos]);
1612 	}
1613 }
1614 
1615 /* This function allocates all memory needed for a single fp (i.e. an entity
1616  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1617  */
1618 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1619 {
1620 	int rc = 0;
1621 
1622 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1623 	if (rc)
1624 		goto out;
1625 
1626 	if (fp->type & QEDE_FASTPATH_RX) {
1627 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1628 		if (rc)
1629 			goto out;
1630 	}
1631 
1632 	if (fp->type & QEDE_FASTPATH_XDP) {
1633 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1634 		if (rc)
1635 			goto out;
1636 	}
1637 
1638 	if (fp->type & QEDE_FASTPATH_TX) {
1639 		int cos;
1640 
1641 		for_each_cos_in_txq(edev, cos) {
1642 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1643 			if (rc)
1644 				goto out;
1645 		}
1646 	}
1647 
1648 out:
1649 	return rc;
1650 }
1651 
1652 static void qede_free_mem_load(struct qede_dev *edev)
1653 {
1654 	int i;
1655 
1656 	for_each_queue(i) {
1657 		struct qede_fastpath *fp = &edev->fp_array[i];
1658 
1659 		qede_free_mem_fp(edev, fp);
1660 	}
1661 }
1662 
1663 /* This function allocates all qede memory at NIC load. */
1664 static int qede_alloc_mem_load(struct qede_dev *edev)
1665 {
1666 	int rc = 0, queue_id;
1667 
1668 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1669 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1670 
1671 		rc = qede_alloc_mem_fp(edev, fp);
1672 		if (rc) {
1673 			DP_ERR(edev,
1674 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1675 			       queue_id);
1676 			qede_free_mem_load(edev);
1677 			return rc;
1678 		}
1679 	}
1680 
1681 	return 0;
1682 }
1683 
1684 static void qede_empty_tx_queue(struct qede_dev *edev,
1685 				struct qede_tx_queue *txq)
1686 {
1687 	unsigned int pkts_compl = 0, bytes_compl = 0;
1688 	struct netdev_queue *netdev_txq;
1689 	int rc, len = 0;
1690 
1691 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1692 
1693 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1694 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1695 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1696 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1697 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1698 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1699 
1700 		rc = qede_free_tx_pkt(edev, txq, &len);
1701 		if (rc) {
1702 			DP_NOTICE(edev,
1703 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1704 				  txq->index,
1705 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1706 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1707 			break;
1708 		}
1709 
1710 		bytes_compl += len;
1711 		pkts_compl++;
1712 		txq->sw_tx_cons++;
1713 	}
1714 
1715 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1716 }
1717 
1718 static void qede_empty_tx_queues(struct qede_dev *edev)
1719 {
1720 	int i;
1721 
1722 	for_each_queue(i)
1723 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1724 			int cos;
1725 
1726 			for_each_cos_in_txq(edev, cos) {
1727 				struct qede_fastpath *fp;
1728 
1729 				fp = &edev->fp_array[i];
1730 				qede_empty_tx_queue(edev,
1731 						    &fp->txq[cos]);
1732 			}
1733 		}
1734 }
1735 
1736 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1737 static void qede_init_fp(struct qede_dev *edev)
1738 {
1739 	int queue_id, rxq_index = 0, txq_index = 0;
1740 	struct qede_fastpath *fp;
1741 	bool init_xdp = false;
1742 
1743 	for_each_queue(queue_id) {
1744 		fp = &edev->fp_array[queue_id];
1745 
1746 		fp->edev = edev;
1747 		fp->id = queue_id;
1748 
1749 		if (fp->type & QEDE_FASTPATH_XDP) {
1750 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1751 								rxq_index);
1752 			fp->xdp_tx->is_xdp = 1;
1753 
1754 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1755 			init_xdp = true;
1756 		}
1757 
1758 		if (fp->type & QEDE_FASTPATH_RX) {
1759 			fp->rxq->rxq_id = rxq_index++;
1760 
1761 			/* Determine how to map buffers for this queue */
1762 			if (fp->type & QEDE_FASTPATH_XDP)
1763 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1764 			else
1765 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1766 			fp->rxq->dev = &edev->pdev->dev;
1767 
1768 			/* Driver have no error path from here */
1769 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1770 						 fp->rxq->rxq_id, 0) < 0);
1771 
1772 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1773 						       MEM_TYPE_PAGE_ORDER0,
1774 						       NULL)) {
1775 				DP_NOTICE(edev,
1776 					  "Failed to register XDP memory model\n");
1777 			}
1778 		}
1779 
1780 		if (fp->type & QEDE_FASTPATH_TX) {
1781 			int cos;
1782 
1783 			for_each_cos_in_txq(edev, cos) {
1784 				struct qede_tx_queue *txq = &fp->txq[cos];
1785 				u16 ndev_tx_id;
1786 
1787 				txq->cos = cos;
1788 				txq->index = txq_index;
1789 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1790 				txq->ndev_txq_id = ndev_tx_id;
1791 
1792 				if (edev->dev_info.is_legacy)
1793 					txq->is_legacy = true;
1794 				txq->dev = &edev->pdev->dev;
1795 			}
1796 
1797 			txq_index++;
1798 		}
1799 
1800 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1801 			 edev->ndev->name, queue_id);
1802 	}
1803 
1804 	if (init_xdp) {
1805 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1806 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1807 	}
1808 }
1809 
1810 static int qede_set_real_num_queues(struct qede_dev *edev)
1811 {
1812 	int rc = 0;
1813 
1814 	rc = netif_set_real_num_tx_queues(edev->ndev,
1815 					  QEDE_TSS_COUNT(edev) *
1816 					  edev->dev_info.num_tc);
1817 	if (rc) {
1818 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1819 		return rc;
1820 	}
1821 
1822 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1823 	if (rc) {
1824 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1825 		return rc;
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static void qede_napi_disable_remove(struct qede_dev *edev)
1832 {
1833 	int i;
1834 
1835 	for_each_queue(i) {
1836 		napi_disable(&edev->fp_array[i].napi);
1837 
1838 		netif_napi_del(&edev->fp_array[i].napi);
1839 	}
1840 }
1841 
1842 static void qede_napi_add_enable(struct qede_dev *edev)
1843 {
1844 	int i;
1845 
1846 	/* Add NAPI objects */
1847 	for_each_queue(i) {
1848 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1849 			       qede_poll, NAPI_POLL_WEIGHT);
1850 		napi_enable(&edev->fp_array[i].napi);
1851 	}
1852 }
1853 
1854 static void qede_sync_free_irqs(struct qede_dev *edev)
1855 {
1856 	int i;
1857 
1858 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1859 		if (edev->int_info.msix_cnt) {
1860 			synchronize_irq(edev->int_info.msix[i].vector);
1861 			free_irq(edev->int_info.msix[i].vector,
1862 				 &edev->fp_array[i]);
1863 		} else {
1864 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1865 		}
1866 	}
1867 
1868 	edev->int_info.used_cnt = 0;
1869 }
1870 
1871 static int qede_req_msix_irqs(struct qede_dev *edev)
1872 {
1873 	int i, rc;
1874 
1875 	/* Sanitize number of interrupts == number of prepared RSS queues */
1876 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1877 		DP_ERR(edev,
1878 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1879 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1880 		return -EINVAL;
1881 	}
1882 
1883 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1884 #ifdef CONFIG_RFS_ACCEL
1885 		struct qede_fastpath *fp = &edev->fp_array[i];
1886 
1887 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1888 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1889 					      edev->int_info.msix[i].vector);
1890 			if (rc) {
1891 				DP_ERR(edev, "Failed to add CPU rmap\n");
1892 				qede_free_arfs(edev);
1893 			}
1894 		}
1895 #endif
1896 		rc = request_irq(edev->int_info.msix[i].vector,
1897 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1898 				 &edev->fp_array[i]);
1899 		if (rc) {
1900 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1901 			qede_sync_free_irqs(edev);
1902 			return rc;
1903 		}
1904 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1905 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1906 			   edev->fp_array[i].name, i,
1907 			   &edev->fp_array[i]);
1908 		edev->int_info.used_cnt++;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static void qede_simd_fp_handler(void *cookie)
1915 {
1916 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1917 
1918 	napi_schedule_irqoff(&fp->napi);
1919 }
1920 
1921 static int qede_setup_irqs(struct qede_dev *edev)
1922 {
1923 	int i, rc = 0;
1924 
1925 	/* Learn Interrupt configuration */
1926 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1927 	if (rc)
1928 		return rc;
1929 
1930 	if (edev->int_info.msix_cnt) {
1931 		rc = qede_req_msix_irqs(edev);
1932 		if (rc)
1933 			return rc;
1934 		edev->ndev->irq = edev->int_info.msix[0].vector;
1935 	} else {
1936 		const struct qed_common_ops *ops;
1937 
1938 		/* qed should learn receive the RSS ids and callbacks */
1939 		ops = edev->ops->common;
1940 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1941 			ops->simd_handler_config(edev->cdev,
1942 						 &edev->fp_array[i], i,
1943 						 qede_simd_fp_handler);
1944 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1945 	}
1946 	return 0;
1947 }
1948 
1949 static int qede_drain_txq(struct qede_dev *edev,
1950 			  struct qede_tx_queue *txq, bool allow_drain)
1951 {
1952 	int rc, cnt = 1000;
1953 
1954 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1955 		if (!cnt) {
1956 			if (allow_drain) {
1957 				DP_NOTICE(edev,
1958 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1959 					  txq->index);
1960 				rc = edev->ops->common->drain(edev->cdev);
1961 				if (rc)
1962 					return rc;
1963 				return qede_drain_txq(edev, txq, false);
1964 			}
1965 			DP_NOTICE(edev,
1966 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1967 				  txq->index, txq->sw_tx_prod,
1968 				  txq->sw_tx_cons);
1969 			return -ENODEV;
1970 		}
1971 		cnt--;
1972 		usleep_range(1000, 2000);
1973 		barrier();
1974 	}
1975 
1976 	/* FW finished processing, wait for HW to transmit all tx packets */
1977 	usleep_range(1000, 2000);
1978 
1979 	return 0;
1980 }
1981 
1982 static int qede_stop_txq(struct qede_dev *edev,
1983 			 struct qede_tx_queue *txq, int rss_id)
1984 {
1985 	/* delete doorbell from doorbell recovery mechanism */
1986 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1987 					   &txq->tx_db);
1988 
1989 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1990 }
1991 
1992 static int qede_stop_queues(struct qede_dev *edev)
1993 {
1994 	struct qed_update_vport_params *vport_update_params;
1995 	struct qed_dev *cdev = edev->cdev;
1996 	struct qede_fastpath *fp;
1997 	int rc, i;
1998 
1999 	/* Disable the vport */
2000 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2001 	if (!vport_update_params)
2002 		return -ENOMEM;
2003 
2004 	vport_update_params->vport_id = 0;
2005 	vport_update_params->update_vport_active_flg = 1;
2006 	vport_update_params->vport_active_flg = 0;
2007 	vport_update_params->update_rss_flg = 0;
2008 
2009 	rc = edev->ops->vport_update(cdev, vport_update_params);
2010 	vfree(vport_update_params);
2011 
2012 	if (rc) {
2013 		DP_ERR(edev, "Failed to update vport\n");
2014 		return rc;
2015 	}
2016 
2017 	/* Flush Tx queues. If needed, request drain from MCP */
2018 	for_each_queue(i) {
2019 		fp = &edev->fp_array[i];
2020 
2021 		if (fp->type & QEDE_FASTPATH_TX) {
2022 			int cos;
2023 
2024 			for_each_cos_in_txq(edev, cos) {
2025 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2026 				if (rc)
2027 					return rc;
2028 			}
2029 		}
2030 
2031 		if (fp->type & QEDE_FASTPATH_XDP) {
2032 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2033 			if (rc)
2034 				return rc;
2035 		}
2036 	}
2037 
2038 	/* Stop all Queues in reverse order */
2039 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2040 		fp = &edev->fp_array[i];
2041 
2042 		/* Stop the Tx Queue(s) */
2043 		if (fp->type & QEDE_FASTPATH_TX) {
2044 			int cos;
2045 
2046 			for_each_cos_in_txq(edev, cos) {
2047 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2048 				if (rc)
2049 					return rc;
2050 			}
2051 		}
2052 
2053 		/* Stop the Rx Queue */
2054 		if (fp->type & QEDE_FASTPATH_RX) {
2055 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2056 			if (rc) {
2057 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2058 				return rc;
2059 			}
2060 		}
2061 
2062 		/* Stop the XDP forwarding queue */
2063 		if (fp->type & QEDE_FASTPATH_XDP) {
2064 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2065 			if (rc)
2066 				return rc;
2067 
2068 			bpf_prog_put(fp->rxq->xdp_prog);
2069 		}
2070 	}
2071 
2072 	/* Stop the vport */
2073 	rc = edev->ops->vport_stop(cdev, 0);
2074 	if (rc)
2075 		DP_ERR(edev, "Failed to stop VPORT\n");
2076 
2077 	return rc;
2078 }
2079 
2080 static int qede_start_txq(struct qede_dev *edev,
2081 			  struct qede_fastpath *fp,
2082 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2083 {
2084 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2085 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2086 	struct qed_queue_start_common_params params;
2087 	struct qed_txq_start_ret_params ret_params;
2088 	int rc;
2089 
2090 	memset(&params, 0, sizeof(params));
2091 	memset(&ret_params, 0, sizeof(ret_params));
2092 
2093 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2094 	 * We don't really care about its coalescing.
2095 	 */
2096 	if (txq->is_xdp)
2097 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2098 	else
2099 		params.queue_id = txq->index;
2100 
2101 	params.p_sb = fp->sb_info;
2102 	params.sb_idx = sb_idx;
2103 	params.tc = txq->cos;
2104 
2105 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2106 				   page_cnt, &ret_params);
2107 	if (rc) {
2108 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2109 		return rc;
2110 	}
2111 
2112 	txq->doorbell_addr = ret_params.p_doorbell;
2113 	txq->handle = ret_params.p_handle;
2114 
2115 	/* Determine the FW consumer address associated */
2116 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2117 
2118 	/* Prepare the doorbell parameters */
2119 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2120 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2121 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2122 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2123 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2124 
2125 	/* register doorbell with doorbell recovery mechanism */
2126 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2127 						&txq->tx_db, DB_REC_WIDTH_32B,
2128 						DB_REC_KERNEL);
2129 
2130 	return rc;
2131 }
2132 
2133 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2134 {
2135 	int vlan_removal_en = 1;
2136 	struct qed_dev *cdev = edev->cdev;
2137 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2138 	struct qed_update_vport_params *vport_update_params;
2139 	struct qed_queue_start_common_params q_params;
2140 	struct qed_start_vport_params start = {0};
2141 	int rc, i;
2142 
2143 	if (!edev->num_queues) {
2144 		DP_ERR(edev,
2145 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2146 		return -EINVAL;
2147 	}
2148 
2149 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2150 	if (!vport_update_params)
2151 		return -ENOMEM;
2152 
2153 	start.handle_ptp_pkts = !!(edev->ptp);
2154 	start.gro_enable = !edev->gro_disable;
2155 	start.mtu = edev->ndev->mtu;
2156 	start.vport_id = 0;
2157 	start.drop_ttl0 = true;
2158 	start.remove_inner_vlan = vlan_removal_en;
2159 	start.clear_stats = clear_stats;
2160 
2161 	rc = edev->ops->vport_start(cdev, &start);
2162 
2163 	if (rc) {
2164 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2165 		goto out;
2166 	}
2167 
2168 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2169 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2170 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2171 
2172 	for_each_queue(i) {
2173 		struct qede_fastpath *fp = &edev->fp_array[i];
2174 		dma_addr_t p_phys_table;
2175 		u32 page_cnt;
2176 
2177 		if (fp->type & QEDE_FASTPATH_RX) {
2178 			struct qed_rxq_start_ret_params ret_params;
2179 			struct qede_rx_queue *rxq = fp->rxq;
2180 			__le16 *val;
2181 
2182 			memset(&ret_params, 0, sizeof(ret_params));
2183 			memset(&q_params, 0, sizeof(q_params));
2184 			q_params.queue_id = rxq->rxq_id;
2185 			q_params.vport_id = 0;
2186 			q_params.p_sb = fp->sb_info;
2187 			q_params.sb_idx = RX_PI;
2188 
2189 			p_phys_table =
2190 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2191 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2192 
2193 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2194 						   rxq->rx_buf_size,
2195 						   rxq->rx_bd_ring.p_phys_addr,
2196 						   p_phys_table,
2197 						   page_cnt, &ret_params);
2198 			if (rc) {
2199 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2200 				       rc);
2201 				goto out;
2202 			}
2203 
2204 			/* Use the return parameters */
2205 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2206 			rxq->handle = ret_params.p_handle;
2207 
2208 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2209 			rxq->hw_cons_ptr = val;
2210 
2211 			qede_update_rx_prod(edev, rxq);
2212 		}
2213 
2214 		if (fp->type & QEDE_FASTPATH_XDP) {
2215 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2216 			if (rc)
2217 				goto out;
2218 
2219 			bpf_prog_add(edev->xdp_prog, 1);
2220 			fp->rxq->xdp_prog = edev->xdp_prog;
2221 		}
2222 
2223 		if (fp->type & QEDE_FASTPATH_TX) {
2224 			int cos;
2225 
2226 			for_each_cos_in_txq(edev, cos) {
2227 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2228 						    TX_PI(cos));
2229 				if (rc)
2230 					goto out;
2231 			}
2232 		}
2233 	}
2234 
2235 	/* Prepare and send the vport enable */
2236 	vport_update_params->vport_id = start.vport_id;
2237 	vport_update_params->update_vport_active_flg = 1;
2238 	vport_update_params->vport_active_flg = 1;
2239 
2240 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2241 	    qed_info->tx_switching) {
2242 		vport_update_params->update_tx_switching_flg = 1;
2243 		vport_update_params->tx_switching_flg = 1;
2244 	}
2245 
2246 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2247 			     &vport_update_params->update_rss_flg);
2248 
2249 	rc = edev->ops->vport_update(cdev, vport_update_params);
2250 	if (rc)
2251 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2252 
2253 out:
2254 	vfree(vport_update_params);
2255 	return rc;
2256 }
2257 
2258 enum qede_unload_mode {
2259 	QEDE_UNLOAD_NORMAL,
2260 	QEDE_UNLOAD_RECOVERY,
2261 };
2262 
2263 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2264 			bool is_locked)
2265 {
2266 	struct qed_link_params link_params;
2267 	int rc;
2268 
2269 	DP_INFO(edev, "Starting qede unload\n");
2270 
2271 	if (!is_locked)
2272 		__qede_lock(edev);
2273 
2274 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2275 
2276 	if (mode != QEDE_UNLOAD_RECOVERY)
2277 		edev->state = QEDE_STATE_CLOSED;
2278 
2279 	qede_rdma_dev_event_close(edev);
2280 
2281 	/* Close OS Tx */
2282 	netif_tx_disable(edev->ndev);
2283 	netif_carrier_off(edev->ndev);
2284 
2285 	if (mode != QEDE_UNLOAD_RECOVERY) {
2286 		/* Reset the link */
2287 		memset(&link_params, 0, sizeof(link_params));
2288 		link_params.link_up = false;
2289 		edev->ops->common->set_link(edev->cdev, &link_params);
2290 
2291 		rc = qede_stop_queues(edev);
2292 		if (rc) {
2293 			qede_sync_free_irqs(edev);
2294 			goto out;
2295 		}
2296 
2297 		DP_INFO(edev, "Stopped Queues\n");
2298 	}
2299 
2300 	qede_vlan_mark_nonconfigured(edev);
2301 	edev->ops->fastpath_stop(edev->cdev);
2302 
2303 	if (edev->dev_info.common.b_arfs_capable) {
2304 		qede_poll_for_freeing_arfs_filters(edev);
2305 		qede_free_arfs(edev);
2306 	}
2307 
2308 	/* Release the interrupts */
2309 	qede_sync_free_irqs(edev);
2310 	edev->ops->common->set_fp_int(edev->cdev, 0);
2311 
2312 	qede_napi_disable_remove(edev);
2313 
2314 	if (mode == QEDE_UNLOAD_RECOVERY)
2315 		qede_empty_tx_queues(edev);
2316 
2317 	qede_free_mem_load(edev);
2318 	qede_free_fp_array(edev);
2319 
2320 out:
2321 	if (!is_locked)
2322 		__qede_unlock(edev);
2323 
2324 	if (mode != QEDE_UNLOAD_RECOVERY)
2325 		DP_NOTICE(edev, "Link is down\n");
2326 
2327 	edev->ptp_skip_txts = 0;
2328 
2329 	DP_INFO(edev, "Ending qede unload\n");
2330 }
2331 
2332 enum qede_load_mode {
2333 	QEDE_LOAD_NORMAL,
2334 	QEDE_LOAD_RELOAD,
2335 	QEDE_LOAD_RECOVERY,
2336 };
2337 
2338 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2339 		     bool is_locked)
2340 {
2341 	struct qed_link_params link_params;
2342 	struct ethtool_coalesce coal = {};
2343 	u8 num_tc;
2344 	int rc, i;
2345 
2346 	DP_INFO(edev, "Starting qede load\n");
2347 
2348 	if (!is_locked)
2349 		__qede_lock(edev);
2350 
2351 	rc = qede_set_num_queues(edev);
2352 	if (rc)
2353 		goto out;
2354 
2355 	rc = qede_alloc_fp_array(edev);
2356 	if (rc)
2357 		goto out;
2358 
2359 	qede_init_fp(edev);
2360 
2361 	rc = qede_alloc_mem_load(edev);
2362 	if (rc)
2363 		goto err1;
2364 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2365 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2366 
2367 	rc = qede_set_real_num_queues(edev);
2368 	if (rc)
2369 		goto err2;
2370 
2371 	if (qede_alloc_arfs(edev)) {
2372 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2373 		edev->dev_info.common.b_arfs_capable = false;
2374 	}
2375 
2376 	qede_napi_add_enable(edev);
2377 	DP_INFO(edev, "Napi added and enabled\n");
2378 
2379 	rc = qede_setup_irqs(edev);
2380 	if (rc)
2381 		goto err3;
2382 	DP_INFO(edev, "Setup IRQs succeeded\n");
2383 
2384 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2385 	if (rc)
2386 		goto err4;
2387 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2388 
2389 	num_tc = netdev_get_num_tc(edev->ndev);
2390 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2391 	qede_setup_tc(edev->ndev, num_tc);
2392 
2393 	/* Program un-configured VLANs */
2394 	qede_configure_vlan_filters(edev);
2395 
2396 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2397 
2398 	/* Ask for link-up using current configuration */
2399 	memset(&link_params, 0, sizeof(link_params));
2400 	link_params.link_up = true;
2401 	edev->ops->common->set_link(edev->cdev, &link_params);
2402 
2403 	edev->state = QEDE_STATE_OPEN;
2404 
2405 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2406 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2407 
2408 	for_each_queue(i) {
2409 		if (edev->coal_entry[i].isvalid) {
2410 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2411 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2412 		}
2413 		__qede_unlock(edev);
2414 		qede_set_per_coalesce(edev->ndev, i, &coal);
2415 		__qede_lock(edev);
2416 	}
2417 	DP_INFO(edev, "Ending successfully qede load\n");
2418 
2419 	goto out;
2420 err4:
2421 	qede_sync_free_irqs(edev);
2422 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2423 err3:
2424 	qede_napi_disable_remove(edev);
2425 err2:
2426 	qede_free_mem_load(edev);
2427 err1:
2428 	edev->ops->common->set_fp_int(edev->cdev, 0);
2429 	qede_free_fp_array(edev);
2430 	edev->num_queues = 0;
2431 	edev->fp_num_tx = 0;
2432 	edev->fp_num_rx = 0;
2433 out:
2434 	if (!is_locked)
2435 		__qede_unlock(edev);
2436 
2437 	return rc;
2438 }
2439 
2440 /* 'func' should be able to run between unload and reload assuming interface
2441  * is actually running, or afterwards in case it's currently DOWN.
2442  */
2443 void qede_reload(struct qede_dev *edev,
2444 		 struct qede_reload_args *args, bool is_locked)
2445 {
2446 	if (!is_locked)
2447 		__qede_lock(edev);
2448 
2449 	/* Since qede_lock is held, internal state wouldn't change even
2450 	 * if netdev state would start transitioning. Check whether current
2451 	 * internal configuration indicates device is up, then reload.
2452 	 */
2453 	if (edev->state == QEDE_STATE_OPEN) {
2454 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2455 		if (args)
2456 			args->func(edev, args);
2457 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2458 
2459 		/* Since no one is going to do it for us, re-configure */
2460 		qede_config_rx_mode(edev->ndev);
2461 	} else if (args) {
2462 		args->func(edev, args);
2463 	}
2464 
2465 	if (!is_locked)
2466 		__qede_unlock(edev);
2467 }
2468 
2469 /* called with rtnl_lock */
2470 static int qede_open(struct net_device *ndev)
2471 {
2472 	struct qede_dev *edev = netdev_priv(ndev);
2473 	int rc;
2474 
2475 	netif_carrier_off(ndev);
2476 
2477 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2478 
2479 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2480 	if (rc)
2481 		return rc;
2482 
2483 	udp_tunnel_nic_reset_ntf(ndev);
2484 
2485 	edev->ops->common->update_drv_state(edev->cdev, true);
2486 
2487 	return 0;
2488 }
2489 
2490 static int qede_close(struct net_device *ndev)
2491 {
2492 	struct qede_dev *edev = netdev_priv(ndev);
2493 
2494 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2495 
2496 	if (edev->cdev)
2497 		edev->ops->common->update_drv_state(edev->cdev, false);
2498 
2499 	return 0;
2500 }
2501 
2502 static void qede_link_update(void *dev, struct qed_link_output *link)
2503 {
2504 	struct qede_dev *edev = dev;
2505 
2506 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2507 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2508 		return;
2509 	}
2510 
2511 	if (link->link_up) {
2512 		if (!netif_carrier_ok(edev->ndev)) {
2513 			DP_NOTICE(edev, "Link is up\n");
2514 			netif_tx_start_all_queues(edev->ndev);
2515 			netif_carrier_on(edev->ndev);
2516 			qede_rdma_dev_event_open(edev);
2517 		}
2518 	} else {
2519 		if (netif_carrier_ok(edev->ndev)) {
2520 			DP_NOTICE(edev, "Link is down\n");
2521 			netif_tx_disable(edev->ndev);
2522 			netif_carrier_off(edev->ndev);
2523 			qede_rdma_dev_event_close(edev);
2524 		}
2525 	}
2526 }
2527 
2528 static void qede_schedule_recovery_handler(void *dev)
2529 {
2530 	struct qede_dev *edev = dev;
2531 
2532 	if (edev->state == QEDE_STATE_RECOVERY) {
2533 		DP_NOTICE(edev,
2534 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2535 		return;
2536 	}
2537 
2538 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2539 	schedule_delayed_work(&edev->sp_task, 0);
2540 
2541 	DP_INFO(edev, "Scheduled a recovery handler\n");
2542 }
2543 
2544 static void qede_recovery_failed(struct qede_dev *edev)
2545 {
2546 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2547 
2548 	netif_device_detach(edev->ndev);
2549 
2550 	if (edev->cdev)
2551 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2552 }
2553 
2554 static void qede_recovery_handler(struct qede_dev *edev)
2555 {
2556 	u32 curr_state = edev->state;
2557 	int rc;
2558 
2559 	DP_NOTICE(edev, "Starting a recovery process\n");
2560 
2561 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2562 	 * before calling this function.
2563 	 */
2564 	edev->state = QEDE_STATE_RECOVERY;
2565 
2566 	edev->ops->common->recovery_prolog(edev->cdev);
2567 
2568 	if (curr_state == QEDE_STATE_OPEN)
2569 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2570 
2571 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2572 
2573 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2574 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2575 	if (rc) {
2576 		edev->cdev = NULL;
2577 		goto err;
2578 	}
2579 
2580 	if (curr_state == QEDE_STATE_OPEN) {
2581 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2582 		if (rc)
2583 			goto err;
2584 
2585 		qede_config_rx_mode(edev->ndev);
2586 		udp_tunnel_nic_reset_ntf(edev->ndev);
2587 	}
2588 
2589 	edev->state = curr_state;
2590 
2591 	DP_NOTICE(edev, "Recovery handling is done\n");
2592 
2593 	return;
2594 
2595 err:
2596 	qede_recovery_failed(edev);
2597 }
2598 
2599 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2600 {
2601 	struct qed_dev *cdev = edev->cdev;
2602 
2603 	DP_NOTICE(edev,
2604 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2605 		  edev->err_flags);
2606 
2607 	/* Get a call trace of the flow that led to the error */
2608 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2609 
2610 	/* Prevent HW attentions from being reasserted */
2611 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2612 		edev->ops->common->attn_clr_enable(cdev, true);
2613 
2614 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2615 }
2616 
2617 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2618 {
2619 	DP_NOTICE(edev,
2620 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2621 		  edev->err_flags);
2622 
2623 	if (edev->devlink)
2624 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2625 
2626 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2627 
2628 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2629 }
2630 
2631 static void qede_set_hw_err_flags(struct qede_dev *edev,
2632 				  enum qed_hw_err_type err_type)
2633 {
2634 	unsigned long err_flags = 0;
2635 
2636 	switch (err_type) {
2637 	case QED_HW_ERR_DMAE_FAIL:
2638 		set_bit(QEDE_ERR_WARN, &err_flags);
2639 		fallthrough;
2640 	case QED_HW_ERR_MFW_RESP_FAIL:
2641 	case QED_HW_ERR_HW_ATTN:
2642 	case QED_HW_ERR_RAMROD_FAIL:
2643 	case QED_HW_ERR_FW_ASSERT:
2644 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2645 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2646 		break;
2647 
2648 	default:
2649 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2650 		break;
2651 	}
2652 
2653 	edev->err_flags |= err_flags;
2654 }
2655 
2656 static void qede_schedule_hw_err_handler(void *dev,
2657 					 enum qed_hw_err_type err_type)
2658 {
2659 	struct qede_dev *edev = dev;
2660 
2661 	/* Fan failure cannot be masked by handling of another HW error or by a
2662 	 * concurrent recovery process.
2663 	 */
2664 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2665 	     edev->state == QEDE_STATE_RECOVERY) &&
2666 	     err_type != QED_HW_ERR_FAN_FAIL) {
2667 		DP_INFO(edev,
2668 			"Avoid scheduling an error handling while another HW error is being handled\n");
2669 		return;
2670 	}
2671 
2672 	if (err_type >= QED_HW_ERR_LAST) {
2673 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2674 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2675 		return;
2676 	}
2677 
2678 	edev->last_err_type = err_type;
2679 	qede_set_hw_err_flags(edev, err_type);
2680 	qede_atomic_hw_err_handler(edev);
2681 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2682 	schedule_delayed_work(&edev->sp_task, 0);
2683 
2684 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2685 }
2686 
2687 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2688 {
2689 	struct netdev_queue *netdev_txq;
2690 
2691 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2692 	if (netif_xmit_stopped(netdev_txq))
2693 		return true;
2694 
2695 	return false;
2696 }
2697 
2698 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2699 {
2700 	struct qede_dev *edev = dev;
2701 	struct netdev_hw_addr *ha;
2702 	int i;
2703 
2704 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2705 		data->feat_flags |= QED_TLV_IP_CSUM;
2706 	if (edev->ndev->features & NETIF_F_TSO)
2707 		data->feat_flags |= QED_TLV_LSO;
2708 
2709 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2710 	eth_zero_addr(data->mac[1]);
2711 	eth_zero_addr(data->mac[2]);
2712 	/* Copy the first two UC macs */
2713 	netif_addr_lock_bh(edev->ndev);
2714 	i = 1;
2715 	netdev_for_each_uc_addr(ha, edev->ndev) {
2716 		ether_addr_copy(data->mac[i++], ha->addr);
2717 		if (i == QED_TLV_MAC_COUNT)
2718 			break;
2719 	}
2720 
2721 	netif_addr_unlock_bh(edev->ndev);
2722 }
2723 
2724 static void qede_get_eth_tlv_data(void *dev, void *data)
2725 {
2726 	struct qed_mfw_tlv_eth *etlv = data;
2727 	struct qede_dev *edev = dev;
2728 	struct qede_fastpath *fp;
2729 	int i;
2730 
2731 	etlv->lso_maxoff_size = 0XFFFF;
2732 	etlv->lso_maxoff_size_set = true;
2733 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2734 	etlv->lso_minseg_size_set = true;
2735 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2736 	etlv->prom_mode_set = true;
2737 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2738 	etlv->tx_descr_size_set = true;
2739 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2740 	etlv->rx_descr_size_set = true;
2741 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2742 	etlv->iov_offload_set = true;
2743 
2744 	/* Fill information regarding queues; Should be done under the qede
2745 	 * lock to guarantee those don't change beneath our feet.
2746 	 */
2747 	etlv->txqs_empty = true;
2748 	etlv->rxqs_empty = true;
2749 	etlv->num_txqs_full = 0;
2750 	etlv->num_rxqs_full = 0;
2751 
2752 	__qede_lock(edev);
2753 	for_each_queue(i) {
2754 		fp = &edev->fp_array[i];
2755 		if (fp->type & QEDE_FASTPATH_TX) {
2756 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2757 
2758 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2759 				etlv->txqs_empty = false;
2760 			if (qede_is_txq_full(edev, txq))
2761 				etlv->num_txqs_full++;
2762 		}
2763 		if (fp->type & QEDE_FASTPATH_RX) {
2764 			if (qede_has_rx_work(fp->rxq))
2765 				etlv->rxqs_empty = false;
2766 
2767 			/* This one is a bit tricky; Firmware might stop
2768 			 * placing packets if ring is not yet full.
2769 			 * Give an approximation.
2770 			 */
2771 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2772 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2773 			    RX_RING_SIZE - 100)
2774 				etlv->num_rxqs_full++;
2775 		}
2776 	}
2777 	__qede_unlock(edev);
2778 
2779 	etlv->txqs_empty_set = true;
2780 	etlv->rxqs_empty_set = true;
2781 	etlv->num_txqs_full_set = true;
2782 	etlv->num_rxqs_full_set = true;
2783 }
2784 
2785 /**
2786  * qede_io_error_detected - called when PCI error is detected
2787  * @pdev: Pointer to PCI device
2788  * @state: The current pci connection state
2789  *
2790  * This function is called after a PCI bus error affecting
2791  * this device has been detected.
2792  */
2793 static pci_ers_result_t
2794 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2795 {
2796 	struct net_device *dev = pci_get_drvdata(pdev);
2797 	struct qede_dev *edev = netdev_priv(dev);
2798 
2799 	if (!edev)
2800 		return PCI_ERS_RESULT_NONE;
2801 
2802 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2803 
2804 	__qede_lock(edev);
2805 	if (edev->state == QEDE_STATE_RECOVERY) {
2806 		DP_NOTICE(edev, "Device already in the recovery state\n");
2807 		__qede_unlock(edev);
2808 		return PCI_ERS_RESULT_NONE;
2809 	}
2810 
2811 	/* PF handles the recovery of its VFs */
2812 	if (IS_VF(edev)) {
2813 		DP_VERBOSE(edev, QED_MSG_IOV,
2814 			   "VF recovery is handled by its PF\n");
2815 		__qede_unlock(edev);
2816 		return PCI_ERS_RESULT_RECOVERED;
2817 	}
2818 
2819 	/* Close OS Tx */
2820 	netif_tx_disable(edev->ndev);
2821 	netif_carrier_off(edev->ndev);
2822 
2823 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2824 	schedule_delayed_work(&edev->sp_task, 0);
2825 
2826 	__qede_unlock(edev);
2827 
2828 	return PCI_ERS_RESULT_CAN_RECOVER;
2829 }
2830