1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include <linux/qed/qede_roce.h>
64 #include "qede.h"
65 #include "qede_ptp.h"
66 
67 static char version[] =
68 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
69 
70 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
71 MODULE_LICENSE("GPL");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73 
74 static uint debug;
75 module_param(debug, uint, 0);
76 MODULE_PARM_DESC(debug, " Default debug msglevel");
77 
78 static const struct qed_eth_ops *qed_ops;
79 
80 #define CHIP_NUM_57980S_40		0x1634
81 #define CHIP_NUM_57980S_10		0x1666
82 #define CHIP_NUM_57980S_MF		0x1636
83 #define CHIP_NUM_57980S_100		0x1644
84 #define CHIP_NUM_57980S_50		0x1654
85 #define CHIP_NUM_57980S_25		0x1656
86 #define CHIP_NUM_57980S_IOV		0x1664
87 #define CHIP_NUM_AH			0x8070
88 #define CHIP_NUM_AH_IOV			0x8090
89 
90 #ifndef PCI_DEVICE_ID_NX2_57980E
91 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
92 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
93 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
94 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
95 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
96 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
97 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
98 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
99 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
100 
101 #endif
102 
103 enum qede_pci_private {
104 	QEDE_PRIVATE_PF,
105 	QEDE_PRIVATE_VF
106 };
107 
108 static const struct pci_device_id qede_pci_tbl[] = {
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
114 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
115 #ifdef CONFIG_QED_SRIOV
116 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
117 #endif
118 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
119 #ifdef CONFIG_QED_SRIOV
120 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
121 #endif
122 	{ 0 }
123 };
124 
125 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
126 
127 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
128 
129 #define TX_TIMEOUT		(5 * HZ)
130 
131 /* Utilize last protocol index for XDP */
132 #define XDP_PI	11
133 
134 static void qede_remove(struct pci_dev *pdev);
135 static void qede_shutdown(struct pci_dev *pdev);
136 static void qede_link_update(void *dev, struct qed_link_output *link);
137 
138 /* The qede lock is used to protect driver state change and driver flows that
139  * are not reentrant.
140  */
141 void __qede_lock(struct qede_dev *edev)
142 {
143 	mutex_lock(&edev->qede_lock);
144 }
145 
146 void __qede_unlock(struct qede_dev *edev)
147 {
148 	mutex_unlock(&edev->qede_lock);
149 }
150 
151 #ifdef CONFIG_QED_SRIOV
152 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
153 			    __be16 vlan_proto)
154 {
155 	struct qede_dev *edev = netdev_priv(ndev);
156 
157 	if (vlan > 4095) {
158 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
159 		return -EINVAL;
160 	}
161 
162 	if (vlan_proto != htons(ETH_P_8021Q))
163 		return -EPROTONOSUPPORT;
164 
165 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
166 		   vlan, vf);
167 
168 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
169 }
170 
171 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
172 {
173 	struct qede_dev *edev = netdev_priv(ndev);
174 
175 	DP_VERBOSE(edev, QED_MSG_IOV,
176 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
177 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
178 
179 	if (!is_valid_ether_addr(mac)) {
180 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
181 		return -EINVAL;
182 	}
183 
184 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
185 }
186 
187 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
188 {
189 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
190 	struct qed_dev_info *qed_info = &edev->dev_info.common;
191 	struct qed_update_vport_params *vport_params;
192 	int rc;
193 
194 	vport_params = vzalloc(sizeof(*vport_params));
195 	if (!vport_params)
196 		return -ENOMEM;
197 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
198 
199 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
200 
201 	/* Enable/Disable Tx switching for PF */
202 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
203 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
204 		vport_params->vport_id = 0;
205 		vport_params->update_tx_switching_flg = 1;
206 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
207 		edev->ops->vport_update(edev->cdev, vport_params);
208 	}
209 
210 	vfree(vport_params);
211 	return rc;
212 }
213 #endif
214 
215 static struct pci_driver qede_pci_driver = {
216 	.name = "qede",
217 	.id_table = qede_pci_tbl,
218 	.probe = qede_probe,
219 	.remove = qede_remove,
220 	.shutdown = qede_shutdown,
221 #ifdef CONFIG_QED_SRIOV
222 	.sriov_configure = qede_sriov_configure,
223 #endif
224 };
225 
226 static struct qed_eth_cb_ops qede_ll_ops = {
227 	{
228 #ifdef CONFIG_RFS_ACCEL
229 		.arfs_filter_op = qede_arfs_filter_op,
230 #endif
231 		.link_update = qede_link_update,
232 	},
233 	.force_mac = qede_force_mac,
234 	.ports_update = qede_udp_ports_update,
235 };
236 
237 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
238 			     void *ptr)
239 {
240 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
241 	struct ethtool_drvinfo drvinfo;
242 	struct qede_dev *edev;
243 
244 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
245 		goto done;
246 
247 	/* Check whether this is a qede device */
248 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
249 		goto done;
250 
251 	memset(&drvinfo, 0, sizeof(drvinfo));
252 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
253 	if (strcmp(drvinfo.driver, "qede"))
254 		goto done;
255 	edev = netdev_priv(ndev);
256 
257 	switch (event) {
258 	case NETDEV_CHANGENAME:
259 		/* Notify qed of the name change */
260 		if (!edev->ops || !edev->ops->common)
261 			goto done;
262 		edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
263 		break;
264 	case NETDEV_CHANGEADDR:
265 		edev = netdev_priv(ndev);
266 		qede_roce_event_changeaddr(edev);
267 		break;
268 	}
269 
270 done:
271 	return NOTIFY_DONE;
272 }
273 
274 static struct notifier_block qede_netdev_notifier = {
275 	.notifier_call = qede_netdev_event,
276 };
277 
278 static
279 int __init qede_init(void)
280 {
281 	int ret;
282 
283 	pr_info("qede_init: %s\n", version);
284 
285 	qed_ops = qed_get_eth_ops();
286 	if (!qed_ops) {
287 		pr_notice("Failed to get qed ethtool operations\n");
288 		return -EINVAL;
289 	}
290 
291 	/* Must register notifier before pci ops, since we might miss
292 	 * interface rename after pci probe and netdev registeration.
293 	 */
294 	ret = register_netdevice_notifier(&qede_netdev_notifier);
295 	if (ret) {
296 		pr_notice("Failed to register netdevice_notifier\n");
297 		qed_put_eth_ops();
298 		return -EINVAL;
299 	}
300 
301 	ret = pci_register_driver(&qede_pci_driver);
302 	if (ret) {
303 		pr_notice("Failed to register driver\n");
304 		unregister_netdevice_notifier(&qede_netdev_notifier);
305 		qed_put_eth_ops();
306 		return -EINVAL;
307 	}
308 
309 	return 0;
310 }
311 
312 static void __exit qede_cleanup(void)
313 {
314 	if (debug & QED_LOG_INFO_MASK)
315 		pr_info("qede_cleanup called\n");
316 
317 	unregister_netdevice_notifier(&qede_netdev_notifier);
318 	pci_unregister_driver(&qede_pci_driver);
319 	qed_put_eth_ops();
320 }
321 
322 module_init(qede_init);
323 module_exit(qede_cleanup);
324 
325 static int qede_open(struct net_device *ndev);
326 static int qede_close(struct net_device *ndev);
327 
328 void qede_fill_by_demand_stats(struct qede_dev *edev)
329 {
330 	struct qede_stats_common *p_common = &edev->stats.common;
331 	struct qed_eth_stats stats;
332 
333 	edev->ops->get_vport_stats(edev->cdev, &stats);
334 
335 	p_common->no_buff_discards = stats.common.no_buff_discards;
336 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
337 	p_common->ttl0_discard = stats.common.ttl0_discard;
338 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
339 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
340 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
341 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
342 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
343 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
344 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
345 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
346 
347 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
348 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
349 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
350 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
351 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
352 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
353 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
354 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
355 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
356 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
357 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
358 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
359 
360 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
361 	p_common->rx_65_to_127_byte_packets =
362 	    stats.common.rx_65_to_127_byte_packets;
363 	p_common->rx_128_to_255_byte_packets =
364 	    stats.common.rx_128_to_255_byte_packets;
365 	p_common->rx_256_to_511_byte_packets =
366 	    stats.common.rx_256_to_511_byte_packets;
367 	p_common->rx_512_to_1023_byte_packets =
368 	    stats.common.rx_512_to_1023_byte_packets;
369 	p_common->rx_1024_to_1518_byte_packets =
370 	    stats.common.rx_1024_to_1518_byte_packets;
371 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
372 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
373 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
374 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
375 	p_common->rx_align_errors = stats.common.rx_align_errors;
376 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
377 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
378 	p_common->rx_jabbers = stats.common.rx_jabbers;
379 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
380 	p_common->rx_fragments = stats.common.rx_fragments;
381 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
382 	p_common->tx_65_to_127_byte_packets =
383 	    stats.common.tx_65_to_127_byte_packets;
384 	p_common->tx_128_to_255_byte_packets =
385 	    stats.common.tx_128_to_255_byte_packets;
386 	p_common->tx_256_to_511_byte_packets =
387 	    stats.common.tx_256_to_511_byte_packets;
388 	p_common->tx_512_to_1023_byte_packets =
389 	    stats.common.tx_512_to_1023_byte_packets;
390 	p_common->tx_1024_to_1518_byte_packets =
391 	    stats.common.tx_1024_to_1518_byte_packets;
392 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
393 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
394 	p_common->brb_truncates = stats.common.brb_truncates;
395 	p_common->brb_discards = stats.common.brb_discards;
396 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
397 
398 	if (QEDE_IS_BB(edev)) {
399 		struct qede_stats_bb *p_bb = &edev->stats.bb;
400 
401 		p_bb->rx_1519_to_1522_byte_packets =
402 		    stats.bb.rx_1519_to_1522_byte_packets;
403 		p_bb->rx_1519_to_2047_byte_packets =
404 		    stats.bb.rx_1519_to_2047_byte_packets;
405 		p_bb->rx_2048_to_4095_byte_packets =
406 		    stats.bb.rx_2048_to_4095_byte_packets;
407 		p_bb->rx_4096_to_9216_byte_packets =
408 		    stats.bb.rx_4096_to_9216_byte_packets;
409 		p_bb->rx_9217_to_16383_byte_packets =
410 		    stats.bb.rx_9217_to_16383_byte_packets;
411 		p_bb->tx_1519_to_2047_byte_packets =
412 		    stats.bb.tx_1519_to_2047_byte_packets;
413 		p_bb->tx_2048_to_4095_byte_packets =
414 		    stats.bb.tx_2048_to_4095_byte_packets;
415 		p_bb->tx_4096_to_9216_byte_packets =
416 		    stats.bb.tx_4096_to_9216_byte_packets;
417 		p_bb->tx_9217_to_16383_byte_packets =
418 		    stats.bb.tx_9217_to_16383_byte_packets;
419 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
420 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
421 	} else {
422 		struct qede_stats_ah *p_ah = &edev->stats.ah;
423 
424 		p_ah->rx_1519_to_max_byte_packets =
425 		    stats.ah.rx_1519_to_max_byte_packets;
426 		p_ah->tx_1519_to_max_byte_packets =
427 		    stats.ah.tx_1519_to_max_byte_packets;
428 	}
429 }
430 
431 static void qede_get_stats64(struct net_device *dev,
432 			     struct rtnl_link_stats64 *stats)
433 {
434 	struct qede_dev *edev = netdev_priv(dev);
435 	struct qede_stats_common *p_common;
436 
437 	qede_fill_by_demand_stats(edev);
438 	p_common = &edev->stats.common;
439 
440 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
441 			    p_common->rx_bcast_pkts;
442 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
443 			    p_common->tx_bcast_pkts;
444 
445 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
446 			  p_common->rx_bcast_bytes;
447 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
448 			  p_common->tx_bcast_bytes;
449 
450 	stats->tx_errors = p_common->tx_err_drop_pkts;
451 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
452 
453 	stats->rx_fifo_errors = p_common->no_buff_discards;
454 
455 	if (QEDE_IS_BB(edev))
456 		stats->collisions = edev->stats.bb.tx_total_collisions;
457 	stats->rx_crc_errors = p_common->rx_crc_errors;
458 	stats->rx_frame_errors = p_common->rx_align_errors;
459 }
460 
461 #ifdef CONFIG_QED_SRIOV
462 static int qede_get_vf_config(struct net_device *dev, int vfidx,
463 			      struct ifla_vf_info *ivi)
464 {
465 	struct qede_dev *edev = netdev_priv(dev);
466 
467 	if (!edev->ops)
468 		return -EINVAL;
469 
470 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
471 }
472 
473 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
474 			    int min_tx_rate, int max_tx_rate)
475 {
476 	struct qede_dev *edev = netdev_priv(dev);
477 
478 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
479 					max_tx_rate);
480 }
481 
482 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
483 {
484 	struct qede_dev *edev = netdev_priv(dev);
485 
486 	if (!edev->ops)
487 		return -EINVAL;
488 
489 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
490 }
491 
492 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
493 				  int link_state)
494 {
495 	struct qede_dev *edev = netdev_priv(dev);
496 
497 	if (!edev->ops)
498 		return -EINVAL;
499 
500 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
501 }
502 
503 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
504 {
505 	struct qede_dev *edev = netdev_priv(dev);
506 
507 	if (!edev->ops)
508 		return -EINVAL;
509 
510 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
511 }
512 #endif
513 
514 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
515 {
516 	struct qede_dev *edev = netdev_priv(dev);
517 
518 	if (!netif_running(dev))
519 		return -EAGAIN;
520 
521 	switch (cmd) {
522 	case SIOCSHWTSTAMP:
523 		return qede_ptp_hw_ts(edev, ifr);
524 	default:
525 		DP_VERBOSE(edev, QED_MSG_DEBUG,
526 			   "default IOCTL cmd 0x%x\n", cmd);
527 		return -EOPNOTSUPP;
528 	}
529 
530 	return 0;
531 }
532 
533 static const struct net_device_ops qede_netdev_ops = {
534 	.ndo_open = qede_open,
535 	.ndo_stop = qede_close,
536 	.ndo_start_xmit = qede_start_xmit,
537 	.ndo_set_rx_mode = qede_set_rx_mode,
538 	.ndo_set_mac_address = qede_set_mac_addr,
539 	.ndo_validate_addr = eth_validate_addr,
540 	.ndo_change_mtu = qede_change_mtu,
541 	.ndo_do_ioctl = qede_ioctl,
542 #ifdef CONFIG_QED_SRIOV
543 	.ndo_set_vf_mac = qede_set_vf_mac,
544 	.ndo_set_vf_vlan = qede_set_vf_vlan,
545 	.ndo_set_vf_trust = qede_set_vf_trust,
546 #endif
547 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
548 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
549 	.ndo_set_features = qede_set_features,
550 	.ndo_get_stats64 = qede_get_stats64,
551 #ifdef CONFIG_QED_SRIOV
552 	.ndo_set_vf_link_state = qede_set_vf_link_state,
553 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
554 	.ndo_get_vf_config = qede_get_vf_config,
555 	.ndo_set_vf_rate = qede_set_vf_rate,
556 #endif
557 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
558 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
559 	.ndo_features_check = qede_features_check,
560 	.ndo_xdp = qede_xdp,
561 #ifdef CONFIG_RFS_ACCEL
562 	.ndo_rx_flow_steer = qede_rx_flow_steer,
563 #endif
564 };
565 
566 static const struct net_device_ops qede_netdev_vf_ops = {
567 	.ndo_open = qede_open,
568 	.ndo_stop = qede_close,
569 	.ndo_start_xmit = qede_start_xmit,
570 	.ndo_set_rx_mode = qede_set_rx_mode,
571 	.ndo_set_mac_address = qede_set_mac_addr,
572 	.ndo_validate_addr = eth_validate_addr,
573 	.ndo_change_mtu = qede_change_mtu,
574 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
575 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
576 	.ndo_set_features = qede_set_features,
577 	.ndo_get_stats64 = qede_get_stats64,
578 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
579 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
580 	.ndo_features_check = qede_features_check,
581 };
582 
583 /* -------------------------------------------------------------------------
584  * START OF PROBE / REMOVE
585  * -------------------------------------------------------------------------
586  */
587 
588 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
589 					    struct pci_dev *pdev,
590 					    struct qed_dev_eth_info *info,
591 					    u32 dp_module, u8 dp_level)
592 {
593 	struct net_device *ndev;
594 	struct qede_dev *edev;
595 
596 	ndev = alloc_etherdev_mqs(sizeof(*edev),
597 				  info->num_queues, info->num_queues);
598 	if (!ndev) {
599 		pr_err("etherdev allocation failed\n");
600 		return NULL;
601 	}
602 
603 	edev = netdev_priv(ndev);
604 	edev->ndev = ndev;
605 	edev->cdev = cdev;
606 	edev->pdev = pdev;
607 	edev->dp_module = dp_module;
608 	edev->dp_level = dp_level;
609 	edev->ops = qed_ops;
610 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
611 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
612 
613 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
614 		info->num_queues, info->num_queues);
615 
616 	SET_NETDEV_DEV(ndev, &pdev->dev);
617 
618 	memset(&edev->stats, 0, sizeof(edev->stats));
619 	memcpy(&edev->dev_info, info, sizeof(*info));
620 
621 	INIT_LIST_HEAD(&edev->vlan_list);
622 
623 	return edev;
624 }
625 
626 static void qede_init_ndev(struct qede_dev *edev)
627 {
628 	struct net_device *ndev = edev->ndev;
629 	struct pci_dev *pdev = edev->pdev;
630 	bool udp_tunnel_enable = false;
631 	netdev_features_t hw_features;
632 
633 	pci_set_drvdata(pdev, ndev);
634 
635 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
636 	ndev->base_addr = ndev->mem_start;
637 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
638 	ndev->irq = edev->dev_info.common.pci_irq;
639 
640 	ndev->watchdog_timeo = TX_TIMEOUT;
641 
642 	if (IS_VF(edev))
643 		ndev->netdev_ops = &qede_netdev_vf_ops;
644 	else
645 		ndev->netdev_ops = &qede_netdev_ops;
646 
647 	qede_set_ethtool_ops(ndev);
648 
649 	ndev->priv_flags |= IFF_UNICAST_FLT;
650 
651 	/* user-changeble features */
652 	hw_features = NETIF_F_GRO | NETIF_F_SG |
653 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
654 		      NETIF_F_TSO | NETIF_F_TSO6;
655 
656 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
657 		hw_features |= NETIF_F_NTUPLE;
658 
659 	if (edev->dev_info.common.vxlan_enable ||
660 	    edev->dev_info.common.geneve_enable)
661 		udp_tunnel_enable = true;
662 
663 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
664 		hw_features |= NETIF_F_TSO_ECN;
665 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
666 					NETIF_F_SG | NETIF_F_TSO |
667 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
668 					NETIF_F_RXCSUM;
669 	}
670 
671 	if (udp_tunnel_enable) {
672 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
673 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
674 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
675 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
676 	}
677 
678 	if (edev->dev_info.common.gre_enable) {
679 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
680 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
681 					  NETIF_F_GSO_GRE_CSUM);
682 	}
683 
684 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
685 			      NETIF_F_HIGHDMA;
686 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
687 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
688 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
689 
690 	ndev->hw_features = hw_features;
691 
692 	/* MTU range: 46 - 9600 */
693 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
694 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
695 
696 	/* Set network device HW mac */
697 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
698 
699 	ndev->mtu = edev->dev_info.common.mtu;
700 }
701 
702 /* This function converts from 32b param to two params of level and module
703  * Input 32b decoding:
704  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
705  * 'happy' flow, e.g. memory allocation failed.
706  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
707  * and provide important parameters.
708  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
709  * module. VERBOSE prints are for tracking the specific flow in low level.
710  *
711  * Notice that the level should be that of the lowest required logs.
712  */
713 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
714 {
715 	*p_dp_level = QED_LEVEL_NOTICE;
716 	*p_dp_module = 0;
717 
718 	if (debug & QED_LOG_VERBOSE_MASK) {
719 		*p_dp_level = QED_LEVEL_VERBOSE;
720 		*p_dp_module = (debug & 0x3FFFFFFF);
721 	} else if (debug & QED_LOG_INFO_MASK) {
722 		*p_dp_level = QED_LEVEL_INFO;
723 	} else if (debug & QED_LOG_NOTICE_MASK) {
724 		*p_dp_level = QED_LEVEL_NOTICE;
725 	}
726 }
727 
728 static void qede_free_fp_array(struct qede_dev *edev)
729 {
730 	if (edev->fp_array) {
731 		struct qede_fastpath *fp;
732 		int i;
733 
734 		for_each_queue(i) {
735 			fp = &edev->fp_array[i];
736 
737 			kfree(fp->sb_info);
738 			kfree(fp->rxq);
739 			kfree(fp->xdp_tx);
740 			kfree(fp->txq);
741 		}
742 		kfree(edev->fp_array);
743 	}
744 
745 	edev->num_queues = 0;
746 	edev->fp_num_tx = 0;
747 	edev->fp_num_rx = 0;
748 }
749 
750 static int qede_alloc_fp_array(struct qede_dev *edev)
751 {
752 	u8 fp_combined, fp_rx = edev->fp_num_rx;
753 	struct qede_fastpath *fp;
754 	int i;
755 
756 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
757 				 sizeof(*edev->fp_array), GFP_KERNEL);
758 	if (!edev->fp_array) {
759 		DP_NOTICE(edev, "fp array allocation failed\n");
760 		goto err;
761 	}
762 
763 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
764 
765 	/* Allocate the FP elements for Rx queues followed by combined and then
766 	 * the Tx. This ordering should be maintained so that the respective
767 	 * queues (Rx or Tx) will be together in the fastpath array and the
768 	 * associated ids will be sequential.
769 	 */
770 	for_each_queue(i) {
771 		fp = &edev->fp_array[i];
772 
773 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
774 		if (!fp->sb_info) {
775 			DP_NOTICE(edev, "sb info struct allocation failed\n");
776 			goto err;
777 		}
778 
779 		if (fp_rx) {
780 			fp->type = QEDE_FASTPATH_RX;
781 			fp_rx--;
782 		} else if (fp_combined) {
783 			fp->type = QEDE_FASTPATH_COMBINED;
784 			fp_combined--;
785 		} else {
786 			fp->type = QEDE_FASTPATH_TX;
787 		}
788 
789 		if (fp->type & QEDE_FASTPATH_TX) {
790 			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
791 			if (!fp->txq)
792 				goto err;
793 		}
794 
795 		if (fp->type & QEDE_FASTPATH_RX) {
796 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
797 			if (!fp->rxq)
798 				goto err;
799 
800 			if (edev->xdp_prog) {
801 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
802 						     GFP_KERNEL);
803 				if (!fp->xdp_tx)
804 					goto err;
805 				fp->type |= QEDE_FASTPATH_XDP;
806 			}
807 		}
808 	}
809 
810 	return 0;
811 err:
812 	qede_free_fp_array(edev);
813 	return -ENOMEM;
814 }
815 
816 static void qede_sp_task(struct work_struct *work)
817 {
818 	struct qede_dev *edev = container_of(work, struct qede_dev,
819 					     sp_task.work);
820 
821 	__qede_lock(edev);
822 
823 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
824 		if (edev->state == QEDE_STATE_OPEN)
825 			qede_config_rx_mode(edev->ndev);
826 
827 #ifdef CONFIG_RFS_ACCEL
828 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
829 		if (edev->state == QEDE_STATE_OPEN)
830 			qede_process_arfs_filters(edev, false);
831 	}
832 #endif
833 	__qede_unlock(edev);
834 }
835 
836 static void qede_update_pf_params(struct qed_dev *cdev)
837 {
838 	struct qed_pf_params pf_params;
839 
840 	/* 64 rx + 64 tx + 64 XDP */
841 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
842 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
843 #ifdef CONFIG_RFS_ACCEL
844 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
845 #endif
846 	qed_ops->common->update_pf_params(cdev, &pf_params);
847 }
848 
849 enum qede_probe_mode {
850 	QEDE_PROBE_NORMAL,
851 };
852 
853 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
854 			bool is_vf, enum qede_probe_mode mode)
855 {
856 	struct qed_probe_params probe_params;
857 	struct qed_slowpath_params sp_params;
858 	struct qed_dev_eth_info dev_info;
859 	struct qede_dev *edev;
860 	struct qed_dev *cdev;
861 	int rc;
862 
863 	if (unlikely(dp_level & QED_LEVEL_INFO))
864 		pr_notice("Starting qede probe\n");
865 
866 	memset(&probe_params, 0, sizeof(probe_params));
867 	probe_params.protocol = QED_PROTOCOL_ETH;
868 	probe_params.dp_module = dp_module;
869 	probe_params.dp_level = dp_level;
870 	probe_params.is_vf = is_vf;
871 	cdev = qed_ops->common->probe(pdev, &probe_params);
872 	if (!cdev) {
873 		rc = -ENODEV;
874 		goto err0;
875 	}
876 
877 	qede_update_pf_params(cdev);
878 
879 	/* Start the Slowpath-process */
880 	memset(&sp_params, 0, sizeof(sp_params));
881 	sp_params.int_mode = QED_INT_MODE_MSIX;
882 	sp_params.drv_major = QEDE_MAJOR_VERSION;
883 	sp_params.drv_minor = QEDE_MINOR_VERSION;
884 	sp_params.drv_rev = QEDE_REVISION_VERSION;
885 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
886 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
887 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
888 	if (rc) {
889 		pr_notice("Cannot start slowpath\n");
890 		goto err1;
891 	}
892 
893 	/* Learn information crucial for qede to progress */
894 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
895 	if (rc)
896 		goto err2;
897 
898 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
899 				   dp_level);
900 	if (!edev) {
901 		rc = -ENOMEM;
902 		goto err2;
903 	}
904 
905 	if (is_vf)
906 		edev->flags |= QEDE_FLAG_IS_VF;
907 
908 	qede_init_ndev(edev);
909 
910 	rc = qede_roce_dev_add(edev);
911 	if (rc)
912 		goto err3;
913 
914 	/* Prepare the lock prior to the registeration of the netdev,
915 	 * as once it's registered we might reach flows requiring it
916 	 * [it's even possible to reach a flow needing it directly
917 	 * from there, although it's unlikely].
918 	 */
919 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
920 	mutex_init(&edev->qede_lock);
921 	rc = register_netdev(edev->ndev);
922 	if (rc) {
923 		DP_NOTICE(edev, "Cannot register net-device\n");
924 		goto err4;
925 	}
926 
927 	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
928 
929 	/* PTP not supported on VFs */
930 	if (!is_vf)
931 		qede_ptp_enable(edev, true);
932 
933 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
934 
935 #ifdef CONFIG_DCB
936 	if (!IS_VF(edev))
937 		qede_set_dcbnl_ops(edev->ndev);
938 #endif
939 
940 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
941 
942 	DP_INFO(edev, "Ending successfully qede probe\n");
943 
944 	return 0;
945 
946 err4:
947 	qede_roce_dev_remove(edev);
948 err3:
949 	free_netdev(edev->ndev);
950 err2:
951 	qed_ops->common->slowpath_stop(cdev);
952 err1:
953 	qed_ops->common->remove(cdev);
954 err0:
955 	return rc;
956 }
957 
958 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
959 {
960 	bool is_vf = false;
961 	u32 dp_module = 0;
962 	u8 dp_level = 0;
963 
964 	switch ((enum qede_pci_private)id->driver_data) {
965 	case QEDE_PRIVATE_VF:
966 		if (debug & QED_LOG_VERBOSE_MASK)
967 			dev_err(&pdev->dev, "Probing a VF\n");
968 		is_vf = true;
969 		break;
970 	default:
971 		if (debug & QED_LOG_VERBOSE_MASK)
972 			dev_err(&pdev->dev, "Probing a PF\n");
973 	}
974 
975 	qede_config_debug(debug, &dp_module, &dp_level);
976 
977 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
978 			    QEDE_PROBE_NORMAL);
979 }
980 
981 enum qede_remove_mode {
982 	QEDE_REMOVE_NORMAL,
983 };
984 
985 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
986 {
987 	struct net_device *ndev = pci_get_drvdata(pdev);
988 	struct qede_dev *edev = netdev_priv(ndev);
989 	struct qed_dev *cdev = edev->cdev;
990 
991 	DP_INFO(edev, "Starting qede_remove\n");
992 
993 	unregister_netdev(ndev);
994 	cancel_delayed_work_sync(&edev->sp_task);
995 
996 	qede_ptp_disable(edev);
997 
998 	qede_roce_dev_remove(edev);
999 
1000 	edev->ops->common->set_power_state(cdev, PCI_D0);
1001 
1002 	pci_set_drvdata(pdev, NULL);
1003 
1004 	/* Release edev's reference to XDP's bpf if such exist */
1005 	if (edev->xdp_prog)
1006 		bpf_prog_put(edev->xdp_prog);
1007 
1008 	/* Use global ops since we've freed edev */
1009 	qed_ops->common->slowpath_stop(cdev);
1010 	if (system_state == SYSTEM_POWER_OFF)
1011 		return;
1012 	qed_ops->common->remove(cdev);
1013 
1014 	/* Since this can happen out-of-sync with other flows,
1015 	 * don't release the netdevice until after slowpath stop
1016 	 * has been called to guarantee various other contexts
1017 	 * [e.g., QED register callbacks] won't break anything when
1018 	 * accessing the netdevice.
1019 	 */
1020 	 free_netdev(ndev);
1021 
1022 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1023 }
1024 
1025 static void qede_remove(struct pci_dev *pdev)
1026 {
1027 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1028 }
1029 
1030 static void qede_shutdown(struct pci_dev *pdev)
1031 {
1032 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1033 }
1034 
1035 /* -------------------------------------------------------------------------
1036  * START OF LOAD / UNLOAD
1037  * -------------------------------------------------------------------------
1038  */
1039 
1040 static int qede_set_num_queues(struct qede_dev *edev)
1041 {
1042 	int rc;
1043 	u16 rss_num;
1044 
1045 	/* Setup queues according to possible resources*/
1046 	if (edev->req_queues)
1047 		rss_num = edev->req_queues;
1048 	else
1049 		rss_num = netif_get_num_default_rss_queues() *
1050 			  edev->dev_info.common.num_hwfns;
1051 
1052 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1053 
1054 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1055 	if (rc > 0) {
1056 		/* Managed to request interrupts for our queues */
1057 		edev->num_queues = rc;
1058 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1059 			QEDE_QUEUE_CNT(edev), rss_num);
1060 		rc = 0;
1061 	}
1062 
1063 	edev->fp_num_tx = edev->req_num_tx;
1064 	edev->fp_num_rx = edev->req_num_rx;
1065 
1066 	return rc;
1067 }
1068 
1069 static void qede_free_mem_sb(struct qede_dev *edev,
1070 			     struct qed_sb_info *sb_info)
1071 {
1072 	if (sb_info->sb_virt)
1073 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1074 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1075 }
1076 
1077 /* This function allocates fast-path status block memory */
1078 static int qede_alloc_mem_sb(struct qede_dev *edev,
1079 			     struct qed_sb_info *sb_info, u16 sb_id)
1080 {
1081 	struct status_block *sb_virt;
1082 	dma_addr_t sb_phys;
1083 	int rc;
1084 
1085 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1086 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1087 	if (!sb_virt) {
1088 		DP_ERR(edev, "Status block allocation failed\n");
1089 		return -ENOMEM;
1090 	}
1091 
1092 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1093 					sb_virt, sb_phys, sb_id,
1094 					QED_SB_TYPE_L2_QUEUE);
1095 	if (rc) {
1096 		DP_ERR(edev, "Status block initialization failed\n");
1097 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1098 				  sb_virt, sb_phys);
1099 		return rc;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static void qede_free_rx_buffers(struct qede_dev *edev,
1106 				 struct qede_rx_queue *rxq)
1107 {
1108 	u16 i;
1109 
1110 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1111 		struct sw_rx_data *rx_buf;
1112 		struct page *data;
1113 
1114 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1115 		data = rx_buf->data;
1116 
1117 		dma_unmap_page(&edev->pdev->dev,
1118 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1119 
1120 		rx_buf->data = NULL;
1121 		__free_page(data);
1122 	}
1123 }
1124 
1125 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1126 {
1127 	int i;
1128 
1129 	if (edev->gro_disable)
1130 		return;
1131 
1132 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1133 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1134 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1135 
1136 		if (replace_buf->data) {
1137 			dma_unmap_page(&edev->pdev->dev,
1138 				       replace_buf->mapping,
1139 				       PAGE_SIZE, DMA_FROM_DEVICE);
1140 			__free_page(replace_buf->data);
1141 		}
1142 	}
1143 }
1144 
1145 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1146 {
1147 	qede_free_sge_mem(edev, rxq);
1148 
1149 	/* Free rx buffers */
1150 	qede_free_rx_buffers(edev, rxq);
1151 
1152 	/* Free the parallel SW ring */
1153 	kfree(rxq->sw_rx_ring);
1154 
1155 	/* Free the real RQ ring used by FW */
1156 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1157 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1158 }
1159 
1160 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1161 {
1162 	dma_addr_t mapping;
1163 	int i;
1164 
1165 	/* Don't perform FW aggregations in case of XDP */
1166 	if (edev->xdp_prog)
1167 		edev->gro_disable = 1;
1168 
1169 	if (edev->gro_disable)
1170 		return 0;
1171 
1172 	if (edev->ndev->mtu > PAGE_SIZE) {
1173 		edev->gro_disable = 1;
1174 		return 0;
1175 	}
1176 
1177 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1178 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1179 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1180 
1181 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1182 		if (unlikely(!replace_buf->data)) {
1183 			DP_NOTICE(edev,
1184 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
1185 			goto err;
1186 		}
1187 
1188 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1189 				       PAGE_SIZE, DMA_FROM_DEVICE);
1190 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1191 			DP_NOTICE(edev,
1192 				  "Failed to map TPA replacement buffer\n");
1193 			goto err;
1194 		}
1195 
1196 		replace_buf->mapping = mapping;
1197 		tpa_info->buffer.page_offset = 0;
1198 		tpa_info->buffer_mapping = mapping;
1199 		tpa_info->state = QEDE_AGG_STATE_NONE;
1200 	}
1201 
1202 	return 0;
1203 err:
1204 	qede_free_sge_mem(edev, rxq);
1205 	edev->gro_disable = 1;
1206 	return -ENOMEM;
1207 }
1208 
1209 /* This function allocates all memory needed per Rx queue */
1210 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1211 {
1212 	int i, rc, size;
1213 
1214 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1215 
1216 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1217 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1218 
1219 	/* Make sure that the headroom and  payload fit in a single page */
1220 	if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1221 		rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1222 
1223 	/* Segment size to spilt a page in multiple equal parts,
1224 	 * unless XDP is used in which case we'd use the entire page.
1225 	 */
1226 	if (!edev->xdp_prog)
1227 		rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1228 	else
1229 		rxq->rx_buf_seg_size = PAGE_SIZE;
1230 
1231 	/* Allocate the parallel driver ring for Rx buffers */
1232 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1233 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1234 	if (!rxq->sw_rx_ring) {
1235 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1236 		rc = -ENOMEM;
1237 		goto err;
1238 	}
1239 
1240 	/* Allocate FW Rx ring  */
1241 	rc = edev->ops->common->chain_alloc(edev->cdev,
1242 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1243 					    QED_CHAIN_MODE_NEXT_PTR,
1244 					    QED_CHAIN_CNT_TYPE_U16,
1245 					    RX_RING_SIZE,
1246 					    sizeof(struct eth_rx_bd),
1247 					    &rxq->rx_bd_ring);
1248 
1249 	if (rc)
1250 		goto err;
1251 
1252 	/* Allocate FW completion ring */
1253 	rc = edev->ops->common->chain_alloc(edev->cdev,
1254 					    QED_CHAIN_USE_TO_CONSUME,
1255 					    QED_CHAIN_MODE_PBL,
1256 					    QED_CHAIN_CNT_TYPE_U16,
1257 					    RX_RING_SIZE,
1258 					    sizeof(union eth_rx_cqe),
1259 					    &rxq->rx_comp_ring);
1260 	if (rc)
1261 		goto err;
1262 
1263 	/* Allocate buffers for the Rx ring */
1264 	rxq->filled_buffers = 0;
1265 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1266 		rc = qede_alloc_rx_buffer(rxq, false);
1267 		if (rc) {
1268 			DP_ERR(edev,
1269 			       "Rx buffers allocation failed at index %d\n", i);
1270 			goto err;
1271 		}
1272 	}
1273 
1274 	rc = qede_alloc_sge_mem(edev, rxq);
1275 err:
1276 	return rc;
1277 }
1278 
1279 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1280 {
1281 	/* Free the parallel SW ring */
1282 	if (txq->is_xdp)
1283 		kfree(txq->sw_tx_ring.xdp);
1284 	else
1285 		kfree(txq->sw_tx_ring.skbs);
1286 
1287 	/* Free the real RQ ring used by FW */
1288 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1289 }
1290 
1291 /* This function allocates all memory needed per Tx queue */
1292 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1293 {
1294 	union eth_tx_bd_types *p_virt;
1295 	int size, rc;
1296 
1297 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1298 
1299 	/* Allocate the parallel driver ring for Tx buffers */
1300 	if (txq->is_xdp) {
1301 		size = sizeof(*txq->sw_tx_ring.xdp) * TX_RING_SIZE;
1302 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1303 		if (!txq->sw_tx_ring.xdp)
1304 			goto err;
1305 	} else {
1306 		size = sizeof(*txq->sw_tx_ring.skbs) * TX_RING_SIZE;
1307 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1308 		if (!txq->sw_tx_ring.skbs)
1309 			goto err;
1310 	}
1311 
1312 	rc = edev->ops->common->chain_alloc(edev->cdev,
1313 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1314 					    QED_CHAIN_MODE_PBL,
1315 					    QED_CHAIN_CNT_TYPE_U16,
1316 					    TX_RING_SIZE,
1317 					    sizeof(*p_virt), &txq->tx_pbl);
1318 	if (rc)
1319 		goto err;
1320 
1321 	return 0;
1322 
1323 err:
1324 	qede_free_mem_txq(edev, txq);
1325 	return -ENOMEM;
1326 }
1327 
1328 /* This function frees all memory of a single fp */
1329 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1330 {
1331 	qede_free_mem_sb(edev, fp->sb_info);
1332 
1333 	if (fp->type & QEDE_FASTPATH_RX)
1334 		qede_free_mem_rxq(edev, fp->rxq);
1335 
1336 	if (fp->type & QEDE_FASTPATH_XDP)
1337 		qede_free_mem_txq(edev, fp->xdp_tx);
1338 
1339 	if (fp->type & QEDE_FASTPATH_TX)
1340 		qede_free_mem_txq(edev, fp->txq);
1341 }
1342 
1343 /* This function allocates all memory needed for a single fp (i.e. an entity
1344  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1345  */
1346 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1347 {
1348 	int rc = 0;
1349 
1350 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1351 	if (rc)
1352 		goto out;
1353 
1354 	if (fp->type & QEDE_FASTPATH_RX) {
1355 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1356 		if (rc)
1357 			goto out;
1358 	}
1359 
1360 	if (fp->type & QEDE_FASTPATH_XDP) {
1361 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1362 		if (rc)
1363 			goto out;
1364 	}
1365 
1366 	if (fp->type & QEDE_FASTPATH_TX) {
1367 		rc = qede_alloc_mem_txq(edev, fp->txq);
1368 		if (rc)
1369 			goto out;
1370 	}
1371 
1372 out:
1373 	return rc;
1374 }
1375 
1376 static void qede_free_mem_load(struct qede_dev *edev)
1377 {
1378 	int i;
1379 
1380 	for_each_queue(i) {
1381 		struct qede_fastpath *fp = &edev->fp_array[i];
1382 
1383 		qede_free_mem_fp(edev, fp);
1384 	}
1385 }
1386 
1387 /* This function allocates all qede memory at NIC load. */
1388 static int qede_alloc_mem_load(struct qede_dev *edev)
1389 {
1390 	int rc = 0, queue_id;
1391 
1392 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1393 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1394 
1395 		rc = qede_alloc_mem_fp(edev, fp);
1396 		if (rc) {
1397 			DP_ERR(edev,
1398 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1399 			       queue_id);
1400 			qede_free_mem_load(edev);
1401 			return rc;
1402 		}
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1409 static void qede_init_fp(struct qede_dev *edev)
1410 {
1411 	int queue_id, rxq_index = 0, txq_index = 0;
1412 	struct qede_fastpath *fp;
1413 
1414 	for_each_queue(queue_id) {
1415 		fp = &edev->fp_array[queue_id];
1416 
1417 		fp->edev = edev;
1418 		fp->id = queue_id;
1419 
1420 		if (fp->type & QEDE_FASTPATH_XDP) {
1421 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1422 								rxq_index);
1423 			fp->xdp_tx->is_xdp = 1;
1424 		}
1425 
1426 		if (fp->type & QEDE_FASTPATH_RX) {
1427 			fp->rxq->rxq_id = rxq_index++;
1428 
1429 			/* Determine how to map buffers for this queue */
1430 			if (fp->type & QEDE_FASTPATH_XDP)
1431 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1432 			else
1433 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1434 			fp->rxq->dev = &edev->pdev->dev;
1435 		}
1436 
1437 		if (fp->type & QEDE_FASTPATH_TX) {
1438 			fp->txq->index = txq_index++;
1439 			if (edev->dev_info.is_legacy)
1440 				fp->txq->is_legacy = 1;
1441 			fp->txq->dev = &edev->pdev->dev;
1442 		}
1443 
1444 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1445 			 edev->ndev->name, queue_id);
1446 	}
1447 
1448 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
1449 }
1450 
1451 static int qede_set_real_num_queues(struct qede_dev *edev)
1452 {
1453 	int rc = 0;
1454 
1455 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1456 	if (rc) {
1457 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1458 		return rc;
1459 	}
1460 
1461 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1462 	if (rc) {
1463 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1464 		return rc;
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static void qede_napi_disable_remove(struct qede_dev *edev)
1471 {
1472 	int i;
1473 
1474 	for_each_queue(i) {
1475 		napi_disable(&edev->fp_array[i].napi);
1476 
1477 		netif_napi_del(&edev->fp_array[i].napi);
1478 	}
1479 }
1480 
1481 static void qede_napi_add_enable(struct qede_dev *edev)
1482 {
1483 	int i;
1484 
1485 	/* Add NAPI objects */
1486 	for_each_queue(i) {
1487 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1488 			       qede_poll, NAPI_POLL_WEIGHT);
1489 		napi_enable(&edev->fp_array[i].napi);
1490 	}
1491 }
1492 
1493 static void qede_sync_free_irqs(struct qede_dev *edev)
1494 {
1495 	int i;
1496 
1497 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1498 		if (edev->int_info.msix_cnt) {
1499 			synchronize_irq(edev->int_info.msix[i].vector);
1500 			free_irq(edev->int_info.msix[i].vector,
1501 				 &edev->fp_array[i]);
1502 		} else {
1503 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1504 		}
1505 	}
1506 
1507 	edev->int_info.used_cnt = 0;
1508 }
1509 
1510 static int qede_req_msix_irqs(struct qede_dev *edev)
1511 {
1512 	int i, rc;
1513 
1514 	/* Sanitize number of interrupts == number of prepared RSS queues */
1515 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1516 		DP_ERR(edev,
1517 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1518 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1519 		return -EINVAL;
1520 	}
1521 
1522 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1523 #ifdef CONFIG_RFS_ACCEL
1524 		struct qede_fastpath *fp = &edev->fp_array[i];
1525 
1526 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1527 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1528 					      edev->int_info.msix[i].vector);
1529 			if (rc) {
1530 				DP_ERR(edev, "Failed to add CPU rmap\n");
1531 				qede_free_arfs(edev);
1532 			}
1533 		}
1534 #endif
1535 		rc = request_irq(edev->int_info.msix[i].vector,
1536 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1537 				 &edev->fp_array[i]);
1538 		if (rc) {
1539 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1540 			qede_sync_free_irqs(edev);
1541 			return rc;
1542 		}
1543 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1544 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1545 			   edev->fp_array[i].name, i,
1546 			   &edev->fp_array[i]);
1547 		edev->int_info.used_cnt++;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static void qede_simd_fp_handler(void *cookie)
1554 {
1555 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1556 
1557 	napi_schedule_irqoff(&fp->napi);
1558 }
1559 
1560 static int qede_setup_irqs(struct qede_dev *edev)
1561 {
1562 	int i, rc = 0;
1563 
1564 	/* Learn Interrupt configuration */
1565 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1566 	if (rc)
1567 		return rc;
1568 
1569 	if (edev->int_info.msix_cnt) {
1570 		rc = qede_req_msix_irqs(edev);
1571 		if (rc)
1572 			return rc;
1573 		edev->ndev->irq = edev->int_info.msix[0].vector;
1574 	} else {
1575 		const struct qed_common_ops *ops;
1576 
1577 		/* qed should learn receive the RSS ids and callbacks */
1578 		ops = edev->ops->common;
1579 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1580 			ops->simd_handler_config(edev->cdev,
1581 						 &edev->fp_array[i], i,
1582 						 qede_simd_fp_handler);
1583 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1584 	}
1585 	return 0;
1586 }
1587 
1588 static int qede_drain_txq(struct qede_dev *edev,
1589 			  struct qede_tx_queue *txq, bool allow_drain)
1590 {
1591 	int rc, cnt = 1000;
1592 
1593 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1594 		if (!cnt) {
1595 			if (allow_drain) {
1596 				DP_NOTICE(edev,
1597 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1598 					  txq->index);
1599 				rc = edev->ops->common->drain(edev->cdev);
1600 				if (rc)
1601 					return rc;
1602 				return qede_drain_txq(edev, txq, false);
1603 			}
1604 			DP_NOTICE(edev,
1605 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1606 				  txq->index, txq->sw_tx_prod,
1607 				  txq->sw_tx_cons);
1608 			return -ENODEV;
1609 		}
1610 		cnt--;
1611 		usleep_range(1000, 2000);
1612 		barrier();
1613 	}
1614 
1615 	/* FW finished processing, wait for HW to transmit all tx packets */
1616 	usleep_range(1000, 2000);
1617 
1618 	return 0;
1619 }
1620 
1621 static int qede_stop_txq(struct qede_dev *edev,
1622 			 struct qede_tx_queue *txq, int rss_id)
1623 {
1624 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1625 }
1626 
1627 static int qede_stop_queues(struct qede_dev *edev)
1628 {
1629 	struct qed_update_vport_params *vport_update_params;
1630 	struct qed_dev *cdev = edev->cdev;
1631 	struct qede_fastpath *fp;
1632 	int rc, i;
1633 
1634 	/* Disable the vport */
1635 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1636 	if (!vport_update_params)
1637 		return -ENOMEM;
1638 
1639 	vport_update_params->vport_id = 0;
1640 	vport_update_params->update_vport_active_flg = 1;
1641 	vport_update_params->vport_active_flg = 0;
1642 	vport_update_params->update_rss_flg = 0;
1643 
1644 	rc = edev->ops->vport_update(cdev, vport_update_params);
1645 	vfree(vport_update_params);
1646 
1647 	if (rc) {
1648 		DP_ERR(edev, "Failed to update vport\n");
1649 		return rc;
1650 	}
1651 
1652 	/* Flush Tx queues. If needed, request drain from MCP */
1653 	for_each_queue(i) {
1654 		fp = &edev->fp_array[i];
1655 
1656 		if (fp->type & QEDE_FASTPATH_TX) {
1657 			rc = qede_drain_txq(edev, fp->txq, true);
1658 			if (rc)
1659 				return rc;
1660 		}
1661 
1662 		if (fp->type & QEDE_FASTPATH_XDP) {
1663 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1664 			if (rc)
1665 				return rc;
1666 		}
1667 	}
1668 
1669 	/* Stop all Queues in reverse order */
1670 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1671 		fp = &edev->fp_array[i];
1672 
1673 		/* Stop the Tx Queue(s) */
1674 		if (fp->type & QEDE_FASTPATH_TX) {
1675 			rc = qede_stop_txq(edev, fp->txq, i);
1676 			if (rc)
1677 				return rc;
1678 		}
1679 
1680 		/* Stop the Rx Queue */
1681 		if (fp->type & QEDE_FASTPATH_RX) {
1682 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1683 			if (rc) {
1684 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1685 				return rc;
1686 			}
1687 		}
1688 
1689 		/* Stop the XDP forwarding queue */
1690 		if (fp->type & QEDE_FASTPATH_XDP) {
1691 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1692 			if (rc)
1693 				return rc;
1694 
1695 			bpf_prog_put(fp->rxq->xdp_prog);
1696 		}
1697 	}
1698 
1699 	/* Stop the vport */
1700 	rc = edev->ops->vport_stop(cdev, 0);
1701 	if (rc)
1702 		DP_ERR(edev, "Failed to stop VPORT\n");
1703 
1704 	return rc;
1705 }
1706 
1707 static int qede_start_txq(struct qede_dev *edev,
1708 			  struct qede_fastpath *fp,
1709 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1710 {
1711 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1712 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1713 	struct qed_queue_start_common_params params;
1714 	struct qed_txq_start_ret_params ret_params;
1715 	int rc;
1716 
1717 	memset(&params, 0, sizeof(params));
1718 	memset(&ret_params, 0, sizeof(ret_params));
1719 
1720 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1721 	 * We don't really care about its coalescing.
1722 	 */
1723 	if (txq->is_xdp)
1724 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1725 	else
1726 		params.queue_id = txq->index;
1727 
1728 	params.sb = fp->sb_info->igu_sb_id;
1729 	params.sb_idx = sb_idx;
1730 
1731 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1732 				   page_cnt, &ret_params);
1733 	if (rc) {
1734 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1735 		return rc;
1736 	}
1737 
1738 	txq->doorbell_addr = ret_params.p_doorbell;
1739 	txq->handle = ret_params.p_handle;
1740 
1741 	/* Determine the FW consumer address associated */
1742 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1743 
1744 	/* Prepare the doorbell parameters */
1745 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1746 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1747 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1748 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1749 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1750 
1751 	return rc;
1752 }
1753 
1754 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1755 {
1756 	int vlan_removal_en = 1;
1757 	struct qed_dev *cdev = edev->cdev;
1758 	struct qed_dev_info *qed_info = &edev->dev_info.common;
1759 	struct qed_update_vport_params *vport_update_params;
1760 	struct qed_queue_start_common_params q_params;
1761 	struct qed_start_vport_params start = {0};
1762 	int rc, i;
1763 
1764 	if (!edev->num_queues) {
1765 		DP_ERR(edev,
1766 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1767 		return -EINVAL;
1768 	}
1769 
1770 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1771 	if (!vport_update_params)
1772 		return -ENOMEM;
1773 
1774 	start.handle_ptp_pkts = !!(edev->ptp);
1775 	start.gro_enable = !edev->gro_disable;
1776 	start.mtu = edev->ndev->mtu;
1777 	start.vport_id = 0;
1778 	start.drop_ttl0 = true;
1779 	start.remove_inner_vlan = vlan_removal_en;
1780 	start.clear_stats = clear_stats;
1781 
1782 	rc = edev->ops->vport_start(cdev, &start);
1783 
1784 	if (rc) {
1785 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1786 		goto out;
1787 	}
1788 
1789 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1790 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1791 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1792 
1793 	for_each_queue(i) {
1794 		struct qede_fastpath *fp = &edev->fp_array[i];
1795 		dma_addr_t p_phys_table;
1796 		u32 page_cnt;
1797 
1798 		if (fp->type & QEDE_FASTPATH_RX) {
1799 			struct qed_rxq_start_ret_params ret_params;
1800 			struct qede_rx_queue *rxq = fp->rxq;
1801 			__le16 *val;
1802 
1803 			memset(&ret_params, 0, sizeof(ret_params));
1804 			memset(&q_params, 0, sizeof(q_params));
1805 			q_params.queue_id = rxq->rxq_id;
1806 			q_params.vport_id = 0;
1807 			q_params.sb = fp->sb_info->igu_sb_id;
1808 			q_params.sb_idx = RX_PI;
1809 
1810 			p_phys_table =
1811 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1812 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1813 
1814 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1815 						   rxq->rx_buf_size,
1816 						   rxq->rx_bd_ring.p_phys_addr,
1817 						   p_phys_table,
1818 						   page_cnt, &ret_params);
1819 			if (rc) {
1820 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1821 				       rc);
1822 				goto out;
1823 			}
1824 
1825 			/* Use the return parameters */
1826 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
1827 			rxq->handle = ret_params.p_handle;
1828 
1829 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1830 			rxq->hw_cons_ptr = val;
1831 
1832 			qede_update_rx_prod(edev, rxq);
1833 		}
1834 
1835 		if (fp->type & QEDE_FASTPATH_XDP) {
1836 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1837 			if (rc)
1838 				goto out;
1839 
1840 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1841 			if (IS_ERR(fp->rxq->xdp_prog)) {
1842 				rc = PTR_ERR(fp->rxq->xdp_prog);
1843 				fp->rxq->xdp_prog = NULL;
1844 				goto out;
1845 			}
1846 		}
1847 
1848 		if (fp->type & QEDE_FASTPATH_TX) {
1849 			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1850 			if (rc)
1851 				goto out;
1852 		}
1853 	}
1854 
1855 	/* Prepare and send the vport enable */
1856 	vport_update_params->vport_id = start.vport_id;
1857 	vport_update_params->update_vport_active_flg = 1;
1858 	vport_update_params->vport_active_flg = 1;
1859 
1860 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1861 	    qed_info->tx_switching) {
1862 		vport_update_params->update_tx_switching_flg = 1;
1863 		vport_update_params->tx_switching_flg = 1;
1864 	}
1865 
1866 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
1867 			     &vport_update_params->update_rss_flg);
1868 
1869 	rc = edev->ops->vport_update(cdev, vport_update_params);
1870 	if (rc)
1871 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1872 
1873 out:
1874 	vfree(vport_update_params);
1875 	return rc;
1876 }
1877 
1878 enum qede_unload_mode {
1879 	QEDE_UNLOAD_NORMAL,
1880 };
1881 
1882 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1883 			bool is_locked)
1884 {
1885 	struct qed_link_params link_params;
1886 	int rc;
1887 
1888 	DP_INFO(edev, "Starting qede unload\n");
1889 
1890 	if (!is_locked)
1891 		__qede_lock(edev);
1892 
1893 	qede_roce_dev_event_close(edev);
1894 	edev->state = QEDE_STATE_CLOSED;
1895 
1896 	/* Close OS Tx */
1897 	netif_tx_disable(edev->ndev);
1898 	netif_carrier_off(edev->ndev);
1899 
1900 	/* Reset the link */
1901 	memset(&link_params, 0, sizeof(link_params));
1902 	link_params.link_up = false;
1903 	edev->ops->common->set_link(edev->cdev, &link_params);
1904 	rc = qede_stop_queues(edev);
1905 	if (rc) {
1906 		qede_sync_free_irqs(edev);
1907 		goto out;
1908 	}
1909 
1910 	DP_INFO(edev, "Stopped Queues\n");
1911 
1912 	qede_vlan_mark_nonconfigured(edev);
1913 	edev->ops->fastpath_stop(edev->cdev);
1914 #ifdef CONFIG_RFS_ACCEL
1915 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1916 		qede_poll_for_freeing_arfs_filters(edev);
1917 		qede_free_arfs(edev);
1918 	}
1919 #endif
1920 	/* Release the interrupts */
1921 	qede_sync_free_irqs(edev);
1922 	edev->ops->common->set_fp_int(edev->cdev, 0);
1923 
1924 	qede_napi_disable_remove(edev);
1925 
1926 	qede_free_mem_load(edev);
1927 	qede_free_fp_array(edev);
1928 
1929 out:
1930 	if (!is_locked)
1931 		__qede_unlock(edev);
1932 	DP_INFO(edev, "Ending qede unload\n");
1933 }
1934 
1935 enum qede_load_mode {
1936 	QEDE_LOAD_NORMAL,
1937 	QEDE_LOAD_RELOAD,
1938 };
1939 
1940 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
1941 		     bool is_locked)
1942 {
1943 	struct qed_link_params link_params;
1944 	int rc;
1945 
1946 	DP_INFO(edev, "Starting qede load\n");
1947 
1948 	if (!is_locked)
1949 		__qede_lock(edev);
1950 
1951 	rc = qede_set_num_queues(edev);
1952 	if (rc)
1953 		goto out;
1954 
1955 	rc = qede_alloc_fp_array(edev);
1956 	if (rc)
1957 		goto out;
1958 
1959 	qede_init_fp(edev);
1960 
1961 	rc = qede_alloc_mem_load(edev);
1962 	if (rc)
1963 		goto err1;
1964 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
1965 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
1966 
1967 	rc = qede_set_real_num_queues(edev);
1968 	if (rc)
1969 		goto err2;
1970 
1971 #ifdef CONFIG_RFS_ACCEL
1972 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1973 		rc = qede_alloc_arfs(edev);
1974 		if (rc)
1975 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
1976 	}
1977 #endif
1978 	qede_napi_add_enable(edev);
1979 	DP_INFO(edev, "Napi added and enabled\n");
1980 
1981 	rc = qede_setup_irqs(edev);
1982 	if (rc)
1983 		goto err3;
1984 	DP_INFO(edev, "Setup IRQs succeeded\n");
1985 
1986 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
1987 	if (rc)
1988 		goto err4;
1989 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
1990 
1991 	/* Add primary mac and set Rx filters */
1992 	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
1993 
1994 	/* Program un-configured VLANs */
1995 	qede_configure_vlan_filters(edev);
1996 
1997 	/* Ask for link-up using current configuration */
1998 	memset(&link_params, 0, sizeof(link_params));
1999 	link_params.link_up = true;
2000 	edev->ops->common->set_link(edev->cdev, &link_params);
2001 
2002 	qede_roce_dev_event_open(edev);
2003 
2004 	edev->state = QEDE_STATE_OPEN;
2005 
2006 	DP_INFO(edev, "Ending successfully qede load\n");
2007 
2008 	goto out;
2009 err4:
2010 	qede_sync_free_irqs(edev);
2011 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2012 err3:
2013 	qede_napi_disable_remove(edev);
2014 err2:
2015 	qede_free_mem_load(edev);
2016 err1:
2017 	edev->ops->common->set_fp_int(edev->cdev, 0);
2018 	qede_free_fp_array(edev);
2019 	edev->num_queues = 0;
2020 	edev->fp_num_tx = 0;
2021 	edev->fp_num_rx = 0;
2022 out:
2023 	if (!is_locked)
2024 		__qede_unlock(edev);
2025 
2026 	return rc;
2027 }
2028 
2029 /* 'func' should be able to run between unload and reload assuming interface
2030  * is actually running, or afterwards in case it's currently DOWN.
2031  */
2032 void qede_reload(struct qede_dev *edev,
2033 		 struct qede_reload_args *args, bool is_locked)
2034 {
2035 	if (!is_locked)
2036 		__qede_lock(edev);
2037 
2038 	/* Since qede_lock is held, internal state wouldn't change even
2039 	 * if netdev state would start transitioning. Check whether current
2040 	 * internal configuration indicates device is up, then reload.
2041 	 */
2042 	if (edev->state == QEDE_STATE_OPEN) {
2043 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2044 		if (args)
2045 			args->func(edev, args);
2046 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2047 
2048 		/* Since no one is going to do it for us, re-configure */
2049 		qede_config_rx_mode(edev->ndev);
2050 	} else if (args) {
2051 		args->func(edev, args);
2052 	}
2053 
2054 	if (!is_locked)
2055 		__qede_unlock(edev);
2056 }
2057 
2058 /* called with rtnl_lock */
2059 static int qede_open(struct net_device *ndev)
2060 {
2061 	struct qede_dev *edev = netdev_priv(ndev);
2062 	int rc;
2063 
2064 	netif_carrier_off(ndev);
2065 
2066 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2067 
2068 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2069 	if (rc)
2070 		return rc;
2071 
2072 	udp_tunnel_get_rx_info(ndev);
2073 
2074 	edev->ops->common->update_drv_state(edev->cdev, true);
2075 
2076 	return 0;
2077 }
2078 
2079 static int qede_close(struct net_device *ndev)
2080 {
2081 	struct qede_dev *edev = netdev_priv(ndev);
2082 
2083 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2084 
2085 	edev->ops->common->update_drv_state(edev->cdev, false);
2086 
2087 	return 0;
2088 }
2089 
2090 static void qede_link_update(void *dev, struct qed_link_output *link)
2091 {
2092 	struct qede_dev *edev = dev;
2093 
2094 	if (!netif_running(edev->ndev)) {
2095 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2096 		return;
2097 	}
2098 
2099 	if (link->link_up) {
2100 		if (!netif_carrier_ok(edev->ndev)) {
2101 			DP_NOTICE(edev, "Link is up\n");
2102 			netif_tx_start_all_queues(edev->ndev);
2103 			netif_carrier_on(edev->ndev);
2104 		}
2105 	} else {
2106 		if (netif_carrier_ok(edev->ndev)) {
2107 			DP_NOTICE(edev, "Link is down\n");
2108 			netif_tx_disable(edev->ndev);
2109 			netif_carrier_off(edev->ndev);
2110 		}
2111 	}
2112 }
2113