1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_get_eth_tlv_data(void *edev, void *data);
137 static void qede_get_generic_tlv_data(void *edev,
138 				      struct qed_generic_tlvs *data);
139 
140 /* The qede lock is used to protect driver state change and driver flows that
141  * are not reentrant.
142  */
143 void __qede_lock(struct qede_dev *edev)
144 {
145 	mutex_lock(&edev->qede_lock);
146 }
147 
148 void __qede_unlock(struct qede_dev *edev)
149 {
150 	mutex_unlock(&edev->qede_lock);
151 }
152 
153 #ifdef CONFIG_QED_SRIOV
154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
155 			    __be16 vlan_proto)
156 {
157 	struct qede_dev *edev = netdev_priv(ndev);
158 
159 	if (vlan > 4095) {
160 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
161 		return -EINVAL;
162 	}
163 
164 	if (vlan_proto != htons(ETH_P_8021Q))
165 		return -EPROTONOSUPPORT;
166 
167 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
168 		   vlan, vf);
169 
170 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
171 }
172 
173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
174 {
175 	struct qede_dev *edev = netdev_priv(ndev);
176 
177 	DP_VERBOSE(edev, QED_MSG_IOV,
178 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
179 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
180 
181 	if (!is_valid_ether_addr(mac)) {
182 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
183 		return -EINVAL;
184 	}
185 
186 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
187 }
188 
189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
190 {
191 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
192 	struct qed_dev_info *qed_info = &edev->dev_info.common;
193 	struct qed_update_vport_params *vport_params;
194 	int rc;
195 
196 	vport_params = vzalloc(sizeof(*vport_params));
197 	if (!vport_params)
198 		return -ENOMEM;
199 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
200 
201 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
202 
203 	/* Enable/Disable Tx switching for PF */
204 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
205 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
206 		vport_params->vport_id = 0;
207 		vport_params->update_tx_switching_flg = 1;
208 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
209 		edev->ops->vport_update(edev->cdev, vport_params);
210 	}
211 
212 	vfree(vport_params);
213 	return rc;
214 }
215 #endif
216 
217 static struct pci_driver qede_pci_driver = {
218 	.name = "qede",
219 	.id_table = qede_pci_tbl,
220 	.probe = qede_probe,
221 	.remove = qede_remove,
222 	.shutdown = qede_shutdown,
223 #ifdef CONFIG_QED_SRIOV
224 	.sriov_configure = qede_sriov_configure,
225 #endif
226 };
227 
228 static struct qed_eth_cb_ops qede_ll_ops = {
229 	{
230 #ifdef CONFIG_RFS_ACCEL
231 		.arfs_filter_op = qede_arfs_filter_op,
232 #endif
233 		.link_update = qede_link_update,
234 		.get_generic_tlv_data = qede_get_generic_tlv_data,
235 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
236 	},
237 	.force_mac = qede_force_mac,
238 	.ports_update = qede_udp_ports_update,
239 };
240 
241 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
242 			     void *ptr)
243 {
244 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
245 	struct ethtool_drvinfo drvinfo;
246 	struct qede_dev *edev;
247 
248 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
249 		goto done;
250 
251 	/* Check whether this is a qede device */
252 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
253 		goto done;
254 
255 	memset(&drvinfo, 0, sizeof(drvinfo));
256 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
257 	if (strcmp(drvinfo.driver, "qede"))
258 		goto done;
259 	edev = netdev_priv(ndev);
260 
261 	switch (event) {
262 	case NETDEV_CHANGENAME:
263 		/* Notify qed of the name change */
264 		if (!edev->ops || !edev->ops->common)
265 			goto done;
266 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
267 		break;
268 	case NETDEV_CHANGEADDR:
269 		edev = netdev_priv(ndev);
270 		qede_rdma_event_changeaddr(edev);
271 		break;
272 	}
273 
274 done:
275 	return NOTIFY_DONE;
276 }
277 
278 static struct notifier_block qede_netdev_notifier = {
279 	.notifier_call = qede_netdev_event,
280 };
281 
282 static
283 int __init qede_init(void)
284 {
285 	int ret;
286 
287 	pr_info("qede_init: %s\n", version);
288 
289 	qed_ops = qed_get_eth_ops();
290 	if (!qed_ops) {
291 		pr_notice("Failed to get qed ethtool operations\n");
292 		return -EINVAL;
293 	}
294 
295 	/* Must register notifier before pci ops, since we might miss
296 	 * interface rename after pci probe and netdev registration.
297 	 */
298 	ret = register_netdevice_notifier(&qede_netdev_notifier);
299 	if (ret) {
300 		pr_notice("Failed to register netdevice_notifier\n");
301 		qed_put_eth_ops();
302 		return -EINVAL;
303 	}
304 
305 	ret = pci_register_driver(&qede_pci_driver);
306 	if (ret) {
307 		pr_notice("Failed to register driver\n");
308 		unregister_netdevice_notifier(&qede_netdev_notifier);
309 		qed_put_eth_ops();
310 		return -EINVAL;
311 	}
312 
313 	return 0;
314 }
315 
316 static void __exit qede_cleanup(void)
317 {
318 	if (debug & QED_LOG_INFO_MASK)
319 		pr_info("qede_cleanup called\n");
320 
321 	unregister_netdevice_notifier(&qede_netdev_notifier);
322 	pci_unregister_driver(&qede_pci_driver);
323 	qed_put_eth_ops();
324 }
325 
326 module_init(qede_init);
327 module_exit(qede_cleanup);
328 
329 static int qede_open(struct net_device *ndev);
330 static int qede_close(struct net_device *ndev);
331 
332 void qede_fill_by_demand_stats(struct qede_dev *edev)
333 {
334 	struct qede_stats_common *p_common = &edev->stats.common;
335 	struct qed_eth_stats stats;
336 
337 	edev->ops->get_vport_stats(edev->cdev, &stats);
338 
339 	p_common->no_buff_discards = stats.common.no_buff_discards;
340 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
341 	p_common->ttl0_discard = stats.common.ttl0_discard;
342 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
343 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
344 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
345 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
346 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
347 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
348 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
349 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
350 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
351 
352 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
353 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
354 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
355 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
356 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
357 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
358 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
359 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
360 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
361 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
362 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
363 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
364 
365 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
366 	p_common->rx_65_to_127_byte_packets =
367 	    stats.common.rx_65_to_127_byte_packets;
368 	p_common->rx_128_to_255_byte_packets =
369 	    stats.common.rx_128_to_255_byte_packets;
370 	p_common->rx_256_to_511_byte_packets =
371 	    stats.common.rx_256_to_511_byte_packets;
372 	p_common->rx_512_to_1023_byte_packets =
373 	    stats.common.rx_512_to_1023_byte_packets;
374 	p_common->rx_1024_to_1518_byte_packets =
375 	    stats.common.rx_1024_to_1518_byte_packets;
376 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
377 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
378 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
379 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
380 	p_common->rx_align_errors = stats.common.rx_align_errors;
381 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
382 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
383 	p_common->rx_jabbers = stats.common.rx_jabbers;
384 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
385 	p_common->rx_fragments = stats.common.rx_fragments;
386 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
387 	p_common->tx_65_to_127_byte_packets =
388 	    stats.common.tx_65_to_127_byte_packets;
389 	p_common->tx_128_to_255_byte_packets =
390 	    stats.common.tx_128_to_255_byte_packets;
391 	p_common->tx_256_to_511_byte_packets =
392 	    stats.common.tx_256_to_511_byte_packets;
393 	p_common->tx_512_to_1023_byte_packets =
394 	    stats.common.tx_512_to_1023_byte_packets;
395 	p_common->tx_1024_to_1518_byte_packets =
396 	    stats.common.tx_1024_to_1518_byte_packets;
397 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
398 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
399 	p_common->brb_truncates = stats.common.brb_truncates;
400 	p_common->brb_discards = stats.common.brb_discards;
401 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
402 	p_common->link_change_count = stats.common.link_change_count;
403 
404 	if (QEDE_IS_BB(edev)) {
405 		struct qede_stats_bb *p_bb = &edev->stats.bb;
406 
407 		p_bb->rx_1519_to_1522_byte_packets =
408 		    stats.bb.rx_1519_to_1522_byte_packets;
409 		p_bb->rx_1519_to_2047_byte_packets =
410 		    stats.bb.rx_1519_to_2047_byte_packets;
411 		p_bb->rx_2048_to_4095_byte_packets =
412 		    stats.bb.rx_2048_to_4095_byte_packets;
413 		p_bb->rx_4096_to_9216_byte_packets =
414 		    stats.bb.rx_4096_to_9216_byte_packets;
415 		p_bb->rx_9217_to_16383_byte_packets =
416 		    stats.bb.rx_9217_to_16383_byte_packets;
417 		p_bb->tx_1519_to_2047_byte_packets =
418 		    stats.bb.tx_1519_to_2047_byte_packets;
419 		p_bb->tx_2048_to_4095_byte_packets =
420 		    stats.bb.tx_2048_to_4095_byte_packets;
421 		p_bb->tx_4096_to_9216_byte_packets =
422 		    stats.bb.tx_4096_to_9216_byte_packets;
423 		p_bb->tx_9217_to_16383_byte_packets =
424 		    stats.bb.tx_9217_to_16383_byte_packets;
425 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
426 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
427 	} else {
428 		struct qede_stats_ah *p_ah = &edev->stats.ah;
429 
430 		p_ah->rx_1519_to_max_byte_packets =
431 		    stats.ah.rx_1519_to_max_byte_packets;
432 		p_ah->tx_1519_to_max_byte_packets =
433 		    stats.ah.tx_1519_to_max_byte_packets;
434 	}
435 }
436 
437 static void qede_get_stats64(struct net_device *dev,
438 			     struct rtnl_link_stats64 *stats)
439 {
440 	struct qede_dev *edev = netdev_priv(dev);
441 	struct qede_stats_common *p_common;
442 
443 	qede_fill_by_demand_stats(edev);
444 	p_common = &edev->stats.common;
445 
446 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
447 			    p_common->rx_bcast_pkts;
448 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
449 			    p_common->tx_bcast_pkts;
450 
451 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
452 			  p_common->rx_bcast_bytes;
453 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
454 			  p_common->tx_bcast_bytes;
455 
456 	stats->tx_errors = p_common->tx_err_drop_pkts;
457 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
458 
459 	stats->rx_fifo_errors = p_common->no_buff_discards;
460 
461 	if (QEDE_IS_BB(edev))
462 		stats->collisions = edev->stats.bb.tx_total_collisions;
463 	stats->rx_crc_errors = p_common->rx_crc_errors;
464 	stats->rx_frame_errors = p_common->rx_align_errors;
465 }
466 
467 #ifdef CONFIG_QED_SRIOV
468 static int qede_get_vf_config(struct net_device *dev, int vfidx,
469 			      struct ifla_vf_info *ivi)
470 {
471 	struct qede_dev *edev = netdev_priv(dev);
472 
473 	if (!edev->ops)
474 		return -EINVAL;
475 
476 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
477 }
478 
479 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
480 			    int min_tx_rate, int max_tx_rate)
481 {
482 	struct qede_dev *edev = netdev_priv(dev);
483 
484 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
485 					max_tx_rate);
486 }
487 
488 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
489 {
490 	struct qede_dev *edev = netdev_priv(dev);
491 
492 	if (!edev->ops)
493 		return -EINVAL;
494 
495 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
496 }
497 
498 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
499 				  int link_state)
500 {
501 	struct qede_dev *edev = netdev_priv(dev);
502 
503 	if (!edev->ops)
504 		return -EINVAL;
505 
506 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
507 }
508 
509 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
510 {
511 	struct qede_dev *edev = netdev_priv(dev);
512 
513 	if (!edev->ops)
514 		return -EINVAL;
515 
516 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
517 }
518 #endif
519 
520 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
521 {
522 	struct qede_dev *edev = netdev_priv(dev);
523 
524 	if (!netif_running(dev))
525 		return -EAGAIN;
526 
527 	switch (cmd) {
528 	case SIOCSHWTSTAMP:
529 		return qede_ptp_hw_ts(edev, ifr);
530 	default:
531 		DP_VERBOSE(edev, QED_MSG_DEBUG,
532 			   "default IOCTL cmd 0x%x\n", cmd);
533 		return -EOPNOTSUPP;
534 	}
535 
536 	return 0;
537 }
538 
539 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
540 {
541 	struct qede_dev *edev = netdev_priv(ndev);
542 	int cos, count, offset;
543 
544 	if (num_tc > edev->dev_info.num_tc)
545 		return -EINVAL;
546 
547 	netdev_reset_tc(ndev);
548 	netdev_set_num_tc(ndev, num_tc);
549 
550 	for_each_cos_in_txq(edev, cos) {
551 		count = QEDE_TSS_COUNT(edev);
552 		offset = cos * QEDE_TSS_COUNT(edev);
553 		netdev_set_tc_queue(ndev, cos, count, offset);
554 	}
555 
556 	return 0;
557 }
558 
559 static int
560 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f,
561 		__be16 proto)
562 {
563 	switch (f->command) {
564 	case TC_CLSFLOWER_REPLACE:
565 		return qede_add_tc_flower_fltr(edev, proto, f);
566 	case TC_CLSFLOWER_DESTROY:
567 		return qede_delete_flow_filter(edev, f->cookie);
568 	default:
569 		return -EOPNOTSUPP;
570 	}
571 }
572 
573 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
574 				  void *cb_priv)
575 {
576 	struct tc_cls_flower_offload *f;
577 	struct qede_dev *edev = cb_priv;
578 
579 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
580 		return -EOPNOTSUPP;
581 
582 	switch (type) {
583 	case TC_SETUP_CLSFLOWER:
584 		f = type_data;
585 		return qede_set_flower(edev, f, f->common.protocol);
586 	default:
587 		return -EOPNOTSUPP;
588 	}
589 }
590 
591 static int qede_setup_tc_block(struct qede_dev *edev,
592 			       struct tc_block_offload *f)
593 {
594 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
595 		return -EOPNOTSUPP;
596 
597 	switch (f->command) {
598 	case TC_BLOCK_BIND:
599 		return tcf_block_cb_register(f->block,
600 					     qede_setup_tc_block_cb,
601 					     edev, edev, f->extack);
602 	case TC_BLOCK_UNBIND:
603 		tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev);
604 		return 0;
605 	default:
606 		return -EOPNOTSUPP;
607 	}
608 }
609 
610 static int
611 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
612 		      void *type_data)
613 {
614 	struct qede_dev *edev = netdev_priv(dev);
615 	struct tc_mqprio_qopt *mqprio;
616 
617 	switch (type) {
618 	case TC_SETUP_BLOCK:
619 		return qede_setup_tc_block(edev, type_data);
620 	case TC_SETUP_QDISC_MQPRIO:
621 		mqprio = type_data;
622 
623 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
624 		return qede_setup_tc(dev, mqprio->num_tc);
625 	default:
626 		return -EOPNOTSUPP;
627 	}
628 }
629 
630 static const struct net_device_ops qede_netdev_ops = {
631 	.ndo_open = qede_open,
632 	.ndo_stop = qede_close,
633 	.ndo_start_xmit = qede_start_xmit,
634 	.ndo_select_queue = qede_select_queue,
635 	.ndo_set_rx_mode = qede_set_rx_mode,
636 	.ndo_set_mac_address = qede_set_mac_addr,
637 	.ndo_validate_addr = eth_validate_addr,
638 	.ndo_change_mtu = qede_change_mtu,
639 	.ndo_do_ioctl = qede_ioctl,
640 #ifdef CONFIG_QED_SRIOV
641 	.ndo_set_vf_mac = qede_set_vf_mac,
642 	.ndo_set_vf_vlan = qede_set_vf_vlan,
643 	.ndo_set_vf_trust = qede_set_vf_trust,
644 #endif
645 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
646 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
647 	.ndo_fix_features = qede_fix_features,
648 	.ndo_set_features = qede_set_features,
649 	.ndo_get_stats64 = qede_get_stats64,
650 #ifdef CONFIG_QED_SRIOV
651 	.ndo_set_vf_link_state = qede_set_vf_link_state,
652 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
653 	.ndo_get_vf_config = qede_get_vf_config,
654 	.ndo_set_vf_rate = qede_set_vf_rate,
655 #endif
656 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
657 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
658 	.ndo_features_check = qede_features_check,
659 	.ndo_bpf = qede_xdp,
660 #ifdef CONFIG_RFS_ACCEL
661 	.ndo_rx_flow_steer = qede_rx_flow_steer,
662 #endif
663 	.ndo_setup_tc = qede_setup_tc_offload,
664 };
665 
666 static const struct net_device_ops qede_netdev_vf_ops = {
667 	.ndo_open = qede_open,
668 	.ndo_stop = qede_close,
669 	.ndo_start_xmit = qede_start_xmit,
670 	.ndo_select_queue = qede_select_queue,
671 	.ndo_set_rx_mode = qede_set_rx_mode,
672 	.ndo_set_mac_address = qede_set_mac_addr,
673 	.ndo_validate_addr = eth_validate_addr,
674 	.ndo_change_mtu = qede_change_mtu,
675 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
676 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
677 	.ndo_fix_features = qede_fix_features,
678 	.ndo_set_features = qede_set_features,
679 	.ndo_get_stats64 = qede_get_stats64,
680 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
681 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
682 	.ndo_features_check = qede_features_check,
683 };
684 
685 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
686 	.ndo_open = qede_open,
687 	.ndo_stop = qede_close,
688 	.ndo_start_xmit = qede_start_xmit,
689 	.ndo_select_queue = qede_select_queue,
690 	.ndo_set_rx_mode = qede_set_rx_mode,
691 	.ndo_set_mac_address = qede_set_mac_addr,
692 	.ndo_validate_addr = eth_validate_addr,
693 	.ndo_change_mtu = qede_change_mtu,
694 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
695 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
696 	.ndo_fix_features = qede_fix_features,
697 	.ndo_set_features = qede_set_features,
698 	.ndo_get_stats64 = qede_get_stats64,
699 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
700 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
701 	.ndo_features_check = qede_features_check,
702 	.ndo_bpf = qede_xdp,
703 };
704 
705 /* -------------------------------------------------------------------------
706  * START OF PROBE / REMOVE
707  * -------------------------------------------------------------------------
708  */
709 
710 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
711 					    struct pci_dev *pdev,
712 					    struct qed_dev_eth_info *info,
713 					    u32 dp_module, u8 dp_level)
714 {
715 	struct net_device *ndev;
716 	struct qede_dev *edev;
717 
718 	ndev = alloc_etherdev_mqs(sizeof(*edev),
719 				  info->num_queues * info->num_tc,
720 				  info->num_queues);
721 	if (!ndev) {
722 		pr_err("etherdev allocation failed\n");
723 		return NULL;
724 	}
725 
726 	edev = netdev_priv(ndev);
727 	edev->ndev = ndev;
728 	edev->cdev = cdev;
729 	edev->pdev = pdev;
730 	edev->dp_module = dp_module;
731 	edev->dp_level = dp_level;
732 	edev->ops = qed_ops;
733 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
734 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
735 
736 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
737 		info->num_queues, info->num_queues);
738 
739 	SET_NETDEV_DEV(ndev, &pdev->dev);
740 
741 	memset(&edev->stats, 0, sizeof(edev->stats));
742 	memcpy(&edev->dev_info, info, sizeof(*info));
743 
744 	/* As ethtool doesn't have the ability to show WoL behavior as
745 	 * 'default', if device supports it declare it's enabled.
746 	 */
747 	if (edev->dev_info.common.wol_support)
748 		edev->wol_enabled = true;
749 
750 	INIT_LIST_HEAD(&edev->vlan_list);
751 
752 	return edev;
753 }
754 
755 static void qede_init_ndev(struct qede_dev *edev)
756 {
757 	struct net_device *ndev = edev->ndev;
758 	struct pci_dev *pdev = edev->pdev;
759 	bool udp_tunnel_enable = false;
760 	netdev_features_t hw_features;
761 
762 	pci_set_drvdata(pdev, ndev);
763 
764 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
765 	ndev->base_addr = ndev->mem_start;
766 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
767 	ndev->irq = edev->dev_info.common.pci_irq;
768 
769 	ndev->watchdog_timeo = TX_TIMEOUT;
770 
771 	if (IS_VF(edev)) {
772 		if (edev->dev_info.xdp_supported)
773 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
774 		else
775 			ndev->netdev_ops = &qede_netdev_vf_ops;
776 	} else {
777 		ndev->netdev_ops = &qede_netdev_ops;
778 	}
779 
780 	qede_set_ethtool_ops(ndev);
781 
782 	ndev->priv_flags |= IFF_UNICAST_FLT;
783 
784 	/* user-changeble features */
785 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
786 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
787 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
788 
789 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
790 		hw_features |= NETIF_F_NTUPLE;
791 
792 	if (edev->dev_info.common.vxlan_enable ||
793 	    edev->dev_info.common.geneve_enable)
794 		udp_tunnel_enable = true;
795 
796 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
797 		hw_features |= NETIF_F_TSO_ECN;
798 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
799 					NETIF_F_SG | NETIF_F_TSO |
800 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
801 					NETIF_F_RXCSUM;
802 	}
803 
804 	if (udp_tunnel_enable) {
805 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
806 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
807 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
808 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
809 	}
810 
811 	if (edev->dev_info.common.gre_enable) {
812 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
813 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
814 					  NETIF_F_GSO_GRE_CSUM);
815 	}
816 
817 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
818 			      NETIF_F_HIGHDMA;
819 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
820 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
821 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
822 
823 	ndev->hw_features = hw_features;
824 
825 	/* MTU range: 46 - 9600 */
826 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
827 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
828 
829 	/* Set network device HW mac */
830 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
831 
832 	ndev->mtu = edev->dev_info.common.mtu;
833 }
834 
835 /* This function converts from 32b param to two params of level and module
836  * Input 32b decoding:
837  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
838  * 'happy' flow, e.g. memory allocation failed.
839  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
840  * and provide important parameters.
841  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
842  * module. VERBOSE prints are for tracking the specific flow in low level.
843  *
844  * Notice that the level should be that of the lowest required logs.
845  */
846 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
847 {
848 	*p_dp_level = QED_LEVEL_NOTICE;
849 	*p_dp_module = 0;
850 
851 	if (debug & QED_LOG_VERBOSE_MASK) {
852 		*p_dp_level = QED_LEVEL_VERBOSE;
853 		*p_dp_module = (debug & 0x3FFFFFFF);
854 	} else if (debug & QED_LOG_INFO_MASK) {
855 		*p_dp_level = QED_LEVEL_INFO;
856 	} else if (debug & QED_LOG_NOTICE_MASK) {
857 		*p_dp_level = QED_LEVEL_NOTICE;
858 	}
859 }
860 
861 static void qede_free_fp_array(struct qede_dev *edev)
862 {
863 	if (edev->fp_array) {
864 		struct qede_fastpath *fp;
865 		int i;
866 
867 		for_each_queue(i) {
868 			fp = &edev->fp_array[i];
869 
870 			kfree(fp->sb_info);
871 			/* Handle mem alloc failure case where qede_init_fp
872 			 * didn't register xdp_rxq_info yet.
873 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
874 			 */
875 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
876 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
877 			kfree(fp->rxq);
878 			kfree(fp->xdp_tx);
879 			kfree(fp->txq);
880 		}
881 		kfree(edev->fp_array);
882 	}
883 
884 	edev->num_queues = 0;
885 	edev->fp_num_tx = 0;
886 	edev->fp_num_rx = 0;
887 }
888 
889 static int qede_alloc_fp_array(struct qede_dev *edev)
890 {
891 	u8 fp_combined, fp_rx = edev->fp_num_rx;
892 	struct qede_fastpath *fp;
893 	int i;
894 
895 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
896 				 sizeof(*edev->fp_array), GFP_KERNEL);
897 	if (!edev->fp_array) {
898 		DP_NOTICE(edev, "fp array allocation failed\n");
899 		goto err;
900 	}
901 
902 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
903 
904 	/* Allocate the FP elements for Rx queues followed by combined and then
905 	 * the Tx. This ordering should be maintained so that the respective
906 	 * queues (Rx or Tx) will be together in the fastpath array and the
907 	 * associated ids will be sequential.
908 	 */
909 	for_each_queue(i) {
910 		fp = &edev->fp_array[i];
911 
912 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
913 		if (!fp->sb_info) {
914 			DP_NOTICE(edev, "sb info struct allocation failed\n");
915 			goto err;
916 		}
917 
918 		if (fp_rx) {
919 			fp->type = QEDE_FASTPATH_RX;
920 			fp_rx--;
921 		} else if (fp_combined) {
922 			fp->type = QEDE_FASTPATH_COMBINED;
923 			fp_combined--;
924 		} else {
925 			fp->type = QEDE_FASTPATH_TX;
926 		}
927 
928 		if (fp->type & QEDE_FASTPATH_TX) {
929 			fp->txq = kcalloc(edev->dev_info.num_tc,
930 					  sizeof(*fp->txq), GFP_KERNEL);
931 			if (!fp->txq)
932 				goto err;
933 		}
934 
935 		if (fp->type & QEDE_FASTPATH_RX) {
936 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
937 			if (!fp->rxq)
938 				goto err;
939 
940 			if (edev->xdp_prog) {
941 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
942 						     GFP_KERNEL);
943 				if (!fp->xdp_tx)
944 					goto err;
945 				fp->type |= QEDE_FASTPATH_XDP;
946 			}
947 		}
948 	}
949 
950 	return 0;
951 err:
952 	qede_free_fp_array(edev);
953 	return -ENOMEM;
954 }
955 
956 static void qede_sp_task(struct work_struct *work)
957 {
958 	struct qede_dev *edev = container_of(work, struct qede_dev,
959 					     sp_task.work);
960 
961 	__qede_lock(edev);
962 
963 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
964 		if (edev->state == QEDE_STATE_OPEN)
965 			qede_config_rx_mode(edev->ndev);
966 
967 #ifdef CONFIG_RFS_ACCEL
968 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
969 		if (edev->state == QEDE_STATE_OPEN)
970 			qede_process_arfs_filters(edev, false);
971 	}
972 #endif
973 	__qede_unlock(edev);
974 }
975 
976 static void qede_update_pf_params(struct qed_dev *cdev)
977 {
978 	struct qed_pf_params pf_params;
979 	u16 num_cons;
980 
981 	/* 64 rx + 64 tx + 64 XDP */
982 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
983 
984 	/* 1 rx + 1 xdp + max tx cos */
985 	num_cons = QED_MIN_L2_CONS;
986 
987 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
988 
989 	/* Same for VFs - make sure they'll have sufficient connections
990 	 * to support XDP Tx queues.
991 	 */
992 	pf_params.eth_pf_params.num_vf_cons = 48;
993 
994 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
995 	qed_ops->common->update_pf_params(cdev, &pf_params);
996 }
997 
998 #define QEDE_FW_VER_STR_SIZE	80
999 
1000 static void qede_log_probe(struct qede_dev *edev)
1001 {
1002 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1003 	u8 buf[QEDE_FW_VER_STR_SIZE];
1004 	size_t left_size;
1005 
1006 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1007 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1008 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1009 		 p_dev_info->fw_eng,
1010 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1011 		 QED_MFW_VERSION_3_OFFSET,
1012 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1013 		 QED_MFW_VERSION_2_OFFSET,
1014 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1015 		 QED_MFW_VERSION_1_OFFSET,
1016 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1017 		 QED_MFW_VERSION_0_OFFSET);
1018 
1019 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1020 	if (p_dev_info->mbi_version && left_size)
1021 		snprintf(buf + strlen(buf), left_size,
1022 			 " [MBI %d.%d.%d]",
1023 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1024 			 QED_MBI_VERSION_2_OFFSET,
1025 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1026 			 QED_MBI_VERSION_1_OFFSET,
1027 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1028 			 QED_MBI_VERSION_0_OFFSET);
1029 
1030 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1031 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1032 		buf, edev->ndev->name);
1033 }
1034 
1035 enum qede_probe_mode {
1036 	QEDE_PROBE_NORMAL,
1037 };
1038 
1039 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1040 			bool is_vf, enum qede_probe_mode mode)
1041 {
1042 	struct qed_probe_params probe_params;
1043 	struct qed_slowpath_params sp_params;
1044 	struct qed_dev_eth_info dev_info;
1045 	struct qede_dev *edev;
1046 	struct qed_dev *cdev;
1047 	int rc;
1048 
1049 	if (unlikely(dp_level & QED_LEVEL_INFO))
1050 		pr_notice("Starting qede probe\n");
1051 
1052 	memset(&probe_params, 0, sizeof(probe_params));
1053 	probe_params.protocol = QED_PROTOCOL_ETH;
1054 	probe_params.dp_module = dp_module;
1055 	probe_params.dp_level = dp_level;
1056 	probe_params.is_vf = is_vf;
1057 	cdev = qed_ops->common->probe(pdev, &probe_params);
1058 	if (!cdev) {
1059 		rc = -ENODEV;
1060 		goto err0;
1061 	}
1062 
1063 	qede_update_pf_params(cdev);
1064 
1065 	/* Start the Slowpath-process */
1066 	memset(&sp_params, 0, sizeof(sp_params));
1067 	sp_params.int_mode = QED_INT_MODE_MSIX;
1068 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1069 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1070 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1071 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1072 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1073 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1074 	if (rc) {
1075 		pr_notice("Cannot start slowpath\n");
1076 		goto err1;
1077 	}
1078 
1079 	/* Learn information crucial for qede to progress */
1080 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1081 	if (rc)
1082 		goto err2;
1083 
1084 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1085 				   dp_level);
1086 	if (!edev) {
1087 		rc = -ENOMEM;
1088 		goto err2;
1089 	}
1090 
1091 	if (is_vf)
1092 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1093 
1094 	qede_init_ndev(edev);
1095 
1096 	rc = qede_rdma_dev_add(edev);
1097 	if (rc)
1098 		goto err3;
1099 
1100 	/* Prepare the lock prior to the registration of the netdev,
1101 	 * as once it's registered we might reach flows requiring it
1102 	 * [it's even possible to reach a flow needing it directly
1103 	 * from there, although it's unlikely].
1104 	 */
1105 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1106 	mutex_init(&edev->qede_lock);
1107 	rc = register_netdev(edev->ndev);
1108 	if (rc) {
1109 		DP_NOTICE(edev, "Cannot register net-device\n");
1110 		goto err4;
1111 	}
1112 
1113 	edev->ops->common->set_name(cdev, edev->ndev->name);
1114 
1115 	/* PTP not supported on VFs */
1116 	if (!is_vf)
1117 		qede_ptp_enable(edev, true);
1118 
1119 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1120 
1121 #ifdef CONFIG_DCB
1122 	if (!IS_VF(edev))
1123 		qede_set_dcbnl_ops(edev->ndev);
1124 #endif
1125 
1126 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1127 
1128 	qede_log_probe(edev);
1129 	return 0;
1130 
1131 err4:
1132 	qede_rdma_dev_remove(edev);
1133 err3:
1134 	free_netdev(edev->ndev);
1135 err2:
1136 	qed_ops->common->slowpath_stop(cdev);
1137 err1:
1138 	qed_ops->common->remove(cdev);
1139 err0:
1140 	return rc;
1141 }
1142 
1143 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1144 {
1145 	bool is_vf = false;
1146 	u32 dp_module = 0;
1147 	u8 dp_level = 0;
1148 
1149 	switch ((enum qede_pci_private)id->driver_data) {
1150 	case QEDE_PRIVATE_VF:
1151 		if (debug & QED_LOG_VERBOSE_MASK)
1152 			dev_err(&pdev->dev, "Probing a VF\n");
1153 		is_vf = true;
1154 		break;
1155 	default:
1156 		if (debug & QED_LOG_VERBOSE_MASK)
1157 			dev_err(&pdev->dev, "Probing a PF\n");
1158 	}
1159 
1160 	qede_config_debug(debug, &dp_module, &dp_level);
1161 
1162 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1163 			    QEDE_PROBE_NORMAL);
1164 }
1165 
1166 enum qede_remove_mode {
1167 	QEDE_REMOVE_NORMAL,
1168 };
1169 
1170 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1171 {
1172 	struct net_device *ndev = pci_get_drvdata(pdev);
1173 	struct qede_dev *edev = netdev_priv(ndev);
1174 	struct qed_dev *cdev = edev->cdev;
1175 
1176 	DP_INFO(edev, "Starting qede_remove\n");
1177 
1178 	qede_rdma_dev_remove(edev);
1179 	unregister_netdev(ndev);
1180 	cancel_delayed_work_sync(&edev->sp_task);
1181 
1182 	qede_ptp_disable(edev);
1183 
1184 	edev->ops->common->set_power_state(cdev, PCI_D0);
1185 
1186 	pci_set_drvdata(pdev, NULL);
1187 
1188 	/* Use global ops since we've freed edev */
1189 	qed_ops->common->slowpath_stop(cdev);
1190 	if (system_state == SYSTEM_POWER_OFF)
1191 		return;
1192 	qed_ops->common->remove(cdev);
1193 
1194 	/* Since this can happen out-of-sync with other flows,
1195 	 * don't release the netdevice until after slowpath stop
1196 	 * has been called to guarantee various other contexts
1197 	 * [e.g., QED register callbacks] won't break anything when
1198 	 * accessing the netdevice.
1199 	 */
1200 	 free_netdev(ndev);
1201 
1202 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1203 }
1204 
1205 static void qede_remove(struct pci_dev *pdev)
1206 {
1207 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1208 }
1209 
1210 static void qede_shutdown(struct pci_dev *pdev)
1211 {
1212 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1213 }
1214 
1215 /* -------------------------------------------------------------------------
1216  * START OF LOAD / UNLOAD
1217  * -------------------------------------------------------------------------
1218  */
1219 
1220 static int qede_set_num_queues(struct qede_dev *edev)
1221 {
1222 	int rc;
1223 	u16 rss_num;
1224 
1225 	/* Setup queues according to possible resources*/
1226 	if (edev->req_queues)
1227 		rss_num = edev->req_queues;
1228 	else
1229 		rss_num = netif_get_num_default_rss_queues() *
1230 			  edev->dev_info.common.num_hwfns;
1231 
1232 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1233 
1234 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1235 	if (rc > 0) {
1236 		/* Managed to request interrupts for our queues */
1237 		edev->num_queues = rc;
1238 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1239 			QEDE_QUEUE_CNT(edev), rss_num);
1240 		rc = 0;
1241 	}
1242 
1243 	edev->fp_num_tx = edev->req_num_tx;
1244 	edev->fp_num_rx = edev->req_num_rx;
1245 
1246 	return rc;
1247 }
1248 
1249 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1250 			     u16 sb_id)
1251 {
1252 	if (sb_info->sb_virt) {
1253 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1254 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1255 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1256 		memset(sb_info, 0, sizeof(*sb_info));
1257 	}
1258 }
1259 
1260 /* This function allocates fast-path status block memory */
1261 static int qede_alloc_mem_sb(struct qede_dev *edev,
1262 			     struct qed_sb_info *sb_info, u16 sb_id)
1263 {
1264 	struct status_block_e4 *sb_virt;
1265 	dma_addr_t sb_phys;
1266 	int rc;
1267 
1268 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1269 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1270 	if (!sb_virt) {
1271 		DP_ERR(edev, "Status block allocation failed\n");
1272 		return -ENOMEM;
1273 	}
1274 
1275 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1276 					sb_virt, sb_phys, sb_id,
1277 					QED_SB_TYPE_L2_QUEUE);
1278 	if (rc) {
1279 		DP_ERR(edev, "Status block initialization failed\n");
1280 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1281 				  sb_virt, sb_phys);
1282 		return rc;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static void qede_free_rx_buffers(struct qede_dev *edev,
1289 				 struct qede_rx_queue *rxq)
1290 {
1291 	u16 i;
1292 
1293 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1294 		struct sw_rx_data *rx_buf;
1295 		struct page *data;
1296 
1297 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1298 		data = rx_buf->data;
1299 
1300 		dma_unmap_page(&edev->pdev->dev,
1301 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1302 
1303 		rx_buf->data = NULL;
1304 		__free_page(data);
1305 	}
1306 }
1307 
1308 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1309 {
1310 	/* Free rx buffers */
1311 	qede_free_rx_buffers(edev, rxq);
1312 
1313 	/* Free the parallel SW ring */
1314 	kfree(rxq->sw_rx_ring);
1315 
1316 	/* Free the real RQ ring used by FW */
1317 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1318 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1319 }
1320 
1321 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1322 {
1323 	int i;
1324 
1325 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1326 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1327 
1328 		tpa_info->state = QEDE_AGG_STATE_NONE;
1329 	}
1330 }
1331 
1332 /* This function allocates all memory needed per Rx queue */
1333 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1334 {
1335 	int i, rc, size;
1336 
1337 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1338 
1339 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1340 
1341 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1342 	size = rxq->rx_headroom +
1343 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1344 
1345 	/* Make sure that the headroom and  payload fit in a single page */
1346 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1347 		rxq->rx_buf_size = PAGE_SIZE - size;
1348 
1349 	/* Segment size to spilt a page in multiple equal parts ,
1350 	 * unless XDP is used in which case we'd use the entire page.
1351 	 */
1352 	if (!edev->xdp_prog) {
1353 		size = size + rxq->rx_buf_size;
1354 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1355 	} else {
1356 		rxq->rx_buf_seg_size = PAGE_SIZE;
1357 	}
1358 
1359 	/* Allocate the parallel driver ring for Rx buffers */
1360 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1361 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1362 	if (!rxq->sw_rx_ring) {
1363 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1364 		rc = -ENOMEM;
1365 		goto err;
1366 	}
1367 
1368 	/* Allocate FW Rx ring  */
1369 	rc = edev->ops->common->chain_alloc(edev->cdev,
1370 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1371 					    QED_CHAIN_MODE_NEXT_PTR,
1372 					    QED_CHAIN_CNT_TYPE_U16,
1373 					    RX_RING_SIZE,
1374 					    sizeof(struct eth_rx_bd),
1375 					    &rxq->rx_bd_ring, NULL);
1376 	if (rc)
1377 		goto err;
1378 
1379 	/* Allocate FW completion ring */
1380 	rc = edev->ops->common->chain_alloc(edev->cdev,
1381 					    QED_CHAIN_USE_TO_CONSUME,
1382 					    QED_CHAIN_MODE_PBL,
1383 					    QED_CHAIN_CNT_TYPE_U16,
1384 					    RX_RING_SIZE,
1385 					    sizeof(union eth_rx_cqe),
1386 					    &rxq->rx_comp_ring, NULL);
1387 	if (rc)
1388 		goto err;
1389 
1390 	/* Allocate buffers for the Rx ring */
1391 	rxq->filled_buffers = 0;
1392 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1393 		rc = qede_alloc_rx_buffer(rxq, false);
1394 		if (rc) {
1395 			DP_ERR(edev,
1396 			       "Rx buffers allocation failed at index %d\n", i);
1397 			goto err;
1398 		}
1399 	}
1400 
1401 	if (!edev->gro_disable)
1402 		qede_set_tpa_param(rxq);
1403 err:
1404 	return rc;
1405 }
1406 
1407 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1408 {
1409 	/* Free the parallel SW ring */
1410 	if (txq->is_xdp)
1411 		kfree(txq->sw_tx_ring.xdp);
1412 	else
1413 		kfree(txq->sw_tx_ring.skbs);
1414 
1415 	/* Free the real RQ ring used by FW */
1416 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1417 }
1418 
1419 /* This function allocates all memory needed per Tx queue */
1420 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1421 {
1422 	union eth_tx_bd_types *p_virt;
1423 	int size, rc;
1424 
1425 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1426 
1427 	/* Allocate the parallel driver ring for Tx buffers */
1428 	if (txq->is_xdp) {
1429 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1430 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1431 		if (!txq->sw_tx_ring.xdp)
1432 			goto err;
1433 	} else {
1434 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1435 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1436 		if (!txq->sw_tx_ring.skbs)
1437 			goto err;
1438 	}
1439 
1440 	rc = edev->ops->common->chain_alloc(edev->cdev,
1441 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1442 					    QED_CHAIN_MODE_PBL,
1443 					    QED_CHAIN_CNT_TYPE_U16,
1444 					    txq->num_tx_buffers,
1445 					    sizeof(*p_virt),
1446 					    &txq->tx_pbl, NULL);
1447 	if (rc)
1448 		goto err;
1449 
1450 	return 0;
1451 
1452 err:
1453 	qede_free_mem_txq(edev, txq);
1454 	return -ENOMEM;
1455 }
1456 
1457 /* This function frees all memory of a single fp */
1458 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1459 {
1460 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1461 
1462 	if (fp->type & QEDE_FASTPATH_RX)
1463 		qede_free_mem_rxq(edev, fp->rxq);
1464 
1465 	if (fp->type & QEDE_FASTPATH_XDP)
1466 		qede_free_mem_txq(edev, fp->xdp_tx);
1467 
1468 	if (fp->type & QEDE_FASTPATH_TX) {
1469 		int cos;
1470 
1471 		for_each_cos_in_txq(edev, cos)
1472 			qede_free_mem_txq(edev, &fp->txq[cos]);
1473 	}
1474 }
1475 
1476 /* This function allocates all memory needed for a single fp (i.e. an entity
1477  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1478  */
1479 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1480 {
1481 	int rc = 0;
1482 
1483 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1484 	if (rc)
1485 		goto out;
1486 
1487 	if (fp->type & QEDE_FASTPATH_RX) {
1488 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1489 		if (rc)
1490 			goto out;
1491 	}
1492 
1493 	if (fp->type & QEDE_FASTPATH_XDP) {
1494 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1495 		if (rc)
1496 			goto out;
1497 	}
1498 
1499 	if (fp->type & QEDE_FASTPATH_TX) {
1500 		int cos;
1501 
1502 		for_each_cos_in_txq(edev, cos) {
1503 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1504 			if (rc)
1505 				goto out;
1506 		}
1507 	}
1508 
1509 out:
1510 	return rc;
1511 }
1512 
1513 static void qede_free_mem_load(struct qede_dev *edev)
1514 {
1515 	int i;
1516 
1517 	for_each_queue(i) {
1518 		struct qede_fastpath *fp = &edev->fp_array[i];
1519 
1520 		qede_free_mem_fp(edev, fp);
1521 	}
1522 }
1523 
1524 /* This function allocates all qede memory at NIC load. */
1525 static int qede_alloc_mem_load(struct qede_dev *edev)
1526 {
1527 	int rc = 0, queue_id;
1528 
1529 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1530 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1531 
1532 		rc = qede_alloc_mem_fp(edev, fp);
1533 		if (rc) {
1534 			DP_ERR(edev,
1535 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1536 			       queue_id);
1537 			qede_free_mem_load(edev);
1538 			return rc;
1539 		}
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1546 static void qede_init_fp(struct qede_dev *edev)
1547 {
1548 	int queue_id, rxq_index = 0, txq_index = 0;
1549 	struct qede_fastpath *fp;
1550 
1551 	for_each_queue(queue_id) {
1552 		fp = &edev->fp_array[queue_id];
1553 
1554 		fp->edev = edev;
1555 		fp->id = queue_id;
1556 
1557 		if (fp->type & QEDE_FASTPATH_XDP) {
1558 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1559 								rxq_index);
1560 			fp->xdp_tx->is_xdp = 1;
1561 		}
1562 
1563 		if (fp->type & QEDE_FASTPATH_RX) {
1564 			fp->rxq->rxq_id = rxq_index++;
1565 
1566 			/* Determine how to map buffers for this queue */
1567 			if (fp->type & QEDE_FASTPATH_XDP)
1568 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1569 			else
1570 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1571 			fp->rxq->dev = &edev->pdev->dev;
1572 
1573 			/* Driver have no error path from here */
1574 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1575 						 fp->rxq->rxq_id) < 0);
1576 		}
1577 
1578 		if (fp->type & QEDE_FASTPATH_TX) {
1579 			int cos;
1580 
1581 			for_each_cos_in_txq(edev, cos) {
1582 				struct qede_tx_queue *txq = &fp->txq[cos];
1583 				u16 ndev_tx_id;
1584 
1585 				txq->cos = cos;
1586 				txq->index = txq_index;
1587 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1588 				txq->ndev_txq_id = ndev_tx_id;
1589 
1590 				if (edev->dev_info.is_legacy)
1591 					txq->is_legacy = 1;
1592 				txq->dev = &edev->pdev->dev;
1593 			}
1594 
1595 			txq_index++;
1596 		}
1597 
1598 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1599 			 edev->ndev->name, queue_id);
1600 	}
1601 
1602 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1603 }
1604 
1605 static int qede_set_real_num_queues(struct qede_dev *edev)
1606 {
1607 	int rc = 0;
1608 
1609 	rc = netif_set_real_num_tx_queues(edev->ndev,
1610 					  QEDE_TSS_COUNT(edev) *
1611 					  edev->dev_info.num_tc);
1612 	if (rc) {
1613 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1614 		return rc;
1615 	}
1616 
1617 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1618 	if (rc) {
1619 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1620 		return rc;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static void qede_napi_disable_remove(struct qede_dev *edev)
1627 {
1628 	int i;
1629 
1630 	for_each_queue(i) {
1631 		napi_disable(&edev->fp_array[i].napi);
1632 
1633 		netif_napi_del(&edev->fp_array[i].napi);
1634 	}
1635 }
1636 
1637 static void qede_napi_add_enable(struct qede_dev *edev)
1638 {
1639 	int i;
1640 
1641 	/* Add NAPI objects */
1642 	for_each_queue(i) {
1643 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1644 			       qede_poll, NAPI_POLL_WEIGHT);
1645 		napi_enable(&edev->fp_array[i].napi);
1646 	}
1647 }
1648 
1649 static void qede_sync_free_irqs(struct qede_dev *edev)
1650 {
1651 	int i;
1652 
1653 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1654 		if (edev->int_info.msix_cnt) {
1655 			synchronize_irq(edev->int_info.msix[i].vector);
1656 			free_irq(edev->int_info.msix[i].vector,
1657 				 &edev->fp_array[i]);
1658 		} else {
1659 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1660 		}
1661 	}
1662 
1663 	edev->int_info.used_cnt = 0;
1664 }
1665 
1666 static int qede_req_msix_irqs(struct qede_dev *edev)
1667 {
1668 	int i, rc;
1669 
1670 	/* Sanitize number of interrupts == number of prepared RSS queues */
1671 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1672 		DP_ERR(edev,
1673 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1674 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1675 		return -EINVAL;
1676 	}
1677 
1678 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1679 #ifdef CONFIG_RFS_ACCEL
1680 		struct qede_fastpath *fp = &edev->fp_array[i];
1681 
1682 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1683 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1684 					      edev->int_info.msix[i].vector);
1685 			if (rc) {
1686 				DP_ERR(edev, "Failed to add CPU rmap\n");
1687 				qede_free_arfs(edev);
1688 			}
1689 		}
1690 #endif
1691 		rc = request_irq(edev->int_info.msix[i].vector,
1692 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1693 				 &edev->fp_array[i]);
1694 		if (rc) {
1695 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1696 			qede_sync_free_irqs(edev);
1697 			return rc;
1698 		}
1699 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1700 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1701 			   edev->fp_array[i].name, i,
1702 			   &edev->fp_array[i]);
1703 		edev->int_info.used_cnt++;
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static void qede_simd_fp_handler(void *cookie)
1710 {
1711 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1712 
1713 	napi_schedule_irqoff(&fp->napi);
1714 }
1715 
1716 static int qede_setup_irqs(struct qede_dev *edev)
1717 {
1718 	int i, rc = 0;
1719 
1720 	/* Learn Interrupt configuration */
1721 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1722 	if (rc)
1723 		return rc;
1724 
1725 	if (edev->int_info.msix_cnt) {
1726 		rc = qede_req_msix_irqs(edev);
1727 		if (rc)
1728 			return rc;
1729 		edev->ndev->irq = edev->int_info.msix[0].vector;
1730 	} else {
1731 		const struct qed_common_ops *ops;
1732 
1733 		/* qed should learn receive the RSS ids and callbacks */
1734 		ops = edev->ops->common;
1735 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1736 			ops->simd_handler_config(edev->cdev,
1737 						 &edev->fp_array[i], i,
1738 						 qede_simd_fp_handler);
1739 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1740 	}
1741 	return 0;
1742 }
1743 
1744 static int qede_drain_txq(struct qede_dev *edev,
1745 			  struct qede_tx_queue *txq, bool allow_drain)
1746 {
1747 	int rc, cnt = 1000;
1748 
1749 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1750 		if (!cnt) {
1751 			if (allow_drain) {
1752 				DP_NOTICE(edev,
1753 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1754 					  txq->index);
1755 				rc = edev->ops->common->drain(edev->cdev);
1756 				if (rc)
1757 					return rc;
1758 				return qede_drain_txq(edev, txq, false);
1759 			}
1760 			DP_NOTICE(edev,
1761 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1762 				  txq->index, txq->sw_tx_prod,
1763 				  txq->sw_tx_cons);
1764 			return -ENODEV;
1765 		}
1766 		cnt--;
1767 		usleep_range(1000, 2000);
1768 		barrier();
1769 	}
1770 
1771 	/* FW finished processing, wait for HW to transmit all tx packets */
1772 	usleep_range(1000, 2000);
1773 
1774 	return 0;
1775 }
1776 
1777 static int qede_stop_txq(struct qede_dev *edev,
1778 			 struct qede_tx_queue *txq, int rss_id)
1779 {
1780 	/* delete doorbell from doorbell recovery mechanism */
1781 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1782 					   &txq->tx_db);
1783 
1784 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1785 }
1786 
1787 static int qede_stop_queues(struct qede_dev *edev)
1788 {
1789 	struct qed_update_vport_params *vport_update_params;
1790 	struct qed_dev *cdev = edev->cdev;
1791 	struct qede_fastpath *fp;
1792 	int rc, i;
1793 
1794 	/* Disable the vport */
1795 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1796 	if (!vport_update_params)
1797 		return -ENOMEM;
1798 
1799 	vport_update_params->vport_id = 0;
1800 	vport_update_params->update_vport_active_flg = 1;
1801 	vport_update_params->vport_active_flg = 0;
1802 	vport_update_params->update_rss_flg = 0;
1803 
1804 	rc = edev->ops->vport_update(cdev, vport_update_params);
1805 	vfree(vport_update_params);
1806 
1807 	if (rc) {
1808 		DP_ERR(edev, "Failed to update vport\n");
1809 		return rc;
1810 	}
1811 
1812 	/* Flush Tx queues. If needed, request drain from MCP */
1813 	for_each_queue(i) {
1814 		fp = &edev->fp_array[i];
1815 
1816 		if (fp->type & QEDE_FASTPATH_TX) {
1817 			int cos;
1818 
1819 			for_each_cos_in_txq(edev, cos) {
1820 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1821 				if (rc)
1822 					return rc;
1823 			}
1824 		}
1825 
1826 		if (fp->type & QEDE_FASTPATH_XDP) {
1827 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1828 			if (rc)
1829 				return rc;
1830 		}
1831 	}
1832 
1833 	/* Stop all Queues in reverse order */
1834 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1835 		fp = &edev->fp_array[i];
1836 
1837 		/* Stop the Tx Queue(s) */
1838 		if (fp->type & QEDE_FASTPATH_TX) {
1839 			int cos;
1840 
1841 			for_each_cos_in_txq(edev, cos) {
1842 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1843 				if (rc)
1844 					return rc;
1845 			}
1846 		}
1847 
1848 		/* Stop the Rx Queue */
1849 		if (fp->type & QEDE_FASTPATH_RX) {
1850 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1851 			if (rc) {
1852 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1853 				return rc;
1854 			}
1855 		}
1856 
1857 		/* Stop the XDP forwarding queue */
1858 		if (fp->type & QEDE_FASTPATH_XDP) {
1859 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1860 			if (rc)
1861 				return rc;
1862 
1863 			bpf_prog_put(fp->rxq->xdp_prog);
1864 		}
1865 	}
1866 
1867 	/* Stop the vport */
1868 	rc = edev->ops->vport_stop(cdev, 0);
1869 	if (rc)
1870 		DP_ERR(edev, "Failed to stop VPORT\n");
1871 
1872 	return rc;
1873 }
1874 
1875 static int qede_start_txq(struct qede_dev *edev,
1876 			  struct qede_fastpath *fp,
1877 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1878 {
1879 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1880 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1881 	struct qed_queue_start_common_params params;
1882 	struct qed_txq_start_ret_params ret_params;
1883 	int rc;
1884 
1885 	memset(&params, 0, sizeof(params));
1886 	memset(&ret_params, 0, sizeof(ret_params));
1887 
1888 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1889 	 * We don't really care about its coalescing.
1890 	 */
1891 	if (txq->is_xdp)
1892 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1893 	else
1894 		params.queue_id = txq->index;
1895 
1896 	params.p_sb = fp->sb_info;
1897 	params.sb_idx = sb_idx;
1898 	params.tc = txq->cos;
1899 
1900 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1901 				   page_cnt, &ret_params);
1902 	if (rc) {
1903 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1904 		return rc;
1905 	}
1906 
1907 	txq->doorbell_addr = ret_params.p_doorbell;
1908 	txq->handle = ret_params.p_handle;
1909 
1910 	/* Determine the FW consumer address associated */
1911 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1912 
1913 	/* Prepare the doorbell parameters */
1914 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1915 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1916 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1917 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1918 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1919 
1920 	/* register doorbell with doorbell recovery mechanism */
1921 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
1922 						&txq->tx_db, DB_REC_WIDTH_32B,
1923 						DB_REC_KERNEL);
1924 
1925 	return rc;
1926 }
1927 
1928 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1929 {
1930 	int vlan_removal_en = 1;
1931 	struct qed_dev *cdev = edev->cdev;
1932 	struct qed_dev_info *qed_info = &edev->dev_info.common;
1933 	struct qed_update_vport_params *vport_update_params;
1934 	struct qed_queue_start_common_params q_params;
1935 	struct qed_start_vport_params start = {0};
1936 	int rc, i;
1937 
1938 	if (!edev->num_queues) {
1939 		DP_ERR(edev,
1940 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1941 		return -EINVAL;
1942 	}
1943 
1944 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1945 	if (!vport_update_params)
1946 		return -ENOMEM;
1947 
1948 	start.handle_ptp_pkts = !!(edev->ptp);
1949 	start.gro_enable = !edev->gro_disable;
1950 	start.mtu = edev->ndev->mtu;
1951 	start.vport_id = 0;
1952 	start.drop_ttl0 = true;
1953 	start.remove_inner_vlan = vlan_removal_en;
1954 	start.clear_stats = clear_stats;
1955 
1956 	rc = edev->ops->vport_start(cdev, &start);
1957 
1958 	if (rc) {
1959 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1960 		goto out;
1961 	}
1962 
1963 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1964 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1965 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1966 
1967 	for_each_queue(i) {
1968 		struct qede_fastpath *fp = &edev->fp_array[i];
1969 		dma_addr_t p_phys_table;
1970 		u32 page_cnt;
1971 
1972 		if (fp->type & QEDE_FASTPATH_RX) {
1973 			struct qed_rxq_start_ret_params ret_params;
1974 			struct qede_rx_queue *rxq = fp->rxq;
1975 			__le16 *val;
1976 
1977 			memset(&ret_params, 0, sizeof(ret_params));
1978 			memset(&q_params, 0, sizeof(q_params));
1979 			q_params.queue_id = rxq->rxq_id;
1980 			q_params.vport_id = 0;
1981 			q_params.p_sb = fp->sb_info;
1982 			q_params.sb_idx = RX_PI;
1983 
1984 			p_phys_table =
1985 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1986 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1987 
1988 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1989 						   rxq->rx_buf_size,
1990 						   rxq->rx_bd_ring.p_phys_addr,
1991 						   p_phys_table,
1992 						   page_cnt, &ret_params);
1993 			if (rc) {
1994 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1995 				       rc);
1996 				goto out;
1997 			}
1998 
1999 			/* Use the return parameters */
2000 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2001 			rxq->handle = ret_params.p_handle;
2002 
2003 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2004 			rxq->hw_cons_ptr = val;
2005 
2006 			qede_update_rx_prod(edev, rxq);
2007 		}
2008 
2009 		if (fp->type & QEDE_FASTPATH_XDP) {
2010 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2011 			if (rc)
2012 				goto out;
2013 
2014 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2015 			if (IS_ERR(fp->rxq->xdp_prog)) {
2016 				rc = PTR_ERR(fp->rxq->xdp_prog);
2017 				fp->rxq->xdp_prog = NULL;
2018 				goto out;
2019 			}
2020 		}
2021 
2022 		if (fp->type & QEDE_FASTPATH_TX) {
2023 			int cos;
2024 
2025 			for_each_cos_in_txq(edev, cos) {
2026 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2027 						    TX_PI(cos));
2028 				if (rc)
2029 					goto out;
2030 			}
2031 		}
2032 	}
2033 
2034 	/* Prepare and send the vport enable */
2035 	vport_update_params->vport_id = start.vport_id;
2036 	vport_update_params->update_vport_active_flg = 1;
2037 	vport_update_params->vport_active_flg = 1;
2038 
2039 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2040 	    qed_info->tx_switching) {
2041 		vport_update_params->update_tx_switching_flg = 1;
2042 		vport_update_params->tx_switching_flg = 1;
2043 	}
2044 
2045 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2046 			     &vport_update_params->update_rss_flg);
2047 
2048 	rc = edev->ops->vport_update(cdev, vport_update_params);
2049 	if (rc)
2050 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2051 
2052 out:
2053 	vfree(vport_update_params);
2054 	return rc;
2055 }
2056 
2057 enum qede_unload_mode {
2058 	QEDE_UNLOAD_NORMAL,
2059 };
2060 
2061 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2062 			bool is_locked)
2063 {
2064 	struct qed_link_params link_params;
2065 	int rc;
2066 
2067 	DP_INFO(edev, "Starting qede unload\n");
2068 
2069 	if (!is_locked)
2070 		__qede_lock(edev);
2071 
2072 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2073 
2074 	edev->state = QEDE_STATE_CLOSED;
2075 
2076 	qede_rdma_dev_event_close(edev);
2077 
2078 	/* Close OS Tx */
2079 	netif_tx_disable(edev->ndev);
2080 	netif_carrier_off(edev->ndev);
2081 
2082 	/* Reset the link */
2083 	memset(&link_params, 0, sizeof(link_params));
2084 	link_params.link_up = false;
2085 	edev->ops->common->set_link(edev->cdev, &link_params);
2086 	rc = qede_stop_queues(edev);
2087 	if (rc) {
2088 		qede_sync_free_irqs(edev);
2089 		goto out;
2090 	}
2091 
2092 	DP_INFO(edev, "Stopped Queues\n");
2093 
2094 	qede_vlan_mark_nonconfigured(edev);
2095 	edev->ops->fastpath_stop(edev->cdev);
2096 
2097 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2098 		qede_poll_for_freeing_arfs_filters(edev);
2099 		qede_free_arfs(edev);
2100 	}
2101 
2102 	/* Release the interrupts */
2103 	qede_sync_free_irqs(edev);
2104 	edev->ops->common->set_fp_int(edev->cdev, 0);
2105 
2106 	qede_napi_disable_remove(edev);
2107 
2108 	qede_free_mem_load(edev);
2109 	qede_free_fp_array(edev);
2110 
2111 out:
2112 	if (!is_locked)
2113 		__qede_unlock(edev);
2114 	DP_INFO(edev, "Ending qede unload\n");
2115 }
2116 
2117 enum qede_load_mode {
2118 	QEDE_LOAD_NORMAL,
2119 	QEDE_LOAD_RELOAD,
2120 };
2121 
2122 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2123 		     bool is_locked)
2124 {
2125 	struct qed_link_params link_params;
2126 	u8 num_tc;
2127 	int rc;
2128 
2129 	DP_INFO(edev, "Starting qede load\n");
2130 
2131 	if (!is_locked)
2132 		__qede_lock(edev);
2133 
2134 	rc = qede_set_num_queues(edev);
2135 	if (rc)
2136 		goto out;
2137 
2138 	rc = qede_alloc_fp_array(edev);
2139 	if (rc)
2140 		goto out;
2141 
2142 	qede_init_fp(edev);
2143 
2144 	rc = qede_alloc_mem_load(edev);
2145 	if (rc)
2146 		goto err1;
2147 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2148 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2149 
2150 	rc = qede_set_real_num_queues(edev);
2151 	if (rc)
2152 		goto err2;
2153 
2154 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2155 		rc = qede_alloc_arfs(edev);
2156 		if (rc)
2157 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2158 	}
2159 
2160 	qede_napi_add_enable(edev);
2161 	DP_INFO(edev, "Napi added and enabled\n");
2162 
2163 	rc = qede_setup_irqs(edev);
2164 	if (rc)
2165 		goto err3;
2166 	DP_INFO(edev, "Setup IRQs succeeded\n");
2167 
2168 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2169 	if (rc)
2170 		goto err4;
2171 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2172 
2173 	num_tc = netdev_get_num_tc(edev->ndev);
2174 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2175 	qede_setup_tc(edev->ndev, num_tc);
2176 
2177 	/* Program un-configured VLANs */
2178 	qede_configure_vlan_filters(edev);
2179 
2180 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2181 
2182 	/* Ask for link-up using current configuration */
2183 	memset(&link_params, 0, sizeof(link_params));
2184 	link_params.link_up = true;
2185 	edev->ops->common->set_link(edev->cdev, &link_params);
2186 
2187 	edev->state = QEDE_STATE_OPEN;
2188 
2189 	DP_INFO(edev, "Ending successfully qede load\n");
2190 
2191 	goto out;
2192 err4:
2193 	qede_sync_free_irqs(edev);
2194 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2195 err3:
2196 	qede_napi_disable_remove(edev);
2197 err2:
2198 	qede_free_mem_load(edev);
2199 err1:
2200 	edev->ops->common->set_fp_int(edev->cdev, 0);
2201 	qede_free_fp_array(edev);
2202 	edev->num_queues = 0;
2203 	edev->fp_num_tx = 0;
2204 	edev->fp_num_rx = 0;
2205 out:
2206 	if (!is_locked)
2207 		__qede_unlock(edev);
2208 
2209 	return rc;
2210 }
2211 
2212 /* 'func' should be able to run between unload and reload assuming interface
2213  * is actually running, or afterwards in case it's currently DOWN.
2214  */
2215 void qede_reload(struct qede_dev *edev,
2216 		 struct qede_reload_args *args, bool is_locked)
2217 {
2218 	if (!is_locked)
2219 		__qede_lock(edev);
2220 
2221 	/* Since qede_lock is held, internal state wouldn't change even
2222 	 * if netdev state would start transitioning. Check whether current
2223 	 * internal configuration indicates device is up, then reload.
2224 	 */
2225 	if (edev->state == QEDE_STATE_OPEN) {
2226 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2227 		if (args)
2228 			args->func(edev, args);
2229 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2230 
2231 		/* Since no one is going to do it for us, re-configure */
2232 		qede_config_rx_mode(edev->ndev);
2233 	} else if (args) {
2234 		args->func(edev, args);
2235 	}
2236 
2237 	if (!is_locked)
2238 		__qede_unlock(edev);
2239 }
2240 
2241 /* called with rtnl_lock */
2242 static int qede_open(struct net_device *ndev)
2243 {
2244 	struct qede_dev *edev = netdev_priv(ndev);
2245 	int rc;
2246 
2247 	netif_carrier_off(ndev);
2248 
2249 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2250 
2251 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2252 	if (rc)
2253 		return rc;
2254 
2255 	udp_tunnel_get_rx_info(ndev);
2256 
2257 	edev->ops->common->update_drv_state(edev->cdev, true);
2258 
2259 	return 0;
2260 }
2261 
2262 static int qede_close(struct net_device *ndev)
2263 {
2264 	struct qede_dev *edev = netdev_priv(ndev);
2265 
2266 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2267 
2268 	edev->ops->common->update_drv_state(edev->cdev, false);
2269 
2270 	return 0;
2271 }
2272 
2273 static void qede_link_update(void *dev, struct qed_link_output *link)
2274 {
2275 	struct qede_dev *edev = dev;
2276 
2277 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2278 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2279 		return;
2280 	}
2281 
2282 	if (link->link_up) {
2283 		if (!netif_carrier_ok(edev->ndev)) {
2284 			DP_NOTICE(edev, "Link is up\n");
2285 			netif_tx_start_all_queues(edev->ndev);
2286 			netif_carrier_on(edev->ndev);
2287 			qede_rdma_dev_event_open(edev);
2288 		}
2289 	} else {
2290 		if (netif_carrier_ok(edev->ndev)) {
2291 			DP_NOTICE(edev, "Link is down\n");
2292 			netif_tx_disable(edev->ndev);
2293 			netif_carrier_off(edev->ndev);
2294 			qede_rdma_dev_event_close(edev);
2295 		}
2296 	}
2297 }
2298 
2299 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2300 {
2301 	struct netdev_queue *netdev_txq;
2302 
2303 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2304 	if (netif_xmit_stopped(netdev_txq))
2305 		return true;
2306 
2307 	return false;
2308 }
2309 
2310 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2311 {
2312 	struct qede_dev *edev = dev;
2313 	struct netdev_hw_addr *ha;
2314 	int i;
2315 
2316 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2317 		data->feat_flags |= QED_TLV_IP_CSUM;
2318 	if (edev->ndev->features & NETIF_F_TSO)
2319 		data->feat_flags |= QED_TLV_LSO;
2320 
2321 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2322 	memset(data->mac[1], 0, ETH_ALEN);
2323 	memset(data->mac[2], 0, ETH_ALEN);
2324 	/* Copy the first two UC macs */
2325 	netif_addr_lock_bh(edev->ndev);
2326 	i = 1;
2327 	netdev_for_each_uc_addr(ha, edev->ndev) {
2328 		ether_addr_copy(data->mac[i++], ha->addr);
2329 		if (i == QED_TLV_MAC_COUNT)
2330 			break;
2331 	}
2332 
2333 	netif_addr_unlock_bh(edev->ndev);
2334 }
2335 
2336 static void qede_get_eth_tlv_data(void *dev, void *data)
2337 {
2338 	struct qed_mfw_tlv_eth *etlv = data;
2339 	struct qede_dev *edev = dev;
2340 	struct qede_fastpath *fp;
2341 	int i;
2342 
2343 	etlv->lso_maxoff_size = 0XFFFF;
2344 	etlv->lso_maxoff_size_set = true;
2345 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2346 	etlv->lso_minseg_size_set = true;
2347 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2348 	etlv->prom_mode_set = true;
2349 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2350 	etlv->tx_descr_size_set = true;
2351 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2352 	etlv->rx_descr_size_set = true;
2353 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2354 	etlv->iov_offload_set = true;
2355 
2356 	/* Fill information regarding queues; Should be done under the qede
2357 	 * lock to guarantee those don't change beneath our feet.
2358 	 */
2359 	etlv->txqs_empty = true;
2360 	etlv->rxqs_empty = true;
2361 	etlv->num_txqs_full = 0;
2362 	etlv->num_rxqs_full = 0;
2363 
2364 	__qede_lock(edev);
2365 	for_each_queue(i) {
2366 		fp = &edev->fp_array[i];
2367 		if (fp->type & QEDE_FASTPATH_TX) {
2368 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2369 
2370 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2371 				etlv->txqs_empty = false;
2372 			if (qede_is_txq_full(edev, txq))
2373 				etlv->num_txqs_full++;
2374 		}
2375 		if (fp->type & QEDE_FASTPATH_RX) {
2376 			if (qede_has_rx_work(fp->rxq))
2377 				etlv->rxqs_empty = false;
2378 
2379 			/* This one is a bit tricky; Firmware might stop
2380 			 * placing packets if ring is not yet full.
2381 			 * Give an approximation.
2382 			 */
2383 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2384 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2385 			    RX_RING_SIZE - 100)
2386 				etlv->num_rxqs_full++;
2387 		}
2388 	}
2389 	__qede_unlock(edev);
2390 
2391 	etlv->txqs_empty_set = true;
2392 	etlv->rxqs_empty_set = true;
2393 	etlv->num_txqs_full_set = true;
2394 	etlv->num_rxqs_full_set = true;
2395 }
2396