1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39 
40 #include "qede.h"
41 
42 static char version[] =
43 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44 
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52 
53 static const struct qed_eth_ops *qed_ops;
54 
55 #define CHIP_NUM_57980S_40		0x1634
56 #define CHIP_NUM_57980S_10		0x1666
57 #define CHIP_NUM_57980S_MF		0x1636
58 #define CHIP_NUM_57980S_100		0x1644
59 #define CHIP_NUM_57980S_50		0x1654
60 #define CHIP_NUM_57980S_25		0x1656
61 #define CHIP_NUM_57980S_IOV		0x1664
62 
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
71 #endif
72 
73 enum qede_pci_private {
74 	QEDE_PRIVATE_PF,
75 	QEDE_PRIVATE_VF
76 };
77 
78 static const struct pci_device_id qede_pci_tbl[] = {
79 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 	{ 0 }
89 };
90 
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
92 
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
94 
95 #define TX_TIMEOUT		(5 * HZ)
96 
97 static void qede_remove(struct pci_dev *pdev);
98 static int qede_alloc_rx_buffer(struct qede_dev *edev,
99 				struct qede_rx_queue *rxq);
100 static void qede_link_update(void *dev, struct qed_link_output *link);
101 
102 #ifdef CONFIG_QED_SRIOV
103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
104 {
105 	struct qede_dev *edev = netdev_priv(ndev);
106 
107 	if (vlan > 4095) {
108 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
109 		return -EINVAL;
110 	}
111 
112 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
113 		   vlan, vf);
114 
115 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
116 }
117 
118 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
119 {
120 	struct qede_dev *edev = netdev_priv(ndev);
121 
122 	DP_VERBOSE(edev, QED_MSG_IOV,
123 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
124 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
125 
126 	if (!is_valid_ether_addr(mac)) {
127 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
128 		return -EINVAL;
129 	}
130 
131 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
132 }
133 
134 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
135 {
136 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
137 	struct qed_dev_info *qed_info = &edev->dev_info.common;
138 	int rc;
139 
140 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
141 
142 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
143 
144 	/* Enable/Disable Tx switching for PF */
145 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
146 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
147 		struct qed_update_vport_params params;
148 
149 		memset(&params, 0, sizeof(params));
150 		params.vport_id = 0;
151 		params.update_tx_switching_flg = 1;
152 		params.tx_switching_flg = num_vfs_param ? 1 : 0;
153 		edev->ops->vport_update(edev->cdev, &params);
154 	}
155 
156 	return rc;
157 }
158 #endif
159 
160 static struct pci_driver qede_pci_driver = {
161 	.name = "qede",
162 	.id_table = qede_pci_tbl,
163 	.probe = qede_probe,
164 	.remove = qede_remove,
165 #ifdef CONFIG_QED_SRIOV
166 	.sriov_configure = qede_sriov_configure,
167 #endif
168 };
169 
170 static void qede_force_mac(void *dev, u8 *mac)
171 {
172 	struct qede_dev *edev = dev;
173 
174 	ether_addr_copy(edev->ndev->dev_addr, mac);
175 	ether_addr_copy(edev->primary_mac, mac);
176 }
177 
178 static struct qed_eth_cb_ops qede_ll_ops = {
179 	{
180 		.link_update = qede_link_update,
181 	},
182 	.force_mac = qede_force_mac,
183 };
184 
185 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
186 			     void *ptr)
187 {
188 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
189 	struct ethtool_drvinfo drvinfo;
190 	struct qede_dev *edev;
191 
192 	/* Currently only support name change */
193 	if (event != NETDEV_CHANGENAME)
194 		goto done;
195 
196 	/* Check whether this is a qede device */
197 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
198 		goto done;
199 
200 	memset(&drvinfo, 0, sizeof(drvinfo));
201 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
202 	if (strcmp(drvinfo.driver, "qede"))
203 		goto done;
204 	edev = netdev_priv(ndev);
205 
206 	/* Notify qed of the name change */
207 	if (!edev->ops || !edev->ops->common)
208 		goto done;
209 	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
210 				  "qede");
211 
212 done:
213 	return NOTIFY_DONE;
214 }
215 
216 static struct notifier_block qede_netdev_notifier = {
217 	.notifier_call = qede_netdev_event,
218 };
219 
220 static
221 int __init qede_init(void)
222 {
223 	int ret;
224 
225 	pr_notice("qede_init: %s\n", version);
226 
227 	qed_ops = qed_get_eth_ops();
228 	if (!qed_ops) {
229 		pr_notice("Failed to get qed ethtool operations\n");
230 		return -EINVAL;
231 	}
232 
233 	/* Must register notifier before pci ops, since we might miss
234 	 * interface rename after pci probe and netdev registeration.
235 	 */
236 	ret = register_netdevice_notifier(&qede_netdev_notifier);
237 	if (ret) {
238 		pr_notice("Failed to register netdevice_notifier\n");
239 		qed_put_eth_ops();
240 		return -EINVAL;
241 	}
242 
243 	ret = pci_register_driver(&qede_pci_driver);
244 	if (ret) {
245 		pr_notice("Failed to register driver\n");
246 		unregister_netdevice_notifier(&qede_netdev_notifier);
247 		qed_put_eth_ops();
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 static void __exit qede_cleanup(void)
255 {
256 	pr_notice("qede_cleanup called\n");
257 
258 	unregister_netdevice_notifier(&qede_netdev_notifier);
259 	pci_unregister_driver(&qede_pci_driver);
260 	qed_put_eth_ops();
261 }
262 
263 module_init(qede_init);
264 module_exit(qede_cleanup);
265 
266 /* -------------------------------------------------------------------------
267  * START OF FAST-PATH
268  * -------------------------------------------------------------------------
269  */
270 
271 /* Unmap the data and free skb */
272 static int qede_free_tx_pkt(struct qede_dev *edev,
273 			    struct qede_tx_queue *txq,
274 			    int *len)
275 {
276 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
277 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
278 	struct eth_tx_1st_bd *first_bd;
279 	struct eth_tx_bd *tx_data_bd;
280 	int bds_consumed = 0;
281 	int nbds;
282 	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
283 	int i, split_bd_len = 0;
284 
285 	if (unlikely(!skb)) {
286 		DP_ERR(edev,
287 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
288 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
289 		return -1;
290 	}
291 
292 	*len = skb->len;
293 
294 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
295 
296 	bds_consumed++;
297 
298 	nbds = first_bd->data.nbds;
299 
300 	if (data_split) {
301 		struct eth_tx_bd *split = (struct eth_tx_bd *)
302 			qed_chain_consume(&txq->tx_pbl);
303 		split_bd_len = BD_UNMAP_LEN(split);
304 		bds_consumed++;
305 	}
306 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
307 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
308 
309 	/* Unmap the data of the skb frags */
310 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
311 		tx_data_bd = (struct eth_tx_bd *)
312 			qed_chain_consume(&txq->tx_pbl);
313 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
314 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
315 	}
316 
317 	while (bds_consumed++ < nbds)
318 		qed_chain_consume(&txq->tx_pbl);
319 
320 	/* Free skb */
321 	dev_kfree_skb_any(skb);
322 	txq->sw_tx_ring[idx].skb = NULL;
323 	txq->sw_tx_ring[idx].flags = 0;
324 
325 	return 0;
326 }
327 
328 /* Unmap the data and free skb when mapping failed during start_xmit */
329 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
330 				    struct qede_tx_queue *txq,
331 				    struct eth_tx_1st_bd *first_bd,
332 				    int nbd,
333 				    bool data_split)
334 {
335 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
336 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
337 	struct eth_tx_bd *tx_data_bd;
338 	int i, split_bd_len = 0;
339 
340 	/* Return prod to its position before this skb was handled */
341 	qed_chain_set_prod(&txq->tx_pbl,
342 			   le16_to_cpu(txq->tx_db.data.bd_prod),
343 			   first_bd);
344 
345 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
346 
347 	if (data_split) {
348 		struct eth_tx_bd *split = (struct eth_tx_bd *)
349 					  qed_chain_produce(&txq->tx_pbl);
350 		split_bd_len = BD_UNMAP_LEN(split);
351 		nbd--;
352 	}
353 
354 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
355 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
356 
357 	/* Unmap the data of the skb frags */
358 	for (i = 0; i < nbd; i++) {
359 		tx_data_bd = (struct eth_tx_bd *)
360 			qed_chain_produce(&txq->tx_pbl);
361 		if (tx_data_bd->nbytes)
362 			dma_unmap_page(&edev->pdev->dev,
363 				       BD_UNMAP_ADDR(tx_data_bd),
364 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
365 	}
366 
367 	/* Return again prod to its position before this skb was handled */
368 	qed_chain_set_prod(&txq->tx_pbl,
369 			   le16_to_cpu(txq->tx_db.data.bd_prod),
370 			   first_bd);
371 
372 	/* Free skb */
373 	dev_kfree_skb_any(skb);
374 	txq->sw_tx_ring[idx].skb = NULL;
375 	txq->sw_tx_ring[idx].flags = 0;
376 }
377 
378 static u32 qede_xmit_type(struct qede_dev *edev,
379 			  struct sk_buff *skb,
380 			  int *ipv6_ext)
381 {
382 	u32 rc = XMIT_L4_CSUM;
383 	__be16 l3_proto;
384 
385 	if (skb->ip_summed != CHECKSUM_PARTIAL)
386 		return XMIT_PLAIN;
387 
388 	l3_proto = vlan_get_protocol(skb);
389 	if (l3_proto == htons(ETH_P_IPV6) &&
390 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
391 		*ipv6_ext = 1;
392 
393 	if (skb->encapsulation)
394 		rc |= XMIT_ENC;
395 
396 	if (skb_is_gso(skb))
397 		rc |= XMIT_LSO;
398 
399 	return rc;
400 }
401 
402 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
403 					 struct eth_tx_2nd_bd *second_bd,
404 					 struct eth_tx_3rd_bd *third_bd)
405 {
406 	u8 l4_proto;
407 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
408 
409 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
410 
411 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
412 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
413 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
414 
415 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
416 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
417 
418 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
419 		l4_proto = ipv6_hdr(skb)->nexthdr;
420 	else
421 		l4_proto = ip_hdr(skb)->protocol;
422 
423 	if (l4_proto == IPPROTO_UDP)
424 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
425 
426 	if (third_bd)
427 		third_bd->data.bitfields |=
428 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
429 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
430 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
431 
432 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
433 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
434 }
435 
436 static int map_frag_to_bd(struct qede_dev *edev,
437 			  skb_frag_t *frag,
438 			  struct eth_tx_bd *bd)
439 {
440 	dma_addr_t mapping;
441 
442 	/* Map skb non-linear frag data for DMA */
443 	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
444 				   skb_frag_size(frag),
445 				   DMA_TO_DEVICE);
446 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
447 		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
448 		return -ENOMEM;
449 	}
450 
451 	/* Setup the data pointer of the frag data */
452 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
453 
454 	return 0;
455 }
456 
457 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
458 {
459 	if (is_encap_pkt)
460 		return (skb_inner_transport_header(skb) +
461 			inner_tcp_hdrlen(skb) - skb->data);
462 	else
463 		return (skb_transport_header(skb) +
464 			tcp_hdrlen(skb) - skb->data);
465 }
466 
467 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
468 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
469 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
470 			     u8 xmit_type)
471 {
472 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
473 
474 	if (xmit_type & XMIT_LSO) {
475 		int hlen;
476 
477 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
478 
479 		/* linear payload would require its own BD */
480 		if (skb_headlen(skb) > hlen)
481 			allowed_frags--;
482 	}
483 
484 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
485 }
486 #endif
487 
488 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
489 {
490 	/* wmb makes sure that the BDs data is updated before updating the
491 	 * producer, otherwise FW may read old data from the BDs.
492 	 */
493 	wmb();
494 	barrier();
495 	writel(txq->tx_db.raw, txq->doorbell_addr);
496 
497 	/* mmiowb is needed to synchronize doorbell writes from more than one
498 	 * processor. It guarantees that the write arrives to the device before
499 	 * the queue lock is released and another start_xmit is called (possibly
500 	 * on another CPU). Without this barrier, the next doorbell can bypass
501 	 * this doorbell. This is applicable to IA64/Altix systems.
502 	 */
503 	mmiowb();
504 }
505 
506 /* Main transmit function */
507 static
508 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
509 			    struct net_device *ndev)
510 {
511 	struct qede_dev *edev = netdev_priv(ndev);
512 	struct netdev_queue *netdev_txq;
513 	struct qede_tx_queue *txq;
514 	struct eth_tx_1st_bd *first_bd;
515 	struct eth_tx_2nd_bd *second_bd = NULL;
516 	struct eth_tx_3rd_bd *third_bd = NULL;
517 	struct eth_tx_bd *tx_data_bd = NULL;
518 	u16 txq_index;
519 	u8 nbd = 0;
520 	dma_addr_t mapping;
521 	int rc, frag_idx = 0, ipv6_ext = 0;
522 	u8 xmit_type;
523 	u16 idx;
524 	u16 hlen;
525 	bool data_split = false;
526 
527 	/* Get tx-queue context and netdev index */
528 	txq_index = skb_get_queue_mapping(skb);
529 	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
530 	txq = QEDE_TX_QUEUE(edev, txq_index);
531 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
532 
533 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
534 			       (MAX_SKB_FRAGS + 1));
535 
536 	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
537 
538 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
539 	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
540 		if (skb_linearize(skb)) {
541 			DP_NOTICE(edev,
542 				  "SKB linearization failed - silently dropping this SKB\n");
543 			dev_kfree_skb_any(skb);
544 			return NETDEV_TX_OK;
545 		}
546 	}
547 #endif
548 
549 	/* Fill the entry in the SW ring and the BDs in the FW ring */
550 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
551 	txq->sw_tx_ring[idx].skb = skb;
552 	first_bd = (struct eth_tx_1st_bd *)
553 		   qed_chain_produce(&txq->tx_pbl);
554 	memset(first_bd, 0, sizeof(*first_bd));
555 	first_bd->data.bd_flags.bitfields =
556 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
557 
558 	/* Map skb linear data for DMA and set in the first BD */
559 	mapping = dma_map_single(&edev->pdev->dev, skb->data,
560 				 skb_headlen(skb), DMA_TO_DEVICE);
561 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
562 		DP_NOTICE(edev, "SKB mapping failed\n");
563 		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
564 		qede_update_tx_producer(txq);
565 		return NETDEV_TX_OK;
566 	}
567 	nbd++;
568 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
569 
570 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
571 	 * 3rd BDs.
572 	 */
573 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
574 		second_bd = (struct eth_tx_2nd_bd *)
575 			qed_chain_produce(&txq->tx_pbl);
576 		memset(second_bd, 0, sizeof(*second_bd));
577 
578 		nbd++;
579 		third_bd = (struct eth_tx_3rd_bd *)
580 			qed_chain_produce(&txq->tx_pbl);
581 		memset(third_bd, 0, sizeof(*third_bd));
582 
583 		nbd++;
584 		/* We need to fill in additional data in second_bd... */
585 		tx_data_bd = (struct eth_tx_bd *)second_bd;
586 	}
587 
588 	if (skb_vlan_tag_present(skb)) {
589 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
590 		first_bd->data.bd_flags.bitfields |=
591 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
592 	}
593 
594 	/* Fill the parsing flags & params according to the requested offload */
595 	if (xmit_type & XMIT_L4_CSUM) {
596 		/* We don't re-calculate IP checksum as it is already done by
597 		 * the upper stack
598 		 */
599 		first_bd->data.bd_flags.bitfields |=
600 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
601 
602 		if (xmit_type & XMIT_ENC) {
603 			first_bd->data.bd_flags.bitfields |=
604 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
605 			first_bd->data.bitfields |=
606 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
607 		}
608 
609 		/* If the packet is IPv6 with extension header, indicate that
610 		 * to FW and pass few params, since the device cracker doesn't
611 		 * support parsing IPv6 with extension header/s.
612 		 */
613 		if (unlikely(ipv6_ext))
614 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
615 	}
616 
617 	if (xmit_type & XMIT_LSO) {
618 		first_bd->data.bd_flags.bitfields |=
619 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
620 		third_bd->data.lso_mss =
621 			cpu_to_le16(skb_shinfo(skb)->gso_size);
622 
623 		if (unlikely(xmit_type & XMIT_ENC)) {
624 			first_bd->data.bd_flags.bitfields |=
625 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
626 			hlen = qede_get_skb_hlen(skb, true);
627 		} else {
628 			first_bd->data.bd_flags.bitfields |=
629 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
630 			hlen = qede_get_skb_hlen(skb, false);
631 		}
632 
633 		/* @@@TBD - if will not be removed need to check */
634 		third_bd->data.bitfields |=
635 			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
636 
637 		/* Make life easier for FW guys who can't deal with header and
638 		 * data on same BD. If we need to split, use the second bd...
639 		 */
640 		if (unlikely(skb_headlen(skb) > hlen)) {
641 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
642 				   "TSO split header size is %d (%x:%x)\n",
643 				   first_bd->nbytes, first_bd->addr.hi,
644 				   first_bd->addr.lo);
645 
646 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
647 					   le32_to_cpu(first_bd->addr.lo)) +
648 					   hlen;
649 
650 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
651 					      le16_to_cpu(first_bd->nbytes) -
652 					      hlen);
653 
654 			/* this marks the BD as one that has no
655 			 * individual mapping
656 			 */
657 			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
658 
659 			first_bd->nbytes = cpu_to_le16(hlen);
660 
661 			tx_data_bd = (struct eth_tx_bd *)third_bd;
662 			data_split = true;
663 		}
664 	} else {
665 		first_bd->data.bitfields |=
666 		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
667 		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
668 	}
669 
670 	/* Handle fragmented skb */
671 	/* special handle for frags inside 2nd and 3rd bds.. */
672 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
673 		rc = map_frag_to_bd(edev,
674 				    &skb_shinfo(skb)->frags[frag_idx],
675 				    tx_data_bd);
676 		if (rc) {
677 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
678 						data_split);
679 			qede_update_tx_producer(txq);
680 			return NETDEV_TX_OK;
681 		}
682 
683 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
684 			tx_data_bd = (struct eth_tx_bd *)third_bd;
685 		else
686 			tx_data_bd = NULL;
687 
688 		frag_idx++;
689 	}
690 
691 	/* map last frags into 4th, 5th .... */
692 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
693 		tx_data_bd = (struct eth_tx_bd *)
694 			     qed_chain_produce(&txq->tx_pbl);
695 
696 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
697 
698 		rc = map_frag_to_bd(edev,
699 				    &skb_shinfo(skb)->frags[frag_idx],
700 				    tx_data_bd);
701 		if (rc) {
702 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
703 						data_split);
704 			qede_update_tx_producer(txq);
705 			return NETDEV_TX_OK;
706 		}
707 	}
708 
709 	/* update the first BD with the actual num BDs */
710 	first_bd->data.nbds = nbd;
711 
712 	netdev_tx_sent_queue(netdev_txq, skb->len);
713 
714 	skb_tx_timestamp(skb);
715 
716 	/* Advance packet producer only before sending the packet since mapping
717 	 * of pages may fail.
718 	 */
719 	txq->sw_tx_prod++;
720 
721 	/* 'next page' entries are counted in the producer value */
722 	txq->tx_db.data.bd_prod =
723 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
724 
725 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
726 		qede_update_tx_producer(txq);
727 
728 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
729 		      < (MAX_SKB_FRAGS + 1))) {
730 		if (skb->xmit_more)
731 			qede_update_tx_producer(txq);
732 
733 		netif_tx_stop_queue(netdev_txq);
734 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
735 			   "Stop queue was called\n");
736 		/* paired memory barrier is in qede_tx_int(), we have to keep
737 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
738 		 * fp->bd_tx_cons
739 		 */
740 		smp_mb();
741 
742 		if (qed_chain_get_elem_left(&txq->tx_pbl)
743 		     >= (MAX_SKB_FRAGS + 1) &&
744 		    (edev->state == QEDE_STATE_OPEN)) {
745 			netif_tx_wake_queue(netdev_txq);
746 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
747 				   "Wake queue was called\n");
748 		}
749 	}
750 
751 	return NETDEV_TX_OK;
752 }
753 
754 int qede_txq_has_work(struct qede_tx_queue *txq)
755 {
756 	u16 hw_bd_cons;
757 
758 	/* Tell compiler that consumer and producer can change */
759 	barrier();
760 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
761 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
762 		return 0;
763 
764 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
765 }
766 
767 static int qede_tx_int(struct qede_dev *edev,
768 		       struct qede_tx_queue *txq)
769 {
770 	struct netdev_queue *netdev_txq;
771 	u16 hw_bd_cons;
772 	unsigned int pkts_compl = 0, bytes_compl = 0;
773 	int rc;
774 
775 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
776 
777 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
778 	barrier();
779 
780 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
781 		int len = 0;
782 
783 		rc = qede_free_tx_pkt(edev, txq, &len);
784 		if (rc) {
785 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
786 				  hw_bd_cons,
787 				  qed_chain_get_cons_idx(&txq->tx_pbl));
788 			break;
789 		}
790 
791 		bytes_compl += len;
792 		pkts_compl++;
793 		txq->sw_tx_cons++;
794 	}
795 
796 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
797 
798 	/* Need to make the tx_bd_cons update visible to start_xmit()
799 	 * before checking for netif_tx_queue_stopped().  Without the
800 	 * memory barrier, there is a small possibility that
801 	 * start_xmit() will miss it and cause the queue to be stopped
802 	 * forever.
803 	 * On the other hand we need an rmb() here to ensure the proper
804 	 * ordering of bit testing in the following
805 	 * netif_tx_queue_stopped(txq) call.
806 	 */
807 	smp_mb();
808 
809 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
810 		/* Taking tx_lock is needed to prevent reenabling the queue
811 		 * while it's empty. This could have happen if rx_action() gets
812 		 * suspended in qede_tx_int() after the condition before
813 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
814 		 *
815 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
816 		 * sends some packets consuming the whole queue again->
817 		 * stops the queue
818 		 */
819 
820 		__netif_tx_lock(netdev_txq, smp_processor_id());
821 
822 		if ((netif_tx_queue_stopped(netdev_txq)) &&
823 		    (edev->state == QEDE_STATE_OPEN) &&
824 		    (qed_chain_get_elem_left(&txq->tx_pbl)
825 		      >= (MAX_SKB_FRAGS + 1))) {
826 			netif_tx_wake_queue(netdev_txq);
827 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
828 				   "Wake queue was called\n");
829 		}
830 
831 		__netif_tx_unlock(netdev_txq);
832 	}
833 
834 	return 0;
835 }
836 
837 bool qede_has_rx_work(struct qede_rx_queue *rxq)
838 {
839 	u16 hw_comp_cons, sw_comp_cons;
840 
841 	/* Tell compiler that status block fields can change */
842 	barrier();
843 
844 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
845 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
846 
847 	return hw_comp_cons != sw_comp_cons;
848 }
849 
850 static bool qede_has_tx_work(struct qede_fastpath *fp)
851 {
852 	u8 tc;
853 
854 	for (tc = 0; tc < fp->edev->num_tc; tc++)
855 		if (qede_txq_has_work(&fp->txqs[tc]))
856 			return true;
857 	return false;
858 }
859 
860 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
861 {
862 	qed_chain_consume(&rxq->rx_bd_ring);
863 	rxq->sw_rx_cons++;
864 }
865 
866 /* This function reuses the buffer(from an offset) from
867  * consumer index to producer index in the bd ring
868  */
869 static inline void qede_reuse_page(struct qede_dev *edev,
870 				   struct qede_rx_queue *rxq,
871 				   struct sw_rx_data *curr_cons)
872 {
873 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
874 	struct sw_rx_data *curr_prod;
875 	dma_addr_t new_mapping;
876 
877 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
878 	*curr_prod = *curr_cons;
879 
880 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
881 
882 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
883 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
884 
885 	rxq->sw_rx_prod++;
886 	curr_cons->data = NULL;
887 }
888 
889 /* In case of allocation failures reuse buffers
890  * from consumer index to produce buffers for firmware
891  */
892 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
893 			     struct qede_dev *edev, u8 count)
894 {
895 	struct sw_rx_data *curr_cons;
896 
897 	for (; count > 0; count--) {
898 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
899 		qede_reuse_page(edev, rxq, curr_cons);
900 		qede_rx_bd_ring_consume(rxq);
901 	}
902 }
903 
904 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
905 					 struct qede_rx_queue *rxq,
906 					 struct sw_rx_data *curr_cons)
907 {
908 	/* Move to the next segment in the page */
909 	curr_cons->page_offset += rxq->rx_buf_seg_size;
910 
911 	if (curr_cons->page_offset == PAGE_SIZE) {
912 		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
913 			/* Since we failed to allocate new buffer
914 			 * current buffer can be used again.
915 			 */
916 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
917 
918 			return -ENOMEM;
919 		}
920 
921 		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
922 			       PAGE_SIZE, DMA_FROM_DEVICE);
923 	} else {
924 		/* Increment refcount of the page as we don't want
925 		 * network stack to take the ownership of the page
926 		 * which can be recycled multiple times by the driver.
927 		 */
928 		page_ref_inc(curr_cons->data);
929 		qede_reuse_page(edev, rxq, curr_cons);
930 	}
931 
932 	return 0;
933 }
934 
935 static inline void qede_update_rx_prod(struct qede_dev *edev,
936 				       struct qede_rx_queue *rxq)
937 {
938 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
939 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
940 	struct eth_rx_prod_data rx_prods = {0};
941 
942 	/* Update producers */
943 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
944 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
945 
946 	/* Make sure that the BD and SGE data is updated before updating the
947 	 * producers since FW might read the BD/SGE right after the producer
948 	 * is updated.
949 	 */
950 	wmb();
951 
952 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
953 			(u32 *)&rx_prods);
954 
955 	/* mmiowb is needed to synchronize doorbell writes from more than one
956 	 * processor. It guarantees that the write arrives to the device before
957 	 * the napi lock is released and another qede_poll is called (possibly
958 	 * on another CPU). Without this barrier, the next doorbell can bypass
959 	 * this doorbell. This is applicable to IA64/Altix systems.
960 	 */
961 	mmiowb();
962 }
963 
964 static u32 qede_get_rxhash(struct qede_dev *edev,
965 			   u8 bitfields,
966 			   __le32 rss_hash,
967 			   enum pkt_hash_types *rxhash_type)
968 {
969 	enum rss_hash_type htype;
970 
971 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
972 
973 	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
974 		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
975 				(htype == RSS_HASH_TYPE_IPV6)) ?
976 				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
977 		return le32_to_cpu(rss_hash);
978 	}
979 	*rxhash_type = PKT_HASH_TYPE_NONE;
980 	return 0;
981 }
982 
983 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
984 {
985 	skb_checksum_none_assert(skb);
986 
987 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
988 		skb->ip_summed = CHECKSUM_UNNECESSARY;
989 
990 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
991 		skb->csum_level = 1;
992 }
993 
994 static inline void qede_skb_receive(struct qede_dev *edev,
995 				    struct qede_fastpath *fp,
996 				    struct sk_buff *skb,
997 				    u16 vlan_tag)
998 {
999 	if (vlan_tag)
1000 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1001 				       vlan_tag);
1002 
1003 	napi_gro_receive(&fp->napi, skb);
1004 }
1005 
1006 static void qede_set_gro_params(struct qede_dev *edev,
1007 				struct sk_buff *skb,
1008 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
1009 {
1010 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1011 
1012 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1013 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1014 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1015 	else
1016 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1017 
1018 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1019 					cqe->header_len;
1020 }
1021 
1022 static int qede_fill_frag_skb(struct qede_dev *edev,
1023 			      struct qede_rx_queue *rxq,
1024 			      u8 tpa_agg_index,
1025 			      u16 len_on_bd)
1026 {
1027 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1028 							 NUM_RX_BDS_MAX];
1029 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1030 	struct sk_buff *skb = tpa_info->skb;
1031 
1032 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1033 		goto out;
1034 
1035 	/* Add one frag and update the appropriate fields in the skb */
1036 	skb_fill_page_desc(skb, tpa_info->frag_id++,
1037 			   current_bd->data, current_bd->page_offset,
1038 			   len_on_bd);
1039 
1040 	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1041 		/* Incr page ref count to reuse on allocation failure
1042 		 * so that it doesn't get freed while freeing SKB.
1043 		 */
1044 		page_ref_inc(current_bd->data);
1045 		goto out;
1046 	}
1047 
1048 	qed_chain_consume(&rxq->rx_bd_ring);
1049 	rxq->sw_rx_cons++;
1050 
1051 	skb->data_len += len_on_bd;
1052 	skb->truesize += rxq->rx_buf_seg_size;
1053 	skb->len += len_on_bd;
1054 
1055 	return 0;
1056 
1057 out:
1058 	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1059 	qede_recycle_rx_bd_ring(rxq, edev, 1);
1060 	return -ENOMEM;
1061 }
1062 
1063 static void qede_tpa_start(struct qede_dev *edev,
1064 			   struct qede_rx_queue *rxq,
1065 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
1066 {
1067 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1068 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1069 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1070 	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1071 	dma_addr_t mapping = tpa_info->replace_buf_mapping;
1072 	struct sw_rx_data *sw_rx_data_cons;
1073 	struct sw_rx_data *sw_rx_data_prod;
1074 	enum pkt_hash_types rxhash_type;
1075 	u32 rxhash;
1076 
1077 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1078 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1079 
1080 	/* Use pre-allocated replacement buffer - we can't release the agg.
1081 	 * start until its over and we don't want to risk allocation failing
1082 	 * here, so re-allocate when aggregation will be over.
1083 	 */
1084 	sw_rx_data_prod->mapping = replace_buf->mapping;
1085 
1086 	sw_rx_data_prod->data = replace_buf->data;
1087 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1088 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1089 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
1090 
1091 	rxq->sw_rx_prod++;
1092 
1093 	/* move partial skb from cons to pool (don't unmap yet)
1094 	 * save mapping, incase we drop the packet later on.
1095 	 */
1096 	tpa_info->start_buf = *sw_rx_data_cons;
1097 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1098 			   le32_to_cpu(rx_bd_cons->addr.lo));
1099 
1100 	tpa_info->start_buf_mapping = mapping;
1101 	rxq->sw_rx_cons++;
1102 
1103 	/* set tpa state to start only if we are able to allocate skb
1104 	 * for this aggregation, otherwise mark as error and aggregation will
1105 	 * be dropped
1106 	 */
1107 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
1108 					 le16_to_cpu(cqe->len_on_first_bd));
1109 	if (unlikely(!tpa_info->skb)) {
1110 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1111 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1112 		goto cons_buf;
1113 	}
1114 
1115 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1116 	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1117 
1118 	/* Start filling in the aggregation info */
1119 	tpa_info->frag_id = 0;
1120 	tpa_info->agg_state = QEDE_AGG_STATE_START;
1121 
1122 	rxhash = qede_get_rxhash(edev, cqe->bitfields,
1123 				 cqe->rss_hash, &rxhash_type);
1124 	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1125 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1126 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1127 		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1128 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1129 	else
1130 		tpa_info->vlan_tag = 0;
1131 
1132 	/* This is needed in order to enable forwarding support */
1133 	qede_set_gro_params(edev, tpa_info->skb, cqe);
1134 
1135 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1136 	if (likely(cqe->ext_bd_len_list[0]))
1137 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1138 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1139 
1140 	if (unlikely(cqe->ext_bd_len_list[1])) {
1141 		DP_ERR(edev,
1142 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1143 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1144 	}
1145 }
1146 
1147 #ifdef CONFIG_INET
1148 static void qede_gro_ip_csum(struct sk_buff *skb)
1149 {
1150 	const struct iphdr *iph = ip_hdr(skb);
1151 	struct tcphdr *th;
1152 
1153 	skb_set_transport_header(skb, sizeof(struct iphdr));
1154 	th = tcp_hdr(skb);
1155 
1156 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1157 				  iph->saddr, iph->daddr, 0);
1158 
1159 	tcp_gro_complete(skb);
1160 }
1161 
1162 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1163 {
1164 	struct ipv6hdr *iph = ipv6_hdr(skb);
1165 	struct tcphdr *th;
1166 
1167 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1168 	th = tcp_hdr(skb);
1169 
1170 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1171 				  &iph->saddr, &iph->daddr, 0);
1172 	tcp_gro_complete(skb);
1173 }
1174 #endif
1175 
1176 static void qede_gro_receive(struct qede_dev *edev,
1177 			     struct qede_fastpath *fp,
1178 			     struct sk_buff *skb,
1179 			     u16 vlan_tag)
1180 {
1181 	/* FW can send a single MTU sized packet from gro flow
1182 	 * due to aggregation timeout/last segment etc. which
1183 	 * is not expected to be a gro packet. If a skb has zero
1184 	 * frags then simply push it in the stack as non gso skb.
1185 	 */
1186 	if (unlikely(!skb->data_len)) {
1187 		skb_shinfo(skb)->gso_type = 0;
1188 		skb_shinfo(skb)->gso_size = 0;
1189 		goto send_skb;
1190 	}
1191 
1192 #ifdef CONFIG_INET
1193 	if (skb_shinfo(skb)->gso_size) {
1194 		skb_set_network_header(skb, 0);
1195 
1196 		switch (skb->protocol) {
1197 		case htons(ETH_P_IP):
1198 			qede_gro_ip_csum(skb);
1199 			break;
1200 		case htons(ETH_P_IPV6):
1201 			qede_gro_ipv6_csum(skb);
1202 			break;
1203 		default:
1204 			DP_ERR(edev,
1205 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1206 			       ntohs(skb->protocol));
1207 		}
1208 	}
1209 #endif
1210 
1211 send_skb:
1212 	skb_record_rx_queue(skb, fp->rss_id);
1213 	qede_skb_receive(edev, fp, skb, vlan_tag);
1214 }
1215 
1216 static inline void qede_tpa_cont(struct qede_dev *edev,
1217 				 struct qede_rx_queue *rxq,
1218 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1219 {
1220 	int i;
1221 
1222 	for (i = 0; cqe->len_list[i]; i++)
1223 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1224 				   le16_to_cpu(cqe->len_list[i]));
1225 
1226 	if (unlikely(i > 1))
1227 		DP_ERR(edev,
1228 		       "Strange - TPA cont with more than a single len_list entry\n");
1229 }
1230 
1231 static void qede_tpa_end(struct qede_dev *edev,
1232 			 struct qede_fastpath *fp,
1233 			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1234 {
1235 	struct qede_rx_queue *rxq = fp->rxq;
1236 	struct qede_agg_info *tpa_info;
1237 	struct sk_buff *skb;
1238 	int i;
1239 
1240 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1241 	skb = tpa_info->skb;
1242 
1243 	for (i = 0; cqe->len_list[i]; i++)
1244 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1245 				   le16_to_cpu(cqe->len_list[i]));
1246 	if (unlikely(i > 1))
1247 		DP_ERR(edev,
1248 		       "Strange - TPA emd with more than a single len_list entry\n");
1249 
1250 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1251 		goto err;
1252 
1253 	/* Sanity */
1254 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1255 		DP_ERR(edev,
1256 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1257 		       cqe->num_of_bds, tpa_info->frag_id);
1258 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1259 		DP_ERR(edev,
1260 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1261 		       le16_to_cpu(cqe->total_packet_len), skb->len);
1262 
1263 	memcpy(skb->data,
1264 	       page_address(tpa_info->start_buf.data) +
1265 		tpa_info->start_cqe.placement_offset +
1266 		tpa_info->start_buf.page_offset,
1267 	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1268 
1269 	/* Recycle [mapped] start buffer for the next replacement */
1270 	tpa_info->replace_buf = tpa_info->start_buf;
1271 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1272 
1273 	/* Finalize the SKB */
1274 	skb->protocol = eth_type_trans(skb, edev->ndev);
1275 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1276 
1277 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1278 	 * to skb_shinfo(skb)->gso_segs
1279 	 */
1280 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1281 
1282 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1283 
1284 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1285 
1286 	return;
1287 err:
1288 	/* The BD starting the aggregation is still mapped; Re-use it for
1289 	 * future aggregations [as replacement buffer]
1290 	 */
1291 	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1292 	       sizeof(struct sw_rx_data));
1293 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1294 	tpa_info->start_buf.data = NULL;
1295 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1296 	dev_kfree_skb_any(tpa_info->skb);
1297 	tpa_info->skb = NULL;
1298 }
1299 
1300 static bool qede_tunn_exist(u16 flag)
1301 {
1302 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1303 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1304 }
1305 
1306 static u8 qede_check_tunn_csum(u16 flag)
1307 {
1308 	u16 csum_flag = 0;
1309 	u8 tcsum = 0;
1310 
1311 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1312 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1313 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1314 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1315 
1316 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1317 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1318 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1319 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1320 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1321 	}
1322 
1323 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1324 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1325 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1326 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1327 
1328 	if (csum_flag & flag)
1329 		return QEDE_CSUM_ERROR;
1330 
1331 	return QEDE_CSUM_UNNECESSARY | tcsum;
1332 }
1333 
1334 static u8 qede_check_notunn_csum(u16 flag)
1335 {
1336 	u16 csum_flag = 0;
1337 	u8 csum = 0;
1338 
1339 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1340 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1341 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1342 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1343 		csum = QEDE_CSUM_UNNECESSARY;
1344 	}
1345 
1346 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1347 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1348 
1349 	if (csum_flag & flag)
1350 		return QEDE_CSUM_ERROR;
1351 
1352 	return csum;
1353 }
1354 
1355 static u8 qede_check_csum(u16 flag)
1356 {
1357 	if (!qede_tunn_exist(flag))
1358 		return qede_check_notunn_csum(flag);
1359 	else
1360 		return qede_check_tunn_csum(flag);
1361 }
1362 
1363 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1364 				      u16 flag)
1365 {
1366 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1367 
1368 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1369 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1370 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1371 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1372 		return true;
1373 
1374 	return false;
1375 }
1376 
1377 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1378 {
1379 	struct qede_dev *edev = fp->edev;
1380 	struct qede_rx_queue *rxq = fp->rxq;
1381 
1382 	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1383 	int rx_pkt = 0;
1384 	u8 csum_flag;
1385 
1386 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1387 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1388 
1389 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1390 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1391 	 * read before it is written by FW, then FW writes CQE and SB, and then
1392 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1393 	 */
1394 	rmb();
1395 
1396 	/* Loop to complete all indicated BDs */
1397 	while (sw_comp_cons != hw_comp_cons) {
1398 		struct eth_fast_path_rx_reg_cqe *fp_cqe;
1399 		enum pkt_hash_types rxhash_type;
1400 		enum eth_rx_cqe_type cqe_type;
1401 		struct sw_rx_data *sw_rx_data;
1402 		union eth_rx_cqe *cqe;
1403 		struct sk_buff *skb;
1404 		struct page *data;
1405 		__le16 flags;
1406 		u16 len, pad;
1407 		u32 rx_hash;
1408 
1409 		/* Get the CQE from the completion ring */
1410 		cqe = (union eth_rx_cqe *)
1411 			qed_chain_consume(&rxq->rx_comp_ring);
1412 		cqe_type = cqe->fast_path_regular.type;
1413 
1414 		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1415 			edev->ops->eth_cqe_completion(
1416 					edev->cdev, fp->rss_id,
1417 					(struct eth_slow_path_rx_cqe *)cqe);
1418 			goto next_cqe;
1419 		}
1420 
1421 		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1422 			switch (cqe_type) {
1423 			case ETH_RX_CQE_TYPE_TPA_START:
1424 				qede_tpa_start(edev, rxq,
1425 					       &cqe->fast_path_tpa_start);
1426 				goto next_cqe;
1427 			case ETH_RX_CQE_TYPE_TPA_CONT:
1428 				qede_tpa_cont(edev, rxq,
1429 					      &cqe->fast_path_tpa_cont);
1430 				goto next_cqe;
1431 			case ETH_RX_CQE_TYPE_TPA_END:
1432 				qede_tpa_end(edev, fp,
1433 					     &cqe->fast_path_tpa_end);
1434 				goto next_rx_only;
1435 			default:
1436 				break;
1437 			}
1438 		}
1439 
1440 		/* Get the data from the SW ring */
1441 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1442 		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1443 		data = sw_rx_data->data;
1444 
1445 		fp_cqe = &cqe->fast_path_regular;
1446 		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1447 		pad = fp_cqe->placement_offset;
1448 		flags = cqe->fast_path_regular.pars_flags.flags;
1449 
1450 		/* If this is an error packet then drop it */
1451 		parse_flag = le16_to_cpu(flags);
1452 
1453 		csum_flag = qede_check_csum(parse_flag);
1454 		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1455 			if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1456 						      parse_flag)) {
1457 				rxq->rx_ip_frags++;
1458 				goto alloc_skb;
1459 			}
1460 
1461 			DP_NOTICE(edev,
1462 				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1463 				  sw_comp_cons, parse_flag);
1464 			rxq->rx_hw_errors++;
1465 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1466 			goto next_cqe;
1467 		}
1468 
1469 alloc_skb:
1470 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1471 		if (unlikely(!skb)) {
1472 			DP_NOTICE(edev,
1473 				  "Build_skb failed, dropping incoming packet\n");
1474 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1475 			rxq->rx_alloc_errors++;
1476 			goto next_cqe;
1477 		}
1478 
1479 		/* Copy data into SKB */
1480 		if (len + pad <= edev->rx_copybreak) {
1481 			memcpy(skb_put(skb, len),
1482 			       page_address(data) + pad +
1483 				sw_rx_data->page_offset, len);
1484 			qede_reuse_page(edev, rxq, sw_rx_data);
1485 		} else {
1486 			struct skb_frag_struct *frag;
1487 			unsigned int pull_len;
1488 			unsigned char *va;
1489 
1490 			frag = &skb_shinfo(skb)->frags[0];
1491 
1492 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1493 					pad + sw_rx_data->page_offset,
1494 					len, rxq->rx_buf_seg_size);
1495 
1496 			va = skb_frag_address(frag);
1497 			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1498 
1499 			/* Align the pull_len to optimize memcpy */
1500 			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1501 
1502 			skb_frag_size_sub(frag, pull_len);
1503 			frag->page_offset += pull_len;
1504 			skb->data_len -= pull_len;
1505 			skb->tail += pull_len;
1506 
1507 			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1508 							    sw_rx_data))) {
1509 				DP_ERR(edev, "Failed to allocate rx buffer\n");
1510 				/* Incr page ref count to reuse on allocation
1511 				 * failure so that it doesn't get freed while
1512 				 * freeing SKB.
1513 				 */
1514 
1515 				page_ref_inc(sw_rx_data->data);
1516 				rxq->rx_alloc_errors++;
1517 				qede_recycle_rx_bd_ring(rxq, edev,
1518 							fp_cqe->bd_num);
1519 				dev_kfree_skb_any(skb);
1520 				goto next_cqe;
1521 			}
1522 		}
1523 
1524 		qede_rx_bd_ring_consume(rxq);
1525 
1526 		if (fp_cqe->bd_num != 1) {
1527 			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1528 			u8 num_frags;
1529 
1530 			pkt_len -= len;
1531 
1532 			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1533 			     num_frags--) {
1534 				u16 cur_size = pkt_len > rxq->rx_buf_size ?
1535 						rxq->rx_buf_size : pkt_len;
1536 				if (unlikely(!cur_size)) {
1537 					DP_ERR(edev,
1538 					       "Still got %d BDs for mapping jumbo, but length became 0\n",
1539 					       num_frags);
1540 					qede_recycle_rx_bd_ring(rxq, edev,
1541 								num_frags);
1542 					dev_kfree_skb_any(skb);
1543 					goto next_cqe;
1544 				}
1545 
1546 				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1547 					qede_recycle_rx_bd_ring(rxq, edev,
1548 								num_frags);
1549 					dev_kfree_skb_any(skb);
1550 					goto next_cqe;
1551 				}
1552 
1553 				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1554 				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1555 				qede_rx_bd_ring_consume(rxq);
1556 
1557 				dma_unmap_page(&edev->pdev->dev,
1558 					       sw_rx_data->mapping,
1559 					       PAGE_SIZE, DMA_FROM_DEVICE);
1560 
1561 				skb_fill_page_desc(skb,
1562 						   skb_shinfo(skb)->nr_frags++,
1563 						   sw_rx_data->data, 0,
1564 						   cur_size);
1565 
1566 				skb->truesize += PAGE_SIZE;
1567 				skb->data_len += cur_size;
1568 				skb->len += cur_size;
1569 				pkt_len -= cur_size;
1570 			}
1571 
1572 			if (unlikely(pkt_len))
1573 				DP_ERR(edev,
1574 				       "Mapped all BDs of jumbo, but still have %d bytes\n",
1575 				       pkt_len);
1576 		}
1577 
1578 		skb->protocol = eth_type_trans(skb, edev->ndev);
1579 
1580 		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1581 					  fp_cqe->rss_hash,
1582 					  &rxhash_type);
1583 
1584 		skb_set_hash(skb, rx_hash, rxhash_type);
1585 
1586 		qede_set_skb_csum(skb, csum_flag);
1587 
1588 		skb_record_rx_queue(skb, fp->rss_id);
1589 
1590 		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1591 next_rx_only:
1592 		rx_pkt++;
1593 
1594 next_cqe: /* don't consume bd rx buffer */
1595 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1596 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1597 		/* CR TPA - revisit how to handle budget in TPA perhaps
1598 		 * increase on "end"
1599 		 */
1600 		if (rx_pkt == budget)
1601 			break;
1602 	} /* repeat while sw_comp_cons != hw_comp_cons... */
1603 
1604 	/* Update producers */
1605 	qede_update_rx_prod(edev, rxq);
1606 
1607 	return rx_pkt;
1608 }
1609 
1610 static int qede_poll(struct napi_struct *napi, int budget)
1611 {
1612 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1613 						napi);
1614 	struct qede_dev *edev = fp->edev;
1615 	int rx_work_done = 0;
1616 	u8 tc;
1617 
1618 	for (tc = 0; tc < edev->num_tc; tc++)
1619 		if (qede_txq_has_work(&fp->txqs[tc]))
1620 			qede_tx_int(edev, &fp->txqs[tc]);
1621 
1622 	rx_work_done = qede_has_rx_work(fp->rxq) ?
1623 			qede_rx_int(fp, budget) : 0;
1624 	if (rx_work_done < budget) {
1625 		qed_sb_update_sb_idx(fp->sb_info);
1626 		/* *_has_*_work() reads the status block,
1627 		 * thus we need to ensure that status block indices
1628 		 * have been actually read (qed_sb_update_sb_idx)
1629 		 * prior to this check (*_has_*_work) so that
1630 		 * we won't write the "newer" value of the status block
1631 		 * to HW (if there was a DMA right after
1632 		 * qede_has_rx_work and if there is no rmb, the memory
1633 		 * reading (qed_sb_update_sb_idx) may be postponed
1634 		 * to right before *_ack_sb). In this case there
1635 		 * will never be another interrupt until there is
1636 		 * another update of the status block, while there
1637 		 * is still unhandled work.
1638 		 */
1639 		rmb();
1640 
1641 		/* Fall out from the NAPI loop if needed */
1642 		if (!(qede_has_rx_work(fp->rxq) ||
1643 		      qede_has_tx_work(fp))) {
1644 			napi_complete(napi);
1645 
1646 			/* Update and reenable interrupts */
1647 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1648 				   1 /*update*/);
1649 		} else {
1650 			rx_work_done = budget;
1651 		}
1652 	}
1653 
1654 	return rx_work_done;
1655 }
1656 
1657 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1658 {
1659 	struct qede_fastpath *fp = fp_cookie;
1660 
1661 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1662 
1663 	napi_schedule_irqoff(&fp->napi);
1664 	return IRQ_HANDLED;
1665 }
1666 
1667 /* -------------------------------------------------------------------------
1668  * END OF FAST-PATH
1669  * -------------------------------------------------------------------------
1670  */
1671 
1672 static int qede_open(struct net_device *ndev);
1673 static int qede_close(struct net_device *ndev);
1674 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1675 static void qede_set_rx_mode(struct net_device *ndev);
1676 static void qede_config_rx_mode(struct net_device *ndev);
1677 
1678 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1679 				 enum qed_filter_xcast_params_type opcode,
1680 				 unsigned char mac[ETH_ALEN])
1681 {
1682 	struct qed_filter_params filter_cmd;
1683 
1684 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1685 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1686 	filter_cmd.filter.ucast.type = opcode;
1687 	filter_cmd.filter.ucast.mac_valid = 1;
1688 	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1689 
1690 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1691 }
1692 
1693 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1694 				  enum qed_filter_xcast_params_type opcode,
1695 				  u16 vid)
1696 {
1697 	struct qed_filter_params filter_cmd;
1698 
1699 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1700 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1701 	filter_cmd.filter.ucast.type = opcode;
1702 	filter_cmd.filter.ucast.vlan_valid = 1;
1703 	filter_cmd.filter.ucast.vlan = vid;
1704 
1705 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1706 }
1707 
1708 void qede_fill_by_demand_stats(struct qede_dev *edev)
1709 {
1710 	struct qed_eth_stats stats;
1711 
1712 	edev->ops->get_vport_stats(edev->cdev, &stats);
1713 	edev->stats.no_buff_discards = stats.no_buff_discards;
1714 	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1715 	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1716 	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1717 	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1718 	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1719 	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1720 	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1721 	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1722 
1723 	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1724 	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1725 	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1726 	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1727 	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1728 	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1729 	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1730 	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1731 	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1732 	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1733 	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1734 	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1735 
1736 	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1737 	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1738 	edev->stats.rx_128_to_255_byte_packets =
1739 				stats.rx_128_to_255_byte_packets;
1740 	edev->stats.rx_256_to_511_byte_packets =
1741 				stats.rx_256_to_511_byte_packets;
1742 	edev->stats.rx_512_to_1023_byte_packets =
1743 				stats.rx_512_to_1023_byte_packets;
1744 	edev->stats.rx_1024_to_1518_byte_packets =
1745 				stats.rx_1024_to_1518_byte_packets;
1746 	edev->stats.rx_1519_to_1522_byte_packets =
1747 				stats.rx_1519_to_1522_byte_packets;
1748 	edev->stats.rx_1519_to_2047_byte_packets =
1749 				stats.rx_1519_to_2047_byte_packets;
1750 	edev->stats.rx_2048_to_4095_byte_packets =
1751 				stats.rx_2048_to_4095_byte_packets;
1752 	edev->stats.rx_4096_to_9216_byte_packets =
1753 				stats.rx_4096_to_9216_byte_packets;
1754 	edev->stats.rx_9217_to_16383_byte_packets =
1755 				stats.rx_9217_to_16383_byte_packets;
1756 	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1757 	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1758 	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1759 	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1760 	edev->stats.rx_align_errors = stats.rx_align_errors;
1761 	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1762 	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1763 	edev->stats.rx_jabbers = stats.rx_jabbers;
1764 	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1765 	edev->stats.rx_fragments = stats.rx_fragments;
1766 	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1767 	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1768 	edev->stats.tx_128_to_255_byte_packets =
1769 				stats.tx_128_to_255_byte_packets;
1770 	edev->stats.tx_256_to_511_byte_packets =
1771 				stats.tx_256_to_511_byte_packets;
1772 	edev->stats.tx_512_to_1023_byte_packets =
1773 				stats.tx_512_to_1023_byte_packets;
1774 	edev->stats.tx_1024_to_1518_byte_packets =
1775 				stats.tx_1024_to_1518_byte_packets;
1776 	edev->stats.tx_1519_to_2047_byte_packets =
1777 				stats.tx_1519_to_2047_byte_packets;
1778 	edev->stats.tx_2048_to_4095_byte_packets =
1779 				stats.tx_2048_to_4095_byte_packets;
1780 	edev->stats.tx_4096_to_9216_byte_packets =
1781 				stats.tx_4096_to_9216_byte_packets;
1782 	edev->stats.tx_9217_to_16383_byte_packets =
1783 				stats.tx_9217_to_16383_byte_packets;
1784 	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1785 	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1786 	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1787 	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1788 	edev->stats.brb_truncates = stats.brb_truncates;
1789 	edev->stats.brb_discards = stats.brb_discards;
1790 	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1791 }
1792 
1793 static struct rtnl_link_stats64 *qede_get_stats64(
1794 			    struct net_device *dev,
1795 			    struct rtnl_link_stats64 *stats)
1796 {
1797 	struct qede_dev *edev = netdev_priv(dev);
1798 
1799 	qede_fill_by_demand_stats(edev);
1800 
1801 	stats->rx_packets = edev->stats.rx_ucast_pkts +
1802 			    edev->stats.rx_mcast_pkts +
1803 			    edev->stats.rx_bcast_pkts;
1804 	stats->tx_packets = edev->stats.tx_ucast_pkts +
1805 			    edev->stats.tx_mcast_pkts +
1806 			    edev->stats.tx_bcast_pkts;
1807 
1808 	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1809 			  edev->stats.rx_mcast_bytes +
1810 			  edev->stats.rx_bcast_bytes;
1811 
1812 	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1813 			  edev->stats.tx_mcast_bytes +
1814 			  edev->stats.tx_bcast_bytes;
1815 
1816 	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1817 	stats->multicast = edev->stats.rx_mcast_pkts +
1818 			   edev->stats.rx_bcast_pkts;
1819 
1820 	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1821 
1822 	stats->collisions = edev->stats.tx_total_collisions;
1823 	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1824 	stats->rx_frame_errors = edev->stats.rx_align_errors;
1825 
1826 	return stats;
1827 }
1828 
1829 #ifdef CONFIG_QED_SRIOV
1830 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1831 			      struct ifla_vf_info *ivi)
1832 {
1833 	struct qede_dev *edev = netdev_priv(dev);
1834 
1835 	if (!edev->ops)
1836 		return -EINVAL;
1837 
1838 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1839 }
1840 
1841 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1842 			    int min_tx_rate, int max_tx_rate)
1843 {
1844 	struct qede_dev *edev = netdev_priv(dev);
1845 
1846 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1847 					max_tx_rate);
1848 }
1849 
1850 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1851 {
1852 	struct qede_dev *edev = netdev_priv(dev);
1853 
1854 	if (!edev->ops)
1855 		return -EINVAL;
1856 
1857 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1858 }
1859 
1860 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1861 				  int link_state)
1862 {
1863 	struct qede_dev *edev = netdev_priv(dev);
1864 
1865 	if (!edev->ops)
1866 		return -EINVAL;
1867 
1868 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1869 }
1870 #endif
1871 
1872 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1873 {
1874 	struct qed_update_vport_params params;
1875 	int rc;
1876 
1877 	/* Proceed only if action actually needs to be performed */
1878 	if (edev->accept_any_vlan == action)
1879 		return;
1880 
1881 	memset(&params, 0, sizeof(params));
1882 
1883 	params.vport_id = 0;
1884 	params.accept_any_vlan = action;
1885 	params.update_accept_any_vlan_flg = 1;
1886 
1887 	rc = edev->ops->vport_update(edev->cdev, &params);
1888 	if (rc) {
1889 		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1890 		       action ? "enable" : "disable");
1891 	} else {
1892 		DP_INFO(edev, "%s accept-any-vlan\n",
1893 			action ? "enabled" : "disabled");
1894 		edev->accept_any_vlan = action;
1895 	}
1896 }
1897 
1898 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1899 {
1900 	struct qede_dev *edev = netdev_priv(dev);
1901 	struct qede_vlan *vlan, *tmp;
1902 	int rc;
1903 
1904 	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1905 
1906 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1907 	if (!vlan) {
1908 		DP_INFO(edev, "Failed to allocate struct for vlan\n");
1909 		return -ENOMEM;
1910 	}
1911 	INIT_LIST_HEAD(&vlan->list);
1912 	vlan->vid = vid;
1913 	vlan->configured = false;
1914 
1915 	/* Verify vlan isn't already configured */
1916 	list_for_each_entry(tmp, &edev->vlan_list, list) {
1917 		if (tmp->vid == vlan->vid) {
1918 			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1919 				   "vlan already configured\n");
1920 			kfree(vlan);
1921 			return -EEXIST;
1922 		}
1923 	}
1924 
1925 	/* If interface is down, cache this VLAN ID and return */
1926 	if (edev->state != QEDE_STATE_OPEN) {
1927 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1928 			   "Interface is down, VLAN %d will be configured when interface is up\n",
1929 			   vid);
1930 		if (vid != 0)
1931 			edev->non_configured_vlans++;
1932 		list_add(&vlan->list, &edev->vlan_list);
1933 
1934 		return 0;
1935 	}
1936 
1937 	/* Check for the filter limit.
1938 	 * Note - vlan0 has a reserved filter and can be added without
1939 	 * worrying about quota
1940 	 */
1941 	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1942 	    (vlan->vid == 0)) {
1943 		rc = qede_set_ucast_rx_vlan(edev,
1944 					    QED_FILTER_XCAST_TYPE_ADD,
1945 					    vlan->vid);
1946 		if (rc) {
1947 			DP_ERR(edev, "Failed to configure VLAN %d\n",
1948 			       vlan->vid);
1949 			kfree(vlan);
1950 			return -EINVAL;
1951 		}
1952 		vlan->configured = true;
1953 
1954 		/* vlan0 filter isn't consuming out of our quota */
1955 		if (vlan->vid != 0)
1956 			edev->configured_vlans++;
1957 	} else {
1958 		/* Out of quota; Activate accept-any-VLAN mode */
1959 		if (!edev->non_configured_vlans)
1960 			qede_config_accept_any_vlan(edev, true);
1961 
1962 		edev->non_configured_vlans++;
1963 	}
1964 
1965 	list_add(&vlan->list, &edev->vlan_list);
1966 
1967 	return 0;
1968 }
1969 
1970 static void qede_del_vlan_from_list(struct qede_dev *edev,
1971 				    struct qede_vlan *vlan)
1972 {
1973 	/* vlan0 filter isn't consuming out of our quota */
1974 	if (vlan->vid != 0) {
1975 		if (vlan->configured)
1976 			edev->configured_vlans--;
1977 		else
1978 			edev->non_configured_vlans--;
1979 	}
1980 
1981 	list_del(&vlan->list);
1982 	kfree(vlan);
1983 }
1984 
1985 static int qede_configure_vlan_filters(struct qede_dev *edev)
1986 {
1987 	int rc = 0, real_rc = 0, accept_any_vlan = 0;
1988 	struct qed_dev_eth_info *dev_info;
1989 	struct qede_vlan *vlan = NULL;
1990 
1991 	if (list_empty(&edev->vlan_list))
1992 		return 0;
1993 
1994 	dev_info = &edev->dev_info;
1995 
1996 	/* Configure non-configured vlans */
1997 	list_for_each_entry(vlan, &edev->vlan_list, list) {
1998 		if (vlan->configured)
1999 			continue;
2000 
2001 		/* We have used all our credits, now enable accept_any_vlan */
2002 		if ((vlan->vid != 0) &&
2003 		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
2004 			accept_any_vlan = 1;
2005 			continue;
2006 		}
2007 
2008 		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2009 
2010 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2011 					    vlan->vid);
2012 		if (rc) {
2013 			DP_ERR(edev, "Failed to configure VLAN %u\n",
2014 			       vlan->vid);
2015 			real_rc = rc;
2016 			continue;
2017 		}
2018 
2019 		vlan->configured = true;
2020 		/* vlan0 filter doesn't consume our VLAN filter's quota */
2021 		if (vlan->vid != 0) {
2022 			edev->non_configured_vlans--;
2023 			edev->configured_vlans++;
2024 		}
2025 	}
2026 
2027 	/* enable accept_any_vlan mode if we have more VLANs than credits,
2028 	 * or remove accept_any_vlan mode if we've actually removed
2029 	 * a non-configured vlan, and all remaining vlans are truly configured.
2030 	 */
2031 
2032 	if (accept_any_vlan)
2033 		qede_config_accept_any_vlan(edev, true);
2034 	else if (!edev->non_configured_vlans)
2035 		qede_config_accept_any_vlan(edev, false);
2036 
2037 	return real_rc;
2038 }
2039 
2040 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2041 {
2042 	struct qede_dev *edev = netdev_priv(dev);
2043 	struct qede_vlan *vlan = NULL;
2044 	int rc;
2045 
2046 	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2047 
2048 	/* Find whether entry exists */
2049 	list_for_each_entry(vlan, &edev->vlan_list, list)
2050 		if (vlan->vid == vid)
2051 			break;
2052 
2053 	if (!vlan || (vlan->vid != vid)) {
2054 		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2055 			   "Vlan isn't configured\n");
2056 		return 0;
2057 	}
2058 
2059 	if (edev->state != QEDE_STATE_OPEN) {
2060 		/* As interface is already down, we don't have a VPORT
2061 		 * instance to remove vlan filter. So just update vlan list
2062 		 */
2063 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2064 			   "Interface is down, removing VLAN from list only\n");
2065 		qede_del_vlan_from_list(edev, vlan);
2066 		return 0;
2067 	}
2068 
2069 	/* Remove vlan */
2070 	if (vlan->configured) {
2071 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2072 					    vid);
2073 		if (rc) {
2074 			DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2075 			return -EINVAL;
2076 		}
2077 	}
2078 
2079 	qede_del_vlan_from_list(edev, vlan);
2080 
2081 	/* We have removed a VLAN - try to see if we can
2082 	 * configure non-configured VLAN from the list.
2083 	 */
2084 	rc = qede_configure_vlan_filters(edev);
2085 
2086 	return rc;
2087 }
2088 
2089 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2090 {
2091 	struct qede_vlan *vlan = NULL;
2092 
2093 	if (list_empty(&edev->vlan_list))
2094 		return;
2095 
2096 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2097 		if (!vlan->configured)
2098 			continue;
2099 
2100 		vlan->configured = false;
2101 
2102 		/* vlan0 filter isn't consuming out of our quota */
2103 		if (vlan->vid != 0) {
2104 			edev->non_configured_vlans++;
2105 			edev->configured_vlans--;
2106 		}
2107 
2108 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2109 			   "marked vlan %d as non-configured\n",
2110 			   vlan->vid);
2111 	}
2112 
2113 	edev->accept_any_vlan = false;
2114 }
2115 
2116 int qede_set_features(struct net_device *dev, netdev_features_t features)
2117 {
2118 	struct qede_dev *edev = netdev_priv(dev);
2119 	netdev_features_t changes = features ^ dev->features;
2120 	bool need_reload = false;
2121 
2122 	/* No action needed if hardware GRO is disabled during driver load */
2123 	if (changes & NETIF_F_GRO) {
2124 		if (dev->features & NETIF_F_GRO)
2125 			need_reload = !edev->gro_disable;
2126 		else
2127 			need_reload = edev->gro_disable;
2128 	}
2129 
2130 	if (need_reload && netif_running(edev->ndev)) {
2131 		dev->features = features;
2132 		qede_reload(edev, NULL, NULL);
2133 		return 1;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static void qede_udp_tunnel_add(struct net_device *dev,
2140 				struct udp_tunnel_info *ti)
2141 {
2142 	struct qede_dev *edev = netdev_priv(dev);
2143 	u16 t_port = ntohs(ti->port);
2144 
2145 	switch (ti->type) {
2146 	case UDP_TUNNEL_TYPE_VXLAN:
2147 		if (edev->vxlan_dst_port)
2148 			return;
2149 
2150 		edev->vxlan_dst_port = t_port;
2151 
2152 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d",
2153 			   t_port);
2154 
2155 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2156 		break;
2157 	case UDP_TUNNEL_TYPE_GENEVE:
2158 		if (edev->geneve_dst_port)
2159 			return;
2160 
2161 		edev->geneve_dst_port = t_port;
2162 
2163 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d",
2164 			   t_port);
2165 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2166 		break;
2167 	default:
2168 		return;
2169 	}
2170 
2171 	schedule_delayed_work(&edev->sp_task, 0);
2172 }
2173 
2174 static void qede_udp_tunnel_del(struct net_device *dev,
2175 				struct udp_tunnel_info *ti)
2176 {
2177 	struct qede_dev *edev = netdev_priv(dev);
2178 	u16 t_port = ntohs(ti->port);
2179 
2180 	switch (ti->type) {
2181 	case UDP_TUNNEL_TYPE_VXLAN:
2182 		if (t_port != edev->vxlan_dst_port)
2183 			return;
2184 
2185 		edev->vxlan_dst_port = 0;
2186 
2187 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d",
2188 			   t_port);
2189 
2190 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2191 		break;
2192 	case UDP_TUNNEL_TYPE_GENEVE:
2193 		if (t_port != edev->geneve_dst_port)
2194 			return;
2195 
2196 		edev->geneve_dst_port = 0;
2197 
2198 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d",
2199 			   t_port);
2200 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2201 		break;
2202 	default:
2203 		return;
2204 	}
2205 
2206 	schedule_delayed_work(&edev->sp_task, 0);
2207 }
2208 
2209 static const struct net_device_ops qede_netdev_ops = {
2210 	.ndo_open = qede_open,
2211 	.ndo_stop = qede_close,
2212 	.ndo_start_xmit = qede_start_xmit,
2213 	.ndo_set_rx_mode = qede_set_rx_mode,
2214 	.ndo_set_mac_address = qede_set_mac_addr,
2215 	.ndo_validate_addr = eth_validate_addr,
2216 	.ndo_change_mtu = qede_change_mtu,
2217 #ifdef CONFIG_QED_SRIOV
2218 	.ndo_set_vf_mac = qede_set_vf_mac,
2219 	.ndo_set_vf_vlan = qede_set_vf_vlan,
2220 #endif
2221 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2222 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2223 	.ndo_set_features = qede_set_features,
2224 	.ndo_get_stats64 = qede_get_stats64,
2225 #ifdef CONFIG_QED_SRIOV
2226 	.ndo_set_vf_link_state = qede_set_vf_link_state,
2227 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2228 	.ndo_get_vf_config = qede_get_vf_config,
2229 	.ndo_set_vf_rate = qede_set_vf_rate,
2230 #endif
2231 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
2232 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
2233 };
2234 
2235 /* -------------------------------------------------------------------------
2236  * START OF PROBE / REMOVE
2237  * -------------------------------------------------------------------------
2238  */
2239 
2240 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2241 					    struct pci_dev *pdev,
2242 					    struct qed_dev_eth_info *info,
2243 					    u32 dp_module,
2244 					    u8 dp_level)
2245 {
2246 	struct net_device *ndev;
2247 	struct qede_dev *edev;
2248 
2249 	ndev = alloc_etherdev_mqs(sizeof(*edev),
2250 				  info->num_queues,
2251 				  info->num_queues);
2252 	if (!ndev) {
2253 		pr_err("etherdev allocation failed\n");
2254 		return NULL;
2255 	}
2256 
2257 	edev = netdev_priv(ndev);
2258 	edev->ndev = ndev;
2259 	edev->cdev = cdev;
2260 	edev->pdev = pdev;
2261 	edev->dp_module = dp_module;
2262 	edev->dp_level = dp_level;
2263 	edev->ops = qed_ops;
2264 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2265 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2266 
2267 	SET_NETDEV_DEV(ndev, &pdev->dev);
2268 
2269 	memset(&edev->stats, 0, sizeof(edev->stats));
2270 	memcpy(&edev->dev_info, info, sizeof(*info));
2271 
2272 	edev->num_tc = edev->dev_info.num_tc;
2273 
2274 	INIT_LIST_HEAD(&edev->vlan_list);
2275 
2276 	return edev;
2277 }
2278 
2279 static void qede_init_ndev(struct qede_dev *edev)
2280 {
2281 	struct net_device *ndev = edev->ndev;
2282 	struct pci_dev *pdev = edev->pdev;
2283 	u32 hw_features;
2284 
2285 	pci_set_drvdata(pdev, ndev);
2286 
2287 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
2288 	ndev->base_addr = ndev->mem_start;
2289 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
2290 	ndev->irq = edev->dev_info.common.pci_irq;
2291 
2292 	ndev->watchdog_timeo = TX_TIMEOUT;
2293 
2294 	ndev->netdev_ops = &qede_netdev_ops;
2295 
2296 	qede_set_ethtool_ops(ndev);
2297 
2298 	/* user-changeble features */
2299 	hw_features = NETIF_F_GRO | NETIF_F_SG |
2300 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2301 		      NETIF_F_TSO | NETIF_F_TSO6;
2302 
2303 	/* Encap features*/
2304 	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2305 		       NETIF_F_TSO_ECN;
2306 	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2307 				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2308 				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2309 				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2310 
2311 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2312 			      NETIF_F_HIGHDMA;
2313 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2314 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2315 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2316 
2317 	ndev->hw_features = hw_features;
2318 
2319 	/* Set network device HW mac */
2320 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2321 }
2322 
2323 /* This function converts from 32b param to two params of level and module
2324  * Input 32b decoding:
2325  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2326  * 'happy' flow, e.g. memory allocation failed.
2327  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2328  * and provide important parameters.
2329  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2330  * module. VERBOSE prints are for tracking the specific flow in low level.
2331  *
2332  * Notice that the level should be that of the lowest required logs.
2333  */
2334 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2335 {
2336 	*p_dp_level = QED_LEVEL_NOTICE;
2337 	*p_dp_module = 0;
2338 
2339 	if (debug & QED_LOG_VERBOSE_MASK) {
2340 		*p_dp_level = QED_LEVEL_VERBOSE;
2341 		*p_dp_module = (debug & 0x3FFFFFFF);
2342 	} else if (debug & QED_LOG_INFO_MASK) {
2343 		*p_dp_level = QED_LEVEL_INFO;
2344 	} else if (debug & QED_LOG_NOTICE_MASK) {
2345 		*p_dp_level = QED_LEVEL_NOTICE;
2346 	}
2347 }
2348 
2349 static void qede_free_fp_array(struct qede_dev *edev)
2350 {
2351 	if (edev->fp_array) {
2352 		struct qede_fastpath *fp;
2353 		int i;
2354 
2355 		for_each_rss(i) {
2356 			fp = &edev->fp_array[i];
2357 
2358 			kfree(fp->sb_info);
2359 			kfree(fp->rxq);
2360 			kfree(fp->txqs);
2361 		}
2362 		kfree(edev->fp_array);
2363 	}
2364 	edev->num_rss = 0;
2365 }
2366 
2367 static int qede_alloc_fp_array(struct qede_dev *edev)
2368 {
2369 	struct qede_fastpath *fp;
2370 	int i;
2371 
2372 	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2373 				 sizeof(*edev->fp_array), GFP_KERNEL);
2374 	if (!edev->fp_array) {
2375 		DP_NOTICE(edev, "fp array allocation failed\n");
2376 		goto err;
2377 	}
2378 
2379 	for_each_rss(i) {
2380 		fp = &edev->fp_array[i];
2381 
2382 		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2383 		if (!fp->sb_info) {
2384 			DP_NOTICE(edev, "sb info struct allocation failed\n");
2385 			goto err;
2386 		}
2387 
2388 		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2389 		if (!fp->rxq) {
2390 			DP_NOTICE(edev, "RXQ struct allocation failed\n");
2391 			goto err;
2392 		}
2393 
2394 		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2395 		if (!fp->txqs) {
2396 			DP_NOTICE(edev, "TXQ array allocation failed\n");
2397 			goto err;
2398 		}
2399 	}
2400 
2401 	return 0;
2402 err:
2403 	qede_free_fp_array(edev);
2404 	return -ENOMEM;
2405 }
2406 
2407 static void qede_sp_task(struct work_struct *work)
2408 {
2409 	struct qede_dev *edev = container_of(work, struct qede_dev,
2410 					     sp_task.work);
2411 	struct qed_dev *cdev = edev->cdev;
2412 
2413 	mutex_lock(&edev->qede_lock);
2414 
2415 	if (edev->state == QEDE_STATE_OPEN) {
2416 		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2417 			qede_config_rx_mode(edev->ndev);
2418 	}
2419 
2420 	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2421 		struct qed_tunn_params tunn_params;
2422 
2423 		memset(&tunn_params, 0, sizeof(tunn_params));
2424 		tunn_params.update_vxlan_port = 1;
2425 		tunn_params.vxlan_port = edev->vxlan_dst_port;
2426 		qed_ops->tunn_config(cdev, &tunn_params);
2427 	}
2428 
2429 	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2430 		struct qed_tunn_params tunn_params;
2431 
2432 		memset(&tunn_params, 0, sizeof(tunn_params));
2433 		tunn_params.update_geneve_port = 1;
2434 		tunn_params.geneve_port = edev->geneve_dst_port;
2435 		qed_ops->tunn_config(cdev, &tunn_params);
2436 	}
2437 
2438 	mutex_unlock(&edev->qede_lock);
2439 }
2440 
2441 static void qede_update_pf_params(struct qed_dev *cdev)
2442 {
2443 	struct qed_pf_params pf_params;
2444 
2445 	/* 64 rx + 64 tx */
2446 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2447 	pf_params.eth_pf_params.num_cons = 128;
2448 	qed_ops->common->update_pf_params(cdev, &pf_params);
2449 }
2450 
2451 enum qede_probe_mode {
2452 	QEDE_PROBE_NORMAL,
2453 };
2454 
2455 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2456 			bool is_vf, enum qede_probe_mode mode)
2457 {
2458 	struct qed_probe_params probe_params;
2459 	struct qed_slowpath_params params;
2460 	struct qed_dev_eth_info dev_info;
2461 	struct qede_dev *edev;
2462 	struct qed_dev *cdev;
2463 	int rc;
2464 
2465 	if (unlikely(dp_level & QED_LEVEL_INFO))
2466 		pr_notice("Starting qede probe\n");
2467 
2468 	memset(&probe_params, 0, sizeof(probe_params));
2469 	probe_params.protocol = QED_PROTOCOL_ETH;
2470 	probe_params.dp_module = dp_module;
2471 	probe_params.dp_level = dp_level;
2472 	probe_params.is_vf = is_vf;
2473 	cdev = qed_ops->common->probe(pdev, &probe_params);
2474 	if (!cdev) {
2475 		rc = -ENODEV;
2476 		goto err0;
2477 	}
2478 
2479 	qede_update_pf_params(cdev);
2480 
2481 	/* Start the Slowpath-process */
2482 	memset(&params, 0, sizeof(struct qed_slowpath_params));
2483 	params.int_mode = QED_INT_MODE_MSIX;
2484 	params.drv_major = QEDE_MAJOR_VERSION;
2485 	params.drv_minor = QEDE_MINOR_VERSION;
2486 	params.drv_rev = QEDE_REVISION_VERSION;
2487 	params.drv_eng = QEDE_ENGINEERING_VERSION;
2488 	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2489 	rc = qed_ops->common->slowpath_start(cdev, &params);
2490 	if (rc) {
2491 		pr_notice("Cannot start slowpath\n");
2492 		goto err1;
2493 	}
2494 
2495 	/* Learn information crucial for qede to progress */
2496 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2497 	if (rc)
2498 		goto err2;
2499 
2500 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2501 				   dp_level);
2502 	if (!edev) {
2503 		rc = -ENOMEM;
2504 		goto err2;
2505 	}
2506 
2507 	if (is_vf)
2508 		edev->flags |= QEDE_FLAG_IS_VF;
2509 
2510 	qede_init_ndev(edev);
2511 
2512 	rc = register_netdev(edev->ndev);
2513 	if (rc) {
2514 		DP_NOTICE(edev, "Cannot register net-device\n");
2515 		goto err3;
2516 	}
2517 
2518 	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2519 
2520 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2521 
2522 #ifdef CONFIG_DCB
2523 	qede_set_dcbnl_ops(edev->ndev);
2524 #endif
2525 
2526 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2527 	mutex_init(&edev->qede_lock);
2528 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2529 
2530 	DP_INFO(edev, "Ending successfully qede probe\n");
2531 
2532 	return 0;
2533 
2534 err3:
2535 	free_netdev(edev->ndev);
2536 err2:
2537 	qed_ops->common->slowpath_stop(cdev);
2538 err1:
2539 	qed_ops->common->remove(cdev);
2540 err0:
2541 	return rc;
2542 }
2543 
2544 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2545 {
2546 	bool is_vf = false;
2547 	u32 dp_module = 0;
2548 	u8 dp_level = 0;
2549 
2550 	switch ((enum qede_pci_private)id->driver_data) {
2551 	case QEDE_PRIVATE_VF:
2552 		if (debug & QED_LOG_VERBOSE_MASK)
2553 			dev_err(&pdev->dev, "Probing a VF\n");
2554 		is_vf = true;
2555 		break;
2556 	default:
2557 		if (debug & QED_LOG_VERBOSE_MASK)
2558 			dev_err(&pdev->dev, "Probing a PF\n");
2559 	}
2560 
2561 	qede_config_debug(debug, &dp_module, &dp_level);
2562 
2563 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
2564 			    QEDE_PROBE_NORMAL);
2565 }
2566 
2567 enum qede_remove_mode {
2568 	QEDE_REMOVE_NORMAL,
2569 };
2570 
2571 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2572 {
2573 	struct net_device *ndev = pci_get_drvdata(pdev);
2574 	struct qede_dev *edev = netdev_priv(ndev);
2575 	struct qed_dev *cdev = edev->cdev;
2576 
2577 	DP_INFO(edev, "Starting qede_remove\n");
2578 
2579 	cancel_delayed_work_sync(&edev->sp_task);
2580 	unregister_netdev(ndev);
2581 
2582 	edev->ops->common->set_power_state(cdev, PCI_D0);
2583 
2584 	pci_set_drvdata(pdev, NULL);
2585 
2586 	free_netdev(ndev);
2587 
2588 	/* Use global ops since we've freed edev */
2589 	qed_ops->common->slowpath_stop(cdev);
2590 	qed_ops->common->remove(cdev);
2591 
2592 	pr_notice("Ending successfully qede_remove\n");
2593 }
2594 
2595 static void qede_remove(struct pci_dev *pdev)
2596 {
2597 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2598 }
2599 
2600 /* -------------------------------------------------------------------------
2601  * START OF LOAD / UNLOAD
2602  * -------------------------------------------------------------------------
2603  */
2604 
2605 static int qede_set_num_queues(struct qede_dev *edev)
2606 {
2607 	int rc;
2608 	u16 rss_num;
2609 
2610 	/* Setup queues according to possible resources*/
2611 	if (edev->req_rss)
2612 		rss_num = edev->req_rss;
2613 	else
2614 		rss_num = netif_get_num_default_rss_queues() *
2615 			  edev->dev_info.common.num_hwfns;
2616 
2617 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2618 
2619 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2620 	if (rc > 0) {
2621 		/* Managed to request interrupts for our queues */
2622 		edev->num_rss = rc;
2623 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2624 			QEDE_RSS_CNT(edev), rss_num);
2625 		rc = 0;
2626 	}
2627 	return rc;
2628 }
2629 
2630 static void qede_free_mem_sb(struct qede_dev *edev,
2631 			     struct qed_sb_info *sb_info)
2632 {
2633 	if (sb_info->sb_virt)
2634 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2635 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
2636 }
2637 
2638 /* This function allocates fast-path status block memory */
2639 static int qede_alloc_mem_sb(struct qede_dev *edev,
2640 			     struct qed_sb_info *sb_info,
2641 			     u16 sb_id)
2642 {
2643 	struct status_block *sb_virt;
2644 	dma_addr_t sb_phys;
2645 	int rc;
2646 
2647 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2648 				     sizeof(*sb_virt),
2649 				     &sb_phys, GFP_KERNEL);
2650 	if (!sb_virt) {
2651 		DP_ERR(edev, "Status block allocation failed\n");
2652 		return -ENOMEM;
2653 	}
2654 
2655 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2656 					sb_virt, sb_phys, sb_id,
2657 					QED_SB_TYPE_L2_QUEUE);
2658 	if (rc) {
2659 		DP_ERR(edev, "Status block initialization failed\n");
2660 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2661 				  sb_virt, sb_phys);
2662 		return rc;
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 static void qede_free_rx_buffers(struct qede_dev *edev,
2669 				 struct qede_rx_queue *rxq)
2670 {
2671 	u16 i;
2672 
2673 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2674 		struct sw_rx_data *rx_buf;
2675 		struct page *data;
2676 
2677 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2678 		data = rx_buf->data;
2679 
2680 		dma_unmap_page(&edev->pdev->dev,
2681 			       rx_buf->mapping,
2682 			       PAGE_SIZE, DMA_FROM_DEVICE);
2683 
2684 		rx_buf->data = NULL;
2685 		__free_page(data);
2686 	}
2687 }
2688 
2689 static void qede_free_sge_mem(struct qede_dev *edev,
2690 			      struct qede_rx_queue *rxq) {
2691 	int i;
2692 
2693 	if (edev->gro_disable)
2694 		return;
2695 
2696 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2697 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2698 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2699 
2700 		if (replace_buf->data) {
2701 			dma_unmap_page(&edev->pdev->dev,
2702 				       replace_buf->mapping,
2703 				       PAGE_SIZE, DMA_FROM_DEVICE);
2704 			__free_page(replace_buf->data);
2705 		}
2706 	}
2707 }
2708 
2709 static void qede_free_mem_rxq(struct qede_dev *edev,
2710 			      struct qede_rx_queue *rxq)
2711 {
2712 	qede_free_sge_mem(edev, rxq);
2713 
2714 	/* Free rx buffers */
2715 	qede_free_rx_buffers(edev, rxq);
2716 
2717 	/* Free the parallel SW ring */
2718 	kfree(rxq->sw_rx_ring);
2719 
2720 	/* Free the real RQ ring used by FW */
2721 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2722 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2723 }
2724 
2725 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2726 				struct qede_rx_queue *rxq)
2727 {
2728 	struct sw_rx_data *sw_rx_data;
2729 	struct eth_rx_bd *rx_bd;
2730 	dma_addr_t mapping;
2731 	struct page *data;
2732 	u16 rx_buf_size;
2733 
2734 	rx_buf_size = rxq->rx_buf_size;
2735 
2736 	data = alloc_pages(GFP_ATOMIC, 0);
2737 	if (unlikely(!data)) {
2738 		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2739 		return -ENOMEM;
2740 	}
2741 
2742 	/* Map the entire page as it would be used
2743 	 * for multiple RX buffer segment size mapping.
2744 	 */
2745 	mapping = dma_map_page(&edev->pdev->dev, data, 0,
2746 			       PAGE_SIZE, DMA_FROM_DEVICE);
2747 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2748 		__free_page(data);
2749 		DP_NOTICE(edev, "Failed to map Rx buffer\n");
2750 		return -ENOMEM;
2751 	}
2752 
2753 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2754 	sw_rx_data->page_offset = 0;
2755 	sw_rx_data->data = data;
2756 	sw_rx_data->mapping = mapping;
2757 
2758 	/* Advance PROD and get BD pointer */
2759 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2760 	WARN_ON(!rx_bd);
2761 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2762 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2763 
2764 	rxq->sw_rx_prod++;
2765 
2766 	return 0;
2767 }
2768 
2769 static int qede_alloc_sge_mem(struct qede_dev *edev,
2770 			      struct qede_rx_queue *rxq)
2771 {
2772 	dma_addr_t mapping;
2773 	int i;
2774 
2775 	if (edev->gro_disable)
2776 		return 0;
2777 
2778 	if (edev->ndev->mtu > PAGE_SIZE) {
2779 		edev->gro_disable = 1;
2780 		return 0;
2781 	}
2782 
2783 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2784 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2785 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2786 
2787 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2788 		if (unlikely(!replace_buf->data)) {
2789 			DP_NOTICE(edev,
2790 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
2791 			goto err;
2792 		}
2793 
2794 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2795 				       rxq->rx_buf_size, DMA_FROM_DEVICE);
2796 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2797 			DP_NOTICE(edev,
2798 				  "Failed to map TPA replacement buffer\n");
2799 			goto err;
2800 		}
2801 
2802 		replace_buf->mapping = mapping;
2803 		tpa_info->replace_buf.page_offset = 0;
2804 
2805 		tpa_info->replace_buf_mapping = mapping;
2806 		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2807 	}
2808 
2809 	return 0;
2810 err:
2811 	qede_free_sge_mem(edev, rxq);
2812 	edev->gro_disable = 1;
2813 	return -ENOMEM;
2814 }
2815 
2816 /* This function allocates all memory needed per Rx queue */
2817 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2818 			      struct qede_rx_queue *rxq)
2819 {
2820 	int i, rc, size;
2821 
2822 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
2823 
2824 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2825 			   edev->ndev->mtu;
2826 	if (rxq->rx_buf_size > PAGE_SIZE)
2827 		rxq->rx_buf_size = PAGE_SIZE;
2828 
2829 	/* Segment size to spilt a page in multiple equal parts */
2830 	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2831 
2832 	/* Allocate the parallel driver ring for Rx buffers */
2833 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2834 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2835 	if (!rxq->sw_rx_ring) {
2836 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
2837 		rc = -ENOMEM;
2838 		goto err;
2839 	}
2840 
2841 	/* Allocate FW Rx ring  */
2842 	rc = edev->ops->common->chain_alloc(edev->cdev,
2843 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2844 					    QED_CHAIN_MODE_NEXT_PTR,
2845 					    QED_CHAIN_CNT_TYPE_U16,
2846 					    RX_RING_SIZE,
2847 					    sizeof(struct eth_rx_bd),
2848 					    &rxq->rx_bd_ring);
2849 
2850 	if (rc)
2851 		goto err;
2852 
2853 	/* Allocate FW completion ring */
2854 	rc = edev->ops->common->chain_alloc(edev->cdev,
2855 					    QED_CHAIN_USE_TO_CONSUME,
2856 					    QED_CHAIN_MODE_PBL,
2857 					    QED_CHAIN_CNT_TYPE_U16,
2858 					    RX_RING_SIZE,
2859 					    sizeof(union eth_rx_cqe),
2860 					    &rxq->rx_comp_ring);
2861 	if (rc)
2862 		goto err;
2863 
2864 	/* Allocate buffers for the Rx ring */
2865 	for (i = 0; i < rxq->num_rx_buffers; i++) {
2866 		rc = qede_alloc_rx_buffer(edev, rxq);
2867 		if (rc) {
2868 			DP_ERR(edev,
2869 			       "Rx buffers allocation failed at index %d\n", i);
2870 			goto err;
2871 		}
2872 	}
2873 
2874 	rc = qede_alloc_sge_mem(edev, rxq);
2875 err:
2876 	return rc;
2877 }
2878 
2879 static void qede_free_mem_txq(struct qede_dev *edev,
2880 			      struct qede_tx_queue *txq)
2881 {
2882 	/* Free the parallel SW ring */
2883 	kfree(txq->sw_tx_ring);
2884 
2885 	/* Free the real RQ ring used by FW */
2886 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2887 }
2888 
2889 /* This function allocates all memory needed per Tx queue */
2890 static int qede_alloc_mem_txq(struct qede_dev *edev,
2891 			      struct qede_tx_queue *txq)
2892 {
2893 	int size, rc;
2894 	union eth_tx_bd_types *p_virt;
2895 
2896 	txq->num_tx_buffers = edev->q_num_tx_buffers;
2897 
2898 	/* Allocate the parallel driver ring for Tx buffers */
2899 	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2900 	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2901 	if (!txq->sw_tx_ring) {
2902 		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2903 		goto err;
2904 	}
2905 
2906 	rc = edev->ops->common->chain_alloc(edev->cdev,
2907 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2908 					    QED_CHAIN_MODE_PBL,
2909 					    QED_CHAIN_CNT_TYPE_U16,
2910 					    NUM_TX_BDS_MAX,
2911 					    sizeof(*p_virt), &txq->tx_pbl);
2912 	if (rc)
2913 		goto err;
2914 
2915 	return 0;
2916 
2917 err:
2918 	qede_free_mem_txq(edev, txq);
2919 	return -ENOMEM;
2920 }
2921 
2922 /* This function frees all memory of a single fp */
2923 static void qede_free_mem_fp(struct qede_dev *edev,
2924 			     struct qede_fastpath *fp)
2925 {
2926 	int tc;
2927 
2928 	qede_free_mem_sb(edev, fp->sb_info);
2929 
2930 	qede_free_mem_rxq(edev, fp->rxq);
2931 
2932 	for (tc = 0; tc < edev->num_tc; tc++)
2933 		qede_free_mem_txq(edev, &fp->txqs[tc]);
2934 }
2935 
2936 /* This function allocates all memory needed for a single fp (i.e. an entity
2937  * which contains status block, one rx queue and multiple per-TC tx queues.
2938  */
2939 static int qede_alloc_mem_fp(struct qede_dev *edev,
2940 			     struct qede_fastpath *fp)
2941 {
2942 	int rc, tc;
2943 
2944 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2945 	if (rc)
2946 		goto err;
2947 
2948 	rc = qede_alloc_mem_rxq(edev, fp->rxq);
2949 	if (rc)
2950 		goto err;
2951 
2952 	for (tc = 0; tc < edev->num_tc; tc++) {
2953 		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2954 		if (rc)
2955 			goto err;
2956 	}
2957 
2958 	return 0;
2959 err:
2960 	return rc;
2961 }
2962 
2963 static void qede_free_mem_load(struct qede_dev *edev)
2964 {
2965 	int i;
2966 
2967 	for_each_rss(i) {
2968 		struct qede_fastpath *fp = &edev->fp_array[i];
2969 
2970 		qede_free_mem_fp(edev, fp);
2971 	}
2972 }
2973 
2974 /* This function allocates all qede memory at NIC load. */
2975 static int qede_alloc_mem_load(struct qede_dev *edev)
2976 {
2977 	int rc = 0, rss_id;
2978 
2979 	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2980 		struct qede_fastpath *fp = &edev->fp_array[rss_id];
2981 
2982 		rc = qede_alloc_mem_fp(edev, fp);
2983 		if (rc) {
2984 			DP_ERR(edev,
2985 			       "Failed to allocate memory for fastpath - rss id = %d\n",
2986 			       rss_id);
2987 			qede_free_mem_load(edev);
2988 			return rc;
2989 		}
2990 	}
2991 
2992 	return 0;
2993 }
2994 
2995 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2996 static void qede_init_fp(struct qede_dev *edev)
2997 {
2998 	int rss_id, txq_index, tc;
2999 	struct qede_fastpath *fp;
3000 
3001 	for_each_rss(rss_id) {
3002 		fp = &edev->fp_array[rss_id];
3003 
3004 		fp->edev = edev;
3005 		fp->rss_id = rss_id;
3006 
3007 		memset((void *)&fp->napi, 0, sizeof(fp->napi));
3008 
3009 		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3010 
3011 		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3012 		fp->rxq->rxq_id = rss_id;
3013 
3014 		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
3015 		for (tc = 0; tc < edev->num_tc; tc++) {
3016 			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
3017 			fp->txqs[tc].index = txq_index;
3018 		}
3019 
3020 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3021 			 edev->ndev->name, rss_id);
3022 	}
3023 
3024 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3025 }
3026 
3027 static int qede_set_real_num_queues(struct qede_dev *edev)
3028 {
3029 	int rc = 0;
3030 
3031 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3032 	if (rc) {
3033 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3034 		return rc;
3035 	}
3036 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3037 	if (rc) {
3038 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3039 		return rc;
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 static void qede_napi_disable_remove(struct qede_dev *edev)
3046 {
3047 	int i;
3048 
3049 	for_each_rss(i) {
3050 		napi_disable(&edev->fp_array[i].napi);
3051 
3052 		netif_napi_del(&edev->fp_array[i].napi);
3053 	}
3054 }
3055 
3056 static void qede_napi_add_enable(struct qede_dev *edev)
3057 {
3058 	int i;
3059 
3060 	/* Add NAPI objects */
3061 	for_each_rss(i) {
3062 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3063 			       qede_poll, NAPI_POLL_WEIGHT);
3064 		napi_enable(&edev->fp_array[i].napi);
3065 	}
3066 }
3067 
3068 static void qede_sync_free_irqs(struct qede_dev *edev)
3069 {
3070 	int i;
3071 
3072 	for (i = 0; i < edev->int_info.used_cnt; i++) {
3073 		if (edev->int_info.msix_cnt) {
3074 			synchronize_irq(edev->int_info.msix[i].vector);
3075 			free_irq(edev->int_info.msix[i].vector,
3076 				 &edev->fp_array[i]);
3077 		} else {
3078 			edev->ops->common->simd_handler_clean(edev->cdev, i);
3079 		}
3080 	}
3081 
3082 	edev->int_info.used_cnt = 0;
3083 }
3084 
3085 static int qede_req_msix_irqs(struct qede_dev *edev)
3086 {
3087 	int i, rc;
3088 
3089 	/* Sanitize number of interrupts == number of prepared RSS queues */
3090 	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3091 		DP_ERR(edev,
3092 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3093 		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3094 		return -EINVAL;
3095 	}
3096 
3097 	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3098 		rc = request_irq(edev->int_info.msix[i].vector,
3099 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
3100 				 &edev->fp_array[i]);
3101 		if (rc) {
3102 			DP_ERR(edev, "Request fp %d irq failed\n", i);
3103 			qede_sync_free_irqs(edev);
3104 			return rc;
3105 		}
3106 		DP_VERBOSE(edev, NETIF_MSG_INTR,
3107 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3108 			   edev->fp_array[i].name, i,
3109 			   &edev->fp_array[i]);
3110 		edev->int_info.used_cnt++;
3111 	}
3112 
3113 	return 0;
3114 }
3115 
3116 static void qede_simd_fp_handler(void *cookie)
3117 {
3118 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3119 
3120 	napi_schedule_irqoff(&fp->napi);
3121 }
3122 
3123 static int qede_setup_irqs(struct qede_dev *edev)
3124 {
3125 	int i, rc = 0;
3126 
3127 	/* Learn Interrupt configuration */
3128 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3129 	if (rc)
3130 		return rc;
3131 
3132 	if (edev->int_info.msix_cnt) {
3133 		rc = qede_req_msix_irqs(edev);
3134 		if (rc)
3135 			return rc;
3136 		edev->ndev->irq = edev->int_info.msix[0].vector;
3137 	} else {
3138 		const struct qed_common_ops *ops;
3139 
3140 		/* qed should learn receive the RSS ids and callbacks */
3141 		ops = edev->ops->common;
3142 		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3143 			ops->simd_handler_config(edev->cdev,
3144 						 &edev->fp_array[i], i,
3145 						 qede_simd_fp_handler);
3146 		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3147 	}
3148 	return 0;
3149 }
3150 
3151 static int qede_drain_txq(struct qede_dev *edev,
3152 			  struct qede_tx_queue *txq,
3153 			  bool allow_drain)
3154 {
3155 	int rc, cnt = 1000;
3156 
3157 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
3158 		if (!cnt) {
3159 			if (allow_drain) {
3160 				DP_NOTICE(edev,
3161 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
3162 					  txq->index);
3163 				rc = edev->ops->common->drain(edev->cdev);
3164 				if (rc)
3165 					return rc;
3166 				return qede_drain_txq(edev, txq, false);
3167 			}
3168 			DP_NOTICE(edev,
3169 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3170 				  txq->index, txq->sw_tx_prod,
3171 				  txq->sw_tx_cons);
3172 			return -ENODEV;
3173 		}
3174 		cnt--;
3175 		usleep_range(1000, 2000);
3176 		barrier();
3177 	}
3178 
3179 	/* FW finished processing, wait for HW to transmit all tx packets */
3180 	usleep_range(1000, 2000);
3181 
3182 	return 0;
3183 }
3184 
3185 static int qede_stop_queues(struct qede_dev *edev)
3186 {
3187 	struct qed_update_vport_params vport_update_params;
3188 	struct qed_dev *cdev = edev->cdev;
3189 	int rc, tc, i;
3190 
3191 	/* Disable the vport */
3192 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3193 	vport_update_params.vport_id = 0;
3194 	vport_update_params.update_vport_active_flg = 1;
3195 	vport_update_params.vport_active_flg = 0;
3196 	vport_update_params.update_rss_flg = 0;
3197 
3198 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3199 	if (rc) {
3200 		DP_ERR(edev, "Failed to update vport\n");
3201 		return rc;
3202 	}
3203 
3204 	/* Flush Tx queues. If needed, request drain from MCP */
3205 	for_each_rss(i) {
3206 		struct qede_fastpath *fp = &edev->fp_array[i];
3207 
3208 		for (tc = 0; tc < edev->num_tc; tc++) {
3209 			struct qede_tx_queue *txq = &fp->txqs[tc];
3210 
3211 			rc = qede_drain_txq(edev, txq, true);
3212 			if (rc)
3213 				return rc;
3214 		}
3215 	}
3216 
3217 	/* Stop all Queues in reverse order*/
3218 	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3219 		struct qed_stop_rxq_params rx_params;
3220 
3221 		/* Stop the Tx Queue(s)*/
3222 		for (tc = 0; tc < edev->num_tc; tc++) {
3223 			struct qed_stop_txq_params tx_params;
3224 
3225 			tx_params.rss_id = i;
3226 			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3227 			rc = edev->ops->q_tx_stop(cdev, &tx_params);
3228 			if (rc) {
3229 				DP_ERR(edev, "Failed to stop TXQ #%d\n",
3230 				       tx_params.tx_queue_id);
3231 				return rc;
3232 			}
3233 		}
3234 
3235 		/* Stop the Rx Queue*/
3236 		memset(&rx_params, 0, sizeof(rx_params));
3237 		rx_params.rss_id = i;
3238 		rx_params.rx_queue_id = i;
3239 
3240 		rc = edev->ops->q_rx_stop(cdev, &rx_params);
3241 		if (rc) {
3242 			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3243 			return rc;
3244 		}
3245 	}
3246 
3247 	/* Stop the vport */
3248 	rc = edev->ops->vport_stop(cdev, 0);
3249 	if (rc)
3250 		DP_ERR(edev, "Failed to stop VPORT\n");
3251 
3252 	return rc;
3253 }
3254 
3255 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3256 {
3257 	int rc, tc, i;
3258 	int vlan_removal_en = 1;
3259 	struct qed_dev *cdev = edev->cdev;
3260 	struct qed_update_vport_params vport_update_params;
3261 	struct qed_queue_start_common_params q_params;
3262 	struct qed_dev_info *qed_info = &edev->dev_info.common;
3263 	struct qed_start_vport_params start = {0};
3264 	bool reset_rss_indir = false;
3265 
3266 	if (!edev->num_rss) {
3267 		DP_ERR(edev,
3268 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
3269 		return -EINVAL;
3270 	}
3271 
3272 	start.gro_enable = !edev->gro_disable;
3273 	start.mtu = edev->ndev->mtu;
3274 	start.vport_id = 0;
3275 	start.drop_ttl0 = true;
3276 	start.remove_inner_vlan = vlan_removal_en;
3277 	start.clear_stats = clear_stats;
3278 
3279 	rc = edev->ops->vport_start(cdev, &start);
3280 
3281 	if (rc) {
3282 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3283 		return rc;
3284 	}
3285 
3286 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
3287 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3288 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3289 
3290 	for_each_rss(i) {
3291 		struct qede_fastpath *fp = &edev->fp_array[i];
3292 		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3293 
3294 		memset(&q_params, 0, sizeof(q_params));
3295 		q_params.rss_id = i;
3296 		q_params.queue_id = i;
3297 		q_params.vport_id = 0;
3298 		q_params.sb = fp->sb_info->igu_sb_id;
3299 		q_params.sb_idx = RX_PI;
3300 
3301 		rc = edev->ops->q_rx_start(cdev, &q_params,
3302 					   fp->rxq->rx_buf_size,
3303 					   fp->rxq->rx_bd_ring.p_phys_addr,
3304 					   phys_table,
3305 					   fp->rxq->rx_comp_ring.page_cnt,
3306 					   &fp->rxq->hw_rxq_prod_addr);
3307 		if (rc) {
3308 			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3309 			return rc;
3310 		}
3311 
3312 		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3313 
3314 		qede_update_rx_prod(edev, fp->rxq);
3315 
3316 		for (tc = 0; tc < edev->num_tc; tc++) {
3317 			struct qede_tx_queue *txq = &fp->txqs[tc];
3318 			int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3319 
3320 			memset(&q_params, 0, sizeof(q_params));
3321 			q_params.rss_id = i;
3322 			q_params.queue_id = txq_index;
3323 			q_params.vport_id = 0;
3324 			q_params.sb = fp->sb_info->igu_sb_id;
3325 			q_params.sb_idx = TX_PI(tc);
3326 
3327 			rc = edev->ops->q_tx_start(cdev, &q_params,
3328 						   txq->tx_pbl.pbl.p_phys_table,
3329 						   txq->tx_pbl.page_cnt,
3330 						   &txq->doorbell_addr);
3331 			if (rc) {
3332 				DP_ERR(edev, "Start TXQ #%d failed %d\n",
3333 				       txq_index, rc);
3334 				return rc;
3335 			}
3336 
3337 			txq->hw_cons_ptr =
3338 				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3339 			SET_FIELD(txq->tx_db.data.params,
3340 				  ETH_DB_DATA_DEST, DB_DEST_XCM);
3341 			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3342 				  DB_AGG_CMD_SET);
3343 			SET_FIELD(txq->tx_db.data.params,
3344 				  ETH_DB_DATA_AGG_VAL_SEL,
3345 				  DQ_XCM_ETH_TX_BD_PROD_CMD);
3346 
3347 			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3348 		}
3349 	}
3350 
3351 	/* Prepare and send the vport enable */
3352 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3353 	vport_update_params.vport_id = start.vport_id;
3354 	vport_update_params.update_vport_active_flg = 1;
3355 	vport_update_params.vport_active_flg = 1;
3356 
3357 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3358 	    qed_info->tx_switching) {
3359 		vport_update_params.update_tx_switching_flg = 1;
3360 		vport_update_params.tx_switching_flg = 1;
3361 	}
3362 
3363 	/* Fill struct with RSS params */
3364 	if (QEDE_RSS_CNT(edev) > 1) {
3365 		vport_update_params.update_rss_flg = 1;
3366 
3367 		/* Need to validate current RSS config uses valid entries */
3368 		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3369 			if (edev->rss_params.rss_ind_table[i] >=
3370 			    edev->num_rss) {
3371 				reset_rss_indir = true;
3372 				break;
3373 			}
3374 		}
3375 
3376 		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3377 		    reset_rss_indir) {
3378 			u16 val;
3379 
3380 			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3381 				u16 indir_val;
3382 
3383 				val = QEDE_RSS_CNT(edev);
3384 				indir_val = ethtool_rxfh_indir_default(i, val);
3385 				edev->rss_params.rss_ind_table[i] = indir_val;
3386 			}
3387 			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3388 		}
3389 
3390 		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3391 			netdev_rss_key_fill(edev->rss_params.rss_key,
3392 					    sizeof(edev->rss_params.rss_key));
3393 			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3394 		}
3395 
3396 		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3397 			edev->rss_params.rss_caps = QED_RSS_IPV4 |
3398 						    QED_RSS_IPV6 |
3399 						    QED_RSS_IPV4_TCP |
3400 						    QED_RSS_IPV6_TCP;
3401 			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3402 		}
3403 
3404 		memcpy(&vport_update_params.rss_params, &edev->rss_params,
3405 		       sizeof(vport_update_params.rss_params));
3406 	} else {
3407 		memset(&vport_update_params.rss_params, 0,
3408 		       sizeof(vport_update_params.rss_params));
3409 	}
3410 
3411 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3412 	if (rc) {
3413 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3414 		return rc;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3421 				 enum qed_filter_xcast_params_type opcode,
3422 				 unsigned char *mac, int num_macs)
3423 {
3424 	struct qed_filter_params filter_cmd;
3425 	int i;
3426 
3427 	memset(&filter_cmd, 0, sizeof(filter_cmd));
3428 	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3429 	filter_cmd.filter.mcast.type = opcode;
3430 	filter_cmd.filter.mcast.num = num_macs;
3431 
3432 	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3433 		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3434 
3435 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3436 }
3437 
3438 enum qede_unload_mode {
3439 	QEDE_UNLOAD_NORMAL,
3440 };
3441 
3442 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3443 {
3444 	struct qed_link_params link_params;
3445 	int rc;
3446 
3447 	DP_INFO(edev, "Starting qede unload\n");
3448 
3449 	mutex_lock(&edev->qede_lock);
3450 	edev->state = QEDE_STATE_CLOSED;
3451 
3452 	/* Close OS Tx */
3453 	netif_tx_disable(edev->ndev);
3454 	netif_carrier_off(edev->ndev);
3455 
3456 	/* Reset the link */
3457 	memset(&link_params, 0, sizeof(link_params));
3458 	link_params.link_up = false;
3459 	edev->ops->common->set_link(edev->cdev, &link_params);
3460 	rc = qede_stop_queues(edev);
3461 	if (rc) {
3462 		qede_sync_free_irqs(edev);
3463 		goto out;
3464 	}
3465 
3466 	DP_INFO(edev, "Stopped Queues\n");
3467 
3468 	qede_vlan_mark_nonconfigured(edev);
3469 	edev->ops->fastpath_stop(edev->cdev);
3470 
3471 	/* Release the interrupts */
3472 	qede_sync_free_irqs(edev);
3473 	edev->ops->common->set_fp_int(edev->cdev, 0);
3474 
3475 	qede_napi_disable_remove(edev);
3476 
3477 	qede_free_mem_load(edev);
3478 	qede_free_fp_array(edev);
3479 
3480 out:
3481 	mutex_unlock(&edev->qede_lock);
3482 	DP_INFO(edev, "Ending qede unload\n");
3483 }
3484 
3485 enum qede_load_mode {
3486 	QEDE_LOAD_NORMAL,
3487 	QEDE_LOAD_RELOAD,
3488 };
3489 
3490 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3491 {
3492 	struct qed_link_params link_params;
3493 	struct qed_link_output link_output;
3494 	int rc;
3495 
3496 	DP_INFO(edev, "Starting qede load\n");
3497 
3498 	rc = qede_set_num_queues(edev);
3499 	if (rc)
3500 		goto err0;
3501 
3502 	rc = qede_alloc_fp_array(edev);
3503 	if (rc)
3504 		goto err0;
3505 
3506 	qede_init_fp(edev);
3507 
3508 	rc = qede_alloc_mem_load(edev);
3509 	if (rc)
3510 		goto err1;
3511 	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3512 		QEDE_RSS_CNT(edev), edev->num_tc);
3513 
3514 	rc = qede_set_real_num_queues(edev);
3515 	if (rc)
3516 		goto err2;
3517 
3518 	qede_napi_add_enable(edev);
3519 	DP_INFO(edev, "Napi added and enabled\n");
3520 
3521 	rc = qede_setup_irqs(edev);
3522 	if (rc)
3523 		goto err3;
3524 	DP_INFO(edev, "Setup IRQs succeeded\n");
3525 
3526 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3527 	if (rc)
3528 		goto err4;
3529 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3530 
3531 	/* Add primary mac and set Rx filters */
3532 	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3533 
3534 	mutex_lock(&edev->qede_lock);
3535 	edev->state = QEDE_STATE_OPEN;
3536 	mutex_unlock(&edev->qede_lock);
3537 
3538 	/* Program un-configured VLANs */
3539 	qede_configure_vlan_filters(edev);
3540 
3541 	/* Ask for link-up using current configuration */
3542 	memset(&link_params, 0, sizeof(link_params));
3543 	link_params.link_up = true;
3544 	edev->ops->common->set_link(edev->cdev, &link_params);
3545 
3546 	/* Query whether link is already-up */
3547 	memset(&link_output, 0, sizeof(link_output));
3548 	edev->ops->common->get_link(edev->cdev, &link_output);
3549 	qede_link_update(edev, &link_output);
3550 
3551 	DP_INFO(edev, "Ending successfully qede load\n");
3552 
3553 	return 0;
3554 
3555 err4:
3556 	qede_sync_free_irqs(edev);
3557 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3558 err3:
3559 	qede_napi_disable_remove(edev);
3560 err2:
3561 	qede_free_mem_load(edev);
3562 err1:
3563 	edev->ops->common->set_fp_int(edev->cdev, 0);
3564 	qede_free_fp_array(edev);
3565 	edev->num_rss = 0;
3566 err0:
3567 	return rc;
3568 }
3569 
3570 void qede_reload(struct qede_dev *edev,
3571 		 void (*func)(struct qede_dev *, union qede_reload_args *),
3572 		 union qede_reload_args *args)
3573 {
3574 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3575 	/* Call function handler to update parameters
3576 	 * needed for function load.
3577 	 */
3578 	if (func)
3579 		func(edev, args);
3580 
3581 	qede_load(edev, QEDE_LOAD_RELOAD);
3582 
3583 	mutex_lock(&edev->qede_lock);
3584 	qede_config_rx_mode(edev->ndev);
3585 	mutex_unlock(&edev->qede_lock);
3586 }
3587 
3588 /* called with rtnl_lock */
3589 static int qede_open(struct net_device *ndev)
3590 {
3591 	struct qede_dev *edev = netdev_priv(ndev);
3592 	int rc;
3593 
3594 	netif_carrier_off(ndev);
3595 
3596 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3597 
3598 	rc = qede_load(edev, QEDE_LOAD_NORMAL);
3599 
3600 	if (rc)
3601 		return rc;
3602 
3603 	udp_tunnel_get_rx_info(ndev);
3604 
3605 	return 0;
3606 }
3607 
3608 static int qede_close(struct net_device *ndev)
3609 {
3610 	struct qede_dev *edev = netdev_priv(ndev);
3611 
3612 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3613 
3614 	return 0;
3615 }
3616 
3617 static void qede_link_update(void *dev, struct qed_link_output *link)
3618 {
3619 	struct qede_dev *edev = dev;
3620 
3621 	if (!netif_running(edev->ndev)) {
3622 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3623 		return;
3624 	}
3625 
3626 	if (link->link_up) {
3627 		if (!netif_carrier_ok(edev->ndev)) {
3628 			DP_NOTICE(edev, "Link is up\n");
3629 			netif_tx_start_all_queues(edev->ndev);
3630 			netif_carrier_on(edev->ndev);
3631 		}
3632 	} else {
3633 		if (netif_carrier_ok(edev->ndev)) {
3634 			DP_NOTICE(edev, "Link is down\n");
3635 			netif_tx_disable(edev->ndev);
3636 			netif_carrier_off(edev->ndev);
3637 		}
3638 	}
3639 }
3640 
3641 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3642 {
3643 	struct qede_dev *edev = netdev_priv(ndev);
3644 	struct sockaddr *addr = p;
3645 	int rc;
3646 
3647 	ASSERT_RTNL(); /* @@@TBD To be removed */
3648 
3649 	DP_INFO(edev, "Set_mac_addr called\n");
3650 
3651 	if (!is_valid_ether_addr(addr->sa_data)) {
3652 		DP_NOTICE(edev, "The MAC address is not valid\n");
3653 		return -EFAULT;
3654 	}
3655 
3656 	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3657 		DP_NOTICE(edev, "qed prevents setting MAC\n");
3658 		return -EINVAL;
3659 	}
3660 
3661 	ether_addr_copy(ndev->dev_addr, addr->sa_data);
3662 
3663 	if (!netif_running(ndev))  {
3664 		DP_NOTICE(edev, "The device is currently down\n");
3665 		return 0;
3666 	}
3667 
3668 	/* Remove the previous primary mac */
3669 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3670 				   edev->primary_mac);
3671 	if (rc)
3672 		return rc;
3673 
3674 	/* Add MAC filter according to the new unicast HW MAC address */
3675 	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3676 	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3677 				      edev->primary_mac);
3678 }
3679 
3680 static int
3681 qede_configure_mcast_filtering(struct net_device *ndev,
3682 			       enum qed_filter_rx_mode_type *accept_flags)
3683 {
3684 	struct qede_dev *edev = netdev_priv(ndev);
3685 	unsigned char *mc_macs, *temp;
3686 	struct netdev_hw_addr *ha;
3687 	int rc = 0, mc_count;
3688 	size_t size;
3689 
3690 	size = 64 * ETH_ALEN;
3691 
3692 	mc_macs = kzalloc(size, GFP_KERNEL);
3693 	if (!mc_macs) {
3694 		DP_NOTICE(edev,
3695 			  "Failed to allocate memory for multicast MACs\n");
3696 		rc = -ENOMEM;
3697 		goto exit;
3698 	}
3699 
3700 	temp = mc_macs;
3701 
3702 	/* Remove all previously configured MAC filters */
3703 	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3704 				   mc_macs, 1);
3705 	if (rc)
3706 		goto exit;
3707 
3708 	netif_addr_lock_bh(ndev);
3709 
3710 	mc_count = netdev_mc_count(ndev);
3711 	if (mc_count < 64) {
3712 		netdev_for_each_mc_addr(ha, ndev) {
3713 			ether_addr_copy(temp, ha->addr);
3714 			temp += ETH_ALEN;
3715 		}
3716 	}
3717 
3718 	netif_addr_unlock_bh(ndev);
3719 
3720 	/* Check for all multicast @@@TBD resource allocation */
3721 	if ((ndev->flags & IFF_ALLMULTI) ||
3722 	    (mc_count > 64)) {
3723 		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3724 			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3725 	} else {
3726 		/* Add all multicast MAC filters */
3727 		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3728 					   mc_macs, mc_count);
3729 	}
3730 
3731 exit:
3732 	kfree(mc_macs);
3733 	return rc;
3734 }
3735 
3736 static void qede_set_rx_mode(struct net_device *ndev)
3737 {
3738 	struct qede_dev *edev = netdev_priv(ndev);
3739 
3740 	DP_INFO(edev, "qede_set_rx_mode called\n");
3741 
3742 	if (edev->state != QEDE_STATE_OPEN) {
3743 		DP_INFO(edev,
3744 			"qede_set_rx_mode called while interface is down\n");
3745 	} else {
3746 		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3747 		schedule_delayed_work(&edev->sp_task, 0);
3748 	}
3749 }
3750 
3751 /* Must be called with qede_lock held */
3752 static void qede_config_rx_mode(struct net_device *ndev)
3753 {
3754 	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3755 	struct qede_dev *edev = netdev_priv(ndev);
3756 	struct qed_filter_params rx_mode;
3757 	unsigned char *uc_macs, *temp;
3758 	struct netdev_hw_addr *ha;
3759 	int rc, uc_count;
3760 	size_t size;
3761 
3762 	netif_addr_lock_bh(ndev);
3763 
3764 	uc_count = netdev_uc_count(ndev);
3765 	size = uc_count * ETH_ALEN;
3766 
3767 	uc_macs = kzalloc(size, GFP_ATOMIC);
3768 	if (!uc_macs) {
3769 		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3770 		netif_addr_unlock_bh(ndev);
3771 		return;
3772 	}
3773 
3774 	temp = uc_macs;
3775 	netdev_for_each_uc_addr(ha, ndev) {
3776 		ether_addr_copy(temp, ha->addr);
3777 		temp += ETH_ALEN;
3778 	}
3779 
3780 	netif_addr_unlock_bh(ndev);
3781 
3782 	/* Configure the struct for the Rx mode */
3783 	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3784 	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3785 
3786 	/* Remove all previous unicast secondary macs and multicast macs
3787 	 * (configrue / leave the primary mac)
3788 	 */
3789 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3790 				   edev->primary_mac);
3791 	if (rc)
3792 		goto out;
3793 
3794 	/* Check for promiscuous */
3795 	if ((ndev->flags & IFF_PROMISC) ||
3796 	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3797 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3798 	} else {
3799 		/* Add MAC filters according to the unicast secondary macs */
3800 		int i;
3801 
3802 		temp = uc_macs;
3803 		for (i = 0; i < uc_count; i++) {
3804 			rc = qede_set_ucast_rx_mac(edev,
3805 						   QED_FILTER_XCAST_TYPE_ADD,
3806 						   temp);
3807 			if (rc)
3808 				goto out;
3809 
3810 			temp += ETH_ALEN;
3811 		}
3812 
3813 		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3814 		if (rc)
3815 			goto out;
3816 	}
3817 
3818 	/* take care of VLAN mode */
3819 	if (ndev->flags & IFF_PROMISC) {
3820 		qede_config_accept_any_vlan(edev, true);
3821 	} else if (!edev->non_configured_vlans) {
3822 		/* It's possible that accept_any_vlan mode is set due to a
3823 		 * previous setting of IFF_PROMISC. If vlan credits are
3824 		 * sufficient, disable accept_any_vlan.
3825 		 */
3826 		qede_config_accept_any_vlan(edev, false);
3827 	}
3828 
3829 	rx_mode.filter.accept_flags = accept_flags;
3830 	edev->ops->filter_config(edev->cdev, &rx_mode);
3831 out:
3832 	kfree(uc_macs);
3833 }
3834