xref: /openbmc/linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39 #include <linux/qed/qede_roce.h>
40 #include "qede.h"
41 
42 static char version[] =
43 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44 
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52 
53 static const struct qed_eth_ops *qed_ops;
54 
55 #define CHIP_NUM_57980S_40		0x1634
56 #define CHIP_NUM_57980S_10		0x1666
57 #define CHIP_NUM_57980S_MF		0x1636
58 #define CHIP_NUM_57980S_100		0x1644
59 #define CHIP_NUM_57980S_50		0x1654
60 #define CHIP_NUM_57980S_25		0x1656
61 #define CHIP_NUM_57980S_IOV		0x1664
62 
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
71 #endif
72 
73 enum qede_pci_private {
74 	QEDE_PRIVATE_PF,
75 	QEDE_PRIVATE_VF
76 };
77 
78 static const struct pci_device_id qede_pci_tbl[] = {
79 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 	{ 0 }
89 };
90 
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
92 
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
94 
95 #define TX_TIMEOUT		(5 * HZ)
96 
97 /* Utilize last protocol index for XDP */
98 #define XDP_PI	11
99 
100 static void qede_remove(struct pci_dev *pdev);
101 static void qede_shutdown(struct pci_dev *pdev);
102 static void qede_link_update(void *dev, struct qed_link_output *link);
103 
104 /* The qede lock is used to protect driver state change and driver flows that
105  * are not reentrant.
106  */
107 void __qede_lock(struct qede_dev *edev)
108 {
109 	mutex_lock(&edev->qede_lock);
110 }
111 
112 void __qede_unlock(struct qede_dev *edev)
113 {
114 	mutex_unlock(&edev->qede_lock);
115 }
116 
117 #ifdef CONFIG_QED_SRIOV
118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
119 			    __be16 vlan_proto)
120 {
121 	struct qede_dev *edev = netdev_priv(ndev);
122 
123 	if (vlan > 4095) {
124 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
125 		return -EINVAL;
126 	}
127 
128 	if (vlan_proto != htons(ETH_P_8021Q))
129 		return -EPROTONOSUPPORT;
130 
131 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
132 		   vlan, vf);
133 
134 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
135 }
136 
137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
138 {
139 	struct qede_dev *edev = netdev_priv(ndev);
140 
141 	DP_VERBOSE(edev, QED_MSG_IOV,
142 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
143 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
144 
145 	if (!is_valid_ether_addr(mac)) {
146 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
147 		return -EINVAL;
148 	}
149 
150 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
151 }
152 
153 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
154 {
155 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
156 	struct qed_dev_info *qed_info = &edev->dev_info.common;
157 	int rc;
158 
159 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
160 
161 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
162 
163 	/* Enable/Disable Tx switching for PF */
164 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
165 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
166 		struct qed_update_vport_params params;
167 
168 		memset(&params, 0, sizeof(params));
169 		params.vport_id = 0;
170 		params.update_tx_switching_flg = 1;
171 		params.tx_switching_flg = num_vfs_param ? 1 : 0;
172 		edev->ops->vport_update(edev->cdev, &params);
173 	}
174 
175 	return rc;
176 }
177 #endif
178 
179 static struct pci_driver qede_pci_driver = {
180 	.name = "qede",
181 	.id_table = qede_pci_tbl,
182 	.probe = qede_probe,
183 	.remove = qede_remove,
184 	.shutdown = qede_shutdown,
185 #ifdef CONFIG_QED_SRIOV
186 	.sriov_configure = qede_sriov_configure,
187 #endif
188 };
189 
190 static void qede_force_mac(void *dev, u8 *mac, bool forced)
191 {
192 	struct qede_dev *edev = dev;
193 
194 	/* MAC hints take effect only if we haven't set one already */
195 	if (is_valid_ether_addr(edev->ndev->dev_addr) && !forced)
196 		return;
197 
198 	ether_addr_copy(edev->ndev->dev_addr, mac);
199 	ether_addr_copy(edev->primary_mac, mac);
200 }
201 
202 static struct qed_eth_cb_ops qede_ll_ops = {
203 	{
204 		.link_update = qede_link_update,
205 	},
206 	.force_mac = qede_force_mac,
207 };
208 
209 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
210 			     void *ptr)
211 {
212 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
213 	struct ethtool_drvinfo drvinfo;
214 	struct qede_dev *edev;
215 
216 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
217 		goto done;
218 
219 	/* Check whether this is a qede device */
220 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
221 		goto done;
222 
223 	memset(&drvinfo, 0, sizeof(drvinfo));
224 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
225 	if (strcmp(drvinfo.driver, "qede"))
226 		goto done;
227 	edev = netdev_priv(ndev);
228 
229 	switch (event) {
230 	case NETDEV_CHANGENAME:
231 		/* Notify qed of the name change */
232 		if (!edev->ops || !edev->ops->common)
233 			goto done;
234 		edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
235 		break;
236 	case NETDEV_CHANGEADDR:
237 		edev = netdev_priv(ndev);
238 		qede_roce_event_changeaddr(edev);
239 		break;
240 	}
241 
242 done:
243 	return NOTIFY_DONE;
244 }
245 
246 static struct notifier_block qede_netdev_notifier = {
247 	.notifier_call = qede_netdev_event,
248 };
249 
250 static
251 int __init qede_init(void)
252 {
253 	int ret;
254 
255 	pr_info("qede_init: %s\n", version);
256 
257 	qed_ops = qed_get_eth_ops();
258 	if (!qed_ops) {
259 		pr_notice("Failed to get qed ethtool operations\n");
260 		return -EINVAL;
261 	}
262 
263 	/* Must register notifier before pci ops, since we might miss
264 	 * interface rename after pci probe and netdev registeration.
265 	 */
266 	ret = register_netdevice_notifier(&qede_netdev_notifier);
267 	if (ret) {
268 		pr_notice("Failed to register netdevice_notifier\n");
269 		qed_put_eth_ops();
270 		return -EINVAL;
271 	}
272 
273 	ret = pci_register_driver(&qede_pci_driver);
274 	if (ret) {
275 		pr_notice("Failed to register driver\n");
276 		unregister_netdevice_notifier(&qede_netdev_notifier);
277 		qed_put_eth_ops();
278 		return -EINVAL;
279 	}
280 
281 	return 0;
282 }
283 
284 static void __exit qede_cleanup(void)
285 {
286 	if (debug & QED_LOG_INFO_MASK)
287 		pr_info("qede_cleanup called\n");
288 
289 	unregister_netdevice_notifier(&qede_netdev_notifier);
290 	pci_unregister_driver(&qede_pci_driver);
291 	qed_put_eth_ops();
292 }
293 
294 module_init(qede_init);
295 module_exit(qede_cleanup);
296 
297 /* -------------------------------------------------------------------------
298  * START OF FAST-PATH
299  * -------------------------------------------------------------------------
300  */
301 
302 /* Unmap the data and free skb */
303 static int qede_free_tx_pkt(struct qede_dev *edev,
304 			    struct qede_tx_queue *txq, int *len)
305 {
306 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
307 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
308 	struct eth_tx_1st_bd *first_bd;
309 	struct eth_tx_bd *tx_data_bd;
310 	int bds_consumed = 0;
311 	int nbds;
312 	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
313 	int i, split_bd_len = 0;
314 
315 	if (unlikely(!skb)) {
316 		DP_ERR(edev,
317 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
318 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
319 		return -1;
320 	}
321 
322 	*len = skb->len;
323 
324 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
325 
326 	bds_consumed++;
327 
328 	nbds = first_bd->data.nbds;
329 
330 	if (data_split) {
331 		struct eth_tx_bd *split = (struct eth_tx_bd *)
332 			qed_chain_consume(&txq->tx_pbl);
333 		split_bd_len = BD_UNMAP_LEN(split);
334 		bds_consumed++;
335 	}
336 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
337 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
338 
339 	/* Unmap the data of the skb frags */
340 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
341 		tx_data_bd = (struct eth_tx_bd *)
342 			qed_chain_consume(&txq->tx_pbl);
343 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
344 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
345 	}
346 
347 	while (bds_consumed++ < nbds)
348 		qed_chain_consume(&txq->tx_pbl);
349 
350 	/* Free skb */
351 	dev_kfree_skb_any(skb);
352 	txq->sw_tx_ring.skbs[idx].skb = NULL;
353 	txq->sw_tx_ring.skbs[idx].flags = 0;
354 
355 	return 0;
356 }
357 
358 /* Unmap the data and free skb when mapping failed during start_xmit */
359 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
360 				    struct eth_tx_1st_bd *first_bd,
361 				    int nbd, bool data_split)
362 {
363 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
364 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
365 	struct eth_tx_bd *tx_data_bd;
366 	int i, split_bd_len = 0;
367 
368 	/* Return prod to its position before this skb was handled */
369 	qed_chain_set_prod(&txq->tx_pbl,
370 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
371 
372 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
373 
374 	if (data_split) {
375 		struct eth_tx_bd *split = (struct eth_tx_bd *)
376 					  qed_chain_produce(&txq->tx_pbl);
377 		split_bd_len = BD_UNMAP_LEN(split);
378 		nbd--;
379 	}
380 
381 	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
382 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
383 
384 	/* Unmap the data of the skb frags */
385 	for (i = 0; i < nbd; i++) {
386 		tx_data_bd = (struct eth_tx_bd *)
387 			qed_chain_produce(&txq->tx_pbl);
388 		if (tx_data_bd->nbytes)
389 			dma_unmap_page(txq->dev,
390 				       BD_UNMAP_ADDR(tx_data_bd),
391 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
392 	}
393 
394 	/* Return again prod to its position before this skb was handled */
395 	qed_chain_set_prod(&txq->tx_pbl,
396 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
397 
398 	/* Free skb */
399 	dev_kfree_skb_any(skb);
400 	txq->sw_tx_ring.skbs[idx].skb = NULL;
401 	txq->sw_tx_ring.skbs[idx].flags = 0;
402 }
403 
404 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
405 {
406 	u32 rc = XMIT_L4_CSUM;
407 	__be16 l3_proto;
408 
409 	if (skb->ip_summed != CHECKSUM_PARTIAL)
410 		return XMIT_PLAIN;
411 
412 	l3_proto = vlan_get_protocol(skb);
413 	if (l3_proto == htons(ETH_P_IPV6) &&
414 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
415 		*ipv6_ext = 1;
416 
417 	if (skb->encapsulation) {
418 		rc |= XMIT_ENC;
419 		if (skb_is_gso(skb)) {
420 			unsigned short gso_type = skb_shinfo(skb)->gso_type;
421 
422 			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
423 			    (gso_type & SKB_GSO_GRE_CSUM))
424 				rc |= XMIT_ENC_GSO_L4_CSUM;
425 
426 			rc |= XMIT_LSO;
427 			return rc;
428 		}
429 	}
430 
431 	if (skb_is_gso(skb))
432 		rc |= XMIT_LSO;
433 
434 	return rc;
435 }
436 
437 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
438 					 struct eth_tx_2nd_bd *second_bd,
439 					 struct eth_tx_3rd_bd *third_bd)
440 {
441 	u8 l4_proto;
442 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
443 
444 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
445 
446 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
447 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
448 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
449 
450 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
451 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
452 
453 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
454 		l4_proto = ipv6_hdr(skb)->nexthdr;
455 	else
456 		l4_proto = ip_hdr(skb)->protocol;
457 
458 	if (l4_proto == IPPROTO_UDP)
459 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
460 
461 	if (third_bd)
462 		third_bd->data.bitfields |=
463 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
464 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
465 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
466 
467 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
468 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
469 }
470 
471 static int map_frag_to_bd(struct qede_tx_queue *txq,
472 			  skb_frag_t *frag, struct eth_tx_bd *bd)
473 {
474 	dma_addr_t mapping;
475 
476 	/* Map skb non-linear frag data for DMA */
477 	mapping = skb_frag_dma_map(txq->dev, frag, 0,
478 				   skb_frag_size(frag), DMA_TO_DEVICE);
479 	if (unlikely(dma_mapping_error(txq->dev, mapping)))
480 		return -ENOMEM;
481 
482 	/* Setup the data pointer of the frag data */
483 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
484 
485 	return 0;
486 }
487 
488 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
489 {
490 	if (is_encap_pkt)
491 		return (skb_inner_transport_header(skb) +
492 			inner_tcp_hdrlen(skb) - skb->data);
493 	else
494 		return (skb_transport_header(skb) +
495 			tcp_hdrlen(skb) - skb->data);
496 }
497 
498 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
499 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
500 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
501 {
502 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
503 
504 	if (xmit_type & XMIT_LSO) {
505 		int hlen;
506 
507 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
508 
509 		/* linear payload would require its own BD */
510 		if (skb_headlen(skb) > hlen)
511 			allowed_frags--;
512 	}
513 
514 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
515 }
516 #endif
517 
518 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
519 {
520 	/* wmb makes sure that the BDs data is updated before updating the
521 	 * producer, otherwise FW may read old data from the BDs.
522 	 */
523 	wmb();
524 	barrier();
525 	writel(txq->tx_db.raw, txq->doorbell_addr);
526 
527 	/* mmiowb is needed to synchronize doorbell writes from more than one
528 	 * processor. It guarantees that the write arrives to the device before
529 	 * the queue lock is released and another start_xmit is called (possibly
530 	 * on another CPU). Without this barrier, the next doorbell can bypass
531 	 * this doorbell. This is applicable to IA64/Altix systems.
532 	 */
533 	mmiowb();
534 }
535 
536 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
537 			 struct sw_rx_data *metadata, u16 padding, u16 length)
538 {
539 	struct qede_tx_queue *txq = fp->xdp_tx;
540 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
541 	struct eth_tx_1st_bd *first_bd;
542 
543 	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
544 		txq->stopped_cnt++;
545 		return -ENOMEM;
546 	}
547 
548 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
549 
550 	memset(first_bd, 0, sizeof(*first_bd));
551 	first_bd->data.bd_flags.bitfields =
552 	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
553 	first_bd->data.bitfields |=
554 	    (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
555 	    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
556 	first_bd->data.nbds = 1;
557 
558 	/* We can safely ignore the offset, as it's 0 for XDP */
559 	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
560 
561 	/* Synchronize the buffer back to device, as program [probably]
562 	 * has changed it.
563 	 */
564 	dma_sync_single_for_device(&edev->pdev->dev,
565 				   metadata->mapping + padding,
566 				   length, PCI_DMA_TODEVICE);
567 
568 	txq->sw_tx_ring.pages[idx] = metadata->data;
569 	txq->sw_tx_prod++;
570 
571 	/* Mark the fastpath for future XDP doorbell */
572 	fp->xdp_xmit = 1;
573 
574 	return 0;
575 }
576 
577 /* Main transmit function */
578 static netdev_tx_t qede_start_xmit(struct sk_buff *skb,
579 				   struct net_device *ndev)
580 {
581 	struct qede_dev *edev = netdev_priv(ndev);
582 	struct netdev_queue *netdev_txq;
583 	struct qede_tx_queue *txq;
584 	struct eth_tx_1st_bd *first_bd;
585 	struct eth_tx_2nd_bd *second_bd = NULL;
586 	struct eth_tx_3rd_bd *third_bd = NULL;
587 	struct eth_tx_bd *tx_data_bd = NULL;
588 	u16 txq_index;
589 	u8 nbd = 0;
590 	dma_addr_t mapping;
591 	int rc, frag_idx = 0, ipv6_ext = 0;
592 	u8 xmit_type;
593 	u16 idx;
594 	u16 hlen;
595 	bool data_split = false;
596 
597 	/* Get tx-queue context and netdev index */
598 	txq_index = skb_get_queue_mapping(skb);
599 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
600 	txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
601 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
602 
603 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
604 
605 	xmit_type = qede_xmit_type(skb, &ipv6_ext);
606 
607 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
608 	if (qede_pkt_req_lin(skb, xmit_type)) {
609 		if (skb_linearize(skb)) {
610 			DP_NOTICE(edev,
611 				  "SKB linearization failed - silently dropping this SKB\n");
612 			dev_kfree_skb_any(skb);
613 			return NETDEV_TX_OK;
614 		}
615 	}
616 #endif
617 
618 	/* Fill the entry in the SW ring and the BDs in the FW ring */
619 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
620 	txq->sw_tx_ring.skbs[idx].skb = skb;
621 	first_bd = (struct eth_tx_1st_bd *)
622 		   qed_chain_produce(&txq->tx_pbl);
623 	memset(first_bd, 0, sizeof(*first_bd));
624 	first_bd->data.bd_flags.bitfields =
625 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
626 
627 	/* Map skb linear data for DMA and set in the first BD */
628 	mapping = dma_map_single(txq->dev, skb->data,
629 				 skb_headlen(skb), DMA_TO_DEVICE);
630 	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
631 		DP_NOTICE(edev, "SKB mapping failed\n");
632 		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
633 		qede_update_tx_producer(txq);
634 		return NETDEV_TX_OK;
635 	}
636 	nbd++;
637 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
638 
639 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
640 	 * 3rd BDs.
641 	 */
642 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
643 		second_bd = (struct eth_tx_2nd_bd *)
644 			qed_chain_produce(&txq->tx_pbl);
645 		memset(second_bd, 0, sizeof(*second_bd));
646 
647 		nbd++;
648 		third_bd = (struct eth_tx_3rd_bd *)
649 			qed_chain_produce(&txq->tx_pbl);
650 		memset(third_bd, 0, sizeof(*third_bd));
651 
652 		nbd++;
653 		/* We need to fill in additional data in second_bd... */
654 		tx_data_bd = (struct eth_tx_bd *)second_bd;
655 	}
656 
657 	if (skb_vlan_tag_present(skb)) {
658 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
659 		first_bd->data.bd_flags.bitfields |=
660 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
661 	}
662 
663 	/* Fill the parsing flags & params according to the requested offload */
664 	if (xmit_type & XMIT_L4_CSUM) {
665 		/* We don't re-calculate IP checksum as it is already done by
666 		 * the upper stack
667 		 */
668 		first_bd->data.bd_flags.bitfields |=
669 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
670 
671 		if (xmit_type & XMIT_ENC) {
672 			first_bd->data.bd_flags.bitfields |=
673 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
674 			first_bd->data.bitfields |=
675 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
676 		}
677 
678 		/* Legacy FW had flipped behavior in regard to this bit -
679 		 * I.e., needed to set to prevent FW from touching encapsulated
680 		 * packets when it didn't need to.
681 		 */
682 		if (unlikely(txq->is_legacy))
683 			first_bd->data.bitfields ^=
684 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
685 
686 		/* If the packet is IPv6 with extension header, indicate that
687 		 * to FW and pass few params, since the device cracker doesn't
688 		 * support parsing IPv6 with extension header/s.
689 		 */
690 		if (unlikely(ipv6_ext))
691 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
692 	}
693 
694 	if (xmit_type & XMIT_LSO) {
695 		first_bd->data.bd_flags.bitfields |=
696 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
697 		third_bd->data.lso_mss =
698 			cpu_to_le16(skb_shinfo(skb)->gso_size);
699 
700 		if (unlikely(xmit_type & XMIT_ENC)) {
701 			first_bd->data.bd_flags.bitfields |=
702 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
703 
704 			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
705 				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
706 
707 				first_bd->data.bd_flags.bitfields |= 1 << tmp;
708 			}
709 			hlen = qede_get_skb_hlen(skb, true);
710 		} else {
711 			first_bd->data.bd_flags.bitfields |=
712 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
713 			hlen = qede_get_skb_hlen(skb, false);
714 		}
715 
716 		/* @@@TBD - if will not be removed need to check */
717 		third_bd->data.bitfields |=
718 			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
719 
720 		/* Make life easier for FW guys who can't deal with header and
721 		 * data on same BD. If we need to split, use the second bd...
722 		 */
723 		if (unlikely(skb_headlen(skb) > hlen)) {
724 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
725 				   "TSO split header size is %d (%x:%x)\n",
726 				   first_bd->nbytes, first_bd->addr.hi,
727 				   first_bd->addr.lo);
728 
729 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
730 					   le32_to_cpu(first_bd->addr.lo)) +
731 					   hlen;
732 
733 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
734 					      le16_to_cpu(first_bd->nbytes) -
735 					      hlen);
736 
737 			/* this marks the BD as one that has no
738 			 * individual mapping
739 			 */
740 			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
741 
742 			first_bd->nbytes = cpu_to_le16(hlen);
743 
744 			tx_data_bd = (struct eth_tx_bd *)third_bd;
745 			data_split = true;
746 		}
747 	} else {
748 		first_bd->data.bitfields |=
749 		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
750 		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
751 	}
752 
753 	/* Handle fragmented skb */
754 	/* special handle for frags inside 2nd and 3rd bds.. */
755 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
756 		rc = map_frag_to_bd(txq,
757 				    &skb_shinfo(skb)->frags[frag_idx],
758 				    tx_data_bd);
759 		if (rc) {
760 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
761 			qede_update_tx_producer(txq);
762 			return NETDEV_TX_OK;
763 		}
764 
765 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
766 			tx_data_bd = (struct eth_tx_bd *)third_bd;
767 		else
768 			tx_data_bd = NULL;
769 
770 		frag_idx++;
771 	}
772 
773 	/* map last frags into 4th, 5th .... */
774 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
775 		tx_data_bd = (struct eth_tx_bd *)
776 			     qed_chain_produce(&txq->tx_pbl);
777 
778 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
779 
780 		rc = map_frag_to_bd(txq,
781 				    &skb_shinfo(skb)->frags[frag_idx],
782 				    tx_data_bd);
783 		if (rc) {
784 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
785 			qede_update_tx_producer(txq);
786 			return NETDEV_TX_OK;
787 		}
788 	}
789 
790 	/* update the first BD with the actual num BDs */
791 	first_bd->data.nbds = nbd;
792 
793 	netdev_tx_sent_queue(netdev_txq, skb->len);
794 
795 	skb_tx_timestamp(skb);
796 
797 	/* Advance packet producer only before sending the packet since mapping
798 	 * of pages may fail.
799 	 */
800 	txq->sw_tx_prod++;
801 
802 	/* 'next page' entries are counted in the producer value */
803 	txq->tx_db.data.bd_prod =
804 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
805 
806 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
807 		qede_update_tx_producer(txq);
808 
809 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
810 		      < (MAX_SKB_FRAGS + 1))) {
811 		if (skb->xmit_more)
812 			qede_update_tx_producer(txq);
813 
814 		netif_tx_stop_queue(netdev_txq);
815 		txq->stopped_cnt++;
816 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
817 			   "Stop queue was called\n");
818 		/* paired memory barrier is in qede_tx_int(), we have to keep
819 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
820 		 * fp->bd_tx_cons
821 		 */
822 		smp_mb();
823 
824 		if (qed_chain_get_elem_left(&txq->tx_pbl)
825 		     >= (MAX_SKB_FRAGS + 1) &&
826 		    (edev->state == QEDE_STATE_OPEN)) {
827 			netif_tx_wake_queue(netdev_txq);
828 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
829 				   "Wake queue was called\n");
830 		}
831 	}
832 
833 	return NETDEV_TX_OK;
834 }
835 
836 int qede_txq_has_work(struct qede_tx_queue *txq)
837 {
838 	u16 hw_bd_cons;
839 
840 	/* Tell compiler that consumer and producer can change */
841 	barrier();
842 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
843 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
844 		return 0;
845 
846 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
847 }
848 
849 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
850 {
851 	struct eth_tx_1st_bd *bd;
852 	u16 hw_bd_cons;
853 
854 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
855 	barrier();
856 
857 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
858 		bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
859 
860 		dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(bd),
861 				 PAGE_SIZE, DMA_BIDIRECTIONAL);
862 		__free_page(txq->sw_tx_ring.pages[txq->sw_tx_cons &
863 						  NUM_TX_BDS_MAX]);
864 
865 		txq->sw_tx_cons++;
866 		txq->xmit_pkts++;
867 	}
868 }
869 
870 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
871 {
872 	struct netdev_queue *netdev_txq;
873 	u16 hw_bd_cons;
874 	unsigned int pkts_compl = 0, bytes_compl = 0;
875 	int rc;
876 
877 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
878 
879 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
880 	barrier();
881 
882 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
883 		int len = 0;
884 
885 		rc = qede_free_tx_pkt(edev, txq, &len);
886 		if (rc) {
887 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
888 				  hw_bd_cons,
889 				  qed_chain_get_cons_idx(&txq->tx_pbl));
890 			break;
891 		}
892 
893 		bytes_compl += len;
894 		pkts_compl++;
895 		txq->sw_tx_cons++;
896 		txq->xmit_pkts++;
897 	}
898 
899 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
900 
901 	/* Need to make the tx_bd_cons update visible to start_xmit()
902 	 * before checking for netif_tx_queue_stopped().  Without the
903 	 * memory barrier, there is a small possibility that
904 	 * start_xmit() will miss it and cause the queue to be stopped
905 	 * forever.
906 	 * On the other hand we need an rmb() here to ensure the proper
907 	 * ordering of bit testing in the following
908 	 * netif_tx_queue_stopped(txq) call.
909 	 */
910 	smp_mb();
911 
912 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
913 		/* Taking tx_lock is needed to prevent reenabling the queue
914 		 * while it's empty. This could have happen if rx_action() gets
915 		 * suspended in qede_tx_int() after the condition before
916 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
917 		 *
918 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
919 		 * sends some packets consuming the whole queue again->
920 		 * stops the queue
921 		 */
922 
923 		__netif_tx_lock(netdev_txq, smp_processor_id());
924 
925 		if ((netif_tx_queue_stopped(netdev_txq)) &&
926 		    (edev->state == QEDE_STATE_OPEN) &&
927 		    (qed_chain_get_elem_left(&txq->tx_pbl)
928 		      >= (MAX_SKB_FRAGS + 1))) {
929 			netif_tx_wake_queue(netdev_txq);
930 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
931 				   "Wake queue was called\n");
932 		}
933 
934 		__netif_tx_unlock(netdev_txq);
935 	}
936 
937 	return 0;
938 }
939 
940 bool qede_has_rx_work(struct qede_rx_queue *rxq)
941 {
942 	u16 hw_comp_cons, sw_comp_cons;
943 
944 	/* Tell compiler that status block fields can change */
945 	barrier();
946 
947 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
948 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
949 
950 	return hw_comp_cons != sw_comp_cons;
951 }
952 
953 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
954 {
955 	qed_chain_consume(&rxq->rx_bd_ring);
956 	rxq->sw_rx_cons++;
957 }
958 
959 /* This function reuses the buffer(from an offset) from
960  * consumer index to producer index in the bd ring
961  */
962 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
963 				   struct sw_rx_data *curr_cons)
964 {
965 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
966 	struct sw_rx_data *curr_prod;
967 	dma_addr_t new_mapping;
968 
969 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
970 	*curr_prod = *curr_cons;
971 
972 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
973 
974 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
975 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
976 
977 	rxq->sw_rx_prod++;
978 	curr_cons->data = NULL;
979 }
980 
981 /* In case of allocation failures reuse buffers
982  * from consumer index to produce buffers for firmware
983  */
984 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
985 {
986 	struct sw_rx_data *curr_cons;
987 
988 	for (; count > 0; count--) {
989 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
990 		qede_reuse_page(rxq, curr_cons);
991 		qede_rx_bd_ring_consume(rxq);
992 	}
993 }
994 
995 static int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
996 {
997 	struct sw_rx_data *sw_rx_data;
998 	struct eth_rx_bd *rx_bd;
999 	dma_addr_t mapping;
1000 	struct page *data;
1001 
1002 	data = alloc_pages(GFP_ATOMIC, 0);
1003 	if (unlikely(!data))
1004 		return -ENOMEM;
1005 
1006 	/* Map the entire page as it would be used
1007 	 * for multiple RX buffer segment size mapping.
1008 	 */
1009 	mapping = dma_map_page(rxq->dev, data, 0,
1010 			       PAGE_SIZE, rxq->data_direction);
1011 	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
1012 		__free_page(data);
1013 		return -ENOMEM;
1014 	}
1015 
1016 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1017 	sw_rx_data->page_offset = 0;
1018 	sw_rx_data->data = data;
1019 	sw_rx_data->mapping = mapping;
1020 
1021 	/* Advance PROD and get BD pointer */
1022 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
1023 	WARN_ON(!rx_bd);
1024 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1025 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1026 
1027 	rxq->sw_rx_prod++;
1028 
1029 	return 0;
1030 }
1031 
1032 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
1033 					 struct sw_rx_data *curr_cons)
1034 {
1035 	/* Move to the next segment in the page */
1036 	curr_cons->page_offset += rxq->rx_buf_seg_size;
1037 
1038 	if (curr_cons->page_offset == PAGE_SIZE) {
1039 		if (unlikely(qede_alloc_rx_buffer(rxq))) {
1040 			/* Since we failed to allocate new buffer
1041 			 * current buffer can be used again.
1042 			 */
1043 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
1044 
1045 			return -ENOMEM;
1046 		}
1047 
1048 		dma_unmap_page(rxq->dev, curr_cons->mapping,
1049 			       PAGE_SIZE, rxq->data_direction);
1050 	} else {
1051 		/* Increment refcount of the page as we don't want
1052 		 * network stack to take the ownership of the page
1053 		 * which can be recycled multiple times by the driver.
1054 		 */
1055 		page_ref_inc(curr_cons->data);
1056 		qede_reuse_page(rxq, curr_cons);
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
1063 {
1064 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
1065 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
1066 	struct eth_rx_prod_data rx_prods = {0};
1067 
1068 	/* Update producers */
1069 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
1070 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
1071 
1072 	/* Make sure that the BD and SGE data is updated before updating the
1073 	 * producers since FW might read the BD/SGE right after the producer
1074 	 * is updated.
1075 	 */
1076 	wmb();
1077 
1078 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
1079 			(u32 *)&rx_prods);
1080 
1081 	/* mmiowb is needed to synchronize doorbell writes from more than one
1082 	 * processor. It guarantees that the write arrives to the device before
1083 	 * the napi lock is released and another qede_poll is called (possibly
1084 	 * on another CPU). Without this barrier, the next doorbell can bypass
1085 	 * this doorbell. This is applicable to IA64/Altix systems.
1086 	 */
1087 	mmiowb();
1088 }
1089 
1090 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
1091 {
1092 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
1093 	enum rss_hash_type htype;
1094 	u32 hash = 0;
1095 
1096 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
1097 	if (htype) {
1098 		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
1099 			     (htype == RSS_HASH_TYPE_IPV6)) ?
1100 			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
1101 		hash = le32_to_cpu(rss_hash);
1102 	}
1103 	skb_set_hash(skb, hash, hash_type);
1104 }
1105 
1106 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
1107 {
1108 	skb_checksum_none_assert(skb);
1109 
1110 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
1111 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1112 
1113 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
1114 		skb->csum_level = 1;
1115 }
1116 
1117 static inline void qede_skb_receive(struct qede_dev *edev,
1118 				    struct qede_fastpath *fp,
1119 				    struct qede_rx_queue *rxq,
1120 				    struct sk_buff *skb, u16 vlan_tag)
1121 {
1122 	if (vlan_tag)
1123 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1124 
1125 	napi_gro_receive(&fp->napi, skb);
1126 	fp->rxq->rcv_pkts++;
1127 }
1128 
1129 static void qede_set_gro_params(struct qede_dev *edev,
1130 				struct sk_buff *skb,
1131 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
1132 {
1133 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1134 
1135 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1136 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1137 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1138 	else
1139 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1140 
1141 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1142 					cqe->header_len;
1143 }
1144 
1145 static int qede_fill_frag_skb(struct qede_dev *edev,
1146 			      struct qede_rx_queue *rxq,
1147 			      u8 tpa_agg_index, u16 len_on_bd)
1148 {
1149 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1150 							 NUM_RX_BDS_MAX];
1151 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1152 	struct sk_buff *skb = tpa_info->skb;
1153 
1154 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
1155 		goto out;
1156 
1157 	/* Add one frag and update the appropriate fields in the skb */
1158 	skb_fill_page_desc(skb, tpa_info->frag_id++,
1159 			   current_bd->data, current_bd->page_offset,
1160 			   len_on_bd);
1161 
1162 	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
1163 		/* Incr page ref count to reuse on allocation failure
1164 		 * so that it doesn't get freed while freeing SKB.
1165 		 */
1166 		page_ref_inc(current_bd->data);
1167 		goto out;
1168 	}
1169 
1170 	qed_chain_consume(&rxq->rx_bd_ring);
1171 	rxq->sw_rx_cons++;
1172 
1173 	skb->data_len += len_on_bd;
1174 	skb->truesize += rxq->rx_buf_seg_size;
1175 	skb->len += len_on_bd;
1176 
1177 	return 0;
1178 
1179 out:
1180 	tpa_info->state = QEDE_AGG_STATE_ERROR;
1181 	qede_recycle_rx_bd_ring(rxq, 1);
1182 
1183 	return -ENOMEM;
1184 }
1185 
1186 static void qede_tpa_start(struct qede_dev *edev,
1187 			   struct qede_rx_queue *rxq,
1188 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
1189 {
1190 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1191 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1192 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1193 	struct sw_rx_data *replace_buf = &tpa_info->buffer;
1194 	dma_addr_t mapping = tpa_info->buffer_mapping;
1195 	struct sw_rx_data *sw_rx_data_cons;
1196 	struct sw_rx_data *sw_rx_data_prod;
1197 
1198 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1199 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1200 
1201 	/* Use pre-allocated replacement buffer - we can't release the agg.
1202 	 * start until its over and we don't want to risk allocation failing
1203 	 * here, so re-allocate when aggregation will be over.
1204 	 */
1205 	sw_rx_data_prod->mapping = replace_buf->mapping;
1206 
1207 	sw_rx_data_prod->data = replace_buf->data;
1208 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1209 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1210 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
1211 
1212 	rxq->sw_rx_prod++;
1213 
1214 	/* move partial skb from cons to pool (don't unmap yet)
1215 	 * save mapping, incase we drop the packet later on.
1216 	 */
1217 	tpa_info->buffer = *sw_rx_data_cons;
1218 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1219 			   le32_to_cpu(rx_bd_cons->addr.lo));
1220 
1221 	tpa_info->buffer_mapping = mapping;
1222 	rxq->sw_rx_cons++;
1223 
1224 	/* set tpa state to start only if we are able to allocate skb
1225 	 * for this aggregation, otherwise mark as error and aggregation will
1226 	 * be dropped
1227 	 */
1228 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
1229 					 le16_to_cpu(cqe->len_on_first_bd));
1230 	if (unlikely(!tpa_info->skb)) {
1231 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1232 		tpa_info->state = QEDE_AGG_STATE_ERROR;
1233 		goto cons_buf;
1234 	}
1235 
1236 	/* Start filling in the aggregation info */
1237 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1238 	tpa_info->frag_id = 0;
1239 	tpa_info->state = QEDE_AGG_STATE_START;
1240 
1241 	/* Store some information from first CQE */
1242 	tpa_info->start_cqe_placement_offset = cqe->placement_offset;
1243 	tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
1244 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1245 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1246 	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1247 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1248 	else
1249 		tpa_info->vlan_tag = 0;
1250 
1251 	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
1252 
1253 	/* This is needed in order to enable forwarding support */
1254 	qede_set_gro_params(edev, tpa_info->skb, cqe);
1255 
1256 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1257 	if (likely(cqe->ext_bd_len_list[0]))
1258 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1259 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1260 
1261 	if (unlikely(cqe->ext_bd_len_list[1])) {
1262 		DP_ERR(edev,
1263 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1264 		tpa_info->state = QEDE_AGG_STATE_ERROR;
1265 	}
1266 }
1267 
1268 #ifdef CONFIG_INET
1269 static void qede_gro_ip_csum(struct sk_buff *skb)
1270 {
1271 	const struct iphdr *iph = ip_hdr(skb);
1272 	struct tcphdr *th;
1273 
1274 	skb_set_transport_header(skb, sizeof(struct iphdr));
1275 	th = tcp_hdr(skb);
1276 
1277 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1278 				  iph->saddr, iph->daddr, 0);
1279 
1280 	tcp_gro_complete(skb);
1281 }
1282 
1283 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1284 {
1285 	struct ipv6hdr *iph = ipv6_hdr(skb);
1286 	struct tcphdr *th;
1287 
1288 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1289 	th = tcp_hdr(skb);
1290 
1291 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1292 				  &iph->saddr, &iph->daddr, 0);
1293 	tcp_gro_complete(skb);
1294 }
1295 #endif
1296 
1297 static void qede_gro_receive(struct qede_dev *edev,
1298 			     struct qede_fastpath *fp,
1299 			     struct sk_buff *skb,
1300 			     u16 vlan_tag)
1301 {
1302 	/* FW can send a single MTU sized packet from gro flow
1303 	 * due to aggregation timeout/last segment etc. which
1304 	 * is not expected to be a gro packet. If a skb has zero
1305 	 * frags then simply push it in the stack as non gso skb.
1306 	 */
1307 	if (unlikely(!skb->data_len)) {
1308 		skb_shinfo(skb)->gso_type = 0;
1309 		skb_shinfo(skb)->gso_size = 0;
1310 		goto send_skb;
1311 	}
1312 
1313 #ifdef CONFIG_INET
1314 	if (skb_shinfo(skb)->gso_size) {
1315 		skb_reset_network_header(skb);
1316 
1317 		switch (skb->protocol) {
1318 		case htons(ETH_P_IP):
1319 			qede_gro_ip_csum(skb);
1320 			break;
1321 		case htons(ETH_P_IPV6):
1322 			qede_gro_ipv6_csum(skb);
1323 			break;
1324 		default:
1325 			DP_ERR(edev,
1326 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1327 			       ntohs(skb->protocol));
1328 		}
1329 	}
1330 #endif
1331 
1332 send_skb:
1333 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
1334 	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
1335 }
1336 
1337 static inline void qede_tpa_cont(struct qede_dev *edev,
1338 				 struct qede_rx_queue *rxq,
1339 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1340 {
1341 	int i;
1342 
1343 	for (i = 0; cqe->len_list[i]; i++)
1344 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1345 				   le16_to_cpu(cqe->len_list[i]));
1346 
1347 	if (unlikely(i > 1))
1348 		DP_ERR(edev,
1349 		       "Strange - TPA cont with more than a single len_list entry\n");
1350 }
1351 
1352 static void qede_tpa_end(struct qede_dev *edev,
1353 			 struct qede_fastpath *fp,
1354 			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1355 {
1356 	struct qede_rx_queue *rxq = fp->rxq;
1357 	struct qede_agg_info *tpa_info;
1358 	struct sk_buff *skb;
1359 	int i;
1360 
1361 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1362 	skb = tpa_info->skb;
1363 
1364 	for (i = 0; cqe->len_list[i]; i++)
1365 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1366 				   le16_to_cpu(cqe->len_list[i]));
1367 	if (unlikely(i > 1))
1368 		DP_ERR(edev,
1369 		       "Strange - TPA emd with more than a single len_list entry\n");
1370 
1371 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
1372 		goto err;
1373 
1374 	/* Sanity */
1375 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1376 		DP_ERR(edev,
1377 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1378 		       cqe->num_of_bds, tpa_info->frag_id);
1379 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1380 		DP_ERR(edev,
1381 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1382 		       le16_to_cpu(cqe->total_packet_len), skb->len);
1383 
1384 	memcpy(skb->data,
1385 	       page_address(tpa_info->buffer.data) +
1386 	       tpa_info->start_cqe_placement_offset +
1387 	       tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
1388 
1389 	/* Finalize the SKB */
1390 	skb->protocol = eth_type_trans(skb, edev->ndev);
1391 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1392 
1393 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1394 	 * to skb_shinfo(skb)->gso_segs
1395 	 */
1396 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1397 
1398 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1399 
1400 	tpa_info->state = QEDE_AGG_STATE_NONE;
1401 
1402 	return;
1403 err:
1404 	tpa_info->state = QEDE_AGG_STATE_NONE;
1405 	dev_kfree_skb_any(tpa_info->skb);
1406 	tpa_info->skb = NULL;
1407 }
1408 
1409 static bool qede_tunn_exist(u16 flag)
1410 {
1411 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1412 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1413 }
1414 
1415 static u8 qede_check_tunn_csum(u16 flag)
1416 {
1417 	u16 csum_flag = 0;
1418 	u8 tcsum = 0;
1419 
1420 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1421 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1422 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1423 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1424 
1425 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1426 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1427 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1428 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1429 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1430 	}
1431 
1432 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1433 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1434 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1435 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1436 
1437 	if (csum_flag & flag)
1438 		return QEDE_CSUM_ERROR;
1439 
1440 	return QEDE_CSUM_UNNECESSARY | tcsum;
1441 }
1442 
1443 static u8 qede_check_notunn_csum(u16 flag)
1444 {
1445 	u16 csum_flag = 0;
1446 	u8 csum = 0;
1447 
1448 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1449 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1450 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1451 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1452 		csum = QEDE_CSUM_UNNECESSARY;
1453 	}
1454 
1455 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1456 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1457 
1458 	if (csum_flag & flag)
1459 		return QEDE_CSUM_ERROR;
1460 
1461 	return csum;
1462 }
1463 
1464 static u8 qede_check_csum(u16 flag)
1465 {
1466 	if (!qede_tunn_exist(flag))
1467 		return qede_check_notunn_csum(flag);
1468 	else
1469 		return qede_check_tunn_csum(flag);
1470 }
1471 
1472 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1473 				      u16 flag)
1474 {
1475 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1476 
1477 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1478 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1479 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1480 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1481 		return true;
1482 
1483 	return false;
1484 }
1485 
1486 /* Return true iff packet is to be passed to stack */
1487 static bool qede_rx_xdp(struct qede_dev *edev,
1488 			struct qede_fastpath *fp,
1489 			struct qede_rx_queue *rxq,
1490 			struct bpf_prog *prog,
1491 			struct sw_rx_data *bd,
1492 			struct eth_fast_path_rx_reg_cqe *cqe)
1493 {
1494 	u16 len = le16_to_cpu(cqe->len_on_first_bd);
1495 	struct xdp_buff xdp;
1496 	enum xdp_action act;
1497 
1498 	xdp.data = page_address(bd->data) + cqe->placement_offset;
1499 	xdp.data_end = xdp.data + len;
1500 
1501 	/* Queues always have a full reset currently, so for the time
1502 	 * being until there's atomic program replace just mark read
1503 	 * side for map helpers.
1504 	 */
1505 	rcu_read_lock();
1506 	act = bpf_prog_run_xdp(prog, &xdp);
1507 	rcu_read_unlock();
1508 
1509 	if (act == XDP_PASS)
1510 		return true;
1511 
1512 	/* Count number of packets not to be passed to stack */
1513 	rxq->xdp_no_pass++;
1514 
1515 	switch (act) {
1516 	case XDP_TX:
1517 		/* We need the replacement buffer before transmit. */
1518 		if (qede_alloc_rx_buffer(rxq)) {
1519 			qede_recycle_rx_bd_ring(rxq, 1);
1520 			return false;
1521 		}
1522 
1523 		/* Now if there's a transmission problem, we'd still have to
1524 		 * throw current buffer, as replacement was already allocated.
1525 		 */
1526 		if (qede_xdp_xmit(edev, fp, bd, cqe->placement_offset, len)) {
1527 			dma_unmap_page(rxq->dev, bd->mapping,
1528 				       PAGE_SIZE, DMA_BIDIRECTIONAL);
1529 			__free_page(bd->data);
1530 		}
1531 
1532 		/* Regardless, we've consumed an Rx BD */
1533 		qede_rx_bd_ring_consume(rxq);
1534 		return false;
1535 
1536 	default:
1537 		bpf_warn_invalid_xdp_action(act);
1538 	case XDP_ABORTED:
1539 	case XDP_DROP:
1540 		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1541 	}
1542 
1543 	return false;
1544 }
1545 
1546 static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1547 					    struct qede_rx_queue *rxq,
1548 					    struct sw_rx_data *bd, u16 len,
1549 					    u16 pad)
1550 {
1551 	unsigned int offset = bd->page_offset;
1552 	struct skb_frag_struct *frag;
1553 	struct page *page = bd->data;
1554 	unsigned int pull_len;
1555 	struct sk_buff *skb;
1556 	unsigned char *va;
1557 
1558 	/* Allocate a new SKB with a sufficient large header len */
1559 	skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1560 	if (unlikely(!skb))
1561 		return NULL;
1562 
1563 	/* Copy data into SKB - if it's small, we can simply copy it and
1564 	 * re-use the already allcoated & mapped memory.
1565 	 */
1566 	if (len + pad <= edev->rx_copybreak) {
1567 		memcpy(skb_put(skb, len),
1568 		       page_address(page) + pad + offset, len);
1569 		qede_reuse_page(rxq, bd);
1570 		goto out;
1571 	}
1572 
1573 	frag = &skb_shinfo(skb)->frags[0];
1574 
1575 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1576 			page, pad + offset, len, rxq->rx_buf_seg_size);
1577 
1578 	va = skb_frag_address(frag);
1579 	pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1580 
1581 	/* Align the pull_len to optimize memcpy */
1582 	memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1583 
1584 	/* Correct the skb & frag sizes offset after the pull */
1585 	skb_frag_size_sub(frag, pull_len);
1586 	frag->page_offset += pull_len;
1587 	skb->data_len -= pull_len;
1588 	skb->tail += pull_len;
1589 
1590 	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1591 		/* Incr page ref count to reuse on allocation failure so
1592 		 * that it doesn't get freed while freeing SKB [as its
1593 		 * already mapped there].
1594 		 */
1595 		page_ref_inc(page);
1596 		dev_kfree_skb_any(skb);
1597 		return NULL;
1598 	}
1599 
1600 out:
1601 	/* We've consumed the first BD and prepared an SKB */
1602 	qede_rx_bd_ring_consume(rxq);
1603 	return skb;
1604 }
1605 
1606 static int qede_rx_build_jumbo(struct qede_dev *edev,
1607 			       struct qede_rx_queue *rxq,
1608 			       struct sk_buff *skb,
1609 			       struct eth_fast_path_rx_reg_cqe *cqe,
1610 			       u16 first_bd_len)
1611 {
1612 	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1613 	struct sw_rx_data *bd;
1614 	u16 bd_cons_idx;
1615 	u8 num_frags;
1616 
1617 	pkt_len -= first_bd_len;
1618 
1619 	/* We've already used one BD for the SKB. Now take care of the rest */
1620 	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1621 		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1622 		    pkt_len;
1623 
1624 		if (unlikely(!cur_size)) {
1625 			DP_ERR(edev,
1626 			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1627 			       num_frags);
1628 			goto out;
1629 		}
1630 
1631 		/* We need a replacement buffer for each BD */
1632 		if (unlikely(qede_alloc_rx_buffer(rxq)))
1633 			goto out;
1634 
1635 		/* Now that we've allocated the replacement buffer,
1636 		 * we can safely consume the next BD and map it to the SKB.
1637 		 */
1638 		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1639 		bd = &rxq->sw_rx_ring[bd_cons_idx];
1640 		qede_rx_bd_ring_consume(rxq);
1641 
1642 		dma_unmap_page(rxq->dev, bd->mapping,
1643 			       PAGE_SIZE, DMA_FROM_DEVICE);
1644 
1645 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1646 				   bd->data, 0, cur_size);
1647 
1648 		skb->truesize += PAGE_SIZE;
1649 		skb->data_len += cur_size;
1650 		skb->len += cur_size;
1651 		pkt_len -= cur_size;
1652 	}
1653 
1654 	if (unlikely(pkt_len))
1655 		DP_ERR(edev,
1656 		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1657 		       pkt_len);
1658 
1659 out:
1660 	return num_frags;
1661 }
1662 
1663 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1664 				   struct qede_fastpath *fp,
1665 				   struct qede_rx_queue *rxq,
1666 				   union eth_rx_cqe *cqe,
1667 				   enum eth_rx_cqe_type type)
1668 {
1669 	switch (type) {
1670 	case ETH_RX_CQE_TYPE_TPA_START:
1671 		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1672 		return 0;
1673 	case ETH_RX_CQE_TYPE_TPA_CONT:
1674 		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1675 		return 0;
1676 	case ETH_RX_CQE_TYPE_TPA_END:
1677 		qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1678 		return 1;
1679 	default:
1680 		return 0;
1681 	}
1682 }
1683 
1684 static int qede_rx_process_cqe(struct qede_dev *edev,
1685 			       struct qede_fastpath *fp,
1686 			       struct qede_rx_queue *rxq)
1687 {
1688 	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1689 	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1690 	u16 len, pad, bd_cons_idx, parse_flag;
1691 	enum eth_rx_cqe_type cqe_type;
1692 	union eth_rx_cqe *cqe;
1693 	struct sw_rx_data *bd;
1694 	struct sk_buff *skb;
1695 	__le16 flags;
1696 	u8 csum_flag;
1697 
1698 	/* Get the CQE from the completion ring */
1699 	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1700 	cqe_type = cqe->fast_path_regular.type;
1701 
1702 	/* Process an unlikely slowpath event */
1703 	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1704 		struct eth_slow_path_rx_cqe *sp_cqe;
1705 
1706 		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1707 		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1708 		return 0;
1709 	}
1710 
1711 	/* Handle TPA cqes */
1712 	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1713 		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1714 
1715 	/* Get the data from the SW ring; Consume it only after it's evident
1716 	 * we wouldn't recycle it.
1717 	 */
1718 	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1719 	bd = &rxq->sw_rx_ring[bd_cons_idx];
1720 
1721 	fp_cqe = &cqe->fast_path_regular;
1722 	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1723 	pad = fp_cqe->placement_offset;
1724 
1725 	/* Run eBPF program if one is attached */
1726 	if (xdp_prog)
1727 		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe))
1728 			return 1;
1729 
1730 	/* If this is an error packet then drop it */
1731 	flags = cqe->fast_path_regular.pars_flags.flags;
1732 	parse_flag = le16_to_cpu(flags);
1733 
1734 	csum_flag = qede_check_csum(parse_flag);
1735 	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1736 		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
1737 			rxq->rx_ip_frags++;
1738 		} else {
1739 			DP_NOTICE(edev,
1740 				  "CQE has error, flags = %x, dropping incoming packet\n",
1741 				  parse_flag);
1742 			rxq->rx_hw_errors++;
1743 			qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1744 			return 0;
1745 		}
1746 	}
1747 
1748 	/* Basic validation passed; Need to prepare an SKB. This would also
1749 	 * guarantee to finally consume the first BD upon success.
1750 	 */
1751 	skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1752 	if (!skb) {
1753 		rxq->rx_alloc_errors++;
1754 		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1755 		return 0;
1756 	}
1757 
1758 	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1759 	 * by a single cqe.
1760 	 */
1761 	if (fp_cqe->bd_num > 1) {
1762 		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1763 							 fp_cqe, len);
1764 
1765 		if (unlikely(unmapped_frags > 0)) {
1766 			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1767 			dev_kfree_skb_any(skb);
1768 			return 0;
1769 		}
1770 	}
1771 
1772 	/* The SKB contains all the data. Now prepare meta-magic */
1773 	skb->protocol = eth_type_trans(skb, edev->ndev);
1774 	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1775 	qede_set_skb_csum(skb, csum_flag);
1776 	skb_record_rx_queue(skb, rxq->rxq_id);
1777 
1778 	/* SKB is prepared - pass it to stack */
1779 	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1780 
1781 	return 1;
1782 }
1783 
1784 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1785 {
1786 	struct qede_rx_queue *rxq = fp->rxq;
1787 	struct qede_dev *edev = fp->edev;
1788 	u16 hw_comp_cons, sw_comp_cons;
1789 	int work_done = 0;
1790 
1791 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1792 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1793 
1794 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1795 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1796 	 * read before it is written by FW, then FW writes CQE and SB, and then
1797 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1798 	 */
1799 	rmb();
1800 
1801 	/* Loop to complete all indicated BDs */
1802 	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1803 		qede_rx_process_cqe(edev, fp, rxq);
1804 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1805 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1806 		work_done++;
1807 	}
1808 
1809 	/* Update producers */
1810 	qede_update_rx_prod(edev, rxq);
1811 
1812 	return work_done;
1813 }
1814 
1815 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1816 {
1817 	qed_sb_update_sb_idx(fp->sb_info);
1818 
1819 	/* *_has_*_work() reads the status block, thus we need to ensure that
1820 	 * status block indices have been actually read (qed_sb_update_sb_idx)
1821 	 * prior to this check (*_has_*_work) so that we won't write the
1822 	 * "newer" value of the status block to HW (if there was a DMA right
1823 	 * after qede_has_rx_work and if there is no rmb, the memory reading
1824 	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1825 	 * In this case there will never be another interrupt until there is
1826 	 * another update of the status block, while there is still unhandled
1827 	 * work.
1828 	 */
1829 	rmb();
1830 
1831 	if (likely(fp->type & QEDE_FASTPATH_RX))
1832 		if (qede_has_rx_work(fp->rxq))
1833 			return true;
1834 
1835 	if (fp->type & QEDE_FASTPATH_XDP)
1836 		if (qede_txq_has_work(fp->xdp_tx))
1837 			return true;
1838 
1839 	if (likely(fp->type & QEDE_FASTPATH_TX))
1840 		if (qede_txq_has_work(fp->txq))
1841 			return true;
1842 
1843 	return false;
1844 }
1845 
1846 static int qede_poll(struct napi_struct *napi, int budget)
1847 {
1848 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1849 						napi);
1850 	struct qede_dev *edev = fp->edev;
1851 	int rx_work_done = 0;
1852 
1853 	if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1854 		qede_tx_int(edev, fp->txq);
1855 
1856 	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1857 		qede_xdp_tx_int(edev, fp->xdp_tx);
1858 
1859 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1860 			qede_has_rx_work(fp->rxq)) ?
1861 			qede_rx_int(fp, budget) : 0;
1862 	if (rx_work_done < budget) {
1863 		if (!qede_poll_is_more_work(fp)) {
1864 			napi_complete(napi);
1865 
1866 			/* Update and reenable interrupts */
1867 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1868 		} else {
1869 			rx_work_done = budget;
1870 		}
1871 	}
1872 
1873 	if (fp->xdp_xmit) {
1874 		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1875 
1876 		fp->xdp_xmit = 0;
1877 		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1878 		qede_update_tx_producer(fp->xdp_tx);
1879 	}
1880 
1881 	return rx_work_done;
1882 }
1883 
1884 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1885 {
1886 	struct qede_fastpath *fp = fp_cookie;
1887 
1888 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1889 
1890 	napi_schedule_irqoff(&fp->napi);
1891 	return IRQ_HANDLED;
1892 }
1893 
1894 /* -------------------------------------------------------------------------
1895  * END OF FAST-PATH
1896  * -------------------------------------------------------------------------
1897  */
1898 
1899 static int qede_open(struct net_device *ndev);
1900 static int qede_close(struct net_device *ndev);
1901 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1902 static void qede_set_rx_mode(struct net_device *ndev);
1903 static void qede_config_rx_mode(struct net_device *ndev);
1904 
1905 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1906 				 enum qed_filter_xcast_params_type opcode,
1907 				 unsigned char mac[ETH_ALEN])
1908 {
1909 	struct qed_filter_params filter_cmd;
1910 
1911 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1912 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1913 	filter_cmd.filter.ucast.type = opcode;
1914 	filter_cmd.filter.ucast.mac_valid = 1;
1915 	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1916 
1917 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1918 }
1919 
1920 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1921 				  enum qed_filter_xcast_params_type opcode,
1922 				  u16 vid)
1923 {
1924 	struct qed_filter_params filter_cmd;
1925 
1926 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1927 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1928 	filter_cmd.filter.ucast.type = opcode;
1929 	filter_cmd.filter.ucast.vlan_valid = 1;
1930 	filter_cmd.filter.ucast.vlan = vid;
1931 
1932 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1933 }
1934 
1935 void qede_fill_by_demand_stats(struct qede_dev *edev)
1936 {
1937 	struct qed_eth_stats stats;
1938 
1939 	edev->ops->get_vport_stats(edev->cdev, &stats);
1940 	edev->stats.no_buff_discards = stats.no_buff_discards;
1941 	edev->stats.packet_too_big_discard = stats.packet_too_big_discard;
1942 	edev->stats.ttl0_discard = stats.ttl0_discard;
1943 	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1944 	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1945 	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1946 	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1947 	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1948 	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1949 	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1950 	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1951 
1952 	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1953 	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1954 	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1955 	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1956 	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1957 	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1958 	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1959 	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1960 	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1961 	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1962 	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1963 	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1964 
1965 	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1966 	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1967 	edev->stats.rx_128_to_255_byte_packets =
1968 				stats.rx_128_to_255_byte_packets;
1969 	edev->stats.rx_256_to_511_byte_packets =
1970 				stats.rx_256_to_511_byte_packets;
1971 	edev->stats.rx_512_to_1023_byte_packets =
1972 				stats.rx_512_to_1023_byte_packets;
1973 	edev->stats.rx_1024_to_1518_byte_packets =
1974 				stats.rx_1024_to_1518_byte_packets;
1975 	edev->stats.rx_1519_to_1522_byte_packets =
1976 				stats.rx_1519_to_1522_byte_packets;
1977 	edev->stats.rx_1519_to_2047_byte_packets =
1978 				stats.rx_1519_to_2047_byte_packets;
1979 	edev->stats.rx_2048_to_4095_byte_packets =
1980 				stats.rx_2048_to_4095_byte_packets;
1981 	edev->stats.rx_4096_to_9216_byte_packets =
1982 				stats.rx_4096_to_9216_byte_packets;
1983 	edev->stats.rx_9217_to_16383_byte_packets =
1984 				stats.rx_9217_to_16383_byte_packets;
1985 	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1986 	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1987 	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1988 	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1989 	edev->stats.rx_align_errors = stats.rx_align_errors;
1990 	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1991 	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1992 	edev->stats.rx_jabbers = stats.rx_jabbers;
1993 	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1994 	edev->stats.rx_fragments = stats.rx_fragments;
1995 	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1996 	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1997 	edev->stats.tx_128_to_255_byte_packets =
1998 				stats.tx_128_to_255_byte_packets;
1999 	edev->stats.tx_256_to_511_byte_packets =
2000 				stats.tx_256_to_511_byte_packets;
2001 	edev->stats.tx_512_to_1023_byte_packets =
2002 				stats.tx_512_to_1023_byte_packets;
2003 	edev->stats.tx_1024_to_1518_byte_packets =
2004 				stats.tx_1024_to_1518_byte_packets;
2005 	edev->stats.tx_1519_to_2047_byte_packets =
2006 				stats.tx_1519_to_2047_byte_packets;
2007 	edev->stats.tx_2048_to_4095_byte_packets =
2008 				stats.tx_2048_to_4095_byte_packets;
2009 	edev->stats.tx_4096_to_9216_byte_packets =
2010 				stats.tx_4096_to_9216_byte_packets;
2011 	edev->stats.tx_9217_to_16383_byte_packets =
2012 				stats.tx_9217_to_16383_byte_packets;
2013 	edev->stats.tx_pause_frames = stats.tx_pause_frames;
2014 	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
2015 	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
2016 	edev->stats.tx_total_collisions = stats.tx_total_collisions;
2017 	edev->stats.brb_truncates = stats.brb_truncates;
2018 	edev->stats.brb_discards = stats.brb_discards;
2019 	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
2020 }
2021 
2022 static
2023 struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev,
2024 					   struct rtnl_link_stats64 *stats)
2025 {
2026 	struct qede_dev *edev = netdev_priv(dev);
2027 
2028 	qede_fill_by_demand_stats(edev);
2029 
2030 	stats->rx_packets = edev->stats.rx_ucast_pkts +
2031 			    edev->stats.rx_mcast_pkts +
2032 			    edev->stats.rx_bcast_pkts;
2033 	stats->tx_packets = edev->stats.tx_ucast_pkts +
2034 			    edev->stats.tx_mcast_pkts +
2035 			    edev->stats.tx_bcast_pkts;
2036 
2037 	stats->rx_bytes = edev->stats.rx_ucast_bytes +
2038 			  edev->stats.rx_mcast_bytes +
2039 			  edev->stats.rx_bcast_bytes;
2040 
2041 	stats->tx_bytes = edev->stats.tx_ucast_bytes +
2042 			  edev->stats.tx_mcast_bytes +
2043 			  edev->stats.tx_bcast_bytes;
2044 
2045 	stats->tx_errors = edev->stats.tx_err_drop_pkts;
2046 	stats->multicast = edev->stats.rx_mcast_pkts +
2047 			   edev->stats.rx_bcast_pkts;
2048 
2049 	stats->rx_fifo_errors = edev->stats.no_buff_discards;
2050 
2051 	stats->collisions = edev->stats.tx_total_collisions;
2052 	stats->rx_crc_errors = edev->stats.rx_crc_errors;
2053 	stats->rx_frame_errors = edev->stats.rx_align_errors;
2054 
2055 	return stats;
2056 }
2057 
2058 #ifdef CONFIG_QED_SRIOV
2059 static int qede_get_vf_config(struct net_device *dev, int vfidx,
2060 			      struct ifla_vf_info *ivi)
2061 {
2062 	struct qede_dev *edev = netdev_priv(dev);
2063 
2064 	if (!edev->ops)
2065 		return -EINVAL;
2066 
2067 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
2068 }
2069 
2070 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
2071 			    int min_tx_rate, int max_tx_rate)
2072 {
2073 	struct qede_dev *edev = netdev_priv(dev);
2074 
2075 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
2076 					max_tx_rate);
2077 }
2078 
2079 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
2080 {
2081 	struct qede_dev *edev = netdev_priv(dev);
2082 
2083 	if (!edev->ops)
2084 		return -EINVAL;
2085 
2086 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
2087 }
2088 
2089 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
2090 				  int link_state)
2091 {
2092 	struct qede_dev *edev = netdev_priv(dev);
2093 
2094 	if (!edev->ops)
2095 		return -EINVAL;
2096 
2097 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
2098 }
2099 #endif
2100 
2101 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
2102 {
2103 	struct qed_update_vport_params params;
2104 	int rc;
2105 
2106 	/* Proceed only if action actually needs to be performed */
2107 	if (edev->accept_any_vlan == action)
2108 		return;
2109 
2110 	memset(&params, 0, sizeof(params));
2111 
2112 	params.vport_id = 0;
2113 	params.accept_any_vlan = action;
2114 	params.update_accept_any_vlan_flg = 1;
2115 
2116 	rc = edev->ops->vport_update(edev->cdev, &params);
2117 	if (rc) {
2118 		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
2119 		       action ? "enable" : "disable");
2120 	} else {
2121 		DP_INFO(edev, "%s accept-any-vlan\n",
2122 			action ? "enabled" : "disabled");
2123 		edev->accept_any_vlan = action;
2124 	}
2125 }
2126 
2127 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
2128 {
2129 	struct qede_dev *edev = netdev_priv(dev);
2130 	struct qede_vlan *vlan, *tmp;
2131 	int rc = 0;
2132 
2133 	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
2134 
2135 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
2136 	if (!vlan) {
2137 		DP_INFO(edev, "Failed to allocate struct for vlan\n");
2138 		return -ENOMEM;
2139 	}
2140 	INIT_LIST_HEAD(&vlan->list);
2141 	vlan->vid = vid;
2142 	vlan->configured = false;
2143 
2144 	/* Verify vlan isn't already configured */
2145 	list_for_each_entry(tmp, &edev->vlan_list, list) {
2146 		if (tmp->vid == vlan->vid) {
2147 			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2148 				   "vlan already configured\n");
2149 			kfree(vlan);
2150 			return -EEXIST;
2151 		}
2152 	}
2153 
2154 	/* If interface is down, cache this VLAN ID and return */
2155 	__qede_lock(edev);
2156 	if (edev->state != QEDE_STATE_OPEN) {
2157 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2158 			   "Interface is down, VLAN %d will be configured when interface is up\n",
2159 			   vid);
2160 		if (vid != 0)
2161 			edev->non_configured_vlans++;
2162 		list_add(&vlan->list, &edev->vlan_list);
2163 		goto out;
2164 	}
2165 
2166 	/* Check for the filter limit.
2167 	 * Note - vlan0 has a reserved filter and can be added without
2168 	 * worrying about quota
2169 	 */
2170 	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
2171 	    (vlan->vid == 0)) {
2172 		rc = qede_set_ucast_rx_vlan(edev,
2173 					    QED_FILTER_XCAST_TYPE_ADD,
2174 					    vlan->vid);
2175 		if (rc) {
2176 			DP_ERR(edev, "Failed to configure VLAN %d\n",
2177 			       vlan->vid);
2178 			kfree(vlan);
2179 			goto out;
2180 		}
2181 		vlan->configured = true;
2182 
2183 		/* vlan0 filter isn't consuming out of our quota */
2184 		if (vlan->vid != 0)
2185 			edev->configured_vlans++;
2186 	} else {
2187 		/* Out of quota; Activate accept-any-VLAN mode */
2188 		if (!edev->non_configured_vlans)
2189 			qede_config_accept_any_vlan(edev, true);
2190 
2191 		edev->non_configured_vlans++;
2192 	}
2193 
2194 	list_add(&vlan->list, &edev->vlan_list);
2195 
2196 out:
2197 	__qede_unlock(edev);
2198 	return rc;
2199 }
2200 
2201 static void qede_del_vlan_from_list(struct qede_dev *edev,
2202 				    struct qede_vlan *vlan)
2203 {
2204 	/* vlan0 filter isn't consuming out of our quota */
2205 	if (vlan->vid != 0) {
2206 		if (vlan->configured)
2207 			edev->configured_vlans--;
2208 		else
2209 			edev->non_configured_vlans--;
2210 	}
2211 
2212 	list_del(&vlan->list);
2213 	kfree(vlan);
2214 }
2215 
2216 static int qede_configure_vlan_filters(struct qede_dev *edev)
2217 {
2218 	int rc = 0, real_rc = 0, accept_any_vlan = 0;
2219 	struct qed_dev_eth_info *dev_info;
2220 	struct qede_vlan *vlan = NULL;
2221 
2222 	if (list_empty(&edev->vlan_list))
2223 		return 0;
2224 
2225 	dev_info = &edev->dev_info;
2226 
2227 	/* Configure non-configured vlans */
2228 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2229 		if (vlan->configured)
2230 			continue;
2231 
2232 		/* We have used all our credits, now enable accept_any_vlan */
2233 		if ((vlan->vid != 0) &&
2234 		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
2235 			accept_any_vlan = 1;
2236 			continue;
2237 		}
2238 
2239 		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2240 
2241 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2242 					    vlan->vid);
2243 		if (rc) {
2244 			DP_ERR(edev, "Failed to configure VLAN %u\n",
2245 			       vlan->vid);
2246 			real_rc = rc;
2247 			continue;
2248 		}
2249 
2250 		vlan->configured = true;
2251 		/* vlan0 filter doesn't consume our VLAN filter's quota */
2252 		if (vlan->vid != 0) {
2253 			edev->non_configured_vlans--;
2254 			edev->configured_vlans++;
2255 		}
2256 	}
2257 
2258 	/* enable accept_any_vlan mode if we have more VLANs than credits,
2259 	 * or remove accept_any_vlan mode if we've actually removed
2260 	 * a non-configured vlan, and all remaining vlans are truly configured.
2261 	 */
2262 
2263 	if (accept_any_vlan)
2264 		qede_config_accept_any_vlan(edev, true);
2265 	else if (!edev->non_configured_vlans)
2266 		qede_config_accept_any_vlan(edev, false);
2267 
2268 	return real_rc;
2269 }
2270 
2271 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2272 {
2273 	struct qede_dev *edev = netdev_priv(dev);
2274 	struct qede_vlan *vlan = NULL;
2275 	int rc = 0;
2276 
2277 	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2278 
2279 	/* Find whether entry exists */
2280 	__qede_lock(edev);
2281 	list_for_each_entry(vlan, &edev->vlan_list, list)
2282 		if (vlan->vid == vid)
2283 			break;
2284 
2285 	if (!vlan || (vlan->vid != vid)) {
2286 		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2287 			   "Vlan isn't configured\n");
2288 		goto out;
2289 	}
2290 
2291 	if (edev->state != QEDE_STATE_OPEN) {
2292 		/* As interface is already down, we don't have a VPORT
2293 		 * instance to remove vlan filter. So just update vlan list
2294 		 */
2295 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2296 			   "Interface is down, removing VLAN from list only\n");
2297 		qede_del_vlan_from_list(edev, vlan);
2298 		goto out;
2299 	}
2300 
2301 	/* Remove vlan */
2302 	if (vlan->configured) {
2303 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2304 					    vid);
2305 		if (rc) {
2306 			DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2307 			goto out;
2308 		}
2309 	}
2310 
2311 	qede_del_vlan_from_list(edev, vlan);
2312 
2313 	/* We have removed a VLAN - try to see if we can
2314 	 * configure non-configured VLAN from the list.
2315 	 */
2316 	rc = qede_configure_vlan_filters(edev);
2317 
2318 out:
2319 	__qede_unlock(edev);
2320 	return rc;
2321 }
2322 
2323 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2324 {
2325 	struct qede_vlan *vlan = NULL;
2326 
2327 	if (list_empty(&edev->vlan_list))
2328 		return;
2329 
2330 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2331 		if (!vlan->configured)
2332 			continue;
2333 
2334 		vlan->configured = false;
2335 
2336 		/* vlan0 filter isn't consuming out of our quota */
2337 		if (vlan->vid != 0) {
2338 			edev->non_configured_vlans++;
2339 			edev->configured_vlans--;
2340 		}
2341 
2342 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2343 			   "marked vlan %d as non-configured\n", vlan->vid);
2344 	}
2345 
2346 	edev->accept_any_vlan = false;
2347 }
2348 
2349 static void qede_set_features_reload(struct qede_dev *edev,
2350 				     struct qede_reload_args *args)
2351 {
2352 	edev->ndev->features = args->u.features;
2353 }
2354 
2355 int qede_set_features(struct net_device *dev, netdev_features_t features)
2356 {
2357 	struct qede_dev *edev = netdev_priv(dev);
2358 	netdev_features_t changes = features ^ dev->features;
2359 	bool need_reload = false;
2360 
2361 	/* No action needed if hardware GRO is disabled during driver load */
2362 	if (changes & NETIF_F_GRO) {
2363 		if (dev->features & NETIF_F_GRO)
2364 			need_reload = !edev->gro_disable;
2365 		else
2366 			need_reload = edev->gro_disable;
2367 	}
2368 
2369 	if (need_reload) {
2370 		struct qede_reload_args args;
2371 
2372 		args.u.features = features;
2373 		args.func = &qede_set_features_reload;
2374 
2375 		/* Make sure that we definitely need to reload.
2376 		 * In case of an eBPF attached program, there will be no FW
2377 		 * aggregations, so no need to actually reload.
2378 		 */
2379 		__qede_lock(edev);
2380 		if (edev->xdp_prog)
2381 			args.func(edev, &args);
2382 		else
2383 			qede_reload(edev, &args, true);
2384 		__qede_unlock(edev);
2385 
2386 		return 1;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static void qede_udp_tunnel_add(struct net_device *dev,
2393 				struct udp_tunnel_info *ti)
2394 {
2395 	struct qede_dev *edev = netdev_priv(dev);
2396 	u16 t_port = ntohs(ti->port);
2397 
2398 	switch (ti->type) {
2399 	case UDP_TUNNEL_TYPE_VXLAN:
2400 		if (edev->vxlan_dst_port)
2401 			return;
2402 
2403 		edev->vxlan_dst_port = t_port;
2404 
2405 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
2406 			   t_port);
2407 
2408 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2409 		break;
2410 	case UDP_TUNNEL_TYPE_GENEVE:
2411 		if (edev->geneve_dst_port)
2412 			return;
2413 
2414 		edev->geneve_dst_port = t_port;
2415 
2416 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n",
2417 			   t_port);
2418 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2419 		break;
2420 	default:
2421 		return;
2422 	}
2423 
2424 	schedule_delayed_work(&edev->sp_task, 0);
2425 }
2426 
2427 static void qede_udp_tunnel_del(struct net_device *dev,
2428 				struct udp_tunnel_info *ti)
2429 {
2430 	struct qede_dev *edev = netdev_priv(dev);
2431 	u16 t_port = ntohs(ti->port);
2432 
2433 	switch (ti->type) {
2434 	case UDP_TUNNEL_TYPE_VXLAN:
2435 		if (t_port != edev->vxlan_dst_port)
2436 			return;
2437 
2438 		edev->vxlan_dst_port = 0;
2439 
2440 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
2441 			   t_port);
2442 
2443 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2444 		break;
2445 	case UDP_TUNNEL_TYPE_GENEVE:
2446 		if (t_port != edev->geneve_dst_port)
2447 			return;
2448 
2449 		edev->geneve_dst_port = 0;
2450 
2451 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
2452 			   t_port);
2453 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2454 		break;
2455 	default:
2456 		return;
2457 	}
2458 
2459 	schedule_delayed_work(&edev->sp_task, 0);
2460 }
2461 
2462 /* 8B udp header + 8B base tunnel header + 32B option length */
2463 #define QEDE_MAX_TUN_HDR_LEN 48
2464 
2465 static netdev_features_t qede_features_check(struct sk_buff *skb,
2466 					     struct net_device *dev,
2467 					     netdev_features_t features)
2468 {
2469 	if (skb->encapsulation) {
2470 		u8 l4_proto = 0;
2471 
2472 		switch (vlan_get_protocol(skb)) {
2473 		case htons(ETH_P_IP):
2474 			l4_proto = ip_hdr(skb)->protocol;
2475 			break;
2476 		case htons(ETH_P_IPV6):
2477 			l4_proto = ipv6_hdr(skb)->nexthdr;
2478 			break;
2479 		default:
2480 			return features;
2481 		}
2482 
2483 		/* Disable offloads for geneve tunnels, as HW can't parse
2484 		 * the geneve header which has option length greater than 32B.
2485 		 */
2486 		if ((l4_proto == IPPROTO_UDP) &&
2487 		    ((skb_inner_mac_header(skb) -
2488 		      skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN))
2489 			return features & ~(NETIF_F_CSUM_MASK |
2490 					    NETIF_F_GSO_MASK);
2491 	}
2492 
2493 	return features;
2494 }
2495 
2496 static void qede_xdp_reload_func(struct qede_dev *edev,
2497 				 struct qede_reload_args *args)
2498 {
2499 	struct bpf_prog *old;
2500 
2501 	old = xchg(&edev->xdp_prog, args->u.new_prog);
2502 	if (old)
2503 		bpf_prog_put(old);
2504 }
2505 
2506 static int qede_xdp_set(struct qede_dev *edev, struct bpf_prog *prog)
2507 {
2508 	struct qede_reload_args args;
2509 
2510 	/* If we're called, there was already a bpf reference increment */
2511 	args.func = &qede_xdp_reload_func;
2512 	args.u.new_prog = prog;
2513 	qede_reload(edev, &args, false);
2514 
2515 	return 0;
2516 }
2517 
2518 static int qede_xdp(struct net_device *dev, struct netdev_xdp *xdp)
2519 {
2520 	struct qede_dev *edev = netdev_priv(dev);
2521 
2522 	switch (xdp->command) {
2523 	case XDP_SETUP_PROG:
2524 		return qede_xdp_set(edev, xdp->prog);
2525 	case XDP_QUERY_PROG:
2526 		xdp->prog_attached = !!edev->xdp_prog;
2527 		return 0;
2528 	default:
2529 		return -EINVAL;
2530 	}
2531 }
2532 
2533 static const struct net_device_ops qede_netdev_ops = {
2534 	.ndo_open = qede_open,
2535 	.ndo_stop = qede_close,
2536 	.ndo_start_xmit = qede_start_xmit,
2537 	.ndo_set_rx_mode = qede_set_rx_mode,
2538 	.ndo_set_mac_address = qede_set_mac_addr,
2539 	.ndo_validate_addr = eth_validate_addr,
2540 	.ndo_change_mtu = qede_change_mtu,
2541 #ifdef CONFIG_QED_SRIOV
2542 	.ndo_set_vf_mac = qede_set_vf_mac,
2543 	.ndo_set_vf_vlan = qede_set_vf_vlan,
2544 #endif
2545 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2546 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2547 	.ndo_set_features = qede_set_features,
2548 	.ndo_get_stats64 = qede_get_stats64,
2549 #ifdef CONFIG_QED_SRIOV
2550 	.ndo_set_vf_link_state = qede_set_vf_link_state,
2551 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2552 	.ndo_get_vf_config = qede_get_vf_config,
2553 	.ndo_set_vf_rate = qede_set_vf_rate,
2554 #endif
2555 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
2556 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
2557 	.ndo_features_check = qede_features_check,
2558 	.ndo_xdp = qede_xdp,
2559 };
2560 
2561 /* -------------------------------------------------------------------------
2562  * START OF PROBE / REMOVE
2563  * -------------------------------------------------------------------------
2564  */
2565 
2566 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2567 					    struct pci_dev *pdev,
2568 					    struct qed_dev_eth_info *info,
2569 					    u32 dp_module, u8 dp_level)
2570 {
2571 	struct net_device *ndev;
2572 	struct qede_dev *edev;
2573 
2574 	ndev = alloc_etherdev_mqs(sizeof(*edev),
2575 				  info->num_queues, info->num_queues);
2576 	if (!ndev) {
2577 		pr_err("etherdev allocation failed\n");
2578 		return NULL;
2579 	}
2580 
2581 	edev = netdev_priv(ndev);
2582 	edev->ndev = ndev;
2583 	edev->cdev = cdev;
2584 	edev->pdev = pdev;
2585 	edev->dp_module = dp_module;
2586 	edev->dp_level = dp_level;
2587 	edev->ops = qed_ops;
2588 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2589 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2590 
2591 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
2592 		info->num_queues, info->num_queues);
2593 
2594 	SET_NETDEV_DEV(ndev, &pdev->dev);
2595 
2596 	memset(&edev->stats, 0, sizeof(edev->stats));
2597 	memcpy(&edev->dev_info, info, sizeof(*info));
2598 
2599 	INIT_LIST_HEAD(&edev->vlan_list);
2600 
2601 	return edev;
2602 }
2603 
2604 static void qede_init_ndev(struct qede_dev *edev)
2605 {
2606 	struct net_device *ndev = edev->ndev;
2607 	struct pci_dev *pdev = edev->pdev;
2608 	u32 hw_features;
2609 
2610 	pci_set_drvdata(pdev, ndev);
2611 
2612 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
2613 	ndev->base_addr = ndev->mem_start;
2614 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
2615 	ndev->irq = edev->dev_info.common.pci_irq;
2616 
2617 	ndev->watchdog_timeo = TX_TIMEOUT;
2618 
2619 	ndev->netdev_ops = &qede_netdev_ops;
2620 
2621 	qede_set_ethtool_ops(ndev);
2622 
2623 	ndev->priv_flags |= IFF_UNICAST_FLT;
2624 
2625 	/* user-changeble features */
2626 	hw_features = NETIF_F_GRO | NETIF_F_SG |
2627 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2628 		      NETIF_F_TSO | NETIF_F_TSO6;
2629 
2630 	/* Encap features*/
2631 	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2632 		       NETIF_F_TSO_ECN | NETIF_F_GSO_UDP_TUNNEL_CSUM |
2633 		       NETIF_F_GSO_GRE_CSUM;
2634 	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2635 				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2636 				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2637 				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM |
2638 				NETIF_F_GSO_UDP_TUNNEL_CSUM |
2639 				NETIF_F_GSO_GRE_CSUM;
2640 
2641 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2642 			      NETIF_F_HIGHDMA;
2643 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2644 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2645 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2646 
2647 	ndev->hw_features = hw_features;
2648 
2649 	/* MTU range: 46 - 9600 */
2650 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
2651 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
2652 
2653 	/* Set network device HW mac */
2654 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2655 
2656 	ndev->mtu = edev->dev_info.common.mtu;
2657 }
2658 
2659 /* This function converts from 32b param to two params of level and module
2660  * Input 32b decoding:
2661  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2662  * 'happy' flow, e.g. memory allocation failed.
2663  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2664  * and provide important parameters.
2665  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2666  * module. VERBOSE prints are for tracking the specific flow in low level.
2667  *
2668  * Notice that the level should be that of the lowest required logs.
2669  */
2670 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2671 {
2672 	*p_dp_level = QED_LEVEL_NOTICE;
2673 	*p_dp_module = 0;
2674 
2675 	if (debug & QED_LOG_VERBOSE_MASK) {
2676 		*p_dp_level = QED_LEVEL_VERBOSE;
2677 		*p_dp_module = (debug & 0x3FFFFFFF);
2678 	} else if (debug & QED_LOG_INFO_MASK) {
2679 		*p_dp_level = QED_LEVEL_INFO;
2680 	} else if (debug & QED_LOG_NOTICE_MASK) {
2681 		*p_dp_level = QED_LEVEL_NOTICE;
2682 	}
2683 }
2684 
2685 static void qede_free_fp_array(struct qede_dev *edev)
2686 {
2687 	if (edev->fp_array) {
2688 		struct qede_fastpath *fp;
2689 		int i;
2690 
2691 		for_each_queue(i) {
2692 			fp = &edev->fp_array[i];
2693 
2694 			kfree(fp->sb_info);
2695 			kfree(fp->rxq);
2696 			kfree(fp->xdp_tx);
2697 			kfree(fp->txq);
2698 		}
2699 		kfree(edev->fp_array);
2700 	}
2701 
2702 	edev->num_queues = 0;
2703 	edev->fp_num_tx = 0;
2704 	edev->fp_num_rx = 0;
2705 }
2706 
2707 static int qede_alloc_fp_array(struct qede_dev *edev)
2708 {
2709 	u8 fp_combined, fp_rx = edev->fp_num_rx;
2710 	struct qede_fastpath *fp;
2711 	int i;
2712 
2713 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
2714 				 sizeof(*edev->fp_array), GFP_KERNEL);
2715 	if (!edev->fp_array) {
2716 		DP_NOTICE(edev, "fp array allocation failed\n");
2717 		goto err;
2718 	}
2719 
2720 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
2721 
2722 	/* Allocate the FP elements for Rx queues followed by combined and then
2723 	 * the Tx. This ordering should be maintained so that the respective
2724 	 * queues (Rx or Tx) will be together in the fastpath array and the
2725 	 * associated ids will be sequential.
2726 	 */
2727 	for_each_queue(i) {
2728 		fp = &edev->fp_array[i];
2729 
2730 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
2731 		if (!fp->sb_info) {
2732 			DP_NOTICE(edev, "sb info struct allocation failed\n");
2733 			goto err;
2734 		}
2735 
2736 		if (fp_rx) {
2737 			fp->type = QEDE_FASTPATH_RX;
2738 			fp_rx--;
2739 		} else if (fp_combined) {
2740 			fp->type = QEDE_FASTPATH_COMBINED;
2741 			fp_combined--;
2742 		} else {
2743 			fp->type = QEDE_FASTPATH_TX;
2744 		}
2745 
2746 		if (fp->type & QEDE_FASTPATH_TX) {
2747 			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
2748 			if (!fp->txq)
2749 				goto err;
2750 		}
2751 
2752 		if (fp->type & QEDE_FASTPATH_RX) {
2753 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
2754 			if (!fp->rxq)
2755 				goto err;
2756 
2757 			if (edev->xdp_prog) {
2758 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
2759 						     GFP_KERNEL);
2760 				if (!fp->xdp_tx)
2761 					goto err;
2762 				fp->type |= QEDE_FASTPATH_XDP;
2763 			}
2764 		}
2765 	}
2766 
2767 	return 0;
2768 err:
2769 	qede_free_fp_array(edev);
2770 	return -ENOMEM;
2771 }
2772 
2773 static void qede_sp_task(struct work_struct *work)
2774 {
2775 	struct qede_dev *edev = container_of(work, struct qede_dev,
2776 					     sp_task.work);
2777 	struct qed_dev *cdev = edev->cdev;
2778 
2779 	__qede_lock(edev);
2780 
2781 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2782 		if (edev->state == QEDE_STATE_OPEN)
2783 			qede_config_rx_mode(edev->ndev);
2784 
2785 	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2786 		struct qed_tunn_params tunn_params;
2787 
2788 		memset(&tunn_params, 0, sizeof(tunn_params));
2789 		tunn_params.update_vxlan_port = 1;
2790 		tunn_params.vxlan_port = edev->vxlan_dst_port;
2791 		qed_ops->tunn_config(cdev, &tunn_params);
2792 	}
2793 
2794 	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2795 		struct qed_tunn_params tunn_params;
2796 
2797 		memset(&tunn_params, 0, sizeof(tunn_params));
2798 		tunn_params.update_geneve_port = 1;
2799 		tunn_params.geneve_port = edev->geneve_dst_port;
2800 		qed_ops->tunn_config(cdev, &tunn_params);
2801 	}
2802 
2803 	__qede_unlock(edev);
2804 }
2805 
2806 static void qede_update_pf_params(struct qed_dev *cdev)
2807 {
2808 	struct qed_pf_params pf_params;
2809 
2810 	/* 64 rx + 64 tx + 64 XDP */
2811 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2812 	pf_params.eth_pf_params.num_cons = 192;
2813 	qed_ops->common->update_pf_params(cdev, &pf_params);
2814 }
2815 
2816 enum qede_probe_mode {
2817 	QEDE_PROBE_NORMAL,
2818 };
2819 
2820 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2821 			bool is_vf, enum qede_probe_mode mode)
2822 {
2823 	struct qed_probe_params probe_params;
2824 	struct qed_slowpath_params sp_params;
2825 	struct qed_dev_eth_info dev_info;
2826 	struct qede_dev *edev;
2827 	struct qed_dev *cdev;
2828 	int rc;
2829 
2830 	if (unlikely(dp_level & QED_LEVEL_INFO))
2831 		pr_notice("Starting qede probe\n");
2832 
2833 	memset(&probe_params, 0, sizeof(probe_params));
2834 	probe_params.protocol = QED_PROTOCOL_ETH;
2835 	probe_params.dp_module = dp_module;
2836 	probe_params.dp_level = dp_level;
2837 	probe_params.is_vf = is_vf;
2838 	cdev = qed_ops->common->probe(pdev, &probe_params);
2839 	if (!cdev) {
2840 		rc = -ENODEV;
2841 		goto err0;
2842 	}
2843 
2844 	qede_update_pf_params(cdev);
2845 
2846 	/* Start the Slowpath-process */
2847 	memset(&sp_params, 0, sizeof(sp_params));
2848 	sp_params.int_mode = QED_INT_MODE_MSIX;
2849 	sp_params.drv_major = QEDE_MAJOR_VERSION;
2850 	sp_params.drv_minor = QEDE_MINOR_VERSION;
2851 	sp_params.drv_rev = QEDE_REVISION_VERSION;
2852 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
2853 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2854 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
2855 	if (rc) {
2856 		pr_notice("Cannot start slowpath\n");
2857 		goto err1;
2858 	}
2859 
2860 	/* Learn information crucial for qede to progress */
2861 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2862 	if (rc)
2863 		goto err2;
2864 
2865 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2866 				   dp_level);
2867 	if (!edev) {
2868 		rc = -ENOMEM;
2869 		goto err2;
2870 	}
2871 
2872 	if (is_vf)
2873 		edev->flags |= QEDE_FLAG_IS_VF;
2874 
2875 	qede_init_ndev(edev);
2876 
2877 	rc = qede_roce_dev_add(edev);
2878 	if (rc)
2879 		goto err3;
2880 
2881 	rc = register_netdev(edev->ndev);
2882 	if (rc) {
2883 		DP_NOTICE(edev, "Cannot register net-device\n");
2884 		goto err4;
2885 	}
2886 
2887 	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2888 
2889 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2890 
2891 #ifdef CONFIG_DCB
2892 	if (!IS_VF(edev))
2893 		qede_set_dcbnl_ops(edev->ndev);
2894 #endif
2895 
2896 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2897 	mutex_init(&edev->qede_lock);
2898 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2899 
2900 	DP_INFO(edev, "Ending successfully qede probe\n");
2901 
2902 	return 0;
2903 
2904 err4:
2905 	qede_roce_dev_remove(edev);
2906 err3:
2907 	free_netdev(edev->ndev);
2908 err2:
2909 	qed_ops->common->slowpath_stop(cdev);
2910 err1:
2911 	qed_ops->common->remove(cdev);
2912 err0:
2913 	return rc;
2914 }
2915 
2916 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2917 {
2918 	bool is_vf = false;
2919 	u32 dp_module = 0;
2920 	u8 dp_level = 0;
2921 
2922 	switch ((enum qede_pci_private)id->driver_data) {
2923 	case QEDE_PRIVATE_VF:
2924 		if (debug & QED_LOG_VERBOSE_MASK)
2925 			dev_err(&pdev->dev, "Probing a VF\n");
2926 		is_vf = true;
2927 		break;
2928 	default:
2929 		if (debug & QED_LOG_VERBOSE_MASK)
2930 			dev_err(&pdev->dev, "Probing a PF\n");
2931 	}
2932 
2933 	qede_config_debug(debug, &dp_module, &dp_level);
2934 
2935 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
2936 			    QEDE_PROBE_NORMAL);
2937 }
2938 
2939 enum qede_remove_mode {
2940 	QEDE_REMOVE_NORMAL,
2941 };
2942 
2943 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2944 {
2945 	struct net_device *ndev = pci_get_drvdata(pdev);
2946 	struct qede_dev *edev = netdev_priv(ndev);
2947 	struct qed_dev *cdev = edev->cdev;
2948 
2949 	DP_INFO(edev, "Starting qede_remove\n");
2950 
2951 	cancel_delayed_work_sync(&edev->sp_task);
2952 
2953 	unregister_netdev(ndev);
2954 
2955 	qede_roce_dev_remove(edev);
2956 
2957 	edev->ops->common->set_power_state(cdev, PCI_D0);
2958 
2959 	pci_set_drvdata(pdev, NULL);
2960 
2961 	/* Release edev's reference to XDP's bpf if such exist */
2962 	if (edev->xdp_prog)
2963 		bpf_prog_put(edev->xdp_prog);
2964 
2965 	free_netdev(ndev);
2966 
2967 	/* Use global ops since we've freed edev */
2968 	qed_ops->common->slowpath_stop(cdev);
2969 	if (system_state == SYSTEM_POWER_OFF)
2970 		return;
2971 	qed_ops->common->remove(cdev);
2972 
2973 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
2974 }
2975 
2976 static void qede_remove(struct pci_dev *pdev)
2977 {
2978 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2979 }
2980 
2981 static void qede_shutdown(struct pci_dev *pdev)
2982 {
2983 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2984 }
2985 
2986 /* -------------------------------------------------------------------------
2987  * START OF LOAD / UNLOAD
2988  * -------------------------------------------------------------------------
2989  */
2990 
2991 static int qede_set_num_queues(struct qede_dev *edev)
2992 {
2993 	int rc;
2994 	u16 rss_num;
2995 
2996 	/* Setup queues according to possible resources*/
2997 	if (edev->req_queues)
2998 		rss_num = edev->req_queues;
2999 	else
3000 		rss_num = netif_get_num_default_rss_queues() *
3001 			  edev->dev_info.common.num_hwfns;
3002 
3003 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
3004 
3005 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
3006 	if (rc > 0) {
3007 		/* Managed to request interrupts for our queues */
3008 		edev->num_queues = rc;
3009 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
3010 			QEDE_QUEUE_CNT(edev), rss_num);
3011 		rc = 0;
3012 	}
3013 
3014 	edev->fp_num_tx = edev->req_num_tx;
3015 	edev->fp_num_rx = edev->req_num_rx;
3016 
3017 	return rc;
3018 }
3019 
3020 static void qede_free_mem_sb(struct qede_dev *edev,
3021 			     struct qed_sb_info *sb_info)
3022 {
3023 	if (sb_info->sb_virt)
3024 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
3025 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
3026 }
3027 
3028 /* This function allocates fast-path status block memory */
3029 static int qede_alloc_mem_sb(struct qede_dev *edev,
3030 			     struct qed_sb_info *sb_info, u16 sb_id)
3031 {
3032 	struct status_block *sb_virt;
3033 	dma_addr_t sb_phys;
3034 	int rc;
3035 
3036 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
3037 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
3038 	if (!sb_virt) {
3039 		DP_ERR(edev, "Status block allocation failed\n");
3040 		return -ENOMEM;
3041 	}
3042 
3043 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
3044 					sb_virt, sb_phys, sb_id,
3045 					QED_SB_TYPE_L2_QUEUE);
3046 	if (rc) {
3047 		DP_ERR(edev, "Status block initialization failed\n");
3048 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
3049 				  sb_virt, sb_phys);
3050 		return rc;
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 static void qede_free_rx_buffers(struct qede_dev *edev,
3057 				 struct qede_rx_queue *rxq)
3058 {
3059 	u16 i;
3060 
3061 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
3062 		struct sw_rx_data *rx_buf;
3063 		struct page *data;
3064 
3065 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
3066 		data = rx_buf->data;
3067 
3068 		dma_unmap_page(&edev->pdev->dev,
3069 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
3070 
3071 		rx_buf->data = NULL;
3072 		__free_page(data);
3073 	}
3074 }
3075 
3076 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
3077 {
3078 	int i;
3079 
3080 	if (edev->gro_disable)
3081 		return;
3082 
3083 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
3084 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
3085 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
3086 
3087 		if (replace_buf->data) {
3088 			dma_unmap_page(&edev->pdev->dev,
3089 				       replace_buf->mapping,
3090 				       PAGE_SIZE, DMA_FROM_DEVICE);
3091 			__free_page(replace_buf->data);
3092 		}
3093 	}
3094 }
3095 
3096 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
3097 {
3098 	qede_free_sge_mem(edev, rxq);
3099 
3100 	/* Free rx buffers */
3101 	qede_free_rx_buffers(edev, rxq);
3102 
3103 	/* Free the parallel SW ring */
3104 	kfree(rxq->sw_rx_ring);
3105 
3106 	/* Free the real RQ ring used by FW */
3107 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
3108 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
3109 }
3110 
3111 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
3112 {
3113 	dma_addr_t mapping;
3114 	int i;
3115 
3116 	/* Don't perform FW aggregations in case of XDP */
3117 	if (edev->xdp_prog)
3118 		edev->gro_disable = 1;
3119 
3120 	if (edev->gro_disable)
3121 		return 0;
3122 
3123 	if (edev->ndev->mtu > PAGE_SIZE) {
3124 		edev->gro_disable = 1;
3125 		return 0;
3126 	}
3127 
3128 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
3129 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
3130 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
3131 
3132 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
3133 		if (unlikely(!replace_buf->data)) {
3134 			DP_NOTICE(edev,
3135 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
3136 			goto err;
3137 		}
3138 
3139 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
3140 				       PAGE_SIZE, DMA_FROM_DEVICE);
3141 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
3142 			DP_NOTICE(edev,
3143 				  "Failed to map TPA replacement buffer\n");
3144 			goto err;
3145 		}
3146 
3147 		replace_buf->mapping = mapping;
3148 		tpa_info->buffer.page_offset = 0;
3149 		tpa_info->buffer_mapping = mapping;
3150 		tpa_info->state = QEDE_AGG_STATE_NONE;
3151 	}
3152 
3153 	return 0;
3154 err:
3155 	qede_free_sge_mem(edev, rxq);
3156 	edev->gro_disable = 1;
3157 	return -ENOMEM;
3158 }
3159 
3160 /* This function allocates all memory needed per Rx queue */
3161 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
3162 {
3163 	int i, rc, size;
3164 
3165 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
3166 
3167 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
3168 
3169 	if (rxq->rx_buf_size > PAGE_SIZE)
3170 		rxq->rx_buf_size = PAGE_SIZE;
3171 
3172 	/* Segment size to spilt a page in multiple equal parts,
3173 	 * unless XDP is used in which case we'd use the entire page.
3174 	 */
3175 	if (!edev->xdp_prog)
3176 		rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
3177 	else
3178 		rxq->rx_buf_seg_size = PAGE_SIZE;
3179 
3180 	/* Allocate the parallel driver ring for Rx buffers */
3181 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
3182 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
3183 	if (!rxq->sw_rx_ring) {
3184 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
3185 		rc = -ENOMEM;
3186 		goto err;
3187 	}
3188 
3189 	/* Allocate FW Rx ring  */
3190 	rc = edev->ops->common->chain_alloc(edev->cdev,
3191 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
3192 					    QED_CHAIN_MODE_NEXT_PTR,
3193 					    QED_CHAIN_CNT_TYPE_U16,
3194 					    RX_RING_SIZE,
3195 					    sizeof(struct eth_rx_bd),
3196 					    &rxq->rx_bd_ring);
3197 
3198 	if (rc)
3199 		goto err;
3200 
3201 	/* Allocate FW completion ring */
3202 	rc = edev->ops->common->chain_alloc(edev->cdev,
3203 					    QED_CHAIN_USE_TO_CONSUME,
3204 					    QED_CHAIN_MODE_PBL,
3205 					    QED_CHAIN_CNT_TYPE_U16,
3206 					    RX_RING_SIZE,
3207 					    sizeof(union eth_rx_cqe),
3208 					    &rxq->rx_comp_ring);
3209 	if (rc)
3210 		goto err;
3211 
3212 	/* Allocate buffers for the Rx ring */
3213 	for (i = 0; i < rxq->num_rx_buffers; i++) {
3214 		rc = qede_alloc_rx_buffer(rxq);
3215 		if (rc) {
3216 			DP_ERR(edev,
3217 			       "Rx buffers allocation failed at index %d\n", i);
3218 			goto err;
3219 		}
3220 	}
3221 
3222 	rc = qede_alloc_sge_mem(edev, rxq);
3223 err:
3224 	return rc;
3225 }
3226 
3227 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
3228 {
3229 	/* Free the parallel SW ring */
3230 	if (txq->is_xdp)
3231 		kfree(txq->sw_tx_ring.pages);
3232 	else
3233 		kfree(txq->sw_tx_ring.skbs);
3234 
3235 	/* Free the real RQ ring used by FW */
3236 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
3237 }
3238 
3239 /* This function allocates all memory needed per Tx queue */
3240 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
3241 {
3242 	union eth_tx_bd_types *p_virt;
3243 	int size, rc;
3244 
3245 	txq->num_tx_buffers = edev->q_num_tx_buffers;
3246 
3247 	/* Allocate the parallel driver ring for Tx buffers */
3248 	if (txq->is_xdp) {
3249 		size = sizeof(*txq->sw_tx_ring.pages) * TX_RING_SIZE;
3250 		txq->sw_tx_ring.pages = kzalloc(size, GFP_KERNEL);
3251 		if (!txq->sw_tx_ring.pages)
3252 			goto err;
3253 	} else {
3254 		size = sizeof(*txq->sw_tx_ring.skbs) * TX_RING_SIZE;
3255 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
3256 		if (!txq->sw_tx_ring.skbs)
3257 			goto err;
3258 	}
3259 
3260 	rc = edev->ops->common->chain_alloc(edev->cdev,
3261 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
3262 					    QED_CHAIN_MODE_PBL,
3263 					    QED_CHAIN_CNT_TYPE_U16,
3264 					    TX_RING_SIZE,
3265 					    sizeof(*p_virt), &txq->tx_pbl);
3266 	if (rc)
3267 		goto err;
3268 
3269 	return 0;
3270 
3271 err:
3272 	qede_free_mem_txq(edev, txq);
3273 	return -ENOMEM;
3274 }
3275 
3276 /* This function frees all memory of a single fp */
3277 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
3278 {
3279 	qede_free_mem_sb(edev, fp->sb_info);
3280 
3281 	if (fp->type & QEDE_FASTPATH_RX)
3282 		qede_free_mem_rxq(edev, fp->rxq);
3283 
3284 	if (fp->type & QEDE_FASTPATH_TX)
3285 		qede_free_mem_txq(edev, fp->txq);
3286 }
3287 
3288 /* This function allocates all memory needed for a single fp (i.e. an entity
3289  * which contains status block, one rx queue and/or multiple per-TC tx queues.
3290  */
3291 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
3292 {
3293 	int rc = 0;
3294 
3295 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
3296 	if (rc)
3297 		goto out;
3298 
3299 	if (fp->type & QEDE_FASTPATH_RX) {
3300 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
3301 		if (rc)
3302 			goto out;
3303 	}
3304 
3305 	if (fp->type & QEDE_FASTPATH_XDP) {
3306 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
3307 		if (rc)
3308 			goto out;
3309 	}
3310 
3311 	if (fp->type & QEDE_FASTPATH_TX) {
3312 		rc = qede_alloc_mem_txq(edev, fp->txq);
3313 		if (rc)
3314 			goto out;
3315 	}
3316 
3317 out:
3318 	return rc;
3319 }
3320 
3321 static void qede_free_mem_load(struct qede_dev *edev)
3322 {
3323 	int i;
3324 
3325 	for_each_queue(i) {
3326 		struct qede_fastpath *fp = &edev->fp_array[i];
3327 
3328 		qede_free_mem_fp(edev, fp);
3329 	}
3330 }
3331 
3332 /* This function allocates all qede memory at NIC load. */
3333 static int qede_alloc_mem_load(struct qede_dev *edev)
3334 {
3335 	int rc = 0, queue_id;
3336 
3337 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
3338 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
3339 
3340 		rc = qede_alloc_mem_fp(edev, fp);
3341 		if (rc) {
3342 			DP_ERR(edev,
3343 			       "Failed to allocate memory for fastpath - rss id = %d\n",
3344 			       queue_id);
3345 			qede_free_mem_load(edev);
3346 			return rc;
3347 		}
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
3354 static void qede_init_fp(struct qede_dev *edev)
3355 {
3356 	int queue_id, rxq_index = 0, txq_index = 0;
3357 	struct qede_fastpath *fp;
3358 
3359 	for_each_queue(queue_id) {
3360 		fp = &edev->fp_array[queue_id];
3361 
3362 		fp->edev = edev;
3363 		fp->id = queue_id;
3364 
3365 		if (fp->type & QEDE_FASTPATH_XDP) {
3366 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
3367 								rxq_index);
3368 			fp->xdp_tx->is_xdp = 1;
3369 		}
3370 
3371 		if (fp->type & QEDE_FASTPATH_RX) {
3372 			fp->rxq->rxq_id = rxq_index++;
3373 
3374 			/* Determine how to map buffers for this queue */
3375 			if (fp->type & QEDE_FASTPATH_XDP)
3376 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
3377 			else
3378 				fp->rxq->data_direction = DMA_FROM_DEVICE;
3379 			fp->rxq->dev = &edev->pdev->dev;
3380 		}
3381 
3382 		if (fp->type & QEDE_FASTPATH_TX) {
3383 			fp->txq->index = txq_index++;
3384 			if (edev->dev_info.is_legacy)
3385 				fp->txq->is_legacy = 1;
3386 			fp->txq->dev = &edev->pdev->dev;
3387 		}
3388 
3389 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3390 			 edev->ndev->name, queue_id);
3391 	}
3392 
3393 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3394 }
3395 
3396 static int qede_set_real_num_queues(struct qede_dev *edev)
3397 {
3398 	int rc = 0;
3399 
3400 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
3401 	if (rc) {
3402 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3403 		return rc;
3404 	}
3405 
3406 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
3407 	if (rc) {
3408 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3409 		return rc;
3410 	}
3411 
3412 	return 0;
3413 }
3414 
3415 static void qede_napi_disable_remove(struct qede_dev *edev)
3416 {
3417 	int i;
3418 
3419 	for_each_queue(i) {
3420 		napi_disable(&edev->fp_array[i].napi);
3421 
3422 		netif_napi_del(&edev->fp_array[i].napi);
3423 	}
3424 }
3425 
3426 static void qede_napi_add_enable(struct qede_dev *edev)
3427 {
3428 	int i;
3429 
3430 	/* Add NAPI objects */
3431 	for_each_queue(i) {
3432 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3433 			       qede_poll, NAPI_POLL_WEIGHT);
3434 		napi_enable(&edev->fp_array[i].napi);
3435 	}
3436 }
3437 
3438 static void qede_sync_free_irqs(struct qede_dev *edev)
3439 {
3440 	int i;
3441 
3442 	for (i = 0; i < edev->int_info.used_cnt; i++) {
3443 		if (edev->int_info.msix_cnt) {
3444 			synchronize_irq(edev->int_info.msix[i].vector);
3445 			free_irq(edev->int_info.msix[i].vector,
3446 				 &edev->fp_array[i]);
3447 		} else {
3448 			edev->ops->common->simd_handler_clean(edev->cdev, i);
3449 		}
3450 	}
3451 
3452 	edev->int_info.used_cnt = 0;
3453 }
3454 
3455 static int qede_req_msix_irqs(struct qede_dev *edev)
3456 {
3457 	int i, rc;
3458 
3459 	/* Sanitize number of interrupts == number of prepared RSS queues */
3460 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
3461 		DP_ERR(edev,
3462 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3463 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
3464 		return -EINVAL;
3465 	}
3466 
3467 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
3468 		rc = request_irq(edev->int_info.msix[i].vector,
3469 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
3470 				 &edev->fp_array[i]);
3471 		if (rc) {
3472 			DP_ERR(edev, "Request fp %d irq failed\n", i);
3473 			qede_sync_free_irqs(edev);
3474 			return rc;
3475 		}
3476 		DP_VERBOSE(edev, NETIF_MSG_INTR,
3477 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3478 			   edev->fp_array[i].name, i,
3479 			   &edev->fp_array[i]);
3480 		edev->int_info.used_cnt++;
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 static void qede_simd_fp_handler(void *cookie)
3487 {
3488 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3489 
3490 	napi_schedule_irqoff(&fp->napi);
3491 }
3492 
3493 static int qede_setup_irqs(struct qede_dev *edev)
3494 {
3495 	int i, rc = 0;
3496 
3497 	/* Learn Interrupt configuration */
3498 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3499 	if (rc)
3500 		return rc;
3501 
3502 	if (edev->int_info.msix_cnt) {
3503 		rc = qede_req_msix_irqs(edev);
3504 		if (rc)
3505 			return rc;
3506 		edev->ndev->irq = edev->int_info.msix[0].vector;
3507 	} else {
3508 		const struct qed_common_ops *ops;
3509 
3510 		/* qed should learn receive the RSS ids and callbacks */
3511 		ops = edev->ops->common;
3512 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
3513 			ops->simd_handler_config(edev->cdev,
3514 						 &edev->fp_array[i], i,
3515 						 qede_simd_fp_handler);
3516 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
3517 	}
3518 	return 0;
3519 }
3520 
3521 static int qede_drain_txq(struct qede_dev *edev,
3522 			  struct qede_tx_queue *txq, bool allow_drain)
3523 {
3524 	int rc, cnt = 1000;
3525 
3526 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
3527 		if (!cnt) {
3528 			if (allow_drain) {
3529 				DP_NOTICE(edev,
3530 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
3531 					  txq->index);
3532 				rc = edev->ops->common->drain(edev->cdev);
3533 				if (rc)
3534 					return rc;
3535 				return qede_drain_txq(edev, txq, false);
3536 			}
3537 			DP_NOTICE(edev,
3538 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3539 				  txq->index, txq->sw_tx_prod,
3540 				  txq->sw_tx_cons);
3541 			return -ENODEV;
3542 		}
3543 		cnt--;
3544 		usleep_range(1000, 2000);
3545 		barrier();
3546 	}
3547 
3548 	/* FW finished processing, wait for HW to transmit all tx packets */
3549 	usleep_range(1000, 2000);
3550 
3551 	return 0;
3552 }
3553 
3554 static int qede_stop_txq(struct qede_dev *edev,
3555 			 struct qede_tx_queue *txq, int rss_id)
3556 {
3557 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
3558 }
3559 
3560 static int qede_stop_queues(struct qede_dev *edev)
3561 {
3562 	struct qed_update_vport_params vport_update_params;
3563 	struct qed_dev *cdev = edev->cdev;
3564 	struct qede_fastpath *fp;
3565 	int rc, i;
3566 
3567 	/* Disable the vport */
3568 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3569 	vport_update_params.vport_id = 0;
3570 	vport_update_params.update_vport_active_flg = 1;
3571 	vport_update_params.vport_active_flg = 0;
3572 	vport_update_params.update_rss_flg = 0;
3573 
3574 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3575 	if (rc) {
3576 		DP_ERR(edev, "Failed to update vport\n");
3577 		return rc;
3578 	}
3579 
3580 	/* Flush Tx queues. If needed, request drain from MCP */
3581 	for_each_queue(i) {
3582 		fp = &edev->fp_array[i];
3583 
3584 		if (fp->type & QEDE_FASTPATH_TX) {
3585 			rc = qede_drain_txq(edev, fp->txq, true);
3586 			if (rc)
3587 				return rc;
3588 		}
3589 
3590 		if (fp->type & QEDE_FASTPATH_XDP) {
3591 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
3592 			if (rc)
3593 				return rc;
3594 		}
3595 	}
3596 
3597 	/* Stop all Queues in reverse order */
3598 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
3599 		fp = &edev->fp_array[i];
3600 
3601 		/* Stop the Tx Queue(s) */
3602 		if (fp->type & QEDE_FASTPATH_TX) {
3603 			rc = qede_stop_txq(edev, fp->txq, i);
3604 			if (rc)
3605 				return rc;
3606 		}
3607 
3608 		/* Stop the Rx Queue */
3609 		if (fp->type & QEDE_FASTPATH_RX) {
3610 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
3611 			if (rc) {
3612 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3613 				return rc;
3614 			}
3615 		}
3616 
3617 		/* Stop the XDP forwarding queue */
3618 		if (fp->type & QEDE_FASTPATH_XDP) {
3619 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
3620 			if (rc)
3621 				return rc;
3622 
3623 			bpf_prog_put(fp->rxq->xdp_prog);
3624 		}
3625 	}
3626 
3627 	/* Stop the vport */
3628 	rc = edev->ops->vport_stop(cdev, 0);
3629 	if (rc)
3630 		DP_ERR(edev, "Failed to stop VPORT\n");
3631 
3632 	return rc;
3633 }
3634 
3635 static int qede_start_txq(struct qede_dev *edev,
3636 			  struct qede_fastpath *fp,
3637 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
3638 {
3639 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
3640 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
3641 	struct qed_queue_start_common_params params;
3642 	struct qed_txq_start_ret_params ret_params;
3643 	int rc;
3644 
3645 	memset(&params, 0, sizeof(params));
3646 	memset(&ret_params, 0, sizeof(ret_params));
3647 
3648 	/* Let the XDP queue share the queue-zone with one of the regular txq.
3649 	 * We don't really care about its coalescing.
3650 	 */
3651 	if (txq->is_xdp)
3652 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
3653 	else
3654 		params.queue_id = txq->index;
3655 
3656 	params.sb = fp->sb_info->igu_sb_id;
3657 	params.sb_idx = sb_idx;
3658 
3659 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
3660 				   page_cnt, &ret_params);
3661 	if (rc) {
3662 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
3663 		return rc;
3664 	}
3665 
3666 	txq->doorbell_addr = ret_params.p_doorbell;
3667 	txq->handle = ret_params.p_handle;
3668 
3669 	/* Determine the FW consumer address associated */
3670 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
3671 
3672 	/* Prepare the doorbell parameters */
3673 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
3674 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
3675 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
3676 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
3677 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3678 
3679 	return rc;
3680 }
3681 
3682 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3683 {
3684 	int vlan_removal_en = 1;
3685 	struct qed_dev *cdev = edev->cdev;
3686 	struct qed_update_vport_params vport_update_params;
3687 	struct qed_queue_start_common_params q_params;
3688 	struct qed_dev_info *qed_info = &edev->dev_info.common;
3689 	struct qed_start_vport_params start = {0};
3690 	bool reset_rss_indir = false;
3691 	int rc, i;
3692 
3693 	if (!edev->num_queues) {
3694 		DP_ERR(edev,
3695 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
3696 		return -EINVAL;
3697 	}
3698 
3699 	start.gro_enable = !edev->gro_disable;
3700 	start.mtu = edev->ndev->mtu;
3701 	start.vport_id = 0;
3702 	start.drop_ttl0 = true;
3703 	start.remove_inner_vlan = vlan_removal_en;
3704 	start.clear_stats = clear_stats;
3705 
3706 	rc = edev->ops->vport_start(cdev, &start);
3707 
3708 	if (rc) {
3709 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3710 		return rc;
3711 	}
3712 
3713 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
3714 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3715 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3716 
3717 	for_each_queue(i) {
3718 		struct qede_fastpath *fp = &edev->fp_array[i];
3719 		dma_addr_t p_phys_table;
3720 		u32 page_cnt;
3721 
3722 		if (fp->type & QEDE_FASTPATH_RX) {
3723 			struct qed_rxq_start_ret_params ret_params;
3724 			struct qede_rx_queue *rxq = fp->rxq;
3725 			__le16 *val;
3726 
3727 			memset(&ret_params, 0, sizeof(ret_params));
3728 			memset(&q_params, 0, sizeof(q_params));
3729 			q_params.queue_id = rxq->rxq_id;
3730 			q_params.vport_id = 0;
3731 			q_params.sb = fp->sb_info->igu_sb_id;
3732 			q_params.sb_idx = RX_PI;
3733 
3734 			p_phys_table =
3735 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
3736 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
3737 
3738 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
3739 						   rxq->rx_buf_size,
3740 						   rxq->rx_bd_ring.p_phys_addr,
3741 						   p_phys_table,
3742 						   page_cnt, &ret_params);
3743 			if (rc) {
3744 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
3745 				       rc);
3746 				return rc;
3747 			}
3748 
3749 			/* Use the return parameters */
3750 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
3751 			rxq->handle = ret_params.p_handle;
3752 
3753 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
3754 			rxq->hw_cons_ptr = val;
3755 
3756 			qede_update_rx_prod(edev, rxq);
3757 		}
3758 
3759 		if (fp->type & QEDE_FASTPATH_XDP) {
3760 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
3761 			if (rc)
3762 				return rc;
3763 
3764 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
3765 			if (IS_ERR(fp->rxq->xdp_prog)) {
3766 				rc = PTR_ERR(fp->rxq->xdp_prog);
3767 				fp->rxq->xdp_prog = NULL;
3768 				return rc;
3769 			}
3770 		}
3771 
3772 		if (fp->type & QEDE_FASTPATH_TX) {
3773 			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
3774 			if (rc)
3775 				return rc;
3776 		}
3777 	}
3778 
3779 	/* Prepare and send the vport enable */
3780 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3781 	vport_update_params.vport_id = start.vport_id;
3782 	vport_update_params.update_vport_active_flg = 1;
3783 	vport_update_params.vport_active_flg = 1;
3784 
3785 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3786 	    qed_info->tx_switching) {
3787 		vport_update_params.update_tx_switching_flg = 1;
3788 		vport_update_params.tx_switching_flg = 1;
3789 	}
3790 
3791 	/* Fill struct with RSS params */
3792 	if (QEDE_RSS_COUNT(edev) > 1) {
3793 		vport_update_params.update_rss_flg = 1;
3794 
3795 		/* Need to validate current RSS config uses valid entries */
3796 		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3797 			if (edev->rss_params.rss_ind_table[i] >=
3798 			    QEDE_RSS_COUNT(edev)) {
3799 				reset_rss_indir = true;
3800 				break;
3801 			}
3802 		}
3803 
3804 		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3805 		    reset_rss_indir) {
3806 			u16 val;
3807 
3808 			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3809 				u16 indir_val;
3810 
3811 				val = QEDE_RSS_COUNT(edev);
3812 				indir_val = ethtool_rxfh_indir_default(i, val);
3813 				edev->rss_params.rss_ind_table[i] = indir_val;
3814 			}
3815 			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3816 		}
3817 
3818 		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3819 			netdev_rss_key_fill(edev->rss_params.rss_key,
3820 					    sizeof(edev->rss_params.rss_key));
3821 			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3822 		}
3823 
3824 		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3825 			edev->rss_params.rss_caps = QED_RSS_IPV4 |
3826 						    QED_RSS_IPV6 |
3827 						    QED_RSS_IPV4_TCP |
3828 						    QED_RSS_IPV6_TCP;
3829 			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3830 		}
3831 
3832 		memcpy(&vport_update_params.rss_params, &edev->rss_params,
3833 		       sizeof(vport_update_params.rss_params));
3834 	} else {
3835 		memset(&vport_update_params.rss_params, 0,
3836 		       sizeof(vport_update_params.rss_params));
3837 	}
3838 
3839 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3840 	if (rc) {
3841 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3842 		return rc;
3843 	}
3844 
3845 	return 0;
3846 }
3847 
3848 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3849 				 enum qed_filter_xcast_params_type opcode,
3850 				 unsigned char *mac, int num_macs)
3851 {
3852 	struct qed_filter_params filter_cmd;
3853 	int i;
3854 
3855 	memset(&filter_cmd, 0, sizeof(filter_cmd));
3856 	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3857 	filter_cmd.filter.mcast.type = opcode;
3858 	filter_cmd.filter.mcast.num = num_macs;
3859 
3860 	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3861 		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3862 
3863 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3864 }
3865 
3866 enum qede_unload_mode {
3867 	QEDE_UNLOAD_NORMAL,
3868 };
3869 
3870 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
3871 			bool is_locked)
3872 {
3873 	struct qed_link_params link_params;
3874 	int rc;
3875 
3876 	DP_INFO(edev, "Starting qede unload\n");
3877 
3878 	if (!is_locked)
3879 		__qede_lock(edev);
3880 
3881 	qede_roce_dev_event_close(edev);
3882 	edev->state = QEDE_STATE_CLOSED;
3883 
3884 	/* Close OS Tx */
3885 	netif_tx_disable(edev->ndev);
3886 	netif_carrier_off(edev->ndev);
3887 
3888 	/* Reset the link */
3889 	memset(&link_params, 0, sizeof(link_params));
3890 	link_params.link_up = false;
3891 	edev->ops->common->set_link(edev->cdev, &link_params);
3892 	rc = qede_stop_queues(edev);
3893 	if (rc) {
3894 		qede_sync_free_irqs(edev);
3895 		goto out;
3896 	}
3897 
3898 	DP_INFO(edev, "Stopped Queues\n");
3899 
3900 	qede_vlan_mark_nonconfigured(edev);
3901 	edev->ops->fastpath_stop(edev->cdev);
3902 
3903 	/* Release the interrupts */
3904 	qede_sync_free_irqs(edev);
3905 	edev->ops->common->set_fp_int(edev->cdev, 0);
3906 
3907 	qede_napi_disable_remove(edev);
3908 
3909 	qede_free_mem_load(edev);
3910 	qede_free_fp_array(edev);
3911 
3912 out:
3913 	if (!is_locked)
3914 		__qede_unlock(edev);
3915 	DP_INFO(edev, "Ending qede unload\n");
3916 }
3917 
3918 enum qede_load_mode {
3919 	QEDE_LOAD_NORMAL,
3920 	QEDE_LOAD_RELOAD,
3921 };
3922 
3923 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
3924 		     bool is_locked)
3925 {
3926 	struct qed_link_params link_params;
3927 	struct qed_link_output link_output;
3928 	int rc;
3929 
3930 	DP_INFO(edev, "Starting qede load\n");
3931 
3932 	if (!is_locked)
3933 		__qede_lock(edev);
3934 
3935 	rc = qede_set_num_queues(edev);
3936 	if (rc)
3937 		goto out;
3938 
3939 	rc = qede_alloc_fp_array(edev);
3940 	if (rc)
3941 		goto out;
3942 
3943 	qede_init_fp(edev);
3944 
3945 	rc = qede_alloc_mem_load(edev);
3946 	if (rc)
3947 		goto err1;
3948 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
3949 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
3950 
3951 	rc = qede_set_real_num_queues(edev);
3952 	if (rc)
3953 		goto err2;
3954 
3955 	qede_napi_add_enable(edev);
3956 	DP_INFO(edev, "Napi added and enabled\n");
3957 
3958 	rc = qede_setup_irqs(edev);
3959 	if (rc)
3960 		goto err3;
3961 	DP_INFO(edev, "Setup IRQs succeeded\n");
3962 
3963 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3964 	if (rc)
3965 		goto err4;
3966 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3967 
3968 	/* Add primary mac and set Rx filters */
3969 	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3970 
3971 	/* Program un-configured VLANs */
3972 	qede_configure_vlan_filters(edev);
3973 
3974 	/* Ask for link-up using current configuration */
3975 	memset(&link_params, 0, sizeof(link_params));
3976 	link_params.link_up = true;
3977 	edev->ops->common->set_link(edev->cdev, &link_params);
3978 
3979 	/* Query whether link is already-up */
3980 	memset(&link_output, 0, sizeof(link_output));
3981 	edev->ops->common->get_link(edev->cdev, &link_output);
3982 	qede_roce_dev_event_open(edev);
3983 	qede_link_update(edev, &link_output);
3984 
3985 	edev->state = QEDE_STATE_OPEN;
3986 
3987 	DP_INFO(edev, "Ending successfully qede load\n");
3988 
3989 
3990 	goto out;
3991 err4:
3992 	qede_sync_free_irqs(edev);
3993 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3994 err3:
3995 	qede_napi_disable_remove(edev);
3996 err2:
3997 	qede_free_mem_load(edev);
3998 err1:
3999 	edev->ops->common->set_fp_int(edev->cdev, 0);
4000 	qede_free_fp_array(edev);
4001 	edev->num_queues = 0;
4002 	edev->fp_num_tx = 0;
4003 	edev->fp_num_rx = 0;
4004 out:
4005 	if (!is_locked)
4006 		__qede_unlock(edev);
4007 
4008 	return rc;
4009 }
4010 
4011 /* 'func' should be able to run between unload and reload assuming interface
4012  * is actually running, or afterwards in case it's currently DOWN.
4013  */
4014 void qede_reload(struct qede_dev *edev,
4015 		 struct qede_reload_args *args, bool is_locked)
4016 {
4017 	if (!is_locked)
4018 		__qede_lock(edev);
4019 
4020 	/* Since qede_lock is held, internal state wouldn't change even
4021 	 * if netdev state would start transitioning. Check whether current
4022 	 * internal configuration indicates device is up, then reload.
4023 	 */
4024 	if (edev->state == QEDE_STATE_OPEN) {
4025 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
4026 		if (args)
4027 			args->func(edev, args);
4028 		qede_load(edev, QEDE_LOAD_RELOAD, true);
4029 
4030 		/* Since no one is going to do it for us, re-configure */
4031 		qede_config_rx_mode(edev->ndev);
4032 	} else if (args) {
4033 		args->func(edev, args);
4034 	}
4035 
4036 	if (!is_locked)
4037 		__qede_unlock(edev);
4038 }
4039 
4040 /* called with rtnl_lock */
4041 static int qede_open(struct net_device *ndev)
4042 {
4043 	struct qede_dev *edev = netdev_priv(ndev);
4044 	int rc;
4045 
4046 	netif_carrier_off(ndev);
4047 
4048 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
4049 
4050 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
4051 	if (rc)
4052 		return rc;
4053 
4054 	udp_tunnel_get_rx_info(ndev);
4055 
4056 	edev->ops->common->update_drv_state(edev->cdev, true);
4057 
4058 	return 0;
4059 }
4060 
4061 static int qede_close(struct net_device *ndev)
4062 {
4063 	struct qede_dev *edev = netdev_priv(ndev);
4064 
4065 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
4066 
4067 	edev->ops->common->update_drv_state(edev->cdev, false);
4068 
4069 	return 0;
4070 }
4071 
4072 static void qede_link_update(void *dev, struct qed_link_output *link)
4073 {
4074 	struct qede_dev *edev = dev;
4075 
4076 	if (!netif_running(edev->ndev)) {
4077 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
4078 		return;
4079 	}
4080 
4081 	if (link->link_up) {
4082 		if (!netif_carrier_ok(edev->ndev)) {
4083 			DP_NOTICE(edev, "Link is up\n");
4084 			netif_tx_start_all_queues(edev->ndev);
4085 			netif_carrier_on(edev->ndev);
4086 		}
4087 	} else {
4088 		if (netif_carrier_ok(edev->ndev)) {
4089 			DP_NOTICE(edev, "Link is down\n");
4090 			netif_tx_disable(edev->ndev);
4091 			netif_carrier_off(edev->ndev);
4092 		}
4093 	}
4094 }
4095 
4096 static int qede_set_mac_addr(struct net_device *ndev, void *p)
4097 {
4098 	struct qede_dev *edev = netdev_priv(ndev);
4099 	struct sockaddr *addr = p;
4100 	int rc;
4101 
4102 	ASSERT_RTNL(); /* @@@TBD To be removed */
4103 
4104 	DP_INFO(edev, "Set_mac_addr called\n");
4105 
4106 	if (!is_valid_ether_addr(addr->sa_data)) {
4107 		DP_NOTICE(edev, "The MAC address is not valid\n");
4108 		return -EFAULT;
4109 	}
4110 
4111 	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
4112 		DP_NOTICE(edev, "qed prevents setting MAC\n");
4113 		return -EINVAL;
4114 	}
4115 
4116 	ether_addr_copy(ndev->dev_addr, addr->sa_data);
4117 
4118 	if (!netif_running(ndev))  {
4119 		DP_NOTICE(edev, "The device is currently down\n");
4120 		return 0;
4121 	}
4122 
4123 	/* Remove the previous primary mac */
4124 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
4125 				   edev->primary_mac);
4126 	if (rc)
4127 		return rc;
4128 
4129 	edev->ops->common->update_mac(edev->cdev, addr->sa_data);
4130 
4131 	/* Add MAC filter according to the new unicast HW MAC address */
4132 	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
4133 	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
4134 				      edev->primary_mac);
4135 }
4136 
4137 static int
4138 qede_configure_mcast_filtering(struct net_device *ndev,
4139 			       enum qed_filter_rx_mode_type *accept_flags)
4140 {
4141 	struct qede_dev *edev = netdev_priv(ndev);
4142 	unsigned char *mc_macs, *temp;
4143 	struct netdev_hw_addr *ha;
4144 	int rc = 0, mc_count;
4145 	size_t size;
4146 
4147 	size = 64 * ETH_ALEN;
4148 
4149 	mc_macs = kzalloc(size, GFP_KERNEL);
4150 	if (!mc_macs) {
4151 		DP_NOTICE(edev,
4152 			  "Failed to allocate memory for multicast MACs\n");
4153 		rc = -ENOMEM;
4154 		goto exit;
4155 	}
4156 
4157 	temp = mc_macs;
4158 
4159 	/* Remove all previously configured MAC filters */
4160 	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
4161 				   mc_macs, 1);
4162 	if (rc)
4163 		goto exit;
4164 
4165 	netif_addr_lock_bh(ndev);
4166 
4167 	mc_count = netdev_mc_count(ndev);
4168 	if (mc_count < 64) {
4169 		netdev_for_each_mc_addr(ha, ndev) {
4170 			ether_addr_copy(temp, ha->addr);
4171 			temp += ETH_ALEN;
4172 		}
4173 	}
4174 
4175 	netif_addr_unlock_bh(ndev);
4176 
4177 	/* Check for all multicast @@@TBD resource allocation */
4178 	if ((ndev->flags & IFF_ALLMULTI) ||
4179 	    (mc_count > 64)) {
4180 		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
4181 			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
4182 	} else {
4183 		/* Add all multicast MAC filters */
4184 		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
4185 					   mc_macs, mc_count);
4186 	}
4187 
4188 exit:
4189 	kfree(mc_macs);
4190 	return rc;
4191 }
4192 
4193 static void qede_set_rx_mode(struct net_device *ndev)
4194 {
4195 	struct qede_dev *edev = netdev_priv(ndev);
4196 
4197 	set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
4198 	schedule_delayed_work(&edev->sp_task, 0);
4199 }
4200 
4201 /* Must be called with qede_lock held */
4202 static void qede_config_rx_mode(struct net_device *ndev)
4203 {
4204 	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
4205 	struct qede_dev *edev = netdev_priv(ndev);
4206 	struct qed_filter_params rx_mode;
4207 	unsigned char *uc_macs, *temp;
4208 	struct netdev_hw_addr *ha;
4209 	int rc, uc_count;
4210 	size_t size;
4211 
4212 	netif_addr_lock_bh(ndev);
4213 
4214 	uc_count = netdev_uc_count(ndev);
4215 	size = uc_count * ETH_ALEN;
4216 
4217 	uc_macs = kzalloc(size, GFP_ATOMIC);
4218 	if (!uc_macs) {
4219 		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
4220 		netif_addr_unlock_bh(ndev);
4221 		return;
4222 	}
4223 
4224 	temp = uc_macs;
4225 	netdev_for_each_uc_addr(ha, ndev) {
4226 		ether_addr_copy(temp, ha->addr);
4227 		temp += ETH_ALEN;
4228 	}
4229 
4230 	netif_addr_unlock_bh(ndev);
4231 
4232 	/* Configure the struct for the Rx mode */
4233 	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
4234 	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
4235 
4236 	/* Remove all previous unicast secondary macs and multicast macs
4237 	 * (configrue / leave the primary mac)
4238 	 */
4239 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
4240 				   edev->primary_mac);
4241 	if (rc)
4242 		goto out;
4243 
4244 	/* Check for promiscuous */
4245 	if ((ndev->flags & IFF_PROMISC) ||
4246 	    (uc_count > edev->dev_info.num_mac_filters - 1)) {
4247 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
4248 	} else {
4249 		/* Add MAC filters according to the unicast secondary macs */
4250 		int i;
4251 
4252 		temp = uc_macs;
4253 		for (i = 0; i < uc_count; i++) {
4254 			rc = qede_set_ucast_rx_mac(edev,
4255 						   QED_FILTER_XCAST_TYPE_ADD,
4256 						   temp);
4257 			if (rc)
4258 				goto out;
4259 
4260 			temp += ETH_ALEN;
4261 		}
4262 
4263 		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
4264 		if (rc)
4265 			goto out;
4266 	}
4267 
4268 	/* take care of VLAN mode */
4269 	if (ndev->flags & IFF_PROMISC) {
4270 		qede_config_accept_any_vlan(edev, true);
4271 	} else if (!edev->non_configured_vlans) {
4272 		/* It's possible that accept_any_vlan mode is set due to a
4273 		 * previous setting of IFF_PROMISC. If vlan credits are
4274 		 * sufficient, disable accept_any_vlan.
4275 		 */
4276 		qede_config_accept_any_vlan(edev, false);
4277 	}
4278 
4279 	rx_mode.filter.accept_flags = accept_flags;
4280 	edev->ops->filter_config(edev->cdev, &rx_mode);
4281 out:
4282 	kfree(uc_macs);
4283 }
4284