xref: /openbmc/linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/version.h>
11 #include <linux/device.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/skbuff.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/string.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <asm/byteorder.h>
21 #include <asm/param.h>
22 #include <linux/io.h>
23 #include <linux/netdev_features.h>
24 #include <linux/udp.h>
25 #include <linux/tcp.h>
26 #include <net/udp_tunnel.h>
27 #include <linux/ip.h>
28 #include <net/ipv6.h>
29 #include <net/tcp.h>
30 #include <linux/if_ether.h>
31 #include <linux/if_vlan.h>
32 #include <linux/pkt_sched.h>
33 #include <linux/ethtool.h>
34 #include <linux/in.h>
35 #include <linux/random.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/bitops.h>
38 #include <linux/vmalloc.h>
39 #include <linux/aer.h>
40 #include "qede.h"
41 #include "qede_ptp.h"
42 
43 static char version[] =
44 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
45 
46 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
47 MODULE_LICENSE("GPL");
48 MODULE_VERSION(DRV_MODULE_VERSION);
49 
50 static uint debug;
51 module_param(debug, uint, 0);
52 MODULE_PARM_DESC(debug, " Default debug msglevel");
53 
54 static const struct qed_eth_ops *qed_ops;
55 
56 #define CHIP_NUM_57980S_40		0x1634
57 #define CHIP_NUM_57980S_10		0x1666
58 #define CHIP_NUM_57980S_MF		0x1636
59 #define CHIP_NUM_57980S_100		0x1644
60 #define CHIP_NUM_57980S_50		0x1654
61 #define CHIP_NUM_57980S_25		0x1656
62 #define CHIP_NUM_57980S_IOV		0x1664
63 #define CHIP_NUM_AH			0x8070
64 #define CHIP_NUM_AH_IOV			0x8090
65 
66 #ifndef PCI_DEVICE_ID_NX2_57980E
67 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
68 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
69 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
70 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
71 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
72 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
73 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
74 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
75 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
76 
77 #endif
78 
79 enum qede_pci_private {
80 	QEDE_PRIVATE_PF,
81 	QEDE_PRIVATE_VF
82 };
83 
84 static const struct pci_device_id qede_pci_tbl[] = {
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
91 #ifdef CONFIG_QED_SRIOV
92 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
93 #endif
94 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
95 #ifdef CONFIG_QED_SRIOV
96 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
97 #endif
98 	{ 0 }
99 };
100 
101 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
102 
103 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
104 static pci_ers_result_t
105 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
106 
107 #define TX_TIMEOUT		(5 * HZ)
108 
109 /* Utilize last protocol index for XDP */
110 #define XDP_PI	11
111 
112 static void qede_remove(struct pci_dev *pdev);
113 static void qede_shutdown(struct pci_dev *pdev);
114 static void qede_link_update(void *dev, struct qed_link_output *link);
115 static void qede_schedule_recovery_handler(void *dev);
116 static void qede_recovery_handler(struct qede_dev *edev);
117 static void qede_schedule_hw_err_handler(void *dev,
118 					 enum qed_hw_err_type err_type);
119 static void qede_get_eth_tlv_data(void *edev, void *data);
120 static void qede_get_generic_tlv_data(void *edev,
121 				      struct qed_generic_tlvs *data);
122 static void qede_generic_hw_err_handler(struct qede_dev *edev);
123 #ifdef CONFIG_QED_SRIOV
124 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
125 			    __be16 vlan_proto)
126 {
127 	struct qede_dev *edev = netdev_priv(ndev);
128 
129 	if (vlan > 4095) {
130 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
131 		return -EINVAL;
132 	}
133 
134 	if (vlan_proto != htons(ETH_P_8021Q))
135 		return -EPROTONOSUPPORT;
136 
137 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
138 		   vlan, vf);
139 
140 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
141 }
142 
143 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
144 {
145 	struct qede_dev *edev = netdev_priv(ndev);
146 
147 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
148 
149 	if (!is_valid_ether_addr(mac)) {
150 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
151 		return -EINVAL;
152 	}
153 
154 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
155 }
156 
157 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
158 {
159 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
160 	struct qed_dev_info *qed_info = &edev->dev_info.common;
161 	struct qed_update_vport_params *vport_params;
162 	int rc;
163 
164 	vport_params = vzalloc(sizeof(*vport_params));
165 	if (!vport_params)
166 		return -ENOMEM;
167 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
168 
169 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
170 
171 	/* Enable/Disable Tx switching for PF */
172 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
173 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
174 		vport_params->vport_id = 0;
175 		vport_params->update_tx_switching_flg = 1;
176 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
177 		edev->ops->vport_update(edev->cdev, vport_params);
178 	}
179 
180 	vfree(vport_params);
181 	return rc;
182 }
183 #endif
184 
185 static const struct pci_error_handlers qede_err_handler = {
186 	.error_detected = qede_io_error_detected,
187 };
188 
189 static struct pci_driver qede_pci_driver = {
190 	.name = "qede",
191 	.id_table = qede_pci_tbl,
192 	.probe = qede_probe,
193 	.remove = qede_remove,
194 	.shutdown = qede_shutdown,
195 #ifdef CONFIG_QED_SRIOV
196 	.sriov_configure = qede_sriov_configure,
197 #endif
198 	.err_handler = &qede_err_handler,
199 };
200 
201 static struct qed_eth_cb_ops qede_ll_ops = {
202 	{
203 #ifdef CONFIG_RFS_ACCEL
204 		.arfs_filter_op = qede_arfs_filter_op,
205 #endif
206 		.link_update = qede_link_update,
207 		.schedule_recovery_handler = qede_schedule_recovery_handler,
208 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
209 		.get_generic_tlv_data = qede_get_generic_tlv_data,
210 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
211 	},
212 	.force_mac = qede_force_mac,
213 	.ports_update = qede_udp_ports_update,
214 };
215 
216 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
217 			     void *ptr)
218 {
219 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
220 	struct ethtool_drvinfo drvinfo;
221 	struct qede_dev *edev;
222 
223 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
224 		goto done;
225 
226 	/* Check whether this is a qede device */
227 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
228 		goto done;
229 
230 	memset(&drvinfo, 0, sizeof(drvinfo));
231 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
232 	if (strcmp(drvinfo.driver, "qede"))
233 		goto done;
234 	edev = netdev_priv(ndev);
235 
236 	switch (event) {
237 	case NETDEV_CHANGENAME:
238 		/* Notify qed of the name change */
239 		if (!edev->ops || !edev->ops->common)
240 			goto done;
241 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
242 		break;
243 	case NETDEV_CHANGEADDR:
244 		edev = netdev_priv(ndev);
245 		qede_rdma_event_changeaddr(edev);
246 		break;
247 	}
248 
249 done:
250 	return NOTIFY_DONE;
251 }
252 
253 static struct notifier_block qede_netdev_notifier = {
254 	.notifier_call = qede_netdev_event,
255 };
256 
257 static
258 int __init qede_init(void)
259 {
260 	int ret;
261 
262 	pr_info("qede_init: %s\n", version);
263 
264 	qede_forced_speed_maps_init();
265 
266 	qed_ops = qed_get_eth_ops();
267 	if (!qed_ops) {
268 		pr_notice("Failed to get qed ethtool operations\n");
269 		return -EINVAL;
270 	}
271 
272 	/* Must register notifier before pci ops, since we might miss
273 	 * interface rename after pci probe and netdev registration.
274 	 */
275 	ret = register_netdevice_notifier(&qede_netdev_notifier);
276 	if (ret) {
277 		pr_notice("Failed to register netdevice_notifier\n");
278 		qed_put_eth_ops();
279 		return -EINVAL;
280 	}
281 
282 	ret = pci_register_driver(&qede_pci_driver);
283 	if (ret) {
284 		pr_notice("Failed to register driver\n");
285 		unregister_netdevice_notifier(&qede_netdev_notifier);
286 		qed_put_eth_ops();
287 		return -EINVAL;
288 	}
289 
290 	return 0;
291 }
292 
293 static void __exit qede_cleanup(void)
294 {
295 	if (debug & QED_LOG_INFO_MASK)
296 		pr_info("qede_cleanup called\n");
297 
298 	unregister_netdevice_notifier(&qede_netdev_notifier);
299 	pci_unregister_driver(&qede_pci_driver);
300 	qed_put_eth_ops();
301 }
302 
303 module_init(qede_init);
304 module_exit(qede_cleanup);
305 
306 static int qede_open(struct net_device *ndev);
307 static int qede_close(struct net_device *ndev);
308 
309 void qede_fill_by_demand_stats(struct qede_dev *edev)
310 {
311 	struct qede_stats_common *p_common = &edev->stats.common;
312 	struct qed_eth_stats stats;
313 
314 	edev->ops->get_vport_stats(edev->cdev, &stats);
315 
316 	p_common->no_buff_discards = stats.common.no_buff_discards;
317 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
318 	p_common->ttl0_discard = stats.common.ttl0_discard;
319 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
320 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
321 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
322 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
323 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
324 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
325 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
326 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
327 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
328 
329 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
330 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
331 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
332 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
333 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
334 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
335 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
336 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
337 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
338 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
339 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
340 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
341 
342 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
343 	p_common->rx_65_to_127_byte_packets =
344 	    stats.common.rx_65_to_127_byte_packets;
345 	p_common->rx_128_to_255_byte_packets =
346 	    stats.common.rx_128_to_255_byte_packets;
347 	p_common->rx_256_to_511_byte_packets =
348 	    stats.common.rx_256_to_511_byte_packets;
349 	p_common->rx_512_to_1023_byte_packets =
350 	    stats.common.rx_512_to_1023_byte_packets;
351 	p_common->rx_1024_to_1518_byte_packets =
352 	    stats.common.rx_1024_to_1518_byte_packets;
353 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
354 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
355 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
356 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
357 	p_common->rx_align_errors = stats.common.rx_align_errors;
358 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
359 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
360 	p_common->rx_jabbers = stats.common.rx_jabbers;
361 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
362 	p_common->rx_fragments = stats.common.rx_fragments;
363 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
364 	p_common->tx_65_to_127_byte_packets =
365 	    stats.common.tx_65_to_127_byte_packets;
366 	p_common->tx_128_to_255_byte_packets =
367 	    stats.common.tx_128_to_255_byte_packets;
368 	p_common->tx_256_to_511_byte_packets =
369 	    stats.common.tx_256_to_511_byte_packets;
370 	p_common->tx_512_to_1023_byte_packets =
371 	    stats.common.tx_512_to_1023_byte_packets;
372 	p_common->tx_1024_to_1518_byte_packets =
373 	    stats.common.tx_1024_to_1518_byte_packets;
374 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
375 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
376 	p_common->brb_truncates = stats.common.brb_truncates;
377 	p_common->brb_discards = stats.common.brb_discards;
378 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
379 	p_common->link_change_count = stats.common.link_change_count;
380 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
381 
382 	if (QEDE_IS_BB(edev)) {
383 		struct qede_stats_bb *p_bb = &edev->stats.bb;
384 
385 		p_bb->rx_1519_to_1522_byte_packets =
386 		    stats.bb.rx_1519_to_1522_byte_packets;
387 		p_bb->rx_1519_to_2047_byte_packets =
388 		    stats.bb.rx_1519_to_2047_byte_packets;
389 		p_bb->rx_2048_to_4095_byte_packets =
390 		    stats.bb.rx_2048_to_4095_byte_packets;
391 		p_bb->rx_4096_to_9216_byte_packets =
392 		    stats.bb.rx_4096_to_9216_byte_packets;
393 		p_bb->rx_9217_to_16383_byte_packets =
394 		    stats.bb.rx_9217_to_16383_byte_packets;
395 		p_bb->tx_1519_to_2047_byte_packets =
396 		    stats.bb.tx_1519_to_2047_byte_packets;
397 		p_bb->tx_2048_to_4095_byte_packets =
398 		    stats.bb.tx_2048_to_4095_byte_packets;
399 		p_bb->tx_4096_to_9216_byte_packets =
400 		    stats.bb.tx_4096_to_9216_byte_packets;
401 		p_bb->tx_9217_to_16383_byte_packets =
402 		    stats.bb.tx_9217_to_16383_byte_packets;
403 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
404 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
405 	} else {
406 		struct qede_stats_ah *p_ah = &edev->stats.ah;
407 
408 		p_ah->rx_1519_to_max_byte_packets =
409 		    stats.ah.rx_1519_to_max_byte_packets;
410 		p_ah->tx_1519_to_max_byte_packets =
411 		    stats.ah.tx_1519_to_max_byte_packets;
412 	}
413 }
414 
415 static void qede_get_stats64(struct net_device *dev,
416 			     struct rtnl_link_stats64 *stats)
417 {
418 	struct qede_dev *edev = netdev_priv(dev);
419 	struct qede_stats_common *p_common;
420 
421 	qede_fill_by_demand_stats(edev);
422 	p_common = &edev->stats.common;
423 
424 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
425 			    p_common->rx_bcast_pkts;
426 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
427 			    p_common->tx_bcast_pkts;
428 
429 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
430 			  p_common->rx_bcast_bytes;
431 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
432 			  p_common->tx_bcast_bytes;
433 
434 	stats->tx_errors = p_common->tx_err_drop_pkts;
435 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
436 
437 	stats->rx_fifo_errors = p_common->no_buff_discards;
438 
439 	if (QEDE_IS_BB(edev))
440 		stats->collisions = edev->stats.bb.tx_total_collisions;
441 	stats->rx_crc_errors = p_common->rx_crc_errors;
442 	stats->rx_frame_errors = p_common->rx_align_errors;
443 }
444 
445 #ifdef CONFIG_QED_SRIOV
446 static int qede_get_vf_config(struct net_device *dev, int vfidx,
447 			      struct ifla_vf_info *ivi)
448 {
449 	struct qede_dev *edev = netdev_priv(dev);
450 
451 	if (!edev->ops)
452 		return -EINVAL;
453 
454 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
455 }
456 
457 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
458 			    int min_tx_rate, int max_tx_rate)
459 {
460 	struct qede_dev *edev = netdev_priv(dev);
461 
462 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
463 					max_tx_rate);
464 }
465 
466 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
467 {
468 	struct qede_dev *edev = netdev_priv(dev);
469 
470 	if (!edev->ops)
471 		return -EINVAL;
472 
473 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
474 }
475 
476 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
477 				  int link_state)
478 {
479 	struct qede_dev *edev = netdev_priv(dev);
480 
481 	if (!edev->ops)
482 		return -EINVAL;
483 
484 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
485 }
486 
487 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
488 {
489 	struct qede_dev *edev = netdev_priv(dev);
490 
491 	if (!edev->ops)
492 		return -EINVAL;
493 
494 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
495 }
496 #endif
497 
498 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
499 {
500 	struct qede_dev *edev = netdev_priv(dev);
501 
502 	if (!netif_running(dev))
503 		return -EAGAIN;
504 
505 	switch (cmd) {
506 	case SIOCSHWTSTAMP:
507 		return qede_ptp_hw_ts(edev, ifr);
508 	default:
509 		DP_VERBOSE(edev, QED_MSG_DEBUG,
510 			   "default IOCTL cmd 0x%x\n", cmd);
511 		return -EOPNOTSUPP;
512 	}
513 
514 	return 0;
515 }
516 
517 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
518 {
519 	DP_NOTICE(edev,
520 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
521 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
522 		  qed_chain_get_cons_idx(&txq->tx_pbl),
523 		  qed_chain_get_prod_idx(&txq->tx_pbl),
524 		  jiffies);
525 }
526 
527 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
528 {
529 	struct qede_dev *edev = netdev_priv(dev);
530 	struct qede_tx_queue *txq;
531 	int cos;
532 
533 	netif_carrier_off(dev);
534 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
535 
536 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
537 		return;
538 
539 	for_each_cos_in_txq(edev, cos) {
540 		txq = &edev->fp_array[txqueue].txq[cos];
541 
542 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
543 		    qed_chain_get_prod_idx(&txq->tx_pbl))
544 			qede_tx_log_print(edev, txq);
545 	}
546 
547 	if (IS_VF(edev))
548 		return;
549 
550 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
551 	    edev->state == QEDE_STATE_RECOVERY) {
552 		DP_INFO(edev,
553 			"Avoid handling a Tx timeout while another HW error is being handled\n");
554 		return;
555 	}
556 
557 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
558 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
559 	schedule_delayed_work(&edev->sp_task, 0);
560 }
561 
562 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
563 {
564 	struct qede_dev *edev = netdev_priv(ndev);
565 	int cos, count, offset;
566 
567 	if (num_tc > edev->dev_info.num_tc)
568 		return -EINVAL;
569 
570 	netdev_reset_tc(ndev);
571 	netdev_set_num_tc(ndev, num_tc);
572 
573 	for_each_cos_in_txq(edev, cos) {
574 		count = QEDE_TSS_COUNT(edev);
575 		offset = cos * QEDE_TSS_COUNT(edev);
576 		netdev_set_tc_queue(ndev, cos, count, offset);
577 	}
578 
579 	return 0;
580 }
581 
582 static int
583 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
584 		__be16 proto)
585 {
586 	switch (f->command) {
587 	case FLOW_CLS_REPLACE:
588 		return qede_add_tc_flower_fltr(edev, proto, f);
589 	case FLOW_CLS_DESTROY:
590 		return qede_delete_flow_filter(edev, f->cookie);
591 	default:
592 		return -EOPNOTSUPP;
593 	}
594 }
595 
596 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
597 				  void *cb_priv)
598 {
599 	struct flow_cls_offload *f;
600 	struct qede_dev *edev = cb_priv;
601 
602 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
603 		return -EOPNOTSUPP;
604 
605 	switch (type) {
606 	case TC_SETUP_CLSFLOWER:
607 		f = type_data;
608 		return qede_set_flower(edev, f, f->common.protocol);
609 	default:
610 		return -EOPNOTSUPP;
611 	}
612 }
613 
614 static LIST_HEAD(qede_block_cb_list);
615 
616 static int
617 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
618 		      void *type_data)
619 {
620 	struct qede_dev *edev = netdev_priv(dev);
621 	struct tc_mqprio_qopt *mqprio;
622 
623 	switch (type) {
624 	case TC_SETUP_BLOCK:
625 		return flow_block_cb_setup_simple(type_data,
626 						  &qede_block_cb_list,
627 						  qede_setup_tc_block_cb,
628 						  edev, edev, true);
629 	case TC_SETUP_QDISC_MQPRIO:
630 		mqprio = type_data;
631 
632 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
633 		return qede_setup_tc(dev, mqprio->num_tc);
634 	default:
635 		return -EOPNOTSUPP;
636 	}
637 }
638 
639 static const struct net_device_ops qede_netdev_ops = {
640 	.ndo_open		= qede_open,
641 	.ndo_stop		= qede_close,
642 	.ndo_start_xmit		= qede_start_xmit,
643 	.ndo_select_queue	= qede_select_queue,
644 	.ndo_set_rx_mode	= qede_set_rx_mode,
645 	.ndo_set_mac_address	= qede_set_mac_addr,
646 	.ndo_validate_addr	= eth_validate_addr,
647 	.ndo_change_mtu		= qede_change_mtu,
648 	.ndo_do_ioctl		= qede_ioctl,
649 	.ndo_tx_timeout		= qede_tx_timeout,
650 #ifdef CONFIG_QED_SRIOV
651 	.ndo_set_vf_mac		= qede_set_vf_mac,
652 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
653 	.ndo_set_vf_trust	= qede_set_vf_trust,
654 #endif
655 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
656 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
657 	.ndo_fix_features	= qede_fix_features,
658 	.ndo_set_features	= qede_set_features,
659 	.ndo_get_stats64	= qede_get_stats64,
660 #ifdef CONFIG_QED_SRIOV
661 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
662 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
663 	.ndo_get_vf_config	= qede_get_vf_config,
664 	.ndo_set_vf_rate	= qede_set_vf_rate,
665 #endif
666 	.ndo_features_check	= qede_features_check,
667 	.ndo_bpf		= qede_xdp,
668 #ifdef CONFIG_RFS_ACCEL
669 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
670 #endif
671 	.ndo_xdp_xmit		= qede_xdp_transmit,
672 	.ndo_setup_tc		= qede_setup_tc_offload,
673 };
674 
675 static const struct net_device_ops qede_netdev_vf_ops = {
676 	.ndo_open		= qede_open,
677 	.ndo_stop		= qede_close,
678 	.ndo_start_xmit		= qede_start_xmit,
679 	.ndo_select_queue	= qede_select_queue,
680 	.ndo_set_rx_mode	= qede_set_rx_mode,
681 	.ndo_set_mac_address	= qede_set_mac_addr,
682 	.ndo_validate_addr	= eth_validate_addr,
683 	.ndo_change_mtu		= qede_change_mtu,
684 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
685 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
686 	.ndo_fix_features	= qede_fix_features,
687 	.ndo_set_features	= qede_set_features,
688 	.ndo_get_stats64	= qede_get_stats64,
689 	.ndo_features_check	= qede_features_check,
690 };
691 
692 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
693 	.ndo_open		= qede_open,
694 	.ndo_stop		= qede_close,
695 	.ndo_start_xmit		= qede_start_xmit,
696 	.ndo_select_queue	= qede_select_queue,
697 	.ndo_set_rx_mode	= qede_set_rx_mode,
698 	.ndo_set_mac_address	= qede_set_mac_addr,
699 	.ndo_validate_addr	= eth_validate_addr,
700 	.ndo_change_mtu		= qede_change_mtu,
701 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
702 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
703 	.ndo_fix_features	= qede_fix_features,
704 	.ndo_set_features	= qede_set_features,
705 	.ndo_get_stats64	= qede_get_stats64,
706 	.ndo_features_check	= qede_features_check,
707 	.ndo_bpf		= qede_xdp,
708 	.ndo_xdp_xmit		= qede_xdp_transmit,
709 };
710 
711 /* -------------------------------------------------------------------------
712  * START OF PROBE / REMOVE
713  * -------------------------------------------------------------------------
714  */
715 
716 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
717 					    struct pci_dev *pdev,
718 					    struct qed_dev_eth_info *info,
719 					    u32 dp_module, u8 dp_level)
720 {
721 	struct net_device *ndev;
722 	struct qede_dev *edev;
723 
724 	ndev = alloc_etherdev_mqs(sizeof(*edev),
725 				  info->num_queues * info->num_tc,
726 				  info->num_queues);
727 	if (!ndev) {
728 		pr_err("etherdev allocation failed\n");
729 		return NULL;
730 	}
731 
732 	edev = netdev_priv(ndev);
733 	edev->ndev = ndev;
734 	edev->cdev = cdev;
735 	edev->pdev = pdev;
736 	edev->dp_module = dp_module;
737 	edev->dp_level = dp_level;
738 	edev->ops = qed_ops;
739 
740 	if (is_kdump_kernel()) {
741 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
742 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
743 	} else {
744 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
745 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
746 	}
747 
748 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
749 		info->num_queues, info->num_queues);
750 
751 	SET_NETDEV_DEV(ndev, &pdev->dev);
752 
753 	memset(&edev->stats, 0, sizeof(edev->stats));
754 	memcpy(&edev->dev_info, info, sizeof(*info));
755 
756 	/* As ethtool doesn't have the ability to show WoL behavior as
757 	 * 'default', if device supports it declare it's enabled.
758 	 */
759 	if (edev->dev_info.common.wol_support)
760 		edev->wol_enabled = true;
761 
762 	INIT_LIST_HEAD(&edev->vlan_list);
763 
764 	return edev;
765 }
766 
767 static void qede_init_ndev(struct qede_dev *edev)
768 {
769 	struct net_device *ndev = edev->ndev;
770 	struct pci_dev *pdev = edev->pdev;
771 	bool udp_tunnel_enable = false;
772 	netdev_features_t hw_features;
773 
774 	pci_set_drvdata(pdev, ndev);
775 
776 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
777 	ndev->base_addr = ndev->mem_start;
778 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
779 	ndev->irq = edev->dev_info.common.pci_irq;
780 
781 	ndev->watchdog_timeo = TX_TIMEOUT;
782 
783 	if (IS_VF(edev)) {
784 		if (edev->dev_info.xdp_supported)
785 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
786 		else
787 			ndev->netdev_ops = &qede_netdev_vf_ops;
788 	} else {
789 		ndev->netdev_ops = &qede_netdev_ops;
790 	}
791 
792 	qede_set_ethtool_ops(ndev);
793 
794 	ndev->priv_flags |= IFF_UNICAST_FLT;
795 
796 	/* user-changeble features */
797 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
798 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
799 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
800 
801 	if (edev->dev_info.common.b_arfs_capable)
802 		hw_features |= NETIF_F_NTUPLE;
803 
804 	if (edev->dev_info.common.vxlan_enable ||
805 	    edev->dev_info.common.geneve_enable)
806 		udp_tunnel_enable = true;
807 
808 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
809 		hw_features |= NETIF_F_TSO_ECN;
810 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
811 					NETIF_F_SG | NETIF_F_TSO |
812 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
813 					NETIF_F_RXCSUM;
814 	}
815 
816 	if (udp_tunnel_enable) {
817 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
818 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
819 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
820 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
821 
822 		qede_set_udp_tunnels(edev);
823 	}
824 
825 	if (edev->dev_info.common.gre_enable) {
826 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
827 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
828 					  NETIF_F_GSO_GRE_CSUM);
829 	}
830 
831 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
832 			      NETIF_F_HIGHDMA;
833 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
834 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
835 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
836 
837 	ndev->hw_features = hw_features;
838 
839 	/* MTU range: 46 - 9600 */
840 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
841 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
842 
843 	/* Set network device HW mac */
844 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
845 
846 	ndev->mtu = edev->dev_info.common.mtu;
847 }
848 
849 /* This function converts from 32b param to two params of level and module
850  * Input 32b decoding:
851  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
852  * 'happy' flow, e.g. memory allocation failed.
853  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
854  * and provide important parameters.
855  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
856  * module. VERBOSE prints are for tracking the specific flow in low level.
857  *
858  * Notice that the level should be that of the lowest required logs.
859  */
860 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
861 {
862 	*p_dp_level = QED_LEVEL_NOTICE;
863 	*p_dp_module = 0;
864 
865 	if (debug & QED_LOG_VERBOSE_MASK) {
866 		*p_dp_level = QED_LEVEL_VERBOSE;
867 		*p_dp_module = (debug & 0x3FFFFFFF);
868 	} else if (debug & QED_LOG_INFO_MASK) {
869 		*p_dp_level = QED_LEVEL_INFO;
870 	} else if (debug & QED_LOG_NOTICE_MASK) {
871 		*p_dp_level = QED_LEVEL_NOTICE;
872 	}
873 }
874 
875 static void qede_free_fp_array(struct qede_dev *edev)
876 {
877 	if (edev->fp_array) {
878 		struct qede_fastpath *fp;
879 		int i;
880 
881 		for_each_queue(i) {
882 			fp = &edev->fp_array[i];
883 
884 			kfree(fp->sb_info);
885 			/* Handle mem alloc failure case where qede_init_fp
886 			 * didn't register xdp_rxq_info yet.
887 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
888 			 */
889 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
890 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
891 			kfree(fp->rxq);
892 			kfree(fp->xdp_tx);
893 			kfree(fp->txq);
894 		}
895 		kfree(edev->fp_array);
896 	}
897 
898 	edev->num_queues = 0;
899 	edev->fp_num_tx = 0;
900 	edev->fp_num_rx = 0;
901 }
902 
903 static int qede_alloc_fp_array(struct qede_dev *edev)
904 {
905 	u8 fp_combined, fp_rx = edev->fp_num_rx;
906 	struct qede_fastpath *fp;
907 	void *mem;
908 	int i;
909 
910 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
911 				 sizeof(*edev->fp_array), GFP_KERNEL);
912 	if (!edev->fp_array) {
913 		DP_NOTICE(edev, "fp array allocation failed\n");
914 		goto err;
915 	}
916 
917 	mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
918 		       sizeof(*edev->coal_entry), GFP_KERNEL);
919 	if (!mem) {
920 		DP_ERR(edev, "coalesce entry allocation failed\n");
921 		kfree(edev->coal_entry);
922 		goto err;
923 	}
924 	edev->coal_entry = mem;
925 
926 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
927 
928 	/* Allocate the FP elements for Rx queues followed by combined and then
929 	 * the Tx. This ordering should be maintained so that the respective
930 	 * queues (Rx or Tx) will be together in the fastpath array and the
931 	 * associated ids will be sequential.
932 	 */
933 	for_each_queue(i) {
934 		fp = &edev->fp_array[i];
935 
936 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
937 		if (!fp->sb_info) {
938 			DP_NOTICE(edev, "sb info struct allocation failed\n");
939 			goto err;
940 		}
941 
942 		if (fp_rx) {
943 			fp->type = QEDE_FASTPATH_RX;
944 			fp_rx--;
945 		} else if (fp_combined) {
946 			fp->type = QEDE_FASTPATH_COMBINED;
947 			fp_combined--;
948 		} else {
949 			fp->type = QEDE_FASTPATH_TX;
950 		}
951 
952 		if (fp->type & QEDE_FASTPATH_TX) {
953 			fp->txq = kcalloc(edev->dev_info.num_tc,
954 					  sizeof(*fp->txq), GFP_KERNEL);
955 			if (!fp->txq)
956 				goto err;
957 		}
958 
959 		if (fp->type & QEDE_FASTPATH_RX) {
960 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
961 			if (!fp->rxq)
962 				goto err;
963 
964 			if (edev->xdp_prog) {
965 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
966 						     GFP_KERNEL);
967 				if (!fp->xdp_tx)
968 					goto err;
969 				fp->type |= QEDE_FASTPATH_XDP;
970 			}
971 		}
972 	}
973 
974 	return 0;
975 err:
976 	qede_free_fp_array(edev);
977 	return -ENOMEM;
978 }
979 
980 /* The qede lock is used to protect driver state change and driver flows that
981  * are not reentrant.
982  */
983 void __qede_lock(struct qede_dev *edev)
984 {
985 	mutex_lock(&edev->qede_lock);
986 }
987 
988 void __qede_unlock(struct qede_dev *edev)
989 {
990 	mutex_unlock(&edev->qede_lock);
991 }
992 
993 /* This version of the lock should be used when acquiring the RTNL lock is also
994  * needed in addition to the internal qede lock.
995  */
996 static void qede_lock(struct qede_dev *edev)
997 {
998 	rtnl_lock();
999 	__qede_lock(edev);
1000 }
1001 
1002 static void qede_unlock(struct qede_dev *edev)
1003 {
1004 	__qede_unlock(edev);
1005 	rtnl_unlock();
1006 }
1007 
1008 static void qede_sp_task(struct work_struct *work)
1009 {
1010 	struct qede_dev *edev = container_of(work, struct qede_dev,
1011 					     sp_task.work);
1012 
1013 	/* The locking scheme depends on the specific flag:
1014 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1015 	 * ensure that ongoing flows are ended and new ones are not started.
1016 	 * In other cases - only the internal qede lock should be acquired.
1017 	 */
1018 
1019 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1020 #ifdef CONFIG_QED_SRIOV
1021 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1022 		 * The recovery of the active VFs is currently not supported.
1023 		 */
1024 		if (pci_num_vf(edev->pdev))
1025 			qede_sriov_configure(edev->pdev, 0);
1026 #endif
1027 		qede_lock(edev);
1028 		qede_recovery_handler(edev);
1029 		qede_unlock(edev);
1030 	}
1031 
1032 	__qede_lock(edev);
1033 
1034 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1035 		if (edev->state == QEDE_STATE_OPEN)
1036 			qede_config_rx_mode(edev->ndev);
1037 
1038 #ifdef CONFIG_RFS_ACCEL
1039 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1040 		if (edev->state == QEDE_STATE_OPEN)
1041 			qede_process_arfs_filters(edev, false);
1042 	}
1043 #endif
1044 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1045 		qede_generic_hw_err_handler(edev);
1046 	__qede_unlock(edev);
1047 
1048 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1049 #ifdef CONFIG_QED_SRIOV
1050 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1051 		 * The recovery of the active VFs is currently not supported.
1052 		 */
1053 		if (pci_num_vf(edev->pdev))
1054 			qede_sriov_configure(edev->pdev, 0);
1055 #endif
1056 		edev->ops->common->recovery_process(edev->cdev);
1057 	}
1058 }
1059 
1060 static void qede_update_pf_params(struct qed_dev *cdev)
1061 {
1062 	struct qed_pf_params pf_params;
1063 	u16 num_cons;
1064 
1065 	/* 64 rx + 64 tx + 64 XDP */
1066 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1067 
1068 	/* 1 rx + 1 xdp + max tx cos */
1069 	num_cons = QED_MIN_L2_CONS;
1070 
1071 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1072 
1073 	/* Same for VFs - make sure they'll have sufficient connections
1074 	 * to support XDP Tx queues.
1075 	 */
1076 	pf_params.eth_pf_params.num_vf_cons = 48;
1077 
1078 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1079 	qed_ops->common->update_pf_params(cdev, &pf_params);
1080 }
1081 
1082 #define QEDE_FW_VER_STR_SIZE	80
1083 
1084 static void qede_log_probe(struct qede_dev *edev)
1085 {
1086 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1087 	u8 buf[QEDE_FW_VER_STR_SIZE];
1088 	size_t left_size;
1089 
1090 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1091 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1092 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1093 		 p_dev_info->fw_eng,
1094 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1095 		 QED_MFW_VERSION_3_OFFSET,
1096 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1097 		 QED_MFW_VERSION_2_OFFSET,
1098 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1099 		 QED_MFW_VERSION_1_OFFSET,
1100 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1101 		 QED_MFW_VERSION_0_OFFSET);
1102 
1103 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1104 	if (p_dev_info->mbi_version && left_size)
1105 		snprintf(buf + strlen(buf), left_size,
1106 			 " [MBI %d.%d.%d]",
1107 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1108 			 QED_MBI_VERSION_2_OFFSET,
1109 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1110 			 QED_MBI_VERSION_1_OFFSET,
1111 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1112 			 QED_MBI_VERSION_0_OFFSET);
1113 
1114 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1115 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1116 		buf, edev->ndev->name);
1117 }
1118 
1119 enum qede_probe_mode {
1120 	QEDE_PROBE_NORMAL,
1121 	QEDE_PROBE_RECOVERY,
1122 };
1123 
1124 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1125 			bool is_vf, enum qede_probe_mode mode)
1126 {
1127 	struct qed_probe_params probe_params;
1128 	struct qed_slowpath_params sp_params;
1129 	struct qed_dev_eth_info dev_info;
1130 	struct qede_dev *edev;
1131 	struct qed_dev *cdev;
1132 	int rc;
1133 
1134 	if (unlikely(dp_level & QED_LEVEL_INFO))
1135 		pr_notice("Starting qede probe\n");
1136 
1137 	memset(&probe_params, 0, sizeof(probe_params));
1138 	probe_params.protocol = QED_PROTOCOL_ETH;
1139 	probe_params.dp_module = dp_module;
1140 	probe_params.dp_level = dp_level;
1141 	probe_params.is_vf = is_vf;
1142 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1143 	cdev = qed_ops->common->probe(pdev, &probe_params);
1144 	if (!cdev) {
1145 		rc = -ENODEV;
1146 		goto err0;
1147 	}
1148 
1149 	qede_update_pf_params(cdev);
1150 
1151 	/* Start the Slowpath-process */
1152 	memset(&sp_params, 0, sizeof(sp_params));
1153 	sp_params.int_mode = QED_INT_MODE_MSIX;
1154 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1155 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1156 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1157 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1158 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1159 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1160 	if (rc) {
1161 		pr_notice("Cannot start slowpath\n");
1162 		goto err1;
1163 	}
1164 
1165 	/* Learn information crucial for qede to progress */
1166 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1167 	if (rc)
1168 		goto err2;
1169 
1170 	if (mode != QEDE_PROBE_RECOVERY) {
1171 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1172 					   dp_level);
1173 		if (!edev) {
1174 			rc = -ENOMEM;
1175 			goto err2;
1176 		}
1177 
1178 		edev->devlink = qed_ops->common->devlink_register(cdev);
1179 		if (IS_ERR(edev->devlink)) {
1180 			DP_NOTICE(edev, "Cannot register devlink\n");
1181 			edev->devlink = NULL;
1182 			/* Go on, we can live without devlink */
1183 		}
1184 	} else {
1185 		struct net_device *ndev = pci_get_drvdata(pdev);
1186 
1187 		edev = netdev_priv(ndev);
1188 
1189 		if (edev->devlink) {
1190 			struct qed_devlink *qdl = devlink_priv(edev->devlink);
1191 
1192 			qdl->cdev = cdev;
1193 		}
1194 		edev->cdev = cdev;
1195 		memset(&edev->stats, 0, sizeof(edev->stats));
1196 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1197 	}
1198 
1199 	if (is_vf)
1200 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1201 
1202 	qede_init_ndev(edev);
1203 
1204 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1205 	if (rc)
1206 		goto err3;
1207 
1208 	if (mode != QEDE_PROBE_RECOVERY) {
1209 		/* Prepare the lock prior to the registration of the netdev,
1210 		 * as once it's registered we might reach flows requiring it
1211 		 * [it's even possible to reach a flow needing it directly
1212 		 * from there, although it's unlikely].
1213 		 */
1214 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1215 		mutex_init(&edev->qede_lock);
1216 
1217 		rc = register_netdev(edev->ndev);
1218 		if (rc) {
1219 			DP_NOTICE(edev, "Cannot register net-device\n");
1220 			goto err4;
1221 		}
1222 	}
1223 
1224 	edev->ops->common->set_name(cdev, edev->ndev->name);
1225 
1226 	/* PTP not supported on VFs */
1227 	if (!is_vf)
1228 		qede_ptp_enable(edev);
1229 
1230 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1231 
1232 #ifdef CONFIG_DCB
1233 	if (!IS_VF(edev))
1234 		qede_set_dcbnl_ops(edev->ndev);
1235 #endif
1236 
1237 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1238 
1239 	qede_log_probe(edev);
1240 	return 0;
1241 
1242 err4:
1243 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1244 err3:
1245 	if (mode != QEDE_PROBE_RECOVERY)
1246 		free_netdev(edev->ndev);
1247 	else
1248 		edev->cdev = NULL;
1249 err2:
1250 	qed_ops->common->slowpath_stop(cdev);
1251 err1:
1252 	qed_ops->common->remove(cdev);
1253 err0:
1254 	return rc;
1255 }
1256 
1257 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1258 {
1259 	bool is_vf = false;
1260 	u32 dp_module = 0;
1261 	u8 dp_level = 0;
1262 
1263 	switch ((enum qede_pci_private)id->driver_data) {
1264 	case QEDE_PRIVATE_VF:
1265 		if (debug & QED_LOG_VERBOSE_MASK)
1266 			dev_err(&pdev->dev, "Probing a VF\n");
1267 		is_vf = true;
1268 		break;
1269 	default:
1270 		if (debug & QED_LOG_VERBOSE_MASK)
1271 			dev_err(&pdev->dev, "Probing a PF\n");
1272 	}
1273 
1274 	qede_config_debug(debug, &dp_module, &dp_level);
1275 
1276 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1277 			    QEDE_PROBE_NORMAL);
1278 }
1279 
1280 enum qede_remove_mode {
1281 	QEDE_REMOVE_NORMAL,
1282 	QEDE_REMOVE_RECOVERY,
1283 };
1284 
1285 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1286 {
1287 	struct net_device *ndev = pci_get_drvdata(pdev);
1288 	struct qede_dev *edev;
1289 	struct qed_dev *cdev;
1290 
1291 	if (!ndev) {
1292 		dev_info(&pdev->dev, "Device has already been removed\n");
1293 		return;
1294 	}
1295 
1296 	edev = netdev_priv(ndev);
1297 	cdev = edev->cdev;
1298 
1299 	DP_INFO(edev, "Starting qede_remove\n");
1300 
1301 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1302 
1303 	if (mode != QEDE_REMOVE_RECOVERY) {
1304 		unregister_netdev(ndev);
1305 
1306 		cancel_delayed_work_sync(&edev->sp_task);
1307 
1308 		edev->ops->common->set_power_state(cdev, PCI_D0);
1309 
1310 		pci_set_drvdata(pdev, NULL);
1311 	}
1312 
1313 	qede_ptp_disable(edev);
1314 
1315 	/* Use global ops since we've freed edev */
1316 	qed_ops->common->slowpath_stop(cdev);
1317 	if (system_state == SYSTEM_POWER_OFF)
1318 		return;
1319 
1320 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1321 		qed_ops->common->devlink_unregister(edev->devlink);
1322 		edev->devlink = NULL;
1323 	}
1324 	qed_ops->common->remove(cdev);
1325 	edev->cdev = NULL;
1326 
1327 	/* Since this can happen out-of-sync with other flows,
1328 	 * don't release the netdevice until after slowpath stop
1329 	 * has been called to guarantee various other contexts
1330 	 * [e.g., QED register callbacks] won't break anything when
1331 	 * accessing the netdevice.
1332 	 */
1333 	if (mode != QEDE_REMOVE_RECOVERY) {
1334 		kfree(edev->coal_entry);
1335 		free_netdev(ndev);
1336 	}
1337 
1338 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1339 }
1340 
1341 static void qede_remove(struct pci_dev *pdev)
1342 {
1343 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1344 }
1345 
1346 static void qede_shutdown(struct pci_dev *pdev)
1347 {
1348 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1349 }
1350 
1351 /* -------------------------------------------------------------------------
1352  * START OF LOAD / UNLOAD
1353  * -------------------------------------------------------------------------
1354  */
1355 
1356 static int qede_set_num_queues(struct qede_dev *edev)
1357 {
1358 	int rc;
1359 	u16 rss_num;
1360 
1361 	/* Setup queues according to possible resources*/
1362 	if (edev->req_queues)
1363 		rss_num = edev->req_queues;
1364 	else
1365 		rss_num = netif_get_num_default_rss_queues() *
1366 			  edev->dev_info.common.num_hwfns;
1367 
1368 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1369 
1370 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1371 	if (rc > 0) {
1372 		/* Managed to request interrupts for our queues */
1373 		edev->num_queues = rc;
1374 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1375 			QEDE_QUEUE_CNT(edev), rss_num);
1376 		rc = 0;
1377 	}
1378 
1379 	edev->fp_num_tx = edev->req_num_tx;
1380 	edev->fp_num_rx = edev->req_num_rx;
1381 
1382 	return rc;
1383 }
1384 
1385 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1386 			     u16 sb_id)
1387 {
1388 	if (sb_info->sb_virt) {
1389 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1390 					      QED_SB_TYPE_L2_QUEUE);
1391 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1392 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1393 		memset(sb_info, 0, sizeof(*sb_info));
1394 	}
1395 }
1396 
1397 /* This function allocates fast-path status block memory */
1398 static int qede_alloc_mem_sb(struct qede_dev *edev,
1399 			     struct qed_sb_info *sb_info, u16 sb_id)
1400 {
1401 	struct status_block_e4 *sb_virt;
1402 	dma_addr_t sb_phys;
1403 	int rc;
1404 
1405 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1406 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1407 	if (!sb_virt) {
1408 		DP_ERR(edev, "Status block allocation failed\n");
1409 		return -ENOMEM;
1410 	}
1411 
1412 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1413 					sb_virt, sb_phys, sb_id,
1414 					QED_SB_TYPE_L2_QUEUE);
1415 	if (rc) {
1416 		DP_ERR(edev, "Status block initialization failed\n");
1417 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1418 				  sb_virt, sb_phys);
1419 		return rc;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static void qede_free_rx_buffers(struct qede_dev *edev,
1426 				 struct qede_rx_queue *rxq)
1427 {
1428 	u16 i;
1429 
1430 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1431 		struct sw_rx_data *rx_buf;
1432 		struct page *data;
1433 
1434 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1435 		data = rx_buf->data;
1436 
1437 		dma_unmap_page(&edev->pdev->dev,
1438 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1439 
1440 		rx_buf->data = NULL;
1441 		__free_page(data);
1442 	}
1443 }
1444 
1445 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1446 {
1447 	/* Free rx buffers */
1448 	qede_free_rx_buffers(edev, rxq);
1449 
1450 	/* Free the parallel SW ring */
1451 	kfree(rxq->sw_rx_ring);
1452 
1453 	/* Free the real RQ ring used by FW */
1454 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1455 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1456 }
1457 
1458 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1459 {
1460 	int i;
1461 
1462 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1463 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1464 
1465 		tpa_info->state = QEDE_AGG_STATE_NONE;
1466 	}
1467 }
1468 
1469 /* This function allocates all memory needed per Rx queue */
1470 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1471 {
1472 	struct qed_chain_init_params params = {
1473 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1474 		.num_elems	= RX_RING_SIZE,
1475 	};
1476 	struct qed_dev *cdev = edev->cdev;
1477 	int i, rc, size;
1478 
1479 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1480 
1481 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1482 
1483 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1484 	size = rxq->rx_headroom +
1485 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1486 
1487 	/* Make sure that the headroom and  payload fit in a single page */
1488 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1489 		rxq->rx_buf_size = PAGE_SIZE - size;
1490 
1491 	/* Segment size to split a page in multiple equal parts,
1492 	 * unless XDP is used in which case we'd use the entire page.
1493 	 */
1494 	if (!edev->xdp_prog) {
1495 		size = size + rxq->rx_buf_size;
1496 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1497 	} else {
1498 		rxq->rx_buf_seg_size = PAGE_SIZE;
1499 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1500 	}
1501 
1502 	/* Allocate the parallel driver ring for Rx buffers */
1503 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1504 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1505 	if (!rxq->sw_rx_ring) {
1506 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1507 		rc = -ENOMEM;
1508 		goto err;
1509 	}
1510 
1511 	/* Allocate FW Rx ring  */
1512 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1513 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1514 	params.elem_size = sizeof(struct eth_rx_bd);
1515 
1516 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1517 	if (rc)
1518 		goto err;
1519 
1520 	/* Allocate FW completion ring */
1521 	params.mode = QED_CHAIN_MODE_PBL;
1522 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1523 	params.elem_size = sizeof(union eth_rx_cqe);
1524 
1525 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1526 	if (rc)
1527 		goto err;
1528 
1529 	/* Allocate buffers for the Rx ring */
1530 	rxq->filled_buffers = 0;
1531 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1532 		rc = qede_alloc_rx_buffer(rxq, false);
1533 		if (rc) {
1534 			DP_ERR(edev,
1535 			       "Rx buffers allocation failed at index %d\n", i);
1536 			goto err;
1537 		}
1538 	}
1539 
1540 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1541 	if (!edev->gro_disable)
1542 		qede_set_tpa_param(rxq);
1543 err:
1544 	return rc;
1545 }
1546 
1547 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1548 {
1549 	/* Free the parallel SW ring */
1550 	if (txq->is_xdp)
1551 		kfree(txq->sw_tx_ring.xdp);
1552 	else
1553 		kfree(txq->sw_tx_ring.skbs);
1554 
1555 	/* Free the real RQ ring used by FW */
1556 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1557 }
1558 
1559 /* This function allocates all memory needed per Tx queue */
1560 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1561 {
1562 	struct qed_chain_init_params params = {
1563 		.mode		= QED_CHAIN_MODE_PBL,
1564 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1565 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1566 		.num_elems	= edev->q_num_tx_buffers,
1567 		.elem_size	= sizeof(union eth_tx_bd_types),
1568 	};
1569 	int size, rc;
1570 
1571 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1572 
1573 	/* Allocate the parallel driver ring for Tx buffers */
1574 	if (txq->is_xdp) {
1575 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1576 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1577 		if (!txq->sw_tx_ring.xdp)
1578 			goto err;
1579 	} else {
1580 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1581 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1582 		if (!txq->sw_tx_ring.skbs)
1583 			goto err;
1584 	}
1585 
1586 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1587 	if (rc)
1588 		goto err;
1589 
1590 	return 0;
1591 
1592 err:
1593 	qede_free_mem_txq(edev, txq);
1594 	return -ENOMEM;
1595 }
1596 
1597 /* This function frees all memory of a single fp */
1598 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1599 {
1600 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1601 
1602 	if (fp->type & QEDE_FASTPATH_RX)
1603 		qede_free_mem_rxq(edev, fp->rxq);
1604 
1605 	if (fp->type & QEDE_FASTPATH_XDP)
1606 		qede_free_mem_txq(edev, fp->xdp_tx);
1607 
1608 	if (fp->type & QEDE_FASTPATH_TX) {
1609 		int cos;
1610 
1611 		for_each_cos_in_txq(edev, cos)
1612 			qede_free_mem_txq(edev, &fp->txq[cos]);
1613 	}
1614 }
1615 
1616 /* This function allocates all memory needed for a single fp (i.e. an entity
1617  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1618  */
1619 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1620 {
1621 	int rc = 0;
1622 
1623 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1624 	if (rc)
1625 		goto out;
1626 
1627 	if (fp->type & QEDE_FASTPATH_RX) {
1628 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1629 		if (rc)
1630 			goto out;
1631 	}
1632 
1633 	if (fp->type & QEDE_FASTPATH_XDP) {
1634 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1635 		if (rc)
1636 			goto out;
1637 	}
1638 
1639 	if (fp->type & QEDE_FASTPATH_TX) {
1640 		int cos;
1641 
1642 		for_each_cos_in_txq(edev, cos) {
1643 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1644 			if (rc)
1645 				goto out;
1646 		}
1647 	}
1648 
1649 out:
1650 	return rc;
1651 }
1652 
1653 static void qede_free_mem_load(struct qede_dev *edev)
1654 {
1655 	int i;
1656 
1657 	for_each_queue(i) {
1658 		struct qede_fastpath *fp = &edev->fp_array[i];
1659 
1660 		qede_free_mem_fp(edev, fp);
1661 	}
1662 }
1663 
1664 /* This function allocates all qede memory at NIC load. */
1665 static int qede_alloc_mem_load(struct qede_dev *edev)
1666 {
1667 	int rc = 0, queue_id;
1668 
1669 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1670 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1671 
1672 		rc = qede_alloc_mem_fp(edev, fp);
1673 		if (rc) {
1674 			DP_ERR(edev,
1675 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1676 			       queue_id);
1677 			qede_free_mem_load(edev);
1678 			return rc;
1679 		}
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 static void qede_empty_tx_queue(struct qede_dev *edev,
1686 				struct qede_tx_queue *txq)
1687 {
1688 	unsigned int pkts_compl = 0, bytes_compl = 0;
1689 	struct netdev_queue *netdev_txq;
1690 	int rc, len = 0;
1691 
1692 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1693 
1694 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1695 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1696 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1697 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1698 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1699 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1700 
1701 		rc = qede_free_tx_pkt(edev, txq, &len);
1702 		if (rc) {
1703 			DP_NOTICE(edev,
1704 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1705 				  txq->index,
1706 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1707 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1708 			break;
1709 		}
1710 
1711 		bytes_compl += len;
1712 		pkts_compl++;
1713 		txq->sw_tx_cons++;
1714 	}
1715 
1716 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1717 }
1718 
1719 static void qede_empty_tx_queues(struct qede_dev *edev)
1720 {
1721 	int i;
1722 
1723 	for_each_queue(i)
1724 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1725 			int cos;
1726 
1727 			for_each_cos_in_txq(edev, cos) {
1728 				struct qede_fastpath *fp;
1729 
1730 				fp = &edev->fp_array[i];
1731 				qede_empty_tx_queue(edev,
1732 						    &fp->txq[cos]);
1733 			}
1734 		}
1735 }
1736 
1737 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1738 static void qede_init_fp(struct qede_dev *edev)
1739 {
1740 	int queue_id, rxq_index = 0, txq_index = 0;
1741 	struct qede_fastpath *fp;
1742 	bool init_xdp = false;
1743 
1744 	for_each_queue(queue_id) {
1745 		fp = &edev->fp_array[queue_id];
1746 
1747 		fp->edev = edev;
1748 		fp->id = queue_id;
1749 
1750 		if (fp->type & QEDE_FASTPATH_XDP) {
1751 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1752 								rxq_index);
1753 			fp->xdp_tx->is_xdp = 1;
1754 
1755 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1756 			init_xdp = true;
1757 		}
1758 
1759 		if (fp->type & QEDE_FASTPATH_RX) {
1760 			fp->rxq->rxq_id = rxq_index++;
1761 
1762 			/* Determine how to map buffers for this queue */
1763 			if (fp->type & QEDE_FASTPATH_XDP)
1764 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1765 			else
1766 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1767 			fp->rxq->dev = &edev->pdev->dev;
1768 
1769 			/* Driver have no error path from here */
1770 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1771 						 fp->rxq->rxq_id, 0) < 0);
1772 
1773 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1774 						       MEM_TYPE_PAGE_ORDER0,
1775 						       NULL)) {
1776 				DP_NOTICE(edev,
1777 					  "Failed to register XDP memory model\n");
1778 			}
1779 		}
1780 
1781 		if (fp->type & QEDE_FASTPATH_TX) {
1782 			int cos;
1783 
1784 			for_each_cos_in_txq(edev, cos) {
1785 				struct qede_tx_queue *txq = &fp->txq[cos];
1786 				u16 ndev_tx_id;
1787 
1788 				txq->cos = cos;
1789 				txq->index = txq_index;
1790 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1791 				txq->ndev_txq_id = ndev_tx_id;
1792 
1793 				if (edev->dev_info.is_legacy)
1794 					txq->is_legacy = true;
1795 				txq->dev = &edev->pdev->dev;
1796 			}
1797 
1798 			txq_index++;
1799 		}
1800 
1801 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1802 			 edev->ndev->name, queue_id);
1803 	}
1804 
1805 	if (init_xdp) {
1806 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1807 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1808 	}
1809 }
1810 
1811 static int qede_set_real_num_queues(struct qede_dev *edev)
1812 {
1813 	int rc = 0;
1814 
1815 	rc = netif_set_real_num_tx_queues(edev->ndev,
1816 					  QEDE_TSS_COUNT(edev) *
1817 					  edev->dev_info.num_tc);
1818 	if (rc) {
1819 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1820 		return rc;
1821 	}
1822 
1823 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1824 	if (rc) {
1825 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1826 		return rc;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static void qede_napi_disable_remove(struct qede_dev *edev)
1833 {
1834 	int i;
1835 
1836 	for_each_queue(i) {
1837 		napi_disable(&edev->fp_array[i].napi);
1838 
1839 		netif_napi_del(&edev->fp_array[i].napi);
1840 	}
1841 }
1842 
1843 static void qede_napi_add_enable(struct qede_dev *edev)
1844 {
1845 	int i;
1846 
1847 	/* Add NAPI objects */
1848 	for_each_queue(i) {
1849 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1850 			       qede_poll, NAPI_POLL_WEIGHT);
1851 		napi_enable(&edev->fp_array[i].napi);
1852 	}
1853 }
1854 
1855 static void qede_sync_free_irqs(struct qede_dev *edev)
1856 {
1857 	int i;
1858 
1859 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1860 		if (edev->int_info.msix_cnt) {
1861 			synchronize_irq(edev->int_info.msix[i].vector);
1862 			free_irq(edev->int_info.msix[i].vector,
1863 				 &edev->fp_array[i]);
1864 		} else {
1865 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1866 		}
1867 	}
1868 
1869 	edev->int_info.used_cnt = 0;
1870 }
1871 
1872 static int qede_req_msix_irqs(struct qede_dev *edev)
1873 {
1874 	int i, rc;
1875 
1876 	/* Sanitize number of interrupts == number of prepared RSS queues */
1877 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1878 		DP_ERR(edev,
1879 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1880 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1881 		return -EINVAL;
1882 	}
1883 
1884 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1885 #ifdef CONFIG_RFS_ACCEL
1886 		struct qede_fastpath *fp = &edev->fp_array[i];
1887 
1888 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1889 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1890 					      edev->int_info.msix[i].vector);
1891 			if (rc) {
1892 				DP_ERR(edev, "Failed to add CPU rmap\n");
1893 				qede_free_arfs(edev);
1894 			}
1895 		}
1896 #endif
1897 		rc = request_irq(edev->int_info.msix[i].vector,
1898 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1899 				 &edev->fp_array[i]);
1900 		if (rc) {
1901 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1902 			qede_sync_free_irqs(edev);
1903 			return rc;
1904 		}
1905 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1906 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1907 			   edev->fp_array[i].name, i,
1908 			   &edev->fp_array[i]);
1909 		edev->int_info.used_cnt++;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 static void qede_simd_fp_handler(void *cookie)
1916 {
1917 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1918 
1919 	napi_schedule_irqoff(&fp->napi);
1920 }
1921 
1922 static int qede_setup_irqs(struct qede_dev *edev)
1923 {
1924 	int i, rc = 0;
1925 
1926 	/* Learn Interrupt configuration */
1927 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1928 	if (rc)
1929 		return rc;
1930 
1931 	if (edev->int_info.msix_cnt) {
1932 		rc = qede_req_msix_irqs(edev);
1933 		if (rc)
1934 			return rc;
1935 		edev->ndev->irq = edev->int_info.msix[0].vector;
1936 	} else {
1937 		const struct qed_common_ops *ops;
1938 
1939 		/* qed should learn receive the RSS ids and callbacks */
1940 		ops = edev->ops->common;
1941 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1942 			ops->simd_handler_config(edev->cdev,
1943 						 &edev->fp_array[i], i,
1944 						 qede_simd_fp_handler);
1945 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1946 	}
1947 	return 0;
1948 }
1949 
1950 static int qede_drain_txq(struct qede_dev *edev,
1951 			  struct qede_tx_queue *txq, bool allow_drain)
1952 {
1953 	int rc, cnt = 1000;
1954 
1955 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1956 		if (!cnt) {
1957 			if (allow_drain) {
1958 				DP_NOTICE(edev,
1959 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1960 					  txq->index);
1961 				rc = edev->ops->common->drain(edev->cdev);
1962 				if (rc)
1963 					return rc;
1964 				return qede_drain_txq(edev, txq, false);
1965 			}
1966 			DP_NOTICE(edev,
1967 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1968 				  txq->index, txq->sw_tx_prod,
1969 				  txq->sw_tx_cons);
1970 			return -ENODEV;
1971 		}
1972 		cnt--;
1973 		usleep_range(1000, 2000);
1974 		barrier();
1975 	}
1976 
1977 	/* FW finished processing, wait for HW to transmit all tx packets */
1978 	usleep_range(1000, 2000);
1979 
1980 	return 0;
1981 }
1982 
1983 static int qede_stop_txq(struct qede_dev *edev,
1984 			 struct qede_tx_queue *txq, int rss_id)
1985 {
1986 	/* delete doorbell from doorbell recovery mechanism */
1987 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1988 					   &txq->tx_db);
1989 
1990 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1991 }
1992 
1993 static int qede_stop_queues(struct qede_dev *edev)
1994 {
1995 	struct qed_update_vport_params *vport_update_params;
1996 	struct qed_dev *cdev = edev->cdev;
1997 	struct qede_fastpath *fp;
1998 	int rc, i;
1999 
2000 	/* Disable the vport */
2001 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2002 	if (!vport_update_params)
2003 		return -ENOMEM;
2004 
2005 	vport_update_params->vport_id = 0;
2006 	vport_update_params->update_vport_active_flg = 1;
2007 	vport_update_params->vport_active_flg = 0;
2008 	vport_update_params->update_rss_flg = 0;
2009 
2010 	rc = edev->ops->vport_update(cdev, vport_update_params);
2011 	vfree(vport_update_params);
2012 
2013 	if (rc) {
2014 		DP_ERR(edev, "Failed to update vport\n");
2015 		return rc;
2016 	}
2017 
2018 	/* Flush Tx queues. If needed, request drain from MCP */
2019 	for_each_queue(i) {
2020 		fp = &edev->fp_array[i];
2021 
2022 		if (fp->type & QEDE_FASTPATH_TX) {
2023 			int cos;
2024 
2025 			for_each_cos_in_txq(edev, cos) {
2026 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2027 				if (rc)
2028 					return rc;
2029 			}
2030 		}
2031 
2032 		if (fp->type & QEDE_FASTPATH_XDP) {
2033 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2034 			if (rc)
2035 				return rc;
2036 		}
2037 	}
2038 
2039 	/* Stop all Queues in reverse order */
2040 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2041 		fp = &edev->fp_array[i];
2042 
2043 		/* Stop the Tx Queue(s) */
2044 		if (fp->type & QEDE_FASTPATH_TX) {
2045 			int cos;
2046 
2047 			for_each_cos_in_txq(edev, cos) {
2048 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2049 				if (rc)
2050 					return rc;
2051 			}
2052 		}
2053 
2054 		/* Stop the Rx Queue */
2055 		if (fp->type & QEDE_FASTPATH_RX) {
2056 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2057 			if (rc) {
2058 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2059 				return rc;
2060 			}
2061 		}
2062 
2063 		/* Stop the XDP forwarding queue */
2064 		if (fp->type & QEDE_FASTPATH_XDP) {
2065 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2066 			if (rc)
2067 				return rc;
2068 
2069 			bpf_prog_put(fp->rxq->xdp_prog);
2070 		}
2071 	}
2072 
2073 	/* Stop the vport */
2074 	rc = edev->ops->vport_stop(cdev, 0);
2075 	if (rc)
2076 		DP_ERR(edev, "Failed to stop VPORT\n");
2077 
2078 	return rc;
2079 }
2080 
2081 static int qede_start_txq(struct qede_dev *edev,
2082 			  struct qede_fastpath *fp,
2083 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2084 {
2085 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2086 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2087 	struct qed_queue_start_common_params params;
2088 	struct qed_txq_start_ret_params ret_params;
2089 	int rc;
2090 
2091 	memset(&params, 0, sizeof(params));
2092 	memset(&ret_params, 0, sizeof(ret_params));
2093 
2094 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2095 	 * We don't really care about its coalescing.
2096 	 */
2097 	if (txq->is_xdp)
2098 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2099 	else
2100 		params.queue_id = txq->index;
2101 
2102 	params.p_sb = fp->sb_info;
2103 	params.sb_idx = sb_idx;
2104 	params.tc = txq->cos;
2105 
2106 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2107 				   page_cnt, &ret_params);
2108 	if (rc) {
2109 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2110 		return rc;
2111 	}
2112 
2113 	txq->doorbell_addr = ret_params.p_doorbell;
2114 	txq->handle = ret_params.p_handle;
2115 
2116 	/* Determine the FW consumer address associated */
2117 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2118 
2119 	/* Prepare the doorbell parameters */
2120 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2121 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2122 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2123 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2124 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2125 
2126 	/* register doorbell with doorbell recovery mechanism */
2127 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2128 						&txq->tx_db, DB_REC_WIDTH_32B,
2129 						DB_REC_KERNEL);
2130 
2131 	return rc;
2132 }
2133 
2134 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2135 {
2136 	int vlan_removal_en = 1;
2137 	struct qed_dev *cdev = edev->cdev;
2138 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2139 	struct qed_update_vport_params *vport_update_params;
2140 	struct qed_queue_start_common_params q_params;
2141 	struct qed_start_vport_params start = {0};
2142 	int rc, i;
2143 
2144 	if (!edev->num_queues) {
2145 		DP_ERR(edev,
2146 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2147 		return -EINVAL;
2148 	}
2149 
2150 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2151 	if (!vport_update_params)
2152 		return -ENOMEM;
2153 
2154 	start.handle_ptp_pkts = !!(edev->ptp);
2155 	start.gro_enable = !edev->gro_disable;
2156 	start.mtu = edev->ndev->mtu;
2157 	start.vport_id = 0;
2158 	start.drop_ttl0 = true;
2159 	start.remove_inner_vlan = vlan_removal_en;
2160 	start.clear_stats = clear_stats;
2161 
2162 	rc = edev->ops->vport_start(cdev, &start);
2163 
2164 	if (rc) {
2165 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2166 		goto out;
2167 	}
2168 
2169 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2170 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2171 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2172 
2173 	for_each_queue(i) {
2174 		struct qede_fastpath *fp = &edev->fp_array[i];
2175 		dma_addr_t p_phys_table;
2176 		u32 page_cnt;
2177 
2178 		if (fp->type & QEDE_FASTPATH_RX) {
2179 			struct qed_rxq_start_ret_params ret_params;
2180 			struct qede_rx_queue *rxq = fp->rxq;
2181 			__le16 *val;
2182 
2183 			memset(&ret_params, 0, sizeof(ret_params));
2184 			memset(&q_params, 0, sizeof(q_params));
2185 			q_params.queue_id = rxq->rxq_id;
2186 			q_params.vport_id = 0;
2187 			q_params.p_sb = fp->sb_info;
2188 			q_params.sb_idx = RX_PI;
2189 
2190 			p_phys_table =
2191 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2192 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2193 
2194 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2195 						   rxq->rx_buf_size,
2196 						   rxq->rx_bd_ring.p_phys_addr,
2197 						   p_phys_table,
2198 						   page_cnt, &ret_params);
2199 			if (rc) {
2200 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2201 				       rc);
2202 				goto out;
2203 			}
2204 
2205 			/* Use the return parameters */
2206 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2207 			rxq->handle = ret_params.p_handle;
2208 
2209 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2210 			rxq->hw_cons_ptr = val;
2211 
2212 			qede_update_rx_prod(edev, rxq);
2213 		}
2214 
2215 		if (fp->type & QEDE_FASTPATH_XDP) {
2216 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2217 			if (rc)
2218 				goto out;
2219 
2220 			bpf_prog_add(edev->xdp_prog, 1);
2221 			fp->rxq->xdp_prog = edev->xdp_prog;
2222 		}
2223 
2224 		if (fp->type & QEDE_FASTPATH_TX) {
2225 			int cos;
2226 
2227 			for_each_cos_in_txq(edev, cos) {
2228 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2229 						    TX_PI(cos));
2230 				if (rc)
2231 					goto out;
2232 			}
2233 		}
2234 	}
2235 
2236 	/* Prepare and send the vport enable */
2237 	vport_update_params->vport_id = start.vport_id;
2238 	vport_update_params->update_vport_active_flg = 1;
2239 	vport_update_params->vport_active_flg = 1;
2240 
2241 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2242 	    qed_info->tx_switching) {
2243 		vport_update_params->update_tx_switching_flg = 1;
2244 		vport_update_params->tx_switching_flg = 1;
2245 	}
2246 
2247 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2248 			     &vport_update_params->update_rss_flg);
2249 
2250 	rc = edev->ops->vport_update(cdev, vport_update_params);
2251 	if (rc)
2252 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2253 
2254 out:
2255 	vfree(vport_update_params);
2256 	return rc;
2257 }
2258 
2259 enum qede_unload_mode {
2260 	QEDE_UNLOAD_NORMAL,
2261 	QEDE_UNLOAD_RECOVERY,
2262 };
2263 
2264 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2265 			bool is_locked)
2266 {
2267 	struct qed_link_params link_params;
2268 	int rc;
2269 
2270 	DP_INFO(edev, "Starting qede unload\n");
2271 
2272 	if (!is_locked)
2273 		__qede_lock(edev);
2274 
2275 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2276 
2277 	if (mode != QEDE_UNLOAD_RECOVERY)
2278 		edev->state = QEDE_STATE_CLOSED;
2279 
2280 	qede_rdma_dev_event_close(edev);
2281 
2282 	/* Close OS Tx */
2283 	netif_tx_disable(edev->ndev);
2284 	netif_carrier_off(edev->ndev);
2285 
2286 	if (mode != QEDE_UNLOAD_RECOVERY) {
2287 		/* Reset the link */
2288 		memset(&link_params, 0, sizeof(link_params));
2289 		link_params.link_up = false;
2290 		edev->ops->common->set_link(edev->cdev, &link_params);
2291 
2292 		rc = qede_stop_queues(edev);
2293 		if (rc) {
2294 			qede_sync_free_irqs(edev);
2295 			goto out;
2296 		}
2297 
2298 		DP_INFO(edev, "Stopped Queues\n");
2299 	}
2300 
2301 	qede_vlan_mark_nonconfigured(edev);
2302 	edev->ops->fastpath_stop(edev->cdev);
2303 
2304 	if (edev->dev_info.common.b_arfs_capable) {
2305 		qede_poll_for_freeing_arfs_filters(edev);
2306 		qede_free_arfs(edev);
2307 	}
2308 
2309 	/* Release the interrupts */
2310 	qede_sync_free_irqs(edev);
2311 	edev->ops->common->set_fp_int(edev->cdev, 0);
2312 
2313 	qede_napi_disable_remove(edev);
2314 
2315 	if (mode == QEDE_UNLOAD_RECOVERY)
2316 		qede_empty_tx_queues(edev);
2317 
2318 	qede_free_mem_load(edev);
2319 	qede_free_fp_array(edev);
2320 
2321 out:
2322 	if (!is_locked)
2323 		__qede_unlock(edev);
2324 
2325 	if (mode != QEDE_UNLOAD_RECOVERY)
2326 		DP_NOTICE(edev, "Link is down\n");
2327 
2328 	edev->ptp_skip_txts = 0;
2329 
2330 	DP_INFO(edev, "Ending qede unload\n");
2331 }
2332 
2333 enum qede_load_mode {
2334 	QEDE_LOAD_NORMAL,
2335 	QEDE_LOAD_RELOAD,
2336 	QEDE_LOAD_RECOVERY,
2337 };
2338 
2339 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2340 		     bool is_locked)
2341 {
2342 	struct qed_link_params link_params;
2343 	struct ethtool_coalesce coal = {};
2344 	u8 num_tc;
2345 	int rc, i;
2346 
2347 	DP_INFO(edev, "Starting qede load\n");
2348 
2349 	if (!is_locked)
2350 		__qede_lock(edev);
2351 
2352 	rc = qede_set_num_queues(edev);
2353 	if (rc)
2354 		goto out;
2355 
2356 	rc = qede_alloc_fp_array(edev);
2357 	if (rc)
2358 		goto out;
2359 
2360 	qede_init_fp(edev);
2361 
2362 	rc = qede_alloc_mem_load(edev);
2363 	if (rc)
2364 		goto err1;
2365 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2366 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2367 
2368 	rc = qede_set_real_num_queues(edev);
2369 	if (rc)
2370 		goto err2;
2371 
2372 	if (qede_alloc_arfs(edev)) {
2373 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2374 		edev->dev_info.common.b_arfs_capable = false;
2375 	}
2376 
2377 	qede_napi_add_enable(edev);
2378 	DP_INFO(edev, "Napi added and enabled\n");
2379 
2380 	rc = qede_setup_irqs(edev);
2381 	if (rc)
2382 		goto err3;
2383 	DP_INFO(edev, "Setup IRQs succeeded\n");
2384 
2385 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2386 	if (rc)
2387 		goto err4;
2388 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2389 
2390 	num_tc = netdev_get_num_tc(edev->ndev);
2391 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2392 	qede_setup_tc(edev->ndev, num_tc);
2393 
2394 	/* Program un-configured VLANs */
2395 	qede_configure_vlan_filters(edev);
2396 
2397 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2398 
2399 	/* Ask for link-up using current configuration */
2400 	memset(&link_params, 0, sizeof(link_params));
2401 	link_params.link_up = true;
2402 	edev->ops->common->set_link(edev->cdev, &link_params);
2403 
2404 	edev->state = QEDE_STATE_OPEN;
2405 
2406 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2407 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2408 
2409 	for_each_queue(i) {
2410 		if (edev->coal_entry[i].isvalid) {
2411 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2412 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2413 		}
2414 		__qede_unlock(edev);
2415 		qede_set_per_coalesce(edev->ndev, i, &coal);
2416 		__qede_lock(edev);
2417 	}
2418 	DP_INFO(edev, "Ending successfully qede load\n");
2419 
2420 	goto out;
2421 err4:
2422 	qede_sync_free_irqs(edev);
2423 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2424 err3:
2425 	qede_napi_disable_remove(edev);
2426 err2:
2427 	qede_free_mem_load(edev);
2428 err1:
2429 	edev->ops->common->set_fp_int(edev->cdev, 0);
2430 	qede_free_fp_array(edev);
2431 	edev->num_queues = 0;
2432 	edev->fp_num_tx = 0;
2433 	edev->fp_num_rx = 0;
2434 out:
2435 	if (!is_locked)
2436 		__qede_unlock(edev);
2437 
2438 	return rc;
2439 }
2440 
2441 /* 'func' should be able to run between unload and reload assuming interface
2442  * is actually running, or afterwards in case it's currently DOWN.
2443  */
2444 void qede_reload(struct qede_dev *edev,
2445 		 struct qede_reload_args *args, bool is_locked)
2446 {
2447 	if (!is_locked)
2448 		__qede_lock(edev);
2449 
2450 	/* Since qede_lock is held, internal state wouldn't change even
2451 	 * if netdev state would start transitioning. Check whether current
2452 	 * internal configuration indicates device is up, then reload.
2453 	 */
2454 	if (edev->state == QEDE_STATE_OPEN) {
2455 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2456 		if (args)
2457 			args->func(edev, args);
2458 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2459 
2460 		/* Since no one is going to do it for us, re-configure */
2461 		qede_config_rx_mode(edev->ndev);
2462 	} else if (args) {
2463 		args->func(edev, args);
2464 	}
2465 
2466 	if (!is_locked)
2467 		__qede_unlock(edev);
2468 }
2469 
2470 /* called with rtnl_lock */
2471 static int qede_open(struct net_device *ndev)
2472 {
2473 	struct qede_dev *edev = netdev_priv(ndev);
2474 	int rc;
2475 
2476 	netif_carrier_off(ndev);
2477 
2478 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2479 
2480 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2481 	if (rc)
2482 		return rc;
2483 
2484 	udp_tunnel_nic_reset_ntf(ndev);
2485 
2486 	edev->ops->common->update_drv_state(edev->cdev, true);
2487 
2488 	return 0;
2489 }
2490 
2491 static int qede_close(struct net_device *ndev)
2492 {
2493 	struct qede_dev *edev = netdev_priv(ndev);
2494 
2495 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2496 
2497 	if (edev->cdev)
2498 		edev->ops->common->update_drv_state(edev->cdev, false);
2499 
2500 	return 0;
2501 }
2502 
2503 static void qede_link_update(void *dev, struct qed_link_output *link)
2504 {
2505 	struct qede_dev *edev = dev;
2506 
2507 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2508 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2509 		return;
2510 	}
2511 
2512 	if (link->link_up) {
2513 		if (!netif_carrier_ok(edev->ndev)) {
2514 			DP_NOTICE(edev, "Link is up\n");
2515 			netif_tx_start_all_queues(edev->ndev);
2516 			netif_carrier_on(edev->ndev);
2517 			qede_rdma_dev_event_open(edev);
2518 		}
2519 	} else {
2520 		if (netif_carrier_ok(edev->ndev)) {
2521 			DP_NOTICE(edev, "Link is down\n");
2522 			netif_tx_disable(edev->ndev);
2523 			netif_carrier_off(edev->ndev);
2524 			qede_rdma_dev_event_close(edev);
2525 		}
2526 	}
2527 }
2528 
2529 static void qede_schedule_recovery_handler(void *dev)
2530 {
2531 	struct qede_dev *edev = dev;
2532 
2533 	if (edev->state == QEDE_STATE_RECOVERY) {
2534 		DP_NOTICE(edev,
2535 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2536 		return;
2537 	}
2538 
2539 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2540 	schedule_delayed_work(&edev->sp_task, 0);
2541 
2542 	DP_INFO(edev, "Scheduled a recovery handler\n");
2543 }
2544 
2545 static void qede_recovery_failed(struct qede_dev *edev)
2546 {
2547 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2548 
2549 	netif_device_detach(edev->ndev);
2550 
2551 	if (edev->cdev)
2552 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2553 }
2554 
2555 static void qede_recovery_handler(struct qede_dev *edev)
2556 {
2557 	u32 curr_state = edev->state;
2558 	int rc;
2559 
2560 	DP_NOTICE(edev, "Starting a recovery process\n");
2561 
2562 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2563 	 * before calling this function.
2564 	 */
2565 	edev->state = QEDE_STATE_RECOVERY;
2566 
2567 	edev->ops->common->recovery_prolog(edev->cdev);
2568 
2569 	if (curr_state == QEDE_STATE_OPEN)
2570 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2571 
2572 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2573 
2574 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2575 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2576 	if (rc) {
2577 		edev->cdev = NULL;
2578 		goto err;
2579 	}
2580 
2581 	if (curr_state == QEDE_STATE_OPEN) {
2582 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2583 		if (rc)
2584 			goto err;
2585 
2586 		qede_config_rx_mode(edev->ndev);
2587 		udp_tunnel_nic_reset_ntf(edev->ndev);
2588 	}
2589 
2590 	edev->state = curr_state;
2591 
2592 	DP_NOTICE(edev, "Recovery handling is done\n");
2593 
2594 	return;
2595 
2596 err:
2597 	qede_recovery_failed(edev);
2598 }
2599 
2600 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2601 {
2602 	struct qed_dev *cdev = edev->cdev;
2603 
2604 	DP_NOTICE(edev,
2605 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2606 		  edev->err_flags);
2607 
2608 	/* Get a call trace of the flow that led to the error */
2609 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2610 
2611 	/* Prevent HW attentions from being reasserted */
2612 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2613 		edev->ops->common->attn_clr_enable(cdev, true);
2614 
2615 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2616 }
2617 
2618 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2619 {
2620 	DP_NOTICE(edev,
2621 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2622 		  edev->err_flags);
2623 
2624 	if (edev->devlink)
2625 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2626 
2627 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2628 
2629 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2630 }
2631 
2632 static void qede_set_hw_err_flags(struct qede_dev *edev,
2633 				  enum qed_hw_err_type err_type)
2634 {
2635 	unsigned long err_flags = 0;
2636 
2637 	switch (err_type) {
2638 	case QED_HW_ERR_DMAE_FAIL:
2639 		set_bit(QEDE_ERR_WARN, &err_flags);
2640 		fallthrough;
2641 	case QED_HW_ERR_MFW_RESP_FAIL:
2642 	case QED_HW_ERR_HW_ATTN:
2643 	case QED_HW_ERR_RAMROD_FAIL:
2644 	case QED_HW_ERR_FW_ASSERT:
2645 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2646 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2647 		break;
2648 
2649 	default:
2650 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2651 		break;
2652 	}
2653 
2654 	edev->err_flags |= err_flags;
2655 }
2656 
2657 static void qede_schedule_hw_err_handler(void *dev,
2658 					 enum qed_hw_err_type err_type)
2659 {
2660 	struct qede_dev *edev = dev;
2661 
2662 	/* Fan failure cannot be masked by handling of another HW error or by a
2663 	 * concurrent recovery process.
2664 	 */
2665 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2666 	     edev->state == QEDE_STATE_RECOVERY) &&
2667 	     err_type != QED_HW_ERR_FAN_FAIL) {
2668 		DP_INFO(edev,
2669 			"Avoid scheduling an error handling while another HW error is being handled\n");
2670 		return;
2671 	}
2672 
2673 	if (err_type >= QED_HW_ERR_LAST) {
2674 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2675 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2676 		return;
2677 	}
2678 
2679 	edev->last_err_type = err_type;
2680 	qede_set_hw_err_flags(edev, err_type);
2681 	qede_atomic_hw_err_handler(edev);
2682 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2683 	schedule_delayed_work(&edev->sp_task, 0);
2684 
2685 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2686 }
2687 
2688 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2689 {
2690 	struct netdev_queue *netdev_txq;
2691 
2692 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2693 	if (netif_xmit_stopped(netdev_txq))
2694 		return true;
2695 
2696 	return false;
2697 }
2698 
2699 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2700 {
2701 	struct qede_dev *edev = dev;
2702 	struct netdev_hw_addr *ha;
2703 	int i;
2704 
2705 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2706 		data->feat_flags |= QED_TLV_IP_CSUM;
2707 	if (edev->ndev->features & NETIF_F_TSO)
2708 		data->feat_flags |= QED_TLV_LSO;
2709 
2710 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2711 	eth_zero_addr(data->mac[1]);
2712 	eth_zero_addr(data->mac[2]);
2713 	/* Copy the first two UC macs */
2714 	netif_addr_lock_bh(edev->ndev);
2715 	i = 1;
2716 	netdev_for_each_uc_addr(ha, edev->ndev) {
2717 		ether_addr_copy(data->mac[i++], ha->addr);
2718 		if (i == QED_TLV_MAC_COUNT)
2719 			break;
2720 	}
2721 
2722 	netif_addr_unlock_bh(edev->ndev);
2723 }
2724 
2725 static void qede_get_eth_tlv_data(void *dev, void *data)
2726 {
2727 	struct qed_mfw_tlv_eth *etlv = data;
2728 	struct qede_dev *edev = dev;
2729 	struct qede_fastpath *fp;
2730 	int i;
2731 
2732 	etlv->lso_maxoff_size = 0XFFFF;
2733 	etlv->lso_maxoff_size_set = true;
2734 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2735 	etlv->lso_minseg_size_set = true;
2736 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2737 	etlv->prom_mode_set = true;
2738 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2739 	etlv->tx_descr_size_set = true;
2740 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2741 	etlv->rx_descr_size_set = true;
2742 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2743 	etlv->iov_offload_set = true;
2744 
2745 	/* Fill information regarding queues; Should be done under the qede
2746 	 * lock to guarantee those don't change beneath our feet.
2747 	 */
2748 	etlv->txqs_empty = true;
2749 	etlv->rxqs_empty = true;
2750 	etlv->num_txqs_full = 0;
2751 	etlv->num_rxqs_full = 0;
2752 
2753 	__qede_lock(edev);
2754 	for_each_queue(i) {
2755 		fp = &edev->fp_array[i];
2756 		if (fp->type & QEDE_FASTPATH_TX) {
2757 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2758 
2759 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2760 				etlv->txqs_empty = false;
2761 			if (qede_is_txq_full(edev, txq))
2762 				etlv->num_txqs_full++;
2763 		}
2764 		if (fp->type & QEDE_FASTPATH_RX) {
2765 			if (qede_has_rx_work(fp->rxq))
2766 				etlv->rxqs_empty = false;
2767 
2768 			/* This one is a bit tricky; Firmware might stop
2769 			 * placing packets if ring is not yet full.
2770 			 * Give an approximation.
2771 			 */
2772 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2773 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2774 			    RX_RING_SIZE - 100)
2775 				etlv->num_rxqs_full++;
2776 		}
2777 	}
2778 	__qede_unlock(edev);
2779 
2780 	etlv->txqs_empty_set = true;
2781 	etlv->rxqs_empty_set = true;
2782 	etlv->num_txqs_full_set = true;
2783 	etlv->num_rxqs_full_set = true;
2784 }
2785 
2786 /**
2787  * qede_io_error_detected - called when PCI error is detected
2788  * @pdev: Pointer to PCI device
2789  * @state: The current pci connection state
2790  *
2791  * This function is called after a PCI bus error affecting
2792  * this device has been detected.
2793  */
2794 static pci_ers_result_t
2795 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2796 {
2797 	struct net_device *dev = pci_get_drvdata(pdev);
2798 	struct qede_dev *edev = netdev_priv(dev);
2799 
2800 	if (!edev)
2801 		return PCI_ERS_RESULT_NONE;
2802 
2803 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2804 
2805 	__qede_lock(edev);
2806 	if (edev->state == QEDE_STATE_RECOVERY) {
2807 		DP_NOTICE(edev, "Device already in the recovery state\n");
2808 		__qede_unlock(edev);
2809 		return PCI_ERS_RESULT_NONE;
2810 	}
2811 
2812 	/* PF handles the recovery of its VFs */
2813 	if (IS_VF(edev)) {
2814 		DP_VERBOSE(edev, QED_MSG_IOV,
2815 			   "VF recovery is handled by its PF\n");
2816 		__qede_unlock(edev);
2817 		return PCI_ERS_RESULT_RECOVERED;
2818 	}
2819 
2820 	/* Close OS Tx */
2821 	netif_tx_disable(edev->ndev);
2822 	netif_carrier_off(edev->ndev);
2823 
2824 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2825 	schedule_delayed_work(&edev->sp_task, 0);
2826 
2827 	__qede_unlock(edev);
2828 
2829 	return PCI_ERS_RESULT_CAN_RECOVER;
2830 }
2831