1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 137 /* The qede lock is used to protect driver state change and driver flows that 138 * are not reentrant. 139 */ 140 void __qede_lock(struct qede_dev *edev) 141 { 142 mutex_lock(&edev->qede_lock); 143 } 144 145 void __qede_unlock(struct qede_dev *edev) 146 { 147 mutex_unlock(&edev->qede_lock); 148 } 149 150 #ifdef CONFIG_QED_SRIOV 151 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 152 __be16 vlan_proto) 153 { 154 struct qede_dev *edev = netdev_priv(ndev); 155 156 if (vlan > 4095) { 157 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 158 return -EINVAL; 159 } 160 161 if (vlan_proto != htons(ETH_P_8021Q)) 162 return -EPROTONOSUPPORT; 163 164 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 165 vlan, vf); 166 167 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 168 } 169 170 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 171 { 172 struct qede_dev *edev = netdev_priv(ndev); 173 174 DP_VERBOSE(edev, QED_MSG_IOV, 175 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 176 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 177 178 if (!is_valid_ether_addr(mac)) { 179 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 180 return -EINVAL; 181 } 182 183 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 184 } 185 186 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 187 { 188 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 189 struct qed_dev_info *qed_info = &edev->dev_info.common; 190 struct qed_update_vport_params *vport_params; 191 int rc; 192 193 vport_params = vzalloc(sizeof(*vport_params)); 194 if (!vport_params) 195 return -ENOMEM; 196 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 197 198 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 199 200 /* Enable/Disable Tx switching for PF */ 201 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 202 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) { 203 vport_params->vport_id = 0; 204 vport_params->update_tx_switching_flg = 1; 205 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 206 edev->ops->vport_update(edev->cdev, vport_params); 207 } 208 209 vfree(vport_params); 210 return rc; 211 } 212 #endif 213 214 static struct pci_driver qede_pci_driver = { 215 .name = "qede", 216 .id_table = qede_pci_tbl, 217 .probe = qede_probe, 218 .remove = qede_remove, 219 .shutdown = qede_shutdown, 220 #ifdef CONFIG_QED_SRIOV 221 .sriov_configure = qede_sriov_configure, 222 #endif 223 }; 224 225 static struct qed_eth_cb_ops qede_ll_ops = { 226 { 227 #ifdef CONFIG_RFS_ACCEL 228 .arfs_filter_op = qede_arfs_filter_op, 229 #endif 230 .link_update = qede_link_update, 231 }, 232 .force_mac = qede_force_mac, 233 .ports_update = qede_udp_ports_update, 234 }; 235 236 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 237 void *ptr) 238 { 239 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 240 struct ethtool_drvinfo drvinfo; 241 struct qede_dev *edev; 242 243 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 244 goto done; 245 246 /* Check whether this is a qede device */ 247 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 248 goto done; 249 250 memset(&drvinfo, 0, sizeof(drvinfo)); 251 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 252 if (strcmp(drvinfo.driver, "qede")) 253 goto done; 254 edev = netdev_priv(ndev); 255 256 switch (event) { 257 case NETDEV_CHANGENAME: 258 /* Notify qed of the name change */ 259 if (!edev->ops || !edev->ops->common) 260 goto done; 261 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 262 break; 263 case NETDEV_CHANGEADDR: 264 edev = netdev_priv(ndev); 265 qede_rdma_event_changeaddr(edev); 266 break; 267 } 268 269 done: 270 return NOTIFY_DONE; 271 } 272 273 static struct notifier_block qede_netdev_notifier = { 274 .notifier_call = qede_netdev_event, 275 }; 276 277 static 278 int __init qede_init(void) 279 { 280 int ret; 281 282 pr_info("qede_init: %s\n", version); 283 284 qed_ops = qed_get_eth_ops(); 285 if (!qed_ops) { 286 pr_notice("Failed to get qed ethtool operations\n"); 287 return -EINVAL; 288 } 289 290 /* Must register notifier before pci ops, since we might miss 291 * interface rename after pci probe and netdev registeration. 292 */ 293 ret = register_netdevice_notifier(&qede_netdev_notifier); 294 if (ret) { 295 pr_notice("Failed to register netdevice_notifier\n"); 296 qed_put_eth_ops(); 297 return -EINVAL; 298 } 299 300 ret = pci_register_driver(&qede_pci_driver); 301 if (ret) { 302 pr_notice("Failed to register driver\n"); 303 unregister_netdevice_notifier(&qede_netdev_notifier); 304 qed_put_eth_ops(); 305 return -EINVAL; 306 } 307 308 return 0; 309 } 310 311 static void __exit qede_cleanup(void) 312 { 313 if (debug & QED_LOG_INFO_MASK) 314 pr_info("qede_cleanup called\n"); 315 316 unregister_netdevice_notifier(&qede_netdev_notifier); 317 pci_unregister_driver(&qede_pci_driver); 318 qed_put_eth_ops(); 319 } 320 321 module_init(qede_init); 322 module_exit(qede_cleanup); 323 324 static int qede_open(struct net_device *ndev); 325 static int qede_close(struct net_device *ndev); 326 327 void qede_fill_by_demand_stats(struct qede_dev *edev) 328 { 329 struct qede_stats_common *p_common = &edev->stats.common; 330 struct qed_eth_stats stats; 331 332 edev->ops->get_vport_stats(edev->cdev, &stats); 333 334 p_common->no_buff_discards = stats.common.no_buff_discards; 335 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 336 p_common->ttl0_discard = stats.common.ttl0_discard; 337 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 338 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 339 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 340 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 341 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 342 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 343 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 344 p_common->mac_filter_discards = stats.common.mac_filter_discards; 345 346 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 347 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 348 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 349 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 350 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 351 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 352 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 353 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 354 p_common->coalesced_events = stats.common.tpa_coalesced_events; 355 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 356 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 357 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 358 359 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 360 p_common->rx_65_to_127_byte_packets = 361 stats.common.rx_65_to_127_byte_packets; 362 p_common->rx_128_to_255_byte_packets = 363 stats.common.rx_128_to_255_byte_packets; 364 p_common->rx_256_to_511_byte_packets = 365 stats.common.rx_256_to_511_byte_packets; 366 p_common->rx_512_to_1023_byte_packets = 367 stats.common.rx_512_to_1023_byte_packets; 368 p_common->rx_1024_to_1518_byte_packets = 369 stats.common.rx_1024_to_1518_byte_packets; 370 p_common->rx_crc_errors = stats.common.rx_crc_errors; 371 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 372 p_common->rx_pause_frames = stats.common.rx_pause_frames; 373 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 374 p_common->rx_align_errors = stats.common.rx_align_errors; 375 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 376 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 377 p_common->rx_jabbers = stats.common.rx_jabbers; 378 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 379 p_common->rx_fragments = stats.common.rx_fragments; 380 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 381 p_common->tx_65_to_127_byte_packets = 382 stats.common.tx_65_to_127_byte_packets; 383 p_common->tx_128_to_255_byte_packets = 384 stats.common.tx_128_to_255_byte_packets; 385 p_common->tx_256_to_511_byte_packets = 386 stats.common.tx_256_to_511_byte_packets; 387 p_common->tx_512_to_1023_byte_packets = 388 stats.common.tx_512_to_1023_byte_packets; 389 p_common->tx_1024_to_1518_byte_packets = 390 stats.common.tx_1024_to_1518_byte_packets; 391 p_common->tx_pause_frames = stats.common.tx_pause_frames; 392 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 393 p_common->brb_truncates = stats.common.brb_truncates; 394 p_common->brb_discards = stats.common.brb_discards; 395 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 396 397 if (QEDE_IS_BB(edev)) { 398 struct qede_stats_bb *p_bb = &edev->stats.bb; 399 400 p_bb->rx_1519_to_1522_byte_packets = 401 stats.bb.rx_1519_to_1522_byte_packets; 402 p_bb->rx_1519_to_2047_byte_packets = 403 stats.bb.rx_1519_to_2047_byte_packets; 404 p_bb->rx_2048_to_4095_byte_packets = 405 stats.bb.rx_2048_to_4095_byte_packets; 406 p_bb->rx_4096_to_9216_byte_packets = 407 stats.bb.rx_4096_to_9216_byte_packets; 408 p_bb->rx_9217_to_16383_byte_packets = 409 stats.bb.rx_9217_to_16383_byte_packets; 410 p_bb->tx_1519_to_2047_byte_packets = 411 stats.bb.tx_1519_to_2047_byte_packets; 412 p_bb->tx_2048_to_4095_byte_packets = 413 stats.bb.tx_2048_to_4095_byte_packets; 414 p_bb->tx_4096_to_9216_byte_packets = 415 stats.bb.tx_4096_to_9216_byte_packets; 416 p_bb->tx_9217_to_16383_byte_packets = 417 stats.bb.tx_9217_to_16383_byte_packets; 418 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 419 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 420 } else { 421 struct qede_stats_ah *p_ah = &edev->stats.ah; 422 423 p_ah->rx_1519_to_max_byte_packets = 424 stats.ah.rx_1519_to_max_byte_packets; 425 p_ah->tx_1519_to_max_byte_packets = 426 stats.ah.tx_1519_to_max_byte_packets; 427 } 428 } 429 430 static void qede_get_stats64(struct net_device *dev, 431 struct rtnl_link_stats64 *stats) 432 { 433 struct qede_dev *edev = netdev_priv(dev); 434 struct qede_stats_common *p_common; 435 436 qede_fill_by_demand_stats(edev); 437 p_common = &edev->stats.common; 438 439 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 440 p_common->rx_bcast_pkts; 441 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 442 p_common->tx_bcast_pkts; 443 444 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 445 p_common->rx_bcast_bytes; 446 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 447 p_common->tx_bcast_bytes; 448 449 stats->tx_errors = p_common->tx_err_drop_pkts; 450 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 451 452 stats->rx_fifo_errors = p_common->no_buff_discards; 453 454 if (QEDE_IS_BB(edev)) 455 stats->collisions = edev->stats.bb.tx_total_collisions; 456 stats->rx_crc_errors = p_common->rx_crc_errors; 457 stats->rx_frame_errors = p_common->rx_align_errors; 458 } 459 460 #ifdef CONFIG_QED_SRIOV 461 static int qede_get_vf_config(struct net_device *dev, int vfidx, 462 struct ifla_vf_info *ivi) 463 { 464 struct qede_dev *edev = netdev_priv(dev); 465 466 if (!edev->ops) 467 return -EINVAL; 468 469 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 470 } 471 472 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 473 int min_tx_rate, int max_tx_rate) 474 { 475 struct qede_dev *edev = netdev_priv(dev); 476 477 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 478 max_tx_rate); 479 } 480 481 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 482 { 483 struct qede_dev *edev = netdev_priv(dev); 484 485 if (!edev->ops) 486 return -EINVAL; 487 488 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 489 } 490 491 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 492 int link_state) 493 { 494 struct qede_dev *edev = netdev_priv(dev); 495 496 if (!edev->ops) 497 return -EINVAL; 498 499 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 500 } 501 502 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 503 { 504 struct qede_dev *edev = netdev_priv(dev); 505 506 if (!edev->ops) 507 return -EINVAL; 508 509 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 510 } 511 #endif 512 513 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 514 { 515 struct qede_dev *edev = netdev_priv(dev); 516 517 if (!netif_running(dev)) 518 return -EAGAIN; 519 520 switch (cmd) { 521 case SIOCSHWTSTAMP: 522 return qede_ptp_hw_ts(edev, ifr); 523 default: 524 DP_VERBOSE(edev, QED_MSG_DEBUG, 525 "default IOCTL cmd 0x%x\n", cmd); 526 return -EOPNOTSUPP; 527 } 528 529 return 0; 530 } 531 532 static const struct net_device_ops qede_netdev_ops = { 533 .ndo_open = qede_open, 534 .ndo_stop = qede_close, 535 .ndo_start_xmit = qede_start_xmit, 536 .ndo_set_rx_mode = qede_set_rx_mode, 537 .ndo_set_mac_address = qede_set_mac_addr, 538 .ndo_validate_addr = eth_validate_addr, 539 .ndo_change_mtu = qede_change_mtu, 540 .ndo_do_ioctl = qede_ioctl, 541 #ifdef CONFIG_QED_SRIOV 542 .ndo_set_vf_mac = qede_set_vf_mac, 543 .ndo_set_vf_vlan = qede_set_vf_vlan, 544 .ndo_set_vf_trust = qede_set_vf_trust, 545 #endif 546 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 547 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 548 .ndo_fix_features = qede_fix_features, 549 .ndo_set_features = qede_set_features, 550 .ndo_get_stats64 = qede_get_stats64, 551 #ifdef CONFIG_QED_SRIOV 552 .ndo_set_vf_link_state = qede_set_vf_link_state, 553 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 554 .ndo_get_vf_config = qede_get_vf_config, 555 .ndo_set_vf_rate = qede_set_vf_rate, 556 #endif 557 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 558 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 559 .ndo_features_check = qede_features_check, 560 .ndo_bpf = qede_xdp, 561 #ifdef CONFIG_RFS_ACCEL 562 .ndo_rx_flow_steer = qede_rx_flow_steer, 563 #endif 564 }; 565 566 static const struct net_device_ops qede_netdev_vf_ops = { 567 .ndo_open = qede_open, 568 .ndo_stop = qede_close, 569 .ndo_start_xmit = qede_start_xmit, 570 .ndo_set_rx_mode = qede_set_rx_mode, 571 .ndo_set_mac_address = qede_set_mac_addr, 572 .ndo_validate_addr = eth_validate_addr, 573 .ndo_change_mtu = qede_change_mtu, 574 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 575 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 576 .ndo_fix_features = qede_fix_features, 577 .ndo_set_features = qede_set_features, 578 .ndo_get_stats64 = qede_get_stats64, 579 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 580 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 581 .ndo_features_check = qede_features_check, 582 }; 583 584 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 585 .ndo_open = qede_open, 586 .ndo_stop = qede_close, 587 .ndo_start_xmit = qede_start_xmit, 588 .ndo_set_rx_mode = qede_set_rx_mode, 589 .ndo_set_mac_address = qede_set_mac_addr, 590 .ndo_validate_addr = eth_validate_addr, 591 .ndo_change_mtu = qede_change_mtu, 592 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 593 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 594 .ndo_fix_features = qede_fix_features, 595 .ndo_set_features = qede_set_features, 596 .ndo_get_stats64 = qede_get_stats64, 597 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 598 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 599 .ndo_features_check = qede_features_check, 600 .ndo_bpf = qede_xdp, 601 }; 602 603 /* ------------------------------------------------------------------------- 604 * START OF PROBE / REMOVE 605 * ------------------------------------------------------------------------- 606 */ 607 608 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 609 struct pci_dev *pdev, 610 struct qed_dev_eth_info *info, 611 u32 dp_module, u8 dp_level) 612 { 613 struct net_device *ndev; 614 struct qede_dev *edev; 615 616 ndev = alloc_etherdev_mqs(sizeof(*edev), 617 info->num_queues, info->num_queues); 618 if (!ndev) { 619 pr_err("etherdev allocation failed\n"); 620 return NULL; 621 } 622 623 edev = netdev_priv(ndev); 624 edev->ndev = ndev; 625 edev->cdev = cdev; 626 edev->pdev = pdev; 627 edev->dp_module = dp_module; 628 edev->dp_level = dp_level; 629 edev->ops = qed_ops; 630 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 631 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 632 633 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 634 info->num_queues, info->num_queues); 635 636 SET_NETDEV_DEV(ndev, &pdev->dev); 637 638 memset(&edev->stats, 0, sizeof(edev->stats)); 639 memcpy(&edev->dev_info, info, sizeof(*info)); 640 641 /* As ethtool doesn't have the ability to show WoL behavior as 642 * 'default', if device supports it declare it's enabled. 643 */ 644 if (edev->dev_info.common.wol_support) 645 edev->wol_enabled = true; 646 647 INIT_LIST_HEAD(&edev->vlan_list); 648 649 return edev; 650 } 651 652 static void qede_init_ndev(struct qede_dev *edev) 653 { 654 struct net_device *ndev = edev->ndev; 655 struct pci_dev *pdev = edev->pdev; 656 bool udp_tunnel_enable = false; 657 netdev_features_t hw_features; 658 659 pci_set_drvdata(pdev, ndev); 660 661 ndev->mem_start = edev->dev_info.common.pci_mem_start; 662 ndev->base_addr = ndev->mem_start; 663 ndev->mem_end = edev->dev_info.common.pci_mem_end; 664 ndev->irq = edev->dev_info.common.pci_irq; 665 666 ndev->watchdog_timeo = TX_TIMEOUT; 667 668 if (IS_VF(edev)) { 669 if (edev->dev_info.xdp_supported) 670 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 671 else 672 ndev->netdev_ops = &qede_netdev_vf_ops; 673 } else { 674 ndev->netdev_ops = &qede_netdev_ops; 675 } 676 677 qede_set_ethtool_ops(ndev); 678 679 ndev->priv_flags |= IFF_UNICAST_FLT; 680 681 /* user-changeble features */ 682 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 683 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 684 NETIF_F_TSO | NETIF_F_TSO6; 685 686 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 687 hw_features |= NETIF_F_NTUPLE; 688 689 if (edev->dev_info.common.vxlan_enable || 690 edev->dev_info.common.geneve_enable) 691 udp_tunnel_enable = true; 692 693 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 694 hw_features |= NETIF_F_TSO_ECN; 695 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 696 NETIF_F_SG | NETIF_F_TSO | 697 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 698 NETIF_F_RXCSUM; 699 } 700 701 if (udp_tunnel_enable) { 702 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 703 NETIF_F_GSO_UDP_TUNNEL_CSUM); 704 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 705 NETIF_F_GSO_UDP_TUNNEL_CSUM); 706 } 707 708 if (edev->dev_info.common.gre_enable) { 709 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 710 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 711 NETIF_F_GSO_GRE_CSUM); 712 } 713 714 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 715 NETIF_F_HIGHDMA; 716 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 717 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 718 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 719 720 ndev->hw_features = hw_features; 721 722 /* MTU range: 46 - 9600 */ 723 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 724 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 725 726 /* Set network device HW mac */ 727 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 728 729 ndev->mtu = edev->dev_info.common.mtu; 730 } 731 732 /* This function converts from 32b param to two params of level and module 733 * Input 32b decoding: 734 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 735 * 'happy' flow, e.g. memory allocation failed. 736 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 737 * and provide important parameters. 738 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 739 * module. VERBOSE prints are for tracking the specific flow in low level. 740 * 741 * Notice that the level should be that of the lowest required logs. 742 */ 743 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 744 { 745 *p_dp_level = QED_LEVEL_NOTICE; 746 *p_dp_module = 0; 747 748 if (debug & QED_LOG_VERBOSE_MASK) { 749 *p_dp_level = QED_LEVEL_VERBOSE; 750 *p_dp_module = (debug & 0x3FFFFFFF); 751 } else if (debug & QED_LOG_INFO_MASK) { 752 *p_dp_level = QED_LEVEL_INFO; 753 } else if (debug & QED_LOG_NOTICE_MASK) { 754 *p_dp_level = QED_LEVEL_NOTICE; 755 } 756 } 757 758 static void qede_free_fp_array(struct qede_dev *edev) 759 { 760 if (edev->fp_array) { 761 struct qede_fastpath *fp; 762 int i; 763 764 for_each_queue(i) { 765 fp = &edev->fp_array[i]; 766 767 kfree(fp->sb_info); 768 /* Handle mem alloc failure case where qede_init_fp 769 * didn't register xdp_rxq_info yet. 770 * Implicit only (fp->type & QEDE_FASTPATH_RX) 771 */ 772 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 773 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 774 kfree(fp->rxq); 775 kfree(fp->xdp_tx); 776 kfree(fp->txq); 777 } 778 kfree(edev->fp_array); 779 } 780 781 edev->num_queues = 0; 782 edev->fp_num_tx = 0; 783 edev->fp_num_rx = 0; 784 } 785 786 static int qede_alloc_fp_array(struct qede_dev *edev) 787 { 788 u8 fp_combined, fp_rx = edev->fp_num_rx; 789 struct qede_fastpath *fp; 790 int i; 791 792 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 793 sizeof(*edev->fp_array), GFP_KERNEL); 794 if (!edev->fp_array) { 795 DP_NOTICE(edev, "fp array allocation failed\n"); 796 goto err; 797 } 798 799 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 800 801 /* Allocate the FP elements for Rx queues followed by combined and then 802 * the Tx. This ordering should be maintained so that the respective 803 * queues (Rx or Tx) will be together in the fastpath array and the 804 * associated ids will be sequential. 805 */ 806 for_each_queue(i) { 807 fp = &edev->fp_array[i]; 808 809 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 810 if (!fp->sb_info) { 811 DP_NOTICE(edev, "sb info struct allocation failed\n"); 812 goto err; 813 } 814 815 if (fp_rx) { 816 fp->type = QEDE_FASTPATH_RX; 817 fp_rx--; 818 } else if (fp_combined) { 819 fp->type = QEDE_FASTPATH_COMBINED; 820 fp_combined--; 821 } else { 822 fp->type = QEDE_FASTPATH_TX; 823 } 824 825 if (fp->type & QEDE_FASTPATH_TX) { 826 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL); 827 if (!fp->txq) 828 goto err; 829 } 830 831 if (fp->type & QEDE_FASTPATH_RX) { 832 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 833 if (!fp->rxq) 834 goto err; 835 836 if (edev->xdp_prog) { 837 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 838 GFP_KERNEL); 839 if (!fp->xdp_tx) 840 goto err; 841 fp->type |= QEDE_FASTPATH_XDP; 842 } 843 } 844 } 845 846 return 0; 847 err: 848 qede_free_fp_array(edev); 849 return -ENOMEM; 850 } 851 852 static void qede_sp_task(struct work_struct *work) 853 { 854 struct qede_dev *edev = container_of(work, struct qede_dev, 855 sp_task.work); 856 857 __qede_lock(edev); 858 859 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 860 if (edev->state == QEDE_STATE_OPEN) 861 qede_config_rx_mode(edev->ndev); 862 863 #ifdef CONFIG_RFS_ACCEL 864 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 865 if (edev->state == QEDE_STATE_OPEN) 866 qede_process_arfs_filters(edev, false); 867 } 868 #endif 869 __qede_unlock(edev); 870 } 871 872 static void qede_update_pf_params(struct qed_dev *cdev) 873 { 874 struct qed_pf_params pf_params; 875 876 /* 64 rx + 64 tx + 64 XDP */ 877 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 878 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3; 879 880 /* Same for VFs - make sure they'll have sufficient connections 881 * to support XDP Tx queues. 882 */ 883 pf_params.eth_pf_params.num_vf_cons = 48; 884 885 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 886 qed_ops->common->update_pf_params(cdev, &pf_params); 887 } 888 889 #define QEDE_FW_VER_STR_SIZE 80 890 891 static void qede_log_probe(struct qede_dev *edev) 892 { 893 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 894 u8 buf[QEDE_FW_VER_STR_SIZE]; 895 size_t left_size; 896 897 snprintf(buf, QEDE_FW_VER_STR_SIZE, 898 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 899 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 900 p_dev_info->fw_eng, 901 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 902 QED_MFW_VERSION_3_OFFSET, 903 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 904 QED_MFW_VERSION_2_OFFSET, 905 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 906 QED_MFW_VERSION_1_OFFSET, 907 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 908 QED_MFW_VERSION_0_OFFSET); 909 910 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 911 if (p_dev_info->mbi_version && left_size) 912 snprintf(buf + strlen(buf), left_size, 913 " [MBI %d.%d.%d]", 914 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 915 QED_MBI_VERSION_2_OFFSET, 916 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 917 QED_MBI_VERSION_1_OFFSET, 918 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 919 QED_MBI_VERSION_0_OFFSET); 920 921 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 922 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 923 buf, edev->ndev->name); 924 } 925 926 enum qede_probe_mode { 927 QEDE_PROBE_NORMAL, 928 }; 929 930 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 931 bool is_vf, enum qede_probe_mode mode) 932 { 933 struct qed_probe_params probe_params; 934 struct qed_slowpath_params sp_params; 935 struct qed_dev_eth_info dev_info; 936 struct qede_dev *edev; 937 struct qed_dev *cdev; 938 int rc; 939 940 if (unlikely(dp_level & QED_LEVEL_INFO)) 941 pr_notice("Starting qede probe\n"); 942 943 memset(&probe_params, 0, sizeof(probe_params)); 944 probe_params.protocol = QED_PROTOCOL_ETH; 945 probe_params.dp_module = dp_module; 946 probe_params.dp_level = dp_level; 947 probe_params.is_vf = is_vf; 948 cdev = qed_ops->common->probe(pdev, &probe_params); 949 if (!cdev) { 950 rc = -ENODEV; 951 goto err0; 952 } 953 954 qede_update_pf_params(cdev); 955 956 /* Start the Slowpath-process */ 957 memset(&sp_params, 0, sizeof(sp_params)); 958 sp_params.int_mode = QED_INT_MODE_MSIX; 959 sp_params.drv_major = QEDE_MAJOR_VERSION; 960 sp_params.drv_minor = QEDE_MINOR_VERSION; 961 sp_params.drv_rev = QEDE_REVISION_VERSION; 962 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 963 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 964 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 965 if (rc) { 966 pr_notice("Cannot start slowpath\n"); 967 goto err1; 968 } 969 970 /* Learn information crucial for qede to progress */ 971 rc = qed_ops->fill_dev_info(cdev, &dev_info); 972 if (rc) 973 goto err2; 974 975 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 976 dp_level); 977 if (!edev) { 978 rc = -ENOMEM; 979 goto err2; 980 } 981 982 if (is_vf) 983 edev->flags |= QEDE_FLAG_IS_VF; 984 985 qede_init_ndev(edev); 986 987 rc = qede_rdma_dev_add(edev); 988 if (rc) 989 goto err3; 990 991 /* Prepare the lock prior to the registeration of the netdev, 992 * as once it's registered we might reach flows requiring it 993 * [it's even possible to reach a flow needing it directly 994 * from there, although it's unlikely]. 995 */ 996 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 997 mutex_init(&edev->qede_lock); 998 rc = register_netdev(edev->ndev); 999 if (rc) { 1000 DP_NOTICE(edev, "Cannot register net-device\n"); 1001 goto err4; 1002 } 1003 1004 edev->ops->common->set_name(cdev, edev->ndev->name); 1005 1006 /* PTP not supported on VFs */ 1007 if (!is_vf) 1008 qede_ptp_enable(edev, true); 1009 1010 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1011 1012 #ifdef CONFIG_DCB 1013 if (!IS_VF(edev)) 1014 qede_set_dcbnl_ops(edev->ndev); 1015 #endif 1016 1017 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1018 1019 qede_log_probe(edev); 1020 return 0; 1021 1022 err4: 1023 qede_rdma_dev_remove(edev); 1024 err3: 1025 free_netdev(edev->ndev); 1026 err2: 1027 qed_ops->common->slowpath_stop(cdev); 1028 err1: 1029 qed_ops->common->remove(cdev); 1030 err0: 1031 return rc; 1032 } 1033 1034 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1035 { 1036 bool is_vf = false; 1037 u32 dp_module = 0; 1038 u8 dp_level = 0; 1039 1040 switch ((enum qede_pci_private)id->driver_data) { 1041 case QEDE_PRIVATE_VF: 1042 if (debug & QED_LOG_VERBOSE_MASK) 1043 dev_err(&pdev->dev, "Probing a VF\n"); 1044 is_vf = true; 1045 break; 1046 default: 1047 if (debug & QED_LOG_VERBOSE_MASK) 1048 dev_err(&pdev->dev, "Probing a PF\n"); 1049 } 1050 1051 qede_config_debug(debug, &dp_module, &dp_level); 1052 1053 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1054 QEDE_PROBE_NORMAL); 1055 } 1056 1057 enum qede_remove_mode { 1058 QEDE_REMOVE_NORMAL, 1059 }; 1060 1061 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1062 { 1063 struct net_device *ndev = pci_get_drvdata(pdev); 1064 struct qede_dev *edev = netdev_priv(ndev); 1065 struct qed_dev *cdev = edev->cdev; 1066 1067 DP_INFO(edev, "Starting qede_remove\n"); 1068 1069 unregister_netdev(ndev); 1070 cancel_delayed_work_sync(&edev->sp_task); 1071 1072 qede_ptp_disable(edev); 1073 1074 qede_rdma_dev_remove(edev); 1075 1076 edev->ops->common->set_power_state(cdev, PCI_D0); 1077 1078 pci_set_drvdata(pdev, NULL); 1079 1080 /* Use global ops since we've freed edev */ 1081 qed_ops->common->slowpath_stop(cdev); 1082 if (system_state == SYSTEM_POWER_OFF) 1083 return; 1084 qed_ops->common->remove(cdev); 1085 1086 /* Since this can happen out-of-sync with other flows, 1087 * don't release the netdevice until after slowpath stop 1088 * has been called to guarantee various other contexts 1089 * [e.g., QED register callbacks] won't break anything when 1090 * accessing the netdevice. 1091 */ 1092 free_netdev(ndev); 1093 1094 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1095 } 1096 1097 static void qede_remove(struct pci_dev *pdev) 1098 { 1099 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1100 } 1101 1102 static void qede_shutdown(struct pci_dev *pdev) 1103 { 1104 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1105 } 1106 1107 /* ------------------------------------------------------------------------- 1108 * START OF LOAD / UNLOAD 1109 * ------------------------------------------------------------------------- 1110 */ 1111 1112 static int qede_set_num_queues(struct qede_dev *edev) 1113 { 1114 int rc; 1115 u16 rss_num; 1116 1117 /* Setup queues according to possible resources*/ 1118 if (edev->req_queues) 1119 rss_num = edev->req_queues; 1120 else 1121 rss_num = netif_get_num_default_rss_queues() * 1122 edev->dev_info.common.num_hwfns; 1123 1124 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1125 1126 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1127 if (rc > 0) { 1128 /* Managed to request interrupts for our queues */ 1129 edev->num_queues = rc; 1130 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1131 QEDE_QUEUE_CNT(edev), rss_num); 1132 rc = 0; 1133 } 1134 1135 edev->fp_num_tx = edev->req_num_tx; 1136 edev->fp_num_rx = edev->req_num_rx; 1137 1138 return rc; 1139 } 1140 1141 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1142 u16 sb_id) 1143 { 1144 if (sb_info->sb_virt) { 1145 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id); 1146 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1147 (void *)sb_info->sb_virt, sb_info->sb_phys); 1148 memset(sb_info, 0, sizeof(*sb_info)); 1149 } 1150 } 1151 1152 /* This function allocates fast-path status block memory */ 1153 static int qede_alloc_mem_sb(struct qede_dev *edev, 1154 struct qed_sb_info *sb_info, u16 sb_id) 1155 { 1156 struct status_block_e4 *sb_virt; 1157 dma_addr_t sb_phys; 1158 int rc; 1159 1160 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1161 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1162 if (!sb_virt) { 1163 DP_ERR(edev, "Status block allocation failed\n"); 1164 return -ENOMEM; 1165 } 1166 1167 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1168 sb_virt, sb_phys, sb_id, 1169 QED_SB_TYPE_L2_QUEUE); 1170 if (rc) { 1171 DP_ERR(edev, "Status block initialization failed\n"); 1172 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1173 sb_virt, sb_phys); 1174 return rc; 1175 } 1176 1177 return 0; 1178 } 1179 1180 static void qede_free_rx_buffers(struct qede_dev *edev, 1181 struct qede_rx_queue *rxq) 1182 { 1183 u16 i; 1184 1185 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1186 struct sw_rx_data *rx_buf; 1187 struct page *data; 1188 1189 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1190 data = rx_buf->data; 1191 1192 dma_unmap_page(&edev->pdev->dev, 1193 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1194 1195 rx_buf->data = NULL; 1196 __free_page(data); 1197 } 1198 } 1199 1200 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) 1201 { 1202 int i; 1203 1204 if (edev->gro_disable) 1205 return; 1206 1207 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1208 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1209 struct sw_rx_data *replace_buf = &tpa_info->buffer; 1210 1211 if (replace_buf->data) { 1212 dma_unmap_page(&edev->pdev->dev, 1213 replace_buf->mapping, 1214 PAGE_SIZE, DMA_FROM_DEVICE); 1215 __free_page(replace_buf->data); 1216 } 1217 } 1218 } 1219 1220 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1221 { 1222 qede_free_sge_mem(edev, rxq); 1223 1224 /* Free rx buffers */ 1225 qede_free_rx_buffers(edev, rxq); 1226 1227 /* Free the parallel SW ring */ 1228 kfree(rxq->sw_rx_ring); 1229 1230 /* Free the real RQ ring used by FW */ 1231 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1232 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1233 } 1234 1235 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) 1236 { 1237 dma_addr_t mapping; 1238 int i; 1239 1240 if (edev->gro_disable) 1241 return 0; 1242 1243 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1244 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1245 struct sw_rx_data *replace_buf = &tpa_info->buffer; 1246 1247 replace_buf->data = alloc_pages(GFP_ATOMIC, 0); 1248 if (unlikely(!replace_buf->data)) { 1249 DP_NOTICE(edev, 1250 "Failed to allocate TPA skb pool [replacement buffer]\n"); 1251 goto err; 1252 } 1253 1254 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0, 1255 PAGE_SIZE, DMA_FROM_DEVICE); 1256 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 1257 DP_NOTICE(edev, 1258 "Failed to map TPA replacement buffer\n"); 1259 goto err; 1260 } 1261 1262 replace_buf->mapping = mapping; 1263 tpa_info->buffer.page_offset = 0; 1264 tpa_info->buffer_mapping = mapping; 1265 tpa_info->state = QEDE_AGG_STATE_NONE; 1266 } 1267 1268 return 0; 1269 err: 1270 qede_free_sge_mem(edev, rxq); 1271 edev->gro_disable = 1; 1272 edev->ndev->features &= ~NETIF_F_GRO_HW; 1273 return -ENOMEM; 1274 } 1275 1276 /* This function allocates all memory needed per Rx queue */ 1277 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1278 { 1279 int i, rc, size; 1280 1281 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1282 1283 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1284 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0; 1285 1286 /* Make sure that the headroom and payload fit in a single page */ 1287 if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE) 1288 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom; 1289 1290 /* Segment size to spilt a page in multiple equal parts, 1291 * unless XDP is used in which case we'd use the entire page. 1292 */ 1293 if (!edev->xdp_prog) 1294 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size); 1295 else 1296 rxq->rx_buf_seg_size = PAGE_SIZE; 1297 1298 /* Allocate the parallel driver ring for Rx buffers */ 1299 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1300 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1301 if (!rxq->sw_rx_ring) { 1302 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1303 rc = -ENOMEM; 1304 goto err; 1305 } 1306 1307 /* Allocate FW Rx ring */ 1308 rc = edev->ops->common->chain_alloc(edev->cdev, 1309 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1310 QED_CHAIN_MODE_NEXT_PTR, 1311 QED_CHAIN_CNT_TYPE_U16, 1312 RX_RING_SIZE, 1313 sizeof(struct eth_rx_bd), 1314 &rxq->rx_bd_ring, NULL); 1315 if (rc) 1316 goto err; 1317 1318 /* Allocate FW completion ring */ 1319 rc = edev->ops->common->chain_alloc(edev->cdev, 1320 QED_CHAIN_USE_TO_CONSUME, 1321 QED_CHAIN_MODE_PBL, 1322 QED_CHAIN_CNT_TYPE_U16, 1323 RX_RING_SIZE, 1324 sizeof(union eth_rx_cqe), 1325 &rxq->rx_comp_ring, NULL); 1326 if (rc) 1327 goto err; 1328 1329 /* Allocate buffers for the Rx ring */ 1330 rxq->filled_buffers = 0; 1331 for (i = 0; i < rxq->num_rx_buffers; i++) { 1332 rc = qede_alloc_rx_buffer(rxq, false); 1333 if (rc) { 1334 DP_ERR(edev, 1335 "Rx buffers allocation failed at index %d\n", i); 1336 goto err; 1337 } 1338 } 1339 1340 rc = qede_alloc_sge_mem(edev, rxq); 1341 err: 1342 return rc; 1343 } 1344 1345 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1346 { 1347 /* Free the parallel SW ring */ 1348 if (txq->is_xdp) 1349 kfree(txq->sw_tx_ring.xdp); 1350 else 1351 kfree(txq->sw_tx_ring.skbs); 1352 1353 /* Free the real RQ ring used by FW */ 1354 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1355 } 1356 1357 /* This function allocates all memory needed per Tx queue */ 1358 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1359 { 1360 union eth_tx_bd_types *p_virt; 1361 int size, rc; 1362 1363 txq->num_tx_buffers = edev->q_num_tx_buffers; 1364 1365 /* Allocate the parallel driver ring for Tx buffers */ 1366 if (txq->is_xdp) { 1367 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1368 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1369 if (!txq->sw_tx_ring.xdp) 1370 goto err; 1371 } else { 1372 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1373 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1374 if (!txq->sw_tx_ring.skbs) 1375 goto err; 1376 } 1377 1378 rc = edev->ops->common->chain_alloc(edev->cdev, 1379 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1380 QED_CHAIN_MODE_PBL, 1381 QED_CHAIN_CNT_TYPE_U16, 1382 txq->num_tx_buffers, 1383 sizeof(*p_virt), 1384 &txq->tx_pbl, NULL); 1385 if (rc) 1386 goto err; 1387 1388 return 0; 1389 1390 err: 1391 qede_free_mem_txq(edev, txq); 1392 return -ENOMEM; 1393 } 1394 1395 /* This function frees all memory of a single fp */ 1396 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1397 { 1398 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1399 1400 if (fp->type & QEDE_FASTPATH_RX) 1401 qede_free_mem_rxq(edev, fp->rxq); 1402 1403 if (fp->type & QEDE_FASTPATH_XDP) 1404 qede_free_mem_txq(edev, fp->xdp_tx); 1405 1406 if (fp->type & QEDE_FASTPATH_TX) 1407 qede_free_mem_txq(edev, fp->txq); 1408 } 1409 1410 /* This function allocates all memory needed for a single fp (i.e. an entity 1411 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1412 */ 1413 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1414 { 1415 int rc = 0; 1416 1417 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1418 if (rc) 1419 goto out; 1420 1421 if (fp->type & QEDE_FASTPATH_RX) { 1422 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1423 if (rc) 1424 goto out; 1425 } 1426 1427 if (fp->type & QEDE_FASTPATH_XDP) { 1428 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1429 if (rc) 1430 goto out; 1431 } 1432 1433 if (fp->type & QEDE_FASTPATH_TX) { 1434 rc = qede_alloc_mem_txq(edev, fp->txq); 1435 if (rc) 1436 goto out; 1437 } 1438 1439 out: 1440 return rc; 1441 } 1442 1443 static void qede_free_mem_load(struct qede_dev *edev) 1444 { 1445 int i; 1446 1447 for_each_queue(i) { 1448 struct qede_fastpath *fp = &edev->fp_array[i]; 1449 1450 qede_free_mem_fp(edev, fp); 1451 } 1452 } 1453 1454 /* This function allocates all qede memory at NIC load. */ 1455 static int qede_alloc_mem_load(struct qede_dev *edev) 1456 { 1457 int rc = 0, queue_id; 1458 1459 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1460 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1461 1462 rc = qede_alloc_mem_fp(edev, fp); 1463 if (rc) { 1464 DP_ERR(edev, 1465 "Failed to allocate memory for fastpath - rss id = %d\n", 1466 queue_id); 1467 qede_free_mem_load(edev); 1468 return rc; 1469 } 1470 } 1471 1472 return 0; 1473 } 1474 1475 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1476 static void qede_init_fp(struct qede_dev *edev) 1477 { 1478 int queue_id, rxq_index = 0, txq_index = 0; 1479 struct qede_fastpath *fp; 1480 1481 for_each_queue(queue_id) { 1482 fp = &edev->fp_array[queue_id]; 1483 1484 fp->edev = edev; 1485 fp->id = queue_id; 1486 1487 if (fp->type & QEDE_FASTPATH_XDP) { 1488 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1489 rxq_index); 1490 fp->xdp_tx->is_xdp = 1; 1491 } 1492 1493 if (fp->type & QEDE_FASTPATH_RX) { 1494 fp->rxq->rxq_id = rxq_index++; 1495 1496 /* Determine how to map buffers for this queue */ 1497 if (fp->type & QEDE_FASTPATH_XDP) 1498 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1499 else 1500 fp->rxq->data_direction = DMA_FROM_DEVICE; 1501 fp->rxq->dev = &edev->pdev->dev; 1502 1503 /* Driver have no error path from here */ 1504 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1505 fp->rxq->rxq_id) < 0); 1506 } 1507 1508 if (fp->type & QEDE_FASTPATH_TX) { 1509 fp->txq->index = txq_index++; 1510 if (edev->dev_info.is_legacy) 1511 fp->txq->is_legacy = 1; 1512 fp->txq->dev = &edev->pdev->dev; 1513 } 1514 1515 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1516 edev->ndev->name, queue_id); 1517 } 1518 1519 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1520 } 1521 1522 static int qede_set_real_num_queues(struct qede_dev *edev) 1523 { 1524 int rc = 0; 1525 1526 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev)); 1527 if (rc) { 1528 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1529 return rc; 1530 } 1531 1532 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1533 if (rc) { 1534 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1535 return rc; 1536 } 1537 1538 return 0; 1539 } 1540 1541 static void qede_napi_disable_remove(struct qede_dev *edev) 1542 { 1543 int i; 1544 1545 for_each_queue(i) { 1546 napi_disable(&edev->fp_array[i].napi); 1547 1548 netif_napi_del(&edev->fp_array[i].napi); 1549 } 1550 } 1551 1552 static void qede_napi_add_enable(struct qede_dev *edev) 1553 { 1554 int i; 1555 1556 /* Add NAPI objects */ 1557 for_each_queue(i) { 1558 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1559 qede_poll, NAPI_POLL_WEIGHT); 1560 napi_enable(&edev->fp_array[i].napi); 1561 } 1562 } 1563 1564 static void qede_sync_free_irqs(struct qede_dev *edev) 1565 { 1566 int i; 1567 1568 for (i = 0; i < edev->int_info.used_cnt; i++) { 1569 if (edev->int_info.msix_cnt) { 1570 synchronize_irq(edev->int_info.msix[i].vector); 1571 free_irq(edev->int_info.msix[i].vector, 1572 &edev->fp_array[i]); 1573 } else { 1574 edev->ops->common->simd_handler_clean(edev->cdev, i); 1575 } 1576 } 1577 1578 edev->int_info.used_cnt = 0; 1579 } 1580 1581 static int qede_req_msix_irqs(struct qede_dev *edev) 1582 { 1583 int i, rc; 1584 1585 /* Sanitize number of interrupts == number of prepared RSS queues */ 1586 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1587 DP_ERR(edev, 1588 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1589 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1590 return -EINVAL; 1591 } 1592 1593 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1594 #ifdef CONFIG_RFS_ACCEL 1595 struct qede_fastpath *fp = &edev->fp_array[i]; 1596 1597 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1598 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1599 edev->int_info.msix[i].vector); 1600 if (rc) { 1601 DP_ERR(edev, "Failed to add CPU rmap\n"); 1602 qede_free_arfs(edev); 1603 } 1604 } 1605 #endif 1606 rc = request_irq(edev->int_info.msix[i].vector, 1607 qede_msix_fp_int, 0, edev->fp_array[i].name, 1608 &edev->fp_array[i]); 1609 if (rc) { 1610 DP_ERR(edev, "Request fp %d irq failed\n", i); 1611 qede_sync_free_irqs(edev); 1612 return rc; 1613 } 1614 DP_VERBOSE(edev, NETIF_MSG_INTR, 1615 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1616 edev->fp_array[i].name, i, 1617 &edev->fp_array[i]); 1618 edev->int_info.used_cnt++; 1619 } 1620 1621 return 0; 1622 } 1623 1624 static void qede_simd_fp_handler(void *cookie) 1625 { 1626 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1627 1628 napi_schedule_irqoff(&fp->napi); 1629 } 1630 1631 static int qede_setup_irqs(struct qede_dev *edev) 1632 { 1633 int i, rc = 0; 1634 1635 /* Learn Interrupt configuration */ 1636 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1637 if (rc) 1638 return rc; 1639 1640 if (edev->int_info.msix_cnt) { 1641 rc = qede_req_msix_irqs(edev); 1642 if (rc) 1643 return rc; 1644 edev->ndev->irq = edev->int_info.msix[0].vector; 1645 } else { 1646 const struct qed_common_ops *ops; 1647 1648 /* qed should learn receive the RSS ids and callbacks */ 1649 ops = edev->ops->common; 1650 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1651 ops->simd_handler_config(edev->cdev, 1652 &edev->fp_array[i], i, 1653 qede_simd_fp_handler); 1654 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1655 } 1656 return 0; 1657 } 1658 1659 static int qede_drain_txq(struct qede_dev *edev, 1660 struct qede_tx_queue *txq, bool allow_drain) 1661 { 1662 int rc, cnt = 1000; 1663 1664 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1665 if (!cnt) { 1666 if (allow_drain) { 1667 DP_NOTICE(edev, 1668 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1669 txq->index); 1670 rc = edev->ops->common->drain(edev->cdev); 1671 if (rc) 1672 return rc; 1673 return qede_drain_txq(edev, txq, false); 1674 } 1675 DP_NOTICE(edev, 1676 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1677 txq->index, txq->sw_tx_prod, 1678 txq->sw_tx_cons); 1679 return -ENODEV; 1680 } 1681 cnt--; 1682 usleep_range(1000, 2000); 1683 barrier(); 1684 } 1685 1686 /* FW finished processing, wait for HW to transmit all tx packets */ 1687 usleep_range(1000, 2000); 1688 1689 return 0; 1690 } 1691 1692 static int qede_stop_txq(struct qede_dev *edev, 1693 struct qede_tx_queue *txq, int rss_id) 1694 { 1695 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1696 } 1697 1698 static int qede_stop_queues(struct qede_dev *edev) 1699 { 1700 struct qed_update_vport_params *vport_update_params; 1701 struct qed_dev *cdev = edev->cdev; 1702 struct qede_fastpath *fp; 1703 int rc, i; 1704 1705 /* Disable the vport */ 1706 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1707 if (!vport_update_params) 1708 return -ENOMEM; 1709 1710 vport_update_params->vport_id = 0; 1711 vport_update_params->update_vport_active_flg = 1; 1712 vport_update_params->vport_active_flg = 0; 1713 vport_update_params->update_rss_flg = 0; 1714 1715 rc = edev->ops->vport_update(cdev, vport_update_params); 1716 vfree(vport_update_params); 1717 1718 if (rc) { 1719 DP_ERR(edev, "Failed to update vport\n"); 1720 return rc; 1721 } 1722 1723 /* Flush Tx queues. If needed, request drain from MCP */ 1724 for_each_queue(i) { 1725 fp = &edev->fp_array[i]; 1726 1727 if (fp->type & QEDE_FASTPATH_TX) { 1728 rc = qede_drain_txq(edev, fp->txq, true); 1729 if (rc) 1730 return rc; 1731 } 1732 1733 if (fp->type & QEDE_FASTPATH_XDP) { 1734 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1735 if (rc) 1736 return rc; 1737 } 1738 } 1739 1740 /* Stop all Queues in reverse order */ 1741 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1742 fp = &edev->fp_array[i]; 1743 1744 /* Stop the Tx Queue(s) */ 1745 if (fp->type & QEDE_FASTPATH_TX) { 1746 rc = qede_stop_txq(edev, fp->txq, i); 1747 if (rc) 1748 return rc; 1749 } 1750 1751 /* Stop the Rx Queue */ 1752 if (fp->type & QEDE_FASTPATH_RX) { 1753 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1754 if (rc) { 1755 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1756 return rc; 1757 } 1758 } 1759 1760 /* Stop the XDP forwarding queue */ 1761 if (fp->type & QEDE_FASTPATH_XDP) { 1762 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1763 if (rc) 1764 return rc; 1765 1766 bpf_prog_put(fp->rxq->xdp_prog); 1767 } 1768 } 1769 1770 /* Stop the vport */ 1771 rc = edev->ops->vport_stop(cdev, 0); 1772 if (rc) 1773 DP_ERR(edev, "Failed to stop VPORT\n"); 1774 1775 return rc; 1776 } 1777 1778 static int qede_start_txq(struct qede_dev *edev, 1779 struct qede_fastpath *fp, 1780 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1781 { 1782 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1783 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1784 struct qed_queue_start_common_params params; 1785 struct qed_txq_start_ret_params ret_params; 1786 int rc; 1787 1788 memset(¶ms, 0, sizeof(params)); 1789 memset(&ret_params, 0, sizeof(ret_params)); 1790 1791 /* Let the XDP queue share the queue-zone with one of the regular txq. 1792 * We don't really care about its coalescing. 1793 */ 1794 if (txq->is_xdp) 1795 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1796 else 1797 params.queue_id = txq->index; 1798 1799 params.p_sb = fp->sb_info; 1800 params.sb_idx = sb_idx; 1801 1802 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1803 page_cnt, &ret_params); 1804 if (rc) { 1805 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1806 return rc; 1807 } 1808 1809 txq->doorbell_addr = ret_params.p_doorbell; 1810 txq->handle = ret_params.p_handle; 1811 1812 /* Determine the FW consumer address associated */ 1813 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 1814 1815 /* Prepare the doorbell parameters */ 1816 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 1817 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 1818 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 1819 DQ_XCM_ETH_TX_BD_PROD_CMD); 1820 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 1821 1822 return rc; 1823 } 1824 1825 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 1826 { 1827 int vlan_removal_en = 1; 1828 struct qed_dev *cdev = edev->cdev; 1829 struct qed_dev_info *qed_info = &edev->dev_info.common; 1830 struct qed_update_vport_params *vport_update_params; 1831 struct qed_queue_start_common_params q_params; 1832 struct qed_start_vport_params start = {0}; 1833 int rc, i; 1834 1835 if (!edev->num_queues) { 1836 DP_ERR(edev, 1837 "Cannot update V-VPORT as active as there are no Rx queues\n"); 1838 return -EINVAL; 1839 } 1840 1841 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1842 if (!vport_update_params) 1843 return -ENOMEM; 1844 1845 start.handle_ptp_pkts = !!(edev->ptp); 1846 start.gro_enable = !edev->gro_disable; 1847 start.mtu = edev->ndev->mtu; 1848 start.vport_id = 0; 1849 start.drop_ttl0 = true; 1850 start.remove_inner_vlan = vlan_removal_en; 1851 start.clear_stats = clear_stats; 1852 1853 rc = edev->ops->vport_start(cdev, &start); 1854 1855 if (rc) { 1856 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 1857 goto out; 1858 } 1859 1860 DP_VERBOSE(edev, NETIF_MSG_IFUP, 1861 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 1862 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 1863 1864 for_each_queue(i) { 1865 struct qede_fastpath *fp = &edev->fp_array[i]; 1866 dma_addr_t p_phys_table; 1867 u32 page_cnt; 1868 1869 if (fp->type & QEDE_FASTPATH_RX) { 1870 struct qed_rxq_start_ret_params ret_params; 1871 struct qede_rx_queue *rxq = fp->rxq; 1872 __le16 *val; 1873 1874 memset(&ret_params, 0, sizeof(ret_params)); 1875 memset(&q_params, 0, sizeof(q_params)); 1876 q_params.queue_id = rxq->rxq_id; 1877 q_params.vport_id = 0; 1878 q_params.p_sb = fp->sb_info; 1879 q_params.sb_idx = RX_PI; 1880 1881 p_phys_table = 1882 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 1883 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 1884 1885 rc = edev->ops->q_rx_start(cdev, i, &q_params, 1886 rxq->rx_buf_size, 1887 rxq->rx_bd_ring.p_phys_addr, 1888 p_phys_table, 1889 page_cnt, &ret_params); 1890 if (rc) { 1891 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 1892 rc); 1893 goto out; 1894 } 1895 1896 /* Use the return parameters */ 1897 rxq->hw_rxq_prod_addr = ret_params.p_prod; 1898 rxq->handle = ret_params.p_handle; 1899 1900 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 1901 rxq->hw_cons_ptr = val; 1902 1903 qede_update_rx_prod(edev, rxq); 1904 } 1905 1906 if (fp->type & QEDE_FASTPATH_XDP) { 1907 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 1908 if (rc) 1909 goto out; 1910 1911 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 1912 if (IS_ERR(fp->rxq->xdp_prog)) { 1913 rc = PTR_ERR(fp->rxq->xdp_prog); 1914 fp->rxq->xdp_prog = NULL; 1915 goto out; 1916 } 1917 } 1918 1919 if (fp->type & QEDE_FASTPATH_TX) { 1920 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0)); 1921 if (rc) 1922 goto out; 1923 } 1924 } 1925 1926 /* Prepare and send the vport enable */ 1927 vport_update_params->vport_id = start.vport_id; 1928 vport_update_params->update_vport_active_flg = 1; 1929 vport_update_params->vport_active_flg = 1; 1930 1931 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) && 1932 qed_info->tx_switching) { 1933 vport_update_params->update_tx_switching_flg = 1; 1934 vport_update_params->tx_switching_flg = 1; 1935 } 1936 1937 qede_fill_rss_params(edev, &vport_update_params->rss_params, 1938 &vport_update_params->update_rss_flg); 1939 1940 rc = edev->ops->vport_update(cdev, vport_update_params); 1941 if (rc) 1942 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 1943 1944 out: 1945 vfree(vport_update_params); 1946 return rc; 1947 } 1948 1949 enum qede_unload_mode { 1950 QEDE_UNLOAD_NORMAL, 1951 }; 1952 1953 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 1954 bool is_locked) 1955 { 1956 struct qed_link_params link_params; 1957 int rc; 1958 1959 DP_INFO(edev, "Starting qede unload\n"); 1960 1961 if (!is_locked) 1962 __qede_lock(edev); 1963 1964 edev->state = QEDE_STATE_CLOSED; 1965 1966 qede_rdma_dev_event_close(edev); 1967 1968 /* Close OS Tx */ 1969 netif_tx_disable(edev->ndev); 1970 netif_carrier_off(edev->ndev); 1971 1972 /* Reset the link */ 1973 memset(&link_params, 0, sizeof(link_params)); 1974 link_params.link_up = false; 1975 edev->ops->common->set_link(edev->cdev, &link_params); 1976 rc = qede_stop_queues(edev); 1977 if (rc) { 1978 qede_sync_free_irqs(edev); 1979 goto out; 1980 } 1981 1982 DP_INFO(edev, "Stopped Queues\n"); 1983 1984 qede_vlan_mark_nonconfigured(edev); 1985 edev->ops->fastpath_stop(edev->cdev); 1986 1987 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 1988 qede_poll_for_freeing_arfs_filters(edev); 1989 qede_free_arfs(edev); 1990 } 1991 1992 /* Release the interrupts */ 1993 qede_sync_free_irqs(edev); 1994 edev->ops->common->set_fp_int(edev->cdev, 0); 1995 1996 qede_napi_disable_remove(edev); 1997 1998 qede_free_mem_load(edev); 1999 qede_free_fp_array(edev); 2000 2001 out: 2002 if (!is_locked) 2003 __qede_unlock(edev); 2004 DP_INFO(edev, "Ending qede unload\n"); 2005 } 2006 2007 enum qede_load_mode { 2008 QEDE_LOAD_NORMAL, 2009 QEDE_LOAD_RELOAD, 2010 }; 2011 2012 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2013 bool is_locked) 2014 { 2015 struct qed_link_params link_params; 2016 int rc; 2017 2018 DP_INFO(edev, "Starting qede load\n"); 2019 2020 if (!is_locked) 2021 __qede_lock(edev); 2022 2023 rc = qede_set_num_queues(edev); 2024 if (rc) 2025 goto out; 2026 2027 rc = qede_alloc_fp_array(edev); 2028 if (rc) 2029 goto out; 2030 2031 qede_init_fp(edev); 2032 2033 rc = qede_alloc_mem_load(edev); 2034 if (rc) 2035 goto err1; 2036 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2037 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2038 2039 rc = qede_set_real_num_queues(edev); 2040 if (rc) 2041 goto err2; 2042 2043 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2044 rc = qede_alloc_arfs(edev); 2045 if (rc) 2046 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2047 } 2048 2049 qede_napi_add_enable(edev); 2050 DP_INFO(edev, "Napi added and enabled\n"); 2051 2052 rc = qede_setup_irqs(edev); 2053 if (rc) 2054 goto err3; 2055 DP_INFO(edev, "Setup IRQs succeeded\n"); 2056 2057 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2058 if (rc) 2059 goto err4; 2060 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2061 2062 /* Program un-configured VLANs */ 2063 qede_configure_vlan_filters(edev); 2064 2065 /* Ask for link-up using current configuration */ 2066 memset(&link_params, 0, sizeof(link_params)); 2067 link_params.link_up = true; 2068 edev->ops->common->set_link(edev->cdev, &link_params); 2069 2070 qede_rdma_dev_event_open(edev); 2071 2072 edev->state = QEDE_STATE_OPEN; 2073 2074 DP_INFO(edev, "Ending successfully qede load\n"); 2075 2076 goto out; 2077 err4: 2078 qede_sync_free_irqs(edev); 2079 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2080 err3: 2081 qede_napi_disable_remove(edev); 2082 err2: 2083 qede_free_mem_load(edev); 2084 err1: 2085 edev->ops->common->set_fp_int(edev->cdev, 0); 2086 qede_free_fp_array(edev); 2087 edev->num_queues = 0; 2088 edev->fp_num_tx = 0; 2089 edev->fp_num_rx = 0; 2090 out: 2091 if (!is_locked) 2092 __qede_unlock(edev); 2093 2094 return rc; 2095 } 2096 2097 /* 'func' should be able to run between unload and reload assuming interface 2098 * is actually running, or afterwards in case it's currently DOWN. 2099 */ 2100 void qede_reload(struct qede_dev *edev, 2101 struct qede_reload_args *args, bool is_locked) 2102 { 2103 if (!is_locked) 2104 __qede_lock(edev); 2105 2106 /* Since qede_lock is held, internal state wouldn't change even 2107 * if netdev state would start transitioning. Check whether current 2108 * internal configuration indicates device is up, then reload. 2109 */ 2110 if (edev->state == QEDE_STATE_OPEN) { 2111 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2112 if (args) 2113 args->func(edev, args); 2114 qede_load(edev, QEDE_LOAD_RELOAD, true); 2115 2116 /* Since no one is going to do it for us, re-configure */ 2117 qede_config_rx_mode(edev->ndev); 2118 } else if (args) { 2119 args->func(edev, args); 2120 } 2121 2122 if (!is_locked) 2123 __qede_unlock(edev); 2124 } 2125 2126 /* called with rtnl_lock */ 2127 static int qede_open(struct net_device *ndev) 2128 { 2129 struct qede_dev *edev = netdev_priv(ndev); 2130 int rc; 2131 2132 netif_carrier_off(ndev); 2133 2134 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2135 2136 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2137 if (rc) 2138 return rc; 2139 2140 udp_tunnel_get_rx_info(ndev); 2141 2142 edev->ops->common->update_drv_state(edev->cdev, true); 2143 2144 return 0; 2145 } 2146 2147 static int qede_close(struct net_device *ndev) 2148 { 2149 struct qede_dev *edev = netdev_priv(ndev); 2150 2151 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2152 2153 edev->ops->common->update_drv_state(edev->cdev, false); 2154 2155 return 0; 2156 } 2157 2158 static void qede_link_update(void *dev, struct qed_link_output *link) 2159 { 2160 struct qede_dev *edev = dev; 2161 2162 if (!netif_running(edev->ndev)) { 2163 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 2164 return; 2165 } 2166 2167 if (link->link_up) { 2168 if (!netif_carrier_ok(edev->ndev)) { 2169 DP_NOTICE(edev, "Link is up\n"); 2170 netif_tx_start_all_queues(edev->ndev); 2171 netif_carrier_on(edev->ndev); 2172 } 2173 } else { 2174 if (netif_carrier_ok(edev->ndev)) { 2175 DP_NOTICE(edev, "Link is down\n"); 2176 netif_tx_disable(edev->ndev); 2177 netif_carrier_off(edev->ndev); 2178 } 2179 } 2180 } 2181