1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_get_eth_tlv_data(void *edev, void *data); 137 static void qede_get_generic_tlv_data(void *edev, 138 struct qed_generic_tlvs *data); 139 140 /* The qede lock is used to protect driver state change and driver flows that 141 * are not reentrant. 142 */ 143 void __qede_lock(struct qede_dev *edev) 144 { 145 mutex_lock(&edev->qede_lock); 146 } 147 148 void __qede_unlock(struct qede_dev *edev) 149 { 150 mutex_unlock(&edev->qede_lock); 151 } 152 153 #ifdef CONFIG_QED_SRIOV 154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 155 __be16 vlan_proto) 156 { 157 struct qede_dev *edev = netdev_priv(ndev); 158 159 if (vlan > 4095) { 160 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 161 return -EINVAL; 162 } 163 164 if (vlan_proto != htons(ETH_P_8021Q)) 165 return -EPROTONOSUPPORT; 166 167 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 168 vlan, vf); 169 170 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 171 } 172 173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 174 { 175 struct qede_dev *edev = netdev_priv(ndev); 176 177 DP_VERBOSE(edev, QED_MSG_IOV, 178 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 179 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 180 181 if (!is_valid_ether_addr(mac)) { 182 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 183 return -EINVAL; 184 } 185 186 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 187 } 188 189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 190 { 191 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 192 struct qed_dev_info *qed_info = &edev->dev_info.common; 193 struct qed_update_vport_params *vport_params; 194 int rc; 195 196 vport_params = vzalloc(sizeof(*vport_params)); 197 if (!vport_params) 198 return -ENOMEM; 199 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 200 201 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 202 203 /* Enable/Disable Tx switching for PF */ 204 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 205 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 206 vport_params->vport_id = 0; 207 vport_params->update_tx_switching_flg = 1; 208 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 209 edev->ops->vport_update(edev->cdev, vport_params); 210 } 211 212 vfree(vport_params); 213 return rc; 214 } 215 #endif 216 217 static struct pci_driver qede_pci_driver = { 218 .name = "qede", 219 .id_table = qede_pci_tbl, 220 .probe = qede_probe, 221 .remove = qede_remove, 222 .shutdown = qede_shutdown, 223 #ifdef CONFIG_QED_SRIOV 224 .sriov_configure = qede_sriov_configure, 225 #endif 226 }; 227 228 static struct qed_eth_cb_ops qede_ll_ops = { 229 { 230 #ifdef CONFIG_RFS_ACCEL 231 .arfs_filter_op = qede_arfs_filter_op, 232 #endif 233 .link_update = qede_link_update, 234 .get_generic_tlv_data = qede_get_generic_tlv_data, 235 .get_protocol_tlv_data = qede_get_eth_tlv_data, 236 }, 237 .force_mac = qede_force_mac, 238 .ports_update = qede_udp_ports_update, 239 }; 240 241 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 242 void *ptr) 243 { 244 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 245 struct ethtool_drvinfo drvinfo; 246 struct qede_dev *edev; 247 248 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 249 goto done; 250 251 /* Check whether this is a qede device */ 252 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 253 goto done; 254 255 memset(&drvinfo, 0, sizeof(drvinfo)); 256 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 257 if (strcmp(drvinfo.driver, "qede")) 258 goto done; 259 edev = netdev_priv(ndev); 260 261 switch (event) { 262 case NETDEV_CHANGENAME: 263 /* Notify qed of the name change */ 264 if (!edev->ops || !edev->ops->common) 265 goto done; 266 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 267 break; 268 case NETDEV_CHANGEADDR: 269 edev = netdev_priv(ndev); 270 qede_rdma_event_changeaddr(edev); 271 break; 272 } 273 274 done: 275 return NOTIFY_DONE; 276 } 277 278 static struct notifier_block qede_netdev_notifier = { 279 .notifier_call = qede_netdev_event, 280 }; 281 282 static 283 int __init qede_init(void) 284 { 285 int ret; 286 287 pr_info("qede_init: %s\n", version); 288 289 qed_ops = qed_get_eth_ops(); 290 if (!qed_ops) { 291 pr_notice("Failed to get qed ethtool operations\n"); 292 return -EINVAL; 293 } 294 295 /* Must register notifier before pci ops, since we might miss 296 * interface rename after pci probe and netdev registration. 297 */ 298 ret = register_netdevice_notifier(&qede_netdev_notifier); 299 if (ret) { 300 pr_notice("Failed to register netdevice_notifier\n"); 301 qed_put_eth_ops(); 302 return -EINVAL; 303 } 304 305 ret = pci_register_driver(&qede_pci_driver); 306 if (ret) { 307 pr_notice("Failed to register driver\n"); 308 unregister_netdevice_notifier(&qede_netdev_notifier); 309 qed_put_eth_ops(); 310 return -EINVAL; 311 } 312 313 return 0; 314 } 315 316 static void __exit qede_cleanup(void) 317 { 318 if (debug & QED_LOG_INFO_MASK) 319 pr_info("qede_cleanup called\n"); 320 321 unregister_netdevice_notifier(&qede_netdev_notifier); 322 pci_unregister_driver(&qede_pci_driver); 323 qed_put_eth_ops(); 324 } 325 326 module_init(qede_init); 327 module_exit(qede_cleanup); 328 329 static int qede_open(struct net_device *ndev); 330 static int qede_close(struct net_device *ndev); 331 332 void qede_fill_by_demand_stats(struct qede_dev *edev) 333 { 334 struct qede_stats_common *p_common = &edev->stats.common; 335 struct qed_eth_stats stats; 336 337 edev->ops->get_vport_stats(edev->cdev, &stats); 338 339 p_common->no_buff_discards = stats.common.no_buff_discards; 340 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 341 p_common->ttl0_discard = stats.common.ttl0_discard; 342 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 343 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 344 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 345 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 346 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 347 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 348 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 349 p_common->mac_filter_discards = stats.common.mac_filter_discards; 350 p_common->gft_filter_drop = stats.common.gft_filter_drop; 351 352 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 353 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 354 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 355 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 356 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 357 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 358 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 359 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 360 p_common->coalesced_events = stats.common.tpa_coalesced_events; 361 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 362 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 363 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 364 365 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 366 p_common->rx_65_to_127_byte_packets = 367 stats.common.rx_65_to_127_byte_packets; 368 p_common->rx_128_to_255_byte_packets = 369 stats.common.rx_128_to_255_byte_packets; 370 p_common->rx_256_to_511_byte_packets = 371 stats.common.rx_256_to_511_byte_packets; 372 p_common->rx_512_to_1023_byte_packets = 373 stats.common.rx_512_to_1023_byte_packets; 374 p_common->rx_1024_to_1518_byte_packets = 375 stats.common.rx_1024_to_1518_byte_packets; 376 p_common->rx_crc_errors = stats.common.rx_crc_errors; 377 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 378 p_common->rx_pause_frames = stats.common.rx_pause_frames; 379 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 380 p_common->rx_align_errors = stats.common.rx_align_errors; 381 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 382 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 383 p_common->rx_jabbers = stats.common.rx_jabbers; 384 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 385 p_common->rx_fragments = stats.common.rx_fragments; 386 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 387 p_common->tx_65_to_127_byte_packets = 388 stats.common.tx_65_to_127_byte_packets; 389 p_common->tx_128_to_255_byte_packets = 390 stats.common.tx_128_to_255_byte_packets; 391 p_common->tx_256_to_511_byte_packets = 392 stats.common.tx_256_to_511_byte_packets; 393 p_common->tx_512_to_1023_byte_packets = 394 stats.common.tx_512_to_1023_byte_packets; 395 p_common->tx_1024_to_1518_byte_packets = 396 stats.common.tx_1024_to_1518_byte_packets; 397 p_common->tx_pause_frames = stats.common.tx_pause_frames; 398 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 399 p_common->brb_truncates = stats.common.brb_truncates; 400 p_common->brb_discards = stats.common.brb_discards; 401 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 402 p_common->link_change_count = stats.common.link_change_count; 403 404 if (QEDE_IS_BB(edev)) { 405 struct qede_stats_bb *p_bb = &edev->stats.bb; 406 407 p_bb->rx_1519_to_1522_byte_packets = 408 stats.bb.rx_1519_to_1522_byte_packets; 409 p_bb->rx_1519_to_2047_byte_packets = 410 stats.bb.rx_1519_to_2047_byte_packets; 411 p_bb->rx_2048_to_4095_byte_packets = 412 stats.bb.rx_2048_to_4095_byte_packets; 413 p_bb->rx_4096_to_9216_byte_packets = 414 stats.bb.rx_4096_to_9216_byte_packets; 415 p_bb->rx_9217_to_16383_byte_packets = 416 stats.bb.rx_9217_to_16383_byte_packets; 417 p_bb->tx_1519_to_2047_byte_packets = 418 stats.bb.tx_1519_to_2047_byte_packets; 419 p_bb->tx_2048_to_4095_byte_packets = 420 stats.bb.tx_2048_to_4095_byte_packets; 421 p_bb->tx_4096_to_9216_byte_packets = 422 stats.bb.tx_4096_to_9216_byte_packets; 423 p_bb->tx_9217_to_16383_byte_packets = 424 stats.bb.tx_9217_to_16383_byte_packets; 425 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 426 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 427 } else { 428 struct qede_stats_ah *p_ah = &edev->stats.ah; 429 430 p_ah->rx_1519_to_max_byte_packets = 431 stats.ah.rx_1519_to_max_byte_packets; 432 p_ah->tx_1519_to_max_byte_packets = 433 stats.ah.tx_1519_to_max_byte_packets; 434 } 435 } 436 437 static void qede_get_stats64(struct net_device *dev, 438 struct rtnl_link_stats64 *stats) 439 { 440 struct qede_dev *edev = netdev_priv(dev); 441 struct qede_stats_common *p_common; 442 443 qede_fill_by_demand_stats(edev); 444 p_common = &edev->stats.common; 445 446 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 447 p_common->rx_bcast_pkts; 448 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 449 p_common->tx_bcast_pkts; 450 451 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 452 p_common->rx_bcast_bytes; 453 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 454 p_common->tx_bcast_bytes; 455 456 stats->tx_errors = p_common->tx_err_drop_pkts; 457 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 458 459 stats->rx_fifo_errors = p_common->no_buff_discards; 460 461 if (QEDE_IS_BB(edev)) 462 stats->collisions = edev->stats.bb.tx_total_collisions; 463 stats->rx_crc_errors = p_common->rx_crc_errors; 464 stats->rx_frame_errors = p_common->rx_align_errors; 465 } 466 467 #ifdef CONFIG_QED_SRIOV 468 static int qede_get_vf_config(struct net_device *dev, int vfidx, 469 struct ifla_vf_info *ivi) 470 { 471 struct qede_dev *edev = netdev_priv(dev); 472 473 if (!edev->ops) 474 return -EINVAL; 475 476 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 477 } 478 479 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 480 int min_tx_rate, int max_tx_rate) 481 { 482 struct qede_dev *edev = netdev_priv(dev); 483 484 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 485 max_tx_rate); 486 } 487 488 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 489 { 490 struct qede_dev *edev = netdev_priv(dev); 491 492 if (!edev->ops) 493 return -EINVAL; 494 495 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 496 } 497 498 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 499 int link_state) 500 { 501 struct qede_dev *edev = netdev_priv(dev); 502 503 if (!edev->ops) 504 return -EINVAL; 505 506 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 507 } 508 509 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 510 { 511 struct qede_dev *edev = netdev_priv(dev); 512 513 if (!edev->ops) 514 return -EINVAL; 515 516 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 517 } 518 #endif 519 520 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 521 { 522 struct qede_dev *edev = netdev_priv(dev); 523 524 if (!netif_running(dev)) 525 return -EAGAIN; 526 527 switch (cmd) { 528 case SIOCSHWTSTAMP: 529 return qede_ptp_hw_ts(edev, ifr); 530 default: 531 DP_VERBOSE(edev, QED_MSG_DEBUG, 532 "default IOCTL cmd 0x%x\n", cmd); 533 return -EOPNOTSUPP; 534 } 535 536 return 0; 537 } 538 539 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 540 { 541 struct qede_dev *edev = netdev_priv(ndev); 542 int cos, count, offset; 543 544 if (num_tc > edev->dev_info.num_tc) 545 return -EINVAL; 546 547 netdev_reset_tc(ndev); 548 netdev_set_num_tc(ndev, num_tc); 549 550 for_each_cos_in_txq(edev, cos) { 551 count = QEDE_TSS_COUNT(edev); 552 offset = cos * QEDE_TSS_COUNT(edev); 553 netdev_set_tc_queue(ndev, cos, count, offset); 554 } 555 556 return 0; 557 } 558 559 static int 560 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f, 561 __be16 proto) 562 { 563 switch (f->command) { 564 case TC_CLSFLOWER_REPLACE: 565 return qede_add_tc_flower_fltr(edev, proto, f); 566 case TC_CLSFLOWER_DESTROY: 567 return qede_delete_flow_filter(edev, f->cookie); 568 default: 569 return -EOPNOTSUPP; 570 } 571 } 572 573 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 574 void *cb_priv) 575 { 576 struct tc_cls_flower_offload *f; 577 struct qede_dev *edev = cb_priv; 578 579 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 580 return -EOPNOTSUPP; 581 582 switch (type) { 583 case TC_SETUP_CLSFLOWER: 584 f = type_data; 585 return qede_set_flower(edev, f, f->common.protocol); 586 default: 587 return -EOPNOTSUPP; 588 } 589 } 590 591 static int qede_setup_tc_block(struct qede_dev *edev, 592 struct tc_block_offload *f) 593 { 594 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 595 return -EOPNOTSUPP; 596 597 switch (f->command) { 598 case TC_BLOCK_BIND: 599 return tcf_block_cb_register(f->block, 600 qede_setup_tc_block_cb, 601 edev, edev, f->extack); 602 case TC_BLOCK_UNBIND: 603 tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev); 604 return 0; 605 default: 606 return -EOPNOTSUPP; 607 } 608 } 609 610 static int 611 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 612 void *type_data) 613 { 614 struct qede_dev *edev = netdev_priv(dev); 615 struct tc_mqprio_qopt *mqprio; 616 617 switch (type) { 618 case TC_SETUP_BLOCK: 619 return qede_setup_tc_block(edev, type_data); 620 case TC_SETUP_QDISC_MQPRIO: 621 mqprio = type_data; 622 623 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 624 return qede_setup_tc(dev, mqprio->num_tc); 625 default: 626 return -EOPNOTSUPP; 627 } 628 } 629 630 static const struct net_device_ops qede_netdev_ops = { 631 .ndo_open = qede_open, 632 .ndo_stop = qede_close, 633 .ndo_start_xmit = qede_start_xmit, 634 .ndo_select_queue = qede_select_queue, 635 .ndo_set_rx_mode = qede_set_rx_mode, 636 .ndo_set_mac_address = qede_set_mac_addr, 637 .ndo_validate_addr = eth_validate_addr, 638 .ndo_change_mtu = qede_change_mtu, 639 .ndo_do_ioctl = qede_ioctl, 640 #ifdef CONFIG_QED_SRIOV 641 .ndo_set_vf_mac = qede_set_vf_mac, 642 .ndo_set_vf_vlan = qede_set_vf_vlan, 643 .ndo_set_vf_trust = qede_set_vf_trust, 644 #endif 645 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 646 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 647 .ndo_fix_features = qede_fix_features, 648 .ndo_set_features = qede_set_features, 649 .ndo_get_stats64 = qede_get_stats64, 650 #ifdef CONFIG_QED_SRIOV 651 .ndo_set_vf_link_state = qede_set_vf_link_state, 652 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 653 .ndo_get_vf_config = qede_get_vf_config, 654 .ndo_set_vf_rate = qede_set_vf_rate, 655 #endif 656 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 657 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 658 .ndo_features_check = qede_features_check, 659 .ndo_bpf = qede_xdp, 660 #ifdef CONFIG_RFS_ACCEL 661 .ndo_rx_flow_steer = qede_rx_flow_steer, 662 #endif 663 .ndo_setup_tc = qede_setup_tc_offload, 664 }; 665 666 static const struct net_device_ops qede_netdev_vf_ops = { 667 .ndo_open = qede_open, 668 .ndo_stop = qede_close, 669 .ndo_start_xmit = qede_start_xmit, 670 .ndo_select_queue = qede_select_queue, 671 .ndo_set_rx_mode = qede_set_rx_mode, 672 .ndo_set_mac_address = qede_set_mac_addr, 673 .ndo_validate_addr = eth_validate_addr, 674 .ndo_change_mtu = qede_change_mtu, 675 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 676 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 677 .ndo_fix_features = qede_fix_features, 678 .ndo_set_features = qede_set_features, 679 .ndo_get_stats64 = qede_get_stats64, 680 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 681 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 682 .ndo_features_check = qede_features_check, 683 }; 684 685 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 686 .ndo_open = qede_open, 687 .ndo_stop = qede_close, 688 .ndo_start_xmit = qede_start_xmit, 689 .ndo_select_queue = qede_select_queue, 690 .ndo_set_rx_mode = qede_set_rx_mode, 691 .ndo_set_mac_address = qede_set_mac_addr, 692 .ndo_validate_addr = eth_validate_addr, 693 .ndo_change_mtu = qede_change_mtu, 694 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 695 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 696 .ndo_fix_features = qede_fix_features, 697 .ndo_set_features = qede_set_features, 698 .ndo_get_stats64 = qede_get_stats64, 699 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 700 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 701 .ndo_features_check = qede_features_check, 702 .ndo_bpf = qede_xdp, 703 }; 704 705 /* ------------------------------------------------------------------------- 706 * START OF PROBE / REMOVE 707 * ------------------------------------------------------------------------- 708 */ 709 710 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 711 struct pci_dev *pdev, 712 struct qed_dev_eth_info *info, 713 u32 dp_module, u8 dp_level) 714 { 715 struct net_device *ndev; 716 struct qede_dev *edev; 717 718 ndev = alloc_etherdev_mqs(sizeof(*edev), 719 info->num_queues * info->num_tc, 720 info->num_queues); 721 if (!ndev) { 722 pr_err("etherdev allocation failed\n"); 723 return NULL; 724 } 725 726 edev = netdev_priv(ndev); 727 edev->ndev = ndev; 728 edev->cdev = cdev; 729 edev->pdev = pdev; 730 edev->dp_module = dp_module; 731 edev->dp_level = dp_level; 732 edev->ops = qed_ops; 733 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 734 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 735 736 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 737 info->num_queues, info->num_queues); 738 739 SET_NETDEV_DEV(ndev, &pdev->dev); 740 741 memset(&edev->stats, 0, sizeof(edev->stats)); 742 memcpy(&edev->dev_info, info, sizeof(*info)); 743 744 /* As ethtool doesn't have the ability to show WoL behavior as 745 * 'default', if device supports it declare it's enabled. 746 */ 747 if (edev->dev_info.common.wol_support) 748 edev->wol_enabled = true; 749 750 INIT_LIST_HEAD(&edev->vlan_list); 751 752 return edev; 753 } 754 755 static void qede_init_ndev(struct qede_dev *edev) 756 { 757 struct net_device *ndev = edev->ndev; 758 struct pci_dev *pdev = edev->pdev; 759 bool udp_tunnel_enable = false; 760 netdev_features_t hw_features; 761 762 pci_set_drvdata(pdev, ndev); 763 764 ndev->mem_start = edev->dev_info.common.pci_mem_start; 765 ndev->base_addr = ndev->mem_start; 766 ndev->mem_end = edev->dev_info.common.pci_mem_end; 767 ndev->irq = edev->dev_info.common.pci_irq; 768 769 ndev->watchdog_timeo = TX_TIMEOUT; 770 771 if (IS_VF(edev)) { 772 if (edev->dev_info.xdp_supported) 773 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 774 else 775 ndev->netdev_ops = &qede_netdev_vf_ops; 776 } else { 777 ndev->netdev_ops = &qede_netdev_ops; 778 } 779 780 qede_set_ethtool_ops(ndev); 781 782 ndev->priv_flags |= IFF_UNICAST_FLT; 783 784 /* user-changeble features */ 785 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 786 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 787 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 788 789 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 790 hw_features |= NETIF_F_NTUPLE; 791 792 if (edev->dev_info.common.vxlan_enable || 793 edev->dev_info.common.geneve_enable) 794 udp_tunnel_enable = true; 795 796 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 797 hw_features |= NETIF_F_TSO_ECN; 798 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 799 NETIF_F_SG | NETIF_F_TSO | 800 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 801 NETIF_F_RXCSUM; 802 } 803 804 if (udp_tunnel_enable) { 805 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 806 NETIF_F_GSO_UDP_TUNNEL_CSUM); 807 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 808 NETIF_F_GSO_UDP_TUNNEL_CSUM); 809 } 810 811 if (edev->dev_info.common.gre_enable) { 812 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 813 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 814 NETIF_F_GSO_GRE_CSUM); 815 } 816 817 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 818 NETIF_F_HIGHDMA; 819 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 820 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 821 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 822 823 ndev->hw_features = hw_features; 824 825 /* MTU range: 46 - 9600 */ 826 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 827 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 828 829 /* Set network device HW mac */ 830 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 831 832 ndev->mtu = edev->dev_info.common.mtu; 833 } 834 835 /* This function converts from 32b param to two params of level and module 836 * Input 32b decoding: 837 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 838 * 'happy' flow, e.g. memory allocation failed. 839 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 840 * and provide important parameters. 841 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 842 * module. VERBOSE prints are for tracking the specific flow in low level. 843 * 844 * Notice that the level should be that of the lowest required logs. 845 */ 846 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 847 { 848 *p_dp_level = QED_LEVEL_NOTICE; 849 *p_dp_module = 0; 850 851 if (debug & QED_LOG_VERBOSE_MASK) { 852 *p_dp_level = QED_LEVEL_VERBOSE; 853 *p_dp_module = (debug & 0x3FFFFFFF); 854 } else if (debug & QED_LOG_INFO_MASK) { 855 *p_dp_level = QED_LEVEL_INFO; 856 } else if (debug & QED_LOG_NOTICE_MASK) { 857 *p_dp_level = QED_LEVEL_NOTICE; 858 } 859 } 860 861 static void qede_free_fp_array(struct qede_dev *edev) 862 { 863 if (edev->fp_array) { 864 struct qede_fastpath *fp; 865 int i; 866 867 for_each_queue(i) { 868 fp = &edev->fp_array[i]; 869 870 kfree(fp->sb_info); 871 /* Handle mem alloc failure case where qede_init_fp 872 * didn't register xdp_rxq_info yet. 873 * Implicit only (fp->type & QEDE_FASTPATH_RX) 874 */ 875 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 876 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 877 kfree(fp->rxq); 878 kfree(fp->xdp_tx); 879 kfree(fp->txq); 880 } 881 kfree(edev->fp_array); 882 } 883 884 edev->num_queues = 0; 885 edev->fp_num_tx = 0; 886 edev->fp_num_rx = 0; 887 } 888 889 static int qede_alloc_fp_array(struct qede_dev *edev) 890 { 891 u8 fp_combined, fp_rx = edev->fp_num_rx; 892 struct qede_fastpath *fp; 893 int i; 894 895 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 896 sizeof(*edev->fp_array), GFP_KERNEL); 897 if (!edev->fp_array) { 898 DP_NOTICE(edev, "fp array allocation failed\n"); 899 goto err; 900 } 901 902 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 903 904 /* Allocate the FP elements for Rx queues followed by combined and then 905 * the Tx. This ordering should be maintained so that the respective 906 * queues (Rx or Tx) will be together in the fastpath array and the 907 * associated ids will be sequential. 908 */ 909 for_each_queue(i) { 910 fp = &edev->fp_array[i]; 911 912 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 913 if (!fp->sb_info) { 914 DP_NOTICE(edev, "sb info struct allocation failed\n"); 915 goto err; 916 } 917 918 if (fp_rx) { 919 fp->type = QEDE_FASTPATH_RX; 920 fp_rx--; 921 } else if (fp_combined) { 922 fp->type = QEDE_FASTPATH_COMBINED; 923 fp_combined--; 924 } else { 925 fp->type = QEDE_FASTPATH_TX; 926 } 927 928 if (fp->type & QEDE_FASTPATH_TX) { 929 fp->txq = kcalloc(edev->dev_info.num_tc, 930 sizeof(*fp->txq), GFP_KERNEL); 931 if (!fp->txq) 932 goto err; 933 } 934 935 if (fp->type & QEDE_FASTPATH_RX) { 936 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 937 if (!fp->rxq) 938 goto err; 939 940 if (edev->xdp_prog) { 941 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 942 GFP_KERNEL); 943 if (!fp->xdp_tx) 944 goto err; 945 fp->type |= QEDE_FASTPATH_XDP; 946 } 947 } 948 } 949 950 return 0; 951 err: 952 qede_free_fp_array(edev); 953 return -ENOMEM; 954 } 955 956 static void qede_sp_task(struct work_struct *work) 957 { 958 struct qede_dev *edev = container_of(work, struct qede_dev, 959 sp_task.work); 960 961 __qede_lock(edev); 962 963 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 964 if (edev->state == QEDE_STATE_OPEN) 965 qede_config_rx_mode(edev->ndev); 966 967 #ifdef CONFIG_RFS_ACCEL 968 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 969 if (edev->state == QEDE_STATE_OPEN) 970 qede_process_arfs_filters(edev, false); 971 } 972 #endif 973 __qede_unlock(edev); 974 } 975 976 static void qede_update_pf_params(struct qed_dev *cdev) 977 { 978 struct qed_pf_params pf_params; 979 u16 num_cons; 980 981 /* 64 rx + 64 tx + 64 XDP */ 982 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 983 984 /* 1 rx + 1 xdp + max tx cos */ 985 num_cons = QED_MIN_L2_CONS; 986 987 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 988 989 /* Same for VFs - make sure they'll have sufficient connections 990 * to support XDP Tx queues. 991 */ 992 pf_params.eth_pf_params.num_vf_cons = 48; 993 994 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 995 qed_ops->common->update_pf_params(cdev, &pf_params); 996 } 997 998 #define QEDE_FW_VER_STR_SIZE 80 999 1000 static void qede_log_probe(struct qede_dev *edev) 1001 { 1002 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1003 u8 buf[QEDE_FW_VER_STR_SIZE]; 1004 size_t left_size; 1005 1006 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1007 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1008 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1009 p_dev_info->fw_eng, 1010 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1011 QED_MFW_VERSION_3_OFFSET, 1012 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1013 QED_MFW_VERSION_2_OFFSET, 1014 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1015 QED_MFW_VERSION_1_OFFSET, 1016 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1017 QED_MFW_VERSION_0_OFFSET); 1018 1019 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1020 if (p_dev_info->mbi_version && left_size) 1021 snprintf(buf + strlen(buf), left_size, 1022 " [MBI %d.%d.%d]", 1023 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1024 QED_MBI_VERSION_2_OFFSET, 1025 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1026 QED_MBI_VERSION_1_OFFSET, 1027 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1028 QED_MBI_VERSION_0_OFFSET); 1029 1030 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1031 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1032 buf, edev->ndev->name); 1033 } 1034 1035 enum qede_probe_mode { 1036 QEDE_PROBE_NORMAL, 1037 }; 1038 1039 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1040 bool is_vf, enum qede_probe_mode mode) 1041 { 1042 struct qed_probe_params probe_params; 1043 struct qed_slowpath_params sp_params; 1044 struct qed_dev_eth_info dev_info; 1045 struct qede_dev *edev; 1046 struct qed_dev *cdev; 1047 int rc; 1048 1049 if (unlikely(dp_level & QED_LEVEL_INFO)) 1050 pr_notice("Starting qede probe\n"); 1051 1052 memset(&probe_params, 0, sizeof(probe_params)); 1053 probe_params.protocol = QED_PROTOCOL_ETH; 1054 probe_params.dp_module = dp_module; 1055 probe_params.dp_level = dp_level; 1056 probe_params.is_vf = is_vf; 1057 cdev = qed_ops->common->probe(pdev, &probe_params); 1058 if (!cdev) { 1059 rc = -ENODEV; 1060 goto err0; 1061 } 1062 1063 qede_update_pf_params(cdev); 1064 1065 /* Start the Slowpath-process */ 1066 memset(&sp_params, 0, sizeof(sp_params)); 1067 sp_params.int_mode = QED_INT_MODE_MSIX; 1068 sp_params.drv_major = QEDE_MAJOR_VERSION; 1069 sp_params.drv_minor = QEDE_MINOR_VERSION; 1070 sp_params.drv_rev = QEDE_REVISION_VERSION; 1071 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1072 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1073 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1074 if (rc) { 1075 pr_notice("Cannot start slowpath\n"); 1076 goto err1; 1077 } 1078 1079 /* Learn information crucial for qede to progress */ 1080 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1081 if (rc) 1082 goto err2; 1083 1084 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1085 dp_level); 1086 if (!edev) { 1087 rc = -ENOMEM; 1088 goto err2; 1089 } 1090 1091 if (is_vf) 1092 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1093 1094 qede_init_ndev(edev); 1095 1096 rc = qede_rdma_dev_add(edev); 1097 if (rc) 1098 goto err3; 1099 1100 /* Prepare the lock prior to the registration of the netdev, 1101 * as once it's registered we might reach flows requiring it 1102 * [it's even possible to reach a flow needing it directly 1103 * from there, although it's unlikely]. 1104 */ 1105 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1106 mutex_init(&edev->qede_lock); 1107 rc = register_netdev(edev->ndev); 1108 if (rc) { 1109 DP_NOTICE(edev, "Cannot register net-device\n"); 1110 goto err4; 1111 } 1112 1113 edev->ops->common->set_name(cdev, edev->ndev->name); 1114 1115 /* PTP not supported on VFs */ 1116 if (!is_vf) 1117 qede_ptp_enable(edev, true); 1118 1119 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1120 1121 #ifdef CONFIG_DCB 1122 if (!IS_VF(edev)) 1123 qede_set_dcbnl_ops(edev->ndev); 1124 #endif 1125 1126 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1127 1128 qede_log_probe(edev); 1129 return 0; 1130 1131 err4: 1132 qede_rdma_dev_remove(edev); 1133 err3: 1134 free_netdev(edev->ndev); 1135 err2: 1136 qed_ops->common->slowpath_stop(cdev); 1137 err1: 1138 qed_ops->common->remove(cdev); 1139 err0: 1140 return rc; 1141 } 1142 1143 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1144 { 1145 bool is_vf = false; 1146 u32 dp_module = 0; 1147 u8 dp_level = 0; 1148 1149 switch ((enum qede_pci_private)id->driver_data) { 1150 case QEDE_PRIVATE_VF: 1151 if (debug & QED_LOG_VERBOSE_MASK) 1152 dev_err(&pdev->dev, "Probing a VF\n"); 1153 is_vf = true; 1154 break; 1155 default: 1156 if (debug & QED_LOG_VERBOSE_MASK) 1157 dev_err(&pdev->dev, "Probing a PF\n"); 1158 } 1159 1160 qede_config_debug(debug, &dp_module, &dp_level); 1161 1162 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1163 QEDE_PROBE_NORMAL); 1164 } 1165 1166 enum qede_remove_mode { 1167 QEDE_REMOVE_NORMAL, 1168 }; 1169 1170 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1171 { 1172 struct net_device *ndev = pci_get_drvdata(pdev); 1173 struct qede_dev *edev = netdev_priv(ndev); 1174 struct qed_dev *cdev = edev->cdev; 1175 1176 DP_INFO(edev, "Starting qede_remove\n"); 1177 1178 qede_rdma_dev_remove(edev); 1179 unregister_netdev(ndev); 1180 cancel_delayed_work_sync(&edev->sp_task); 1181 1182 qede_ptp_disable(edev); 1183 1184 edev->ops->common->set_power_state(cdev, PCI_D0); 1185 1186 pci_set_drvdata(pdev, NULL); 1187 1188 /* Use global ops since we've freed edev */ 1189 qed_ops->common->slowpath_stop(cdev); 1190 if (system_state == SYSTEM_POWER_OFF) 1191 return; 1192 qed_ops->common->remove(cdev); 1193 1194 /* Since this can happen out-of-sync with other flows, 1195 * don't release the netdevice until after slowpath stop 1196 * has been called to guarantee various other contexts 1197 * [e.g., QED register callbacks] won't break anything when 1198 * accessing the netdevice. 1199 */ 1200 free_netdev(ndev); 1201 1202 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1203 } 1204 1205 static void qede_remove(struct pci_dev *pdev) 1206 { 1207 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1208 } 1209 1210 static void qede_shutdown(struct pci_dev *pdev) 1211 { 1212 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1213 } 1214 1215 /* ------------------------------------------------------------------------- 1216 * START OF LOAD / UNLOAD 1217 * ------------------------------------------------------------------------- 1218 */ 1219 1220 static int qede_set_num_queues(struct qede_dev *edev) 1221 { 1222 int rc; 1223 u16 rss_num; 1224 1225 /* Setup queues according to possible resources*/ 1226 if (edev->req_queues) 1227 rss_num = edev->req_queues; 1228 else 1229 rss_num = netif_get_num_default_rss_queues() * 1230 edev->dev_info.common.num_hwfns; 1231 1232 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1233 1234 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1235 if (rc > 0) { 1236 /* Managed to request interrupts for our queues */ 1237 edev->num_queues = rc; 1238 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1239 QEDE_QUEUE_CNT(edev), rss_num); 1240 rc = 0; 1241 } 1242 1243 edev->fp_num_tx = edev->req_num_tx; 1244 edev->fp_num_rx = edev->req_num_rx; 1245 1246 return rc; 1247 } 1248 1249 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1250 u16 sb_id) 1251 { 1252 if (sb_info->sb_virt) { 1253 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id); 1254 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1255 (void *)sb_info->sb_virt, sb_info->sb_phys); 1256 memset(sb_info, 0, sizeof(*sb_info)); 1257 } 1258 } 1259 1260 /* This function allocates fast-path status block memory */ 1261 static int qede_alloc_mem_sb(struct qede_dev *edev, 1262 struct qed_sb_info *sb_info, u16 sb_id) 1263 { 1264 struct status_block_e4 *sb_virt; 1265 dma_addr_t sb_phys; 1266 int rc; 1267 1268 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1269 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1270 if (!sb_virt) { 1271 DP_ERR(edev, "Status block allocation failed\n"); 1272 return -ENOMEM; 1273 } 1274 1275 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1276 sb_virt, sb_phys, sb_id, 1277 QED_SB_TYPE_L2_QUEUE); 1278 if (rc) { 1279 DP_ERR(edev, "Status block initialization failed\n"); 1280 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1281 sb_virt, sb_phys); 1282 return rc; 1283 } 1284 1285 return 0; 1286 } 1287 1288 static void qede_free_rx_buffers(struct qede_dev *edev, 1289 struct qede_rx_queue *rxq) 1290 { 1291 u16 i; 1292 1293 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1294 struct sw_rx_data *rx_buf; 1295 struct page *data; 1296 1297 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1298 data = rx_buf->data; 1299 1300 dma_unmap_page(&edev->pdev->dev, 1301 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1302 1303 rx_buf->data = NULL; 1304 __free_page(data); 1305 } 1306 } 1307 1308 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1309 { 1310 /* Free rx buffers */ 1311 qede_free_rx_buffers(edev, rxq); 1312 1313 /* Free the parallel SW ring */ 1314 kfree(rxq->sw_rx_ring); 1315 1316 /* Free the real RQ ring used by FW */ 1317 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1318 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1319 } 1320 1321 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1322 { 1323 int i; 1324 1325 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1326 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1327 1328 tpa_info->state = QEDE_AGG_STATE_NONE; 1329 } 1330 } 1331 1332 /* This function allocates all memory needed per Rx queue */ 1333 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1334 { 1335 int i, rc, size; 1336 1337 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1338 1339 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1340 1341 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1342 size = rxq->rx_headroom + 1343 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1344 1345 /* Make sure that the headroom and payload fit in a single page */ 1346 if (rxq->rx_buf_size + size > PAGE_SIZE) 1347 rxq->rx_buf_size = PAGE_SIZE - size; 1348 1349 /* Segment size to spilt a page in multiple equal parts , 1350 * unless XDP is used in which case we'd use the entire page. 1351 */ 1352 if (!edev->xdp_prog) { 1353 size = size + rxq->rx_buf_size; 1354 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1355 } else { 1356 rxq->rx_buf_seg_size = PAGE_SIZE; 1357 } 1358 1359 /* Allocate the parallel driver ring for Rx buffers */ 1360 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1361 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1362 if (!rxq->sw_rx_ring) { 1363 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1364 rc = -ENOMEM; 1365 goto err; 1366 } 1367 1368 /* Allocate FW Rx ring */ 1369 rc = edev->ops->common->chain_alloc(edev->cdev, 1370 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1371 QED_CHAIN_MODE_NEXT_PTR, 1372 QED_CHAIN_CNT_TYPE_U16, 1373 RX_RING_SIZE, 1374 sizeof(struct eth_rx_bd), 1375 &rxq->rx_bd_ring, NULL); 1376 if (rc) 1377 goto err; 1378 1379 /* Allocate FW completion ring */ 1380 rc = edev->ops->common->chain_alloc(edev->cdev, 1381 QED_CHAIN_USE_TO_CONSUME, 1382 QED_CHAIN_MODE_PBL, 1383 QED_CHAIN_CNT_TYPE_U16, 1384 RX_RING_SIZE, 1385 sizeof(union eth_rx_cqe), 1386 &rxq->rx_comp_ring, NULL); 1387 if (rc) 1388 goto err; 1389 1390 /* Allocate buffers for the Rx ring */ 1391 rxq->filled_buffers = 0; 1392 for (i = 0; i < rxq->num_rx_buffers; i++) { 1393 rc = qede_alloc_rx_buffer(rxq, false); 1394 if (rc) { 1395 DP_ERR(edev, 1396 "Rx buffers allocation failed at index %d\n", i); 1397 goto err; 1398 } 1399 } 1400 1401 if (!edev->gro_disable) 1402 qede_set_tpa_param(rxq); 1403 err: 1404 return rc; 1405 } 1406 1407 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1408 { 1409 /* Free the parallel SW ring */ 1410 if (txq->is_xdp) 1411 kfree(txq->sw_tx_ring.xdp); 1412 else 1413 kfree(txq->sw_tx_ring.skbs); 1414 1415 /* Free the real RQ ring used by FW */ 1416 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1417 } 1418 1419 /* This function allocates all memory needed per Tx queue */ 1420 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1421 { 1422 union eth_tx_bd_types *p_virt; 1423 int size, rc; 1424 1425 txq->num_tx_buffers = edev->q_num_tx_buffers; 1426 1427 /* Allocate the parallel driver ring for Tx buffers */ 1428 if (txq->is_xdp) { 1429 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1430 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1431 if (!txq->sw_tx_ring.xdp) 1432 goto err; 1433 } else { 1434 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1435 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1436 if (!txq->sw_tx_ring.skbs) 1437 goto err; 1438 } 1439 1440 rc = edev->ops->common->chain_alloc(edev->cdev, 1441 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1442 QED_CHAIN_MODE_PBL, 1443 QED_CHAIN_CNT_TYPE_U16, 1444 txq->num_tx_buffers, 1445 sizeof(*p_virt), 1446 &txq->tx_pbl, NULL); 1447 if (rc) 1448 goto err; 1449 1450 return 0; 1451 1452 err: 1453 qede_free_mem_txq(edev, txq); 1454 return -ENOMEM; 1455 } 1456 1457 /* This function frees all memory of a single fp */ 1458 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1459 { 1460 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1461 1462 if (fp->type & QEDE_FASTPATH_RX) 1463 qede_free_mem_rxq(edev, fp->rxq); 1464 1465 if (fp->type & QEDE_FASTPATH_XDP) 1466 qede_free_mem_txq(edev, fp->xdp_tx); 1467 1468 if (fp->type & QEDE_FASTPATH_TX) { 1469 int cos; 1470 1471 for_each_cos_in_txq(edev, cos) 1472 qede_free_mem_txq(edev, &fp->txq[cos]); 1473 } 1474 } 1475 1476 /* This function allocates all memory needed for a single fp (i.e. an entity 1477 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1478 */ 1479 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1480 { 1481 int rc = 0; 1482 1483 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1484 if (rc) 1485 goto out; 1486 1487 if (fp->type & QEDE_FASTPATH_RX) { 1488 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1489 if (rc) 1490 goto out; 1491 } 1492 1493 if (fp->type & QEDE_FASTPATH_XDP) { 1494 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1495 if (rc) 1496 goto out; 1497 } 1498 1499 if (fp->type & QEDE_FASTPATH_TX) { 1500 int cos; 1501 1502 for_each_cos_in_txq(edev, cos) { 1503 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1504 if (rc) 1505 goto out; 1506 } 1507 } 1508 1509 out: 1510 return rc; 1511 } 1512 1513 static void qede_free_mem_load(struct qede_dev *edev) 1514 { 1515 int i; 1516 1517 for_each_queue(i) { 1518 struct qede_fastpath *fp = &edev->fp_array[i]; 1519 1520 qede_free_mem_fp(edev, fp); 1521 } 1522 } 1523 1524 /* This function allocates all qede memory at NIC load. */ 1525 static int qede_alloc_mem_load(struct qede_dev *edev) 1526 { 1527 int rc = 0, queue_id; 1528 1529 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1530 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1531 1532 rc = qede_alloc_mem_fp(edev, fp); 1533 if (rc) { 1534 DP_ERR(edev, 1535 "Failed to allocate memory for fastpath - rss id = %d\n", 1536 queue_id); 1537 qede_free_mem_load(edev); 1538 return rc; 1539 } 1540 } 1541 1542 return 0; 1543 } 1544 1545 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1546 static void qede_init_fp(struct qede_dev *edev) 1547 { 1548 int queue_id, rxq_index = 0, txq_index = 0; 1549 struct qede_fastpath *fp; 1550 1551 for_each_queue(queue_id) { 1552 fp = &edev->fp_array[queue_id]; 1553 1554 fp->edev = edev; 1555 fp->id = queue_id; 1556 1557 if (fp->type & QEDE_FASTPATH_XDP) { 1558 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1559 rxq_index); 1560 fp->xdp_tx->is_xdp = 1; 1561 } 1562 1563 if (fp->type & QEDE_FASTPATH_RX) { 1564 fp->rxq->rxq_id = rxq_index++; 1565 1566 /* Determine how to map buffers for this queue */ 1567 if (fp->type & QEDE_FASTPATH_XDP) 1568 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1569 else 1570 fp->rxq->data_direction = DMA_FROM_DEVICE; 1571 fp->rxq->dev = &edev->pdev->dev; 1572 1573 /* Driver have no error path from here */ 1574 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1575 fp->rxq->rxq_id) < 0); 1576 } 1577 1578 if (fp->type & QEDE_FASTPATH_TX) { 1579 int cos; 1580 1581 for_each_cos_in_txq(edev, cos) { 1582 struct qede_tx_queue *txq = &fp->txq[cos]; 1583 u16 ndev_tx_id; 1584 1585 txq->cos = cos; 1586 txq->index = txq_index; 1587 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1588 txq->ndev_txq_id = ndev_tx_id; 1589 1590 if (edev->dev_info.is_legacy) 1591 txq->is_legacy = 1; 1592 txq->dev = &edev->pdev->dev; 1593 } 1594 1595 txq_index++; 1596 } 1597 1598 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1599 edev->ndev->name, queue_id); 1600 } 1601 1602 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1603 } 1604 1605 static int qede_set_real_num_queues(struct qede_dev *edev) 1606 { 1607 int rc = 0; 1608 1609 rc = netif_set_real_num_tx_queues(edev->ndev, 1610 QEDE_TSS_COUNT(edev) * 1611 edev->dev_info.num_tc); 1612 if (rc) { 1613 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1614 return rc; 1615 } 1616 1617 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1618 if (rc) { 1619 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1620 return rc; 1621 } 1622 1623 return 0; 1624 } 1625 1626 static void qede_napi_disable_remove(struct qede_dev *edev) 1627 { 1628 int i; 1629 1630 for_each_queue(i) { 1631 napi_disable(&edev->fp_array[i].napi); 1632 1633 netif_napi_del(&edev->fp_array[i].napi); 1634 } 1635 } 1636 1637 static void qede_napi_add_enable(struct qede_dev *edev) 1638 { 1639 int i; 1640 1641 /* Add NAPI objects */ 1642 for_each_queue(i) { 1643 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1644 qede_poll, NAPI_POLL_WEIGHT); 1645 napi_enable(&edev->fp_array[i].napi); 1646 } 1647 } 1648 1649 static void qede_sync_free_irqs(struct qede_dev *edev) 1650 { 1651 int i; 1652 1653 for (i = 0; i < edev->int_info.used_cnt; i++) { 1654 if (edev->int_info.msix_cnt) { 1655 synchronize_irq(edev->int_info.msix[i].vector); 1656 free_irq(edev->int_info.msix[i].vector, 1657 &edev->fp_array[i]); 1658 } else { 1659 edev->ops->common->simd_handler_clean(edev->cdev, i); 1660 } 1661 } 1662 1663 edev->int_info.used_cnt = 0; 1664 } 1665 1666 static int qede_req_msix_irqs(struct qede_dev *edev) 1667 { 1668 int i, rc; 1669 1670 /* Sanitize number of interrupts == number of prepared RSS queues */ 1671 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1672 DP_ERR(edev, 1673 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1674 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1675 return -EINVAL; 1676 } 1677 1678 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1679 #ifdef CONFIG_RFS_ACCEL 1680 struct qede_fastpath *fp = &edev->fp_array[i]; 1681 1682 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1683 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1684 edev->int_info.msix[i].vector); 1685 if (rc) { 1686 DP_ERR(edev, "Failed to add CPU rmap\n"); 1687 qede_free_arfs(edev); 1688 } 1689 } 1690 #endif 1691 rc = request_irq(edev->int_info.msix[i].vector, 1692 qede_msix_fp_int, 0, edev->fp_array[i].name, 1693 &edev->fp_array[i]); 1694 if (rc) { 1695 DP_ERR(edev, "Request fp %d irq failed\n", i); 1696 qede_sync_free_irqs(edev); 1697 return rc; 1698 } 1699 DP_VERBOSE(edev, NETIF_MSG_INTR, 1700 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1701 edev->fp_array[i].name, i, 1702 &edev->fp_array[i]); 1703 edev->int_info.used_cnt++; 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void qede_simd_fp_handler(void *cookie) 1710 { 1711 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1712 1713 napi_schedule_irqoff(&fp->napi); 1714 } 1715 1716 static int qede_setup_irqs(struct qede_dev *edev) 1717 { 1718 int i, rc = 0; 1719 1720 /* Learn Interrupt configuration */ 1721 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1722 if (rc) 1723 return rc; 1724 1725 if (edev->int_info.msix_cnt) { 1726 rc = qede_req_msix_irqs(edev); 1727 if (rc) 1728 return rc; 1729 edev->ndev->irq = edev->int_info.msix[0].vector; 1730 } else { 1731 const struct qed_common_ops *ops; 1732 1733 /* qed should learn receive the RSS ids and callbacks */ 1734 ops = edev->ops->common; 1735 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1736 ops->simd_handler_config(edev->cdev, 1737 &edev->fp_array[i], i, 1738 qede_simd_fp_handler); 1739 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1740 } 1741 return 0; 1742 } 1743 1744 static int qede_drain_txq(struct qede_dev *edev, 1745 struct qede_tx_queue *txq, bool allow_drain) 1746 { 1747 int rc, cnt = 1000; 1748 1749 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1750 if (!cnt) { 1751 if (allow_drain) { 1752 DP_NOTICE(edev, 1753 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1754 txq->index); 1755 rc = edev->ops->common->drain(edev->cdev); 1756 if (rc) 1757 return rc; 1758 return qede_drain_txq(edev, txq, false); 1759 } 1760 DP_NOTICE(edev, 1761 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1762 txq->index, txq->sw_tx_prod, 1763 txq->sw_tx_cons); 1764 return -ENODEV; 1765 } 1766 cnt--; 1767 usleep_range(1000, 2000); 1768 barrier(); 1769 } 1770 1771 /* FW finished processing, wait for HW to transmit all tx packets */ 1772 usleep_range(1000, 2000); 1773 1774 return 0; 1775 } 1776 1777 static int qede_stop_txq(struct qede_dev *edev, 1778 struct qede_tx_queue *txq, int rss_id) 1779 { 1780 /* delete doorbell from doorbell recovery mechanism */ 1781 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1782 &txq->tx_db); 1783 1784 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1785 } 1786 1787 static int qede_stop_queues(struct qede_dev *edev) 1788 { 1789 struct qed_update_vport_params *vport_update_params; 1790 struct qed_dev *cdev = edev->cdev; 1791 struct qede_fastpath *fp; 1792 int rc, i; 1793 1794 /* Disable the vport */ 1795 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1796 if (!vport_update_params) 1797 return -ENOMEM; 1798 1799 vport_update_params->vport_id = 0; 1800 vport_update_params->update_vport_active_flg = 1; 1801 vport_update_params->vport_active_flg = 0; 1802 vport_update_params->update_rss_flg = 0; 1803 1804 rc = edev->ops->vport_update(cdev, vport_update_params); 1805 vfree(vport_update_params); 1806 1807 if (rc) { 1808 DP_ERR(edev, "Failed to update vport\n"); 1809 return rc; 1810 } 1811 1812 /* Flush Tx queues. If needed, request drain from MCP */ 1813 for_each_queue(i) { 1814 fp = &edev->fp_array[i]; 1815 1816 if (fp->type & QEDE_FASTPATH_TX) { 1817 int cos; 1818 1819 for_each_cos_in_txq(edev, cos) { 1820 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1821 if (rc) 1822 return rc; 1823 } 1824 } 1825 1826 if (fp->type & QEDE_FASTPATH_XDP) { 1827 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1828 if (rc) 1829 return rc; 1830 } 1831 } 1832 1833 /* Stop all Queues in reverse order */ 1834 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1835 fp = &edev->fp_array[i]; 1836 1837 /* Stop the Tx Queue(s) */ 1838 if (fp->type & QEDE_FASTPATH_TX) { 1839 int cos; 1840 1841 for_each_cos_in_txq(edev, cos) { 1842 rc = qede_stop_txq(edev, &fp->txq[cos], i); 1843 if (rc) 1844 return rc; 1845 } 1846 } 1847 1848 /* Stop the Rx Queue */ 1849 if (fp->type & QEDE_FASTPATH_RX) { 1850 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1851 if (rc) { 1852 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1853 return rc; 1854 } 1855 } 1856 1857 /* Stop the XDP forwarding queue */ 1858 if (fp->type & QEDE_FASTPATH_XDP) { 1859 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1860 if (rc) 1861 return rc; 1862 1863 bpf_prog_put(fp->rxq->xdp_prog); 1864 } 1865 } 1866 1867 /* Stop the vport */ 1868 rc = edev->ops->vport_stop(cdev, 0); 1869 if (rc) 1870 DP_ERR(edev, "Failed to stop VPORT\n"); 1871 1872 return rc; 1873 } 1874 1875 static int qede_start_txq(struct qede_dev *edev, 1876 struct qede_fastpath *fp, 1877 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1878 { 1879 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1880 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1881 struct qed_queue_start_common_params params; 1882 struct qed_txq_start_ret_params ret_params; 1883 int rc; 1884 1885 memset(¶ms, 0, sizeof(params)); 1886 memset(&ret_params, 0, sizeof(ret_params)); 1887 1888 /* Let the XDP queue share the queue-zone with one of the regular txq. 1889 * We don't really care about its coalescing. 1890 */ 1891 if (txq->is_xdp) 1892 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1893 else 1894 params.queue_id = txq->index; 1895 1896 params.p_sb = fp->sb_info; 1897 params.sb_idx = sb_idx; 1898 params.tc = txq->cos; 1899 1900 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1901 page_cnt, &ret_params); 1902 if (rc) { 1903 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1904 return rc; 1905 } 1906 1907 txq->doorbell_addr = ret_params.p_doorbell; 1908 txq->handle = ret_params.p_handle; 1909 1910 /* Determine the FW consumer address associated */ 1911 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 1912 1913 /* Prepare the doorbell parameters */ 1914 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 1915 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 1916 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 1917 DQ_XCM_ETH_TX_BD_PROD_CMD); 1918 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 1919 1920 /* register doorbell with doorbell recovery mechanism */ 1921 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 1922 &txq->tx_db, DB_REC_WIDTH_32B, 1923 DB_REC_KERNEL); 1924 1925 return rc; 1926 } 1927 1928 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 1929 { 1930 int vlan_removal_en = 1; 1931 struct qed_dev *cdev = edev->cdev; 1932 struct qed_dev_info *qed_info = &edev->dev_info.common; 1933 struct qed_update_vport_params *vport_update_params; 1934 struct qed_queue_start_common_params q_params; 1935 struct qed_start_vport_params start = {0}; 1936 int rc, i; 1937 1938 if (!edev->num_queues) { 1939 DP_ERR(edev, 1940 "Cannot update V-VPORT as active as there are no Rx queues\n"); 1941 return -EINVAL; 1942 } 1943 1944 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1945 if (!vport_update_params) 1946 return -ENOMEM; 1947 1948 start.handle_ptp_pkts = !!(edev->ptp); 1949 start.gro_enable = !edev->gro_disable; 1950 start.mtu = edev->ndev->mtu; 1951 start.vport_id = 0; 1952 start.drop_ttl0 = true; 1953 start.remove_inner_vlan = vlan_removal_en; 1954 start.clear_stats = clear_stats; 1955 1956 rc = edev->ops->vport_start(cdev, &start); 1957 1958 if (rc) { 1959 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 1960 goto out; 1961 } 1962 1963 DP_VERBOSE(edev, NETIF_MSG_IFUP, 1964 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 1965 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 1966 1967 for_each_queue(i) { 1968 struct qede_fastpath *fp = &edev->fp_array[i]; 1969 dma_addr_t p_phys_table; 1970 u32 page_cnt; 1971 1972 if (fp->type & QEDE_FASTPATH_RX) { 1973 struct qed_rxq_start_ret_params ret_params; 1974 struct qede_rx_queue *rxq = fp->rxq; 1975 __le16 *val; 1976 1977 memset(&ret_params, 0, sizeof(ret_params)); 1978 memset(&q_params, 0, sizeof(q_params)); 1979 q_params.queue_id = rxq->rxq_id; 1980 q_params.vport_id = 0; 1981 q_params.p_sb = fp->sb_info; 1982 q_params.sb_idx = RX_PI; 1983 1984 p_phys_table = 1985 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 1986 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 1987 1988 rc = edev->ops->q_rx_start(cdev, i, &q_params, 1989 rxq->rx_buf_size, 1990 rxq->rx_bd_ring.p_phys_addr, 1991 p_phys_table, 1992 page_cnt, &ret_params); 1993 if (rc) { 1994 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 1995 rc); 1996 goto out; 1997 } 1998 1999 /* Use the return parameters */ 2000 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2001 rxq->handle = ret_params.p_handle; 2002 2003 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2004 rxq->hw_cons_ptr = val; 2005 2006 qede_update_rx_prod(edev, rxq); 2007 } 2008 2009 if (fp->type & QEDE_FASTPATH_XDP) { 2010 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2011 if (rc) 2012 goto out; 2013 2014 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 2015 if (IS_ERR(fp->rxq->xdp_prog)) { 2016 rc = PTR_ERR(fp->rxq->xdp_prog); 2017 fp->rxq->xdp_prog = NULL; 2018 goto out; 2019 } 2020 } 2021 2022 if (fp->type & QEDE_FASTPATH_TX) { 2023 int cos; 2024 2025 for_each_cos_in_txq(edev, cos) { 2026 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2027 TX_PI(cos)); 2028 if (rc) 2029 goto out; 2030 } 2031 } 2032 } 2033 2034 /* Prepare and send the vport enable */ 2035 vport_update_params->vport_id = start.vport_id; 2036 vport_update_params->update_vport_active_flg = 1; 2037 vport_update_params->vport_active_flg = 1; 2038 2039 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2040 qed_info->tx_switching) { 2041 vport_update_params->update_tx_switching_flg = 1; 2042 vport_update_params->tx_switching_flg = 1; 2043 } 2044 2045 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2046 &vport_update_params->update_rss_flg); 2047 2048 rc = edev->ops->vport_update(cdev, vport_update_params); 2049 if (rc) 2050 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2051 2052 out: 2053 vfree(vport_update_params); 2054 return rc; 2055 } 2056 2057 enum qede_unload_mode { 2058 QEDE_UNLOAD_NORMAL, 2059 }; 2060 2061 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2062 bool is_locked) 2063 { 2064 struct qed_link_params link_params; 2065 int rc; 2066 2067 DP_INFO(edev, "Starting qede unload\n"); 2068 2069 if (!is_locked) 2070 __qede_lock(edev); 2071 2072 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2073 2074 edev->state = QEDE_STATE_CLOSED; 2075 2076 qede_rdma_dev_event_close(edev); 2077 2078 /* Close OS Tx */ 2079 netif_tx_disable(edev->ndev); 2080 netif_carrier_off(edev->ndev); 2081 2082 /* Reset the link */ 2083 memset(&link_params, 0, sizeof(link_params)); 2084 link_params.link_up = false; 2085 edev->ops->common->set_link(edev->cdev, &link_params); 2086 rc = qede_stop_queues(edev); 2087 if (rc) { 2088 qede_sync_free_irqs(edev); 2089 goto out; 2090 } 2091 2092 DP_INFO(edev, "Stopped Queues\n"); 2093 2094 qede_vlan_mark_nonconfigured(edev); 2095 edev->ops->fastpath_stop(edev->cdev); 2096 2097 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2098 qede_poll_for_freeing_arfs_filters(edev); 2099 qede_free_arfs(edev); 2100 } 2101 2102 /* Release the interrupts */ 2103 qede_sync_free_irqs(edev); 2104 edev->ops->common->set_fp_int(edev->cdev, 0); 2105 2106 qede_napi_disable_remove(edev); 2107 2108 qede_free_mem_load(edev); 2109 qede_free_fp_array(edev); 2110 2111 out: 2112 if (!is_locked) 2113 __qede_unlock(edev); 2114 DP_INFO(edev, "Ending qede unload\n"); 2115 } 2116 2117 enum qede_load_mode { 2118 QEDE_LOAD_NORMAL, 2119 QEDE_LOAD_RELOAD, 2120 }; 2121 2122 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2123 bool is_locked) 2124 { 2125 struct qed_link_params link_params; 2126 u8 num_tc; 2127 int rc; 2128 2129 DP_INFO(edev, "Starting qede load\n"); 2130 2131 if (!is_locked) 2132 __qede_lock(edev); 2133 2134 rc = qede_set_num_queues(edev); 2135 if (rc) 2136 goto out; 2137 2138 rc = qede_alloc_fp_array(edev); 2139 if (rc) 2140 goto out; 2141 2142 qede_init_fp(edev); 2143 2144 rc = qede_alloc_mem_load(edev); 2145 if (rc) 2146 goto err1; 2147 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2148 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2149 2150 rc = qede_set_real_num_queues(edev); 2151 if (rc) 2152 goto err2; 2153 2154 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2155 rc = qede_alloc_arfs(edev); 2156 if (rc) 2157 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2158 } 2159 2160 qede_napi_add_enable(edev); 2161 DP_INFO(edev, "Napi added and enabled\n"); 2162 2163 rc = qede_setup_irqs(edev); 2164 if (rc) 2165 goto err3; 2166 DP_INFO(edev, "Setup IRQs succeeded\n"); 2167 2168 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2169 if (rc) 2170 goto err4; 2171 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2172 2173 num_tc = netdev_get_num_tc(edev->ndev); 2174 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2175 qede_setup_tc(edev->ndev, num_tc); 2176 2177 /* Program un-configured VLANs */ 2178 qede_configure_vlan_filters(edev); 2179 2180 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2181 2182 /* Ask for link-up using current configuration */ 2183 memset(&link_params, 0, sizeof(link_params)); 2184 link_params.link_up = true; 2185 edev->ops->common->set_link(edev->cdev, &link_params); 2186 2187 edev->state = QEDE_STATE_OPEN; 2188 2189 DP_INFO(edev, "Ending successfully qede load\n"); 2190 2191 goto out; 2192 err4: 2193 qede_sync_free_irqs(edev); 2194 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2195 err3: 2196 qede_napi_disable_remove(edev); 2197 err2: 2198 qede_free_mem_load(edev); 2199 err1: 2200 edev->ops->common->set_fp_int(edev->cdev, 0); 2201 qede_free_fp_array(edev); 2202 edev->num_queues = 0; 2203 edev->fp_num_tx = 0; 2204 edev->fp_num_rx = 0; 2205 out: 2206 if (!is_locked) 2207 __qede_unlock(edev); 2208 2209 return rc; 2210 } 2211 2212 /* 'func' should be able to run between unload and reload assuming interface 2213 * is actually running, or afterwards in case it's currently DOWN. 2214 */ 2215 void qede_reload(struct qede_dev *edev, 2216 struct qede_reload_args *args, bool is_locked) 2217 { 2218 if (!is_locked) 2219 __qede_lock(edev); 2220 2221 /* Since qede_lock is held, internal state wouldn't change even 2222 * if netdev state would start transitioning. Check whether current 2223 * internal configuration indicates device is up, then reload. 2224 */ 2225 if (edev->state == QEDE_STATE_OPEN) { 2226 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2227 if (args) 2228 args->func(edev, args); 2229 qede_load(edev, QEDE_LOAD_RELOAD, true); 2230 2231 /* Since no one is going to do it for us, re-configure */ 2232 qede_config_rx_mode(edev->ndev); 2233 } else if (args) { 2234 args->func(edev, args); 2235 } 2236 2237 if (!is_locked) 2238 __qede_unlock(edev); 2239 } 2240 2241 /* called with rtnl_lock */ 2242 static int qede_open(struct net_device *ndev) 2243 { 2244 struct qede_dev *edev = netdev_priv(ndev); 2245 int rc; 2246 2247 netif_carrier_off(ndev); 2248 2249 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2250 2251 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2252 if (rc) 2253 return rc; 2254 2255 udp_tunnel_get_rx_info(ndev); 2256 2257 edev->ops->common->update_drv_state(edev->cdev, true); 2258 2259 return 0; 2260 } 2261 2262 static int qede_close(struct net_device *ndev) 2263 { 2264 struct qede_dev *edev = netdev_priv(ndev); 2265 2266 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2267 2268 edev->ops->common->update_drv_state(edev->cdev, false); 2269 2270 return 0; 2271 } 2272 2273 static void qede_link_update(void *dev, struct qed_link_output *link) 2274 { 2275 struct qede_dev *edev = dev; 2276 2277 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2278 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2279 return; 2280 } 2281 2282 if (link->link_up) { 2283 if (!netif_carrier_ok(edev->ndev)) { 2284 DP_NOTICE(edev, "Link is up\n"); 2285 netif_tx_start_all_queues(edev->ndev); 2286 netif_carrier_on(edev->ndev); 2287 qede_rdma_dev_event_open(edev); 2288 } 2289 } else { 2290 if (netif_carrier_ok(edev->ndev)) { 2291 DP_NOTICE(edev, "Link is down\n"); 2292 netif_tx_disable(edev->ndev); 2293 netif_carrier_off(edev->ndev); 2294 qede_rdma_dev_event_close(edev); 2295 } 2296 } 2297 } 2298 2299 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2300 { 2301 struct netdev_queue *netdev_txq; 2302 2303 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2304 if (netif_xmit_stopped(netdev_txq)) 2305 return true; 2306 2307 return false; 2308 } 2309 2310 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2311 { 2312 struct qede_dev *edev = dev; 2313 struct netdev_hw_addr *ha; 2314 int i; 2315 2316 if (edev->ndev->features & NETIF_F_IP_CSUM) 2317 data->feat_flags |= QED_TLV_IP_CSUM; 2318 if (edev->ndev->features & NETIF_F_TSO) 2319 data->feat_flags |= QED_TLV_LSO; 2320 2321 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2322 memset(data->mac[1], 0, ETH_ALEN); 2323 memset(data->mac[2], 0, ETH_ALEN); 2324 /* Copy the first two UC macs */ 2325 netif_addr_lock_bh(edev->ndev); 2326 i = 1; 2327 netdev_for_each_uc_addr(ha, edev->ndev) { 2328 ether_addr_copy(data->mac[i++], ha->addr); 2329 if (i == QED_TLV_MAC_COUNT) 2330 break; 2331 } 2332 2333 netif_addr_unlock_bh(edev->ndev); 2334 } 2335 2336 static void qede_get_eth_tlv_data(void *dev, void *data) 2337 { 2338 struct qed_mfw_tlv_eth *etlv = data; 2339 struct qede_dev *edev = dev; 2340 struct qede_fastpath *fp; 2341 int i; 2342 2343 etlv->lso_maxoff_size = 0XFFFF; 2344 etlv->lso_maxoff_size_set = true; 2345 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2346 etlv->lso_minseg_size_set = true; 2347 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2348 etlv->prom_mode_set = true; 2349 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2350 etlv->tx_descr_size_set = true; 2351 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2352 etlv->rx_descr_size_set = true; 2353 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2354 etlv->iov_offload_set = true; 2355 2356 /* Fill information regarding queues; Should be done under the qede 2357 * lock to guarantee those don't change beneath our feet. 2358 */ 2359 etlv->txqs_empty = true; 2360 etlv->rxqs_empty = true; 2361 etlv->num_txqs_full = 0; 2362 etlv->num_rxqs_full = 0; 2363 2364 __qede_lock(edev); 2365 for_each_queue(i) { 2366 fp = &edev->fp_array[i]; 2367 if (fp->type & QEDE_FASTPATH_TX) { 2368 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2369 2370 if (txq->sw_tx_cons != txq->sw_tx_prod) 2371 etlv->txqs_empty = false; 2372 if (qede_is_txq_full(edev, txq)) 2373 etlv->num_txqs_full++; 2374 } 2375 if (fp->type & QEDE_FASTPATH_RX) { 2376 if (qede_has_rx_work(fp->rxq)) 2377 etlv->rxqs_empty = false; 2378 2379 /* This one is a bit tricky; Firmware might stop 2380 * placing packets if ring is not yet full. 2381 * Give an approximation. 2382 */ 2383 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2384 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2385 RX_RING_SIZE - 100) 2386 etlv->num_rxqs_full++; 2387 } 2388 } 2389 __qede_unlock(edev); 2390 2391 etlv->txqs_empty_set = true; 2392 etlv->rxqs_empty_set = true; 2393 etlv->num_txqs_full_set = true; 2394 etlv->num_rxqs_full_set = true; 2395 } 2396