1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015 QLogic Corporation 3 * 4 * This software is available under the terms of the GNU General Public License 5 * (GPL) Version 2, available from the file COPYING in the main directory of 6 * this source tree. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/version.h> 12 #include <linux/device.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/skbuff.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/string.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/interrupt.h> 21 #include <asm/byteorder.h> 22 #include <asm/param.h> 23 #include <linux/io.h> 24 #include <linux/netdev_features.h> 25 #include <linux/udp.h> 26 #include <linux/tcp.h> 27 #include <net/udp_tunnel.h> 28 #include <linux/ip.h> 29 #include <net/ipv6.h> 30 #include <net/tcp.h> 31 #include <linux/if_ether.h> 32 #include <linux/if_vlan.h> 33 #include <linux/pkt_sched.h> 34 #include <linux/ethtool.h> 35 #include <linux/in.h> 36 #include <linux/random.h> 37 #include <net/ip6_checksum.h> 38 #include <linux/bitops.h> 39 #include <linux/qed/qede_roce.h> 40 #include "qede.h" 41 42 static char version[] = 43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 44 45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 static uint debug; 50 module_param(debug, uint, 0); 51 MODULE_PARM_DESC(debug, " Default debug msglevel"); 52 53 static const struct qed_eth_ops *qed_ops; 54 55 #define CHIP_NUM_57980S_40 0x1634 56 #define CHIP_NUM_57980S_10 0x1666 57 #define CHIP_NUM_57980S_MF 0x1636 58 #define CHIP_NUM_57980S_100 0x1644 59 #define CHIP_NUM_57980S_50 0x1654 60 #define CHIP_NUM_57980S_25 0x1656 61 #define CHIP_NUM_57980S_IOV 0x1664 62 63 #ifndef PCI_DEVICE_ID_NX2_57980E 64 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 65 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 66 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 67 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 68 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 69 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 70 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 71 #endif 72 73 enum qede_pci_private { 74 QEDE_PRIVATE_PF, 75 QEDE_PRIVATE_VF 76 }; 77 78 static const struct pci_device_id qede_pci_tbl[] = { 79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 85 #ifdef CONFIG_QED_SRIOV 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 87 #endif 88 { 0 } 89 }; 90 91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 92 93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 94 95 #define TX_TIMEOUT (5 * HZ) 96 97 /* Utilize last protocol index for XDP */ 98 #define XDP_PI 11 99 100 static void qede_remove(struct pci_dev *pdev); 101 static void qede_shutdown(struct pci_dev *pdev); 102 static void qede_link_update(void *dev, struct qed_link_output *link); 103 104 /* The qede lock is used to protect driver state change and driver flows that 105 * are not reentrant. 106 */ 107 void __qede_lock(struct qede_dev *edev) 108 { 109 mutex_lock(&edev->qede_lock); 110 } 111 112 void __qede_unlock(struct qede_dev *edev) 113 { 114 mutex_unlock(&edev->qede_lock); 115 } 116 117 #ifdef CONFIG_QED_SRIOV 118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 119 __be16 vlan_proto) 120 { 121 struct qede_dev *edev = netdev_priv(ndev); 122 123 if (vlan > 4095) { 124 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 125 return -EINVAL; 126 } 127 128 if (vlan_proto != htons(ETH_P_8021Q)) 129 return -EPROTONOSUPPORT; 130 131 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 132 vlan, vf); 133 134 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 135 } 136 137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 138 { 139 struct qede_dev *edev = netdev_priv(ndev); 140 141 DP_VERBOSE(edev, QED_MSG_IOV, 142 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 143 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 144 145 if (!is_valid_ether_addr(mac)) { 146 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 147 return -EINVAL; 148 } 149 150 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 151 } 152 153 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 154 { 155 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 156 struct qed_dev_info *qed_info = &edev->dev_info.common; 157 int rc; 158 159 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 160 161 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 162 163 /* Enable/Disable Tx switching for PF */ 164 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 165 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) { 166 struct qed_update_vport_params params; 167 168 memset(¶ms, 0, sizeof(params)); 169 params.vport_id = 0; 170 params.update_tx_switching_flg = 1; 171 params.tx_switching_flg = num_vfs_param ? 1 : 0; 172 edev->ops->vport_update(edev->cdev, ¶ms); 173 } 174 175 return rc; 176 } 177 #endif 178 179 static struct pci_driver qede_pci_driver = { 180 .name = "qede", 181 .id_table = qede_pci_tbl, 182 .probe = qede_probe, 183 .remove = qede_remove, 184 .shutdown = qede_shutdown, 185 #ifdef CONFIG_QED_SRIOV 186 .sriov_configure = qede_sriov_configure, 187 #endif 188 }; 189 190 static void qede_force_mac(void *dev, u8 *mac, bool forced) 191 { 192 struct qede_dev *edev = dev; 193 194 /* MAC hints take effect only if we haven't set one already */ 195 if (is_valid_ether_addr(edev->ndev->dev_addr) && !forced) 196 return; 197 198 ether_addr_copy(edev->ndev->dev_addr, mac); 199 ether_addr_copy(edev->primary_mac, mac); 200 } 201 202 static struct qed_eth_cb_ops qede_ll_ops = { 203 { 204 .link_update = qede_link_update, 205 }, 206 .force_mac = qede_force_mac, 207 }; 208 209 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 210 void *ptr) 211 { 212 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 213 struct ethtool_drvinfo drvinfo; 214 struct qede_dev *edev; 215 216 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 217 goto done; 218 219 /* Check whether this is a qede device */ 220 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 221 goto done; 222 223 memset(&drvinfo, 0, sizeof(drvinfo)); 224 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 225 if (strcmp(drvinfo.driver, "qede")) 226 goto done; 227 edev = netdev_priv(ndev); 228 229 switch (event) { 230 case NETDEV_CHANGENAME: 231 /* Notify qed of the name change */ 232 if (!edev->ops || !edev->ops->common) 233 goto done; 234 edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede"); 235 break; 236 case NETDEV_CHANGEADDR: 237 edev = netdev_priv(ndev); 238 qede_roce_event_changeaddr(edev); 239 break; 240 } 241 242 done: 243 return NOTIFY_DONE; 244 } 245 246 static struct notifier_block qede_netdev_notifier = { 247 .notifier_call = qede_netdev_event, 248 }; 249 250 static 251 int __init qede_init(void) 252 { 253 int ret; 254 255 pr_info("qede_init: %s\n", version); 256 257 qed_ops = qed_get_eth_ops(); 258 if (!qed_ops) { 259 pr_notice("Failed to get qed ethtool operations\n"); 260 return -EINVAL; 261 } 262 263 /* Must register notifier before pci ops, since we might miss 264 * interface rename after pci probe and netdev registeration. 265 */ 266 ret = register_netdevice_notifier(&qede_netdev_notifier); 267 if (ret) { 268 pr_notice("Failed to register netdevice_notifier\n"); 269 qed_put_eth_ops(); 270 return -EINVAL; 271 } 272 273 ret = pci_register_driver(&qede_pci_driver); 274 if (ret) { 275 pr_notice("Failed to register driver\n"); 276 unregister_netdevice_notifier(&qede_netdev_notifier); 277 qed_put_eth_ops(); 278 return -EINVAL; 279 } 280 281 return 0; 282 } 283 284 static void __exit qede_cleanup(void) 285 { 286 if (debug & QED_LOG_INFO_MASK) 287 pr_info("qede_cleanup called\n"); 288 289 unregister_netdevice_notifier(&qede_netdev_notifier); 290 pci_unregister_driver(&qede_pci_driver); 291 qed_put_eth_ops(); 292 } 293 294 module_init(qede_init); 295 module_exit(qede_cleanup); 296 297 /* ------------------------------------------------------------------------- 298 * START OF FAST-PATH 299 * ------------------------------------------------------------------------- 300 */ 301 302 /* Unmap the data and free skb */ 303 static int qede_free_tx_pkt(struct qede_dev *edev, 304 struct qede_tx_queue *txq, int *len) 305 { 306 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; 307 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 308 struct eth_tx_1st_bd *first_bd; 309 struct eth_tx_bd *tx_data_bd; 310 int bds_consumed = 0; 311 int nbds; 312 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD; 313 int i, split_bd_len = 0; 314 315 if (unlikely(!skb)) { 316 DP_ERR(edev, 317 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", 318 idx, txq->sw_tx_cons, txq->sw_tx_prod); 319 return -1; 320 } 321 322 *len = skb->len; 323 324 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 325 326 bds_consumed++; 327 328 nbds = first_bd->data.nbds; 329 330 if (data_split) { 331 struct eth_tx_bd *split = (struct eth_tx_bd *) 332 qed_chain_consume(&txq->tx_pbl); 333 split_bd_len = BD_UNMAP_LEN(split); 334 bds_consumed++; 335 } 336 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 337 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 338 339 /* Unmap the data of the skb frags */ 340 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { 341 tx_data_bd = (struct eth_tx_bd *) 342 qed_chain_consume(&txq->tx_pbl); 343 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 344 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 345 } 346 347 while (bds_consumed++ < nbds) 348 qed_chain_consume(&txq->tx_pbl); 349 350 /* Free skb */ 351 dev_kfree_skb_any(skb); 352 txq->sw_tx_ring.skbs[idx].skb = NULL; 353 txq->sw_tx_ring.skbs[idx].flags = 0; 354 355 return 0; 356 } 357 358 /* Unmap the data and free skb when mapping failed during start_xmit */ 359 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq, 360 struct eth_tx_1st_bd *first_bd, 361 int nbd, bool data_split) 362 { 363 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 364 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 365 struct eth_tx_bd *tx_data_bd; 366 int i, split_bd_len = 0; 367 368 /* Return prod to its position before this skb was handled */ 369 qed_chain_set_prod(&txq->tx_pbl, 370 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 371 372 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 373 374 if (data_split) { 375 struct eth_tx_bd *split = (struct eth_tx_bd *) 376 qed_chain_produce(&txq->tx_pbl); 377 split_bd_len = BD_UNMAP_LEN(split); 378 nbd--; 379 } 380 381 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd), 382 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 383 384 /* Unmap the data of the skb frags */ 385 for (i = 0; i < nbd; i++) { 386 tx_data_bd = (struct eth_tx_bd *) 387 qed_chain_produce(&txq->tx_pbl); 388 if (tx_data_bd->nbytes) 389 dma_unmap_page(txq->dev, 390 BD_UNMAP_ADDR(tx_data_bd), 391 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 392 } 393 394 /* Return again prod to its position before this skb was handled */ 395 qed_chain_set_prod(&txq->tx_pbl, 396 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 397 398 /* Free skb */ 399 dev_kfree_skb_any(skb); 400 txq->sw_tx_ring.skbs[idx].skb = NULL; 401 txq->sw_tx_ring.skbs[idx].flags = 0; 402 } 403 404 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext) 405 { 406 u32 rc = XMIT_L4_CSUM; 407 __be16 l3_proto; 408 409 if (skb->ip_summed != CHECKSUM_PARTIAL) 410 return XMIT_PLAIN; 411 412 l3_proto = vlan_get_protocol(skb); 413 if (l3_proto == htons(ETH_P_IPV6) && 414 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) 415 *ipv6_ext = 1; 416 417 if (skb->encapsulation) { 418 rc |= XMIT_ENC; 419 if (skb_is_gso(skb)) { 420 unsigned short gso_type = skb_shinfo(skb)->gso_type; 421 422 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) || 423 (gso_type & SKB_GSO_GRE_CSUM)) 424 rc |= XMIT_ENC_GSO_L4_CSUM; 425 426 rc |= XMIT_LSO; 427 return rc; 428 } 429 } 430 431 if (skb_is_gso(skb)) 432 rc |= XMIT_LSO; 433 434 return rc; 435 } 436 437 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, 438 struct eth_tx_2nd_bd *second_bd, 439 struct eth_tx_3rd_bd *third_bd) 440 { 441 u8 l4_proto; 442 u16 bd2_bits1 = 0, bd2_bits2 = 0; 443 444 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); 445 446 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & 447 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 448 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 449 450 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 451 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); 452 453 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) 454 l4_proto = ipv6_hdr(skb)->nexthdr; 455 else 456 l4_proto = ip_hdr(skb)->protocol; 457 458 if (l4_proto == IPPROTO_UDP) 459 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 460 461 if (third_bd) 462 third_bd->data.bitfields |= 463 cpu_to_le16(((tcp_hdrlen(skb) / 4) & 464 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << 465 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); 466 467 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); 468 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); 469 } 470 471 static int map_frag_to_bd(struct qede_tx_queue *txq, 472 skb_frag_t *frag, struct eth_tx_bd *bd) 473 { 474 dma_addr_t mapping; 475 476 /* Map skb non-linear frag data for DMA */ 477 mapping = skb_frag_dma_map(txq->dev, frag, 0, 478 skb_frag_size(frag), DMA_TO_DEVICE); 479 if (unlikely(dma_mapping_error(txq->dev, mapping))) 480 return -ENOMEM; 481 482 /* Setup the data pointer of the frag data */ 483 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); 484 485 return 0; 486 } 487 488 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) 489 { 490 if (is_encap_pkt) 491 return (skb_inner_transport_header(skb) + 492 inner_tcp_hdrlen(skb) - skb->data); 493 else 494 return (skb_transport_header(skb) + 495 tcp_hdrlen(skb) - skb->data); 496 } 497 498 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ 499 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 500 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type) 501 { 502 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; 503 504 if (xmit_type & XMIT_LSO) { 505 int hlen; 506 507 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); 508 509 /* linear payload would require its own BD */ 510 if (skb_headlen(skb) > hlen) 511 allowed_frags--; 512 } 513 514 return (skb_shinfo(skb)->nr_frags > allowed_frags); 515 } 516 #endif 517 518 static inline void qede_update_tx_producer(struct qede_tx_queue *txq) 519 { 520 /* wmb makes sure that the BDs data is updated before updating the 521 * producer, otherwise FW may read old data from the BDs. 522 */ 523 wmb(); 524 barrier(); 525 writel(txq->tx_db.raw, txq->doorbell_addr); 526 527 /* mmiowb is needed to synchronize doorbell writes from more than one 528 * processor. It guarantees that the write arrives to the device before 529 * the queue lock is released and another start_xmit is called (possibly 530 * on another CPU). Without this barrier, the next doorbell can bypass 531 * this doorbell. This is applicable to IA64/Altix systems. 532 */ 533 mmiowb(); 534 } 535 536 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp, 537 struct sw_rx_data *metadata, u16 padding, u16 length) 538 { 539 struct qede_tx_queue *txq = fp->xdp_tx; 540 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 541 struct eth_tx_1st_bd *first_bd; 542 543 if (!qed_chain_get_elem_left(&txq->tx_pbl)) { 544 txq->stopped_cnt++; 545 return -ENOMEM; 546 } 547 548 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 549 550 memset(first_bd, 0, sizeof(*first_bd)); 551 first_bd->data.bd_flags.bitfields = 552 BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT); 553 first_bd->data.bitfields |= 554 (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 555 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 556 first_bd->data.nbds = 1; 557 558 /* We can safely ignore the offset, as it's 0 for XDP */ 559 BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length); 560 561 /* Synchronize the buffer back to device, as program [probably] 562 * has changed it. 563 */ 564 dma_sync_single_for_device(&edev->pdev->dev, 565 metadata->mapping + padding, 566 length, PCI_DMA_TODEVICE); 567 568 txq->sw_tx_ring.pages[idx] = metadata->data; 569 txq->sw_tx_prod++; 570 571 /* Mark the fastpath for future XDP doorbell */ 572 fp->xdp_xmit = 1; 573 574 return 0; 575 } 576 577 /* Main transmit function */ 578 static netdev_tx_t qede_start_xmit(struct sk_buff *skb, 579 struct net_device *ndev) 580 { 581 struct qede_dev *edev = netdev_priv(ndev); 582 struct netdev_queue *netdev_txq; 583 struct qede_tx_queue *txq; 584 struct eth_tx_1st_bd *first_bd; 585 struct eth_tx_2nd_bd *second_bd = NULL; 586 struct eth_tx_3rd_bd *third_bd = NULL; 587 struct eth_tx_bd *tx_data_bd = NULL; 588 u16 txq_index; 589 u8 nbd = 0; 590 dma_addr_t mapping; 591 int rc, frag_idx = 0, ipv6_ext = 0; 592 u8 xmit_type; 593 u16 idx; 594 u16 hlen; 595 bool data_split = false; 596 597 /* Get tx-queue context and netdev index */ 598 txq_index = skb_get_queue_mapping(skb); 599 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev)); 600 txq = edev->fp_array[edev->fp_num_rx + txq_index].txq; 601 netdev_txq = netdev_get_tx_queue(ndev, txq_index); 602 603 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); 604 605 xmit_type = qede_xmit_type(skb, &ipv6_ext); 606 607 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 608 if (qede_pkt_req_lin(skb, xmit_type)) { 609 if (skb_linearize(skb)) { 610 DP_NOTICE(edev, 611 "SKB linearization failed - silently dropping this SKB\n"); 612 dev_kfree_skb_any(skb); 613 return NETDEV_TX_OK; 614 } 615 } 616 #endif 617 618 /* Fill the entry in the SW ring and the BDs in the FW ring */ 619 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 620 txq->sw_tx_ring.skbs[idx].skb = skb; 621 first_bd = (struct eth_tx_1st_bd *) 622 qed_chain_produce(&txq->tx_pbl); 623 memset(first_bd, 0, sizeof(*first_bd)); 624 first_bd->data.bd_flags.bitfields = 625 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 626 627 /* Map skb linear data for DMA and set in the first BD */ 628 mapping = dma_map_single(txq->dev, skb->data, 629 skb_headlen(skb), DMA_TO_DEVICE); 630 if (unlikely(dma_mapping_error(txq->dev, mapping))) { 631 DP_NOTICE(edev, "SKB mapping failed\n"); 632 qede_free_failed_tx_pkt(txq, first_bd, 0, false); 633 qede_update_tx_producer(txq); 634 return NETDEV_TX_OK; 635 } 636 nbd++; 637 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); 638 639 /* In case there is IPv6 with extension headers or LSO we need 2nd and 640 * 3rd BDs. 641 */ 642 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { 643 second_bd = (struct eth_tx_2nd_bd *) 644 qed_chain_produce(&txq->tx_pbl); 645 memset(second_bd, 0, sizeof(*second_bd)); 646 647 nbd++; 648 third_bd = (struct eth_tx_3rd_bd *) 649 qed_chain_produce(&txq->tx_pbl); 650 memset(third_bd, 0, sizeof(*third_bd)); 651 652 nbd++; 653 /* We need to fill in additional data in second_bd... */ 654 tx_data_bd = (struct eth_tx_bd *)second_bd; 655 } 656 657 if (skb_vlan_tag_present(skb)) { 658 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 659 first_bd->data.bd_flags.bitfields |= 660 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 661 } 662 663 /* Fill the parsing flags & params according to the requested offload */ 664 if (xmit_type & XMIT_L4_CSUM) { 665 /* We don't re-calculate IP checksum as it is already done by 666 * the upper stack 667 */ 668 first_bd->data.bd_flags.bitfields |= 669 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 670 671 if (xmit_type & XMIT_ENC) { 672 first_bd->data.bd_flags.bitfields |= 673 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 674 first_bd->data.bitfields |= 675 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; 676 } 677 678 /* Legacy FW had flipped behavior in regard to this bit - 679 * I.e., needed to set to prevent FW from touching encapsulated 680 * packets when it didn't need to. 681 */ 682 if (unlikely(txq->is_legacy)) 683 first_bd->data.bitfields ^= 684 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; 685 686 /* If the packet is IPv6 with extension header, indicate that 687 * to FW and pass few params, since the device cracker doesn't 688 * support parsing IPv6 with extension header/s. 689 */ 690 if (unlikely(ipv6_ext)) 691 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); 692 } 693 694 if (xmit_type & XMIT_LSO) { 695 first_bd->data.bd_flags.bitfields |= 696 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); 697 third_bd->data.lso_mss = 698 cpu_to_le16(skb_shinfo(skb)->gso_size); 699 700 if (unlikely(xmit_type & XMIT_ENC)) { 701 first_bd->data.bd_flags.bitfields |= 702 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; 703 704 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) { 705 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; 706 707 first_bd->data.bd_flags.bitfields |= 1 << tmp; 708 } 709 hlen = qede_get_skb_hlen(skb, true); 710 } else { 711 first_bd->data.bd_flags.bitfields |= 712 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 713 hlen = qede_get_skb_hlen(skb, false); 714 } 715 716 /* @@@TBD - if will not be removed need to check */ 717 third_bd->data.bitfields |= 718 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT)); 719 720 /* Make life easier for FW guys who can't deal with header and 721 * data on same BD. If we need to split, use the second bd... 722 */ 723 if (unlikely(skb_headlen(skb) > hlen)) { 724 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 725 "TSO split header size is %d (%x:%x)\n", 726 first_bd->nbytes, first_bd->addr.hi, 727 first_bd->addr.lo); 728 729 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), 730 le32_to_cpu(first_bd->addr.lo)) + 731 hlen; 732 733 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, 734 le16_to_cpu(first_bd->nbytes) - 735 hlen); 736 737 /* this marks the BD as one that has no 738 * individual mapping 739 */ 740 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD; 741 742 first_bd->nbytes = cpu_to_le16(hlen); 743 744 tx_data_bd = (struct eth_tx_bd *)third_bd; 745 data_split = true; 746 } 747 } else { 748 first_bd->data.bitfields |= 749 (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 750 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 751 } 752 753 /* Handle fragmented skb */ 754 /* special handle for frags inside 2nd and 3rd bds.. */ 755 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { 756 rc = map_frag_to_bd(txq, 757 &skb_shinfo(skb)->frags[frag_idx], 758 tx_data_bd); 759 if (rc) { 760 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 761 qede_update_tx_producer(txq); 762 return NETDEV_TX_OK; 763 } 764 765 if (tx_data_bd == (struct eth_tx_bd *)second_bd) 766 tx_data_bd = (struct eth_tx_bd *)third_bd; 767 else 768 tx_data_bd = NULL; 769 770 frag_idx++; 771 } 772 773 /* map last frags into 4th, 5th .... */ 774 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { 775 tx_data_bd = (struct eth_tx_bd *) 776 qed_chain_produce(&txq->tx_pbl); 777 778 memset(tx_data_bd, 0, sizeof(*tx_data_bd)); 779 780 rc = map_frag_to_bd(txq, 781 &skb_shinfo(skb)->frags[frag_idx], 782 tx_data_bd); 783 if (rc) { 784 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 785 qede_update_tx_producer(txq); 786 return NETDEV_TX_OK; 787 } 788 } 789 790 /* update the first BD with the actual num BDs */ 791 first_bd->data.nbds = nbd; 792 793 netdev_tx_sent_queue(netdev_txq, skb->len); 794 795 skb_tx_timestamp(skb); 796 797 /* Advance packet producer only before sending the packet since mapping 798 * of pages may fail. 799 */ 800 txq->sw_tx_prod++; 801 802 /* 'next page' entries are counted in the producer value */ 803 txq->tx_db.data.bd_prod = 804 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); 805 806 if (!skb->xmit_more || netif_xmit_stopped(netdev_txq)) 807 qede_update_tx_producer(txq); 808 809 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) 810 < (MAX_SKB_FRAGS + 1))) { 811 if (skb->xmit_more) 812 qede_update_tx_producer(txq); 813 814 netif_tx_stop_queue(netdev_txq); 815 txq->stopped_cnt++; 816 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 817 "Stop queue was called\n"); 818 /* paired memory barrier is in qede_tx_int(), we have to keep 819 * ordering of set_bit() in netif_tx_stop_queue() and read of 820 * fp->bd_tx_cons 821 */ 822 smp_mb(); 823 824 if (qed_chain_get_elem_left(&txq->tx_pbl) 825 >= (MAX_SKB_FRAGS + 1) && 826 (edev->state == QEDE_STATE_OPEN)) { 827 netif_tx_wake_queue(netdev_txq); 828 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 829 "Wake queue was called\n"); 830 } 831 } 832 833 return NETDEV_TX_OK; 834 } 835 836 int qede_txq_has_work(struct qede_tx_queue *txq) 837 { 838 u16 hw_bd_cons; 839 840 /* Tell compiler that consumer and producer can change */ 841 barrier(); 842 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 843 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) 844 return 0; 845 846 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); 847 } 848 849 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 850 { 851 struct eth_tx_1st_bd *bd; 852 u16 hw_bd_cons; 853 854 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 855 barrier(); 856 857 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 858 bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 859 860 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(bd), 861 PAGE_SIZE, DMA_BIDIRECTIONAL); 862 __free_page(txq->sw_tx_ring.pages[txq->sw_tx_cons & 863 NUM_TX_BDS_MAX]); 864 865 txq->sw_tx_cons++; 866 txq->xmit_pkts++; 867 } 868 } 869 870 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 871 { 872 struct netdev_queue *netdev_txq; 873 u16 hw_bd_cons; 874 unsigned int pkts_compl = 0, bytes_compl = 0; 875 int rc; 876 877 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 878 879 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 880 barrier(); 881 882 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 883 int len = 0; 884 885 rc = qede_free_tx_pkt(edev, txq, &len); 886 if (rc) { 887 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", 888 hw_bd_cons, 889 qed_chain_get_cons_idx(&txq->tx_pbl)); 890 break; 891 } 892 893 bytes_compl += len; 894 pkts_compl++; 895 txq->sw_tx_cons++; 896 txq->xmit_pkts++; 897 } 898 899 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 900 901 /* Need to make the tx_bd_cons update visible to start_xmit() 902 * before checking for netif_tx_queue_stopped(). Without the 903 * memory barrier, there is a small possibility that 904 * start_xmit() will miss it and cause the queue to be stopped 905 * forever. 906 * On the other hand we need an rmb() here to ensure the proper 907 * ordering of bit testing in the following 908 * netif_tx_queue_stopped(txq) call. 909 */ 910 smp_mb(); 911 912 if (unlikely(netif_tx_queue_stopped(netdev_txq))) { 913 /* Taking tx_lock is needed to prevent reenabling the queue 914 * while it's empty. This could have happen if rx_action() gets 915 * suspended in qede_tx_int() after the condition before 916 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): 917 * 918 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 919 * sends some packets consuming the whole queue again-> 920 * stops the queue 921 */ 922 923 __netif_tx_lock(netdev_txq, smp_processor_id()); 924 925 if ((netif_tx_queue_stopped(netdev_txq)) && 926 (edev->state == QEDE_STATE_OPEN) && 927 (qed_chain_get_elem_left(&txq->tx_pbl) 928 >= (MAX_SKB_FRAGS + 1))) { 929 netif_tx_wake_queue(netdev_txq); 930 DP_VERBOSE(edev, NETIF_MSG_TX_DONE, 931 "Wake queue was called\n"); 932 } 933 934 __netif_tx_unlock(netdev_txq); 935 } 936 937 return 0; 938 } 939 940 bool qede_has_rx_work(struct qede_rx_queue *rxq) 941 { 942 u16 hw_comp_cons, sw_comp_cons; 943 944 /* Tell compiler that status block fields can change */ 945 barrier(); 946 947 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 948 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 949 950 return hw_comp_cons != sw_comp_cons; 951 } 952 953 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) 954 { 955 qed_chain_consume(&rxq->rx_bd_ring); 956 rxq->sw_rx_cons++; 957 } 958 959 /* This function reuses the buffer(from an offset) from 960 * consumer index to producer index in the bd ring 961 */ 962 static inline void qede_reuse_page(struct qede_rx_queue *rxq, 963 struct sw_rx_data *curr_cons) 964 { 965 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 966 struct sw_rx_data *curr_prod; 967 dma_addr_t new_mapping; 968 969 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 970 *curr_prod = *curr_cons; 971 972 new_mapping = curr_prod->mapping + curr_prod->page_offset; 973 974 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); 975 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping)); 976 977 rxq->sw_rx_prod++; 978 curr_cons->data = NULL; 979 } 980 981 /* In case of allocation failures reuse buffers 982 * from consumer index to produce buffers for firmware 983 */ 984 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count) 985 { 986 struct sw_rx_data *curr_cons; 987 988 for (; count > 0; count--) { 989 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 990 qede_reuse_page(rxq, curr_cons); 991 qede_rx_bd_ring_consume(rxq); 992 } 993 } 994 995 static int qede_alloc_rx_buffer(struct qede_rx_queue *rxq) 996 { 997 struct sw_rx_data *sw_rx_data; 998 struct eth_rx_bd *rx_bd; 999 dma_addr_t mapping; 1000 struct page *data; 1001 1002 data = alloc_pages(GFP_ATOMIC, 0); 1003 if (unlikely(!data)) 1004 return -ENOMEM; 1005 1006 /* Map the entire page as it would be used 1007 * for multiple RX buffer segment size mapping. 1008 */ 1009 mapping = dma_map_page(rxq->dev, data, 0, 1010 PAGE_SIZE, rxq->data_direction); 1011 if (unlikely(dma_mapping_error(rxq->dev, mapping))) { 1012 __free_page(data); 1013 return -ENOMEM; 1014 } 1015 1016 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 1017 sw_rx_data->page_offset = 0; 1018 sw_rx_data->data = data; 1019 sw_rx_data->mapping = mapping; 1020 1021 /* Advance PROD and get BD pointer */ 1022 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); 1023 WARN_ON(!rx_bd); 1024 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 1025 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 1026 1027 rxq->sw_rx_prod++; 1028 1029 return 0; 1030 } 1031 1032 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq, 1033 struct sw_rx_data *curr_cons) 1034 { 1035 /* Move to the next segment in the page */ 1036 curr_cons->page_offset += rxq->rx_buf_seg_size; 1037 1038 if (curr_cons->page_offset == PAGE_SIZE) { 1039 if (unlikely(qede_alloc_rx_buffer(rxq))) { 1040 /* Since we failed to allocate new buffer 1041 * current buffer can be used again. 1042 */ 1043 curr_cons->page_offset -= rxq->rx_buf_seg_size; 1044 1045 return -ENOMEM; 1046 } 1047 1048 dma_unmap_page(rxq->dev, curr_cons->mapping, 1049 PAGE_SIZE, rxq->data_direction); 1050 } else { 1051 /* Increment refcount of the page as we don't want 1052 * network stack to take the ownership of the page 1053 * which can be recycled multiple times by the driver. 1054 */ 1055 page_ref_inc(curr_cons->data); 1056 qede_reuse_page(rxq, curr_cons); 1057 } 1058 1059 return 0; 1060 } 1061 1062 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) 1063 { 1064 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); 1065 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); 1066 struct eth_rx_prod_data rx_prods = {0}; 1067 1068 /* Update producers */ 1069 rx_prods.bd_prod = cpu_to_le16(bd_prod); 1070 rx_prods.cqe_prod = cpu_to_le16(cqe_prod); 1071 1072 /* Make sure that the BD and SGE data is updated before updating the 1073 * producers since FW might read the BD/SGE right after the producer 1074 * is updated. 1075 */ 1076 wmb(); 1077 1078 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 1079 (u32 *)&rx_prods); 1080 1081 /* mmiowb is needed to synchronize doorbell writes from more than one 1082 * processor. It guarantees that the write arrives to the device before 1083 * the napi lock is released and another qede_poll is called (possibly 1084 * on another CPU). Without this barrier, the next doorbell can bypass 1085 * this doorbell. This is applicable to IA64/Altix systems. 1086 */ 1087 mmiowb(); 1088 } 1089 1090 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash) 1091 { 1092 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; 1093 enum rss_hash_type htype; 1094 u32 hash = 0; 1095 1096 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); 1097 if (htype) { 1098 hash_type = ((htype == RSS_HASH_TYPE_IPV4) || 1099 (htype == RSS_HASH_TYPE_IPV6)) ? 1100 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; 1101 hash = le32_to_cpu(rss_hash); 1102 } 1103 skb_set_hash(skb, hash, hash_type); 1104 } 1105 1106 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) 1107 { 1108 skb_checksum_none_assert(skb); 1109 1110 if (csum_flag & QEDE_CSUM_UNNECESSARY) 1111 skb->ip_summed = CHECKSUM_UNNECESSARY; 1112 1113 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) 1114 skb->csum_level = 1; 1115 } 1116 1117 static inline void qede_skb_receive(struct qede_dev *edev, 1118 struct qede_fastpath *fp, 1119 struct qede_rx_queue *rxq, 1120 struct sk_buff *skb, u16 vlan_tag) 1121 { 1122 if (vlan_tag) 1123 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 1124 1125 napi_gro_receive(&fp->napi, skb); 1126 fp->rxq->rcv_pkts++; 1127 } 1128 1129 static void qede_set_gro_params(struct qede_dev *edev, 1130 struct sk_buff *skb, 1131 struct eth_fast_path_rx_tpa_start_cqe *cqe) 1132 { 1133 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); 1134 1135 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & 1136 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) 1137 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 1138 else 1139 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 1140 1141 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - 1142 cqe->header_len; 1143 } 1144 1145 static int qede_fill_frag_skb(struct qede_dev *edev, 1146 struct qede_rx_queue *rxq, 1147 u8 tpa_agg_index, u16 len_on_bd) 1148 { 1149 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & 1150 NUM_RX_BDS_MAX]; 1151 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; 1152 struct sk_buff *skb = tpa_info->skb; 1153 1154 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 1155 goto out; 1156 1157 /* Add one frag and update the appropriate fields in the skb */ 1158 skb_fill_page_desc(skb, tpa_info->frag_id++, 1159 current_bd->data, current_bd->page_offset, 1160 len_on_bd); 1161 1162 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) { 1163 /* Incr page ref count to reuse on allocation failure 1164 * so that it doesn't get freed while freeing SKB. 1165 */ 1166 page_ref_inc(current_bd->data); 1167 goto out; 1168 } 1169 1170 qed_chain_consume(&rxq->rx_bd_ring); 1171 rxq->sw_rx_cons++; 1172 1173 skb->data_len += len_on_bd; 1174 skb->truesize += rxq->rx_buf_seg_size; 1175 skb->len += len_on_bd; 1176 1177 return 0; 1178 1179 out: 1180 tpa_info->state = QEDE_AGG_STATE_ERROR; 1181 qede_recycle_rx_bd_ring(rxq, 1); 1182 1183 return -ENOMEM; 1184 } 1185 1186 static void qede_tpa_start(struct qede_dev *edev, 1187 struct qede_rx_queue *rxq, 1188 struct eth_fast_path_rx_tpa_start_cqe *cqe) 1189 { 1190 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 1191 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); 1192 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 1193 struct sw_rx_data *replace_buf = &tpa_info->buffer; 1194 dma_addr_t mapping = tpa_info->buffer_mapping; 1195 struct sw_rx_data *sw_rx_data_cons; 1196 struct sw_rx_data *sw_rx_data_prod; 1197 1198 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 1199 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 1200 1201 /* Use pre-allocated replacement buffer - we can't release the agg. 1202 * start until its over and we don't want to risk allocation failing 1203 * here, so re-allocate when aggregation will be over. 1204 */ 1205 sw_rx_data_prod->mapping = replace_buf->mapping; 1206 1207 sw_rx_data_prod->data = replace_buf->data; 1208 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 1209 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 1210 sw_rx_data_prod->page_offset = replace_buf->page_offset; 1211 1212 rxq->sw_rx_prod++; 1213 1214 /* move partial skb from cons to pool (don't unmap yet) 1215 * save mapping, incase we drop the packet later on. 1216 */ 1217 tpa_info->buffer = *sw_rx_data_cons; 1218 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), 1219 le32_to_cpu(rx_bd_cons->addr.lo)); 1220 1221 tpa_info->buffer_mapping = mapping; 1222 rxq->sw_rx_cons++; 1223 1224 /* set tpa state to start only if we are able to allocate skb 1225 * for this aggregation, otherwise mark as error and aggregation will 1226 * be dropped 1227 */ 1228 tpa_info->skb = netdev_alloc_skb(edev->ndev, 1229 le16_to_cpu(cqe->len_on_first_bd)); 1230 if (unlikely(!tpa_info->skb)) { 1231 DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); 1232 tpa_info->state = QEDE_AGG_STATE_ERROR; 1233 goto cons_buf; 1234 } 1235 1236 /* Start filling in the aggregation info */ 1237 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); 1238 tpa_info->frag_id = 0; 1239 tpa_info->state = QEDE_AGG_STATE_START; 1240 1241 /* Store some information from first CQE */ 1242 tpa_info->start_cqe_placement_offset = cqe->placement_offset; 1243 tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd); 1244 if ((le16_to_cpu(cqe->pars_flags.flags) >> 1245 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & 1246 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) 1247 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 1248 else 1249 tpa_info->vlan_tag = 0; 1250 1251 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash); 1252 1253 /* This is needed in order to enable forwarding support */ 1254 qede_set_gro_params(edev, tpa_info->skb, cqe); 1255 1256 cons_buf: /* We still need to handle bd_len_list to consume buffers */ 1257 if (likely(cqe->ext_bd_len_list[0])) 1258 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1259 le16_to_cpu(cqe->ext_bd_len_list[0])); 1260 1261 if (unlikely(cqe->ext_bd_len_list[1])) { 1262 DP_ERR(edev, 1263 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); 1264 tpa_info->state = QEDE_AGG_STATE_ERROR; 1265 } 1266 } 1267 1268 #ifdef CONFIG_INET 1269 static void qede_gro_ip_csum(struct sk_buff *skb) 1270 { 1271 const struct iphdr *iph = ip_hdr(skb); 1272 struct tcphdr *th; 1273 1274 skb_set_transport_header(skb, sizeof(struct iphdr)); 1275 th = tcp_hdr(skb); 1276 1277 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 1278 iph->saddr, iph->daddr, 0); 1279 1280 tcp_gro_complete(skb); 1281 } 1282 1283 static void qede_gro_ipv6_csum(struct sk_buff *skb) 1284 { 1285 struct ipv6hdr *iph = ipv6_hdr(skb); 1286 struct tcphdr *th; 1287 1288 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 1289 th = tcp_hdr(skb); 1290 1291 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 1292 &iph->saddr, &iph->daddr, 0); 1293 tcp_gro_complete(skb); 1294 } 1295 #endif 1296 1297 static void qede_gro_receive(struct qede_dev *edev, 1298 struct qede_fastpath *fp, 1299 struct sk_buff *skb, 1300 u16 vlan_tag) 1301 { 1302 /* FW can send a single MTU sized packet from gro flow 1303 * due to aggregation timeout/last segment etc. which 1304 * is not expected to be a gro packet. If a skb has zero 1305 * frags then simply push it in the stack as non gso skb. 1306 */ 1307 if (unlikely(!skb->data_len)) { 1308 skb_shinfo(skb)->gso_type = 0; 1309 skb_shinfo(skb)->gso_size = 0; 1310 goto send_skb; 1311 } 1312 1313 #ifdef CONFIG_INET 1314 if (skb_shinfo(skb)->gso_size) { 1315 skb_reset_network_header(skb); 1316 1317 switch (skb->protocol) { 1318 case htons(ETH_P_IP): 1319 qede_gro_ip_csum(skb); 1320 break; 1321 case htons(ETH_P_IPV6): 1322 qede_gro_ipv6_csum(skb); 1323 break; 1324 default: 1325 DP_ERR(edev, 1326 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 1327 ntohs(skb->protocol)); 1328 } 1329 } 1330 #endif 1331 1332 send_skb: 1333 skb_record_rx_queue(skb, fp->rxq->rxq_id); 1334 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag); 1335 } 1336 1337 static inline void qede_tpa_cont(struct qede_dev *edev, 1338 struct qede_rx_queue *rxq, 1339 struct eth_fast_path_rx_tpa_cont_cqe *cqe) 1340 { 1341 int i; 1342 1343 for (i = 0; cqe->len_list[i]; i++) 1344 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1345 le16_to_cpu(cqe->len_list[i])); 1346 1347 if (unlikely(i > 1)) 1348 DP_ERR(edev, 1349 "Strange - TPA cont with more than a single len_list entry\n"); 1350 } 1351 1352 static void qede_tpa_end(struct qede_dev *edev, 1353 struct qede_fastpath *fp, 1354 struct eth_fast_path_rx_tpa_end_cqe *cqe) 1355 { 1356 struct qede_rx_queue *rxq = fp->rxq; 1357 struct qede_agg_info *tpa_info; 1358 struct sk_buff *skb; 1359 int i; 1360 1361 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 1362 skb = tpa_info->skb; 1363 1364 for (i = 0; cqe->len_list[i]; i++) 1365 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1366 le16_to_cpu(cqe->len_list[i])); 1367 if (unlikely(i > 1)) 1368 DP_ERR(edev, 1369 "Strange - TPA emd with more than a single len_list entry\n"); 1370 1371 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 1372 goto err; 1373 1374 /* Sanity */ 1375 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) 1376 DP_ERR(edev, 1377 "Strange - TPA had %02x BDs, but SKB has only %d frags\n", 1378 cqe->num_of_bds, tpa_info->frag_id); 1379 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) 1380 DP_ERR(edev, 1381 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", 1382 le16_to_cpu(cqe->total_packet_len), skb->len); 1383 1384 memcpy(skb->data, 1385 page_address(tpa_info->buffer.data) + 1386 tpa_info->start_cqe_placement_offset + 1387 tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len); 1388 1389 /* Finalize the SKB */ 1390 skb->protocol = eth_type_trans(skb, edev->ndev); 1391 skb->ip_summed = CHECKSUM_UNNECESSARY; 1392 1393 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 1394 * to skb_shinfo(skb)->gso_segs 1395 */ 1396 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); 1397 1398 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); 1399 1400 tpa_info->state = QEDE_AGG_STATE_NONE; 1401 1402 return; 1403 err: 1404 tpa_info->state = QEDE_AGG_STATE_NONE; 1405 dev_kfree_skb_any(tpa_info->skb); 1406 tpa_info->skb = NULL; 1407 } 1408 1409 static bool qede_tunn_exist(u16 flag) 1410 { 1411 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << 1412 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); 1413 } 1414 1415 static u8 qede_check_tunn_csum(u16 flag) 1416 { 1417 u16 csum_flag = 0; 1418 u8 tcsum = 0; 1419 1420 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << 1421 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) 1422 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << 1423 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; 1424 1425 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1426 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 1427 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1428 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 1429 tcsum = QEDE_TUNN_CSUM_UNNECESSARY; 1430 } 1431 1432 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << 1433 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | 1434 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1435 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 1436 1437 if (csum_flag & flag) 1438 return QEDE_CSUM_ERROR; 1439 1440 return QEDE_CSUM_UNNECESSARY | tcsum; 1441 } 1442 1443 static u8 qede_check_notunn_csum(u16 flag) 1444 { 1445 u16 csum_flag = 0; 1446 u8 csum = 0; 1447 1448 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1449 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 1450 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1451 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 1452 csum = QEDE_CSUM_UNNECESSARY; 1453 } 1454 1455 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1456 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 1457 1458 if (csum_flag & flag) 1459 return QEDE_CSUM_ERROR; 1460 1461 return csum; 1462 } 1463 1464 static u8 qede_check_csum(u16 flag) 1465 { 1466 if (!qede_tunn_exist(flag)) 1467 return qede_check_notunn_csum(flag); 1468 else 1469 return qede_check_tunn_csum(flag); 1470 } 1471 1472 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, 1473 u16 flag) 1474 { 1475 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; 1476 1477 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << 1478 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || 1479 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << 1480 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) 1481 return true; 1482 1483 return false; 1484 } 1485 1486 /* Return true iff packet is to be passed to stack */ 1487 static bool qede_rx_xdp(struct qede_dev *edev, 1488 struct qede_fastpath *fp, 1489 struct qede_rx_queue *rxq, 1490 struct bpf_prog *prog, 1491 struct sw_rx_data *bd, 1492 struct eth_fast_path_rx_reg_cqe *cqe) 1493 { 1494 u16 len = le16_to_cpu(cqe->len_on_first_bd); 1495 struct xdp_buff xdp; 1496 enum xdp_action act; 1497 1498 xdp.data = page_address(bd->data) + cqe->placement_offset; 1499 xdp.data_end = xdp.data + len; 1500 1501 /* Queues always have a full reset currently, so for the time 1502 * being until there's atomic program replace just mark read 1503 * side for map helpers. 1504 */ 1505 rcu_read_lock(); 1506 act = bpf_prog_run_xdp(prog, &xdp); 1507 rcu_read_unlock(); 1508 1509 if (act == XDP_PASS) 1510 return true; 1511 1512 /* Count number of packets not to be passed to stack */ 1513 rxq->xdp_no_pass++; 1514 1515 switch (act) { 1516 case XDP_TX: 1517 /* We need the replacement buffer before transmit. */ 1518 if (qede_alloc_rx_buffer(rxq)) { 1519 qede_recycle_rx_bd_ring(rxq, 1); 1520 return false; 1521 } 1522 1523 /* Now if there's a transmission problem, we'd still have to 1524 * throw current buffer, as replacement was already allocated. 1525 */ 1526 if (qede_xdp_xmit(edev, fp, bd, cqe->placement_offset, len)) { 1527 dma_unmap_page(rxq->dev, bd->mapping, 1528 PAGE_SIZE, DMA_BIDIRECTIONAL); 1529 __free_page(bd->data); 1530 } 1531 1532 /* Regardless, we've consumed an Rx BD */ 1533 qede_rx_bd_ring_consume(rxq); 1534 return false; 1535 1536 default: 1537 bpf_warn_invalid_xdp_action(act); 1538 case XDP_ABORTED: 1539 case XDP_DROP: 1540 qede_recycle_rx_bd_ring(rxq, cqe->bd_num); 1541 } 1542 1543 return false; 1544 } 1545 1546 static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev, 1547 struct qede_rx_queue *rxq, 1548 struct sw_rx_data *bd, u16 len, 1549 u16 pad) 1550 { 1551 unsigned int offset = bd->page_offset; 1552 struct skb_frag_struct *frag; 1553 struct page *page = bd->data; 1554 unsigned int pull_len; 1555 struct sk_buff *skb; 1556 unsigned char *va; 1557 1558 /* Allocate a new SKB with a sufficient large header len */ 1559 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); 1560 if (unlikely(!skb)) 1561 return NULL; 1562 1563 /* Copy data into SKB - if it's small, we can simply copy it and 1564 * re-use the already allcoated & mapped memory. 1565 */ 1566 if (len + pad <= edev->rx_copybreak) { 1567 memcpy(skb_put(skb, len), 1568 page_address(page) + pad + offset, len); 1569 qede_reuse_page(rxq, bd); 1570 goto out; 1571 } 1572 1573 frag = &skb_shinfo(skb)->frags[0]; 1574 1575 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 1576 page, pad + offset, len, rxq->rx_buf_seg_size); 1577 1578 va = skb_frag_address(frag); 1579 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); 1580 1581 /* Align the pull_len to optimize memcpy */ 1582 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); 1583 1584 /* Correct the skb & frag sizes offset after the pull */ 1585 skb_frag_size_sub(frag, pull_len); 1586 frag->page_offset += pull_len; 1587 skb->data_len -= pull_len; 1588 skb->tail += pull_len; 1589 1590 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) { 1591 /* Incr page ref count to reuse on allocation failure so 1592 * that it doesn't get freed while freeing SKB [as its 1593 * already mapped there]. 1594 */ 1595 page_ref_inc(page); 1596 dev_kfree_skb_any(skb); 1597 return NULL; 1598 } 1599 1600 out: 1601 /* We've consumed the first BD and prepared an SKB */ 1602 qede_rx_bd_ring_consume(rxq); 1603 return skb; 1604 } 1605 1606 static int qede_rx_build_jumbo(struct qede_dev *edev, 1607 struct qede_rx_queue *rxq, 1608 struct sk_buff *skb, 1609 struct eth_fast_path_rx_reg_cqe *cqe, 1610 u16 first_bd_len) 1611 { 1612 u16 pkt_len = le16_to_cpu(cqe->pkt_len); 1613 struct sw_rx_data *bd; 1614 u16 bd_cons_idx; 1615 u8 num_frags; 1616 1617 pkt_len -= first_bd_len; 1618 1619 /* We've already used one BD for the SKB. Now take care of the rest */ 1620 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) { 1621 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : 1622 pkt_len; 1623 1624 if (unlikely(!cur_size)) { 1625 DP_ERR(edev, 1626 "Still got %d BDs for mapping jumbo, but length became 0\n", 1627 num_frags); 1628 goto out; 1629 } 1630 1631 /* We need a replacement buffer for each BD */ 1632 if (unlikely(qede_alloc_rx_buffer(rxq))) 1633 goto out; 1634 1635 /* Now that we've allocated the replacement buffer, 1636 * we can safely consume the next BD and map it to the SKB. 1637 */ 1638 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1639 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1640 qede_rx_bd_ring_consume(rxq); 1641 1642 dma_unmap_page(rxq->dev, bd->mapping, 1643 PAGE_SIZE, DMA_FROM_DEVICE); 1644 1645 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, 1646 bd->data, 0, cur_size); 1647 1648 skb->truesize += PAGE_SIZE; 1649 skb->data_len += cur_size; 1650 skb->len += cur_size; 1651 pkt_len -= cur_size; 1652 } 1653 1654 if (unlikely(pkt_len)) 1655 DP_ERR(edev, 1656 "Mapped all BDs of jumbo, but still have %d bytes\n", 1657 pkt_len); 1658 1659 out: 1660 return num_frags; 1661 } 1662 1663 static int qede_rx_process_tpa_cqe(struct qede_dev *edev, 1664 struct qede_fastpath *fp, 1665 struct qede_rx_queue *rxq, 1666 union eth_rx_cqe *cqe, 1667 enum eth_rx_cqe_type type) 1668 { 1669 switch (type) { 1670 case ETH_RX_CQE_TYPE_TPA_START: 1671 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start); 1672 return 0; 1673 case ETH_RX_CQE_TYPE_TPA_CONT: 1674 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont); 1675 return 0; 1676 case ETH_RX_CQE_TYPE_TPA_END: 1677 qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end); 1678 return 1; 1679 default: 1680 return 0; 1681 } 1682 } 1683 1684 static int qede_rx_process_cqe(struct qede_dev *edev, 1685 struct qede_fastpath *fp, 1686 struct qede_rx_queue *rxq) 1687 { 1688 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog); 1689 struct eth_fast_path_rx_reg_cqe *fp_cqe; 1690 u16 len, pad, bd_cons_idx, parse_flag; 1691 enum eth_rx_cqe_type cqe_type; 1692 union eth_rx_cqe *cqe; 1693 struct sw_rx_data *bd; 1694 struct sk_buff *skb; 1695 __le16 flags; 1696 u8 csum_flag; 1697 1698 /* Get the CQE from the completion ring */ 1699 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring); 1700 cqe_type = cqe->fast_path_regular.type; 1701 1702 /* Process an unlikely slowpath event */ 1703 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { 1704 struct eth_slow_path_rx_cqe *sp_cqe; 1705 1706 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe; 1707 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe); 1708 return 0; 1709 } 1710 1711 /* Handle TPA cqes */ 1712 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) 1713 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type); 1714 1715 /* Get the data from the SW ring; Consume it only after it's evident 1716 * we wouldn't recycle it. 1717 */ 1718 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1719 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1720 1721 fp_cqe = &cqe->fast_path_regular; 1722 len = le16_to_cpu(fp_cqe->len_on_first_bd); 1723 pad = fp_cqe->placement_offset; 1724 1725 /* Run eBPF program if one is attached */ 1726 if (xdp_prog) 1727 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe)) 1728 return 1; 1729 1730 /* If this is an error packet then drop it */ 1731 flags = cqe->fast_path_regular.pars_flags.flags; 1732 parse_flag = le16_to_cpu(flags); 1733 1734 csum_flag = qede_check_csum(parse_flag); 1735 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { 1736 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) { 1737 rxq->rx_ip_frags++; 1738 } else { 1739 DP_NOTICE(edev, 1740 "CQE has error, flags = %x, dropping incoming packet\n", 1741 parse_flag); 1742 rxq->rx_hw_errors++; 1743 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); 1744 return 0; 1745 } 1746 } 1747 1748 /* Basic validation passed; Need to prepare an SKB. This would also 1749 * guarantee to finally consume the first BD upon success. 1750 */ 1751 skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad); 1752 if (!skb) { 1753 rxq->rx_alloc_errors++; 1754 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); 1755 return 0; 1756 } 1757 1758 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed 1759 * by a single cqe. 1760 */ 1761 if (fp_cqe->bd_num > 1) { 1762 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb, 1763 fp_cqe, len); 1764 1765 if (unlikely(unmapped_frags > 0)) { 1766 qede_recycle_rx_bd_ring(rxq, unmapped_frags); 1767 dev_kfree_skb_any(skb); 1768 return 0; 1769 } 1770 } 1771 1772 /* The SKB contains all the data. Now prepare meta-magic */ 1773 skb->protocol = eth_type_trans(skb, edev->ndev); 1774 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash); 1775 qede_set_skb_csum(skb, csum_flag); 1776 skb_record_rx_queue(skb, rxq->rxq_id); 1777 1778 /* SKB is prepared - pass it to stack */ 1779 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag)); 1780 1781 return 1; 1782 } 1783 1784 static int qede_rx_int(struct qede_fastpath *fp, int budget) 1785 { 1786 struct qede_rx_queue *rxq = fp->rxq; 1787 struct qede_dev *edev = fp->edev; 1788 u16 hw_comp_cons, sw_comp_cons; 1789 int work_done = 0; 1790 1791 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 1792 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1793 1794 /* Memory barrier to prevent the CPU from doing speculative reads of CQE 1795 * / BD in the while-loop before reading hw_comp_cons. If the CQE is 1796 * read before it is written by FW, then FW writes CQE and SB, and then 1797 * the CPU reads the hw_comp_cons, it will use an old CQE. 1798 */ 1799 rmb(); 1800 1801 /* Loop to complete all indicated BDs */ 1802 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) { 1803 qede_rx_process_cqe(edev, fp, rxq); 1804 qed_chain_recycle_consumed(&rxq->rx_comp_ring); 1805 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1806 work_done++; 1807 } 1808 1809 /* Update producers */ 1810 qede_update_rx_prod(edev, rxq); 1811 1812 return work_done; 1813 } 1814 1815 static bool qede_poll_is_more_work(struct qede_fastpath *fp) 1816 { 1817 qed_sb_update_sb_idx(fp->sb_info); 1818 1819 /* *_has_*_work() reads the status block, thus we need to ensure that 1820 * status block indices have been actually read (qed_sb_update_sb_idx) 1821 * prior to this check (*_has_*_work) so that we won't write the 1822 * "newer" value of the status block to HW (if there was a DMA right 1823 * after qede_has_rx_work and if there is no rmb, the memory reading 1824 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb). 1825 * In this case there will never be another interrupt until there is 1826 * another update of the status block, while there is still unhandled 1827 * work. 1828 */ 1829 rmb(); 1830 1831 if (likely(fp->type & QEDE_FASTPATH_RX)) 1832 if (qede_has_rx_work(fp->rxq)) 1833 return true; 1834 1835 if (fp->type & QEDE_FASTPATH_XDP) 1836 if (qede_txq_has_work(fp->xdp_tx)) 1837 return true; 1838 1839 if (likely(fp->type & QEDE_FASTPATH_TX)) 1840 if (qede_txq_has_work(fp->txq)) 1841 return true; 1842 1843 return false; 1844 } 1845 1846 static int qede_poll(struct napi_struct *napi, int budget) 1847 { 1848 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, 1849 napi); 1850 struct qede_dev *edev = fp->edev; 1851 int rx_work_done = 0; 1852 1853 if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq)) 1854 qede_tx_int(edev, fp->txq); 1855 1856 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx)) 1857 qede_xdp_tx_int(edev, fp->xdp_tx); 1858 1859 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) && 1860 qede_has_rx_work(fp->rxq)) ? 1861 qede_rx_int(fp, budget) : 0; 1862 if (rx_work_done < budget) { 1863 if (!qede_poll_is_more_work(fp)) { 1864 napi_complete(napi); 1865 1866 /* Update and reenable interrupts */ 1867 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1); 1868 } else { 1869 rx_work_done = budget; 1870 } 1871 } 1872 1873 if (fp->xdp_xmit) { 1874 u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl); 1875 1876 fp->xdp_xmit = 0; 1877 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); 1878 qede_update_tx_producer(fp->xdp_tx); 1879 } 1880 1881 return rx_work_done; 1882 } 1883 1884 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) 1885 { 1886 struct qede_fastpath *fp = fp_cookie; 1887 1888 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); 1889 1890 napi_schedule_irqoff(&fp->napi); 1891 return IRQ_HANDLED; 1892 } 1893 1894 /* ------------------------------------------------------------------------- 1895 * END OF FAST-PATH 1896 * ------------------------------------------------------------------------- 1897 */ 1898 1899 static int qede_open(struct net_device *ndev); 1900 static int qede_close(struct net_device *ndev); 1901 static int qede_set_mac_addr(struct net_device *ndev, void *p); 1902 static void qede_set_rx_mode(struct net_device *ndev); 1903 static void qede_config_rx_mode(struct net_device *ndev); 1904 1905 static int qede_set_ucast_rx_mac(struct qede_dev *edev, 1906 enum qed_filter_xcast_params_type opcode, 1907 unsigned char mac[ETH_ALEN]) 1908 { 1909 struct qed_filter_params filter_cmd; 1910 1911 memset(&filter_cmd, 0, sizeof(filter_cmd)); 1912 filter_cmd.type = QED_FILTER_TYPE_UCAST; 1913 filter_cmd.filter.ucast.type = opcode; 1914 filter_cmd.filter.ucast.mac_valid = 1; 1915 ether_addr_copy(filter_cmd.filter.ucast.mac, mac); 1916 1917 return edev->ops->filter_config(edev->cdev, &filter_cmd); 1918 } 1919 1920 static int qede_set_ucast_rx_vlan(struct qede_dev *edev, 1921 enum qed_filter_xcast_params_type opcode, 1922 u16 vid) 1923 { 1924 struct qed_filter_params filter_cmd; 1925 1926 memset(&filter_cmd, 0, sizeof(filter_cmd)); 1927 filter_cmd.type = QED_FILTER_TYPE_UCAST; 1928 filter_cmd.filter.ucast.type = opcode; 1929 filter_cmd.filter.ucast.vlan_valid = 1; 1930 filter_cmd.filter.ucast.vlan = vid; 1931 1932 return edev->ops->filter_config(edev->cdev, &filter_cmd); 1933 } 1934 1935 void qede_fill_by_demand_stats(struct qede_dev *edev) 1936 { 1937 struct qed_eth_stats stats; 1938 1939 edev->ops->get_vport_stats(edev->cdev, &stats); 1940 edev->stats.no_buff_discards = stats.no_buff_discards; 1941 edev->stats.packet_too_big_discard = stats.packet_too_big_discard; 1942 edev->stats.ttl0_discard = stats.ttl0_discard; 1943 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes; 1944 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes; 1945 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes; 1946 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts; 1947 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts; 1948 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts; 1949 edev->stats.mftag_filter_discards = stats.mftag_filter_discards; 1950 edev->stats.mac_filter_discards = stats.mac_filter_discards; 1951 1952 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes; 1953 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes; 1954 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes; 1955 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts; 1956 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts; 1957 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts; 1958 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts; 1959 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts; 1960 edev->stats.coalesced_events = stats.tpa_coalesced_events; 1961 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num; 1962 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts; 1963 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes; 1964 1965 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets; 1966 edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets; 1967 edev->stats.rx_128_to_255_byte_packets = 1968 stats.rx_128_to_255_byte_packets; 1969 edev->stats.rx_256_to_511_byte_packets = 1970 stats.rx_256_to_511_byte_packets; 1971 edev->stats.rx_512_to_1023_byte_packets = 1972 stats.rx_512_to_1023_byte_packets; 1973 edev->stats.rx_1024_to_1518_byte_packets = 1974 stats.rx_1024_to_1518_byte_packets; 1975 edev->stats.rx_1519_to_1522_byte_packets = 1976 stats.rx_1519_to_1522_byte_packets; 1977 edev->stats.rx_1519_to_2047_byte_packets = 1978 stats.rx_1519_to_2047_byte_packets; 1979 edev->stats.rx_2048_to_4095_byte_packets = 1980 stats.rx_2048_to_4095_byte_packets; 1981 edev->stats.rx_4096_to_9216_byte_packets = 1982 stats.rx_4096_to_9216_byte_packets; 1983 edev->stats.rx_9217_to_16383_byte_packets = 1984 stats.rx_9217_to_16383_byte_packets; 1985 edev->stats.rx_crc_errors = stats.rx_crc_errors; 1986 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames; 1987 edev->stats.rx_pause_frames = stats.rx_pause_frames; 1988 edev->stats.rx_pfc_frames = stats.rx_pfc_frames; 1989 edev->stats.rx_align_errors = stats.rx_align_errors; 1990 edev->stats.rx_carrier_errors = stats.rx_carrier_errors; 1991 edev->stats.rx_oversize_packets = stats.rx_oversize_packets; 1992 edev->stats.rx_jabbers = stats.rx_jabbers; 1993 edev->stats.rx_undersize_packets = stats.rx_undersize_packets; 1994 edev->stats.rx_fragments = stats.rx_fragments; 1995 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets; 1996 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets; 1997 edev->stats.tx_128_to_255_byte_packets = 1998 stats.tx_128_to_255_byte_packets; 1999 edev->stats.tx_256_to_511_byte_packets = 2000 stats.tx_256_to_511_byte_packets; 2001 edev->stats.tx_512_to_1023_byte_packets = 2002 stats.tx_512_to_1023_byte_packets; 2003 edev->stats.tx_1024_to_1518_byte_packets = 2004 stats.tx_1024_to_1518_byte_packets; 2005 edev->stats.tx_1519_to_2047_byte_packets = 2006 stats.tx_1519_to_2047_byte_packets; 2007 edev->stats.tx_2048_to_4095_byte_packets = 2008 stats.tx_2048_to_4095_byte_packets; 2009 edev->stats.tx_4096_to_9216_byte_packets = 2010 stats.tx_4096_to_9216_byte_packets; 2011 edev->stats.tx_9217_to_16383_byte_packets = 2012 stats.tx_9217_to_16383_byte_packets; 2013 edev->stats.tx_pause_frames = stats.tx_pause_frames; 2014 edev->stats.tx_pfc_frames = stats.tx_pfc_frames; 2015 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count; 2016 edev->stats.tx_total_collisions = stats.tx_total_collisions; 2017 edev->stats.brb_truncates = stats.brb_truncates; 2018 edev->stats.brb_discards = stats.brb_discards; 2019 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames; 2020 } 2021 2022 static 2023 struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev, 2024 struct rtnl_link_stats64 *stats) 2025 { 2026 struct qede_dev *edev = netdev_priv(dev); 2027 2028 qede_fill_by_demand_stats(edev); 2029 2030 stats->rx_packets = edev->stats.rx_ucast_pkts + 2031 edev->stats.rx_mcast_pkts + 2032 edev->stats.rx_bcast_pkts; 2033 stats->tx_packets = edev->stats.tx_ucast_pkts + 2034 edev->stats.tx_mcast_pkts + 2035 edev->stats.tx_bcast_pkts; 2036 2037 stats->rx_bytes = edev->stats.rx_ucast_bytes + 2038 edev->stats.rx_mcast_bytes + 2039 edev->stats.rx_bcast_bytes; 2040 2041 stats->tx_bytes = edev->stats.tx_ucast_bytes + 2042 edev->stats.tx_mcast_bytes + 2043 edev->stats.tx_bcast_bytes; 2044 2045 stats->tx_errors = edev->stats.tx_err_drop_pkts; 2046 stats->multicast = edev->stats.rx_mcast_pkts + 2047 edev->stats.rx_bcast_pkts; 2048 2049 stats->rx_fifo_errors = edev->stats.no_buff_discards; 2050 2051 stats->collisions = edev->stats.tx_total_collisions; 2052 stats->rx_crc_errors = edev->stats.rx_crc_errors; 2053 stats->rx_frame_errors = edev->stats.rx_align_errors; 2054 2055 return stats; 2056 } 2057 2058 #ifdef CONFIG_QED_SRIOV 2059 static int qede_get_vf_config(struct net_device *dev, int vfidx, 2060 struct ifla_vf_info *ivi) 2061 { 2062 struct qede_dev *edev = netdev_priv(dev); 2063 2064 if (!edev->ops) 2065 return -EINVAL; 2066 2067 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 2068 } 2069 2070 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 2071 int min_tx_rate, int max_tx_rate) 2072 { 2073 struct qede_dev *edev = netdev_priv(dev); 2074 2075 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 2076 max_tx_rate); 2077 } 2078 2079 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 2080 { 2081 struct qede_dev *edev = netdev_priv(dev); 2082 2083 if (!edev->ops) 2084 return -EINVAL; 2085 2086 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 2087 } 2088 2089 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 2090 int link_state) 2091 { 2092 struct qede_dev *edev = netdev_priv(dev); 2093 2094 if (!edev->ops) 2095 return -EINVAL; 2096 2097 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 2098 } 2099 #endif 2100 2101 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action) 2102 { 2103 struct qed_update_vport_params params; 2104 int rc; 2105 2106 /* Proceed only if action actually needs to be performed */ 2107 if (edev->accept_any_vlan == action) 2108 return; 2109 2110 memset(¶ms, 0, sizeof(params)); 2111 2112 params.vport_id = 0; 2113 params.accept_any_vlan = action; 2114 params.update_accept_any_vlan_flg = 1; 2115 2116 rc = edev->ops->vport_update(edev->cdev, ¶ms); 2117 if (rc) { 2118 DP_ERR(edev, "Failed to %s accept-any-vlan\n", 2119 action ? "enable" : "disable"); 2120 } else { 2121 DP_INFO(edev, "%s accept-any-vlan\n", 2122 action ? "enabled" : "disabled"); 2123 edev->accept_any_vlan = action; 2124 } 2125 } 2126 2127 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 2128 { 2129 struct qede_dev *edev = netdev_priv(dev); 2130 struct qede_vlan *vlan, *tmp; 2131 int rc = 0; 2132 2133 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid); 2134 2135 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 2136 if (!vlan) { 2137 DP_INFO(edev, "Failed to allocate struct for vlan\n"); 2138 return -ENOMEM; 2139 } 2140 INIT_LIST_HEAD(&vlan->list); 2141 vlan->vid = vid; 2142 vlan->configured = false; 2143 2144 /* Verify vlan isn't already configured */ 2145 list_for_each_entry(tmp, &edev->vlan_list, list) { 2146 if (tmp->vid == vlan->vid) { 2147 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), 2148 "vlan already configured\n"); 2149 kfree(vlan); 2150 return -EEXIST; 2151 } 2152 } 2153 2154 /* If interface is down, cache this VLAN ID and return */ 2155 __qede_lock(edev); 2156 if (edev->state != QEDE_STATE_OPEN) { 2157 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 2158 "Interface is down, VLAN %d will be configured when interface is up\n", 2159 vid); 2160 if (vid != 0) 2161 edev->non_configured_vlans++; 2162 list_add(&vlan->list, &edev->vlan_list); 2163 goto out; 2164 } 2165 2166 /* Check for the filter limit. 2167 * Note - vlan0 has a reserved filter and can be added without 2168 * worrying about quota 2169 */ 2170 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) || 2171 (vlan->vid == 0)) { 2172 rc = qede_set_ucast_rx_vlan(edev, 2173 QED_FILTER_XCAST_TYPE_ADD, 2174 vlan->vid); 2175 if (rc) { 2176 DP_ERR(edev, "Failed to configure VLAN %d\n", 2177 vlan->vid); 2178 kfree(vlan); 2179 goto out; 2180 } 2181 vlan->configured = true; 2182 2183 /* vlan0 filter isn't consuming out of our quota */ 2184 if (vlan->vid != 0) 2185 edev->configured_vlans++; 2186 } else { 2187 /* Out of quota; Activate accept-any-VLAN mode */ 2188 if (!edev->non_configured_vlans) 2189 qede_config_accept_any_vlan(edev, true); 2190 2191 edev->non_configured_vlans++; 2192 } 2193 2194 list_add(&vlan->list, &edev->vlan_list); 2195 2196 out: 2197 __qede_unlock(edev); 2198 return rc; 2199 } 2200 2201 static void qede_del_vlan_from_list(struct qede_dev *edev, 2202 struct qede_vlan *vlan) 2203 { 2204 /* vlan0 filter isn't consuming out of our quota */ 2205 if (vlan->vid != 0) { 2206 if (vlan->configured) 2207 edev->configured_vlans--; 2208 else 2209 edev->non_configured_vlans--; 2210 } 2211 2212 list_del(&vlan->list); 2213 kfree(vlan); 2214 } 2215 2216 static int qede_configure_vlan_filters(struct qede_dev *edev) 2217 { 2218 int rc = 0, real_rc = 0, accept_any_vlan = 0; 2219 struct qed_dev_eth_info *dev_info; 2220 struct qede_vlan *vlan = NULL; 2221 2222 if (list_empty(&edev->vlan_list)) 2223 return 0; 2224 2225 dev_info = &edev->dev_info; 2226 2227 /* Configure non-configured vlans */ 2228 list_for_each_entry(vlan, &edev->vlan_list, list) { 2229 if (vlan->configured) 2230 continue; 2231 2232 /* We have used all our credits, now enable accept_any_vlan */ 2233 if ((vlan->vid != 0) && 2234 (edev->configured_vlans == dev_info->num_vlan_filters)) { 2235 accept_any_vlan = 1; 2236 continue; 2237 } 2238 2239 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid); 2240 2241 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, 2242 vlan->vid); 2243 if (rc) { 2244 DP_ERR(edev, "Failed to configure VLAN %u\n", 2245 vlan->vid); 2246 real_rc = rc; 2247 continue; 2248 } 2249 2250 vlan->configured = true; 2251 /* vlan0 filter doesn't consume our VLAN filter's quota */ 2252 if (vlan->vid != 0) { 2253 edev->non_configured_vlans--; 2254 edev->configured_vlans++; 2255 } 2256 } 2257 2258 /* enable accept_any_vlan mode if we have more VLANs than credits, 2259 * or remove accept_any_vlan mode if we've actually removed 2260 * a non-configured vlan, and all remaining vlans are truly configured. 2261 */ 2262 2263 if (accept_any_vlan) 2264 qede_config_accept_any_vlan(edev, true); 2265 else if (!edev->non_configured_vlans) 2266 qede_config_accept_any_vlan(edev, false); 2267 2268 return real_rc; 2269 } 2270 2271 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 2272 { 2273 struct qede_dev *edev = netdev_priv(dev); 2274 struct qede_vlan *vlan = NULL; 2275 int rc = 0; 2276 2277 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid); 2278 2279 /* Find whether entry exists */ 2280 __qede_lock(edev); 2281 list_for_each_entry(vlan, &edev->vlan_list, list) 2282 if (vlan->vid == vid) 2283 break; 2284 2285 if (!vlan || (vlan->vid != vid)) { 2286 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), 2287 "Vlan isn't configured\n"); 2288 goto out; 2289 } 2290 2291 if (edev->state != QEDE_STATE_OPEN) { 2292 /* As interface is already down, we don't have a VPORT 2293 * instance to remove vlan filter. So just update vlan list 2294 */ 2295 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 2296 "Interface is down, removing VLAN from list only\n"); 2297 qede_del_vlan_from_list(edev, vlan); 2298 goto out; 2299 } 2300 2301 /* Remove vlan */ 2302 if (vlan->configured) { 2303 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, 2304 vid); 2305 if (rc) { 2306 DP_ERR(edev, "Failed to remove VLAN %d\n", vid); 2307 goto out; 2308 } 2309 } 2310 2311 qede_del_vlan_from_list(edev, vlan); 2312 2313 /* We have removed a VLAN - try to see if we can 2314 * configure non-configured VLAN from the list. 2315 */ 2316 rc = qede_configure_vlan_filters(edev); 2317 2318 out: 2319 __qede_unlock(edev); 2320 return rc; 2321 } 2322 2323 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev) 2324 { 2325 struct qede_vlan *vlan = NULL; 2326 2327 if (list_empty(&edev->vlan_list)) 2328 return; 2329 2330 list_for_each_entry(vlan, &edev->vlan_list, list) { 2331 if (!vlan->configured) 2332 continue; 2333 2334 vlan->configured = false; 2335 2336 /* vlan0 filter isn't consuming out of our quota */ 2337 if (vlan->vid != 0) { 2338 edev->non_configured_vlans++; 2339 edev->configured_vlans--; 2340 } 2341 2342 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 2343 "marked vlan %d as non-configured\n", vlan->vid); 2344 } 2345 2346 edev->accept_any_vlan = false; 2347 } 2348 2349 static void qede_set_features_reload(struct qede_dev *edev, 2350 struct qede_reload_args *args) 2351 { 2352 edev->ndev->features = args->u.features; 2353 } 2354 2355 int qede_set_features(struct net_device *dev, netdev_features_t features) 2356 { 2357 struct qede_dev *edev = netdev_priv(dev); 2358 netdev_features_t changes = features ^ dev->features; 2359 bool need_reload = false; 2360 2361 /* No action needed if hardware GRO is disabled during driver load */ 2362 if (changes & NETIF_F_GRO) { 2363 if (dev->features & NETIF_F_GRO) 2364 need_reload = !edev->gro_disable; 2365 else 2366 need_reload = edev->gro_disable; 2367 } 2368 2369 if (need_reload) { 2370 struct qede_reload_args args; 2371 2372 args.u.features = features; 2373 args.func = &qede_set_features_reload; 2374 2375 /* Make sure that we definitely need to reload. 2376 * In case of an eBPF attached program, there will be no FW 2377 * aggregations, so no need to actually reload. 2378 */ 2379 __qede_lock(edev); 2380 if (edev->xdp_prog) 2381 args.func(edev, &args); 2382 else 2383 qede_reload(edev, &args, true); 2384 __qede_unlock(edev); 2385 2386 return 1; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static void qede_udp_tunnel_add(struct net_device *dev, 2393 struct udp_tunnel_info *ti) 2394 { 2395 struct qede_dev *edev = netdev_priv(dev); 2396 u16 t_port = ntohs(ti->port); 2397 2398 switch (ti->type) { 2399 case UDP_TUNNEL_TYPE_VXLAN: 2400 if (edev->vxlan_dst_port) 2401 return; 2402 2403 edev->vxlan_dst_port = t_port; 2404 2405 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n", 2406 t_port); 2407 2408 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); 2409 break; 2410 case UDP_TUNNEL_TYPE_GENEVE: 2411 if (edev->geneve_dst_port) 2412 return; 2413 2414 edev->geneve_dst_port = t_port; 2415 2416 DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n", 2417 t_port); 2418 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); 2419 break; 2420 default: 2421 return; 2422 } 2423 2424 schedule_delayed_work(&edev->sp_task, 0); 2425 } 2426 2427 static void qede_udp_tunnel_del(struct net_device *dev, 2428 struct udp_tunnel_info *ti) 2429 { 2430 struct qede_dev *edev = netdev_priv(dev); 2431 u16 t_port = ntohs(ti->port); 2432 2433 switch (ti->type) { 2434 case UDP_TUNNEL_TYPE_VXLAN: 2435 if (t_port != edev->vxlan_dst_port) 2436 return; 2437 2438 edev->vxlan_dst_port = 0; 2439 2440 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n", 2441 t_port); 2442 2443 set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags); 2444 break; 2445 case UDP_TUNNEL_TYPE_GENEVE: 2446 if (t_port != edev->geneve_dst_port) 2447 return; 2448 2449 edev->geneve_dst_port = 0; 2450 2451 DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n", 2452 t_port); 2453 set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags); 2454 break; 2455 default: 2456 return; 2457 } 2458 2459 schedule_delayed_work(&edev->sp_task, 0); 2460 } 2461 2462 /* 8B udp header + 8B base tunnel header + 32B option length */ 2463 #define QEDE_MAX_TUN_HDR_LEN 48 2464 2465 static netdev_features_t qede_features_check(struct sk_buff *skb, 2466 struct net_device *dev, 2467 netdev_features_t features) 2468 { 2469 if (skb->encapsulation) { 2470 u8 l4_proto = 0; 2471 2472 switch (vlan_get_protocol(skb)) { 2473 case htons(ETH_P_IP): 2474 l4_proto = ip_hdr(skb)->protocol; 2475 break; 2476 case htons(ETH_P_IPV6): 2477 l4_proto = ipv6_hdr(skb)->nexthdr; 2478 break; 2479 default: 2480 return features; 2481 } 2482 2483 /* Disable offloads for geneve tunnels, as HW can't parse 2484 * the geneve header which has option length greater than 32B. 2485 */ 2486 if ((l4_proto == IPPROTO_UDP) && 2487 ((skb_inner_mac_header(skb) - 2488 skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN)) 2489 return features & ~(NETIF_F_CSUM_MASK | 2490 NETIF_F_GSO_MASK); 2491 } 2492 2493 return features; 2494 } 2495 2496 static void qede_xdp_reload_func(struct qede_dev *edev, 2497 struct qede_reload_args *args) 2498 { 2499 struct bpf_prog *old; 2500 2501 old = xchg(&edev->xdp_prog, args->u.new_prog); 2502 if (old) 2503 bpf_prog_put(old); 2504 } 2505 2506 static int qede_xdp_set(struct qede_dev *edev, struct bpf_prog *prog) 2507 { 2508 struct qede_reload_args args; 2509 2510 /* If we're called, there was already a bpf reference increment */ 2511 args.func = &qede_xdp_reload_func; 2512 args.u.new_prog = prog; 2513 qede_reload(edev, &args, false); 2514 2515 return 0; 2516 } 2517 2518 static int qede_xdp(struct net_device *dev, struct netdev_xdp *xdp) 2519 { 2520 struct qede_dev *edev = netdev_priv(dev); 2521 2522 switch (xdp->command) { 2523 case XDP_SETUP_PROG: 2524 return qede_xdp_set(edev, xdp->prog); 2525 case XDP_QUERY_PROG: 2526 xdp->prog_attached = !!edev->xdp_prog; 2527 return 0; 2528 default: 2529 return -EINVAL; 2530 } 2531 } 2532 2533 static const struct net_device_ops qede_netdev_ops = { 2534 .ndo_open = qede_open, 2535 .ndo_stop = qede_close, 2536 .ndo_start_xmit = qede_start_xmit, 2537 .ndo_set_rx_mode = qede_set_rx_mode, 2538 .ndo_set_mac_address = qede_set_mac_addr, 2539 .ndo_validate_addr = eth_validate_addr, 2540 .ndo_change_mtu = qede_change_mtu, 2541 #ifdef CONFIG_QED_SRIOV 2542 .ndo_set_vf_mac = qede_set_vf_mac, 2543 .ndo_set_vf_vlan = qede_set_vf_vlan, 2544 #endif 2545 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 2546 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 2547 .ndo_set_features = qede_set_features, 2548 .ndo_get_stats64 = qede_get_stats64, 2549 #ifdef CONFIG_QED_SRIOV 2550 .ndo_set_vf_link_state = qede_set_vf_link_state, 2551 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 2552 .ndo_get_vf_config = qede_get_vf_config, 2553 .ndo_set_vf_rate = qede_set_vf_rate, 2554 #endif 2555 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 2556 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 2557 .ndo_features_check = qede_features_check, 2558 .ndo_xdp = qede_xdp, 2559 }; 2560 2561 /* ------------------------------------------------------------------------- 2562 * START OF PROBE / REMOVE 2563 * ------------------------------------------------------------------------- 2564 */ 2565 2566 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 2567 struct pci_dev *pdev, 2568 struct qed_dev_eth_info *info, 2569 u32 dp_module, u8 dp_level) 2570 { 2571 struct net_device *ndev; 2572 struct qede_dev *edev; 2573 2574 ndev = alloc_etherdev_mqs(sizeof(*edev), 2575 info->num_queues, info->num_queues); 2576 if (!ndev) { 2577 pr_err("etherdev allocation failed\n"); 2578 return NULL; 2579 } 2580 2581 edev = netdev_priv(ndev); 2582 edev->ndev = ndev; 2583 edev->cdev = cdev; 2584 edev->pdev = pdev; 2585 edev->dp_module = dp_module; 2586 edev->dp_level = dp_level; 2587 edev->ops = qed_ops; 2588 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 2589 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 2590 2591 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 2592 info->num_queues, info->num_queues); 2593 2594 SET_NETDEV_DEV(ndev, &pdev->dev); 2595 2596 memset(&edev->stats, 0, sizeof(edev->stats)); 2597 memcpy(&edev->dev_info, info, sizeof(*info)); 2598 2599 INIT_LIST_HEAD(&edev->vlan_list); 2600 2601 return edev; 2602 } 2603 2604 static void qede_init_ndev(struct qede_dev *edev) 2605 { 2606 struct net_device *ndev = edev->ndev; 2607 struct pci_dev *pdev = edev->pdev; 2608 u32 hw_features; 2609 2610 pci_set_drvdata(pdev, ndev); 2611 2612 ndev->mem_start = edev->dev_info.common.pci_mem_start; 2613 ndev->base_addr = ndev->mem_start; 2614 ndev->mem_end = edev->dev_info.common.pci_mem_end; 2615 ndev->irq = edev->dev_info.common.pci_irq; 2616 2617 ndev->watchdog_timeo = TX_TIMEOUT; 2618 2619 ndev->netdev_ops = &qede_netdev_ops; 2620 2621 qede_set_ethtool_ops(ndev); 2622 2623 ndev->priv_flags |= IFF_UNICAST_FLT; 2624 2625 /* user-changeble features */ 2626 hw_features = NETIF_F_GRO | NETIF_F_SG | 2627 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2628 NETIF_F_TSO | NETIF_F_TSO6; 2629 2630 /* Encap features*/ 2631 hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | 2632 NETIF_F_TSO_ECN | NETIF_F_GSO_UDP_TUNNEL_CSUM | 2633 NETIF_F_GSO_GRE_CSUM; 2634 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2635 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN | 2636 NETIF_F_TSO6 | NETIF_F_GSO_GRE | 2637 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM | 2638 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2639 NETIF_F_GSO_GRE_CSUM; 2640 2641 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 2642 NETIF_F_HIGHDMA; 2643 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 2644 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 2645 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 2646 2647 ndev->hw_features = hw_features; 2648 2649 /* MTU range: 46 - 9600 */ 2650 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 2651 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 2652 2653 /* Set network device HW mac */ 2654 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 2655 2656 ndev->mtu = edev->dev_info.common.mtu; 2657 } 2658 2659 /* This function converts from 32b param to two params of level and module 2660 * Input 32b decoding: 2661 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 2662 * 'happy' flow, e.g. memory allocation failed. 2663 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 2664 * and provide important parameters. 2665 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 2666 * module. VERBOSE prints are for tracking the specific flow in low level. 2667 * 2668 * Notice that the level should be that of the lowest required logs. 2669 */ 2670 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 2671 { 2672 *p_dp_level = QED_LEVEL_NOTICE; 2673 *p_dp_module = 0; 2674 2675 if (debug & QED_LOG_VERBOSE_MASK) { 2676 *p_dp_level = QED_LEVEL_VERBOSE; 2677 *p_dp_module = (debug & 0x3FFFFFFF); 2678 } else if (debug & QED_LOG_INFO_MASK) { 2679 *p_dp_level = QED_LEVEL_INFO; 2680 } else if (debug & QED_LOG_NOTICE_MASK) { 2681 *p_dp_level = QED_LEVEL_NOTICE; 2682 } 2683 } 2684 2685 static void qede_free_fp_array(struct qede_dev *edev) 2686 { 2687 if (edev->fp_array) { 2688 struct qede_fastpath *fp; 2689 int i; 2690 2691 for_each_queue(i) { 2692 fp = &edev->fp_array[i]; 2693 2694 kfree(fp->sb_info); 2695 kfree(fp->rxq); 2696 kfree(fp->xdp_tx); 2697 kfree(fp->txq); 2698 } 2699 kfree(edev->fp_array); 2700 } 2701 2702 edev->num_queues = 0; 2703 edev->fp_num_tx = 0; 2704 edev->fp_num_rx = 0; 2705 } 2706 2707 static int qede_alloc_fp_array(struct qede_dev *edev) 2708 { 2709 u8 fp_combined, fp_rx = edev->fp_num_rx; 2710 struct qede_fastpath *fp; 2711 int i; 2712 2713 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 2714 sizeof(*edev->fp_array), GFP_KERNEL); 2715 if (!edev->fp_array) { 2716 DP_NOTICE(edev, "fp array allocation failed\n"); 2717 goto err; 2718 } 2719 2720 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 2721 2722 /* Allocate the FP elements for Rx queues followed by combined and then 2723 * the Tx. This ordering should be maintained so that the respective 2724 * queues (Rx or Tx) will be together in the fastpath array and the 2725 * associated ids will be sequential. 2726 */ 2727 for_each_queue(i) { 2728 fp = &edev->fp_array[i]; 2729 2730 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 2731 if (!fp->sb_info) { 2732 DP_NOTICE(edev, "sb info struct allocation failed\n"); 2733 goto err; 2734 } 2735 2736 if (fp_rx) { 2737 fp->type = QEDE_FASTPATH_RX; 2738 fp_rx--; 2739 } else if (fp_combined) { 2740 fp->type = QEDE_FASTPATH_COMBINED; 2741 fp_combined--; 2742 } else { 2743 fp->type = QEDE_FASTPATH_TX; 2744 } 2745 2746 if (fp->type & QEDE_FASTPATH_TX) { 2747 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL); 2748 if (!fp->txq) 2749 goto err; 2750 } 2751 2752 if (fp->type & QEDE_FASTPATH_RX) { 2753 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 2754 if (!fp->rxq) 2755 goto err; 2756 2757 if (edev->xdp_prog) { 2758 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 2759 GFP_KERNEL); 2760 if (!fp->xdp_tx) 2761 goto err; 2762 fp->type |= QEDE_FASTPATH_XDP; 2763 } 2764 } 2765 } 2766 2767 return 0; 2768 err: 2769 qede_free_fp_array(edev); 2770 return -ENOMEM; 2771 } 2772 2773 static void qede_sp_task(struct work_struct *work) 2774 { 2775 struct qede_dev *edev = container_of(work, struct qede_dev, 2776 sp_task.work); 2777 struct qed_dev *cdev = edev->cdev; 2778 2779 __qede_lock(edev); 2780 2781 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 2782 if (edev->state == QEDE_STATE_OPEN) 2783 qede_config_rx_mode(edev->ndev); 2784 2785 if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) { 2786 struct qed_tunn_params tunn_params; 2787 2788 memset(&tunn_params, 0, sizeof(tunn_params)); 2789 tunn_params.update_vxlan_port = 1; 2790 tunn_params.vxlan_port = edev->vxlan_dst_port; 2791 qed_ops->tunn_config(cdev, &tunn_params); 2792 } 2793 2794 if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) { 2795 struct qed_tunn_params tunn_params; 2796 2797 memset(&tunn_params, 0, sizeof(tunn_params)); 2798 tunn_params.update_geneve_port = 1; 2799 tunn_params.geneve_port = edev->geneve_dst_port; 2800 qed_ops->tunn_config(cdev, &tunn_params); 2801 } 2802 2803 __qede_unlock(edev); 2804 } 2805 2806 static void qede_update_pf_params(struct qed_dev *cdev) 2807 { 2808 struct qed_pf_params pf_params; 2809 2810 /* 64 rx + 64 tx + 64 XDP */ 2811 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 2812 pf_params.eth_pf_params.num_cons = 192; 2813 qed_ops->common->update_pf_params(cdev, &pf_params); 2814 } 2815 2816 enum qede_probe_mode { 2817 QEDE_PROBE_NORMAL, 2818 }; 2819 2820 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 2821 bool is_vf, enum qede_probe_mode mode) 2822 { 2823 struct qed_probe_params probe_params; 2824 struct qed_slowpath_params sp_params; 2825 struct qed_dev_eth_info dev_info; 2826 struct qede_dev *edev; 2827 struct qed_dev *cdev; 2828 int rc; 2829 2830 if (unlikely(dp_level & QED_LEVEL_INFO)) 2831 pr_notice("Starting qede probe\n"); 2832 2833 memset(&probe_params, 0, sizeof(probe_params)); 2834 probe_params.protocol = QED_PROTOCOL_ETH; 2835 probe_params.dp_module = dp_module; 2836 probe_params.dp_level = dp_level; 2837 probe_params.is_vf = is_vf; 2838 cdev = qed_ops->common->probe(pdev, &probe_params); 2839 if (!cdev) { 2840 rc = -ENODEV; 2841 goto err0; 2842 } 2843 2844 qede_update_pf_params(cdev); 2845 2846 /* Start the Slowpath-process */ 2847 memset(&sp_params, 0, sizeof(sp_params)); 2848 sp_params.int_mode = QED_INT_MODE_MSIX; 2849 sp_params.drv_major = QEDE_MAJOR_VERSION; 2850 sp_params.drv_minor = QEDE_MINOR_VERSION; 2851 sp_params.drv_rev = QEDE_REVISION_VERSION; 2852 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 2853 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 2854 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 2855 if (rc) { 2856 pr_notice("Cannot start slowpath\n"); 2857 goto err1; 2858 } 2859 2860 /* Learn information crucial for qede to progress */ 2861 rc = qed_ops->fill_dev_info(cdev, &dev_info); 2862 if (rc) 2863 goto err2; 2864 2865 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 2866 dp_level); 2867 if (!edev) { 2868 rc = -ENOMEM; 2869 goto err2; 2870 } 2871 2872 if (is_vf) 2873 edev->flags |= QEDE_FLAG_IS_VF; 2874 2875 qede_init_ndev(edev); 2876 2877 rc = qede_roce_dev_add(edev); 2878 if (rc) 2879 goto err3; 2880 2881 rc = register_netdev(edev->ndev); 2882 if (rc) { 2883 DP_NOTICE(edev, "Cannot register net-device\n"); 2884 goto err4; 2885 } 2886 2887 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); 2888 2889 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 2890 2891 #ifdef CONFIG_DCB 2892 if (!IS_VF(edev)) 2893 qede_set_dcbnl_ops(edev->ndev); 2894 #endif 2895 2896 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 2897 mutex_init(&edev->qede_lock); 2898 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 2899 2900 DP_INFO(edev, "Ending successfully qede probe\n"); 2901 2902 return 0; 2903 2904 err4: 2905 qede_roce_dev_remove(edev); 2906 err3: 2907 free_netdev(edev->ndev); 2908 err2: 2909 qed_ops->common->slowpath_stop(cdev); 2910 err1: 2911 qed_ops->common->remove(cdev); 2912 err0: 2913 return rc; 2914 } 2915 2916 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2917 { 2918 bool is_vf = false; 2919 u32 dp_module = 0; 2920 u8 dp_level = 0; 2921 2922 switch ((enum qede_pci_private)id->driver_data) { 2923 case QEDE_PRIVATE_VF: 2924 if (debug & QED_LOG_VERBOSE_MASK) 2925 dev_err(&pdev->dev, "Probing a VF\n"); 2926 is_vf = true; 2927 break; 2928 default: 2929 if (debug & QED_LOG_VERBOSE_MASK) 2930 dev_err(&pdev->dev, "Probing a PF\n"); 2931 } 2932 2933 qede_config_debug(debug, &dp_module, &dp_level); 2934 2935 return __qede_probe(pdev, dp_module, dp_level, is_vf, 2936 QEDE_PROBE_NORMAL); 2937 } 2938 2939 enum qede_remove_mode { 2940 QEDE_REMOVE_NORMAL, 2941 }; 2942 2943 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 2944 { 2945 struct net_device *ndev = pci_get_drvdata(pdev); 2946 struct qede_dev *edev = netdev_priv(ndev); 2947 struct qed_dev *cdev = edev->cdev; 2948 2949 DP_INFO(edev, "Starting qede_remove\n"); 2950 2951 cancel_delayed_work_sync(&edev->sp_task); 2952 2953 unregister_netdev(ndev); 2954 2955 qede_roce_dev_remove(edev); 2956 2957 edev->ops->common->set_power_state(cdev, PCI_D0); 2958 2959 pci_set_drvdata(pdev, NULL); 2960 2961 /* Release edev's reference to XDP's bpf if such exist */ 2962 if (edev->xdp_prog) 2963 bpf_prog_put(edev->xdp_prog); 2964 2965 free_netdev(ndev); 2966 2967 /* Use global ops since we've freed edev */ 2968 qed_ops->common->slowpath_stop(cdev); 2969 if (system_state == SYSTEM_POWER_OFF) 2970 return; 2971 qed_ops->common->remove(cdev); 2972 2973 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 2974 } 2975 2976 static void qede_remove(struct pci_dev *pdev) 2977 { 2978 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 2979 } 2980 2981 static void qede_shutdown(struct pci_dev *pdev) 2982 { 2983 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 2984 } 2985 2986 /* ------------------------------------------------------------------------- 2987 * START OF LOAD / UNLOAD 2988 * ------------------------------------------------------------------------- 2989 */ 2990 2991 static int qede_set_num_queues(struct qede_dev *edev) 2992 { 2993 int rc; 2994 u16 rss_num; 2995 2996 /* Setup queues according to possible resources*/ 2997 if (edev->req_queues) 2998 rss_num = edev->req_queues; 2999 else 3000 rss_num = netif_get_num_default_rss_queues() * 3001 edev->dev_info.common.num_hwfns; 3002 3003 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 3004 3005 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 3006 if (rc > 0) { 3007 /* Managed to request interrupts for our queues */ 3008 edev->num_queues = rc; 3009 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 3010 QEDE_QUEUE_CNT(edev), rss_num); 3011 rc = 0; 3012 } 3013 3014 edev->fp_num_tx = edev->req_num_tx; 3015 edev->fp_num_rx = edev->req_num_rx; 3016 3017 return rc; 3018 } 3019 3020 static void qede_free_mem_sb(struct qede_dev *edev, 3021 struct qed_sb_info *sb_info) 3022 { 3023 if (sb_info->sb_virt) 3024 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 3025 (void *)sb_info->sb_virt, sb_info->sb_phys); 3026 } 3027 3028 /* This function allocates fast-path status block memory */ 3029 static int qede_alloc_mem_sb(struct qede_dev *edev, 3030 struct qed_sb_info *sb_info, u16 sb_id) 3031 { 3032 struct status_block *sb_virt; 3033 dma_addr_t sb_phys; 3034 int rc; 3035 3036 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 3037 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 3038 if (!sb_virt) { 3039 DP_ERR(edev, "Status block allocation failed\n"); 3040 return -ENOMEM; 3041 } 3042 3043 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 3044 sb_virt, sb_phys, sb_id, 3045 QED_SB_TYPE_L2_QUEUE); 3046 if (rc) { 3047 DP_ERR(edev, "Status block initialization failed\n"); 3048 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 3049 sb_virt, sb_phys); 3050 return rc; 3051 } 3052 3053 return 0; 3054 } 3055 3056 static void qede_free_rx_buffers(struct qede_dev *edev, 3057 struct qede_rx_queue *rxq) 3058 { 3059 u16 i; 3060 3061 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 3062 struct sw_rx_data *rx_buf; 3063 struct page *data; 3064 3065 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 3066 data = rx_buf->data; 3067 3068 dma_unmap_page(&edev->pdev->dev, 3069 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 3070 3071 rx_buf->data = NULL; 3072 __free_page(data); 3073 } 3074 } 3075 3076 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) 3077 { 3078 int i; 3079 3080 if (edev->gro_disable) 3081 return; 3082 3083 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 3084 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 3085 struct sw_rx_data *replace_buf = &tpa_info->buffer; 3086 3087 if (replace_buf->data) { 3088 dma_unmap_page(&edev->pdev->dev, 3089 replace_buf->mapping, 3090 PAGE_SIZE, DMA_FROM_DEVICE); 3091 __free_page(replace_buf->data); 3092 } 3093 } 3094 } 3095 3096 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 3097 { 3098 qede_free_sge_mem(edev, rxq); 3099 3100 /* Free rx buffers */ 3101 qede_free_rx_buffers(edev, rxq); 3102 3103 /* Free the parallel SW ring */ 3104 kfree(rxq->sw_rx_ring); 3105 3106 /* Free the real RQ ring used by FW */ 3107 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 3108 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 3109 } 3110 3111 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) 3112 { 3113 dma_addr_t mapping; 3114 int i; 3115 3116 /* Don't perform FW aggregations in case of XDP */ 3117 if (edev->xdp_prog) 3118 edev->gro_disable = 1; 3119 3120 if (edev->gro_disable) 3121 return 0; 3122 3123 if (edev->ndev->mtu > PAGE_SIZE) { 3124 edev->gro_disable = 1; 3125 return 0; 3126 } 3127 3128 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 3129 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 3130 struct sw_rx_data *replace_buf = &tpa_info->buffer; 3131 3132 replace_buf->data = alloc_pages(GFP_ATOMIC, 0); 3133 if (unlikely(!replace_buf->data)) { 3134 DP_NOTICE(edev, 3135 "Failed to allocate TPA skb pool [replacement buffer]\n"); 3136 goto err; 3137 } 3138 3139 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0, 3140 PAGE_SIZE, DMA_FROM_DEVICE); 3141 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 3142 DP_NOTICE(edev, 3143 "Failed to map TPA replacement buffer\n"); 3144 goto err; 3145 } 3146 3147 replace_buf->mapping = mapping; 3148 tpa_info->buffer.page_offset = 0; 3149 tpa_info->buffer_mapping = mapping; 3150 tpa_info->state = QEDE_AGG_STATE_NONE; 3151 } 3152 3153 return 0; 3154 err: 3155 qede_free_sge_mem(edev, rxq); 3156 edev->gro_disable = 1; 3157 return -ENOMEM; 3158 } 3159 3160 /* This function allocates all memory needed per Rx queue */ 3161 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 3162 { 3163 int i, rc, size; 3164 3165 rxq->num_rx_buffers = edev->q_num_rx_buffers; 3166 3167 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 3168 3169 if (rxq->rx_buf_size > PAGE_SIZE) 3170 rxq->rx_buf_size = PAGE_SIZE; 3171 3172 /* Segment size to spilt a page in multiple equal parts, 3173 * unless XDP is used in which case we'd use the entire page. 3174 */ 3175 if (!edev->xdp_prog) 3176 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size); 3177 else 3178 rxq->rx_buf_seg_size = PAGE_SIZE; 3179 3180 /* Allocate the parallel driver ring for Rx buffers */ 3181 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 3182 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 3183 if (!rxq->sw_rx_ring) { 3184 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 3185 rc = -ENOMEM; 3186 goto err; 3187 } 3188 3189 /* Allocate FW Rx ring */ 3190 rc = edev->ops->common->chain_alloc(edev->cdev, 3191 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 3192 QED_CHAIN_MODE_NEXT_PTR, 3193 QED_CHAIN_CNT_TYPE_U16, 3194 RX_RING_SIZE, 3195 sizeof(struct eth_rx_bd), 3196 &rxq->rx_bd_ring); 3197 3198 if (rc) 3199 goto err; 3200 3201 /* Allocate FW completion ring */ 3202 rc = edev->ops->common->chain_alloc(edev->cdev, 3203 QED_CHAIN_USE_TO_CONSUME, 3204 QED_CHAIN_MODE_PBL, 3205 QED_CHAIN_CNT_TYPE_U16, 3206 RX_RING_SIZE, 3207 sizeof(union eth_rx_cqe), 3208 &rxq->rx_comp_ring); 3209 if (rc) 3210 goto err; 3211 3212 /* Allocate buffers for the Rx ring */ 3213 for (i = 0; i < rxq->num_rx_buffers; i++) { 3214 rc = qede_alloc_rx_buffer(rxq); 3215 if (rc) { 3216 DP_ERR(edev, 3217 "Rx buffers allocation failed at index %d\n", i); 3218 goto err; 3219 } 3220 } 3221 3222 rc = qede_alloc_sge_mem(edev, rxq); 3223 err: 3224 return rc; 3225 } 3226 3227 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 3228 { 3229 /* Free the parallel SW ring */ 3230 if (txq->is_xdp) 3231 kfree(txq->sw_tx_ring.pages); 3232 else 3233 kfree(txq->sw_tx_ring.skbs); 3234 3235 /* Free the real RQ ring used by FW */ 3236 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 3237 } 3238 3239 /* This function allocates all memory needed per Tx queue */ 3240 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 3241 { 3242 union eth_tx_bd_types *p_virt; 3243 int size, rc; 3244 3245 txq->num_tx_buffers = edev->q_num_tx_buffers; 3246 3247 /* Allocate the parallel driver ring for Tx buffers */ 3248 if (txq->is_xdp) { 3249 size = sizeof(*txq->sw_tx_ring.pages) * TX_RING_SIZE; 3250 txq->sw_tx_ring.pages = kzalloc(size, GFP_KERNEL); 3251 if (!txq->sw_tx_ring.pages) 3252 goto err; 3253 } else { 3254 size = sizeof(*txq->sw_tx_ring.skbs) * TX_RING_SIZE; 3255 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 3256 if (!txq->sw_tx_ring.skbs) 3257 goto err; 3258 } 3259 3260 rc = edev->ops->common->chain_alloc(edev->cdev, 3261 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 3262 QED_CHAIN_MODE_PBL, 3263 QED_CHAIN_CNT_TYPE_U16, 3264 TX_RING_SIZE, 3265 sizeof(*p_virt), &txq->tx_pbl); 3266 if (rc) 3267 goto err; 3268 3269 return 0; 3270 3271 err: 3272 qede_free_mem_txq(edev, txq); 3273 return -ENOMEM; 3274 } 3275 3276 /* This function frees all memory of a single fp */ 3277 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 3278 { 3279 qede_free_mem_sb(edev, fp->sb_info); 3280 3281 if (fp->type & QEDE_FASTPATH_RX) 3282 qede_free_mem_rxq(edev, fp->rxq); 3283 3284 if (fp->type & QEDE_FASTPATH_TX) 3285 qede_free_mem_txq(edev, fp->txq); 3286 } 3287 3288 /* This function allocates all memory needed for a single fp (i.e. an entity 3289 * which contains status block, one rx queue and/or multiple per-TC tx queues. 3290 */ 3291 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 3292 { 3293 int rc = 0; 3294 3295 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 3296 if (rc) 3297 goto out; 3298 3299 if (fp->type & QEDE_FASTPATH_RX) { 3300 rc = qede_alloc_mem_rxq(edev, fp->rxq); 3301 if (rc) 3302 goto out; 3303 } 3304 3305 if (fp->type & QEDE_FASTPATH_XDP) { 3306 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 3307 if (rc) 3308 goto out; 3309 } 3310 3311 if (fp->type & QEDE_FASTPATH_TX) { 3312 rc = qede_alloc_mem_txq(edev, fp->txq); 3313 if (rc) 3314 goto out; 3315 } 3316 3317 out: 3318 return rc; 3319 } 3320 3321 static void qede_free_mem_load(struct qede_dev *edev) 3322 { 3323 int i; 3324 3325 for_each_queue(i) { 3326 struct qede_fastpath *fp = &edev->fp_array[i]; 3327 3328 qede_free_mem_fp(edev, fp); 3329 } 3330 } 3331 3332 /* This function allocates all qede memory at NIC load. */ 3333 static int qede_alloc_mem_load(struct qede_dev *edev) 3334 { 3335 int rc = 0, queue_id; 3336 3337 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 3338 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 3339 3340 rc = qede_alloc_mem_fp(edev, fp); 3341 if (rc) { 3342 DP_ERR(edev, 3343 "Failed to allocate memory for fastpath - rss id = %d\n", 3344 queue_id); 3345 qede_free_mem_load(edev); 3346 return rc; 3347 } 3348 } 3349 3350 return 0; 3351 } 3352 3353 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 3354 static void qede_init_fp(struct qede_dev *edev) 3355 { 3356 int queue_id, rxq_index = 0, txq_index = 0; 3357 struct qede_fastpath *fp; 3358 3359 for_each_queue(queue_id) { 3360 fp = &edev->fp_array[queue_id]; 3361 3362 fp->edev = edev; 3363 fp->id = queue_id; 3364 3365 if (fp->type & QEDE_FASTPATH_XDP) { 3366 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 3367 rxq_index); 3368 fp->xdp_tx->is_xdp = 1; 3369 } 3370 3371 if (fp->type & QEDE_FASTPATH_RX) { 3372 fp->rxq->rxq_id = rxq_index++; 3373 3374 /* Determine how to map buffers for this queue */ 3375 if (fp->type & QEDE_FASTPATH_XDP) 3376 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 3377 else 3378 fp->rxq->data_direction = DMA_FROM_DEVICE; 3379 fp->rxq->dev = &edev->pdev->dev; 3380 } 3381 3382 if (fp->type & QEDE_FASTPATH_TX) { 3383 fp->txq->index = txq_index++; 3384 if (edev->dev_info.is_legacy) 3385 fp->txq->is_legacy = 1; 3386 fp->txq->dev = &edev->pdev->dev; 3387 } 3388 3389 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 3390 edev->ndev->name, queue_id); 3391 } 3392 3393 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO); 3394 } 3395 3396 static int qede_set_real_num_queues(struct qede_dev *edev) 3397 { 3398 int rc = 0; 3399 3400 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev)); 3401 if (rc) { 3402 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 3403 return rc; 3404 } 3405 3406 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 3407 if (rc) { 3408 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 3409 return rc; 3410 } 3411 3412 return 0; 3413 } 3414 3415 static void qede_napi_disable_remove(struct qede_dev *edev) 3416 { 3417 int i; 3418 3419 for_each_queue(i) { 3420 napi_disable(&edev->fp_array[i].napi); 3421 3422 netif_napi_del(&edev->fp_array[i].napi); 3423 } 3424 } 3425 3426 static void qede_napi_add_enable(struct qede_dev *edev) 3427 { 3428 int i; 3429 3430 /* Add NAPI objects */ 3431 for_each_queue(i) { 3432 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 3433 qede_poll, NAPI_POLL_WEIGHT); 3434 napi_enable(&edev->fp_array[i].napi); 3435 } 3436 } 3437 3438 static void qede_sync_free_irqs(struct qede_dev *edev) 3439 { 3440 int i; 3441 3442 for (i = 0; i < edev->int_info.used_cnt; i++) { 3443 if (edev->int_info.msix_cnt) { 3444 synchronize_irq(edev->int_info.msix[i].vector); 3445 free_irq(edev->int_info.msix[i].vector, 3446 &edev->fp_array[i]); 3447 } else { 3448 edev->ops->common->simd_handler_clean(edev->cdev, i); 3449 } 3450 } 3451 3452 edev->int_info.used_cnt = 0; 3453 } 3454 3455 static int qede_req_msix_irqs(struct qede_dev *edev) 3456 { 3457 int i, rc; 3458 3459 /* Sanitize number of interrupts == number of prepared RSS queues */ 3460 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 3461 DP_ERR(edev, 3462 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 3463 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 3464 return -EINVAL; 3465 } 3466 3467 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 3468 rc = request_irq(edev->int_info.msix[i].vector, 3469 qede_msix_fp_int, 0, edev->fp_array[i].name, 3470 &edev->fp_array[i]); 3471 if (rc) { 3472 DP_ERR(edev, "Request fp %d irq failed\n", i); 3473 qede_sync_free_irqs(edev); 3474 return rc; 3475 } 3476 DP_VERBOSE(edev, NETIF_MSG_INTR, 3477 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 3478 edev->fp_array[i].name, i, 3479 &edev->fp_array[i]); 3480 edev->int_info.used_cnt++; 3481 } 3482 3483 return 0; 3484 } 3485 3486 static void qede_simd_fp_handler(void *cookie) 3487 { 3488 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 3489 3490 napi_schedule_irqoff(&fp->napi); 3491 } 3492 3493 static int qede_setup_irqs(struct qede_dev *edev) 3494 { 3495 int i, rc = 0; 3496 3497 /* Learn Interrupt configuration */ 3498 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 3499 if (rc) 3500 return rc; 3501 3502 if (edev->int_info.msix_cnt) { 3503 rc = qede_req_msix_irqs(edev); 3504 if (rc) 3505 return rc; 3506 edev->ndev->irq = edev->int_info.msix[0].vector; 3507 } else { 3508 const struct qed_common_ops *ops; 3509 3510 /* qed should learn receive the RSS ids and callbacks */ 3511 ops = edev->ops->common; 3512 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 3513 ops->simd_handler_config(edev->cdev, 3514 &edev->fp_array[i], i, 3515 qede_simd_fp_handler); 3516 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 3517 } 3518 return 0; 3519 } 3520 3521 static int qede_drain_txq(struct qede_dev *edev, 3522 struct qede_tx_queue *txq, bool allow_drain) 3523 { 3524 int rc, cnt = 1000; 3525 3526 while (txq->sw_tx_cons != txq->sw_tx_prod) { 3527 if (!cnt) { 3528 if (allow_drain) { 3529 DP_NOTICE(edev, 3530 "Tx queue[%d] is stuck, requesting MCP to drain\n", 3531 txq->index); 3532 rc = edev->ops->common->drain(edev->cdev); 3533 if (rc) 3534 return rc; 3535 return qede_drain_txq(edev, txq, false); 3536 } 3537 DP_NOTICE(edev, 3538 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 3539 txq->index, txq->sw_tx_prod, 3540 txq->sw_tx_cons); 3541 return -ENODEV; 3542 } 3543 cnt--; 3544 usleep_range(1000, 2000); 3545 barrier(); 3546 } 3547 3548 /* FW finished processing, wait for HW to transmit all tx packets */ 3549 usleep_range(1000, 2000); 3550 3551 return 0; 3552 } 3553 3554 static int qede_stop_txq(struct qede_dev *edev, 3555 struct qede_tx_queue *txq, int rss_id) 3556 { 3557 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 3558 } 3559 3560 static int qede_stop_queues(struct qede_dev *edev) 3561 { 3562 struct qed_update_vport_params vport_update_params; 3563 struct qed_dev *cdev = edev->cdev; 3564 struct qede_fastpath *fp; 3565 int rc, i; 3566 3567 /* Disable the vport */ 3568 memset(&vport_update_params, 0, sizeof(vport_update_params)); 3569 vport_update_params.vport_id = 0; 3570 vport_update_params.update_vport_active_flg = 1; 3571 vport_update_params.vport_active_flg = 0; 3572 vport_update_params.update_rss_flg = 0; 3573 3574 rc = edev->ops->vport_update(cdev, &vport_update_params); 3575 if (rc) { 3576 DP_ERR(edev, "Failed to update vport\n"); 3577 return rc; 3578 } 3579 3580 /* Flush Tx queues. If needed, request drain from MCP */ 3581 for_each_queue(i) { 3582 fp = &edev->fp_array[i]; 3583 3584 if (fp->type & QEDE_FASTPATH_TX) { 3585 rc = qede_drain_txq(edev, fp->txq, true); 3586 if (rc) 3587 return rc; 3588 } 3589 3590 if (fp->type & QEDE_FASTPATH_XDP) { 3591 rc = qede_drain_txq(edev, fp->xdp_tx, true); 3592 if (rc) 3593 return rc; 3594 } 3595 } 3596 3597 /* Stop all Queues in reverse order */ 3598 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 3599 fp = &edev->fp_array[i]; 3600 3601 /* Stop the Tx Queue(s) */ 3602 if (fp->type & QEDE_FASTPATH_TX) { 3603 rc = qede_stop_txq(edev, fp->txq, i); 3604 if (rc) 3605 return rc; 3606 } 3607 3608 /* Stop the Rx Queue */ 3609 if (fp->type & QEDE_FASTPATH_RX) { 3610 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 3611 if (rc) { 3612 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 3613 return rc; 3614 } 3615 } 3616 3617 /* Stop the XDP forwarding queue */ 3618 if (fp->type & QEDE_FASTPATH_XDP) { 3619 rc = qede_stop_txq(edev, fp->xdp_tx, i); 3620 if (rc) 3621 return rc; 3622 3623 bpf_prog_put(fp->rxq->xdp_prog); 3624 } 3625 } 3626 3627 /* Stop the vport */ 3628 rc = edev->ops->vport_stop(cdev, 0); 3629 if (rc) 3630 DP_ERR(edev, "Failed to stop VPORT\n"); 3631 3632 return rc; 3633 } 3634 3635 static int qede_start_txq(struct qede_dev *edev, 3636 struct qede_fastpath *fp, 3637 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 3638 { 3639 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 3640 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 3641 struct qed_queue_start_common_params params; 3642 struct qed_txq_start_ret_params ret_params; 3643 int rc; 3644 3645 memset(¶ms, 0, sizeof(params)); 3646 memset(&ret_params, 0, sizeof(ret_params)); 3647 3648 /* Let the XDP queue share the queue-zone with one of the regular txq. 3649 * We don't really care about its coalescing. 3650 */ 3651 if (txq->is_xdp) 3652 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 3653 else 3654 params.queue_id = txq->index; 3655 3656 params.sb = fp->sb_info->igu_sb_id; 3657 params.sb_idx = sb_idx; 3658 3659 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 3660 page_cnt, &ret_params); 3661 if (rc) { 3662 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 3663 return rc; 3664 } 3665 3666 txq->doorbell_addr = ret_params.p_doorbell; 3667 txq->handle = ret_params.p_handle; 3668 3669 /* Determine the FW consumer address associated */ 3670 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 3671 3672 /* Prepare the doorbell parameters */ 3673 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 3674 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 3675 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 3676 DQ_XCM_ETH_TX_BD_PROD_CMD); 3677 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 3678 3679 return rc; 3680 } 3681 3682 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 3683 { 3684 int vlan_removal_en = 1; 3685 struct qed_dev *cdev = edev->cdev; 3686 struct qed_update_vport_params vport_update_params; 3687 struct qed_queue_start_common_params q_params; 3688 struct qed_dev_info *qed_info = &edev->dev_info.common; 3689 struct qed_start_vport_params start = {0}; 3690 bool reset_rss_indir = false; 3691 int rc, i; 3692 3693 if (!edev->num_queues) { 3694 DP_ERR(edev, 3695 "Cannot update V-VPORT as active as there are no Rx queues\n"); 3696 return -EINVAL; 3697 } 3698 3699 start.gro_enable = !edev->gro_disable; 3700 start.mtu = edev->ndev->mtu; 3701 start.vport_id = 0; 3702 start.drop_ttl0 = true; 3703 start.remove_inner_vlan = vlan_removal_en; 3704 start.clear_stats = clear_stats; 3705 3706 rc = edev->ops->vport_start(cdev, &start); 3707 3708 if (rc) { 3709 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 3710 return rc; 3711 } 3712 3713 DP_VERBOSE(edev, NETIF_MSG_IFUP, 3714 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 3715 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 3716 3717 for_each_queue(i) { 3718 struct qede_fastpath *fp = &edev->fp_array[i]; 3719 dma_addr_t p_phys_table; 3720 u32 page_cnt; 3721 3722 if (fp->type & QEDE_FASTPATH_RX) { 3723 struct qed_rxq_start_ret_params ret_params; 3724 struct qede_rx_queue *rxq = fp->rxq; 3725 __le16 *val; 3726 3727 memset(&ret_params, 0, sizeof(ret_params)); 3728 memset(&q_params, 0, sizeof(q_params)); 3729 q_params.queue_id = rxq->rxq_id; 3730 q_params.vport_id = 0; 3731 q_params.sb = fp->sb_info->igu_sb_id; 3732 q_params.sb_idx = RX_PI; 3733 3734 p_phys_table = 3735 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 3736 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 3737 3738 rc = edev->ops->q_rx_start(cdev, i, &q_params, 3739 rxq->rx_buf_size, 3740 rxq->rx_bd_ring.p_phys_addr, 3741 p_phys_table, 3742 page_cnt, &ret_params); 3743 if (rc) { 3744 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 3745 rc); 3746 return rc; 3747 } 3748 3749 /* Use the return parameters */ 3750 rxq->hw_rxq_prod_addr = ret_params.p_prod; 3751 rxq->handle = ret_params.p_handle; 3752 3753 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 3754 rxq->hw_cons_ptr = val; 3755 3756 qede_update_rx_prod(edev, rxq); 3757 } 3758 3759 if (fp->type & QEDE_FASTPATH_XDP) { 3760 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 3761 if (rc) 3762 return rc; 3763 3764 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 3765 if (IS_ERR(fp->rxq->xdp_prog)) { 3766 rc = PTR_ERR(fp->rxq->xdp_prog); 3767 fp->rxq->xdp_prog = NULL; 3768 return rc; 3769 } 3770 } 3771 3772 if (fp->type & QEDE_FASTPATH_TX) { 3773 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0)); 3774 if (rc) 3775 return rc; 3776 } 3777 } 3778 3779 /* Prepare and send the vport enable */ 3780 memset(&vport_update_params, 0, sizeof(vport_update_params)); 3781 vport_update_params.vport_id = start.vport_id; 3782 vport_update_params.update_vport_active_flg = 1; 3783 vport_update_params.vport_active_flg = 1; 3784 3785 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) && 3786 qed_info->tx_switching) { 3787 vport_update_params.update_tx_switching_flg = 1; 3788 vport_update_params.tx_switching_flg = 1; 3789 } 3790 3791 /* Fill struct with RSS params */ 3792 if (QEDE_RSS_COUNT(edev) > 1) { 3793 vport_update_params.update_rss_flg = 1; 3794 3795 /* Need to validate current RSS config uses valid entries */ 3796 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { 3797 if (edev->rss_params.rss_ind_table[i] >= 3798 QEDE_RSS_COUNT(edev)) { 3799 reset_rss_indir = true; 3800 break; 3801 } 3802 } 3803 3804 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || 3805 reset_rss_indir) { 3806 u16 val; 3807 3808 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { 3809 u16 indir_val; 3810 3811 val = QEDE_RSS_COUNT(edev); 3812 indir_val = ethtool_rxfh_indir_default(i, val); 3813 edev->rss_params.rss_ind_table[i] = indir_val; 3814 } 3815 edev->rss_params_inited |= QEDE_RSS_INDIR_INITED; 3816 } 3817 3818 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) { 3819 netdev_rss_key_fill(edev->rss_params.rss_key, 3820 sizeof(edev->rss_params.rss_key)); 3821 edev->rss_params_inited |= QEDE_RSS_KEY_INITED; 3822 } 3823 3824 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) { 3825 edev->rss_params.rss_caps = QED_RSS_IPV4 | 3826 QED_RSS_IPV6 | 3827 QED_RSS_IPV4_TCP | 3828 QED_RSS_IPV6_TCP; 3829 edev->rss_params_inited |= QEDE_RSS_CAPS_INITED; 3830 } 3831 3832 memcpy(&vport_update_params.rss_params, &edev->rss_params, 3833 sizeof(vport_update_params.rss_params)); 3834 } else { 3835 memset(&vport_update_params.rss_params, 0, 3836 sizeof(vport_update_params.rss_params)); 3837 } 3838 3839 rc = edev->ops->vport_update(cdev, &vport_update_params); 3840 if (rc) { 3841 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 3842 return rc; 3843 } 3844 3845 return 0; 3846 } 3847 3848 static int qede_set_mcast_rx_mac(struct qede_dev *edev, 3849 enum qed_filter_xcast_params_type opcode, 3850 unsigned char *mac, int num_macs) 3851 { 3852 struct qed_filter_params filter_cmd; 3853 int i; 3854 3855 memset(&filter_cmd, 0, sizeof(filter_cmd)); 3856 filter_cmd.type = QED_FILTER_TYPE_MCAST; 3857 filter_cmd.filter.mcast.type = opcode; 3858 filter_cmd.filter.mcast.num = num_macs; 3859 3860 for (i = 0; i < num_macs; i++, mac += ETH_ALEN) 3861 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac); 3862 3863 return edev->ops->filter_config(edev->cdev, &filter_cmd); 3864 } 3865 3866 enum qede_unload_mode { 3867 QEDE_UNLOAD_NORMAL, 3868 }; 3869 3870 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 3871 bool is_locked) 3872 { 3873 struct qed_link_params link_params; 3874 int rc; 3875 3876 DP_INFO(edev, "Starting qede unload\n"); 3877 3878 if (!is_locked) 3879 __qede_lock(edev); 3880 3881 qede_roce_dev_event_close(edev); 3882 edev->state = QEDE_STATE_CLOSED; 3883 3884 /* Close OS Tx */ 3885 netif_tx_disable(edev->ndev); 3886 netif_carrier_off(edev->ndev); 3887 3888 /* Reset the link */ 3889 memset(&link_params, 0, sizeof(link_params)); 3890 link_params.link_up = false; 3891 edev->ops->common->set_link(edev->cdev, &link_params); 3892 rc = qede_stop_queues(edev); 3893 if (rc) { 3894 qede_sync_free_irqs(edev); 3895 goto out; 3896 } 3897 3898 DP_INFO(edev, "Stopped Queues\n"); 3899 3900 qede_vlan_mark_nonconfigured(edev); 3901 edev->ops->fastpath_stop(edev->cdev); 3902 3903 /* Release the interrupts */ 3904 qede_sync_free_irqs(edev); 3905 edev->ops->common->set_fp_int(edev->cdev, 0); 3906 3907 qede_napi_disable_remove(edev); 3908 3909 qede_free_mem_load(edev); 3910 qede_free_fp_array(edev); 3911 3912 out: 3913 if (!is_locked) 3914 __qede_unlock(edev); 3915 DP_INFO(edev, "Ending qede unload\n"); 3916 } 3917 3918 enum qede_load_mode { 3919 QEDE_LOAD_NORMAL, 3920 QEDE_LOAD_RELOAD, 3921 }; 3922 3923 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 3924 bool is_locked) 3925 { 3926 struct qed_link_params link_params; 3927 struct qed_link_output link_output; 3928 int rc; 3929 3930 DP_INFO(edev, "Starting qede load\n"); 3931 3932 if (!is_locked) 3933 __qede_lock(edev); 3934 3935 rc = qede_set_num_queues(edev); 3936 if (rc) 3937 goto out; 3938 3939 rc = qede_alloc_fp_array(edev); 3940 if (rc) 3941 goto out; 3942 3943 qede_init_fp(edev); 3944 3945 rc = qede_alloc_mem_load(edev); 3946 if (rc) 3947 goto err1; 3948 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 3949 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 3950 3951 rc = qede_set_real_num_queues(edev); 3952 if (rc) 3953 goto err2; 3954 3955 qede_napi_add_enable(edev); 3956 DP_INFO(edev, "Napi added and enabled\n"); 3957 3958 rc = qede_setup_irqs(edev); 3959 if (rc) 3960 goto err3; 3961 DP_INFO(edev, "Setup IRQs succeeded\n"); 3962 3963 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 3964 if (rc) 3965 goto err4; 3966 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 3967 3968 /* Add primary mac and set Rx filters */ 3969 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); 3970 3971 /* Program un-configured VLANs */ 3972 qede_configure_vlan_filters(edev); 3973 3974 /* Ask for link-up using current configuration */ 3975 memset(&link_params, 0, sizeof(link_params)); 3976 link_params.link_up = true; 3977 edev->ops->common->set_link(edev->cdev, &link_params); 3978 3979 /* Query whether link is already-up */ 3980 memset(&link_output, 0, sizeof(link_output)); 3981 edev->ops->common->get_link(edev->cdev, &link_output); 3982 qede_roce_dev_event_open(edev); 3983 qede_link_update(edev, &link_output); 3984 3985 edev->state = QEDE_STATE_OPEN; 3986 3987 DP_INFO(edev, "Ending successfully qede load\n"); 3988 3989 3990 goto out; 3991 err4: 3992 qede_sync_free_irqs(edev); 3993 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 3994 err3: 3995 qede_napi_disable_remove(edev); 3996 err2: 3997 qede_free_mem_load(edev); 3998 err1: 3999 edev->ops->common->set_fp_int(edev->cdev, 0); 4000 qede_free_fp_array(edev); 4001 edev->num_queues = 0; 4002 edev->fp_num_tx = 0; 4003 edev->fp_num_rx = 0; 4004 out: 4005 if (!is_locked) 4006 __qede_unlock(edev); 4007 4008 return rc; 4009 } 4010 4011 /* 'func' should be able to run between unload and reload assuming interface 4012 * is actually running, or afterwards in case it's currently DOWN. 4013 */ 4014 void qede_reload(struct qede_dev *edev, 4015 struct qede_reload_args *args, bool is_locked) 4016 { 4017 if (!is_locked) 4018 __qede_lock(edev); 4019 4020 /* Since qede_lock is held, internal state wouldn't change even 4021 * if netdev state would start transitioning. Check whether current 4022 * internal configuration indicates device is up, then reload. 4023 */ 4024 if (edev->state == QEDE_STATE_OPEN) { 4025 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 4026 if (args) 4027 args->func(edev, args); 4028 qede_load(edev, QEDE_LOAD_RELOAD, true); 4029 4030 /* Since no one is going to do it for us, re-configure */ 4031 qede_config_rx_mode(edev->ndev); 4032 } else if (args) { 4033 args->func(edev, args); 4034 } 4035 4036 if (!is_locked) 4037 __qede_unlock(edev); 4038 } 4039 4040 /* called with rtnl_lock */ 4041 static int qede_open(struct net_device *ndev) 4042 { 4043 struct qede_dev *edev = netdev_priv(ndev); 4044 int rc; 4045 4046 netif_carrier_off(ndev); 4047 4048 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 4049 4050 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 4051 if (rc) 4052 return rc; 4053 4054 udp_tunnel_get_rx_info(ndev); 4055 4056 edev->ops->common->update_drv_state(edev->cdev, true); 4057 4058 return 0; 4059 } 4060 4061 static int qede_close(struct net_device *ndev) 4062 { 4063 struct qede_dev *edev = netdev_priv(ndev); 4064 4065 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 4066 4067 edev->ops->common->update_drv_state(edev->cdev, false); 4068 4069 return 0; 4070 } 4071 4072 static void qede_link_update(void *dev, struct qed_link_output *link) 4073 { 4074 struct qede_dev *edev = dev; 4075 4076 if (!netif_running(edev->ndev)) { 4077 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 4078 return; 4079 } 4080 4081 if (link->link_up) { 4082 if (!netif_carrier_ok(edev->ndev)) { 4083 DP_NOTICE(edev, "Link is up\n"); 4084 netif_tx_start_all_queues(edev->ndev); 4085 netif_carrier_on(edev->ndev); 4086 } 4087 } else { 4088 if (netif_carrier_ok(edev->ndev)) { 4089 DP_NOTICE(edev, "Link is down\n"); 4090 netif_tx_disable(edev->ndev); 4091 netif_carrier_off(edev->ndev); 4092 } 4093 } 4094 } 4095 4096 static int qede_set_mac_addr(struct net_device *ndev, void *p) 4097 { 4098 struct qede_dev *edev = netdev_priv(ndev); 4099 struct sockaddr *addr = p; 4100 int rc; 4101 4102 ASSERT_RTNL(); /* @@@TBD To be removed */ 4103 4104 DP_INFO(edev, "Set_mac_addr called\n"); 4105 4106 if (!is_valid_ether_addr(addr->sa_data)) { 4107 DP_NOTICE(edev, "The MAC address is not valid\n"); 4108 return -EFAULT; 4109 } 4110 4111 if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) { 4112 DP_NOTICE(edev, "qed prevents setting MAC\n"); 4113 return -EINVAL; 4114 } 4115 4116 ether_addr_copy(ndev->dev_addr, addr->sa_data); 4117 4118 if (!netif_running(ndev)) { 4119 DP_NOTICE(edev, "The device is currently down\n"); 4120 return 0; 4121 } 4122 4123 /* Remove the previous primary mac */ 4124 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 4125 edev->primary_mac); 4126 if (rc) 4127 return rc; 4128 4129 edev->ops->common->update_mac(edev->cdev, addr->sa_data); 4130 4131 /* Add MAC filter according to the new unicast HW MAC address */ 4132 ether_addr_copy(edev->primary_mac, ndev->dev_addr); 4133 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 4134 edev->primary_mac); 4135 } 4136 4137 static int 4138 qede_configure_mcast_filtering(struct net_device *ndev, 4139 enum qed_filter_rx_mode_type *accept_flags) 4140 { 4141 struct qede_dev *edev = netdev_priv(ndev); 4142 unsigned char *mc_macs, *temp; 4143 struct netdev_hw_addr *ha; 4144 int rc = 0, mc_count; 4145 size_t size; 4146 4147 size = 64 * ETH_ALEN; 4148 4149 mc_macs = kzalloc(size, GFP_KERNEL); 4150 if (!mc_macs) { 4151 DP_NOTICE(edev, 4152 "Failed to allocate memory for multicast MACs\n"); 4153 rc = -ENOMEM; 4154 goto exit; 4155 } 4156 4157 temp = mc_macs; 4158 4159 /* Remove all previously configured MAC filters */ 4160 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 4161 mc_macs, 1); 4162 if (rc) 4163 goto exit; 4164 4165 netif_addr_lock_bh(ndev); 4166 4167 mc_count = netdev_mc_count(ndev); 4168 if (mc_count < 64) { 4169 netdev_for_each_mc_addr(ha, ndev) { 4170 ether_addr_copy(temp, ha->addr); 4171 temp += ETH_ALEN; 4172 } 4173 } 4174 4175 netif_addr_unlock_bh(ndev); 4176 4177 /* Check for all multicast @@@TBD resource allocation */ 4178 if ((ndev->flags & IFF_ALLMULTI) || 4179 (mc_count > 64)) { 4180 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR) 4181 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; 4182 } else { 4183 /* Add all multicast MAC filters */ 4184 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 4185 mc_macs, mc_count); 4186 } 4187 4188 exit: 4189 kfree(mc_macs); 4190 return rc; 4191 } 4192 4193 static void qede_set_rx_mode(struct net_device *ndev) 4194 { 4195 struct qede_dev *edev = netdev_priv(ndev); 4196 4197 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags); 4198 schedule_delayed_work(&edev->sp_task, 0); 4199 } 4200 4201 /* Must be called with qede_lock held */ 4202 static void qede_config_rx_mode(struct net_device *ndev) 4203 { 4204 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST; 4205 struct qede_dev *edev = netdev_priv(ndev); 4206 struct qed_filter_params rx_mode; 4207 unsigned char *uc_macs, *temp; 4208 struct netdev_hw_addr *ha; 4209 int rc, uc_count; 4210 size_t size; 4211 4212 netif_addr_lock_bh(ndev); 4213 4214 uc_count = netdev_uc_count(ndev); 4215 size = uc_count * ETH_ALEN; 4216 4217 uc_macs = kzalloc(size, GFP_ATOMIC); 4218 if (!uc_macs) { 4219 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n"); 4220 netif_addr_unlock_bh(ndev); 4221 return; 4222 } 4223 4224 temp = uc_macs; 4225 netdev_for_each_uc_addr(ha, ndev) { 4226 ether_addr_copy(temp, ha->addr); 4227 temp += ETH_ALEN; 4228 } 4229 4230 netif_addr_unlock_bh(ndev); 4231 4232 /* Configure the struct for the Rx mode */ 4233 memset(&rx_mode, 0, sizeof(struct qed_filter_params)); 4234 rx_mode.type = QED_FILTER_TYPE_RX_MODE; 4235 4236 /* Remove all previous unicast secondary macs and multicast macs 4237 * (configrue / leave the primary mac) 4238 */ 4239 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE, 4240 edev->primary_mac); 4241 if (rc) 4242 goto out; 4243 4244 /* Check for promiscuous */ 4245 if ((ndev->flags & IFF_PROMISC) || 4246 (uc_count > edev->dev_info.num_mac_filters - 1)) { 4247 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; 4248 } else { 4249 /* Add MAC filters according to the unicast secondary macs */ 4250 int i; 4251 4252 temp = uc_macs; 4253 for (i = 0; i < uc_count; i++) { 4254 rc = qede_set_ucast_rx_mac(edev, 4255 QED_FILTER_XCAST_TYPE_ADD, 4256 temp); 4257 if (rc) 4258 goto out; 4259 4260 temp += ETH_ALEN; 4261 } 4262 4263 rc = qede_configure_mcast_filtering(ndev, &accept_flags); 4264 if (rc) 4265 goto out; 4266 } 4267 4268 /* take care of VLAN mode */ 4269 if (ndev->flags & IFF_PROMISC) { 4270 qede_config_accept_any_vlan(edev, true); 4271 } else if (!edev->non_configured_vlans) { 4272 /* It's possible that accept_any_vlan mode is set due to a 4273 * previous setting of IFF_PROMISC. If vlan credits are 4274 * sufficient, disable accept_any_vlan. 4275 */ 4276 qede_config_accept_any_vlan(edev, false); 4277 } 4278 4279 rx_mode.filter.accept_flags = accept_flags; 4280 edev->ops->filter_config(edev->cdev, &rx_mode); 4281 out: 4282 kfree(uc_macs); 4283 } 4284