1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_get_eth_tlv_data(void *edev, void *data);
137 static void qede_get_generic_tlv_data(void *edev,
138 				      struct qed_generic_tlvs *data);
139 
140 /* The qede lock is used to protect driver state change and driver flows that
141  * are not reentrant.
142  */
143 void __qede_lock(struct qede_dev *edev)
144 {
145 	mutex_lock(&edev->qede_lock);
146 }
147 
148 void __qede_unlock(struct qede_dev *edev)
149 {
150 	mutex_unlock(&edev->qede_lock);
151 }
152 
153 #ifdef CONFIG_QED_SRIOV
154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
155 			    __be16 vlan_proto)
156 {
157 	struct qede_dev *edev = netdev_priv(ndev);
158 
159 	if (vlan > 4095) {
160 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
161 		return -EINVAL;
162 	}
163 
164 	if (vlan_proto != htons(ETH_P_8021Q))
165 		return -EPROTONOSUPPORT;
166 
167 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
168 		   vlan, vf);
169 
170 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
171 }
172 
173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
174 {
175 	struct qede_dev *edev = netdev_priv(ndev);
176 
177 	DP_VERBOSE(edev, QED_MSG_IOV,
178 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
179 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
180 
181 	if (!is_valid_ether_addr(mac)) {
182 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
183 		return -EINVAL;
184 	}
185 
186 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
187 }
188 
189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
190 {
191 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
192 	struct qed_dev_info *qed_info = &edev->dev_info.common;
193 	struct qed_update_vport_params *vport_params;
194 	int rc;
195 
196 	vport_params = vzalloc(sizeof(*vport_params));
197 	if (!vport_params)
198 		return -ENOMEM;
199 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
200 
201 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
202 
203 	/* Enable/Disable Tx switching for PF */
204 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
205 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
206 		vport_params->vport_id = 0;
207 		vport_params->update_tx_switching_flg = 1;
208 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
209 		edev->ops->vport_update(edev->cdev, vport_params);
210 	}
211 
212 	vfree(vport_params);
213 	return rc;
214 }
215 #endif
216 
217 static struct pci_driver qede_pci_driver = {
218 	.name = "qede",
219 	.id_table = qede_pci_tbl,
220 	.probe = qede_probe,
221 	.remove = qede_remove,
222 	.shutdown = qede_shutdown,
223 #ifdef CONFIG_QED_SRIOV
224 	.sriov_configure = qede_sriov_configure,
225 #endif
226 };
227 
228 static struct qed_eth_cb_ops qede_ll_ops = {
229 	{
230 #ifdef CONFIG_RFS_ACCEL
231 		.arfs_filter_op = qede_arfs_filter_op,
232 #endif
233 		.link_update = qede_link_update,
234 		.get_generic_tlv_data = qede_get_generic_tlv_data,
235 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
236 	},
237 	.force_mac = qede_force_mac,
238 	.ports_update = qede_udp_ports_update,
239 };
240 
241 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
242 			     void *ptr)
243 {
244 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
245 	struct ethtool_drvinfo drvinfo;
246 	struct qede_dev *edev;
247 
248 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
249 		goto done;
250 
251 	/* Check whether this is a qede device */
252 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
253 		goto done;
254 
255 	memset(&drvinfo, 0, sizeof(drvinfo));
256 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
257 	if (strcmp(drvinfo.driver, "qede"))
258 		goto done;
259 	edev = netdev_priv(ndev);
260 
261 	switch (event) {
262 	case NETDEV_CHANGENAME:
263 		/* Notify qed of the name change */
264 		if (!edev->ops || !edev->ops->common)
265 			goto done;
266 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
267 		break;
268 	case NETDEV_CHANGEADDR:
269 		edev = netdev_priv(ndev);
270 		qede_rdma_event_changeaddr(edev);
271 		break;
272 	}
273 
274 done:
275 	return NOTIFY_DONE;
276 }
277 
278 static struct notifier_block qede_netdev_notifier = {
279 	.notifier_call = qede_netdev_event,
280 };
281 
282 static
283 int __init qede_init(void)
284 {
285 	int ret;
286 
287 	pr_info("qede_init: %s\n", version);
288 
289 	qed_ops = qed_get_eth_ops();
290 	if (!qed_ops) {
291 		pr_notice("Failed to get qed ethtool operations\n");
292 		return -EINVAL;
293 	}
294 
295 	/* Must register notifier before pci ops, since we might miss
296 	 * interface rename after pci probe and netdev registration.
297 	 */
298 	ret = register_netdevice_notifier(&qede_netdev_notifier);
299 	if (ret) {
300 		pr_notice("Failed to register netdevice_notifier\n");
301 		qed_put_eth_ops();
302 		return -EINVAL;
303 	}
304 
305 	ret = pci_register_driver(&qede_pci_driver);
306 	if (ret) {
307 		pr_notice("Failed to register driver\n");
308 		unregister_netdevice_notifier(&qede_netdev_notifier);
309 		qed_put_eth_ops();
310 		return -EINVAL;
311 	}
312 
313 	return 0;
314 }
315 
316 static void __exit qede_cleanup(void)
317 {
318 	if (debug & QED_LOG_INFO_MASK)
319 		pr_info("qede_cleanup called\n");
320 
321 	unregister_netdevice_notifier(&qede_netdev_notifier);
322 	pci_unregister_driver(&qede_pci_driver);
323 	qed_put_eth_ops();
324 }
325 
326 module_init(qede_init);
327 module_exit(qede_cleanup);
328 
329 static int qede_open(struct net_device *ndev);
330 static int qede_close(struct net_device *ndev);
331 
332 void qede_fill_by_demand_stats(struct qede_dev *edev)
333 {
334 	struct qede_stats_common *p_common = &edev->stats.common;
335 	struct qed_eth_stats stats;
336 
337 	edev->ops->get_vport_stats(edev->cdev, &stats);
338 
339 	p_common->no_buff_discards = stats.common.no_buff_discards;
340 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
341 	p_common->ttl0_discard = stats.common.ttl0_discard;
342 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
343 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
344 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
345 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
346 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
347 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
348 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
349 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
350 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
351 
352 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
353 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
354 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
355 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
356 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
357 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
358 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
359 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
360 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
361 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
362 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
363 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
364 
365 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
366 	p_common->rx_65_to_127_byte_packets =
367 	    stats.common.rx_65_to_127_byte_packets;
368 	p_common->rx_128_to_255_byte_packets =
369 	    stats.common.rx_128_to_255_byte_packets;
370 	p_common->rx_256_to_511_byte_packets =
371 	    stats.common.rx_256_to_511_byte_packets;
372 	p_common->rx_512_to_1023_byte_packets =
373 	    stats.common.rx_512_to_1023_byte_packets;
374 	p_common->rx_1024_to_1518_byte_packets =
375 	    stats.common.rx_1024_to_1518_byte_packets;
376 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
377 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
378 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
379 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
380 	p_common->rx_align_errors = stats.common.rx_align_errors;
381 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
382 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
383 	p_common->rx_jabbers = stats.common.rx_jabbers;
384 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
385 	p_common->rx_fragments = stats.common.rx_fragments;
386 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
387 	p_common->tx_65_to_127_byte_packets =
388 	    stats.common.tx_65_to_127_byte_packets;
389 	p_common->tx_128_to_255_byte_packets =
390 	    stats.common.tx_128_to_255_byte_packets;
391 	p_common->tx_256_to_511_byte_packets =
392 	    stats.common.tx_256_to_511_byte_packets;
393 	p_common->tx_512_to_1023_byte_packets =
394 	    stats.common.tx_512_to_1023_byte_packets;
395 	p_common->tx_1024_to_1518_byte_packets =
396 	    stats.common.tx_1024_to_1518_byte_packets;
397 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
398 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
399 	p_common->brb_truncates = stats.common.brb_truncates;
400 	p_common->brb_discards = stats.common.brb_discards;
401 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
402 	p_common->link_change_count = stats.common.link_change_count;
403 
404 	if (QEDE_IS_BB(edev)) {
405 		struct qede_stats_bb *p_bb = &edev->stats.bb;
406 
407 		p_bb->rx_1519_to_1522_byte_packets =
408 		    stats.bb.rx_1519_to_1522_byte_packets;
409 		p_bb->rx_1519_to_2047_byte_packets =
410 		    stats.bb.rx_1519_to_2047_byte_packets;
411 		p_bb->rx_2048_to_4095_byte_packets =
412 		    stats.bb.rx_2048_to_4095_byte_packets;
413 		p_bb->rx_4096_to_9216_byte_packets =
414 		    stats.bb.rx_4096_to_9216_byte_packets;
415 		p_bb->rx_9217_to_16383_byte_packets =
416 		    stats.bb.rx_9217_to_16383_byte_packets;
417 		p_bb->tx_1519_to_2047_byte_packets =
418 		    stats.bb.tx_1519_to_2047_byte_packets;
419 		p_bb->tx_2048_to_4095_byte_packets =
420 		    stats.bb.tx_2048_to_4095_byte_packets;
421 		p_bb->tx_4096_to_9216_byte_packets =
422 		    stats.bb.tx_4096_to_9216_byte_packets;
423 		p_bb->tx_9217_to_16383_byte_packets =
424 		    stats.bb.tx_9217_to_16383_byte_packets;
425 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
426 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
427 	} else {
428 		struct qede_stats_ah *p_ah = &edev->stats.ah;
429 
430 		p_ah->rx_1519_to_max_byte_packets =
431 		    stats.ah.rx_1519_to_max_byte_packets;
432 		p_ah->tx_1519_to_max_byte_packets =
433 		    stats.ah.tx_1519_to_max_byte_packets;
434 	}
435 }
436 
437 static void qede_get_stats64(struct net_device *dev,
438 			     struct rtnl_link_stats64 *stats)
439 {
440 	struct qede_dev *edev = netdev_priv(dev);
441 	struct qede_stats_common *p_common;
442 
443 	qede_fill_by_demand_stats(edev);
444 	p_common = &edev->stats.common;
445 
446 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
447 			    p_common->rx_bcast_pkts;
448 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
449 			    p_common->tx_bcast_pkts;
450 
451 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
452 			  p_common->rx_bcast_bytes;
453 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
454 			  p_common->tx_bcast_bytes;
455 
456 	stats->tx_errors = p_common->tx_err_drop_pkts;
457 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
458 
459 	stats->rx_fifo_errors = p_common->no_buff_discards;
460 
461 	if (QEDE_IS_BB(edev))
462 		stats->collisions = edev->stats.bb.tx_total_collisions;
463 	stats->rx_crc_errors = p_common->rx_crc_errors;
464 	stats->rx_frame_errors = p_common->rx_align_errors;
465 }
466 
467 #ifdef CONFIG_QED_SRIOV
468 static int qede_get_vf_config(struct net_device *dev, int vfidx,
469 			      struct ifla_vf_info *ivi)
470 {
471 	struct qede_dev *edev = netdev_priv(dev);
472 
473 	if (!edev->ops)
474 		return -EINVAL;
475 
476 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
477 }
478 
479 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
480 			    int min_tx_rate, int max_tx_rate)
481 {
482 	struct qede_dev *edev = netdev_priv(dev);
483 
484 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
485 					max_tx_rate);
486 }
487 
488 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
489 {
490 	struct qede_dev *edev = netdev_priv(dev);
491 
492 	if (!edev->ops)
493 		return -EINVAL;
494 
495 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
496 }
497 
498 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
499 				  int link_state)
500 {
501 	struct qede_dev *edev = netdev_priv(dev);
502 
503 	if (!edev->ops)
504 		return -EINVAL;
505 
506 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
507 }
508 
509 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
510 {
511 	struct qede_dev *edev = netdev_priv(dev);
512 
513 	if (!edev->ops)
514 		return -EINVAL;
515 
516 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
517 }
518 #endif
519 
520 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
521 {
522 	struct qede_dev *edev = netdev_priv(dev);
523 
524 	if (!netif_running(dev))
525 		return -EAGAIN;
526 
527 	switch (cmd) {
528 	case SIOCSHWTSTAMP:
529 		return qede_ptp_hw_ts(edev, ifr);
530 	default:
531 		DP_VERBOSE(edev, QED_MSG_DEBUG,
532 			   "default IOCTL cmd 0x%x\n", cmd);
533 		return -EOPNOTSUPP;
534 	}
535 
536 	return 0;
537 }
538 
539 static const struct net_device_ops qede_netdev_ops = {
540 	.ndo_open = qede_open,
541 	.ndo_stop = qede_close,
542 	.ndo_start_xmit = qede_start_xmit,
543 	.ndo_set_rx_mode = qede_set_rx_mode,
544 	.ndo_set_mac_address = qede_set_mac_addr,
545 	.ndo_validate_addr = eth_validate_addr,
546 	.ndo_change_mtu = qede_change_mtu,
547 	.ndo_do_ioctl = qede_ioctl,
548 #ifdef CONFIG_QED_SRIOV
549 	.ndo_set_vf_mac = qede_set_vf_mac,
550 	.ndo_set_vf_vlan = qede_set_vf_vlan,
551 	.ndo_set_vf_trust = qede_set_vf_trust,
552 #endif
553 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
554 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
555 	.ndo_fix_features = qede_fix_features,
556 	.ndo_set_features = qede_set_features,
557 	.ndo_get_stats64 = qede_get_stats64,
558 #ifdef CONFIG_QED_SRIOV
559 	.ndo_set_vf_link_state = qede_set_vf_link_state,
560 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
561 	.ndo_get_vf_config = qede_get_vf_config,
562 	.ndo_set_vf_rate = qede_set_vf_rate,
563 #endif
564 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
565 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
566 	.ndo_features_check = qede_features_check,
567 	.ndo_bpf = qede_xdp,
568 #ifdef CONFIG_RFS_ACCEL
569 	.ndo_rx_flow_steer = qede_rx_flow_steer,
570 #endif
571 };
572 
573 static const struct net_device_ops qede_netdev_vf_ops = {
574 	.ndo_open = qede_open,
575 	.ndo_stop = qede_close,
576 	.ndo_start_xmit = qede_start_xmit,
577 	.ndo_set_rx_mode = qede_set_rx_mode,
578 	.ndo_set_mac_address = qede_set_mac_addr,
579 	.ndo_validate_addr = eth_validate_addr,
580 	.ndo_change_mtu = qede_change_mtu,
581 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
582 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
583 	.ndo_fix_features = qede_fix_features,
584 	.ndo_set_features = qede_set_features,
585 	.ndo_get_stats64 = qede_get_stats64,
586 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
587 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
588 	.ndo_features_check = qede_features_check,
589 };
590 
591 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
592 	.ndo_open = qede_open,
593 	.ndo_stop = qede_close,
594 	.ndo_start_xmit = qede_start_xmit,
595 	.ndo_set_rx_mode = qede_set_rx_mode,
596 	.ndo_set_mac_address = qede_set_mac_addr,
597 	.ndo_validate_addr = eth_validate_addr,
598 	.ndo_change_mtu = qede_change_mtu,
599 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
600 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
601 	.ndo_fix_features = qede_fix_features,
602 	.ndo_set_features = qede_set_features,
603 	.ndo_get_stats64 = qede_get_stats64,
604 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
605 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
606 	.ndo_features_check = qede_features_check,
607 	.ndo_bpf = qede_xdp,
608 };
609 
610 /* -------------------------------------------------------------------------
611  * START OF PROBE / REMOVE
612  * -------------------------------------------------------------------------
613  */
614 
615 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
616 					    struct pci_dev *pdev,
617 					    struct qed_dev_eth_info *info,
618 					    u32 dp_module, u8 dp_level)
619 {
620 	struct net_device *ndev;
621 	struct qede_dev *edev;
622 
623 	ndev = alloc_etherdev_mqs(sizeof(*edev),
624 				  info->num_queues, info->num_queues);
625 	if (!ndev) {
626 		pr_err("etherdev allocation failed\n");
627 		return NULL;
628 	}
629 
630 	edev = netdev_priv(ndev);
631 	edev->ndev = ndev;
632 	edev->cdev = cdev;
633 	edev->pdev = pdev;
634 	edev->dp_module = dp_module;
635 	edev->dp_level = dp_level;
636 	edev->ops = qed_ops;
637 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
638 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
639 
640 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
641 		info->num_queues, info->num_queues);
642 
643 	SET_NETDEV_DEV(ndev, &pdev->dev);
644 
645 	memset(&edev->stats, 0, sizeof(edev->stats));
646 	memcpy(&edev->dev_info, info, sizeof(*info));
647 
648 	/* As ethtool doesn't have the ability to show WoL behavior as
649 	 * 'default', if device supports it declare it's enabled.
650 	 */
651 	if (edev->dev_info.common.wol_support)
652 		edev->wol_enabled = true;
653 
654 	INIT_LIST_HEAD(&edev->vlan_list);
655 
656 	return edev;
657 }
658 
659 static void qede_init_ndev(struct qede_dev *edev)
660 {
661 	struct net_device *ndev = edev->ndev;
662 	struct pci_dev *pdev = edev->pdev;
663 	bool udp_tunnel_enable = false;
664 	netdev_features_t hw_features;
665 
666 	pci_set_drvdata(pdev, ndev);
667 
668 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
669 	ndev->base_addr = ndev->mem_start;
670 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
671 	ndev->irq = edev->dev_info.common.pci_irq;
672 
673 	ndev->watchdog_timeo = TX_TIMEOUT;
674 
675 	if (IS_VF(edev)) {
676 		if (edev->dev_info.xdp_supported)
677 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
678 		else
679 			ndev->netdev_ops = &qede_netdev_vf_ops;
680 	} else {
681 		ndev->netdev_ops = &qede_netdev_ops;
682 	}
683 
684 	qede_set_ethtool_ops(ndev);
685 
686 	ndev->priv_flags |= IFF_UNICAST_FLT;
687 
688 	/* user-changeble features */
689 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
690 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
691 		      NETIF_F_TSO | NETIF_F_TSO6;
692 
693 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
694 		hw_features |= NETIF_F_NTUPLE;
695 
696 	if (edev->dev_info.common.vxlan_enable ||
697 	    edev->dev_info.common.geneve_enable)
698 		udp_tunnel_enable = true;
699 
700 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
701 		hw_features |= NETIF_F_TSO_ECN;
702 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
703 					NETIF_F_SG | NETIF_F_TSO |
704 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
705 					NETIF_F_RXCSUM;
706 	}
707 
708 	if (udp_tunnel_enable) {
709 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
710 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
711 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
712 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
713 	}
714 
715 	if (edev->dev_info.common.gre_enable) {
716 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
717 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
718 					  NETIF_F_GSO_GRE_CSUM);
719 	}
720 
721 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
722 			      NETIF_F_HIGHDMA;
723 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
724 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
725 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
726 
727 	ndev->hw_features = hw_features;
728 
729 	/* MTU range: 46 - 9600 */
730 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
731 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
732 
733 	/* Set network device HW mac */
734 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
735 
736 	ndev->mtu = edev->dev_info.common.mtu;
737 }
738 
739 /* This function converts from 32b param to two params of level and module
740  * Input 32b decoding:
741  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
742  * 'happy' flow, e.g. memory allocation failed.
743  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
744  * and provide important parameters.
745  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
746  * module. VERBOSE prints are for tracking the specific flow in low level.
747  *
748  * Notice that the level should be that of the lowest required logs.
749  */
750 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
751 {
752 	*p_dp_level = QED_LEVEL_NOTICE;
753 	*p_dp_module = 0;
754 
755 	if (debug & QED_LOG_VERBOSE_MASK) {
756 		*p_dp_level = QED_LEVEL_VERBOSE;
757 		*p_dp_module = (debug & 0x3FFFFFFF);
758 	} else if (debug & QED_LOG_INFO_MASK) {
759 		*p_dp_level = QED_LEVEL_INFO;
760 	} else if (debug & QED_LOG_NOTICE_MASK) {
761 		*p_dp_level = QED_LEVEL_NOTICE;
762 	}
763 }
764 
765 static void qede_free_fp_array(struct qede_dev *edev)
766 {
767 	if (edev->fp_array) {
768 		struct qede_fastpath *fp;
769 		int i;
770 
771 		for_each_queue(i) {
772 			fp = &edev->fp_array[i];
773 
774 			kfree(fp->sb_info);
775 			/* Handle mem alloc failure case where qede_init_fp
776 			 * didn't register xdp_rxq_info yet.
777 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
778 			 */
779 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
780 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
781 			kfree(fp->rxq);
782 			kfree(fp->xdp_tx);
783 			kfree(fp->txq);
784 		}
785 		kfree(edev->fp_array);
786 	}
787 
788 	edev->num_queues = 0;
789 	edev->fp_num_tx = 0;
790 	edev->fp_num_rx = 0;
791 }
792 
793 static int qede_alloc_fp_array(struct qede_dev *edev)
794 {
795 	u8 fp_combined, fp_rx = edev->fp_num_rx;
796 	struct qede_fastpath *fp;
797 	int i;
798 
799 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
800 				 sizeof(*edev->fp_array), GFP_KERNEL);
801 	if (!edev->fp_array) {
802 		DP_NOTICE(edev, "fp array allocation failed\n");
803 		goto err;
804 	}
805 
806 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
807 
808 	/* Allocate the FP elements for Rx queues followed by combined and then
809 	 * the Tx. This ordering should be maintained so that the respective
810 	 * queues (Rx or Tx) will be together in the fastpath array and the
811 	 * associated ids will be sequential.
812 	 */
813 	for_each_queue(i) {
814 		fp = &edev->fp_array[i];
815 
816 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
817 		if (!fp->sb_info) {
818 			DP_NOTICE(edev, "sb info struct allocation failed\n");
819 			goto err;
820 		}
821 
822 		if (fp_rx) {
823 			fp->type = QEDE_FASTPATH_RX;
824 			fp_rx--;
825 		} else if (fp_combined) {
826 			fp->type = QEDE_FASTPATH_COMBINED;
827 			fp_combined--;
828 		} else {
829 			fp->type = QEDE_FASTPATH_TX;
830 		}
831 
832 		if (fp->type & QEDE_FASTPATH_TX) {
833 			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
834 			if (!fp->txq)
835 				goto err;
836 		}
837 
838 		if (fp->type & QEDE_FASTPATH_RX) {
839 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
840 			if (!fp->rxq)
841 				goto err;
842 
843 			if (edev->xdp_prog) {
844 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
845 						     GFP_KERNEL);
846 				if (!fp->xdp_tx)
847 					goto err;
848 				fp->type |= QEDE_FASTPATH_XDP;
849 			}
850 		}
851 	}
852 
853 	return 0;
854 err:
855 	qede_free_fp_array(edev);
856 	return -ENOMEM;
857 }
858 
859 static void qede_sp_task(struct work_struct *work)
860 {
861 	struct qede_dev *edev = container_of(work, struct qede_dev,
862 					     sp_task.work);
863 
864 	__qede_lock(edev);
865 
866 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
867 		if (edev->state == QEDE_STATE_OPEN)
868 			qede_config_rx_mode(edev->ndev);
869 
870 #ifdef CONFIG_RFS_ACCEL
871 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
872 		if (edev->state == QEDE_STATE_OPEN)
873 			qede_process_arfs_filters(edev, false);
874 	}
875 #endif
876 	__qede_unlock(edev);
877 }
878 
879 static void qede_update_pf_params(struct qed_dev *cdev)
880 {
881 	struct qed_pf_params pf_params;
882 
883 	/* 64 rx + 64 tx + 64 XDP */
884 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
885 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
886 
887 	/* Same for VFs - make sure they'll have sufficient connections
888 	 * to support XDP Tx queues.
889 	 */
890 	pf_params.eth_pf_params.num_vf_cons = 48;
891 
892 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
893 	qed_ops->common->update_pf_params(cdev, &pf_params);
894 }
895 
896 #define QEDE_FW_VER_STR_SIZE	80
897 
898 static void qede_log_probe(struct qede_dev *edev)
899 {
900 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
901 	u8 buf[QEDE_FW_VER_STR_SIZE];
902 	size_t left_size;
903 
904 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
905 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
906 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
907 		 p_dev_info->fw_eng,
908 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
909 		 QED_MFW_VERSION_3_OFFSET,
910 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
911 		 QED_MFW_VERSION_2_OFFSET,
912 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
913 		 QED_MFW_VERSION_1_OFFSET,
914 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
915 		 QED_MFW_VERSION_0_OFFSET);
916 
917 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
918 	if (p_dev_info->mbi_version && left_size)
919 		snprintf(buf + strlen(buf), left_size,
920 			 " [MBI %d.%d.%d]",
921 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
922 			 QED_MBI_VERSION_2_OFFSET,
923 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
924 			 QED_MBI_VERSION_1_OFFSET,
925 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
926 			 QED_MBI_VERSION_0_OFFSET);
927 
928 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
929 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
930 		buf, edev->ndev->name);
931 }
932 
933 enum qede_probe_mode {
934 	QEDE_PROBE_NORMAL,
935 };
936 
937 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
938 			bool is_vf, enum qede_probe_mode mode)
939 {
940 	struct qed_probe_params probe_params;
941 	struct qed_slowpath_params sp_params;
942 	struct qed_dev_eth_info dev_info;
943 	struct qede_dev *edev;
944 	struct qed_dev *cdev;
945 	int rc;
946 
947 	if (unlikely(dp_level & QED_LEVEL_INFO))
948 		pr_notice("Starting qede probe\n");
949 
950 	memset(&probe_params, 0, sizeof(probe_params));
951 	probe_params.protocol = QED_PROTOCOL_ETH;
952 	probe_params.dp_module = dp_module;
953 	probe_params.dp_level = dp_level;
954 	probe_params.is_vf = is_vf;
955 	cdev = qed_ops->common->probe(pdev, &probe_params);
956 	if (!cdev) {
957 		rc = -ENODEV;
958 		goto err0;
959 	}
960 
961 	qede_update_pf_params(cdev);
962 
963 	/* Start the Slowpath-process */
964 	memset(&sp_params, 0, sizeof(sp_params));
965 	sp_params.int_mode = QED_INT_MODE_MSIX;
966 	sp_params.drv_major = QEDE_MAJOR_VERSION;
967 	sp_params.drv_minor = QEDE_MINOR_VERSION;
968 	sp_params.drv_rev = QEDE_REVISION_VERSION;
969 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
970 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
971 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
972 	if (rc) {
973 		pr_notice("Cannot start slowpath\n");
974 		goto err1;
975 	}
976 
977 	/* Learn information crucial for qede to progress */
978 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
979 	if (rc)
980 		goto err2;
981 
982 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
983 				   dp_level);
984 	if (!edev) {
985 		rc = -ENOMEM;
986 		goto err2;
987 	}
988 
989 	if (is_vf)
990 		edev->flags |= QEDE_FLAG_IS_VF;
991 
992 	qede_init_ndev(edev);
993 
994 	rc = qede_rdma_dev_add(edev);
995 	if (rc)
996 		goto err3;
997 
998 	/* Prepare the lock prior to the registration of the netdev,
999 	 * as once it's registered we might reach flows requiring it
1000 	 * [it's even possible to reach a flow needing it directly
1001 	 * from there, although it's unlikely].
1002 	 */
1003 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1004 	mutex_init(&edev->qede_lock);
1005 	rc = register_netdev(edev->ndev);
1006 	if (rc) {
1007 		DP_NOTICE(edev, "Cannot register net-device\n");
1008 		goto err4;
1009 	}
1010 
1011 	edev->ops->common->set_name(cdev, edev->ndev->name);
1012 
1013 	/* PTP not supported on VFs */
1014 	if (!is_vf)
1015 		qede_ptp_enable(edev, true);
1016 
1017 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1018 
1019 #ifdef CONFIG_DCB
1020 	if (!IS_VF(edev))
1021 		qede_set_dcbnl_ops(edev->ndev);
1022 #endif
1023 
1024 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1025 
1026 	qede_log_probe(edev);
1027 	return 0;
1028 
1029 err4:
1030 	qede_rdma_dev_remove(edev);
1031 err3:
1032 	free_netdev(edev->ndev);
1033 err2:
1034 	qed_ops->common->slowpath_stop(cdev);
1035 err1:
1036 	qed_ops->common->remove(cdev);
1037 err0:
1038 	return rc;
1039 }
1040 
1041 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1042 {
1043 	bool is_vf = false;
1044 	u32 dp_module = 0;
1045 	u8 dp_level = 0;
1046 
1047 	switch ((enum qede_pci_private)id->driver_data) {
1048 	case QEDE_PRIVATE_VF:
1049 		if (debug & QED_LOG_VERBOSE_MASK)
1050 			dev_err(&pdev->dev, "Probing a VF\n");
1051 		is_vf = true;
1052 		break;
1053 	default:
1054 		if (debug & QED_LOG_VERBOSE_MASK)
1055 			dev_err(&pdev->dev, "Probing a PF\n");
1056 	}
1057 
1058 	qede_config_debug(debug, &dp_module, &dp_level);
1059 
1060 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1061 			    QEDE_PROBE_NORMAL);
1062 }
1063 
1064 enum qede_remove_mode {
1065 	QEDE_REMOVE_NORMAL,
1066 };
1067 
1068 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1069 {
1070 	struct net_device *ndev = pci_get_drvdata(pdev);
1071 	struct qede_dev *edev = netdev_priv(ndev);
1072 	struct qed_dev *cdev = edev->cdev;
1073 
1074 	DP_INFO(edev, "Starting qede_remove\n");
1075 
1076 	qede_rdma_dev_remove(edev);
1077 	unregister_netdev(ndev);
1078 	cancel_delayed_work_sync(&edev->sp_task);
1079 
1080 	qede_ptp_disable(edev);
1081 
1082 	edev->ops->common->set_power_state(cdev, PCI_D0);
1083 
1084 	pci_set_drvdata(pdev, NULL);
1085 
1086 	/* Use global ops since we've freed edev */
1087 	qed_ops->common->slowpath_stop(cdev);
1088 	if (system_state == SYSTEM_POWER_OFF)
1089 		return;
1090 	qed_ops->common->remove(cdev);
1091 
1092 	/* Since this can happen out-of-sync with other flows,
1093 	 * don't release the netdevice until after slowpath stop
1094 	 * has been called to guarantee various other contexts
1095 	 * [e.g., QED register callbacks] won't break anything when
1096 	 * accessing the netdevice.
1097 	 */
1098 	 free_netdev(ndev);
1099 
1100 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1101 }
1102 
1103 static void qede_remove(struct pci_dev *pdev)
1104 {
1105 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1106 }
1107 
1108 static void qede_shutdown(struct pci_dev *pdev)
1109 {
1110 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1111 }
1112 
1113 /* -------------------------------------------------------------------------
1114  * START OF LOAD / UNLOAD
1115  * -------------------------------------------------------------------------
1116  */
1117 
1118 static int qede_set_num_queues(struct qede_dev *edev)
1119 {
1120 	int rc;
1121 	u16 rss_num;
1122 
1123 	/* Setup queues according to possible resources*/
1124 	if (edev->req_queues)
1125 		rss_num = edev->req_queues;
1126 	else
1127 		rss_num = netif_get_num_default_rss_queues() *
1128 			  edev->dev_info.common.num_hwfns;
1129 
1130 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1131 
1132 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1133 	if (rc > 0) {
1134 		/* Managed to request interrupts for our queues */
1135 		edev->num_queues = rc;
1136 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1137 			QEDE_QUEUE_CNT(edev), rss_num);
1138 		rc = 0;
1139 	}
1140 
1141 	edev->fp_num_tx = edev->req_num_tx;
1142 	edev->fp_num_rx = edev->req_num_rx;
1143 
1144 	return rc;
1145 }
1146 
1147 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1148 			     u16 sb_id)
1149 {
1150 	if (sb_info->sb_virt) {
1151 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1152 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1153 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1154 		memset(sb_info, 0, sizeof(*sb_info));
1155 	}
1156 }
1157 
1158 /* This function allocates fast-path status block memory */
1159 static int qede_alloc_mem_sb(struct qede_dev *edev,
1160 			     struct qed_sb_info *sb_info, u16 sb_id)
1161 {
1162 	struct status_block_e4 *sb_virt;
1163 	dma_addr_t sb_phys;
1164 	int rc;
1165 
1166 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1167 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1168 	if (!sb_virt) {
1169 		DP_ERR(edev, "Status block allocation failed\n");
1170 		return -ENOMEM;
1171 	}
1172 
1173 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1174 					sb_virt, sb_phys, sb_id,
1175 					QED_SB_TYPE_L2_QUEUE);
1176 	if (rc) {
1177 		DP_ERR(edev, "Status block initialization failed\n");
1178 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1179 				  sb_virt, sb_phys);
1180 		return rc;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static void qede_free_rx_buffers(struct qede_dev *edev,
1187 				 struct qede_rx_queue *rxq)
1188 {
1189 	u16 i;
1190 
1191 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1192 		struct sw_rx_data *rx_buf;
1193 		struct page *data;
1194 
1195 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1196 		data = rx_buf->data;
1197 
1198 		dma_unmap_page(&edev->pdev->dev,
1199 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1200 
1201 		rx_buf->data = NULL;
1202 		__free_page(data);
1203 	}
1204 }
1205 
1206 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1207 {
1208 	/* Free rx buffers */
1209 	qede_free_rx_buffers(edev, rxq);
1210 
1211 	/* Free the parallel SW ring */
1212 	kfree(rxq->sw_rx_ring);
1213 
1214 	/* Free the real RQ ring used by FW */
1215 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1216 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1217 }
1218 
1219 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1220 {
1221 	int i;
1222 
1223 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1224 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1225 
1226 		tpa_info->state = QEDE_AGG_STATE_NONE;
1227 	}
1228 }
1229 
1230 /* This function allocates all memory needed per Rx queue */
1231 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1232 {
1233 	int i, rc, size;
1234 
1235 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1236 
1237 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1238 
1239 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1240 	size = rxq->rx_headroom +
1241 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1242 
1243 	/* Make sure that the headroom and  payload fit in a single page */
1244 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1245 		rxq->rx_buf_size = PAGE_SIZE - size;
1246 
1247 	/* Segment size to spilt a page in multiple equal parts ,
1248 	 * unless XDP is used in which case we'd use the entire page.
1249 	 */
1250 	if (!edev->xdp_prog) {
1251 		size = size + rxq->rx_buf_size;
1252 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1253 	} else {
1254 		rxq->rx_buf_seg_size = PAGE_SIZE;
1255 	}
1256 
1257 	/* Allocate the parallel driver ring for Rx buffers */
1258 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1259 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1260 	if (!rxq->sw_rx_ring) {
1261 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1262 		rc = -ENOMEM;
1263 		goto err;
1264 	}
1265 
1266 	/* Allocate FW Rx ring  */
1267 	rc = edev->ops->common->chain_alloc(edev->cdev,
1268 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1269 					    QED_CHAIN_MODE_NEXT_PTR,
1270 					    QED_CHAIN_CNT_TYPE_U16,
1271 					    RX_RING_SIZE,
1272 					    sizeof(struct eth_rx_bd),
1273 					    &rxq->rx_bd_ring, NULL);
1274 	if (rc)
1275 		goto err;
1276 
1277 	/* Allocate FW completion ring */
1278 	rc = edev->ops->common->chain_alloc(edev->cdev,
1279 					    QED_CHAIN_USE_TO_CONSUME,
1280 					    QED_CHAIN_MODE_PBL,
1281 					    QED_CHAIN_CNT_TYPE_U16,
1282 					    RX_RING_SIZE,
1283 					    sizeof(union eth_rx_cqe),
1284 					    &rxq->rx_comp_ring, NULL);
1285 	if (rc)
1286 		goto err;
1287 
1288 	/* Allocate buffers for the Rx ring */
1289 	rxq->filled_buffers = 0;
1290 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1291 		rc = qede_alloc_rx_buffer(rxq, false);
1292 		if (rc) {
1293 			DP_ERR(edev,
1294 			       "Rx buffers allocation failed at index %d\n", i);
1295 			goto err;
1296 		}
1297 	}
1298 
1299 	if (!edev->gro_disable)
1300 		qede_set_tpa_param(rxq);
1301 err:
1302 	return rc;
1303 }
1304 
1305 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1306 {
1307 	/* Free the parallel SW ring */
1308 	if (txq->is_xdp)
1309 		kfree(txq->sw_tx_ring.xdp);
1310 	else
1311 		kfree(txq->sw_tx_ring.skbs);
1312 
1313 	/* Free the real RQ ring used by FW */
1314 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1315 }
1316 
1317 /* This function allocates all memory needed per Tx queue */
1318 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1319 {
1320 	union eth_tx_bd_types *p_virt;
1321 	int size, rc;
1322 
1323 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1324 
1325 	/* Allocate the parallel driver ring for Tx buffers */
1326 	if (txq->is_xdp) {
1327 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1328 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1329 		if (!txq->sw_tx_ring.xdp)
1330 			goto err;
1331 	} else {
1332 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1333 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1334 		if (!txq->sw_tx_ring.skbs)
1335 			goto err;
1336 	}
1337 
1338 	rc = edev->ops->common->chain_alloc(edev->cdev,
1339 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1340 					    QED_CHAIN_MODE_PBL,
1341 					    QED_CHAIN_CNT_TYPE_U16,
1342 					    txq->num_tx_buffers,
1343 					    sizeof(*p_virt),
1344 					    &txq->tx_pbl, NULL);
1345 	if (rc)
1346 		goto err;
1347 
1348 	return 0;
1349 
1350 err:
1351 	qede_free_mem_txq(edev, txq);
1352 	return -ENOMEM;
1353 }
1354 
1355 /* This function frees all memory of a single fp */
1356 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1357 {
1358 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1359 
1360 	if (fp->type & QEDE_FASTPATH_RX)
1361 		qede_free_mem_rxq(edev, fp->rxq);
1362 
1363 	if (fp->type & QEDE_FASTPATH_XDP)
1364 		qede_free_mem_txq(edev, fp->xdp_tx);
1365 
1366 	if (fp->type & QEDE_FASTPATH_TX)
1367 		qede_free_mem_txq(edev, fp->txq);
1368 }
1369 
1370 /* This function allocates all memory needed for a single fp (i.e. an entity
1371  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1372  */
1373 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1374 {
1375 	int rc = 0;
1376 
1377 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1378 	if (rc)
1379 		goto out;
1380 
1381 	if (fp->type & QEDE_FASTPATH_RX) {
1382 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1383 		if (rc)
1384 			goto out;
1385 	}
1386 
1387 	if (fp->type & QEDE_FASTPATH_XDP) {
1388 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1389 		if (rc)
1390 			goto out;
1391 	}
1392 
1393 	if (fp->type & QEDE_FASTPATH_TX) {
1394 		rc = qede_alloc_mem_txq(edev, fp->txq);
1395 		if (rc)
1396 			goto out;
1397 	}
1398 
1399 out:
1400 	return rc;
1401 }
1402 
1403 static void qede_free_mem_load(struct qede_dev *edev)
1404 {
1405 	int i;
1406 
1407 	for_each_queue(i) {
1408 		struct qede_fastpath *fp = &edev->fp_array[i];
1409 
1410 		qede_free_mem_fp(edev, fp);
1411 	}
1412 }
1413 
1414 /* This function allocates all qede memory at NIC load. */
1415 static int qede_alloc_mem_load(struct qede_dev *edev)
1416 {
1417 	int rc = 0, queue_id;
1418 
1419 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1420 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1421 
1422 		rc = qede_alloc_mem_fp(edev, fp);
1423 		if (rc) {
1424 			DP_ERR(edev,
1425 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1426 			       queue_id);
1427 			qede_free_mem_load(edev);
1428 			return rc;
1429 		}
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1436 static void qede_init_fp(struct qede_dev *edev)
1437 {
1438 	int queue_id, rxq_index = 0, txq_index = 0;
1439 	struct qede_fastpath *fp;
1440 
1441 	for_each_queue(queue_id) {
1442 		fp = &edev->fp_array[queue_id];
1443 
1444 		fp->edev = edev;
1445 		fp->id = queue_id;
1446 
1447 		if (fp->type & QEDE_FASTPATH_XDP) {
1448 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1449 								rxq_index);
1450 			fp->xdp_tx->is_xdp = 1;
1451 		}
1452 
1453 		if (fp->type & QEDE_FASTPATH_RX) {
1454 			fp->rxq->rxq_id = rxq_index++;
1455 
1456 			/* Determine how to map buffers for this queue */
1457 			if (fp->type & QEDE_FASTPATH_XDP)
1458 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1459 			else
1460 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1461 			fp->rxq->dev = &edev->pdev->dev;
1462 
1463 			/* Driver have no error path from here */
1464 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1465 						 fp->rxq->rxq_id) < 0);
1466 		}
1467 
1468 		if (fp->type & QEDE_FASTPATH_TX) {
1469 			fp->txq->index = txq_index++;
1470 			if (edev->dev_info.is_legacy)
1471 				fp->txq->is_legacy = 1;
1472 			fp->txq->dev = &edev->pdev->dev;
1473 		}
1474 
1475 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1476 			 edev->ndev->name, queue_id);
1477 	}
1478 
1479 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1480 }
1481 
1482 static int qede_set_real_num_queues(struct qede_dev *edev)
1483 {
1484 	int rc = 0;
1485 
1486 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1487 	if (rc) {
1488 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1489 		return rc;
1490 	}
1491 
1492 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1493 	if (rc) {
1494 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1495 		return rc;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static void qede_napi_disable_remove(struct qede_dev *edev)
1502 {
1503 	int i;
1504 
1505 	for_each_queue(i) {
1506 		napi_disable(&edev->fp_array[i].napi);
1507 
1508 		netif_napi_del(&edev->fp_array[i].napi);
1509 	}
1510 }
1511 
1512 static void qede_napi_add_enable(struct qede_dev *edev)
1513 {
1514 	int i;
1515 
1516 	/* Add NAPI objects */
1517 	for_each_queue(i) {
1518 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1519 			       qede_poll, NAPI_POLL_WEIGHT);
1520 		napi_enable(&edev->fp_array[i].napi);
1521 	}
1522 }
1523 
1524 static void qede_sync_free_irqs(struct qede_dev *edev)
1525 {
1526 	int i;
1527 
1528 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1529 		if (edev->int_info.msix_cnt) {
1530 			synchronize_irq(edev->int_info.msix[i].vector);
1531 			free_irq(edev->int_info.msix[i].vector,
1532 				 &edev->fp_array[i]);
1533 		} else {
1534 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1535 		}
1536 	}
1537 
1538 	edev->int_info.used_cnt = 0;
1539 }
1540 
1541 static int qede_req_msix_irqs(struct qede_dev *edev)
1542 {
1543 	int i, rc;
1544 
1545 	/* Sanitize number of interrupts == number of prepared RSS queues */
1546 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1547 		DP_ERR(edev,
1548 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1549 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1550 		return -EINVAL;
1551 	}
1552 
1553 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1554 #ifdef CONFIG_RFS_ACCEL
1555 		struct qede_fastpath *fp = &edev->fp_array[i];
1556 
1557 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1558 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1559 					      edev->int_info.msix[i].vector);
1560 			if (rc) {
1561 				DP_ERR(edev, "Failed to add CPU rmap\n");
1562 				qede_free_arfs(edev);
1563 			}
1564 		}
1565 #endif
1566 		rc = request_irq(edev->int_info.msix[i].vector,
1567 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1568 				 &edev->fp_array[i]);
1569 		if (rc) {
1570 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1571 			qede_sync_free_irqs(edev);
1572 			return rc;
1573 		}
1574 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1575 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1576 			   edev->fp_array[i].name, i,
1577 			   &edev->fp_array[i]);
1578 		edev->int_info.used_cnt++;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 static void qede_simd_fp_handler(void *cookie)
1585 {
1586 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1587 
1588 	napi_schedule_irqoff(&fp->napi);
1589 }
1590 
1591 static int qede_setup_irqs(struct qede_dev *edev)
1592 {
1593 	int i, rc = 0;
1594 
1595 	/* Learn Interrupt configuration */
1596 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1597 	if (rc)
1598 		return rc;
1599 
1600 	if (edev->int_info.msix_cnt) {
1601 		rc = qede_req_msix_irqs(edev);
1602 		if (rc)
1603 			return rc;
1604 		edev->ndev->irq = edev->int_info.msix[0].vector;
1605 	} else {
1606 		const struct qed_common_ops *ops;
1607 
1608 		/* qed should learn receive the RSS ids and callbacks */
1609 		ops = edev->ops->common;
1610 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1611 			ops->simd_handler_config(edev->cdev,
1612 						 &edev->fp_array[i], i,
1613 						 qede_simd_fp_handler);
1614 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1615 	}
1616 	return 0;
1617 }
1618 
1619 static int qede_drain_txq(struct qede_dev *edev,
1620 			  struct qede_tx_queue *txq, bool allow_drain)
1621 {
1622 	int rc, cnt = 1000;
1623 
1624 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1625 		if (!cnt) {
1626 			if (allow_drain) {
1627 				DP_NOTICE(edev,
1628 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1629 					  txq->index);
1630 				rc = edev->ops->common->drain(edev->cdev);
1631 				if (rc)
1632 					return rc;
1633 				return qede_drain_txq(edev, txq, false);
1634 			}
1635 			DP_NOTICE(edev,
1636 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1637 				  txq->index, txq->sw_tx_prod,
1638 				  txq->sw_tx_cons);
1639 			return -ENODEV;
1640 		}
1641 		cnt--;
1642 		usleep_range(1000, 2000);
1643 		barrier();
1644 	}
1645 
1646 	/* FW finished processing, wait for HW to transmit all tx packets */
1647 	usleep_range(1000, 2000);
1648 
1649 	return 0;
1650 }
1651 
1652 static int qede_stop_txq(struct qede_dev *edev,
1653 			 struct qede_tx_queue *txq, int rss_id)
1654 {
1655 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1656 }
1657 
1658 static int qede_stop_queues(struct qede_dev *edev)
1659 {
1660 	struct qed_update_vport_params *vport_update_params;
1661 	struct qed_dev *cdev = edev->cdev;
1662 	struct qede_fastpath *fp;
1663 	int rc, i;
1664 
1665 	/* Disable the vport */
1666 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1667 	if (!vport_update_params)
1668 		return -ENOMEM;
1669 
1670 	vport_update_params->vport_id = 0;
1671 	vport_update_params->update_vport_active_flg = 1;
1672 	vport_update_params->vport_active_flg = 0;
1673 	vport_update_params->update_rss_flg = 0;
1674 
1675 	rc = edev->ops->vport_update(cdev, vport_update_params);
1676 	vfree(vport_update_params);
1677 
1678 	if (rc) {
1679 		DP_ERR(edev, "Failed to update vport\n");
1680 		return rc;
1681 	}
1682 
1683 	/* Flush Tx queues. If needed, request drain from MCP */
1684 	for_each_queue(i) {
1685 		fp = &edev->fp_array[i];
1686 
1687 		if (fp->type & QEDE_FASTPATH_TX) {
1688 			rc = qede_drain_txq(edev, fp->txq, true);
1689 			if (rc)
1690 				return rc;
1691 		}
1692 
1693 		if (fp->type & QEDE_FASTPATH_XDP) {
1694 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1695 			if (rc)
1696 				return rc;
1697 		}
1698 	}
1699 
1700 	/* Stop all Queues in reverse order */
1701 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1702 		fp = &edev->fp_array[i];
1703 
1704 		/* Stop the Tx Queue(s) */
1705 		if (fp->type & QEDE_FASTPATH_TX) {
1706 			rc = qede_stop_txq(edev, fp->txq, i);
1707 			if (rc)
1708 				return rc;
1709 		}
1710 
1711 		/* Stop the Rx Queue */
1712 		if (fp->type & QEDE_FASTPATH_RX) {
1713 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1714 			if (rc) {
1715 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1716 				return rc;
1717 			}
1718 		}
1719 
1720 		/* Stop the XDP forwarding queue */
1721 		if (fp->type & QEDE_FASTPATH_XDP) {
1722 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1723 			if (rc)
1724 				return rc;
1725 
1726 			bpf_prog_put(fp->rxq->xdp_prog);
1727 		}
1728 	}
1729 
1730 	/* Stop the vport */
1731 	rc = edev->ops->vport_stop(cdev, 0);
1732 	if (rc)
1733 		DP_ERR(edev, "Failed to stop VPORT\n");
1734 
1735 	return rc;
1736 }
1737 
1738 static int qede_start_txq(struct qede_dev *edev,
1739 			  struct qede_fastpath *fp,
1740 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1741 {
1742 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1743 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1744 	struct qed_queue_start_common_params params;
1745 	struct qed_txq_start_ret_params ret_params;
1746 	int rc;
1747 
1748 	memset(&params, 0, sizeof(params));
1749 	memset(&ret_params, 0, sizeof(ret_params));
1750 
1751 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1752 	 * We don't really care about its coalescing.
1753 	 */
1754 	if (txq->is_xdp)
1755 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1756 	else
1757 		params.queue_id = txq->index;
1758 
1759 	params.p_sb = fp->sb_info;
1760 	params.sb_idx = sb_idx;
1761 
1762 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1763 				   page_cnt, &ret_params);
1764 	if (rc) {
1765 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1766 		return rc;
1767 	}
1768 
1769 	txq->doorbell_addr = ret_params.p_doorbell;
1770 	txq->handle = ret_params.p_handle;
1771 
1772 	/* Determine the FW consumer address associated */
1773 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1774 
1775 	/* Prepare the doorbell parameters */
1776 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1777 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1778 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1779 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1780 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1781 
1782 	return rc;
1783 }
1784 
1785 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1786 {
1787 	int vlan_removal_en = 1;
1788 	struct qed_dev *cdev = edev->cdev;
1789 	struct qed_dev_info *qed_info = &edev->dev_info.common;
1790 	struct qed_update_vport_params *vport_update_params;
1791 	struct qed_queue_start_common_params q_params;
1792 	struct qed_start_vport_params start = {0};
1793 	int rc, i;
1794 
1795 	if (!edev->num_queues) {
1796 		DP_ERR(edev,
1797 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1802 	if (!vport_update_params)
1803 		return -ENOMEM;
1804 
1805 	start.handle_ptp_pkts = !!(edev->ptp);
1806 	start.gro_enable = !edev->gro_disable;
1807 	start.mtu = edev->ndev->mtu;
1808 	start.vport_id = 0;
1809 	start.drop_ttl0 = true;
1810 	start.remove_inner_vlan = vlan_removal_en;
1811 	start.clear_stats = clear_stats;
1812 
1813 	rc = edev->ops->vport_start(cdev, &start);
1814 
1815 	if (rc) {
1816 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1817 		goto out;
1818 	}
1819 
1820 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1821 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1822 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1823 
1824 	for_each_queue(i) {
1825 		struct qede_fastpath *fp = &edev->fp_array[i];
1826 		dma_addr_t p_phys_table;
1827 		u32 page_cnt;
1828 
1829 		if (fp->type & QEDE_FASTPATH_RX) {
1830 			struct qed_rxq_start_ret_params ret_params;
1831 			struct qede_rx_queue *rxq = fp->rxq;
1832 			__le16 *val;
1833 
1834 			memset(&ret_params, 0, sizeof(ret_params));
1835 			memset(&q_params, 0, sizeof(q_params));
1836 			q_params.queue_id = rxq->rxq_id;
1837 			q_params.vport_id = 0;
1838 			q_params.p_sb = fp->sb_info;
1839 			q_params.sb_idx = RX_PI;
1840 
1841 			p_phys_table =
1842 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1843 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1844 
1845 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1846 						   rxq->rx_buf_size,
1847 						   rxq->rx_bd_ring.p_phys_addr,
1848 						   p_phys_table,
1849 						   page_cnt, &ret_params);
1850 			if (rc) {
1851 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1852 				       rc);
1853 				goto out;
1854 			}
1855 
1856 			/* Use the return parameters */
1857 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
1858 			rxq->handle = ret_params.p_handle;
1859 
1860 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1861 			rxq->hw_cons_ptr = val;
1862 
1863 			qede_update_rx_prod(edev, rxq);
1864 		}
1865 
1866 		if (fp->type & QEDE_FASTPATH_XDP) {
1867 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1868 			if (rc)
1869 				goto out;
1870 
1871 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1872 			if (IS_ERR(fp->rxq->xdp_prog)) {
1873 				rc = PTR_ERR(fp->rxq->xdp_prog);
1874 				fp->rxq->xdp_prog = NULL;
1875 				goto out;
1876 			}
1877 		}
1878 
1879 		if (fp->type & QEDE_FASTPATH_TX) {
1880 			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1881 			if (rc)
1882 				goto out;
1883 		}
1884 	}
1885 
1886 	/* Prepare and send the vport enable */
1887 	vport_update_params->vport_id = start.vport_id;
1888 	vport_update_params->update_vport_active_flg = 1;
1889 	vport_update_params->vport_active_flg = 1;
1890 
1891 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
1892 	    qed_info->tx_switching) {
1893 		vport_update_params->update_tx_switching_flg = 1;
1894 		vport_update_params->tx_switching_flg = 1;
1895 	}
1896 
1897 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
1898 			     &vport_update_params->update_rss_flg);
1899 
1900 	rc = edev->ops->vport_update(cdev, vport_update_params);
1901 	if (rc)
1902 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1903 
1904 out:
1905 	vfree(vport_update_params);
1906 	return rc;
1907 }
1908 
1909 enum qede_unload_mode {
1910 	QEDE_UNLOAD_NORMAL,
1911 };
1912 
1913 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1914 			bool is_locked)
1915 {
1916 	struct qed_link_params link_params;
1917 	int rc;
1918 
1919 	DP_INFO(edev, "Starting qede unload\n");
1920 
1921 	if (!is_locked)
1922 		__qede_lock(edev);
1923 
1924 	edev->state = QEDE_STATE_CLOSED;
1925 
1926 	qede_rdma_dev_event_close(edev);
1927 
1928 	/* Close OS Tx */
1929 	netif_tx_disable(edev->ndev);
1930 	netif_carrier_off(edev->ndev);
1931 
1932 	/* Reset the link */
1933 	memset(&link_params, 0, sizeof(link_params));
1934 	link_params.link_up = false;
1935 	edev->ops->common->set_link(edev->cdev, &link_params);
1936 	rc = qede_stop_queues(edev);
1937 	if (rc) {
1938 		qede_sync_free_irqs(edev);
1939 		goto out;
1940 	}
1941 
1942 	DP_INFO(edev, "Stopped Queues\n");
1943 
1944 	qede_vlan_mark_nonconfigured(edev);
1945 	edev->ops->fastpath_stop(edev->cdev);
1946 
1947 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1948 		qede_poll_for_freeing_arfs_filters(edev);
1949 		qede_free_arfs(edev);
1950 	}
1951 
1952 	/* Release the interrupts */
1953 	qede_sync_free_irqs(edev);
1954 	edev->ops->common->set_fp_int(edev->cdev, 0);
1955 
1956 	qede_napi_disable_remove(edev);
1957 
1958 	qede_free_mem_load(edev);
1959 	qede_free_fp_array(edev);
1960 
1961 out:
1962 	if (!is_locked)
1963 		__qede_unlock(edev);
1964 	DP_INFO(edev, "Ending qede unload\n");
1965 }
1966 
1967 enum qede_load_mode {
1968 	QEDE_LOAD_NORMAL,
1969 	QEDE_LOAD_RELOAD,
1970 };
1971 
1972 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
1973 		     bool is_locked)
1974 {
1975 	struct qed_link_params link_params;
1976 	int rc;
1977 
1978 	DP_INFO(edev, "Starting qede load\n");
1979 
1980 	if (!is_locked)
1981 		__qede_lock(edev);
1982 
1983 	rc = qede_set_num_queues(edev);
1984 	if (rc)
1985 		goto out;
1986 
1987 	rc = qede_alloc_fp_array(edev);
1988 	if (rc)
1989 		goto out;
1990 
1991 	qede_init_fp(edev);
1992 
1993 	rc = qede_alloc_mem_load(edev);
1994 	if (rc)
1995 		goto err1;
1996 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
1997 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
1998 
1999 	rc = qede_set_real_num_queues(edev);
2000 	if (rc)
2001 		goto err2;
2002 
2003 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2004 		rc = qede_alloc_arfs(edev);
2005 		if (rc)
2006 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2007 	}
2008 
2009 	qede_napi_add_enable(edev);
2010 	DP_INFO(edev, "Napi added and enabled\n");
2011 
2012 	rc = qede_setup_irqs(edev);
2013 	if (rc)
2014 		goto err3;
2015 	DP_INFO(edev, "Setup IRQs succeeded\n");
2016 
2017 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2018 	if (rc)
2019 		goto err4;
2020 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2021 
2022 	/* Program un-configured VLANs */
2023 	qede_configure_vlan_filters(edev);
2024 
2025 	/* Ask for link-up using current configuration */
2026 	memset(&link_params, 0, sizeof(link_params));
2027 	link_params.link_up = true;
2028 	edev->ops->common->set_link(edev->cdev, &link_params);
2029 
2030 	edev->state = QEDE_STATE_OPEN;
2031 
2032 	DP_INFO(edev, "Ending successfully qede load\n");
2033 
2034 	goto out;
2035 err4:
2036 	qede_sync_free_irqs(edev);
2037 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2038 err3:
2039 	qede_napi_disable_remove(edev);
2040 err2:
2041 	qede_free_mem_load(edev);
2042 err1:
2043 	edev->ops->common->set_fp_int(edev->cdev, 0);
2044 	qede_free_fp_array(edev);
2045 	edev->num_queues = 0;
2046 	edev->fp_num_tx = 0;
2047 	edev->fp_num_rx = 0;
2048 out:
2049 	if (!is_locked)
2050 		__qede_unlock(edev);
2051 
2052 	return rc;
2053 }
2054 
2055 /* 'func' should be able to run between unload and reload assuming interface
2056  * is actually running, or afterwards in case it's currently DOWN.
2057  */
2058 void qede_reload(struct qede_dev *edev,
2059 		 struct qede_reload_args *args, bool is_locked)
2060 {
2061 	if (!is_locked)
2062 		__qede_lock(edev);
2063 
2064 	/* Since qede_lock is held, internal state wouldn't change even
2065 	 * if netdev state would start transitioning. Check whether current
2066 	 * internal configuration indicates device is up, then reload.
2067 	 */
2068 	if (edev->state == QEDE_STATE_OPEN) {
2069 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2070 		if (args)
2071 			args->func(edev, args);
2072 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2073 
2074 		/* Since no one is going to do it for us, re-configure */
2075 		qede_config_rx_mode(edev->ndev);
2076 	} else if (args) {
2077 		args->func(edev, args);
2078 	}
2079 
2080 	if (!is_locked)
2081 		__qede_unlock(edev);
2082 }
2083 
2084 /* called with rtnl_lock */
2085 static int qede_open(struct net_device *ndev)
2086 {
2087 	struct qede_dev *edev = netdev_priv(ndev);
2088 	int rc;
2089 
2090 	netif_carrier_off(ndev);
2091 
2092 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2093 
2094 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2095 	if (rc)
2096 		return rc;
2097 
2098 	udp_tunnel_get_rx_info(ndev);
2099 
2100 	edev->ops->common->update_drv_state(edev->cdev, true);
2101 
2102 	return 0;
2103 }
2104 
2105 static int qede_close(struct net_device *ndev)
2106 {
2107 	struct qede_dev *edev = netdev_priv(ndev);
2108 
2109 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2110 
2111 	edev->ops->common->update_drv_state(edev->cdev, false);
2112 
2113 	return 0;
2114 }
2115 
2116 static void qede_link_update(void *dev, struct qed_link_output *link)
2117 {
2118 	struct qede_dev *edev = dev;
2119 
2120 	if (!netif_running(edev->ndev)) {
2121 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2122 		return;
2123 	}
2124 
2125 	if (link->link_up) {
2126 		if (!netif_carrier_ok(edev->ndev)) {
2127 			DP_NOTICE(edev, "Link is up\n");
2128 			netif_tx_start_all_queues(edev->ndev);
2129 			netif_carrier_on(edev->ndev);
2130 			qede_rdma_dev_event_open(edev);
2131 		}
2132 	} else {
2133 		if (netif_carrier_ok(edev->ndev)) {
2134 			DP_NOTICE(edev, "Link is down\n");
2135 			netif_tx_disable(edev->ndev);
2136 			netif_carrier_off(edev->ndev);
2137 			qede_rdma_dev_event_close(edev);
2138 		}
2139 	}
2140 }
2141 
2142 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2143 {
2144 	struct netdev_queue *netdev_txq;
2145 
2146 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
2147 	if (netif_xmit_stopped(netdev_txq))
2148 		return true;
2149 
2150 	return false;
2151 }
2152 
2153 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2154 {
2155 	struct qede_dev *edev = dev;
2156 	struct netdev_hw_addr *ha;
2157 	int i;
2158 
2159 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2160 		data->feat_flags |= QED_TLV_IP_CSUM;
2161 	if (edev->ndev->features & NETIF_F_TSO)
2162 		data->feat_flags |= QED_TLV_LSO;
2163 
2164 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2165 	memset(data->mac[1], 0, ETH_ALEN);
2166 	memset(data->mac[2], 0, ETH_ALEN);
2167 	/* Copy the first two UC macs */
2168 	netif_addr_lock_bh(edev->ndev);
2169 	i = 1;
2170 	netdev_for_each_uc_addr(ha, edev->ndev) {
2171 		ether_addr_copy(data->mac[i++], ha->addr);
2172 		if (i == QED_TLV_MAC_COUNT)
2173 			break;
2174 	}
2175 
2176 	netif_addr_unlock_bh(edev->ndev);
2177 }
2178 
2179 static void qede_get_eth_tlv_data(void *dev, void *data)
2180 {
2181 	struct qed_mfw_tlv_eth *etlv = data;
2182 	struct qede_dev *edev = dev;
2183 	struct qede_fastpath *fp;
2184 	int i;
2185 
2186 	etlv->lso_maxoff_size = 0XFFFF;
2187 	etlv->lso_maxoff_size_set = true;
2188 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2189 	etlv->lso_minseg_size_set = true;
2190 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2191 	etlv->prom_mode_set = true;
2192 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2193 	etlv->tx_descr_size_set = true;
2194 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2195 	etlv->rx_descr_size_set = true;
2196 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2197 	etlv->iov_offload_set = true;
2198 
2199 	/* Fill information regarding queues; Should be done under the qede
2200 	 * lock to guarantee those don't change beneath our feet.
2201 	 */
2202 	etlv->txqs_empty = true;
2203 	etlv->rxqs_empty = true;
2204 	etlv->num_txqs_full = 0;
2205 	etlv->num_rxqs_full = 0;
2206 
2207 	__qede_lock(edev);
2208 	for_each_queue(i) {
2209 		fp = &edev->fp_array[i];
2210 		if (fp->type & QEDE_FASTPATH_TX) {
2211 			if (fp->txq->sw_tx_cons != fp->txq->sw_tx_prod)
2212 				etlv->txqs_empty = false;
2213 			if (qede_is_txq_full(edev, fp->txq))
2214 				etlv->num_txqs_full++;
2215 		}
2216 		if (fp->type & QEDE_FASTPATH_RX) {
2217 			if (qede_has_rx_work(fp->rxq))
2218 				etlv->rxqs_empty = false;
2219 
2220 			/* This one is a bit tricky; Firmware might stop
2221 			 * placing packets if ring is not yet full.
2222 			 * Give an approximation.
2223 			 */
2224 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2225 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2226 			    RX_RING_SIZE - 100)
2227 				etlv->num_rxqs_full++;
2228 		}
2229 	}
2230 	__qede_unlock(edev);
2231 
2232 	etlv->txqs_empty_set = true;
2233 	etlv->rxqs_empty_set = true;
2234 	etlv->num_txqs_full_set = true;
2235 	etlv->num_rxqs_full_set = true;
2236 }
2237