1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_get_eth_tlv_data(void *edev, void *data); 137 static void qede_get_generic_tlv_data(void *edev, 138 struct qed_generic_tlvs *data); 139 140 /* The qede lock is used to protect driver state change and driver flows that 141 * are not reentrant. 142 */ 143 void __qede_lock(struct qede_dev *edev) 144 { 145 mutex_lock(&edev->qede_lock); 146 } 147 148 void __qede_unlock(struct qede_dev *edev) 149 { 150 mutex_unlock(&edev->qede_lock); 151 } 152 153 #ifdef CONFIG_QED_SRIOV 154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 155 __be16 vlan_proto) 156 { 157 struct qede_dev *edev = netdev_priv(ndev); 158 159 if (vlan > 4095) { 160 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 161 return -EINVAL; 162 } 163 164 if (vlan_proto != htons(ETH_P_8021Q)) 165 return -EPROTONOSUPPORT; 166 167 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 168 vlan, vf); 169 170 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 171 } 172 173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 174 { 175 struct qede_dev *edev = netdev_priv(ndev); 176 177 DP_VERBOSE(edev, QED_MSG_IOV, 178 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 179 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 180 181 if (!is_valid_ether_addr(mac)) { 182 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 183 return -EINVAL; 184 } 185 186 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 187 } 188 189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 190 { 191 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 192 struct qed_dev_info *qed_info = &edev->dev_info.common; 193 struct qed_update_vport_params *vport_params; 194 int rc; 195 196 vport_params = vzalloc(sizeof(*vport_params)); 197 if (!vport_params) 198 return -ENOMEM; 199 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 200 201 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 202 203 /* Enable/Disable Tx switching for PF */ 204 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 205 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 206 vport_params->vport_id = 0; 207 vport_params->update_tx_switching_flg = 1; 208 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 209 edev->ops->vport_update(edev->cdev, vport_params); 210 } 211 212 vfree(vport_params); 213 return rc; 214 } 215 #endif 216 217 static struct pci_driver qede_pci_driver = { 218 .name = "qede", 219 .id_table = qede_pci_tbl, 220 .probe = qede_probe, 221 .remove = qede_remove, 222 .shutdown = qede_shutdown, 223 #ifdef CONFIG_QED_SRIOV 224 .sriov_configure = qede_sriov_configure, 225 #endif 226 }; 227 228 static struct qed_eth_cb_ops qede_ll_ops = { 229 { 230 #ifdef CONFIG_RFS_ACCEL 231 .arfs_filter_op = qede_arfs_filter_op, 232 #endif 233 .link_update = qede_link_update, 234 .get_generic_tlv_data = qede_get_generic_tlv_data, 235 .get_protocol_tlv_data = qede_get_eth_tlv_data, 236 }, 237 .force_mac = qede_force_mac, 238 .ports_update = qede_udp_ports_update, 239 }; 240 241 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 242 void *ptr) 243 { 244 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 245 struct ethtool_drvinfo drvinfo; 246 struct qede_dev *edev; 247 248 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 249 goto done; 250 251 /* Check whether this is a qede device */ 252 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 253 goto done; 254 255 memset(&drvinfo, 0, sizeof(drvinfo)); 256 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 257 if (strcmp(drvinfo.driver, "qede")) 258 goto done; 259 edev = netdev_priv(ndev); 260 261 switch (event) { 262 case NETDEV_CHANGENAME: 263 /* Notify qed of the name change */ 264 if (!edev->ops || !edev->ops->common) 265 goto done; 266 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 267 break; 268 case NETDEV_CHANGEADDR: 269 edev = netdev_priv(ndev); 270 qede_rdma_event_changeaddr(edev); 271 break; 272 } 273 274 done: 275 return NOTIFY_DONE; 276 } 277 278 static struct notifier_block qede_netdev_notifier = { 279 .notifier_call = qede_netdev_event, 280 }; 281 282 static 283 int __init qede_init(void) 284 { 285 int ret; 286 287 pr_info("qede_init: %s\n", version); 288 289 qed_ops = qed_get_eth_ops(); 290 if (!qed_ops) { 291 pr_notice("Failed to get qed ethtool operations\n"); 292 return -EINVAL; 293 } 294 295 /* Must register notifier before pci ops, since we might miss 296 * interface rename after pci probe and netdev registration. 297 */ 298 ret = register_netdevice_notifier(&qede_netdev_notifier); 299 if (ret) { 300 pr_notice("Failed to register netdevice_notifier\n"); 301 qed_put_eth_ops(); 302 return -EINVAL; 303 } 304 305 ret = pci_register_driver(&qede_pci_driver); 306 if (ret) { 307 pr_notice("Failed to register driver\n"); 308 unregister_netdevice_notifier(&qede_netdev_notifier); 309 qed_put_eth_ops(); 310 return -EINVAL; 311 } 312 313 return 0; 314 } 315 316 static void __exit qede_cleanup(void) 317 { 318 if (debug & QED_LOG_INFO_MASK) 319 pr_info("qede_cleanup called\n"); 320 321 unregister_netdevice_notifier(&qede_netdev_notifier); 322 pci_unregister_driver(&qede_pci_driver); 323 qed_put_eth_ops(); 324 } 325 326 module_init(qede_init); 327 module_exit(qede_cleanup); 328 329 static int qede_open(struct net_device *ndev); 330 static int qede_close(struct net_device *ndev); 331 332 void qede_fill_by_demand_stats(struct qede_dev *edev) 333 { 334 struct qede_stats_common *p_common = &edev->stats.common; 335 struct qed_eth_stats stats; 336 337 edev->ops->get_vport_stats(edev->cdev, &stats); 338 339 p_common->no_buff_discards = stats.common.no_buff_discards; 340 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 341 p_common->ttl0_discard = stats.common.ttl0_discard; 342 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 343 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 344 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 345 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 346 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 347 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 348 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 349 p_common->mac_filter_discards = stats.common.mac_filter_discards; 350 351 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 352 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 353 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 354 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 355 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 356 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 357 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 358 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 359 p_common->coalesced_events = stats.common.tpa_coalesced_events; 360 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 361 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 362 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 363 364 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 365 p_common->rx_65_to_127_byte_packets = 366 stats.common.rx_65_to_127_byte_packets; 367 p_common->rx_128_to_255_byte_packets = 368 stats.common.rx_128_to_255_byte_packets; 369 p_common->rx_256_to_511_byte_packets = 370 stats.common.rx_256_to_511_byte_packets; 371 p_common->rx_512_to_1023_byte_packets = 372 stats.common.rx_512_to_1023_byte_packets; 373 p_common->rx_1024_to_1518_byte_packets = 374 stats.common.rx_1024_to_1518_byte_packets; 375 p_common->rx_crc_errors = stats.common.rx_crc_errors; 376 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 377 p_common->rx_pause_frames = stats.common.rx_pause_frames; 378 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 379 p_common->rx_align_errors = stats.common.rx_align_errors; 380 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 381 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 382 p_common->rx_jabbers = stats.common.rx_jabbers; 383 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 384 p_common->rx_fragments = stats.common.rx_fragments; 385 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 386 p_common->tx_65_to_127_byte_packets = 387 stats.common.tx_65_to_127_byte_packets; 388 p_common->tx_128_to_255_byte_packets = 389 stats.common.tx_128_to_255_byte_packets; 390 p_common->tx_256_to_511_byte_packets = 391 stats.common.tx_256_to_511_byte_packets; 392 p_common->tx_512_to_1023_byte_packets = 393 stats.common.tx_512_to_1023_byte_packets; 394 p_common->tx_1024_to_1518_byte_packets = 395 stats.common.tx_1024_to_1518_byte_packets; 396 p_common->tx_pause_frames = stats.common.tx_pause_frames; 397 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 398 p_common->brb_truncates = stats.common.brb_truncates; 399 p_common->brb_discards = stats.common.brb_discards; 400 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 401 402 if (QEDE_IS_BB(edev)) { 403 struct qede_stats_bb *p_bb = &edev->stats.bb; 404 405 p_bb->rx_1519_to_1522_byte_packets = 406 stats.bb.rx_1519_to_1522_byte_packets; 407 p_bb->rx_1519_to_2047_byte_packets = 408 stats.bb.rx_1519_to_2047_byte_packets; 409 p_bb->rx_2048_to_4095_byte_packets = 410 stats.bb.rx_2048_to_4095_byte_packets; 411 p_bb->rx_4096_to_9216_byte_packets = 412 stats.bb.rx_4096_to_9216_byte_packets; 413 p_bb->rx_9217_to_16383_byte_packets = 414 stats.bb.rx_9217_to_16383_byte_packets; 415 p_bb->tx_1519_to_2047_byte_packets = 416 stats.bb.tx_1519_to_2047_byte_packets; 417 p_bb->tx_2048_to_4095_byte_packets = 418 stats.bb.tx_2048_to_4095_byte_packets; 419 p_bb->tx_4096_to_9216_byte_packets = 420 stats.bb.tx_4096_to_9216_byte_packets; 421 p_bb->tx_9217_to_16383_byte_packets = 422 stats.bb.tx_9217_to_16383_byte_packets; 423 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 424 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 425 } else { 426 struct qede_stats_ah *p_ah = &edev->stats.ah; 427 428 p_ah->rx_1519_to_max_byte_packets = 429 stats.ah.rx_1519_to_max_byte_packets; 430 p_ah->tx_1519_to_max_byte_packets = 431 stats.ah.tx_1519_to_max_byte_packets; 432 } 433 } 434 435 static void qede_get_stats64(struct net_device *dev, 436 struct rtnl_link_stats64 *stats) 437 { 438 struct qede_dev *edev = netdev_priv(dev); 439 struct qede_stats_common *p_common; 440 441 qede_fill_by_demand_stats(edev); 442 p_common = &edev->stats.common; 443 444 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 445 p_common->rx_bcast_pkts; 446 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 447 p_common->tx_bcast_pkts; 448 449 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 450 p_common->rx_bcast_bytes; 451 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 452 p_common->tx_bcast_bytes; 453 454 stats->tx_errors = p_common->tx_err_drop_pkts; 455 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 456 457 stats->rx_fifo_errors = p_common->no_buff_discards; 458 459 if (QEDE_IS_BB(edev)) 460 stats->collisions = edev->stats.bb.tx_total_collisions; 461 stats->rx_crc_errors = p_common->rx_crc_errors; 462 stats->rx_frame_errors = p_common->rx_align_errors; 463 } 464 465 #ifdef CONFIG_QED_SRIOV 466 static int qede_get_vf_config(struct net_device *dev, int vfidx, 467 struct ifla_vf_info *ivi) 468 { 469 struct qede_dev *edev = netdev_priv(dev); 470 471 if (!edev->ops) 472 return -EINVAL; 473 474 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 475 } 476 477 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 478 int min_tx_rate, int max_tx_rate) 479 { 480 struct qede_dev *edev = netdev_priv(dev); 481 482 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 483 max_tx_rate); 484 } 485 486 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 487 { 488 struct qede_dev *edev = netdev_priv(dev); 489 490 if (!edev->ops) 491 return -EINVAL; 492 493 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 494 } 495 496 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 497 int link_state) 498 { 499 struct qede_dev *edev = netdev_priv(dev); 500 501 if (!edev->ops) 502 return -EINVAL; 503 504 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 505 } 506 507 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 508 { 509 struct qede_dev *edev = netdev_priv(dev); 510 511 if (!edev->ops) 512 return -EINVAL; 513 514 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 515 } 516 #endif 517 518 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 519 { 520 struct qede_dev *edev = netdev_priv(dev); 521 522 if (!netif_running(dev)) 523 return -EAGAIN; 524 525 switch (cmd) { 526 case SIOCSHWTSTAMP: 527 return qede_ptp_hw_ts(edev, ifr); 528 default: 529 DP_VERBOSE(edev, QED_MSG_DEBUG, 530 "default IOCTL cmd 0x%x\n", cmd); 531 return -EOPNOTSUPP; 532 } 533 534 return 0; 535 } 536 537 static const struct net_device_ops qede_netdev_ops = { 538 .ndo_open = qede_open, 539 .ndo_stop = qede_close, 540 .ndo_start_xmit = qede_start_xmit, 541 .ndo_set_rx_mode = qede_set_rx_mode, 542 .ndo_set_mac_address = qede_set_mac_addr, 543 .ndo_validate_addr = eth_validate_addr, 544 .ndo_change_mtu = qede_change_mtu, 545 .ndo_do_ioctl = qede_ioctl, 546 #ifdef CONFIG_QED_SRIOV 547 .ndo_set_vf_mac = qede_set_vf_mac, 548 .ndo_set_vf_vlan = qede_set_vf_vlan, 549 .ndo_set_vf_trust = qede_set_vf_trust, 550 #endif 551 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 552 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 553 .ndo_fix_features = qede_fix_features, 554 .ndo_set_features = qede_set_features, 555 .ndo_get_stats64 = qede_get_stats64, 556 #ifdef CONFIG_QED_SRIOV 557 .ndo_set_vf_link_state = qede_set_vf_link_state, 558 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 559 .ndo_get_vf_config = qede_get_vf_config, 560 .ndo_set_vf_rate = qede_set_vf_rate, 561 #endif 562 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 563 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 564 .ndo_features_check = qede_features_check, 565 .ndo_bpf = qede_xdp, 566 #ifdef CONFIG_RFS_ACCEL 567 .ndo_rx_flow_steer = qede_rx_flow_steer, 568 #endif 569 }; 570 571 static const struct net_device_ops qede_netdev_vf_ops = { 572 .ndo_open = qede_open, 573 .ndo_stop = qede_close, 574 .ndo_start_xmit = qede_start_xmit, 575 .ndo_set_rx_mode = qede_set_rx_mode, 576 .ndo_set_mac_address = qede_set_mac_addr, 577 .ndo_validate_addr = eth_validate_addr, 578 .ndo_change_mtu = qede_change_mtu, 579 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 580 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 581 .ndo_fix_features = qede_fix_features, 582 .ndo_set_features = qede_set_features, 583 .ndo_get_stats64 = qede_get_stats64, 584 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 585 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 586 .ndo_features_check = qede_features_check, 587 }; 588 589 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 590 .ndo_open = qede_open, 591 .ndo_stop = qede_close, 592 .ndo_start_xmit = qede_start_xmit, 593 .ndo_set_rx_mode = qede_set_rx_mode, 594 .ndo_set_mac_address = qede_set_mac_addr, 595 .ndo_validate_addr = eth_validate_addr, 596 .ndo_change_mtu = qede_change_mtu, 597 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 598 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 599 .ndo_fix_features = qede_fix_features, 600 .ndo_set_features = qede_set_features, 601 .ndo_get_stats64 = qede_get_stats64, 602 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 603 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 604 .ndo_features_check = qede_features_check, 605 .ndo_bpf = qede_xdp, 606 }; 607 608 /* ------------------------------------------------------------------------- 609 * START OF PROBE / REMOVE 610 * ------------------------------------------------------------------------- 611 */ 612 613 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 614 struct pci_dev *pdev, 615 struct qed_dev_eth_info *info, 616 u32 dp_module, u8 dp_level) 617 { 618 struct net_device *ndev; 619 struct qede_dev *edev; 620 621 ndev = alloc_etherdev_mqs(sizeof(*edev), 622 info->num_queues, info->num_queues); 623 if (!ndev) { 624 pr_err("etherdev allocation failed\n"); 625 return NULL; 626 } 627 628 edev = netdev_priv(ndev); 629 edev->ndev = ndev; 630 edev->cdev = cdev; 631 edev->pdev = pdev; 632 edev->dp_module = dp_module; 633 edev->dp_level = dp_level; 634 edev->ops = qed_ops; 635 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 636 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 637 638 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 639 info->num_queues, info->num_queues); 640 641 SET_NETDEV_DEV(ndev, &pdev->dev); 642 643 memset(&edev->stats, 0, sizeof(edev->stats)); 644 memcpy(&edev->dev_info, info, sizeof(*info)); 645 646 /* As ethtool doesn't have the ability to show WoL behavior as 647 * 'default', if device supports it declare it's enabled. 648 */ 649 if (edev->dev_info.common.wol_support) 650 edev->wol_enabled = true; 651 652 INIT_LIST_HEAD(&edev->vlan_list); 653 654 return edev; 655 } 656 657 static void qede_init_ndev(struct qede_dev *edev) 658 { 659 struct net_device *ndev = edev->ndev; 660 struct pci_dev *pdev = edev->pdev; 661 bool udp_tunnel_enable = false; 662 netdev_features_t hw_features; 663 664 pci_set_drvdata(pdev, ndev); 665 666 ndev->mem_start = edev->dev_info.common.pci_mem_start; 667 ndev->base_addr = ndev->mem_start; 668 ndev->mem_end = edev->dev_info.common.pci_mem_end; 669 ndev->irq = edev->dev_info.common.pci_irq; 670 671 ndev->watchdog_timeo = TX_TIMEOUT; 672 673 if (IS_VF(edev)) { 674 if (edev->dev_info.xdp_supported) 675 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 676 else 677 ndev->netdev_ops = &qede_netdev_vf_ops; 678 } else { 679 ndev->netdev_ops = &qede_netdev_ops; 680 } 681 682 qede_set_ethtool_ops(ndev); 683 684 ndev->priv_flags |= IFF_UNICAST_FLT; 685 686 /* user-changeble features */ 687 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 688 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 689 NETIF_F_TSO | NETIF_F_TSO6; 690 691 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 692 hw_features |= NETIF_F_NTUPLE; 693 694 if (edev->dev_info.common.vxlan_enable || 695 edev->dev_info.common.geneve_enable) 696 udp_tunnel_enable = true; 697 698 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 699 hw_features |= NETIF_F_TSO_ECN; 700 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 701 NETIF_F_SG | NETIF_F_TSO | 702 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 703 NETIF_F_RXCSUM; 704 } 705 706 if (udp_tunnel_enable) { 707 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 708 NETIF_F_GSO_UDP_TUNNEL_CSUM); 709 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 710 NETIF_F_GSO_UDP_TUNNEL_CSUM); 711 } 712 713 if (edev->dev_info.common.gre_enable) { 714 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 715 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 716 NETIF_F_GSO_GRE_CSUM); 717 } 718 719 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 720 NETIF_F_HIGHDMA; 721 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 722 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 723 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 724 725 ndev->hw_features = hw_features; 726 727 /* MTU range: 46 - 9600 */ 728 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 729 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 730 731 /* Set network device HW mac */ 732 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 733 734 ndev->mtu = edev->dev_info.common.mtu; 735 } 736 737 /* This function converts from 32b param to two params of level and module 738 * Input 32b decoding: 739 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 740 * 'happy' flow, e.g. memory allocation failed. 741 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 742 * and provide important parameters. 743 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 744 * module. VERBOSE prints are for tracking the specific flow in low level. 745 * 746 * Notice that the level should be that of the lowest required logs. 747 */ 748 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 749 { 750 *p_dp_level = QED_LEVEL_NOTICE; 751 *p_dp_module = 0; 752 753 if (debug & QED_LOG_VERBOSE_MASK) { 754 *p_dp_level = QED_LEVEL_VERBOSE; 755 *p_dp_module = (debug & 0x3FFFFFFF); 756 } else if (debug & QED_LOG_INFO_MASK) { 757 *p_dp_level = QED_LEVEL_INFO; 758 } else if (debug & QED_LOG_NOTICE_MASK) { 759 *p_dp_level = QED_LEVEL_NOTICE; 760 } 761 } 762 763 static void qede_free_fp_array(struct qede_dev *edev) 764 { 765 if (edev->fp_array) { 766 struct qede_fastpath *fp; 767 int i; 768 769 for_each_queue(i) { 770 fp = &edev->fp_array[i]; 771 772 kfree(fp->sb_info); 773 /* Handle mem alloc failure case where qede_init_fp 774 * didn't register xdp_rxq_info yet. 775 * Implicit only (fp->type & QEDE_FASTPATH_RX) 776 */ 777 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 778 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 779 kfree(fp->rxq); 780 kfree(fp->xdp_tx); 781 kfree(fp->txq); 782 } 783 kfree(edev->fp_array); 784 } 785 786 edev->num_queues = 0; 787 edev->fp_num_tx = 0; 788 edev->fp_num_rx = 0; 789 } 790 791 static int qede_alloc_fp_array(struct qede_dev *edev) 792 { 793 u8 fp_combined, fp_rx = edev->fp_num_rx; 794 struct qede_fastpath *fp; 795 int i; 796 797 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 798 sizeof(*edev->fp_array), GFP_KERNEL); 799 if (!edev->fp_array) { 800 DP_NOTICE(edev, "fp array allocation failed\n"); 801 goto err; 802 } 803 804 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 805 806 /* Allocate the FP elements for Rx queues followed by combined and then 807 * the Tx. This ordering should be maintained so that the respective 808 * queues (Rx or Tx) will be together in the fastpath array and the 809 * associated ids will be sequential. 810 */ 811 for_each_queue(i) { 812 fp = &edev->fp_array[i]; 813 814 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 815 if (!fp->sb_info) { 816 DP_NOTICE(edev, "sb info struct allocation failed\n"); 817 goto err; 818 } 819 820 if (fp_rx) { 821 fp->type = QEDE_FASTPATH_RX; 822 fp_rx--; 823 } else if (fp_combined) { 824 fp->type = QEDE_FASTPATH_COMBINED; 825 fp_combined--; 826 } else { 827 fp->type = QEDE_FASTPATH_TX; 828 } 829 830 if (fp->type & QEDE_FASTPATH_TX) { 831 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL); 832 if (!fp->txq) 833 goto err; 834 } 835 836 if (fp->type & QEDE_FASTPATH_RX) { 837 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 838 if (!fp->rxq) 839 goto err; 840 841 if (edev->xdp_prog) { 842 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 843 GFP_KERNEL); 844 if (!fp->xdp_tx) 845 goto err; 846 fp->type |= QEDE_FASTPATH_XDP; 847 } 848 } 849 } 850 851 return 0; 852 err: 853 qede_free_fp_array(edev); 854 return -ENOMEM; 855 } 856 857 static void qede_sp_task(struct work_struct *work) 858 { 859 struct qede_dev *edev = container_of(work, struct qede_dev, 860 sp_task.work); 861 862 __qede_lock(edev); 863 864 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 865 if (edev->state == QEDE_STATE_OPEN) 866 qede_config_rx_mode(edev->ndev); 867 868 #ifdef CONFIG_RFS_ACCEL 869 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 870 if (edev->state == QEDE_STATE_OPEN) 871 qede_process_arfs_filters(edev, false); 872 } 873 #endif 874 __qede_unlock(edev); 875 } 876 877 static void qede_update_pf_params(struct qed_dev *cdev) 878 { 879 struct qed_pf_params pf_params; 880 881 /* 64 rx + 64 tx + 64 XDP */ 882 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 883 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3; 884 885 /* Same for VFs - make sure they'll have sufficient connections 886 * to support XDP Tx queues. 887 */ 888 pf_params.eth_pf_params.num_vf_cons = 48; 889 890 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 891 qed_ops->common->update_pf_params(cdev, &pf_params); 892 } 893 894 #define QEDE_FW_VER_STR_SIZE 80 895 896 static void qede_log_probe(struct qede_dev *edev) 897 { 898 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 899 u8 buf[QEDE_FW_VER_STR_SIZE]; 900 size_t left_size; 901 902 snprintf(buf, QEDE_FW_VER_STR_SIZE, 903 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 904 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 905 p_dev_info->fw_eng, 906 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 907 QED_MFW_VERSION_3_OFFSET, 908 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 909 QED_MFW_VERSION_2_OFFSET, 910 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 911 QED_MFW_VERSION_1_OFFSET, 912 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 913 QED_MFW_VERSION_0_OFFSET); 914 915 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 916 if (p_dev_info->mbi_version && left_size) 917 snprintf(buf + strlen(buf), left_size, 918 " [MBI %d.%d.%d]", 919 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 920 QED_MBI_VERSION_2_OFFSET, 921 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 922 QED_MBI_VERSION_1_OFFSET, 923 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 924 QED_MBI_VERSION_0_OFFSET); 925 926 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 927 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 928 buf, edev->ndev->name); 929 } 930 931 enum qede_probe_mode { 932 QEDE_PROBE_NORMAL, 933 }; 934 935 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 936 bool is_vf, enum qede_probe_mode mode) 937 { 938 struct qed_probe_params probe_params; 939 struct qed_slowpath_params sp_params; 940 struct qed_dev_eth_info dev_info; 941 struct qede_dev *edev; 942 struct qed_dev *cdev; 943 int rc; 944 945 if (unlikely(dp_level & QED_LEVEL_INFO)) 946 pr_notice("Starting qede probe\n"); 947 948 memset(&probe_params, 0, sizeof(probe_params)); 949 probe_params.protocol = QED_PROTOCOL_ETH; 950 probe_params.dp_module = dp_module; 951 probe_params.dp_level = dp_level; 952 probe_params.is_vf = is_vf; 953 cdev = qed_ops->common->probe(pdev, &probe_params); 954 if (!cdev) { 955 rc = -ENODEV; 956 goto err0; 957 } 958 959 qede_update_pf_params(cdev); 960 961 /* Start the Slowpath-process */ 962 memset(&sp_params, 0, sizeof(sp_params)); 963 sp_params.int_mode = QED_INT_MODE_MSIX; 964 sp_params.drv_major = QEDE_MAJOR_VERSION; 965 sp_params.drv_minor = QEDE_MINOR_VERSION; 966 sp_params.drv_rev = QEDE_REVISION_VERSION; 967 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 968 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 969 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 970 if (rc) { 971 pr_notice("Cannot start slowpath\n"); 972 goto err1; 973 } 974 975 /* Learn information crucial for qede to progress */ 976 rc = qed_ops->fill_dev_info(cdev, &dev_info); 977 if (rc) 978 goto err2; 979 980 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 981 dp_level); 982 if (!edev) { 983 rc = -ENOMEM; 984 goto err2; 985 } 986 987 if (is_vf) 988 edev->flags |= QEDE_FLAG_IS_VF; 989 990 qede_init_ndev(edev); 991 992 rc = qede_rdma_dev_add(edev); 993 if (rc) 994 goto err3; 995 996 /* Prepare the lock prior to the registration of the netdev, 997 * as once it's registered we might reach flows requiring it 998 * [it's even possible to reach a flow needing it directly 999 * from there, although it's unlikely]. 1000 */ 1001 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1002 mutex_init(&edev->qede_lock); 1003 rc = register_netdev(edev->ndev); 1004 if (rc) { 1005 DP_NOTICE(edev, "Cannot register net-device\n"); 1006 goto err4; 1007 } 1008 1009 edev->ops->common->set_name(cdev, edev->ndev->name); 1010 1011 /* PTP not supported on VFs */ 1012 if (!is_vf) 1013 qede_ptp_enable(edev, true); 1014 1015 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1016 1017 #ifdef CONFIG_DCB 1018 if (!IS_VF(edev)) 1019 qede_set_dcbnl_ops(edev->ndev); 1020 #endif 1021 1022 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1023 1024 qede_log_probe(edev); 1025 return 0; 1026 1027 err4: 1028 qede_rdma_dev_remove(edev); 1029 err3: 1030 free_netdev(edev->ndev); 1031 err2: 1032 qed_ops->common->slowpath_stop(cdev); 1033 err1: 1034 qed_ops->common->remove(cdev); 1035 err0: 1036 return rc; 1037 } 1038 1039 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1040 { 1041 bool is_vf = false; 1042 u32 dp_module = 0; 1043 u8 dp_level = 0; 1044 1045 switch ((enum qede_pci_private)id->driver_data) { 1046 case QEDE_PRIVATE_VF: 1047 if (debug & QED_LOG_VERBOSE_MASK) 1048 dev_err(&pdev->dev, "Probing a VF\n"); 1049 is_vf = true; 1050 break; 1051 default: 1052 if (debug & QED_LOG_VERBOSE_MASK) 1053 dev_err(&pdev->dev, "Probing a PF\n"); 1054 } 1055 1056 qede_config_debug(debug, &dp_module, &dp_level); 1057 1058 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1059 QEDE_PROBE_NORMAL); 1060 } 1061 1062 enum qede_remove_mode { 1063 QEDE_REMOVE_NORMAL, 1064 }; 1065 1066 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1067 { 1068 struct net_device *ndev = pci_get_drvdata(pdev); 1069 struct qede_dev *edev = netdev_priv(ndev); 1070 struct qed_dev *cdev = edev->cdev; 1071 1072 DP_INFO(edev, "Starting qede_remove\n"); 1073 1074 qede_rdma_dev_remove(edev); 1075 unregister_netdev(ndev); 1076 cancel_delayed_work_sync(&edev->sp_task); 1077 1078 qede_ptp_disable(edev); 1079 1080 edev->ops->common->set_power_state(cdev, PCI_D0); 1081 1082 pci_set_drvdata(pdev, NULL); 1083 1084 /* Use global ops since we've freed edev */ 1085 qed_ops->common->slowpath_stop(cdev); 1086 if (system_state == SYSTEM_POWER_OFF) 1087 return; 1088 qed_ops->common->remove(cdev); 1089 1090 /* Since this can happen out-of-sync with other flows, 1091 * don't release the netdevice until after slowpath stop 1092 * has been called to guarantee various other contexts 1093 * [e.g., QED register callbacks] won't break anything when 1094 * accessing the netdevice. 1095 */ 1096 free_netdev(ndev); 1097 1098 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1099 } 1100 1101 static void qede_remove(struct pci_dev *pdev) 1102 { 1103 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1104 } 1105 1106 static void qede_shutdown(struct pci_dev *pdev) 1107 { 1108 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1109 } 1110 1111 /* ------------------------------------------------------------------------- 1112 * START OF LOAD / UNLOAD 1113 * ------------------------------------------------------------------------- 1114 */ 1115 1116 static int qede_set_num_queues(struct qede_dev *edev) 1117 { 1118 int rc; 1119 u16 rss_num; 1120 1121 /* Setup queues according to possible resources*/ 1122 if (edev->req_queues) 1123 rss_num = edev->req_queues; 1124 else 1125 rss_num = netif_get_num_default_rss_queues() * 1126 edev->dev_info.common.num_hwfns; 1127 1128 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1129 1130 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1131 if (rc > 0) { 1132 /* Managed to request interrupts for our queues */ 1133 edev->num_queues = rc; 1134 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1135 QEDE_QUEUE_CNT(edev), rss_num); 1136 rc = 0; 1137 } 1138 1139 edev->fp_num_tx = edev->req_num_tx; 1140 edev->fp_num_rx = edev->req_num_rx; 1141 1142 return rc; 1143 } 1144 1145 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1146 u16 sb_id) 1147 { 1148 if (sb_info->sb_virt) { 1149 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id); 1150 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1151 (void *)sb_info->sb_virt, sb_info->sb_phys); 1152 memset(sb_info, 0, sizeof(*sb_info)); 1153 } 1154 } 1155 1156 /* This function allocates fast-path status block memory */ 1157 static int qede_alloc_mem_sb(struct qede_dev *edev, 1158 struct qed_sb_info *sb_info, u16 sb_id) 1159 { 1160 struct status_block_e4 *sb_virt; 1161 dma_addr_t sb_phys; 1162 int rc; 1163 1164 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1165 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1166 if (!sb_virt) { 1167 DP_ERR(edev, "Status block allocation failed\n"); 1168 return -ENOMEM; 1169 } 1170 1171 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1172 sb_virt, sb_phys, sb_id, 1173 QED_SB_TYPE_L2_QUEUE); 1174 if (rc) { 1175 DP_ERR(edev, "Status block initialization failed\n"); 1176 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1177 sb_virt, sb_phys); 1178 return rc; 1179 } 1180 1181 return 0; 1182 } 1183 1184 static void qede_free_rx_buffers(struct qede_dev *edev, 1185 struct qede_rx_queue *rxq) 1186 { 1187 u16 i; 1188 1189 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1190 struct sw_rx_data *rx_buf; 1191 struct page *data; 1192 1193 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1194 data = rx_buf->data; 1195 1196 dma_unmap_page(&edev->pdev->dev, 1197 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1198 1199 rx_buf->data = NULL; 1200 __free_page(data); 1201 } 1202 } 1203 1204 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1205 { 1206 /* Free rx buffers */ 1207 qede_free_rx_buffers(edev, rxq); 1208 1209 /* Free the parallel SW ring */ 1210 kfree(rxq->sw_rx_ring); 1211 1212 /* Free the real RQ ring used by FW */ 1213 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1214 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1215 } 1216 1217 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1218 { 1219 int i; 1220 1221 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1222 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1223 1224 tpa_info->state = QEDE_AGG_STATE_NONE; 1225 } 1226 } 1227 1228 /* This function allocates all memory needed per Rx queue */ 1229 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1230 { 1231 int i, rc, size; 1232 1233 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1234 1235 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1236 1237 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1238 size = rxq->rx_headroom + 1239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1240 1241 /* Make sure that the headroom and payload fit in a single page */ 1242 if (rxq->rx_buf_size + size > PAGE_SIZE) 1243 rxq->rx_buf_size = PAGE_SIZE - size; 1244 1245 /* Segment size to spilt a page in multiple equal parts , 1246 * unless XDP is used in which case we'd use the entire page. 1247 */ 1248 if (!edev->xdp_prog) { 1249 size = size + rxq->rx_buf_size; 1250 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1251 } else { 1252 rxq->rx_buf_seg_size = PAGE_SIZE; 1253 } 1254 1255 /* Allocate the parallel driver ring for Rx buffers */ 1256 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1257 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1258 if (!rxq->sw_rx_ring) { 1259 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1260 rc = -ENOMEM; 1261 goto err; 1262 } 1263 1264 /* Allocate FW Rx ring */ 1265 rc = edev->ops->common->chain_alloc(edev->cdev, 1266 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1267 QED_CHAIN_MODE_NEXT_PTR, 1268 QED_CHAIN_CNT_TYPE_U16, 1269 RX_RING_SIZE, 1270 sizeof(struct eth_rx_bd), 1271 &rxq->rx_bd_ring, NULL); 1272 if (rc) 1273 goto err; 1274 1275 /* Allocate FW completion ring */ 1276 rc = edev->ops->common->chain_alloc(edev->cdev, 1277 QED_CHAIN_USE_TO_CONSUME, 1278 QED_CHAIN_MODE_PBL, 1279 QED_CHAIN_CNT_TYPE_U16, 1280 RX_RING_SIZE, 1281 sizeof(union eth_rx_cqe), 1282 &rxq->rx_comp_ring, NULL); 1283 if (rc) 1284 goto err; 1285 1286 /* Allocate buffers for the Rx ring */ 1287 rxq->filled_buffers = 0; 1288 for (i = 0; i < rxq->num_rx_buffers; i++) { 1289 rc = qede_alloc_rx_buffer(rxq, false); 1290 if (rc) { 1291 DP_ERR(edev, 1292 "Rx buffers allocation failed at index %d\n", i); 1293 goto err; 1294 } 1295 } 1296 1297 if (!edev->gro_disable) 1298 qede_set_tpa_param(rxq); 1299 err: 1300 return rc; 1301 } 1302 1303 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1304 { 1305 /* Free the parallel SW ring */ 1306 if (txq->is_xdp) 1307 kfree(txq->sw_tx_ring.xdp); 1308 else 1309 kfree(txq->sw_tx_ring.skbs); 1310 1311 /* Free the real RQ ring used by FW */ 1312 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1313 } 1314 1315 /* This function allocates all memory needed per Tx queue */ 1316 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1317 { 1318 union eth_tx_bd_types *p_virt; 1319 int size, rc; 1320 1321 txq->num_tx_buffers = edev->q_num_tx_buffers; 1322 1323 /* Allocate the parallel driver ring for Tx buffers */ 1324 if (txq->is_xdp) { 1325 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1326 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1327 if (!txq->sw_tx_ring.xdp) 1328 goto err; 1329 } else { 1330 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1331 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1332 if (!txq->sw_tx_ring.skbs) 1333 goto err; 1334 } 1335 1336 rc = edev->ops->common->chain_alloc(edev->cdev, 1337 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1338 QED_CHAIN_MODE_PBL, 1339 QED_CHAIN_CNT_TYPE_U16, 1340 txq->num_tx_buffers, 1341 sizeof(*p_virt), 1342 &txq->tx_pbl, NULL); 1343 if (rc) 1344 goto err; 1345 1346 return 0; 1347 1348 err: 1349 qede_free_mem_txq(edev, txq); 1350 return -ENOMEM; 1351 } 1352 1353 /* This function frees all memory of a single fp */ 1354 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1355 { 1356 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1357 1358 if (fp->type & QEDE_FASTPATH_RX) 1359 qede_free_mem_rxq(edev, fp->rxq); 1360 1361 if (fp->type & QEDE_FASTPATH_XDP) 1362 qede_free_mem_txq(edev, fp->xdp_tx); 1363 1364 if (fp->type & QEDE_FASTPATH_TX) 1365 qede_free_mem_txq(edev, fp->txq); 1366 } 1367 1368 /* This function allocates all memory needed for a single fp (i.e. an entity 1369 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1370 */ 1371 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1372 { 1373 int rc = 0; 1374 1375 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1376 if (rc) 1377 goto out; 1378 1379 if (fp->type & QEDE_FASTPATH_RX) { 1380 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1381 if (rc) 1382 goto out; 1383 } 1384 1385 if (fp->type & QEDE_FASTPATH_XDP) { 1386 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1387 if (rc) 1388 goto out; 1389 } 1390 1391 if (fp->type & QEDE_FASTPATH_TX) { 1392 rc = qede_alloc_mem_txq(edev, fp->txq); 1393 if (rc) 1394 goto out; 1395 } 1396 1397 out: 1398 return rc; 1399 } 1400 1401 static void qede_free_mem_load(struct qede_dev *edev) 1402 { 1403 int i; 1404 1405 for_each_queue(i) { 1406 struct qede_fastpath *fp = &edev->fp_array[i]; 1407 1408 qede_free_mem_fp(edev, fp); 1409 } 1410 } 1411 1412 /* This function allocates all qede memory at NIC load. */ 1413 static int qede_alloc_mem_load(struct qede_dev *edev) 1414 { 1415 int rc = 0, queue_id; 1416 1417 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1418 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1419 1420 rc = qede_alloc_mem_fp(edev, fp); 1421 if (rc) { 1422 DP_ERR(edev, 1423 "Failed to allocate memory for fastpath - rss id = %d\n", 1424 queue_id); 1425 qede_free_mem_load(edev); 1426 return rc; 1427 } 1428 } 1429 1430 return 0; 1431 } 1432 1433 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1434 static void qede_init_fp(struct qede_dev *edev) 1435 { 1436 int queue_id, rxq_index = 0, txq_index = 0; 1437 struct qede_fastpath *fp; 1438 1439 for_each_queue(queue_id) { 1440 fp = &edev->fp_array[queue_id]; 1441 1442 fp->edev = edev; 1443 fp->id = queue_id; 1444 1445 if (fp->type & QEDE_FASTPATH_XDP) { 1446 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1447 rxq_index); 1448 fp->xdp_tx->is_xdp = 1; 1449 } 1450 1451 if (fp->type & QEDE_FASTPATH_RX) { 1452 fp->rxq->rxq_id = rxq_index++; 1453 1454 /* Determine how to map buffers for this queue */ 1455 if (fp->type & QEDE_FASTPATH_XDP) 1456 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1457 else 1458 fp->rxq->data_direction = DMA_FROM_DEVICE; 1459 fp->rxq->dev = &edev->pdev->dev; 1460 1461 /* Driver have no error path from here */ 1462 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1463 fp->rxq->rxq_id) < 0); 1464 } 1465 1466 if (fp->type & QEDE_FASTPATH_TX) { 1467 fp->txq->index = txq_index++; 1468 if (edev->dev_info.is_legacy) 1469 fp->txq->is_legacy = 1; 1470 fp->txq->dev = &edev->pdev->dev; 1471 } 1472 1473 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1474 edev->ndev->name, queue_id); 1475 } 1476 1477 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1478 } 1479 1480 static int qede_set_real_num_queues(struct qede_dev *edev) 1481 { 1482 int rc = 0; 1483 1484 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev)); 1485 if (rc) { 1486 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1487 return rc; 1488 } 1489 1490 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1491 if (rc) { 1492 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1493 return rc; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static void qede_napi_disable_remove(struct qede_dev *edev) 1500 { 1501 int i; 1502 1503 for_each_queue(i) { 1504 napi_disable(&edev->fp_array[i].napi); 1505 1506 netif_napi_del(&edev->fp_array[i].napi); 1507 } 1508 } 1509 1510 static void qede_napi_add_enable(struct qede_dev *edev) 1511 { 1512 int i; 1513 1514 /* Add NAPI objects */ 1515 for_each_queue(i) { 1516 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1517 qede_poll, NAPI_POLL_WEIGHT); 1518 napi_enable(&edev->fp_array[i].napi); 1519 } 1520 } 1521 1522 static void qede_sync_free_irqs(struct qede_dev *edev) 1523 { 1524 int i; 1525 1526 for (i = 0; i < edev->int_info.used_cnt; i++) { 1527 if (edev->int_info.msix_cnt) { 1528 synchronize_irq(edev->int_info.msix[i].vector); 1529 free_irq(edev->int_info.msix[i].vector, 1530 &edev->fp_array[i]); 1531 } else { 1532 edev->ops->common->simd_handler_clean(edev->cdev, i); 1533 } 1534 } 1535 1536 edev->int_info.used_cnt = 0; 1537 } 1538 1539 static int qede_req_msix_irqs(struct qede_dev *edev) 1540 { 1541 int i, rc; 1542 1543 /* Sanitize number of interrupts == number of prepared RSS queues */ 1544 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1545 DP_ERR(edev, 1546 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1547 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1548 return -EINVAL; 1549 } 1550 1551 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1552 #ifdef CONFIG_RFS_ACCEL 1553 struct qede_fastpath *fp = &edev->fp_array[i]; 1554 1555 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1556 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1557 edev->int_info.msix[i].vector); 1558 if (rc) { 1559 DP_ERR(edev, "Failed to add CPU rmap\n"); 1560 qede_free_arfs(edev); 1561 } 1562 } 1563 #endif 1564 rc = request_irq(edev->int_info.msix[i].vector, 1565 qede_msix_fp_int, 0, edev->fp_array[i].name, 1566 &edev->fp_array[i]); 1567 if (rc) { 1568 DP_ERR(edev, "Request fp %d irq failed\n", i); 1569 qede_sync_free_irqs(edev); 1570 return rc; 1571 } 1572 DP_VERBOSE(edev, NETIF_MSG_INTR, 1573 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1574 edev->fp_array[i].name, i, 1575 &edev->fp_array[i]); 1576 edev->int_info.used_cnt++; 1577 } 1578 1579 return 0; 1580 } 1581 1582 static void qede_simd_fp_handler(void *cookie) 1583 { 1584 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1585 1586 napi_schedule_irqoff(&fp->napi); 1587 } 1588 1589 static int qede_setup_irqs(struct qede_dev *edev) 1590 { 1591 int i, rc = 0; 1592 1593 /* Learn Interrupt configuration */ 1594 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1595 if (rc) 1596 return rc; 1597 1598 if (edev->int_info.msix_cnt) { 1599 rc = qede_req_msix_irqs(edev); 1600 if (rc) 1601 return rc; 1602 edev->ndev->irq = edev->int_info.msix[0].vector; 1603 } else { 1604 const struct qed_common_ops *ops; 1605 1606 /* qed should learn receive the RSS ids and callbacks */ 1607 ops = edev->ops->common; 1608 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1609 ops->simd_handler_config(edev->cdev, 1610 &edev->fp_array[i], i, 1611 qede_simd_fp_handler); 1612 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1613 } 1614 return 0; 1615 } 1616 1617 static int qede_drain_txq(struct qede_dev *edev, 1618 struct qede_tx_queue *txq, bool allow_drain) 1619 { 1620 int rc, cnt = 1000; 1621 1622 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1623 if (!cnt) { 1624 if (allow_drain) { 1625 DP_NOTICE(edev, 1626 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1627 txq->index); 1628 rc = edev->ops->common->drain(edev->cdev); 1629 if (rc) 1630 return rc; 1631 return qede_drain_txq(edev, txq, false); 1632 } 1633 DP_NOTICE(edev, 1634 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1635 txq->index, txq->sw_tx_prod, 1636 txq->sw_tx_cons); 1637 return -ENODEV; 1638 } 1639 cnt--; 1640 usleep_range(1000, 2000); 1641 barrier(); 1642 } 1643 1644 /* FW finished processing, wait for HW to transmit all tx packets */ 1645 usleep_range(1000, 2000); 1646 1647 return 0; 1648 } 1649 1650 static int qede_stop_txq(struct qede_dev *edev, 1651 struct qede_tx_queue *txq, int rss_id) 1652 { 1653 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1654 } 1655 1656 static int qede_stop_queues(struct qede_dev *edev) 1657 { 1658 struct qed_update_vport_params *vport_update_params; 1659 struct qed_dev *cdev = edev->cdev; 1660 struct qede_fastpath *fp; 1661 int rc, i; 1662 1663 /* Disable the vport */ 1664 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1665 if (!vport_update_params) 1666 return -ENOMEM; 1667 1668 vport_update_params->vport_id = 0; 1669 vport_update_params->update_vport_active_flg = 1; 1670 vport_update_params->vport_active_flg = 0; 1671 vport_update_params->update_rss_flg = 0; 1672 1673 rc = edev->ops->vport_update(cdev, vport_update_params); 1674 vfree(vport_update_params); 1675 1676 if (rc) { 1677 DP_ERR(edev, "Failed to update vport\n"); 1678 return rc; 1679 } 1680 1681 /* Flush Tx queues. If needed, request drain from MCP */ 1682 for_each_queue(i) { 1683 fp = &edev->fp_array[i]; 1684 1685 if (fp->type & QEDE_FASTPATH_TX) { 1686 rc = qede_drain_txq(edev, fp->txq, true); 1687 if (rc) 1688 return rc; 1689 } 1690 1691 if (fp->type & QEDE_FASTPATH_XDP) { 1692 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1693 if (rc) 1694 return rc; 1695 } 1696 } 1697 1698 /* Stop all Queues in reverse order */ 1699 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1700 fp = &edev->fp_array[i]; 1701 1702 /* Stop the Tx Queue(s) */ 1703 if (fp->type & QEDE_FASTPATH_TX) { 1704 rc = qede_stop_txq(edev, fp->txq, i); 1705 if (rc) 1706 return rc; 1707 } 1708 1709 /* Stop the Rx Queue */ 1710 if (fp->type & QEDE_FASTPATH_RX) { 1711 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1712 if (rc) { 1713 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1714 return rc; 1715 } 1716 } 1717 1718 /* Stop the XDP forwarding queue */ 1719 if (fp->type & QEDE_FASTPATH_XDP) { 1720 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1721 if (rc) 1722 return rc; 1723 1724 bpf_prog_put(fp->rxq->xdp_prog); 1725 } 1726 } 1727 1728 /* Stop the vport */ 1729 rc = edev->ops->vport_stop(cdev, 0); 1730 if (rc) 1731 DP_ERR(edev, "Failed to stop VPORT\n"); 1732 1733 return rc; 1734 } 1735 1736 static int qede_start_txq(struct qede_dev *edev, 1737 struct qede_fastpath *fp, 1738 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1739 { 1740 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1741 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1742 struct qed_queue_start_common_params params; 1743 struct qed_txq_start_ret_params ret_params; 1744 int rc; 1745 1746 memset(¶ms, 0, sizeof(params)); 1747 memset(&ret_params, 0, sizeof(ret_params)); 1748 1749 /* Let the XDP queue share the queue-zone with one of the regular txq. 1750 * We don't really care about its coalescing. 1751 */ 1752 if (txq->is_xdp) 1753 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1754 else 1755 params.queue_id = txq->index; 1756 1757 params.p_sb = fp->sb_info; 1758 params.sb_idx = sb_idx; 1759 1760 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1761 page_cnt, &ret_params); 1762 if (rc) { 1763 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1764 return rc; 1765 } 1766 1767 txq->doorbell_addr = ret_params.p_doorbell; 1768 txq->handle = ret_params.p_handle; 1769 1770 /* Determine the FW consumer address associated */ 1771 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 1772 1773 /* Prepare the doorbell parameters */ 1774 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 1775 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 1776 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 1777 DQ_XCM_ETH_TX_BD_PROD_CMD); 1778 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 1779 1780 return rc; 1781 } 1782 1783 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 1784 { 1785 int vlan_removal_en = 1; 1786 struct qed_dev *cdev = edev->cdev; 1787 struct qed_dev_info *qed_info = &edev->dev_info.common; 1788 struct qed_update_vport_params *vport_update_params; 1789 struct qed_queue_start_common_params q_params; 1790 struct qed_start_vport_params start = {0}; 1791 int rc, i; 1792 1793 if (!edev->num_queues) { 1794 DP_ERR(edev, 1795 "Cannot update V-VPORT as active as there are no Rx queues\n"); 1796 return -EINVAL; 1797 } 1798 1799 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1800 if (!vport_update_params) 1801 return -ENOMEM; 1802 1803 start.handle_ptp_pkts = !!(edev->ptp); 1804 start.gro_enable = !edev->gro_disable; 1805 start.mtu = edev->ndev->mtu; 1806 start.vport_id = 0; 1807 start.drop_ttl0 = true; 1808 start.remove_inner_vlan = vlan_removal_en; 1809 start.clear_stats = clear_stats; 1810 1811 rc = edev->ops->vport_start(cdev, &start); 1812 1813 if (rc) { 1814 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 1815 goto out; 1816 } 1817 1818 DP_VERBOSE(edev, NETIF_MSG_IFUP, 1819 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 1820 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 1821 1822 for_each_queue(i) { 1823 struct qede_fastpath *fp = &edev->fp_array[i]; 1824 dma_addr_t p_phys_table; 1825 u32 page_cnt; 1826 1827 if (fp->type & QEDE_FASTPATH_RX) { 1828 struct qed_rxq_start_ret_params ret_params; 1829 struct qede_rx_queue *rxq = fp->rxq; 1830 __le16 *val; 1831 1832 memset(&ret_params, 0, sizeof(ret_params)); 1833 memset(&q_params, 0, sizeof(q_params)); 1834 q_params.queue_id = rxq->rxq_id; 1835 q_params.vport_id = 0; 1836 q_params.p_sb = fp->sb_info; 1837 q_params.sb_idx = RX_PI; 1838 1839 p_phys_table = 1840 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 1841 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 1842 1843 rc = edev->ops->q_rx_start(cdev, i, &q_params, 1844 rxq->rx_buf_size, 1845 rxq->rx_bd_ring.p_phys_addr, 1846 p_phys_table, 1847 page_cnt, &ret_params); 1848 if (rc) { 1849 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 1850 rc); 1851 goto out; 1852 } 1853 1854 /* Use the return parameters */ 1855 rxq->hw_rxq_prod_addr = ret_params.p_prod; 1856 rxq->handle = ret_params.p_handle; 1857 1858 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 1859 rxq->hw_cons_ptr = val; 1860 1861 qede_update_rx_prod(edev, rxq); 1862 } 1863 1864 if (fp->type & QEDE_FASTPATH_XDP) { 1865 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 1866 if (rc) 1867 goto out; 1868 1869 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 1870 if (IS_ERR(fp->rxq->xdp_prog)) { 1871 rc = PTR_ERR(fp->rxq->xdp_prog); 1872 fp->rxq->xdp_prog = NULL; 1873 goto out; 1874 } 1875 } 1876 1877 if (fp->type & QEDE_FASTPATH_TX) { 1878 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0)); 1879 if (rc) 1880 goto out; 1881 } 1882 } 1883 1884 /* Prepare and send the vport enable */ 1885 vport_update_params->vport_id = start.vport_id; 1886 vport_update_params->update_vport_active_flg = 1; 1887 vport_update_params->vport_active_flg = 1; 1888 1889 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 1890 qed_info->tx_switching) { 1891 vport_update_params->update_tx_switching_flg = 1; 1892 vport_update_params->tx_switching_flg = 1; 1893 } 1894 1895 qede_fill_rss_params(edev, &vport_update_params->rss_params, 1896 &vport_update_params->update_rss_flg); 1897 1898 rc = edev->ops->vport_update(cdev, vport_update_params); 1899 if (rc) 1900 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 1901 1902 out: 1903 vfree(vport_update_params); 1904 return rc; 1905 } 1906 1907 enum qede_unload_mode { 1908 QEDE_UNLOAD_NORMAL, 1909 }; 1910 1911 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 1912 bool is_locked) 1913 { 1914 struct qed_link_params link_params; 1915 int rc; 1916 1917 DP_INFO(edev, "Starting qede unload\n"); 1918 1919 if (!is_locked) 1920 __qede_lock(edev); 1921 1922 edev->state = QEDE_STATE_CLOSED; 1923 1924 qede_rdma_dev_event_close(edev); 1925 1926 /* Close OS Tx */ 1927 netif_tx_disable(edev->ndev); 1928 netif_carrier_off(edev->ndev); 1929 1930 /* Reset the link */ 1931 memset(&link_params, 0, sizeof(link_params)); 1932 link_params.link_up = false; 1933 edev->ops->common->set_link(edev->cdev, &link_params); 1934 rc = qede_stop_queues(edev); 1935 if (rc) { 1936 qede_sync_free_irqs(edev); 1937 goto out; 1938 } 1939 1940 DP_INFO(edev, "Stopped Queues\n"); 1941 1942 qede_vlan_mark_nonconfigured(edev); 1943 edev->ops->fastpath_stop(edev->cdev); 1944 1945 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 1946 qede_poll_for_freeing_arfs_filters(edev); 1947 qede_free_arfs(edev); 1948 } 1949 1950 /* Release the interrupts */ 1951 qede_sync_free_irqs(edev); 1952 edev->ops->common->set_fp_int(edev->cdev, 0); 1953 1954 qede_napi_disable_remove(edev); 1955 1956 qede_free_mem_load(edev); 1957 qede_free_fp_array(edev); 1958 1959 out: 1960 if (!is_locked) 1961 __qede_unlock(edev); 1962 DP_INFO(edev, "Ending qede unload\n"); 1963 } 1964 1965 enum qede_load_mode { 1966 QEDE_LOAD_NORMAL, 1967 QEDE_LOAD_RELOAD, 1968 }; 1969 1970 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 1971 bool is_locked) 1972 { 1973 struct qed_link_params link_params; 1974 int rc; 1975 1976 DP_INFO(edev, "Starting qede load\n"); 1977 1978 if (!is_locked) 1979 __qede_lock(edev); 1980 1981 rc = qede_set_num_queues(edev); 1982 if (rc) 1983 goto out; 1984 1985 rc = qede_alloc_fp_array(edev); 1986 if (rc) 1987 goto out; 1988 1989 qede_init_fp(edev); 1990 1991 rc = qede_alloc_mem_load(edev); 1992 if (rc) 1993 goto err1; 1994 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 1995 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 1996 1997 rc = qede_set_real_num_queues(edev); 1998 if (rc) 1999 goto err2; 2000 2001 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2002 rc = qede_alloc_arfs(edev); 2003 if (rc) 2004 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2005 } 2006 2007 qede_napi_add_enable(edev); 2008 DP_INFO(edev, "Napi added and enabled\n"); 2009 2010 rc = qede_setup_irqs(edev); 2011 if (rc) 2012 goto err3; 2013 DP_INFO(edev, "Setup IRQs succeeded\n"); 2014 2015 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2016 if (rc) 2017 goto err4; 2018 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2019 2020 /* Program un-configured VLANs */ 2021 qede_configure_vlan_filters(edev); 2022 2023 /* Ask for link-up using current configuration */ 2024 memset(&link_params, 0, sizeof(link_params)); 2025 link_params.link_up = true; 2026 edev->ops->common->set_link(edev->cdev, &link_params); 2027 2028 edev->state = QEDE_STATE_OPEN; 2029 2030 DP_INFO(edev, "Ending successfully qede load\n"); 2031 2032 goto out; 2033 err4: 2034 qede_sync_free_irqs(edev); 2035 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2036 err3: 2037 qede_napi_disable_remove(edev); 2038 err2: 2039 qede_free_mem_load(edev); 2040 err1: 2041 edev->ops->common->set_fp_int(edev->cdev, 0); 2042 qede_free_fp_array(edev); 2043 edev->num_queues = 0; 2044 edev->fp_num_tx = 0; 2045 edev->fp_num_rx = 0; 2046 out: 2047 if (!is_locked) 2048 __qede_unlock(edev); 2049 2050 return rc; 2051 } 2052 2053 /* 'func' should be able to run between unload and reload assuming interface 2054 * is actually running, or afterwards in case it's currently DOWN. 2055 */ 2056 void qede_reload(struct qede_dev *edev, 2057 struct qede_reload_args *args, bool is_locked) 2058 { 2059 if (!is_locked) 2060 __qede_lock(edev); 2061 2062 /* Since qede_lock is held, internal state wouldn't change even 2063 * if netdev state would start transitioning. Check whether current 2064 * internal configuration indicates device is up, then reload. 2065 */ 2066 if (edev->state == QEDE_STATE_OPEN) { 2067 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2068 if (args) 2069 args->func(edev, args); 2070 qede_load(edev, QEDE_LOAD_RELOAD, true); 2071 2072 /* Since no one is going to do it for us, re-configure */ 2073 qede_config_rx_mode(edev->ndev); 2074 } else if (args) { 2075 args->func(edev, args); 2076 } 2077 2078 if (!is_locked) 2079 __qede_unlock(edev); 2080 } 2081 2082 /* called with rtnl_lock */ 2083 static int qede_open(struct net_device *ndev) 2084 { 2085 struct qede_dev *edev = netdev_priv(ndev); 2086 int rc; 2087 2088 netif_carrier_off(ndev); 2089 2090 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2091 2092 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2093 if (rc) 2094 return rc; 2095 2096 udp_tunnel_get_rx_info(ndev); 2097 2098 edev->ops->common->update_drv_state(edev->cdev, true); 2099 2100 return 0; 2101 } 2102 2103 static int qede_close(struct net_device *ndev) 2104 { 2105 struct qede_dev *edev = netdev_priv(ndev); 2106 2107 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2108 2109 edev->ops->common->update_drv_state(edev->cdev, false); 2110 2111 return 0; 2112 } 2113 2114 static void qede_link_update(void *dev, struct qed_link_output *link) 2115 { 2116 struct qede_dev *edev = dev; 2117 2118 if (!netif_running(edev->ndev)) { 2119 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 2120 return; 2121 } 2122 2123 if (link->link_up) { 2124 if (!netif_carrier_ok(edev->ndev)) { 2125 DP_NOTICE(edev, "Link is up\n"); 2126 netif_tx_start_all_queues(edev->ndev); 2127 netif_carrier_on(edev->ndev); 2128 qede_rdma_dev_event_open(edev); 2129 } 2130 } else { 2131 if (netif_carrier_ok(edev->ndev)) { 2132 DP_NOTICE(edev, "Link is down\n"); 2133 netif_tx_disable(edev->ndev); 2134 netif_carrier_off(edev->ndev); 2135 qede_rdma_dev_event_close(edev); 2136 } 2137 } 2138 } 2139 2140 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2141 { 2142 struct netdev_queue *netdev_txq; 2143 2144 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 2145 if (netif_xmit_stopped(netdev_txq)) 2146 return true; 2147 2148 return false; 2149 } 2150 2151 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2152 { 2153 struct qede_dev *edev = dev; 2154 struct netdev_hw_addr *ha; 2155 int i; 2156 2157 if (edev->ndev->features & NETIF_F_IP_CSUM) 2158 data->feat_flags |= QED_TLV_IP_CSUM; 2159 if (edev->ndev->features & NETIF_F_TSO) 2160 data->feat_flags |= QED_TLV_LSO; 2161 2162 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2163 memset(data->mac[1], 0, ETH_ALEN); 2164 memset(data->mac[2], 0, ETH_ALEN); 2165 /* Copy the first two UC macs */ 2166 netif_addr_lock_bh(edev->ndev); 2167 i = 1; 2168 netdev_for_each_uc_addr(ha, edev->ndev) { 2169 ether_addr_copy(data->mac[i++], ha->addr); 2170 if (i == QED_TLV_MAC_COUNT) 2171 break; 2172 } 2173 2174 netif_addr_unlock_bh(edev->ndev); 2175 } 2176 2177 static void qede_get_eth_tlv_data(void *dev, void *data) 2178 { 2179 struct qed_mfw_tlv_eth *etlv = data; 2180 struct qede_dev *edev = dev; 2181 struct qede_fastpath *fp; 2182 int i; 2183 2184 etlv->lso_maxoff_size = 0XFFFF; 2185 etlv->lso_maxoff_size_set = true; 2186 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2187 etlv->lso_minseg_size_set = true; 2188 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2189 etlv->prom_mode_set = true; 2190 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2191 etlv->tx_descr_size_set = true; 2192 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2193 etlv->rx_descr_size_set = true; 2194 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2195 etlv->iov_offload_set = true; 2196 2197 /* Fill information regarding queues; Should be done under the qede 2198 * lock to guarantee those don't change beneath our feet. 2199 */ 2200 etlv->txqs_empty = true; 2201 etlv->rxqs_empty = true; 2202 etlv->num_txqs_full = 0; 2203 etlv->num_rxqs_full = 0; 2204 2205 __qede_lock(edev); 2206 for_each_queue(i) { 2207 fp = &edev->fp_array[i]; 2208 if (fp->type & QEDE_FASTPATH_TX) { 2209 if (fp->txq->sw_tx_cons != fp->txq->sw_tx_prod) 2210 etlv->txqs_empty = false; 2211 if (qede_is_txq_full(edev, fp->txq)) 2212 etlv->num_txqs_full++; 2213 } 2214 if (fp->type & QEDE_FASTPATH_RX) { 2215 if (qede_has_rx_work(fp->rxq)) 2216 etlv->rxqs_empty = false; 2217 2218 /* This one is a bit tricky; Firmware might stop 2219 * placing packets if ring is not yet full. 2220 * Give an approximation. 2221 */ 2222 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2223 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2224 RX_RING_SIZE - 100) 2225 etlv->num_rxqs_full++; 2226 } 2227 } 2228 __qede_unlock(edev); 2229 2230 etlv->txqs_empty_set = true; 2231 etlv->rxqs_empty_set = true; 2232 etlv->num_txqs_full_set = true; 2233 etlv->num_rxqs_full_set = true; 2234 } 2235