1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_get_eth_tlv_data(void *edev, void *data);
137 static void qede_get_generic_tlv_data(void *edev,
138 				      struct qed_generic_tlvs *data);
139 
140 /* The qede lock is used to protect driver state change and driver flows that
141  * are not reentrant.
142  */
143 void __qede_lock(struct qede_dev *edev)
144 {
145 	mutex_lock(&edev->qede_lock);
146 }
147 
148 void __qede_unlock(struct qede_dev *edev)
149 {
150 	mutex_unlock(&edev->qede_lock);
151 }
152 
153 #ifdef CONFIG_QED_SRIOV
154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
155 			    __be16 vlan_proto)
156 {
157 	struct qede_dev *edev = netdev_priv(ndev);
158 
159 	if (vlan > 4095) {
160 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
161 		return -EINVAL;
162 	}
163 
164 	if (vlan_proto != htons(ETH_P_8021Q))
165 		return -EPROTONOSUPPORT;
166 
167 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
168 		   vlan, vf);
169 
170 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
171 }
172 
173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
174 {
175 	struct qede_dev *edev = netdev_priv(ndev);
176 
177 	DP_VERBOSE(edev, QED_MSG_IOV,
178 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
179 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
180 
181 	if (!is_valid_ether_addr(mac)) {
182 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
183 		return -EINVAL;
184 	}
185 
186 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
187 }
188 
189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
190 {
191 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
192 	struct qed_dev_info *qed_info = &edev->dev_info.common;
193 	struct qed_update_vport_params *vport_params;
194 	int rc;
195 
196 	vport_params = vzalloc(sizeof(*vport_params));
197 	if (!vport_params)
198 		return -ENOMEM;
199 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
200 
201 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
202 
203 	/* Enable/Disable Tx switching for PF */
204 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
205 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
206 		vport_params->vport_id = 0;
207 		vport_params->update_tx_switching_flg = 1;
208 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
209 		edev->ops->vport_update(edev->cdev, vport_params);
210 	}
211 
212 	vfree(vport_params);
213 	return rc;
214 }
215 #endif
216 
217 static struct pci_driver qede_pci_driver = {
218 	.name = "qede",
219 	.id_table = qede_pci_tbl,
220 	.probe = qede_probe,
221 	.remove = qede_remove,
222 	.shutdown = qede_shutdown,
223 #ifdef CONFIG_QED_SRIOV
224 	.sriov_configure = qede_sriov_configure,
225 #endif
226 };
227 
228 static struct qed_eth_cb_ops qede_ll_ops = {
229 	{
230 #ifdef CONFIG_RFS_ACCEL
231 		.arfs_filter_op = qede_arfs_filter_op,
232 #endif
233 		.link_update = qede_link_update,
234 		.get_generic_tlv_data = qede_get_generic_tlv_data,
235 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
236 	},
237 	.force_mac = qede_force_mac,
238 	.ports_update = qede_udp_ports_update,
239 };
240 
241 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
242 			     void *ptr)
243 {
244 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
245 	struct ethtool_drvinfo drvinfo;
246 	struct qede_dev *edev;
247 
248 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
249 		goto done;
250 
251 	/* Check whether this is a qede device */
252 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
253 		goto done;
254 
255 	memset(&drvinfo, 0, sizeof(drvinfo));
256 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
257 	if (strcmp(drvinfo.driver, "qede"))
258 		goto done;
259 	edev = netdev_priv(ndev);
260 
261 	switch (event) {
262 	case NETDEV_CHANGENAME:
263 		/* Notify qed of the name change */
264 		if (!edev->ops || !edev->ops->common)
265 			goto done;
266 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
267 		break;
268 	case NETDEV_CHANGEADDR:
269 		edev = netdev_priv(ndev);
270 		qede_rdma_event_changeaddr(edev);
271 		break;
272 	}
273 
274 done:
275 	return NOTIFY_DONE;
276 }
277 
278 static struct notifier_block qede_netdev_notifier = {
279 	.notifier_call = qede_netdev_event,
280 };
281 
282 static
283 int __init qede_init(void)
284 {
285 	int ret;
286 
287 	pr_info("qede_init: %s\n", version);
288 
289 	qed_ops = qed_get_eth_ops();
290 	if (!qed_ops) {
291 		pr_notice("Failed to get qed ethtool operations\n");
292 		return -EINVAL;
293 	}
294 
295 	/* Must register notifier before pci ops, since we might miss
296 	 * interface rename after pci probe and netdev registration.
297 	 */
298 	ret = register_netdevice_notifier(&qede_netdev_notifier);
299 	if (ret) {
300 		pr_notice("Failed to register netdevice_notifier\n");
301 		qed_put_eth_ops();
302 		return -EINVAL;
303 	}
304 
305 	ret = pci_register_driver(&qede_pci_driver);
306 	if (ret) {
307 		pr_notice("Failed to register driver\n");
308 		unregister_netdevice_notifier(&qede_netdev_notifier);
309 		qed_put_eth_ops();
310 		return -EINVAL;
311 	}
312 
313 	return 0;
314 }
315 
316 static void __exit qede_cleanup(void)
317 {
318 	if (debug & QED_LOG_INFO_MASK)
319 		pr_info("qede_cleanup called\n");
320 
321 	unregister_netdevice_notifier(&qede_netdev_notifier);
322 	pci_unregister_driver(&qede_pci_driver);
323 	qed_put_eth_ops();
324 }
325 
326 module_init(qede_init);
327 module_exit(qede_cleanup);
328 
329 static int qede_open(struct net_device *ndev);
330 static int qede_close(struct net_device *ndev);
331 
332 void qede_fill_by_demand_stats(struct qede_dev *edev)
333 {
334 	struct qede_stats_common *p_common = &edev->stats.common;
335 	struct qed_eth_stats stats;
336 
337 	edev->ops->get_vport_stats(edev->cdev, &stats);
338 
339 	p_common->no_buff_discards = stats.common.no_buff_discards;
340 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
341 	p_common->ttl0_discard = stats.common.ttl0_discard;
342 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
343 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
344 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
345 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
346 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
347 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
348 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
349 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
350 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
351 
352 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
353 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
354 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
355 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
356 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
357 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
358 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
359 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
360 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
361 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
362 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
363 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
364 
365 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
366 	p_common->rx_65_to_127_byte_packets =
367 	    stats.common.rx_65_to_127_byte_packets;
368 	p_common->rx_128_to_255_byte_packets =
369 	    stats.common.rx_128_to_255_byte_packets;
370 	p_common->rx_256_to_511_byte_packets =
371 	    stats.common.rx_256_to_511_byte_packets;
372 	p_common->rx_512_to_1023_byte_packets =
373 	    stats.common.rx_512_to_1023_byte_packets;
374 	p_common->rx_1024_to_1518_byte_packets =
375 	    stats.common.rx_1024_to_1518_byte_packets;
376 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
377 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
378 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
379 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
380 	p_common->rx_align_errors = stats.common.rx_align_errors;
381 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
382 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
383 	p_common->rx_jabbers = stats.common.rx_jabbers;
384 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
385 	p_common->rx_fragments = stats.common.rx_fragments;
386 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
387 	p_common->tx_65_to_127_byte_packets =
388 	    stats.common.tx_65_to_127_byte_packets;
389 	p_common->tx_128_to_255_byte_packets =
390 	    stats.common.tx_128_to_255_byte_packets;
391 	p_common->tx_256_to_511_byte_packets =
392 	    stats.common.tx_256_to_511_byte_packets;
393 	p_common->tx_512_to_1023_byte_packets =
394 	    stats.common.tx_512_to_1023_byte_packets;
395 	p_common->tx_1024_to_1518_byte_packets =
396 	    stats.common.tx_1024_to_1518_byte_packets;
397 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
398 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
399 	p_common->brb_truncates = stats.common.brb_truncates;
400 	p_common->brb_discards = stats.common.brb_discards;
401 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
402 	p_common->link_change_count = stats.common.link_change_count;
403 
404 	if (QEDE_IS_BB(edev)) {
405 		struct qede_stats_bb *p_bb = &edev->stats.bb;
406 
407 		p_bb->rx_1519_to_1522_byte_packets =
408 		    stats.bb.rx_1519_to_1522_byte_packets;
409 		p_bb->rx_1519_to_2047_byte_packets =
410 		    stats.bb.rx_1519_to_2047_byte_packets;
411 		p_bb->rx_2048_to_4095_byte_packets =
412 		    stats.bb.rx_2048_to_4095_byte_packets;
413 		p_bb->rx_4096_to_9216_byte_packets =
414 		    stats.bb.rx_4096_to_9216_byte_packets;
415 		p_bb->rx_9217_to_16383_byte_packets =
416 		    stats.bb.rx_9217_to_16383_byte_packets;
417 		p_bb->tx_1519_to_2047_byte_packets =
418 		    stats.bb.tx_1519_to_2047_byte_packets;
419 		p_bb->tx_2048_to_4095_byte_packets =
420 		    stats.bb.tx_2048_to_4095_byte_packets;
421 		p_bb->tx_4096_to_9216_byte_packets =
422 		    stats.bb.tx_4096_to_9216_byte_packets;
423 		p_bb->tx_9217_to_16383_byte_packets =
424 		    stats.bb.tx_9217_to_16383_byte_packets;
425 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
426 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
427 	} else {
428 		struct qede_stats_ah *p_ah = &edev->stats.ah;
429 
430 		p_ah->rx_1519_to_max_byte_packets =
431 		    stats.ah.rx_1519_to_max_byte_packets;
432 		p_ah->tx_1519_to_max_byte_packets =
433 		    stats.ah.tx_1519_to_max_byte_packets;
434 	}
435 }
436 
437 static void qede_get_stats64(struct net_device *dev,
438 			     struct rtnl_link_stats64 *stats)
439 {
440 	struct qede_dev *edev = netdev_priv(dev);
441 	struct qede_stats_common *p_common;
442 
443 	qede_fill_by_demand_stats(edev);
444 	p_common = &edev->stats.common;
445 
446 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
447 			    p_common->rx_bcast_pkts;
448 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
449 			    p_common->tx_bcast_pkts;
450 
451 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
452 			  p_common->rx_bcast_bytes;
453 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
454 			  p_common->tx_bcast_bytes;
455 
456 	stats->tx_errors = p_common->tx_err_drop_pkts;
457 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
458 
459 	stats->rx_fifo_errors = p_common->no_buff_discards;
460 
461 	if (QEDE_IS_BB(edev))
462 		stats->collisions = edev->stats.bb.tx_total_collisions;
463 	stats->rx_crc_errors = p_common->rx_crc_errors;
464 	stats->rx_frame_errors = p_common->rx_align_errors;
465 }
466 
467 #ifdef CONFIG_QED_SRIOV
468 static int qede_get_vf_config(struct net_device *dev, int vfidx,
469 			      struct ifla_vf_info *ivi)
470 {
471 	struct qede_dev *edev = netdev_priv(dev);
472 
473 	if (!edev->ops)
474 		return -EINVAL;
475 
476 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
477 }
478 
479 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
480 			    int min_tx_rate, int max_tx_rate)
481 {
482 	struct qede_dev *edev = netdev_priv(dev);
483 
484 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
485 					max_tx_rate);
486 }
487 
488 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
489 {
490 	struct qede_dev *edev = netdev_priv(dev);
491 
492 	if (!edev->ops)
493 		return -EINVAL;
494 
495 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
496 }
497 
498 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
499 				  int link_state)
500 {
501 	struct qede_dev *edev = netdev_priv(dev);
502 
503 	if (!edev->ops)
504 		return -EINVAL;
505 
506 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
507 }
508 
509 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
510 {
511 	struct qede_dev *edev = netdev_priv(dev);
512 
513 	if (!edev->ops)
514 		return -EINVAL;
515 
516 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
517 }
518 #endif
519 
520 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
521 {
522 	struct qede_dev *edev = netdev_priv(dev);
523 
524 	if (!netif_running(dev))
525 		return -EAGAIN;
526 
527 	switch (cmd) {
528 	case SIOCSHWTSTAMP:
529 		return qede_ptp_hw_ts(edev, ifr);
530 	default:
531 		DP_VERBOSE(edev, QED_MSG_DEBUG,
532 			   "default IOCTL cmd 0x%x\n", cmd);
533 		return -EOPNOTSUPP;
534 	}
535 
536 	return 0;
537 }
538 
539 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
540 {
541 	struct qede_dev *edev = netdev_priv(ndev);
542 	int cos, count, offset;
543 
544 	if (num_tc > edev->dev_info.num_tc)
545 		return -EINVAL;
546 
547 	netdev_reset_tc(ndev);
548 	netdev_set_num_tc(ndev, num_tc);
549 
550 	for_each_cos_in_txq(edev, cos) {
551 		count = QEDE_TSS_COUNT(edev);
552 		offset = cos * QEDE_TSS_COUNT(edev);
553 		netdev_set_tc_queue(ndev, cos, count, offset);
554 	}
555 
556 	return 0;
557 }
558 
559 static int
560 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f,
561 		__be16 proto)
562 {
563 	switch (f->command) {
564 	case TC_CLSFLOWER_REPLACE:
565 		return qede_add_tc_flower_fltr(edev, proto, f);
566 	case TC_CLSFLOWER_DESTROY:
567 		return qede_delete_flow_filter(edev, f->cookie);
568 	default:
569 		return -EOPNOTSUPP;
570 	}
571 }
572 
573 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
574 				  void *cb_priv)
575 {
576 	struct tc_cls_flower_offload *f;
577 	struct qede_dev *edev = cb_priv;
578 
579 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
580 		return -EOPNOTSUPP;
581 
582 	switch (type) {
583 	case TC_SETUP_CLSFLOWER:
584 		f = type_data;
585 		return qede_set_flower(edev, f, f->common.protocol);
586 	default:
587 		return -EOPNOTSUPP;
588 	}
589 }
590 
591 static int qede_setup_tc_block(struct qede_dev *edev,
592 			       struct tc_block_offload *f)
593 {
594 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
595 		return -EOPNOTSUPP;
596 
597 	switch (f->command) {
598 	case TC_BLOCK_BIND:
599 		return tcf_block_cb_register(f->block,
600 					     qede_setup_tc_block_cb,
601 					     edev, edev, f->extack);
602 	case TC_BLOCK_UNBIND:
603 		tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev);
604 		return 0;
605 	default:
606 		return -EOPNOTSUPP;
607 	}
608 }
609 
610 static int
611 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
612 		      void *type_data)
613 {
614 	struct qede_dev *edev = netdev_priv(dev);
615 	struct tc_mqprio_qopt *mqprio;
616 
617 	switch (type) {
618 	case TC_SETUP_BLOCK:
619 		return qede_setup_tc_block(edev, type_data);
620 	case TC_SETUP_QDISC_MQPRIO:
621 		mqprio = type_data;
622 
623 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
624 		return qede_setup_tc(dev, mqprio->num_tc);
625 	default:
626 		return -EOPNOTSUPP;
627 	}
628 }
629 
630 static const struct net_device_ops qede_netdev_ops = {
631 	.ndo_open = qede_open,
632 	.ndo_stop = qede_close,
633 	.ndo_start_xmit = qede_start_xmit,
634 	.ndo_set_rx_mode = qede_set_rx_mode,
635 	.ndo_set_mac_address = qede_set_mac_addr,
636 	.ndo_validate_addr = eth_validate_addr,
637 	.ndo_change_mtu = qede_change_mtu,
638 	.ndo_do_ioctl = qede_ioctl,
639 #ifdef CONFIG_QED_SRIOV
640 	.ndo_set_vf_mac = qede_set_vf_mac,
641 	.ndo_set_vf_vlan = qede_set_vf_vlan,
642 	.ndo_set_vf_trust = qede_set_vf_trust,
643 #endif
644 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
645 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
646 	.ndo_fix_features = qede_fix_features,
647 	.ndo_set_features = qede_set_features,
648 	.ndo_get_stats64 = qede_get_stats64,
649 #ifdef CONFIG_QED_SRIOV
650 	.ndo_set_vf_link_state = qede_set_vf_link_state,
651 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
652 	.ndo_get_vf_config = qede_get_vf_config,
653 	.ndo_set_vf_rate = qede_set_vf_rate,
654 #endif
655 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
656 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
657 	.ndo_features_check = qede_features_check,
658 	.ndo_bpf = qede_xdp,
659 #ifdef CONFIG_RFS_ACCEL
660 	.ndo_rx_flow_steer = qede_rx_flow_steer,
661 #endif
662 	.ndo_setup_tc = qede_setup_tc_offload,
663 };
664 
665 static const struct net_device_ops qede_netdev_vf_ops = {
666 	.ndo_open = qede_open,
667 	.ndo_stop = qede_close,
668 	.ndo_start_xmit = qede_start_xmit,
669 	.ndo_set_rx_mode = qede_set_rx_mode,
670 	.ndo_set_mac_address = qede_set_mac_addr,
671 	.ndo_validate_addr = eth_validate_addr,
672 	.ndo_change_mtu = qede_change_mtu,
673 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
674 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
675 	.ndo_fix_features = qede_fix_features,
676 	.ndo_set_features = qede_set_features,
677 	.ndo_get_stats64 = qede_get_stats64,
678 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
679 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
680 	.ndo_features_check = qede_features_check,
681 };
682 
683 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
684 	.ndo_open = qede_open,
685 	.ndo_stop = qede_close,
686 	.ndo_start_xmit = qede_start_xmit,
687 	.ndo_set_rx_mode = qede_set_rx_mode,
688 	.ndo_set_mac_address = qede_set_mac_addr,
689 	.ndo_validate_addr = eth_validate_addr,
690 	.ndo_change_mtu = qede_change_mtu,
691 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
692 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
693 	.ndo_fix_features = qede_fix_features,
694 	.ndo_set_features = qede_set_features,
695 	.ndo_get_stats64 = qede_get_stats64,
696 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
697 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
698 	.ndo_features_check = qede_features_check,
699 	.ndo_bpf = qede_xdp,
700 };
701 
702 /* -------------------------------------------------------------------------
703  * START OF PROBE / REMOVE
704  * -------------------------------------------------------------------------
705  */
706 
707 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
708 					    struct pci_dev *pdev,
709 					    struct qed_dev_eth_info *info,
710 					    u32 dp_module, u8 dp_level)
711 {
712 	struct net_device *ndev;
713 	struct qede_dev *edev;
714 
715 	ndev = alloc_etherdev_mqs(sizeof(*edev),
716 				  info->num_queues * info->num_tc,
717 				  info->num_queues);
718 	if (!ndev) {
719 		pr_err("etherdev allocation failed\n");
720 		return NULL;
721 	}
722 
723 	edev = netdev_priv(ndev);
724 	edev->ndev = ndev;
725 	edev->cdev = cdev;
726 	edev->pdev = pdev;
727 	edev->dp_module = dp_module;
728 	edev->dp_level = dp_level;
729 	edev->ops = qed_ops;
730 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
731 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
732 
733 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
734 		info->num_queues, info->num_queues);
735 
736 	SET_NETDEV_DEV(ndev, &pdev->dev);
737 
738 	memset(&edev->stats, 0, sizeof(edev->stats));
739 	memcpy(&edev->dev_info, info, sizeof(*info));
740 
741 	/* As ethtool doesn't have the ability to show WoL behavior as
742 	 * 'default', if device supports it declare it's enabled.
743 	 */
744 	if (edev->dev_info.common.wol_support)
745 		edev->wol_enabled = true;
746 
747 	INIT_LIST_HEAD(&edev->vlan_list);
748 
749 	return edev;
750 }
751 
752 static void qede_init_ndev(struct qede_dev *edev)
753 {
754 	struct net_device *ndev = edev->ndev;
755 	struct pci_dev *pdev = edev->pdev;
756 	bool udp_tunnel_enable = false;
757 	netdev_features_t hw_features;
758 
759 	pci_set_drvdata(pdev, ndev);
760 
761 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
762 	ndev->base_addr = ndev->mem_start;
763 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
764 	ndev->irq = edev->dev_info.common.pci_irq;
765 
766 	ndev->watchdog_timeo = TX_TIMEOUT;
767 
768 	if (IS_VF(edev)) {
769 		if (edev->dev_info.xdp_supported)
770 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
771 		else
772 			ndev->netdev_ops = &qede_netdev_vf_ops;
773 	} else {
774 		ndev->netdev_ops = &qede_netdev_ops;
775 	}
776 
777 	qede_set_ethtool_ops(ndev);
778 
779 	ndev->priv_flags |= IFF_UNICAST_FLT;
780 
781 	/* user-changeble features */
782 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
783 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
784 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
785 
786 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
787 		hw_features |= NETIF_F_NTUPLE;
788 
789 	if (edev->dev_info.common.vxlan_enable ||
790 	    edev->dev_info.common.geneve_enable)
791 		udp_tunnel_enable = true;
792 
793 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
794 		hw_features |= NETIF_F_TSO_ECN;
795 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
796 					NETIF_F_SG | NETIF_F_TSO |
797 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
798 					NETIF_F_RXCSUM;
799 	}
800 
801 	if (udp_tunnel_enable) {
802 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
803 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
804 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
805 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
806 	}
807 
808 	if (edev->dev_info.common.gre_enable) {
809 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
810 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
811 					  NETIF_F_GSO_GRE_CSUM);
812 	}
813 
814 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
815 			      NETIF_F_HIGHDMA;
816 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
817 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
818 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
819 
820 	ndev->hw_features = hw_features;
821 
822 	/* MTU range: 46 - 9600 */
823 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
824 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
825 
826 	/* Set network device HW mac */
827 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
828 
829 	ndev->mtu = edev->dev_info.common.mtu;
830 }
831 
832 /* This function converts from 32b param to two params of level and module
833  * Input 32b decoding:
834  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
835  * 'happy' flow, e.g. memory allocation failed.
836  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
837  * and provide important parameters.
838  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
839  * module. VERBOSE prints are for tracking the specific flow in low level.
840  *
841  * Notice that the level should be that of the lowest required logs.
842  */
843 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
844 {
845 	*p_dp_level = QED_LEVEL_NOTICE;
846 	*p_dp_module = 0;
847 
848 	if (debug & QED_LOG_VERBOSE_MASK) {
849 		*p_dp_level = QED_LEVEL_VERBOSE;
850 		*p_dp_module = (debug & 0x3FFFFFFF);
851 	} else if (debug & QED_LOG_INFO_MASK) {
852 		*p_dp_level = QED_LEVEL_INFO;
853 	} else if (debug & QED_LOG_NOTICE_MASK) {
854 		*p_dp_level = QED_LEVEL_NOTICE;
855 	}
856 }
857 
858 static void qede_free_fp_array(struct qede_dev *edev)
859 {
860 	if (edev->fp_array) {
861 		struct qede_fastpath *fp;
862 		int i;
863 
864 		for_each_queue(i) {
865 			fp = &edev->fp_array[i];
866 
867 			kfree(fp->sb_info);
868 			/* Handle mem alloc failure case where qede_init_fp
869 			 * didn't register xdp_rxq_info yet.
870 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
871 			 */
872 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
873 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
874 			kfree(fp->rxq);
875 			kfree(fp->xdp_tx);
876 			kfree(fp->txq);
877 		}
878 		kfree(edev->fp_array);
879 	}
880 
881 	edev->num_queues = 0;
882 	edev->fp_num_tx = 0;
883 	edev->fp_num_rx = 0;
884 }
885 
886 static int qede_alloc_fp_array(struct qede_dev *edev)
887 {
888 	u8 fp_combined, fp_rx = edev->fp_num_rx;
889 	struct qede_fastpath *fp;
890 	int i;
891 
892 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
893 				 sizeof(*edev->fp_array), GFP_KERNEL);
894 	if (!edev->fp_array) {
895 		DP_NOTICE(edev, "fp array allocation failed\n");
896 		goto err;
897 	}
898 
899 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
900 
901 	/* Allocate the FP elements for Rx queues followed by combined and then
902 	 * the Tx. This ordering should be maintained so that the respective
903 	 * queues (Rx or Tx) will be together in the fastpath array and the
904 	 * associated ids will be sequential.
905 	 */
906 	for_each_queue(i) {
907 		fp = &edev->fp_array[i];
908 
909 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
910 		if (!fp->sb_info) {
911 			DP_NOTICE(edev, "sb info struct allocation failed\n");
912 			goto err;
913 		}
914 
915 		if (fp_rx) {
916 			fp->type = QEDE_FASTPATH_RX;
917 			fp_rx--;
918 		} else if (fp_combined) {
919 			fp->type = QEDE_FASTPATH_COMBINED;
920 			fp_combined--;
921 		} else {
922 			fp->type = QEDE_FASTPATH_TX;
923 		}
924 
925 		if (fp->type & QEDE_FASTPATH_TX) {
926 			fp->txq = kcalloc(edev->dev_info.num_tc,
927 					  sizeof(*fp->txq), GFP_KERNEL);
928 			if (!fp->txq)
929 				goto err;
930 		}
931 
932 		if (fp->type & QEDE_FASTPATH_RX) {
933 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
934 			if (!fp->rxq)
935 				goto err;
936 
937 			if (edev->xdp_prog) {
938 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
939 						     GFP_KERNEL);
940 				if (!fp->xdp_tx)
941 					goto err;
942 				fp->type |= QEDE_FASTPATH_XDP;
943 			}
944 		}
945 	}
946 
947 	return 0;
948 err:
949 	qede_free_fp_array(edev);
950 	return -ENOMEM;
951 }
952 
953 static void qede_sp_task(struct work_struct *work)
954 {
955 	struct qede_dev *edev = container_of(work, struct qede_dev,
956 					     sp_task.work);
957 
958 	__qede_lock(edev);
959 
960 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
961 		if (edev->state == QEDE_STATE_OPEN)
962 			qede_config_rx_mode(edev->ndev);
963 
964 #ifdef CONFIG_RFS_ACCEL
965 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
966 		if (edev->state == QEDE_STATE_OPEN)
967 			qede_process_arfs_filters(edev, false);
968 	}
969 #endif
970 	__qede_unlock(edev);
971 }
972 
973 static void qede_update_pf_params(struct qed_dev *cdev)
974 {
975 	struct qed_pf_params pf_params;
976 	u16 num_cons;
977 
978 	/* 64 rx + 64 tx + 64 XDP */
979 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
980 
981 	/* 1 rx + 1 xdp + max tx cos */
982 	num_cons = QED_MIN_L2_CONS;
983 
984 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
985 
986 	/* Same for VFs - make sure they'll have sufficient connections
987 	 * to support XDP Tx queues.
988 	 */
989 	pf_params.eth_pf_params.num_vf_cons = 48;
990 
991 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
992 	qed_ops->common->update_pf_params(cdev, &pf_params);
993 }
994 
995 #define QEDE_FW_VER_STR_SIZE	80
996 
997 static void qede_log_probe(struct qede_dev *edev)
998 {
999 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1000 	u8 buf[QEDE_FW_VER_STR_SIZE];
1001 	size_t left_size;
1002 
1003 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1004 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1005 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1006 		 p_dev_info->fw_eng,
1007 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1008 		 QED_MFW_VERSION_3_OFFSET,
1009 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1010 		 QED_MFW_VERSION_2_OFFSET,
1011 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1012 		 QED_MFW_VERSION_1_OFFSET,
1013 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1014 		 QED_MFW_VERSION_0_OFFSET);
1015 
1016 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1017 	if (p_dev_info->mbi_version && left_size)
1018 		snprintf(buf + strlen(buf), left_size,
1019 			 " [MBI %d.%d.%d]",
1020 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1021 			 QED_MBI_VERSION_2_OFFSET,
1022 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1023 			 QED_MBI_VERSION_1_OFFSET,
1024 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1025 			 QED_MBI_VERSION_0_OFFSET);
1026 
1027 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1028 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1029 		buf, edev->ndev->name);
1030 }
1031 
1032 enum qede_probe_mode {
1033 	QEDE_PROBE_NORMAL,
1034 };
1035 
1036 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1037 			bool is_vf, enum qede_probe_mode mode)
1038 {
1039 	struct qed_probe_params probe_params;
1040 	struct qed_slowpath_params sp_params;
1041 	struct qed_dev_eth_info dev_info;
1042 	struct qede_dev *edev;
1043 	struct qed_dev *cdev;
1044 	int rc;
1045 
1046 	if (unlikely(dp_level & QED_LEVEL_INFO))
1047 		pr_notice("Starting qede probe\n");
1048 
1049 	memset(&probe_params, 0, sizeof(probe_params));
1050 	probe_params.protocol = QED_PROTOCOL_ETH;
1051 	probe_params.dp_module = dp_module;
1052 	probe_params.dp_level = dp_level;
1053 	probe_params.is_vf = is_vf;
1054 	cdev = qed_ops->common->probe(pdev, &probe_params);
1055 	if (!cdev) {
1056 		rc = -ENODEV;
1057 		goto err0;
1058 	}
1059 
1060 	qede_update_pf_params(cdev);
1061 
1062 	/* Start the Slowpath-process */
1063 	memset(&sp_params, 0, sizeof(sp_params));
1064 	sp_params.int_mode = QED_INT_MODE_MSIX;
1065 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1066 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1067 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1068 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1069 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1070 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1071 	if (rc) {
1072 		pr_notice("Cannot start slowpath\n");
1073 		goto err1;
1074 	}
1075 
1076 	/* Learn information crucial for qede to progress */
1077 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1078 	if (rc)
1079 		goto err2;
1080 
1081 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1082 				   dp_level);
1083 	if (!edev) {
1084 		rc = -ENOMEM;
1085 		goto err2;
1086 	}
1087 
1088 	if (is_vf)
1089 		edev->flags |= QEDE_FLAG_IS_VF;
1090 
1091 	qede_init_ndev(edev);
1092 
1093 	rc = qede_rdma_dev_add(edev);
1094 	if (rc)
1095 		goto err3;
1096 
1097 	/* Prepare the lock prior to the registration of the netdev,
1098 	 * as once it's registered we might reach flows requiring it
1099 	 * [it's even possible to reach a flow needing it directly
1100 	 * from there, although it's unlikely].
1101 	 */
1102 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1103 	mutex_init(&edev->qede_lock);
1104 	rc = register_netdev(edev->ndev);
1105 	if (rc) {
1106 		DP_NOTICE(edev, "Cannot register net-device\n");
1107 		goto err4;
1108 	}
1109 
1110 	edev->ops->common->set_name(cdev, edev->ndev->name);
1111 
1112 	/* PTP not supported on VFs */
1113 	if (!is_vf)
1114 		qede_ptp_enable(edev, true);
1115 
1116 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1117 
1118 #ifdef CONFIG_DCB
1119 	if (!IS_VF(edev))
1120 		qede_set_dcbnl_ops(edev->ndev);
1121 #endif
1122 
1123 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1124 
1125 	qede_log_probe(edev);
1126 	return 0;
1127 
1128 err4:
1129 	qede_rdma_dev_remove(edev);
1130 err3:
1131 	free_netdev(edev->ndev);
1132 err2:
1133 	qed_ops->common->slowpath_stop(cdev);
1134 err1:
1135 	qed_ops->common->remove(cdev);
1136 err0:
1137 	return rc;
1138 }
1139 
1140 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1141 {
1142 	bool is_vf = false;
1143 	u32 dp_module = 0;
1144 	u8 dp_level = 0;
1145 
1146 	switch ((enum qede_pci_private)id->driver_data) {
1147 	case QEDE_PRIVATE_VF:
1148 		if (debug & QED_LOG_VERBOSE_MASK)
1149 			dev_err(&pdev->dev, "Probing a VF\n");
1150 		is_vf = true;
1151 		break;
1152 	default:
1153 		if (debug & QED_LOG_VERBOSE_MASK)
1154 			dev_err(&pdev->dev, "Probing a PF\n");
1155 	}
1156 
1157 	qede_config_debug(debug, &dp_module, &dp_level);
1158 
1159 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1160 			    QEDE_PROBE_NORMAL);
1161 }
1162 
1163 enum qede_remove_mode {
1164 	QEDE_REMOVE_NORMAL,
1165 };
1166 
1167 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1168 {
1169 	struct net_device *ndev = pci_get_drvdata(pdev);
1170 	struct qede_dev *edev = netdev_priv(ndev);
1171 	struct qed_dev *cdev = edev->cdev;
1172 
1173 	DP_INFO(edev, "Starting qede_remove\n");
1174 
1175 	qede_rdma_dev_remove(edev);
1176 	unregister_netdev(ndev);
1177 	cancel_delayed_work_sync(&edev->sp_task);
1178 
1179 	qede_ptp_disable(edev);
1180 
1181 	edev->ops->common->set_power_state(cdev, PCI_D0);
1182 
1183 	pci_set_drvdata(pdev, NULL);
1184 
1185 	/* Use global ops since we've freed edev */
1186 	qed_ops->common->slowpath_stop(cdev);
1187 	if (system_state == SYSTEM_POWER_OFF)
1188 		return;
1189 	qed_ops->common->remove(cdev);
1190 
1191 	/* Since this can happen out-of-sync with other flows,
1192 	 * don't release the netdevice until after slowpath stop
1193 	 * has been called to guarantee various other contexts
1194 	 * [e.g., QED register callbacks] won't break anything when
1195 	 * accessing the netdevice.
1196 	 */
1197 	 free_netdev(ndev);
1198 
1199 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1200 }
1201 
1202 static void qede_remove(struct pci_dev *pdev)
1203 {
1204 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1205 }
1206 
1207 static void qede_shutdown(struct pci_dev *pdev)
1208 {
1209 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1210 }
1211 
1212 /* -------------------------------------------------------------------------
1213  * START OF LOAD / UNLOAD
1214  * -------------------------------------------------------------------------
1215  */
1216 
1217 static int qede_set_num_queues(struct qede_dev *edev)
1218 {
1219 	int rc;
1220 	u16 rss_num;
1221 
1222 	/* Setup queues according to possible resources*/
1223 	if (edev->req_queues)
1224 		rss_num = edev->req_queues;
1225 	else
1226 		rss_num = netif_get_num_default_rss_queues() *
1227 			  edev->dev_info.common.num_hwfns;
1228 
1229 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1230 
1231 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1232 	if (rc > 0) {
1233 		/* Managed to request interrupts for our queues */
1234 		edev->num_queues = rc;
1235 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1236 			QEDE_QUEUE_CNT(edev), rss_num);
1237 		rc = 0;
1238 	}
1239 
1240 	edev->fp_num_tx = edev->req_num_tx;
1241 	edev->fp_num_rx = edev->req_num_rx;
1242 
1243 	return rc;
1244 }
1245 
1246 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1247 			     u16 sb_id)
1248 {
1249 	if (sb_info->sb_virt) {
1250 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1251 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1252 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1253 		memset(sb_info, 0, sizeof(*sb_info));
1254 	}
1255 }
1256 
1257 /* This function allocates fast-path status block memory */
1258 static int qede_alloc_mem_sb(struct qede_dev *edev,
1259 			     struct qed_sb_info *sb_info, u16 sb_id)
1260 {
1261 	struct status_block_e4 *sb_virt;
1262 	dma_addr_t sb_phys;
1263 	int rc;
1264 
1265 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1266 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1267 	if (!sb_virt) {
1268 		DP_ERR(edev, "Status block allocation failed\n");
1269 		return -ENOMEM;
1270 	}
1271 
1272 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1273 					sb_virt, sb_phys, sb_id,
1274 					QED_SB_TYPE_L2_QUEUE);
1275 	if (rc) {
1276 		DP_ERR(edev, "Status block initialization failed\n");
1277 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1278 				  sb_virt, sb_phys);
1279 		return rc;
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 static void qede_free_rx_buffers(struct qede_dev *edev,
1286 				 struct qede_rx_queue *rxq)
1287 {
1288 	u16 i;
1289 
1290 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1291 		struct sw_rx_data *rx_buf;
1292 		struct page *data;
1293 
1294 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1295 		data = rx_buf->data;
1296 
1297 		dma_unmap_page(&edev->pdev->dev,
1298 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1299 
1300 		rx_buf->data = NULL;
1301 		__free_page(data);
1302 	}
1303 }
1304 
1305 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1306 {
1307 	/* Free rx buffers */
1308 	qede_free_rx_buffers(edev, rxq);
1309 
1310 	/* Free the parallel SW ring */
1311 	kfree(rxq->sw_rx_ring);
1312 
1313 	/* Free the real RQ ring used by FW */
1314 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1315 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1316 }
1317 
1318 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1319 {
1320 	int i;
1321 
1322 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1323 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1324 
1325 		tpa_info->state = QEDE_AGG_STATE_NONE;
1326 	}
1327 }
1328 
1329 /* This function allocates all memory needed per Rx queue */
1330 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1331 {
1332 	int i, rc, size;
1333 
1334 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1335 
1336 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1337 
1338 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1339 	size = rxq->rx_headroom +
1340 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1341 
1342 	/* Make sure that the headroom and  payload fit in a single page */
1343 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1344 		rxq->rx_buf_size = PAGE_SIZE - size;
1345 
1346 	/* Segment size to spilt a page in multiple equal parts ,
1347 	 * unless XDP is used in which case we'd use the entire page.
1348 	 */
1349 	if (!edev->xdp_prog) {
1350 		size = size + rxq->rx_buf_size;
1351 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1352 	} else {
1353 		rxq->rx_buf_seg_size = PAGE_SIZE;
1354 	}
1355 
1356 	/* Allocate the parallel driver ring for Rx buffers */
1357 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1358 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1359 	if (!rxq->sw_rx_ring) {
1360 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1361 		rc = -ENOMEM;
1362 		goto err;
1363 	}
1364 
1365 	/* Allocate FW Rx ring  */
1366 	rc = edev->ops->common->chain_alloc(edev->cdev,
1367 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1368 					    QED_CHAIN_MODE_NEXT_PTR,
1369 					    QED_CHAIN_CNT_TYPE_U16,
1370 					    RX_RING_SIZE,
1371 					    sizeof(struct eth_rx_bd),
1372 					    &rxq->rx_bd_ring, NULL);
1373 	if (rc)
1374 		goto err;
1375 
1376 	/* Allocate FW completion ring */
1377 	rc = edev->ops->common->chain_alloc(edev->cdev,
1378 					    QED_CHAIN_USE_TO_CONSUME,
1379 					    QED_CHAIN_MODE_PBL,
1380 					    QED_CHAIN_CNT_TYPE_U16,
1381 					    RX_RING_SIZE,
1382 					    sizeof(union eth_rx_cqe),
1383 					    &rxq->rx_comp_ring, NULL);
1384 	if (rc)
1385 		goto err;
1386 
1387 	/* Allocate buffers for the Rx ring */
1388 	rxq->filled_buffers = 0;
1389 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1390 		rc = qede_alloc_rx_buffer(rxq, false);
1391 		if (rc) {
1392 			DP_ERR(edev,
1393 			       "Rx buffers allocation failed at index %d\n", i);
1394 			goto err;
1395 		}
1396 	}
1397 
1398 	if (!edev->gro_disable)
1399 		qede_set_tpa_param(rxq);
1400 err:
1401 	return rc;
1402 }
1403 
1404 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1405 {
1406 	/* Free the parallel SW ring */
1407 	if (txq->is_xdp)
1408 		kfree(txq->sw_tx_ring.xdp);
1409 	else
1410 		kfree(txq->sw_tx_ring.skbs);
1411 
1412 	/* Free the real RQ ring used by FW */
1413 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1414 }
1415 
1416 /* This function allocates all memory needed per Tx queue */
1417 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1418 {
1419 	union eth_tx_bd_types *p_virt;
1420 	int size, rc;
1421 
1422 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1423 
1424 	/* Allocate the parallel driver ring for Tx buffers */
1425 	if (txq->is_xdp) {
1426 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1427 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1428 		if (!txq->sw_tx_ring.xdp)
1429 			goto err;
1430 	} else {
1431 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1432 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1433 		if (!txq->sw_tx_ring.skbs)
1434 			goto err;
1435 	}
1436 
1437 	rc = edev->ops->common->chain_alloc(edev->cdev,
1438 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1439 					    QED_CHAIN_MODE_PBL,
1440 					    QED_CHAIN_CNT_TYPE_U16,
1441 					    txq->num_tx_buffers,
1442 					    sizeof(*p_virt),
1443 					    &txq->tx_pbl, NULL);
1444 	if (rc)
1445 		goto err;
1446 
1447 	return 0;
1448 
1449 err:
1450 	qede_free_mem_txq(edev, txq);
1451 	return -ENOMEM;
1452 }
1453 
1454 /* This function frees all memory of a single fp */
1455 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1456 {
1457 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1458 
1459 	if (fp->type & QEDE_FASTPATH_RX)
1460 		qede_free_mem_rxq(edev, fp->rxq);
1461 
1462 	if (fp->type & QEDE_FASTPATH_XDP)
1463 		qede_free_mem_txq(edev, fp->xdp_tx);
1464 
1465 	if (fp->type & QEDE_FASTPATH_TX) {
1466 		int cos;
1467 
1468 		for_each_cos_in_txq(edev, cos)
1469 			qede_free_mem_txq(edev, &fp->txq[cos]);
1470 	}
1471 }
1472 
1473 /* This function allocates all memory needed for a single fp (i.e. an entity
1474  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1475  */
1476 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1477 {
1478 	int rc = 0;
1479 
1480 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1481 	if (rc)
1482 		goto out;
1483 
1484 	if (fp->type & QEDE_FASTPATH_RX) {
1485 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1486 		if (rc)
1487 			goto out;
1488 	}
1489 
1490 	if (fp->type & QEDE_FASTPATH_XDP) {
1491 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1492 		if (rc)
1493 			goto out;
1494 	}
1495 
1496 	if (fp->type & QEDE_FASTPATH_TX) {
1497 		int cos;
1498 
1499 		for_each_cos_in_txq(edev, cos) {
1500 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1501 			if (rc)
1502 				goto out;
1503 		}
1504 	}
1505 
1506 out:
1507 	return rc;
1508 }
1509 
1510 static void qede_free_mem_load(struct qede_dev *edev)
1511 {
1512 	int i;
1513 
1514 	for_each_queue(i) {
1515 		struct qede_fastpath *fp = &edev->fp_array[i];
1516 
1517 		qede_free_mem_fp(edev, fp);
1518 	}
1519 }
1520 
1521 /* This function allocates all qede memory at NIC load. */
1522 static int qede_alloc_mem_load(struct qede_dev *edev)
1523 {
1524 	int rc = 0, queue_id;
1525 
1526 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1527 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1528 
1529 		rc = qede_alloc_mem_fp(edev, fp);
1530 		if (rc) {
1531 			DP_ERR(edev,
1532 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1533 			       queue_id);
1534 			qede_free_mem_load(edev);
1535 			return rc;
1536 		}
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1543 static void qede_init_fp(struct qede_dev *edev)
1544 {
1545 	int queue_id, rxq_index = 0, txq_index = 0;
1546 	struct qede_fastpath *fp;
1547 
1548 	for_each_queue(queue_id) {
1549 		fp = &edev->fp_array[queue_id];
1550 
1551 		fp->edev = edev;
1552 		fp->id = queue_id;
1553 
1554 		if (fp->type & QEDE_FASTPATH_XDP) {
1555 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1556 								rxq_index);
1557 			fp->xdp_tx->is_xdp = 1;
1558 		}
1559 
1560 		if (fp->type & QEDE_FASTPATH_RX) {
1561 			fp->rxq->rxq_id = rxq_index++;
1562 
1563 			/* Determine how to map buffers for this queue */
1564 			if (fp->type & QEDE_FASTPATH_XDP)
1565 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1566 			else
1567 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1568 			fp->rxq->dev = &edev->pdev->dev;
1569 
1570 			/* Driver have no error path from here */
1571 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1572 						 fp->rxq->rxq_id) < 0);
1573 		}
1574 
1575 		if (fp->type & QEDE_FASTPATH_TX) {
1576 			int cos;
1577 
1578 			for_each_cos_in_txq(edev, cos) {
1579 				struct qede_tx_queue *txq = &fp->txq[cos];
1580 				u16 ndev_tx_id;
1581 
1582 				txq->cos = cos;
1583 				txq->index = txq_index;
1584 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1585 				txq->ndev_txq_id = ndev_tx_id;
1586 
1587 				if (edev->dev_info.is_legacy)
1588 					txq->is_legacy = 1;
1589 				txq->dev = &edev->pdev->dev;
1590 			}
1591 
1592 			txq_index++;
1593 		}
1594 
1595 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1596 			 edev->ndev->name, queue_id);
1597 	}
1598 
1599 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1600 }
1601 
1602 static int qede_set_real_num_queues(struct qede_dev *edev)
1603 {
1604 	int rc = 0;
1605 
1606 	rc = netif_set_real_num_tx_queues(edev->ndev,
1607 					  QEDE_TSS_COUNT(edev) *
1608 					  edev->dev_info.num_tc);
1609 	if (rc) {
1610 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1611 		return rc;
1612 	}
1613 
1614 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1615 	if (rc) {
1616 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1617 		return rc;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 static void qede_napi_disable_remove(struct qede_dev *edev)
1624 {
1625 	int i;
1626 
1627 	for_each_queue(i) {
1628 		napi_disable(&edev->fp_array[i].napi);
1629 
1630 		netif_napi_del(&edev->fp_array[i].napi);
1631 	}
1632 }
1633 
1634 static void qede_napi_add_enable(struct qede_dev *edev)
1635 {
1636 	int i;
1637 
1638 	/* Add NAPI objects */
1639 	for_each_queue(i) {
1640 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1641 			       qede_poll, NAPI_POLL_WEIGHT);
1642 		napi_enable(&edev->fp_array[i].napi);
1643 	}
1644 }
1645 
1646 static void qede_sync_free_irqs(struct qede_dev *edev)
1647 {
1648 	int i;
1649 
1650 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1651 		if (edev->int_info.msix_cnt) {
1652 			synchronize_irq(edev->int_info.msix[i].vector);
1653 			free_irq(edev->int_info.msix[i].vector,
1654 				 &edev->fp_array[i]);
1655 		} else {
1656 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1657 		}
1658 	}
1659 
1660 	edev->int_info.used_cnt = 0;
1661 }
1662 
1663 static int qede_req_msix_irqs(struct qede_dev *edev)
1664 {
1665 	int i, rc;
1666 
1667 	/* Sanitize number of interrupts == number of prepared RSS queues */
1668 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1669 		DP_ERR(edev,
1670 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1671 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1672 		return -EINVAL;
1673 	}
1674 
1675 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1676 #ifdef CONFIG_RFS_ACCEL
1677 		struct qede_fastpath *fp = &edev->fp_array[i];
1678 
1679 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1680 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1681 					      edev->int_info.msix[i].vector);
1682 			if (rc) {
1683 				DP_ERR(edev, "Failed to add CPU rmap\n");
1684 				qede_free_arfs(edev);
1685 			}
1686 		}
1687 #endif
1688 		rc = request_irq(edev->int_info.msix[i].vector,
1689 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1690 				 &edev->fp_array[i]);
1691 		if (rc) {
1692 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1693 			qede_sync_free_irqs(edev);
1694 			return rc;
1695 		}
1696 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1697 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1698 			   edev->fp_array[i].name, i,
1699 			   &edev->fp_array[i]);
1700 		edev->int_info.used_cnt++;
1701 	}
1702 
1703 	return 0;
1704 }
1705 
1706 static void qede_simd_fp_handler(void *cookie)
1707 {
1708 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1709 
1710 	napi_schedule_irqoff(&fp->napi);
1711 }
1712 
1713 static int qede_setup_irqs(struct qede_dev *edev)
1714 {
1715 	int i, rc = 0;
1716 
1717 	/* Learn Interrupt configuration */
1718 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1719 	if (rc)
1720 		return rc;
1721 
1722 	if (edev->int_info.msix_cnt) {
1723 		rc = qede_req_msix_irqs(edev);
1724 		if (rc)
1725 			return rc;
1726 		edev->ndev->irq = edev->int_info.msix[0].vector;
1727 	} else {
1728 		const struct qed_common_ops *ops;
1729 
1730 		/* qed should learn receive the RSS ids and callbacks */
1731 		ops = edev->ops->common;
1732 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1733 			ops->simd_handler_config(edev->cdev,
1734 						 &edev->fp_array[i], i,
1735 						 qede_simd_fp_handler);
1736 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1737 	}
1738 	return 0;
1739 }
1740 
1741 static int qede_drain_txq(struct qede_dev *edev,
1742 			  struct qede_tx_queue *txq, bool allow_drain)
1743 {
1744 	int rc, cnt = 1000;
1745 
1746 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1747 		if (!cnt) {
1748 			if (allow_drain) {
1749 				DP_NOTICE(edev,
1750 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1751 					  txq->index);
1752 				rc = edev->ops->common->drain(edev->cdev);
1753 				if (rc)
1754 					return rc;
1755 				return qede_drain_txq(edev, txq, false);
1756 			}
1757 			DP_NOTICE(edev,
1758 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1759 				  txq->index, txq->sw_tx_prod,
1760 				  txq->sw_tx_cons);
1761 			return -ENODEV;
1762 		}
1763 		cnt--;
1764 		usleep_range(1000, 2000);
1765 		barrier();
1766 	}
1767 
1768 	/* FW finished processing, wait for HW to transmit all tx packets */
1769 	usleep_range(1000, 2000);
1770 
1771 	return 0;
1772 }
1773 
1774 static int qede_stop_txq(struct qede_dev *edev,
1775 			 struct qede_tx_queue *txq, int rss_id)
1776 {
1777 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1778 }
1779 
1780 static int qede_stop_queues(struct qede_dev *edev)
1781 {
1782 	struct qed_update_vport_params *vport_update_params;
1783 	struct qed_dev *cdev = edev->cdev;
1784 	struct qede_fastpath *fp;
1785 	int rc, i;
1786 
1787 	/* Disable the vport */
1788 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1789 	if (!vport_update_params)
1790 		return -ENOMEM;
1791 
1792 	vport_update_params->vport_id = 0;
1793 	vport_update_params->update_vport_active_flg = 1;
1794 	vport_update_params->vport_active_flg = 0;
1795 	vport_update_params->update_rss_flg = 0;
1796 
1797 	rc = edev->ops->vport_update(cdev, vport_update_params);
1798 	vfree(vport_update_params);
1799 
1800 	if (rc) {
1801 		DP_ERR(edev, "Failed to update vport\n");
1802 		return rc;
1803 	}
1804 
1805 	/* Flush Tx queues. If needed, request drain from MCP */
1806 	for_each_queue(i) {
1807 		fp = &edev->fp_array[i];
1808 
1809 		if (fp->type & QEDE_FASTPATH_TX) {
1810 			int cos;
1811 
1812 			for_each_cos_in_txq(edev, cos) {
1813 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1814 				if (rc)
1815 					return rc;
1816 			}
1817 		}
1818 
1819 		if (fp->type & QEDE_FASTPATH_XDP) {
1820 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1821 			if (rc)
1822 				return rc;
1823 		}
1824 	}
1825 
1826 	/* Stop all Queues in reverse order */
1827 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1828 		fp = &edev->fp_array[i];
1829 
1830 		/* Stop the Tx Queue(s) */
1831 		if (fp->type & QEDE_FASTPATH_TX) {
1832 			int cos;
1833 
1834 			for_each_cos_in_txq(edev, cos) {
1835 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1836 				if (rc)
1837 					return rc;
1838 			}
1839 		}
1840 
1841 		/* Stop the Rx Queue */
1842 		if (fp->type & QEDE_FASTPATH_RX) {
1843 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1844 			if (rc) {
1845 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1846 				return rc;
1847 			}
1848 		}
1849 
1850 		/* Stop the XDP forwarding queue */
1851 		if (fp->type & QEDE_FASTPATH_XDP) {
1852 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1853 			if (rc)
1854 				return rc;
1855 
1856 			bpf_prog_put(fp->rxq->xdp_prog);
1857 		}
1858 	}
1859 
1860 	/* Stop the vport */
1861 	rc = edev->ops->vport_stop(cdev, 0);
1862 	if (rc)
1863 		DP_ERR(edev, "Failed to stop VPORT\n");
1864 
1865 	return rc;
1866 }
1867 
1868 static int qede_start_txq(struct qede_dev *edev,
1869 			  struct qede_fastpath *fp,
1870 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1871 {
1872 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1873 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1874 	struct qed_queue_start_common_params params;
1875 	struct qed_txq_start_ret_params ret_params;
1876 	int rc;
1877 
1878 	memset(&params, 0, sizeof(params));
1879 	memset(&ret_params, 0, sizeof(ret_params));
1880 
1881 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1882 	 * We don't really care about its coalescing.
1883 	 */
1884 	if (txq->is_xdp)
1885 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1886 	else
1887 		params.queue_id = txq->index;
1888 
1889 	params.p_sb = fp->sb_info;
1890 	params.sb_idx = sb_idx;
1891 	params.tc = txq->cos;
1892 
1893 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1894 				   page_cnt, &ret_params);
1895 	if (rc) {
1896 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1897 		return rc;
1898 	}
1899 
1900 	txq->doorbell_addr = ret_params.p_doorbell;
1901 	txq->handle = ret_params.p_handle;
1902 
1903 	/* Determine the FW consumer address associated */
1904 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1905 
1906 	/* Prepare the doorbell parameters */
1907 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1908 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1909 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1910 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1911 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1912 
1913 	return rc;
1914 }
1915 
1916 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1917 {
1918 	int vlan_removal_en = 1;
1919 	struct qed_dev *cdev = edev->cdev;
1920 	struct qed_dev_info *qed_info = &edev->dev_info.common;
1921 	struct qed_update_vport_params *vport_update_params;
1922 	struct qed_queue_start_common_params q_params;
1923 	struct qed_start_vport_params start = {0};
1924 	int rc, i;
1925 
1926 	if (!edev->num_queues) {
1927 		DP_ERR(edev,
1928 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1929 		return -EINVAL;
1930 	}
1931 
1932 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1933 	if (!vport_update_params)
1934 		return -ENOMEM;
1935 
1936 	start.handle_ptp_pkts = !!(edev->ptp);
1937 	start.gro_enable = !edev->gro_disable;
1938 	start.mtu = edev->ndev->mtu;
1939 	start.vport_id = 0;
1940 	start.drop_ttl0 = true;
1941 	start.remove_inner_vlan = vlan_removal_en;
1942 	start.clear_stats = clear_stats;
1943 
1944 	rc = edev->ops->vport_start(cdev, &start);
1945 
1946 	if (rc) {
1947 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1948 		goto out;
1949 	}
1950 
1951 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1952 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1953 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1954 
1955 	for_each_queue(i) {
1956 		struct qede_fastpath *fp = &edev->fp_array[i];
1957 		dma_addr_t p_phys_table;
1958 		u32 page_cnt;
1959 
1960 		if (fp->type & QEDE_FASTPATH_RX) {
1961 			struct qed_rxq_start_ret_params ret_params;
1962 			struct qede_rx_queue *rxq = fp->rxq;
1963 			__le16 *val;
1964 
1965 			memset(&ret_params, 0, sizeof(ret_params));
1966 			memset(&q_params, 0, sizeof(q_params));
1967 			q_params.queue_id = rxq->rxq_id;
1968 			q_params.vport_id = 0;
1969 			q_params.p_sb = fp->sb_info;
1970 			q_params.sb_idx = RX_PI;
1971 
1972 			p_phys_table =
1973 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1974 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1975 
1976 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1977 						   rxq->rx_buf_size,
1978 						   rxq->rx_bd_ring.p_phys_addr,
1979 						   p_phys_table,
1980 						   page_cnt, &ret_params);
1981 			if (rc) {
1982 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1983 				       rc);
1984 				goto out;
1985 			}
1986 
1987 			/* Use the return parameters */
1988 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
1989 			rxq->handle = ret_params.p_handle;
1990 
1991 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1992 			rxq->hw_cons_ptr = val;
1993 
1994 			qede_update_rx_prod(edev, rxq);
1995 		}
1996 
1997 		if (fp->type & QEDE_FASTPATH_XDP) {
1998 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1999 			if (rc)
2000 				goto out;
2001 
2002 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2003 			if (IS_ERR(fp->rxq->xdp_prog)) {
2004 				rc = PTR_ERR(fp->rxq->xdp_prog);
2005 				fp->rxq->xdp_prog = NULL;
2006 				goto out;
2007 			}
2008 		}
2009 
2010 		if (fp->type & QEDE_FASTPATH_TX) {
2011 			int cos;
2012 
2013 			for_each_cos_in_txq(edev, cos) {
2014 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2015 						    TX_PI(cos));
2016 				if (rc)
2017 					goto out;
2018 			}
2019 		}
2020 	}
2021 
2022 	/* Prepare and send the vport enable */
2023 	vport_update_params->vport_id = start.vport_id;
2024 	vport_update_params->update_vport_active_flg = 1;
2025 	vport_update_params->vport_active_flg = 1;
2026 
2027 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2028 	    qed_info->tx_switching) {
2029 		vport_update_params->update_tx_switching_flg = 1;
2030 		vport_update_params->tx_switching_flg = 1;
2031 	}
2032 
2033 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2034 			     &vport_update_params->update_rss_flg);
2035 
2036 	rc = edev->ops->vport_update(cdev, vport_update_params);
2037 	if (rc)
2038 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2039 
2040 out:
2041 	vfree(vport_update_params);
2042 	return rc;
2043 }
2044 
2045 enum qede_unload_mode {
2046 	QEDE_UNLOAD_NORMAL,
2047 };
2048 
2049 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2050 			bool is_locked)
2051 {
2052 	struct qed_link_params link_params;
2053 	int rc;
2054 
2055 	DP_INFO(edev, "Starting qede unload\n");
2056 
2057 	if (!is_locked)
2058 		__qede_lock(edev);
2059 
2060 	edev->state = QEDE_STATE_CLOSED;
2061 
2062 	qede_rdma_dev_event_close(edev);
2063 
2064 	/* Close OS Tx */
2065 	netif_tx_disable(edev->ndev);
2066 	netif_carrier_off(edev->ndev);
2067 
2068 	/* Reset the link */
2069 	memset(&link_params, 0, sizeof(link_params));
2070 	link_params.link_up = false;
2071 	edev->ops->common->set_link(edev->cdev, &link_params);
2072 	rc = qede_stop_queues(edev);
2073 	if (rc) {
2074 		qede_sync_free_irqs(edev);
2075 		goto out;
2076 	}
2077 
2078 	DP_INFO(edev, "Stopped Queues\n");
2079 
2080 	qede_vlan_mark_nonconfigured(edev);
2081 	edev->ops->fastpath_stop(edev->cdev);
2082 
2083 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2084 		qede_poll_for_freeing_arfs_filters(edev);
2085 		qede_free_arfs(edev);
2086 	}
2087 
2088 	/* Release the interrupts */
2089 	qede_sync_free_irqs(edev);
2090 	edev->ops->common->set_fp_int(edev->cdev, 0);
2091 
2092 	qede_napi_disable_remove(edev);
2093 
2094 	qede_free_mem_load(edev);
2095 	qede_free_fp_array(edev);
2096 
2097 out:
2098 	if (!is_locked)
2099 		__qede_unlock(edev);
2100 	DP_INFO(edev, "Ending qede unload\n");
2101 }
2102 
2103 enum qede_load_mode {
2104 	QEDE_LOAD_NORMAL,
2105 	QEDE_LOAD_RELOAD,
2106 };
2107 
2108 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2109 		     bool is_locked)
2110 {
2111 	struct qed_link_params link_params;
2112 	u8 num_tc;
2113 	int rc;
2114 
2115 	DP_INFO(edev, "Starting qede load\n");
2116 
2117 	if (!is_locked)
2118 		__qede_lock(edev);
2119 
2120 	rc = qede_set_num_queues(edev);
2121 	if (rc)
2122 		goto out;
2123 
2124 	rc = qede_alloc_fp_array(edev);
2125 	if (rc)
2126 		goto out;
2127 
2128 	qede_init_fp(edev);
2129 
2130 	rc = qede_alloc_mem_load(edev);
2131 	if (rc)
2132 		goto err1;
2133 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2134 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2135 
2136 	rc = qede_set_real_num_queues(edev);
2137 	if (rc)
2138 		goto err2;
2139 
2140 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2141 		rc = qede_alloc_arfs(edev);
2142 		if (rc)
2143 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2144 	}
2145 
2146 	qede_napi_add_enable(edev);
2147 	DP_INFO(edev, "Napi added and enabled\n");
2148 
2149 	rc = qede_setup_irqs(edev);
2150 	if (rc)
2151 		goto err3;
2152 	DP_INFO(edev, "Setup IRQs succeeded\n");
2153 
2154 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2155 	if (rc)
2156 		goto err4;
2157 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2158 
2159 	num_tc = netdev_get_num_tc(edev->ndev);
2160 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2161 	qede_setup_tc(edev->ndev, num_tc);
2162 
2163 	/* Program un-configured VLANs */
2164 	qede_configure_vlan_filters(edev);
2165 
2166 	/* Ask for link-up using current configuration */
2167 	memset(&link_params, 0, sizeof(link_params));
2168 	link_params.link_up = true;
2169 	edev->ops->common->set_link(edev->cdev, &link_params);
2170 
2171 	edev->state = QEDE_STATE_OPEN;
2172 
2173 	DP_INFO(edev, "Ending successfully qede load\n");
2174 
2175 	goto out;
2176 err4:
2177 	qede_sync_free_irqs(edev);
2178 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2179 err3:
2180 	qede_napi_disable_remove(edev);
2181 err2:
2182 	qede_free_mem_load(edev);
2183 err1:
2184 	edev->ops->common->set_fp_int(edev->cdev, 0);
2185 	qede_free_fp_array(edev);
2186 	edev->num_queues = 0;
2187 	edev->fp_num_tx = 0;
2188 	edev->fp_num_rx = 0;
2189 out:
2190 	if (!is_locked)
2191 		__qede_unlock(edev);
2192 
2193 	return rc;
2194 }
2195 
2196 /* 'func' should be able to run between unload and reload assuming interface
2197  * is actually running, or afterwards in case it's currently DOWN.
2198  */
2199 void qede_reload(struct qede_dev *edev,
2200 		 struct qede_reload_args *args, bool is_locked)
2201 {
2202 	if (!is_locked)
2203 		__qede_lock(edev);
2204 
2205 	/* Since qede_lock is held, internal state wouldn't change even
2206 	 * if netdev state would start transitioning. Check whether current
2207 	 * internal configuration indicates device is up, then reload.
2208 	 */
2209 	if (edev->state == QEDE_STATE_OPEN) {
2210 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2211 		if (args)
2212 			args->func(edev, args);
2213 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2214 
2215 		/* Since no one is going to do it for us, re-configure */
2216 		qede_config_rx_mode(edev->ndev);
2217 	} else if (args) {
2218 		args->func(edev, args);
2219 	}
2220 
2221 	if (!is_locked)
2222 		__qede_unlock(edev);
2223 }
2224 
2225 /* called with rtnl_lock */
2226 static int qede_open(struct net_device *ndev)
2227 {
2228 	struct qede_dev *edev = netdev_priv(ndev);
2229 	int rc;
2230 
2231 	netif_carrier_off(ndev);
2232 
2233 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2234 
2235 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2236 	if (rc)
2237 		return rc;
2238 
2239 	udp_tunnel_get_rx_info(ndev);
2240 
2241 	edev->ops->common->update_drv_state(edev->cdev, true);
2242 
2243 	return 0;
2244 }
2245 
2246 static int qede_close(struct net_device *ndev)
2247 {
2248 	struct qede_dev *edev = netdev_priv(ndev);
2249 
2250 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2251 
2252 	edev->ops->common->update_drv_state(edev->cdev, false);
2253 
2254 	return 0;
2255 }
2256 
2257 static void qede_link_update(void *dev, struct qed_link_output *link)
2258 {
2259 	struct qede_dev *edev = dev;
2260 
2261 	if (!netif_running(edev->ndev)) {
2262 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2263 		return;
2264 	}
2265 
2266 	if (link->link_up) {
2267 		if (!netif_carrier_ok(edev->ndev)) {
2268 			DP_NOTICE(edev, "Link is up\n");
2269 			netif_tx_start_all_queues(edev->ndev);
2270 			netif_carrier_on(edev->ndev);
2271 			qede_rdma_dev_event_open(edev);
2272 		}
2273 	} else {
2274 		if (netif_carrier_ok(edev->ndev)) {
2275 			DP_NOTICE(edev, "Link is down\n");
2276 			netif_tx_disable(edev->ndev);
2277 			netif_carrier_off(edev->ndev);
2278 			qede_rdma_dev_event_close(edev);
2279 		}
2280 	}
2281 }
2282 
2283 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2284 {
2285 	struct netdev_queue *netdev_txq;
2286 
2287 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2288 	if (netif_xmit_stopped(netdev_txq))
2289 		return true;
2290 
2291 	return false;
2292 }
2293 
2294 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2295 {
2296 	struct qede_dev *edev = dev;
2297 	struct netdev_hw_addr *ha;
2298 	int i;
2299 
2300 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2301 		data->feat_flags |= QED_TLV_IP_CSUM;
2302 	if (edev->ndev->features & NETIF_F_TSO)
2303 		data->feat_flags |= QED_TLV_LSO;
2304 
2305 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2306 	memset(data->mac[1], 0, ETH_ALEN);
2307 	memset(data->mac[2], 0, ETH_ALEN);
2308 	/* Copy the first two UC macs */
2309 	netif_addr_lock_bh(edev->ndev);
2310 	i = 1;
2311 	netdev_for_each_uc_addr(ha, edev->ndev) {
2312 		ether_addr_copy(data->mac[i++], ha->addr);
2313 		if (i == QED_TLV_MAC_COUNT)
2314 			break;
2315 	}
2316 
2317 	netif_addr_unlock_bh(edev->ndev);
2318 }
2319 
2320 static void qede_get_eth_tlv_data(void *dev, void *data)
2321 {
2322 	struct qed_mfw_tlv_eth *etlv = data;
2323 	struct qede_dev *edev = dev;
2324 	struct qede_fastpath *fp;
2325 	int i;
2326 
2327 	etlv->lso_maxoff_size = 0XFFFF;
2328 	etlv->lso_maxoff_size_set = true;
2329 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2330 	etlv->lso_minseg_size_set = true;
2331 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2332 	etlv->prom_mode_set = true;
2333 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2334 	etlv->tx_descr_size_set = true;
2335 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2336 	etlv->rx_descr_size_set = true;
2337 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2338 	etlv->iov_offload_set = true;
2339 
2340 	/* Fill information regarding queues; Should be done under the qede
2341 	 * lock to guarantee those don't change beneath our feet.
2342 	 */
2343 	etlv->txqs_empty = true;
2344 	etlv->rxqs_empty = true;
2345 	etlv->num_txqs_full = 0;
2346 	etlv->num_rxqs_full = 0;
2347 
2348 	__qede_lock(edev);
2349 	for_each_queue(i) {
2350 		fp = &edev->fp_array[i];
2351 		if (fp->type & QEDE_FASTPATH_TX) {
2352 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2353 
2354 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2355 				etlv->txqs_empty = false;
2356 			if (qede_is_txq_full(edev, txq))
2357 				etlv->num_txqs_full++;
2358 		}
2359 		if (fp->type & QEDE_FASTPATH_RX) {
2360 			if (qede_has_rx_work(fp->rxq))
2361 				etlv->rxqs_empty = false;
2362 
2363 			/* This one is a bit tricky; Firmware might stop
2364 			 * placing packets if ring is not yet full.
2365 			 * Give an approximation.
2366 			 */
2367 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2368 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2369 			    RX_RING_SIZE - 100)
2370 				etlv->num_rxqs_full++;
2371 		}
2372 	}
2373 	__qede_unlock(edev);
2374 
2375 	etlv->txqs_empty_set = true;
2376 	etlv->rxqs_empty_set = true;
2377 	etlv->num_txqs_full_set = true;
2378 	etlv->num_rxqs_full_set = true;
2379 }
2380