1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015 QLogic Corporation 3 * 4 * This software is available under the terms of the GNU General Public License 5 * (GPL) Version 2, available from the file COPYING in the main directory of 6 * this source tree. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/version.h> 12 #include <linux/device.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/skbuff.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/string.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/interrupt.h> 21 #include <asm/byteorder.h> 22 #include <asm/param.h> 23 #include <linux/io.h> 24 #include <linux/netdev_features.h> 25 #include <linux/udp.h> 26 #include <linux/tcp.h> 27 #include <net/vxlan.h> 28 #include <linux/ip.h> 29 #include <net/ipv6.h> 30 #include <net/tcp.h> 31 #include <linux/if_ether.h> 32 #include <linux/if_vlan.h> 33 #include <linux/pkt_sched.h> 34 #include <linux/ethtool.h> 35 #include <linux/in.h> 36 #include <linux/random.h> 37 #include <net/ip6_checksum.h> 38 #include <linux/bitops.h> 39 40 #include "qede.h" 41 42 static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede " 43 DRV_MODULE_VERSION "\n"; 44 45 MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 static uint debug; 50 module_param(debug, uint, 0); 51 MODULE_PARM_DESC(debug, " Default debug msglevel"); 52 53 static const struct qed_eth_ops *qed_ops; 54 55 #define CHIP_NUM_57980S_40 0x1634 56 #define CHIP_NUM_57980S_10 0x1635 57 #define CHIP_NUM_57980S_MF 0x1636 58 #define CHIP_NUM_57980S_100 0x1644 59 #define CHIP_NUM_57980S_50 0x1654 60 #define CHIP_NUM_57980S_25 0x1656 61 62 #ifndef PCI_DEVICE_ID_NX2_57980E 63 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 64 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 65 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 66 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 67 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 68 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 69 #endif 70 71 static const struct pci_device_id qede_pci_tbl[] = { 72 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 }, 73 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 }, 74 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 }, 75 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 }, 76 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 }, 77 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 }, 78 { 0 } 79 }; 80 81 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 82 83 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 84 85 #define TX_TIMEOUT (5 * HZ) 86 87 static void qede_remove(struct pci_dev *pdev); 88 static int qede_alloc_rx_buffer(struct qede_dev *edev, 89 struct qede_rx_queue *rxq); 90 static void qede_link_update(void *dev, struct qed_link_output *link); 91 92 static struct pci_driver qede_pci_driver = { 93 .name = "qede", 94 .id_table = qede_pci_tbl, 95 .probe = qede_probe, 96 .remove = qede_remove, 97 }; 98 99 static struct qed_eth_cb_ops qede_ll_ops = { 100 { 101 .link_update = qede_link_update, 102 }, 103 }; 104 105 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 106 void *ptr) 107 { 108 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 109 struct ethtool_drvinfo drvinfo; 110 struct qede_dev *edev; 111 112 /* Currently only support name change */ 113 if (event != NETDEV_CHANGENAME) 114 goto done; 115 116 /* Check whether this is a qede device */ 117 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 118 goto done; 119 120 memset(&drvinfo, 0, sizeof(drvinfo)); 121 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 122 if (strcmp(drvinfo.driver, "qede")) 123 goto done; 124 edev = netdev_priv(ndev); 125 126 /* Notify qed of the name change */ 127 if (!edev->ops || !edev->ops->common) 128 goto done; 129 edev->ops->common->set_id(edev->cdev, edev->ndev->name, 130 "qede"); 131 132 done: 133 return NOTIFY_DONE; 134 } 135 136 static struct notifier_block qede_netdev_notifier = { 137 .notifier_call = qede_netdev_event, 138 }; 139 140 static 141 int __init qede_init(void) 142 { 143 int ret; 144 u32 qed_ver; 145 146 pr_notice("qede_init: %s\n", version); 147 148 qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH); 149 if (qed_ver != QEDE_ETH_INTERFACE_VERSION) { 150 pr_notice("Version mismatch [%08x != %08x]\n", 151 qed_ver, 152 QEDE_ETH_INTERFACE_VERSION); 153 return -EINVAL; 154 } 155 156 qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION); 157 if (!qed_ops) { 158 pr_notice("Failed to get qed ethtool operations\n"); 159 return -EINVAL; 160 } 161 162 /* Must register notifier before pci ops, since we might miss 163 * interface rename after pci probe and netdev registeration. 164 */ 165 ret = register_netdevice_notifier(&qede_netdev_notifier); 166 if (ret) { 167 pr_notice("Failed to register netdevice_notifier\n"); 168 qed_put_eth_ops(); 169 return -EINVAL; 170 } 171 172 ret = pci_register_driver(&qede_pci_driver); 173 if (ret) { 174 pr_notice("Failed to register driver\n"); 175 unregister_netdevice_notifier(&qede_netdev_notifier); 176 qed_put_eth_ops(); 177 return -EINVAL; 178 } 179 180 return 0; 181 } 182 183 static void __exit qede_cleanup(void) 184 { 185 pr_notice("qede_cleanup called\n"); 186 187 unregister_netdevice_notifier(&qede_netdev_notifier); 188 pci_unregister_driver(&qede_pci_driver); 189 qed_put_eth_ops(); 190 } 191 192 module_init(qede_init); 193 module_exit(qede_cleanup); 194 195 /* ------------------------------------------------------------------------- 196 * START OF FAST-PATH 197 * ------------------------------------------------------------------------- 198 */ 199 200 /* Unmap the data and free skb */ 201 static int qede_free_tx_pkt(struct qede_dev *edev, 202 struct qede_tx_queue *txq, 203 int *len) 204 { 205 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; 206 struct sk_buff *skb = txq->sw_tx_ring[idx].skb; 207 struct eth_tx_1st_bd *first_bd; 208 struct eth_tx_bd *tx_data_bd; 209 int bds_consumed = 0; 210 int nbds; 211 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD; 212 int i, split_bd_len = 0; 213 214 if (unlikely(!skb)) { 215 DP_ERR(edev, 216 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", 217 idx, txq->sw_tx_cons, txq->sw_tx_prod); 218 return -1; 219 } 220 221 *len = skb->len; 222 223 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 224 225 bds_consumed++; 226 227 nbds = first_bd->data.nbds; 228 229 if (data_split) { 230 struct eth_tx_bd *split = (struct eth_tx_bd *) 231 qed_chain_consume(&txq->tx_pbl); 232 split_bd_len = BD_UNMAP_LEN(split); 233 bds_consumed++; 234 } 235 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 236 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 237 238 /* Unmap the data of the skb frags */ 239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { 240 tx_data_bd = (struct eth_tx_bd *) 241 qed_chain_consume(&txq->tx_pbl); 242 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 243 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 244 } 245 246 while (bds_consumed++ < nbds) 247 qed_chain_consume(&txq->tx_pbl); 248 249 /* Free skb */ 250 dev_kfree_skb_any(skb); 251 txq->sw_tx_ring[idx].skb = NULL; 252 txq->sw_tx_ring[idx].flags = 0; 253 254 return 0; 255 } 256 257 /* Unmap the data and free skb when mapping failed during start_xmit */ 258 static void qede_free_failed_tx_pkt(struct qede_dev *edev, 259 struct qede_tx_queue *txq, 260 struct eth_tx_1st_bd *first_bd, 261 int nbd, 262 bool data_split) 263 { 264 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 265 struct sk_buff *skb = txq->sw_tx_ring[idx].skb; 266 struct eth_tx_bd *tx_data_bd; 267 int i, split_bd_len = 0; 268 269 /* Return prod to its position before this skb was handled */ 270 qed_chain_set_prod(&txq->tx_pbl, 271 le16_to_cpu(txq->tx_db.data.bd_prod), 272 first_bd); 273 274 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 275 276 if (data_split) { 277 struct eth_tx_bd *split = (struct eth_tx_bd *) 278 qed_chain_produce(&txq->tx_pbl); 279 split_bd_len = BD_UNMAP_LEN(split); 280 nbd--; 281 } 282 283 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 284 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 285 286 /* Unmap the data of the skb frags */ 287 for (i = 0; i < nbd; i++) { 288 tx_data_bd = (struct eth_tx_bd *) 289 qed_chain_produce(&txq->tx_pbl); 290 if (tx_data_bd->nbytes) 291 dma_unmap_page(&edev->pdev->dev, 292 BD_UNMAP_ADDR(tx_data_bd), 293 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 294 } 295 296 /* Return again prod to its position before this skb was handled */ 297 qed_chain_set_prod(&txq->tx_pbl, 298 le16_to_cpu(txq->tx_db.data.bd_prod), 299 first_bd); 300 301 /* Free skb */ 302 dev_kfree_skb_any(skb); 303 txq->sw_tx_ring[idx].skb = NULL; 304 txq->sw_tx_ring[idx].flags = 0; 305 } 306 307 static u32 qede_xmit_type(struct qede_dev *edev, 308 struct sk_buff *skb, 309 int *ipv6_ext) 310 { 311 u32 rc = XMIT_L4_CSUM; 312 __be16 l3_proto; 313 314 if (skb->ip_summed != CHECKSUM_PARTIAL) 315 return XMIT_PLAIN; 316 317 l3_proto = vlan_get_protocol(skb); 318 if (l3_proto == htons(ETH_P_IPV6) && 319 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) 320 *ipv6_ext = 1; 321 322 if (skb_is_gso(skb)) 323 rc |= XMIT_LSO; 324 325 return rc; 326 } 327 328 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, 329 struct eth_tx_2nd_bd *second_bd, 330 struct eth_tx_3rd_bd *third_bd) 331 { 332 u8 l4_proto; 333 u16 bd2_bits = 0, bd2_bits2 = 0; 334 335 bd2_bits2 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); 336 337 bd2_bits |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & 338 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 339 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 340 341 bd2_bits2 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 342 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); 343 344 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) 345 l4_proto = ipv6_hdr(skb)->nexthdr; 346 else 347 l4_proto = ip_hdr(skb)->protocol; 348 349 if (l4_proto == IPPROTO_UDP) 350 bd2_bits2 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 351 352 if (third_bd) { 353 third_bd->data.bitfields |= 354 ((tcp_hdrlen(skb) / 4) & 355 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << 356 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT; 357 } 358 359 second_bd->data.bitfields = cpu_to_le16(bd2_bits); 360 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); 361 } 362 363 static int map_frag_to_bd(struct qede_dev *edev, 364 skb_frag_t *frag, 365 struct eth_tx_bd *bd) 366 { 367 dma_addr_t mapping; 368 369 /* Map skb non-linear frag data for DMA */ 370 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0, 371 skb_frag_size(frag), 372 DMA_TO_DEVICE); 373 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 374 DP_NOTICE(edev, "Unable to map frag - dropping packet\n"); 375 return -ENOMEM; 376 } 377 378 /* Setup the data pointer of the frag data */ 379 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); 380 381 return 0; 382 } 383 384 /* Main transmit function */ 385 static 386 netdev_tx_t qede_start_xmit(struct sk_buff *skb, 387 struct net_device *ndev) 388 { 389 struct qede_dev *edev = netdev_priv(ndev); 390 struct netdev_queue *netdev_txq; 391 struct qede_tx_queue *txq; 392 struct eth_tx_1st_bd *first_bd; 393 struct eth_tx_2nd_bd *second_bd = NULL; 394 struct eth_tx_3rd_bd *third_bd = NULL; 395 struct eth_tx_bd *tx_data_bd = NULL; 396 u16 txq_index; 397 u8 nbd = 0; 398 dma_addr_t mapping; 399 int rc, frag_idx = 0, ipv6_ext = 0; 400 u8 xmit_type; 401 u16 idx; 402 u16 hlen; 403 bool data_split; 404 405 /* Get tx-queue context and netdev index */ 406 txq_index = skb_get_queue_mapping(skb); 407 WARN_ON(txq_index >= QEDE_TSS_CNT(edev)); 408 txq = QEDE_TX_QUEUE(edev, txq_index); 409 netdev_txq = netdev_get_tx_queue(ndev, txq_index); 410 411 /* Current code doesn't support SKB linearization, since the max number 412 * of skb frags can be passed in the FW HSI. 413 */ 414 BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET); 415 416 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < 417 (MAX_SKB_FRAGS + 1)); 418 419 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext); 420 421 /* Fill the entry in the SW ring and the BDs in the FW ring */ 422 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 423 txq->sw_tx_ring[idx].skb = skb; 424 first_bd = (struct eth_tx_1st_bd *) 425 qed_chain_produce(&txq->tx_pbl); 426 memset(first_bd, 0, sizeof(*first_bd)); 427 first_bd->data.bd_flags.bitfields = 428 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 429 430 /* Map skb linear data for DMA and set in the first BD */ 431 mapping = dma_map_single(&edev->pdev->dev, skb->data, 432 skb_headlen(skb), DMA_TO_DEVICE); 433 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 434 DP_NOTICE(edev, "SKB mapping failed\n"); 435 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false); 436 return NETDEV_TX_OK; 437 } 438 nbd++; 439 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); 440 441 /* In case there is IPv6 with extension headers or LSO we need 2nd and 442 * 3rd BDs. 443 */ 444 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { 445 second_bd = (struct eth_tx_2nd_bd *) 446 qed_chain_produce(&txq->tx_pbl); 447 memset(second_bd, 0, sizeof(*second_bd)); 448 449 nbd++; 450 third_bd = (struct eth_tx_3rd_bd *) 451 qed_chain_produce(&txq->tx_pbl); 452 memset(third_bd, 0, sizeof(*third_bd)); 453 454 nbd++; 455 /* We need to fill in additional data in second_bd... */ 456 tx_data_bd = (struct eth_tx_bd *)second_bd; 457 } 458 459 if (skb_vlan_tag_present(skb)) { 460 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 461 first_bd->data.bd_flags.bitfields |= 462 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 463 } 464 465 /* Fill the parsing flags & params according to the requested offload */ 466 if (xmit_type & XMIT_L4_CSUM) { 467 /* We don't re-calculate IP checksum as it is already done by 468 * the upper stack 469 */ 470 first_bd->data.bd_flags.bitfields |= 471 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 472 473 /* If the packet is IPv6 with extension header, indicate that 474 * to FW and pass few params, since the device cracker doesn't 475 * support parsing IPv6 with extension header/s. 476 */ 477 if (unlikely(ipv6_ext)) 478 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); 479 } 480 481 if (xmit_type & XMIT_LSO) { 482 first_bd->data.bd_flags.bitfields |= 483 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); 484 third_bd->data.lso_mss = 485 cpu_to_le16(skb_shinfo(skb)->gso_size); 486 487 first_bd->data.bd_flags.bitfields |= 488 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 489 hlen = skb_transport_header(skb) + 490 tcp_hdrlen(skb) - skb->data; 491 492 /* @@@TBD - if will not be removed need to check */ 493 third_bd->data.bitfields |= 494 (1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); 495 496 /* Make life easier for FW guys who can't deal with header and 497 * data on same BD. If we need to split, use the second bd... 498 */ 499 if (unlikely(skb_headlen(skb) > hlen)) { 500 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 501 "TSO split header size is %d (%x:%x)\n", 502 first_bd->nbytes, first_bd->addr.hi, 503 first_bd->addr.lo); 504 505 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), 506 le32_to_cpu(first_bd->addr.lo)) + 507 hlen; 508 509 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, 510 le16_to_cpu(first_bd->nbytes) - 511 hlen); 512 513 /* this marks the BD as one that has no 514 * individual mapping 515 */ 516 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD; 517 518 first_bd->nbytes = cpu_to_le16(hlen); 519 520 tx_data_bd = (struct eth_tx_bd *)third_bd; 521 data_split = true; 522 } 523 } 524 525 /* Handle fragmented skb */ 526 /* special handle for frags inside 2nd and 3rd bds.. */ 527 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { 528 rc = map_frag_to_bd(edev, 529 &skb_shinfo(skb)->frags[frag_idx], 530 tx_data_bd); 531 if (rc) { 532 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, 533 data_split); 534 return NETDEV_TX_OK; 535 } 536 537 if (tx_data_bd == (struct eth_tx_bd *)second_bd) 538 tx_data_bd = (struct eth_tx_bd *)third_bd; 539 else 540 tx_data_bd = NULL; 541 542 frag_idx++; 543 } 544 545 /* map last frags into 4th, 5th .... */ 546 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { 547 tx_data_bd = (struct eth_tx_bd *) 548 qed_chain_produce(&txq->tx_pbl); 549 550 memset(tx_data_bd, 0, sizeof(*tx_data_bd)); 551 552 rc = map_frag_to_bd(edev, 553 &skb_shinfo(skb)->frags[frag_idx], 554 tx_data_bd); 555 if (rc) { 556 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, 557 data_split); 558 return NETDEV_TX_OK; 559 } 560 } 561 562 /* update the first BD with the actual num BDs */ 563 first_bd->data.nbds = nbd; 564 565 netdev_tx_sent_queue(netdev_txq, skb->len); 566 567 skb_tx_timestamp(skb); 568 569 /* Advance packet producer only before sending the packet since mapping 570 * of pages may fail. 571 */ 572 txq->sw_tx_prod++; 573 574 /* 'next page' entries are counted in the producer value */ 575 txq->tx_db.data.bd_prod = 576 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); 577 578 /* wmb makes sure that the BDs data is updated before updating the 579 * producer, otherwise FW may read old data from the BDs. 580 */ 581 wmb(); 582 barrier(); 583 writel(txq->tx_db.raw, txq->doorbell_addr); 584 585 /* mmiowb is needed to synchronize doorbell writes from more than one 586 * processor. It guarantees that the write arrives to the device before 587 * the queue lock is released and another start_xmit is called (possibly 588 * on another CPU). Without this barrier, the next doorbell can bypass 589 * this doorbell. This is applicable to IA64/Altix systems. 590 */ 591 mmiowb(); 592 593 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) 594 < (MAX_SKB_FRAGS + 1))) { 595 netif_tx_stop_queue(netdev_txq); 596 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 597 "Stop queue was called\n"); 598 /* paired memory barrier is in qede_tx_int(), we have to keep 599 * ordering of set_bit() in netif_tx_stop_queue() and read of 600 * fp->bd_tx_cons 601 */ 602 smp_mb(); 603 604 if (qed_chain_get_elem_left(&txq->tx_pbl) 605 >= (MAX_SKB_FRAGS + 1) && 606 (edev->state == QEDE_STATE_OPEN)) { 607 netif_tx_wake_queue(netdev_txq); 608 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 609 "Wake queue was called\n"); 610 } 611 } 612 613 return NETDEV_TX_OK; 614 } 615 616 static int qede_txq_has_work(struct qede_tx_queue *txq) 617 { 618 u16 hw_bd_cons; 619 620 /* Tell compiler that consumer and producer can change */ 621 barrier(); 622 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 623 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) 624 return 0; 625 626 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); 627 } 628 629 static int qede_tx_int(struct qede_dev *edev, 630 struct qede_tx_queue *txq) 631 { 632 struct netdev_queue *netdev_txq; 633 u16 hw_bd_cons; 634 unsigned int pkts_compl = 0, bytes_compl = 0; 635 int rc; 636 637 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 638 639 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 640 barrier(); 641 642 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 643 int len = 0; 644 645 rc = qede_free_tx_pkt(edev, txq, &len); 646 if (rc) { 647 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", 648 hw_bd_cons, 649 qed_chain_get_cons_idx(&txq->tx_pbl)); 650 break; 651 } 652 653 bytes_compl += len; 654 pkts_compl++; 655 txq->sw_tx_cons++; 656 } 657 658 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 659 660 /* Need to make the tx_bd_cons update visible to start_xmit() 661 * before checking for netif_tx_queue_stopped(). Without the 662 * memory barrier, there is a small possibility that 663 * start_xmit() will miss it and cause the queue to be stopped 664 * forever. 665 * On the other hand we need an rmb() here to ensure the proper 666 * ordering of bit testing in the following 667 * netif_tx_queue_stopped(txq) call. 668 */ 669 smp_mb(); 670 671 if (unlikely(netif_tx_queue_stopped(netdev_txq))) { 672 /* Taking tx_lock is needed to prevent reenabling the queue 673 * while it's empty. This could have happen if rx_action() gets 674 * suspended in qede_tx_int() after the condition before 675 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): 676 * 677 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 678 * sends some packets consuming the whole queue again-> 679 * stops the queue 680 */ 681 682 __netif_tx_lock(netdev_txq, smp_processor_id()); 683 684 if ((netif_tx_queue_stopped(netdev_txq)) && 685 (edev->state == QEDE_STATE_OPEN) && 686 (qed_chain_get_elem_left(&txq->tx_pbl) 687 >= (MAX_SKB_FRAGS + 1))) { 688 netif_tx_wake_queue(netdev_txq); 689 DP_VERBOSE(edev, NETIF_MSG_TX_DONE, 690 "Wake queue was called\n"); 691 } 692 693 __netif_tx_unlock(netdev_txq); 694 } 695 696 return 0; 697 } 698 699 static bool qede_has_rx_work(struct qede_rx_queue *rxq) 700 { 701 u16 hw_comp_cons, sw_comp_cons; 702 703 /* Tell compiler that status block fields can change */ 704 barrier(); 705 706 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 707 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 708 709 return hw_comp_cons != sw_comp_cons; 710 } 711 712 static bool qede_has_tx_work(struct qede_fastpath *fp) 713 { 714 u8 tc; 715 716 for (tc = 0; tc < fp->edev->num_tc; tc++) 717 if (qede_txq_has_work(&fp->txqs[tc])) 718 return true; 719 return false; 720 } 721 722 /* This function copies the Rx buffer from the CONS position to the PROD 723 * position, since we failed to allocate a new Rx buffer. 724 */ 725 static void qede_reuse_rx_data(struct qede_rx_queue *rxq) 726 { 727 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); 728 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 729 struct sw_rx_data *sw_rx_data_cons = 730 &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 731 struct sw_rx_data *sw_rx_data_prod = 732 &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 733 734 dma_unmap_addr_set(sw_rx_data_prod, mapping, 735 dma_unmap_addr(sw_rx_data_cons, mapping)); 736 737 sw_rx_data_prod->data = sw_rx_data_cons->data; 738 memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd)); 739 740 rxq->sw_rx_cons++; 741 rxq->sw_rx_prod++; 742 } 743 744 static inline void qede_update_rx_prod(struct qede_dev *edev, 745 struct qede_rx_queue *rxq) 746 { 747 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); 748 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); 749 struct eth_rx_prod_data rx_prods = {0}; 750 751 /* Update producers */ 752 rx_prods.bd_prod = cpu_to_le16(bd_prod); 753 rx_prods.cqe_prod = cpu_to_le16(cqe_prod); 754 755 /* Make sure that the BD and SGE data is updated before updating the 756 * producers since FW might read the BD/SGE right after the producer 757 * is updated. 758 */ 759 wmb(); 760 761 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 762 (u32 *)&rx_prods); 763 764 /* mmiowb is needed to synchronize doorbell writes from more than one 765 * processor. It guarantees that the write arrives to the device before 766 * the napi lock is released and another qede_poll is called (possibly 767 * on another CPU). Without this barrier, the next doorbell can bypass 768 * this doorbell. This is applicable to IA64/Altix systems. 769 */ 770 mmiowb(); 771 } 772 773 static u32 qede_get_rxhash(struct qede_dev *edev, 774 u8 bitfields, 775 __le32 rss_hash, 776 enum pkt_hash_types *rxhash_type) 777 { 778 enum rss_hash_type htype; 779 780 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); 781 782 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) { 783 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) || 784 (htype == RSS_HASH_TYPE_IPV6)) ? 785 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; 786 return le32_to_cpu(rss_hash); 787 } 788 *rxhash_type = PKT_HASH_TYPE_NONE; 789 return 0; 790 } 791 792 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) 793 { 794 skb_checksum_none_assert(skb); 795 796 if (csum_flag & QEDE_CSUM_UNNECESSARY) 797 skb->ip_summed = CHECKSUM_UNNECESSARY; 798 } 799 800 static inline void qede_skb_receive(struct qede_dev *edev, 801 struct qede_fastpath *fp, 802 struct sk_buff *skb, 803 u16 vlan_tag) 804 { 805 if (vlan_tag) 806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 807 vlan_tag); 808 809 napi_gro_receive(&fp->napi, skb); 810 } 811 812 static u8 qede_check_csum(u16 flag) 813 { 814 u16 csum_flag = 0; 815 u8 csum = 0; 816 817 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 818 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) { 819 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 820 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 821 csum = QEDE_CSUM_UNNECESSARY; 822 } 823 824 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 825 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 826 827 if (csum_flag & flag) 828 return QEDE_CSUM_ERROR; 829 830 return csum; 831 } 832 833 static int qede_rx_int(struct qede_fastpath *fp, int budget) 834 { 835 struct qede_dev *edev = fp->edev; 836 struct qede_rx_queue *rxq = fp->rxq; 837 838 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag; 839 int rx_pkt = 0; 840 u8 csum_flag; 841 842 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 843 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 844 845 /* Memory barrier to prevent the CPU from doing speculative reads of CQE 846 * / BD in the while-loop before reading hw_comp_cons. If the CQE is 847 * read before it is written by FW, then FW writes CQE and SB, and then 848 * the CPU reads the hw_comp_cons, it will use an old CQE. 849 */ 850 rmb(); 851 852 /* Loop to complete all indicated BDs */ 853 while (sw_comp_cons != hw_comp_cons) { 854 struct eth_fast_path_rx_reg_cqe *fp_cqe; 855 enum pkt_hash_types rxhash_type; 856 enum eth_rx_cqe_type cqe_type; 857 struct sw_rx_data *sw_rx_data; 858 union eth_rx_cqe *cqe; 859 struct sk_buff *skb; 860 u16 len, pad; 861 u32 rx_hash; 862 u8 *data; 863 864 /* Get the CQE from the completion ring */ 865 cqe = (union eth_rx_cqe *) 866 qed_chain_consume(&rxq->rx_comp_ring); 867 cqe_type = cqe->fast_path_regular.type; 868 869 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { 870 edev->ops->eth_cqe_completion( 871 edev->cdev, fp->rss_id, 872 (struct eth_slow_path_rx_cqe *)cqe); 873 goto next_cqe; 874 } 875 876 /* Get the data from the SW ring */ 877 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 878 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; 879 data = sw_rx_data->data; 880 881 fp_cqe = &cqe->fast_path_regular; 882 len = le16_to_cpu(fp_cqe->pkt_len); 883 pad = fp_cqe->placement_offset; 884 885 /* For every Rx BD consumed, we allocate a new BD so the BD ring 886 * is always with a fixed size. If allocation fails, we take the 887 * consumed BD and return it to the ring in the PROD position. 888 * The packet that was received on that BD will be dropped (and 889 * not passed to the upper stack). 890 */ 891 if (likely(qede_alloc_rx_buffer(edev, rxq) == 0)) { 892 dma_unmap_single(&edev->pdev->dev, 893 dma_unmap_addr(sw_rx_data, mapping), 894 rxq->rx_buf_size, DMA_FROM_DEVICE); 895 896 /* If this is an error packet then drop it */ 897 parse_flag = 898 le16_to_cpu(cqe->fast_path_regular.pars_flags.flags); 899 csum_flag = qede_check_csum(parse_flag); 900 if (csum_flag == QEDE_CSUM_ERROR) { 901 DP_NOTICE(edev, 902 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n", 903 sw_comp_cons, parse_flag); 904 rxq->rx_hw_errors++; 905 kfree(data); 906 goto next_rx; 907 } 908 909 skb = build_skb(data, 0); 910 911 if (unlikely(!skb)) { 912 DP_NOTICE(edev, 913 "Build_skb failed, dropping incoming packet\n"); 914 kfree(data); 915 rxq->rx_alloc_errors++; 916 goto next_rx; 917 } 918 919 skb_reserve(skb, pad); 920 921 } else { 922 DP_NOTICE(edev, 923 "New buffer allocation failed, dropping incoming packet and reusing its buffer\n"); 924 qede_reuse_rx_data(rxq); 925 rxq->rx_alloc_errors++; 926 goto next_cqe; 927 } 928 929 sw_rx_data->data = NULL; 930 931 skb_put(skb, len); 932 933 skb->protocol = eth_type_trans(skb, edev->ndev); 934 935 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields, 936 fp_cqe->rss_hash, 937 &rxhash_type); 938 939 skb_set_hash(skb, rx_hash, rxhash_type); 940 941 qede_set_skb_csum(skb, csum_flag); 942 943 skb_record_rx_queue(skb, fp->rss_id); 944 945 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag)); 946 947 qed_chain_consume(&rxq->rx_bd_ring); 948 949 next_rx: 950 rxq->sw_rx_cons++; 951 rx_pkt++; 952 953 next_cqe: /* don't consume bd rx buffer */ 954 qed_chain_recycle_consumed(&rxq->rx_comp_ring); 955 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 956 /* CR TPA - revisit how to handle budget in TPA perhaps 957 * increase on "end" 958 */ 959 if (rx_pkt == budget) 960 break; 961 } /* repeat while sw_comp_cons != hw_comp_cons... */ 962 963 /* Update producers */ 964 qede_update_rx_prod(edev, rxq); 965 966 return rx_pkt; 967 } 968 969 static int qede_poll(struct napi_struct *napi, int budget) 970 { 971 int work_done = 0; 972 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, 973 napi); 974 struct qede_dev *edev = fp->edev; 975 976 while (1) { 977 u8 tc; 978 979 for (tc = 0; tc < edev->num_tc; tc++) 980 if (qede_txq_has_work(&fp->txqs[tc])) 981 qede_tx_int(edev, &fp->txqs[tc]); 982 983 if (qede_has_rx_work(fp->rxq)) { 984 work_done += qede_rx_int(fp, budget - work_done); 985 986 /* must not complete if we consumed full budget */ 987 if (work_done >= budget) 988 break; 989 } 990 991 /* Fall out from the NAPI loop if needed */ 992 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) { 993 qed_sb_update_sb_idx(fp->sb_info); 994 /* *_has_*_work() reads the status block, 995 * thus we need to ensure that status block indices 996 * have been actually read (qed_sb_update_sb_idx) 997 * prior to this check (*_has_*_work) so that 998 * we won't write the "newer" value of the status block 999 * to HW (if there was a DMA right after 1000 * qede_has_rx_work and if there is no rmb, the memory 1001 * reading (qed_sb_update_sb_idx) may be postponed 1002 * to right before *_ack_sb). In this case there 1003 * will never be another interrupt until there is 1004 * another update of the status block, while there 1005 * is still unhandled work. 1006 */ 1007 rmb(); 1008 1009 if (!(qede_has_rx_work(fp->rxq) || 1010 qede_has_tx_work(fp))) { 1011 napi_complete(napi); 1012 /* Update and reenable interrupts */ 1013 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1014 1 /*update*/); 1015 break; 1016 } 1017 } 1018 } 1019 1020 return work_done; 1021 } 1022 1023 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) 1024 { 1025 struct qede_fastpath *fp = fp_cookie; 1026 1027 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); 1028 1029 napi_schedule_irqoff(&fp->napi); 1030 return IRQ_HANDLED; 1031 } 1032 1033 /* ------------------------------------------------------------------------- 1034 * END OF FAST-PATH 1035 * ------------------------------------------------------------------------- 1036 */ 1037 1038 static int qede_open(struct net_device *ndev); 1039 static int qede_close(struct net_device *ndev); 1040 static int qede_set_mac_addr(struct net_device *ndev, void *p); 1041 static void qede_set_rx_mode(struct net_device *ndev); 1042 static void qede_config_rx_mode(struct net_device *ndev); 1043 1044 static int qede_set_ucast_rx_mac(struct qede_dev *edev, 1045 enum qed_filter_xcast_params_type opcode, 1046 unsigned char mac[ETH_ALEN]) 1047 { 1048 struct qed_filter_params filter_cmd; 1049 1050 memset(&filter_cmd, 0, sizeof(filter_cmd)); 1051 filter_cmd.type = QED_FILTER_TYPE_UCAST; 1052 filter_cmd.filter.ucast.type = opcode; 1053 filter_cmd.filter.ucast.mac_valid = 1; 1054 ether_addr_copy(filter_cmd.filter.ucast.mac, mac); 1055 1056 return edev->ops->filter_config(edev->cdev, &filter_cmd); 1057 } 1058 1059 void qede_fill_by_demand_stats(struct qede_dev *edev) 1060 { 1061 struct qed_eth_stats stats; 1062 1063 edev->ops->get_vport_stats(edev->cdev, &stats); 1064 edev->stats.no_buff_discards = stats.no_buff_discards; 1065 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes; 1066 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes; 1067 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes; 1068 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts; 1069 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts; 1070 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts; 1071 edev->stats.mftag_filter_discards = stats.mftag_filter_discards; 1072 edev->stats.mac_filter_discards = stats.mac_filter_discards; 1073 1074 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes; 1075 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes; 1076 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes; 1077 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts; 1078 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts; 1079 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts; 1080 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts; 1081 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts; 1082 edev->stats.coalesced_events = stats.tpa_coalesced_events; 1083 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num; 1084 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts; 1085 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes; 1086 1087 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets; 1088 edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets; 1089 edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets; 1090 edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets; 1091 edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets; 1092 edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets; 1093 edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets; 1094 edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets; 1095 edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets; 1096 edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets; 1097 edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets; 1098 edev->stats.rx_crc_errors = stats.rx_crc_errors; 1099 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames; 1100 edev->stats.rx_pause_frames = stats.rx_pause_frames; 1101 edev->stats.rx_pfc_frames = stats.rx_pfc_frames; 1102 edev->stats.rx_align_errors = stats.rx_align_errors; 1103 edev->stats.rx_carrier_errors = stats.rx_carrier_errors; 1104 edev->stats.rx_oversize_packets = stats.rx_oversize_packets; 1105 edev->stats.rx_jabbers = stats.rx_jabbers; 1106 edev->stats.rx_undersize_packets = stats.rx_undersize_packets; 1107 edev->stats.rx_fragments = stats.rx_fragments; 1108 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets; 1109 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets; 1110 edev->stats.tx_128_to_255_byte_packets = 1111 stats.tx_128_to_255_byte_packets; 1112 edev->stats.tx_256_to_511_byte_packets = 1113 stats.tx_256_to_511_byte_packets; 1114 edev->stats.tx_512_to_1023_byte_packets = 1115 stats.tx_512_to_1023_byte_packets; 1116 edev->stats.tx_1024_to_1518_byte_packets = 1117 stats.tx_1024_to_1518_byte_packets; 1118 edev->stats.tx_1519_to_2047_byte_packets = 1119 stats.tx_1519_to_2047_byte_packets; 1120 edev->stats.tx_2048_to_4095_byte_packets = 1121 stats.tx_2048_to_4095_byte_packets; 1122 edev->stats.tx_4096_to_9216_byte_packets = 1123 stats.tx_4096_to_9216_byte_packets; 1124 edev->stats.tx_9217_to_16383_byte_packets = 1125 stats.tx_9217_to_16383_byte_packets; 1126 edev->stats.tx_pause_frames = stats.tx_pause_frames; 1127 edev->stats.tx_pfc_frames = stats.tx_pfc_frames; 1128 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count; 1129 edev->stats.tx_total_collisions = stats.tx_total_collisions; 1130 edev->stats.brb_truncates = stats.brb_truncates; 1131 edev->stats.brb_discards = stats.brb_discards; 1132 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames; 1133 } 1134 1135 static struct rtnl_link_stats64 *qede_get_stats64( 1136 struct net_device *dev, 1137 struct rtnl_link_stats64 *stats) 1138 { 1139 struct qede_dev *edev = netdev_priv(dev); 1140 1141 qede_fill_by_demand_stats(edev); 1142 1143 stats->rx_packets = edev->stats.rx_ucast_pkts + 1144 edev->stats.rx_mcast_pkts + 1145 edev->stats.rx_bcast_pkts; 1146 stats->tx_packets = edev->stats.tx_ucast_pkts + 1147 edev->stats.tx_mcast_pkts + 1148 edev->stats.tx_bcast_pkts; 1149 1150 stats->rx_bytes = edev->stats.rx_ucast_bytes + 1151 edev->stats.rx_mcast_bytes + 1152 edev->stats.rx_bcast_bytes; 1153 1154 stats->tx_bytes = edev->stats.tx_ucast_bytes + 1155 edev->stats.tx_mcast_bytes + 1156 edev->stats.tx_bcast_bytes; 1157 1158 stats->tx_errors = edev->stats.tx_err_drop_pkts; 1159 stats->multicast = edev->stats.rx_mcast_pkts + 1160 edev->stats.rx_bcast_pkts; 1161 1162 stats->rx_fifo_errors = edev->stats.no_buff_discards; 1163 1164 stats->collisions = edev->stats.tx_total_collisions; 1165 stats->rx_crc_errors = edev->stats.rx_crc_errors; 1166 stats->rx_frame_errors = edev->stats.rx_align_errors; 1167 1168 return stats; 1169 } 1170 1171 static const struct net_device_ops qede_netdev_ops = { 1172 .ndo_open = qede_open, 1173 .ndo_stop = qede_close, 1174 .ndo_start_xmit = qede_start_xmit, 1175 .ndo_set_rx_mode = qede_set_rx_mode, 1176 .ndo_set_mac_address = qede_set_mac_addr, 1177 .ndo_validate_addr = eth_validate_addr, 1178 .ndo_change_mtu = qede_change_mtu, 1179 .ndo_get_stats64 = qede_get_stats64, 1180 }; 1181 1182 /* ------------------------------------------------------------------------- 1183 * START OF PROBE / REMOVE 1184 * ------------------------------------------------------------------------- 1185 */ 1186 1187 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 1188 struct pci_dev *pdev, 1189 struct qed_dev_eth_info *info, 1190 u32 dp_module, 1191 u8 dp_level) 1192 { 1193 struct net_device *ndev; 1194 struct qede_dev *edev; 1195 1196 ndev = alloc_etherdev_mqs(sizeof(*edev), 1197 info->num_queues, 1198 info->num_queues); 1199 if (!ndev) { 1200 pr_err("etherdev allocation failed\n"); 1201 return NULL; 1202 } 1203 1204 edev = netdev_priv(ndev); 1205 edev->ndev = ndev; 1206 edev->cdev = cdev; 1207 edev->pdev = pdev; 1208 edev->dp_module = dp_module; 1209 edev->dp_level = dp_level; 1210 edev->ops = qed_ops; 1211 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 1212 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 1213 1214 DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n"); 1215 1216 SET_NETDEV_DEV(ndev, &pdev->dev); 1217 1218 memset(&edev->stats, 0, sizeof(edev->stats)); 1219 memcpy(&edev->dev_info, info, sizeof(*info)); 1220 1221 edev->num_tc = edev->dev_info.num_tc; 1222 1223 return edev; 1224 } 1225 1226 static void qede_init_ndev(struct qede_dev *edev) 1227 { 1228 struct net_device *ndev = edev->ndev; 1229 struct pci_dev *pdev = edev->pdev; 1230 u32 hw_features; 1231 1232 pci_set_drvdata(pdev, ndev); 1233 1234 ndev->mem_start = edev->dev_info.common.pci_mem_start; 1235 ndev->base_addr = ndev->mem_start; 1236 ndev->mem_end = edev->dev_info.common.pci_mem_end; 1237 ndev->irq = edev->dev_info.common.pci_irq; 1238 1239 ndev->watchdog_timeo = TX_TIMEOUT; 1240 1241 ndev->netdev_ops = &qede_netdev_ops; 1242 1243 qede_set_ethtool_ops(ndev); 1244 1245 /* user-changeble features */ 1246 hw_features = NETIF_F_GRO | NETIF_F_SG | 1247 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 1248 NETIF_F_TSO | NETIF_F_TSO6; 1249 1250 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 1251 NETIF_F_HIGHDMA; 1252 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 1253 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 1254 NETIF_F_HW_VLAN_CTAG_TX; 1255 1256 ndev->hw_features = hw_features; 1257 1258 /* Set network device HW mac */ 1259 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 1260 } 1261 1262 /* This function converts from 32b param to two params of level and module 1263 * Input 32b decoding: 1264 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 1265 * 'happy' flow, e.g. memory allocation failed. 1266 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 1267 * and provide important parameters. 1268 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 1269 * module. VERBOSE prints are for tracking the specific flow in low level. 1270 * 1271 * Notice that the level should be that of the lowest required logs. 1272 */ 1273 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 1274 { 1275 *p_dp_level = QED_LEVEL_NOTICE; 1276 *p_dp_module = 0; 1277 1278 if (debug & QED_LOG_VERBOSE_MASK) { 1279 *p_dp_level = QED_LEVEL_VERBOSE; 1280 *p_dp_module = (debug & 0x3FFFFFFF); 1281 } else if (debug & QED_LOG_INFO_MASK) { 1282 *p_dp_level = QED_LEVEL_INFO; 1283 } else if (debug & QED_LOG_NOTICE_MASK) { 1284 *p_dp_level = QED_LEVEL_NOTICE; 1285 } 1286 } 1287 1288 static void qede_free_fp_array(struct qede_dev *edev) 1289 { 1290 if (edev->fp_array) { 1291 struct qede_fastpath *fp; 1292 int i; 1293 1294 for_each_rss(i) { 1295 fp = &edev->fp_array[i]; 1296 1297 kfree(fp->sb_info); 1298 kfree(fp->rxq); 1299 kfree(fp->txqs); 1300 } 1301 kfree(edev->fp_array); 1302 } 1303 edev->num_rss = 0; 1304 } 1305 1306 static int qede_alloc_fp_array(struct qede_dev *edev) 1307 { 1308 struct qede_fastpath *fp; 1309 int i; 1310 1311 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev), 1312 sizeof(*edev->fp_array), GFP_KERNEL); 1313 if (!edev->fp_array) { 1314 DP_NOTICE(edev, "fp array allocation failed\n"); 1315 goto err; 1316 } 1317 1318 for_each_rss(i) { 1319 fp = &edev->fp_array[i]; 1320 1321 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL); 1322 if (!fp->sb_info) { 1323 DP_NOTICE(edev, "sb info struct allocation failed\n"); 1324 goto err; 1325 } 1326 1327 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL); 1328 if (!fp->rxq) { 1329 DP_NOTICE(edev, "RXQ struct allocation failed\n"); 1330 goto err; 1331 } 1332 1333 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL); 1334 if (!fp->txqs) { 1335 DP_NOTICE(edev, "TXQ array allocation failed\n"); 1336 goto err; 1337 } 1338 } 1339 1340 return 0; 1341 err: 1342 qede_free_fp_array(edev); 1343 return -ENOMEM; 1344 } 1345 1346 static void qede_sp_task(struct work_struct *work) 1347 { 1348 struct qede_dev *edev = container_of(work, struct qede_dev, 1349 sp_task.work); 1350 mutex_lock(&edev->qede_lock); 1351 1352 if (edev->state == QEDE_STATE_OPEN) { 1353 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1354 qede_config_rx_mode(edev->ndev); 1355 } 1356 1357 mutex_unlock(&edev->qede_lock); 1358 } 1359 1360 static void qede_update_pf_params(struct qed_dev *cdev) 1361 { 1362 struct qed_pf_params pf_params; 1363 1364 /* 16 rx + 16 tx */ 1365 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1366 pf_params.eth_pf_params.num_cons = 32; 1367 qed_ops->common->update_pf_params(cdev, &pf_params); 1368 } 1369 1370 enum qede_probe_mode { 1371 QEDE_PROBE_NORMAL, 1372 }; 1373 1374 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1375 enum qede_probe_mode mode) 1376 { 1377 struct qed_slowpath_params params; 1378 struct qed_dev_eth_info dev_info; 1379 struct qede_dev *edev; 1380 struct qed_dev *cdev; 1381 int rc; 1382 1383 if (unlikely(dp_level & QED_LEVEL_INFO)) 1384 pr_notice("Starting qede probe\n"); 1385 1386 cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH, 1387 dp_module, dp_level); 1388 if (!cdev) { 1389 rc = -ENODEV; 1390 goto err0; 1391 } 1392 1393 qede_update_pf_params(cdev); 1394 1395 /* Start the Slowpath-process */ 1396 memset(¶ms, 0, sizeof(struct qed_slowpath_params)); 1397 params.int_mode = QED_INT_MODE_MSIX; 1398 params.drv_major = QEDE_MAJOR_VERSION; 1399 params.drv_minor = QEDE_MINOR_VERSION; 1400 params.drv_rev = QEDE_REVISION_VERSION; 1401 params.drv_eng = QEDE_ENGINEERING_VERSION; 1402 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1403 rc = qed_ops->common->slowpath_start(cdev, ¶ms); 1404 if (rc) { 1405 pr_notice("Cannot start slowpath\n"); 1406 goto err1; 1407 } 1408 1409 /* Learn information crucial for qede to progress */ 1410 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1411 if (rc) 1412 goto err2; 1413 1414 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1415 dp_level); 1416 if (!edev) { 1417 rc = -ENOMEM; 1418 goto err2; 1419 } 1420 1421 qede_init_ndev(edev); 1422 1423 rc = register_netdev(edev->ndev); 1424 if (rc) { 1425 DP_NOTICE(edev, "Cannot register net-device\n"); 1426 goto err3; 1427 } 1428 1429 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); 1430 1431 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1432 1433 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1434 mutex_init(&edev->qede_lock); 1435 1436 DP_INFO(edev, "Ending successfully qede probe\n"); 1437 1438 return 0; 1439 1440 err3: 1441 free_netdev(edev->ndev); 1442 err2: 1443 qed_ops->common->slowpath_stop(cdev); 1444 err1: 1445 qed_ops->common->remove(cdev); 1446 err0: 1447 return rc; 1448 } 1449 1450 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1451 { 1452 u32 dp_module = 0; 1453 u8 dp_level = 0; 1454 1455 qede_config_debug(debug, &dp_module, &dp_level); 1456 1457 return __qede_probe(pdev, dp_module, dp_level, 1458 QEDE_PROBE_NORMAL); 1459 } 1460 1461 enum qede_remove_mode { 1462 QEDE_REMOVE_NORMAL, 1463 }; 1464 1465 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1466 { 1467 struct net_device *ndev = pci_get_drvdata(pdev); 1468 struct qede_dev *edev = netdev_priv(ndev); 1469 struct qed_dev *cdev = edev->cdev; 1470 1471 DP_INFO(edev, "Starting qede_remove\n"); 1472 1473 cancel_delayed_work_sync(&edev->sp_task); 1474 unregister_netdev(ndev); 1475 1476 edev->ops->common->set_power_state(cdev, PCI_D0); 1477 1478 pci_set_drvdata(pdev, NULL); 1479 1480 free_netdev(ndev); 1481 1482 /* Use global ops since we've freed edev */ 1483 qed_ops->common->slowpath_stop(cdev); 1484 qed_ops->common->remove(cdev); 1485 1486 pr_notice("Ending successfully qede_remove\n"); 1487 } 1488 1489 static void qede_remove(struct pci_dev *pdev) 1490 { 1491 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1492 } 1493 1494 /* ------------------------------------------------------------------------- 1495 * START OF LOAD / UNLOAD 1496 * ------------------------------------------------------------------------- 1497 */ 1498 1499 static int qede_set_num_queues(struct qede_dev *edev) 1500 { 1501 int rc; 1502 u16 rss_num; 1503 1504 /* Setup queues according to possible resources*/ 1505 if (edev->req_rss) 1506 rss_num = edev->req_rss; 1507 else 1508 rss_num = netif_get_num_default_rss_queues() * 1509 edev->dev_info.common.num_hwfns; 1510 1511 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1512 1513 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1514 if (rc > 0) { 1515 /* Managed to request interrupts for our queues */ 1516 edev->num_rss = rc; 1517 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1518 QEDE_RSS_CNT(edev), rss_num); 1519 rc = 0; 1520 } 1521 return rc; 1522 } 1523 1524 static void qede_free_mem_sb(struct qede_dev *edev, 1525 struct qed_sb_info *sb_info) 1526 { 1527 if (sb_info->sb_virt) 1528 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1529 (void *)sb_info->sb_virt, sb_info->sb_phys); 1530 } 1531 1532 /* This function allocates fast-path status block memory */ 1533 static int qede_alloc_mem_sb(struct qede_dev *edev, 1534 struct qed_sb_info *sb_info, 1535 u16 sb_id) 1536 { 1537 struct status_block *sb_virt; 1538 dma_addr_t sb_phys; 1539 int rc; 1540 1541 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1542 sizeof(*sb_virt), 1543 &sb_phys, GFP_KERNEL); 1544 if (!sb_virt) { 1545 DP_ERR(edev, "Status block allocation failed\n"); 1546 return -ENOMEM; 1547 } 1548 1549 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1550 sb_virt, sb_phys, sb_id, 1551 QED_SB_TYPE_L2_QUEUE); 1552 if (rc) { 1553 DP_ERR(edev, "Status block initialization failed\n"); 1554 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1555 sb_virt, sb_phys); 1556 return rc; 1557 } 1558 1559 return 0; 1560 } 1561 1562 static void qede_free_rx_buffers(struct qede_dev *edev, 1563 struct qede_rx_queue *rxq) 1564 { 1565 u16 i; 1566 1567 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1568 struct sw_rx_data *rx_buf; 1569 u8 *data; 1570 1571 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1572 data = rx_buf->data; 1573 1574 dma_unmap_single(&edev->pdev->dev, 1575 dma_unmap_addr(rx_buf, mapping), 1576 rxq->rx_buf_size, DMA_FROM_DEVICE); 1577 1578 rx_buf->data = NULL; 1579 kfree(data); 1580 } 1581 } 1582 1583 static void qede_free_mem_rxq(struct qede_dev *edev, 1584 struct qede_rx_queue *rxq) 1585 { 1586 /* Free rx buffers */ 1587 qede_free_rx_buffers(edev, rxq); 1588 1589 /* Free the parallel SW ring */ 1590 kfree(rxq->sw_rx_ring); 1591 1592 /* Free the real RQ ring used by FW */ 1593 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1594 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1595 } 1596 1597 static int qede_alloc_rx_buffer(struct qede_dev *edev, 1598 struct qede_rx_queue *rxq) 1599 { 1600 struct sw_rx_data *sw_rx_data; 1601 struct eth_rx_bd *rx_bd; 1602 dma_addr_t mapping; 1603 u16 rx_buf_size; 1604 u8 *data; 1605 1606 rx_buf_size = rxq->rx_buf_size; 1607 1608 data = kmalloc(rx_buf_size, GFP_ATOMIC); 1609 if (unlikely(!data)) { 1610 DP_NOTICE(edev, "Failed to allocate Rx data\n"); 1611 return -ENOMEM; 1612 } 1613 1614 mapping = dma_map_single(&edev->pdev->dev, data, 1615 rx_buf_size, DMA_FROM_DEVICE); 1616 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 1617 kfree(data); 1618 DP_NOTICE(edev, "Failed to map Rx buffer\n"); 1619 return -ENOMEM; 1620 } 1621 1622 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 1623 sw_rx_data->data = data; 1624 1625 dma_unmap_addr_set(sw_rx_data, mapping, mapping); 1626 1627 /* Advance PROD and get BD pointer */ 1628 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); 1629 WARN_ON(!rx_bd); 1630 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 1631 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 1632 1633 rxq->sw_rx_prod++; 1634 1635 return 0; 1636 } 1637 1638 /* This function allocates all memory needed per Rx queue */ 1639 static int qede_alloc_mem_rxq(struct qede_dev *edev, 1640 struct qede_rx_queue *rxq) 1641 { 1642 int i, rc, size, num_allocated; 1643 1644 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1645 1646 rxq->rx_buf_size = NET_IP_ALIGN + 1647 ETH_OVERHEAD + 1648 edev->ndev->mtu + 1649 QEDE_FW_RX_ALIGN_END; 1650 1651 /* Allocate the parallel driver ring for Rx buffers */ 1652 size = sizeof(*rxq->sw_rx_ring) * NUM_RX_BDS_MAX; 1653 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1654 if (!rxq->sw_rx_ring) { 1655 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1656 goto err; 1657 } 1658 1659 /* Allocate FW Rx ring */ 1660 rc = edev->ops->common->chain_alloc(edev->cdev, 1661 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1662 QED_CHAIN_MODE_NEXT_PTR, 1663 NUM_RX_BDS_MAX, 1664 sizeof(struct eth_rx_bd), 1665 &rxq->rx_bd_ring); 1666 1667 if (rc) 1668 goto err; 1669 1670 /* Allocate FW completion ring */ 1671 rc = edev->ops->common->chain_alloc(edev->cdev, 1672 QED_CHAIN_USE_TO_CONSUME, 1673 QED_CHAIN_MODE_PBL, 1674 NUM_RX_BDS_MAX, 1675 sizeof(union eth_rx_cqe), 1676 &rxq->rx_comp_ring); 1677 if (rc) 1678 goto err; 1679 1680 /* Allocate buffers for the Rx ring */ 1681 for (i = 0; i < rxq->num_rx_buffers; i++) { 1682 rc = qede_alloc_rx_buffer(edev, rxq); 1683 if (rc) 1684 break; 1685 } 1686 num_allocated = i; 1687 if (!num_allocated) { 1688 DP_ERR(edev, "Rx buffers allocation failed\n"); 1689 goto err; 1690 } else if (num_allocated < rxq->num_rx_buffers) { 1691 DP_NOTICE(edev, 1692 "Allocated less buffers than desired (%d allocated)\n", 1693 num_allocated); 1694 } 1695 1696 return 0; 1697 1698 err: 1699 qede_free_mem_rxq(edev, rxq); 1700 return -ENOMEM; 1701 } 1702 1703 static void qede_free_mem_txq(struct qede_dev *edev, 1704 struct qede_tx_queue *txq) 1705 { 1706 /* Free the parallel SW ring */ 1707 kfree(txq->sw_tx_ring); 1708 1709 /* Free the real RQ ring used by FW */ 1710 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1711 } 1712 1713 /* This function allocates all memory needed per Tx queue */ 1714 static int qede_alloc_mem_txq(struct qede_dev *edev, 1715 struct qede_tx_queue *txq) 1716 { 1717 int size, rc; 1718 union eth_tx_bd_types *p_virt; 1719 1720 txq->num_tx_buffers = edev->q_num_tx_buffers; 1721 1722 /* Allocate the parallel driver ring for Tx buffers */ 1723 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX; 1724 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL); 1725 if (!txq->sw_tx_ring) { 1726 DP_NOTICE(edev, "Tx buffers ring allocation failed\n"); 1727 goto err; 1728 } 1729 1730 rc = edev->ops->common->chain_alloc(edev->cdev, 1731 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1732 QED_CHAIN_MODE_PBL, 1733 NUM_TX_BDS_MAX, 1734 sizeof(*p_virt), 1735 &txq->tx_pbl); 1736 if (rc) 1737 goto err; 1738 1739 return 0; 1740 1741 err: 1742 qede_free_mem_txq(edev, txq); 1743 return -ENOMEM; 1744 } 1745 1746 /* This function frees all memory of a single fp */ 1747 static void qede_free_mem_fp(struct qede_dev *edev, 1748 struct qede_fastpath *fp) 1749 { 1750 int tc; 1751 1752 qede_free_mem_sb(edev, fp->sb_info); 1753 1754 qede_free_mem_rxq(edev, fp->rxq); 1755 1756 for (tc = 0; tc < edev->num_tc; tc++) 1757 qede_free_mem_txq(edev, &fp->txqs[tc]); 1758 } 1759 1760 /* This function allocates all memory needed for a single fp (i.e. an entity 1761 * which contains status block, one rx queue and multiple per-TC tx queues. 1762 */ 1763 static int qede_alloc_mem_fp(struct qede_dev *edev, 1764 struct qede_fastpath *fp) 1765 { 1766 int rc, tc; 1767 1768 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id); 1769 if (rc) 1770 goto err; 1771 1772 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1773 if (rc) 1774 goto err; 1775 1776 for (tc = 0; tc < edev->num_tc; tc++) { 1777 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]); 1778 if (rc) 1779 goto err; 1780 } 1781 1782 return 0; 1783 1784 err: 1785 qede_free_mem_fp(edev, fp); 1786 return -ENOMEM; 1787 } 1788 1789 static void qede_free_mem_load(struct qede_dev *edev) 1790 { 1791 int i; 1792 1793 for_each_rss(i) { 1794 struct qede_fastpath *fp = &edev->fp_array[i]; 1795 1796 qede_free_mem_fp(edev, fp); 1797 } 1798 } 1799 1800 /* This function allocates all qede memory at NIC load. */ 1801 static int qede_alloc_mem_load(struct qede_dev *edev) 1802 { 1803 int rc = 0, rss_id; 1804 1805 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) { 1806 struct qede_fastpath *fp = &edev->fp_array[rss_id]; 1807 1808 rc = qede_alloc_mem_fp(edev, fp); 1809 if (rc) 1810 break; 1811 } 1812 1813 if (rss_id != QEDE_RSS_CNT(edev)) { 1814 /* Failed allocating memory for all the queues */ 1815 if (!rss_id) { 1816 DP_ERR(edev, 1817 "Failed to allocate memory for the leading queue\n"); 1818 rc = -ENOMEM; 1819 } else { 1820 DP_NOTICE(edev, 1821 "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n", 1822 QEDE_RSS_CNT(edev), rss_id); 1823 } 1824 edev->num_rss = rss_id; 1825 } 1826 1827 return 0; 1828 } 1829 1830 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1831 static void qede_init_fp(struct qede_dev *edev) 1832 { 1833 int rss_id, txq_index, tc; 1834 struct qede_fastpath *fp; 1835 1836 for_each_rss(rss_id) { 1837 fp = &edev->fp_array[rss_id]; 1838 1839 fp->edev = edev; 1840 fp->rss_id = rss_id; 1841 1842 memset((void *)&fp->napi, 0, sizeof(fp->napi)); 1843 1844 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info)); 1845 1846 memset((void *)fp->rxq, 0, sizeof(*fp->rxq)); 1847 fp->rxq->rxq_id = rss_id; 1848 1849 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs))); 1850 for (tc = 0; tc < edev->num_tc; tc++) { 1851 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id; 1852 fp->txqs[tc].index = txq_index; 1853 } 1854 1855 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1856 edev->ndev->name, rss_id); 1857 } 1858 } 1859 1860 static int qede_set_real_num_queues(struct qede_dev *edev) 1861 { 1862 int rc = 0; 1863 1864 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev)); 1865 if (rc) { 1866 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1867 return rc; 1868 } 1869 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev)); 1870 if (rc) { 1871 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1872 return rc; 1873 } 1874 1875 return 0; 1876 } 1877 1878 static void qede_napi_disable_remove(struct qede_dev *edev) 1879 { 1880 int i; 1881 1882 for_each_rss(i) { 1883 napi_disable(&edev->fp_array[i].napi); 1884 1885 netif_napi_del(&edev->fp_array[i].napi); 1886 } 1887 } 1888 1889 static void qede_napi_add_enable(struct qede_dev *edev) 1890 { 1891 int i; 1892 1893 /* Add NAPI objects */ 1894 for_each_rss(i) { 1895 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1896 qede_poll, NAPI_POLL_WEIGHT); 1897 napi_enable(&edev->fp_array[i].napi); 1898 } 1899 } 1900 1901 static void qede_sync_free_irqs(struct qede_dev *edev) 1902 { 1903 int i; 1904 1905 for (i = 0; i < edev->int_info.used_cnt; i++) { 1906 if (edev->int_info.msix_cnt) { 1907 synchronize_irq(edev->int_info.msix[i].vector); 1908 free_irq(edev->int_info.msix[i].vector, 1909 &edev->fp_array[i]); 1910 } else { 1911 edev->ops->common->simd_handler_clean(edev->cdev, i); 1912 } 1913 } 1914 1915 edev->int_info.used_cnt = 0; 1916 } 1917 1918 static int qede_req_msix_irqs(struct qede_dev *edev) 1919 { 1920 int i, rc; 1921 1922 /* Sanitize number of interrupts == number of prepared RSS queues */ 1923 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) { 1924 DP_ERR(edev, 1925 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1926 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt); 1927 return -EINVAL; 1928 } 1929 1930 for (i = 0; i < QEDE_RSS_CNT(edev); i++) { 1931 rc = request_irq(edev->int_info.msix[i].vector, 1932 qede_msix_fp_int, 0, edev->fp_array[i].name, 1933 &edev->fp_array[i]); 1934 if (rc) { 1935 DP_ERR(edev, "Request fp %d irq failed\n", i); 1936 qede_sync_free_irqs(edev); 1937 return rc; 1938 } 1939 DP_VERBOSE(edev, NETIF_MSG_INTR, 1940 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1941 edev->fp_array[i].name, i, 1942 &edev->fp_array[i]); 1943 edev->int_info.used_cnt++; 1944 } 1945 1946 return 0; 1947 } 1948 1949 static void qede_simd_fp_handler(void *cookie) 1950 { 1951 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1952 1953 napi_schedule_irqoff(&fp->napi); 1954 } 1955 1956 static int qede_setup_irqs(struct qede_dev *edev) 1957 { 1958 int i, rc = 0; 1959 1960 /* Learn Interrupt configuration */ 1961 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1962 if (rc) 1963 return rc; 1964 1965 if (edev->int_info.msix_cnt) { 1966 rc = qede_req_msix_irqs(edev); 1967 if (rc) 1968 return rc; 1969 edev->ndev->irq = edev->int_info.msix[0].vector; 1970 } else { 1971 const struct qed_common_ops *ops; 1972 1973 /* qed should learn receive the RSS ids and callbacks */ 1974 ops = edev->ops->common; 1975 for (i = 0; i < QEDE_RSS_CNT(edev); i++) 1976 ops->simd_handler_config(edev->cdev, 1977 &edev->fp_array[i], i, 1978 qede_simd_fp_handler); 1979 edev->int_info.used_cnt = QEDE_RSS_CNT(edev); 1980 } 1981 return 0; 1982 } 1983 1984 static int qede_drain_txq(struct qede_dev *edev, 1985 struct qede_tx_queue *txq, 1986 bool allow_drain) 1987 { 1988 int rc, cnt = 1000; 1989 1990 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1991 if (!cnt) { 1992 if (allow_drain) { 1993 DP_NOTICE(edev, 1994 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1995 txq->index); 1996 rc = edev->ops->common->drain(edev->cdev); 1997 if (rc) 1998 return rc; 1999 return qede_drain_txq(edev, txq, false); 2000 } 2001 DP_NOTICE(edev, 2002 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 2003 txq->index, txq->sw_tx_prod, 2004 txq->sw_tx_cons); 2005 return -ENODEV; 2006 } 2007 cnt--; 2008 usleep_range(1000, 2000); 2009 barrier(); 2010 } 2011 2012 /* FW finished processing, wait for HW to transmit all tx packets */ 2013 usleep_range(1000, 2000); 2014 2015 return 0; 2016 } 2017 2018 static int qede_stop_queues(struct qede_dev *edev) 2019 { 2020 struct qed_update_vport_params vport_update_params; 2021 struct qed_dev *cdev = edev->cdev; 2022 int rc, tc, i; 2023 2024 /* Disable the vport */ 2025 memset(&vport_update_params, 0, sizeof(vport_update_params)); 2026 vport_update_params.vport_id = 0; 2027 vport_update_params.update_vport_active_flg = 1; 2028 vport_update_params.vport_active_flg = 0; 2029 vport_update_params.update_rss_flg = 0; 2030 2031 rc = edev->ops->vport_update(cdev, &vport_update_params); 2032 if (rc) { 2033 DP_ERR(edev, "Failed to update vport\n"); 2034 return rc; 2035 } 2036 2037 /* Flush Tx queues. If needed, request drain from MCP */ 2038 for_each_rss(i) { 2039 struct qede_fastpath *fp = &edev->fp_array[i]; 2040 2041 for (tc = 0; tc < edev->num_tc; tc++) { 2042 struct qede_tx_queue *txq = &fp->txqs[tc]; 2043 2044 rc = qede_drain_txq(edev, txq, true); 2045 if (rc) 2046 return rc; 2047 } 2048 } 2049 2050 /* Stop all Queues in reverse order*/ 2051 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) { 2052 struct qed_stop_rxq_params rx_params; 2053 2054 /* Stop the Tx Queue(s)*/ 2055 for (tc = 0; tc < edev->num_tc; tc++) { 2056 struct qed_stop_txq_params tx_params; 2057 2058 tx_params.rss_id = i; 2059 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i; 2060 rc = edev->ops->q_tx_stop(cdev, &tx_params); 2061 if (rc) { 2062 DP_ERR(edev, "Failed to stop TXQ #%d\n", 2063 tx_params.tx_queue_id); 2064 return rc; 2065 } 2066 } 2067 2068 /* Stop the Rx Queue*/ 2069 memset(&rx_params, 0, sizeof(rx_params)); 2070 rx_params.rss_id = i; 2071 rx_params.rx_queue_id = i; 2072 2073 rc = edev->ops->q_rx_stop(cdev, &rx_params); 2074 if (rc) { 2075 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2076 return rc; 2077 } 2078 } 2079 2080 /* Stop the vport */ 2081 rc = edev->ops->vport_stop(cdev, 0); 2082 if (rc) 2083 DP_ERR(edev, "Failed to stop VPORT\n"); 2084 2085 return rc; 2086 } 2087 2088 static int qede_start_queues(struct qede_dev *edev) 2089 { 2090 int rc, tc, i; 2091 int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1; 2092 struct qed_dev *cdev = edev->cdev; 2093 struct qed_update_vport_rss_params *rss_params = &edev->rss_params; 2094 struct qed_update_vport_params vport_update_params; 2095 struct qed_queue_start_common_params q_params; 2096 2097 if (!edev->num_rss) { 2098 DP_ERR(edev, 2099 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2100 return -EINVAL; 2101 } 2102 2103 rc = edev->ops->vport_start(cdev, vport_id, 2104 edev->ndev->mtu, 2105 drop_ttl0_flg, 2106 vlan_removal_en); 2107 2108 if (rc) { 2109 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2110 return rc; 2111 } 2112 2113 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2114 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2115 vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2116 2117 for_each_rss(i) { 2118 struct qede_fastpath *fp = &edev->fp_array[i]; 2119 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table; 2120 2121 memset(&q_params, 0, sizeof(q_params)); 2122 q_params.rss_id = i; 2123 q_params.queue_id = i; 2124 q_params.vport_id = 0; 2125 q_params.sb = fp->sb_info->igu_sb_id; 2126 q_params.sb_idx = RX_PI; 2127 2128 rc = edev->ops->q_rx_start(cdev, &q_params, 2129 fp->rxq->rx_buf_size, 2130 fp->rxq->rx_bd_ring.p_phys_addr, 2131 phys_table, 2132 fp->rxq->rx_comp_ring.page_cnt, 2133 &fp->rxq->hw_rxq_prod_addr); 2134 if (rc) { 2135 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc); 2136 return rc; 2137 } 2138 2139 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2140 2141 qede_update_rx_prod(edev, fp->rxq); 2142 2143 for (tc = 0; tc < edev->num_tc; tc++) { 2144 struct qede_tx_queue *txq = &fp->txqs[tc]; 2145 int txq_index = tc * QEDE_RSS_CNT(edev) + i; 2146 2147 memset(&q_params, 0, sizeof(q_params)); 2148 q_params.rss_id = i; 2149 q_params.queue_id = txq_index; 2150 q_params.vport_id = 0; 2151 q_params.sb = fp->sb_info->igu_sb_id; 2152 q_params.sb_idx = TX_PI(tc); 2153 2154 rc = edev->ops->q_tx_start(cdev, &q_params, 2155 txq->tx_pbl.pbl.p_phys_table, 2156 txq->tx_pbl.page_cnt, 2157 &txq->doorbell_addr); 2158 if (rc) { 2159 DP_ERR(edev, "Start TXQ #%d failed %d\n", 2160 txq_index, rc); 2161 return rc; 2162 } 2163 2164 txq->hw_cons_ptr = 2165 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)]; 2166 SET_FIELD(txq->tx_db.data.params, 2167 ETH_DB_DATA_DEST, DB_DEST_XCM); 2168 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, 2169 DB_AGG_CMD_SET); 2170 SET_FIELD(txq->tx_db.data.params, 2171 ETH_DB_DATA_AGG_VAL_SEL, 2172 DQ_XCM_ETH_TX_BD_PROD_CMD); 2173 2174 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2175 } 2176 } 2177 2178 /* Prepare and send the vport enable */ 2179 memset(&vport_update_params, 0, sizeof(vport_update_params)); 2180 vport_update_params.vport_id = vport_id; 2181 vport_update_params.update_vport_active_flg = 1; 2182 vport_update_params.vport_active_flg = 1; 2183 2184 /* Fill struct with RSS params */ 2185 if (QEDE_RSS_CNT(edev) > 1) { 2186 vport_update_params.update_rss_flg = 1; 2187 for (i = 0; i < 128; i++) 2188 rss_params->rss_ind_table[i] = 2189 ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev)); 2190 netdev_rss_key_fill(rss_params->rss_key, 2191 sizeof(rss_params->rss_key)); 2192 } else { 2193 memset(rss_params, 0, sizeof(*rss_params)); 2194 } 2195 memcpy(&vport_update_params.rss_params, rss_params, 2196 sizeof(*rss_params)); 2197 2198 rc = edev->ops->vport_update(cdev, &vport_update_params); 2199 if (rc) { 2200 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2201 return rc; 2202 } 2203 2204 return 0; 2205 } 2206 2207 static int qede_set_mcast_rx_mac(struct qede_dev *edev, 2208 enum qed_filter_xcast_params_type opcode, 2209 unsigned char *mac, int num_macs) 2210 { 2211 struct qed_filter_params filter_cmd; 2212 int i; 2213 2214 memset(&filter_cmd, 0, sizeof(filter_cmd)); 2215 filter_cmd.type = QED_FILTER_TYPE_MCAST; 2216 filter_cmd.filter.mcast.type = opcode; 2217 filter_cmd.filter.mcast.num = num_macs; 2218 2219 for (i = 0; i < num_macs; i++, mac += ETH_ALEN) 2220 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac); 2221 2222 return edev->ops->filter_config(edev->cdev, &filter_cmd); 2223 } 2224 2225 enum qede_unload_mode { 2226 QEDE_UNLOAD_NORMAL, 2227 }; 2228 2229 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode) 2230 { 2231 struct qed_link_params link_params; 2232 int rc; 2233 2234 DP_INFO(edev, "Starting qede unload\n"); 2235 2236 mutex_lock(&edev->qede_lock); 2237 edev->state = QEDE_STATE_CLOSED; 2238 2239 /* Close OS Tx */ 2240 netif_tx_disable(edev->ndev); 2241 netif_carrier_off(edev->ndev); 2242 2243 /* Reset the link */ 2244 memset(&link_params, 0, sizeof(link_params)); 2245 link_params.link_up = false; 2246 edev->ops->common->set_link(edev->cdev, &link_params); 2247 rc = qede_stop_queues(edev); 2248 if (rc) { 2249 qede_sync_free_irqs(edev); 2250 goto out; 2251 } 2252 2253 DP_INFO(edev, "Stopped Queues\n"); 2254 2255 edev->ops->fastpath_stop(edev->cdev); 2256 2257 /* Release the interrupts */ 2258 qede_sync_free_irqs(edev); 2259 edev->ops->common->set_fp_int(edev->cdev, 0); 2260 2261 qede_napi_disable_remove(edev); 2262 2263 qede_free_mem_load(edev); 2264 qede_free_fp_array(edev); 2265 2266 out: 2267 mutex_unlock(&edev->qede_lock); 2268 DP_INFO(edev, "Ending qede unload\n"); 2269 } 2270 2271 enum qede_load_mode { 2272 QEDE_LOAD_NORMAL, 2273 }; 2274 2275 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode) 2276 { 2277 struct qed_link_params link_params; 2278 struct qed_link_output link_output; 2279 int rc; 2280 2281 DP_INFO(edev, "Starting qede load\n"); 2282 2283 rc = qede_set_num_queues(edev); 2284 if (rc) 2285 goto err0; 2286 2287 rc = qede_alloc_fp_array(edev); 2288 if (rc) 2289 goto err0; 2290 2291 qede_init_fp(edev); 2292 2293 rc = qede_alloc_mem_load(edev); 2294 if (rc) 2295 goto err1; 2296 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n", 2297 QEDE_RSS_CNT(edev), edev->num_tc); 2298 2299 rc = qede_set_real_num_queues(edev); 2300 if (rc) 2301 goto err2; 2302 2303 qede_napi_add_enable(edev); 2304 DP_INFO(edev, "Napi added and enabled\n"); 2305 2306 rc = qede_setup_irqs(edev); 2307 if (rc) 2308 goto err3; 2309 DP_INFO(edev, "Setup IRQs succeeded\n"); 2310 2311 rc = qede_start_queues(edev); 2312 if (rc) 2313 goto err4; 2314 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2315 2316 /* Add primary mac and set Rx filters */ 2317 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); 2318 2319 mutex_lock(&edev->qede_lock); 2320 edev->state = QEDE_STATE_OPEN; 2321 mutex_unlock(&edev->qede_lock); 2322 2323 /* Ask for link-up using current configuration */ 2324 memset(&link_params, 0, sizeof(link_params)); 2325 link_params.link_up = true; 2326 edev->ops->common->set_link(edev->cdev, &link_params); 2327 2328 /* Query whether link is already-up */ 2329 memset(&link_output, 0, sizeof(link_output)); 2330 edev->ops->common->get_link(edev->cdev, &link_output); 2331 qede_link_update(edev, &link_output); 2332 2333 DP_INFO(edev, "Ending successfully qede load\n"); 2334 2335 return 0; 2336 2337 err4: 2338 qede_sync_free_irqs(edev); 2339 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2340 err3: 2341 qede_napi_disable_remove(edev); 2342 err2: 2343 qede_free_mem_load(edev); 2344 err1: 2345 edev->ops->common->set_fp_int(edev->cdev, 0); 2346 qede_free_fp_array(edev); 2347 edev->num_rss = 0; 2348 err0: 2349 return rc; 2350 } 2351 2352 void qede_reload(struct qede_dev *edev, 2353 void (*func)(struct qede_dev *, union qede_reload_args *), 2354 union qede_reload_args *args) 2355 { 2356 qede_unload(edev, QEDE_UNLOAD_NORMAL); 2357 /* Call function handler to update parameters 2358 * needed for function load. 2359 */ 2360 if (func) 2361 func(edev, args); 2362 2363 qede_load(edev, QEDE_LOAD_NORMAL); 2364 2365 mutex_lock(&edev->qede_lock); 2366 qede_config_rx_mode(edev->ndev); 2367 mutex_unlock(&edev->qede_lock); 2368 } 2369 2370 /* called with rtnl_lock */ 2371 static int qede_open(struct net_device *ndev) 2372 { 2373 struct qede_dev *edev = netdev_priv(ndev); 2374 2375 netif_carrier_off(ndev); 2376 2377 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2378 2379 return qede_load(edev, QEDE_LOAD_NORMAL); 2380 } 2381 2382 static int qede_close(struct net_device *ndev) 2383 { 2384 struct qede_dev *edev = netdev_priv(ndev); 2385 2386 qede_unload(edev, QEDE_UNLOAD_NORMAL); 2387 2388 return 0; 2389 } 2390 2391 static void qede_link_update(void *dev, struct qed_link_output *link) 2392 { 2393 struct qede_dev *edev = dev; 2394 2395 if (!netif_running(edev->ndev)) { 2396 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 2397 return; 2398 } 2399 2400 if (link->link_up) { 2401 DP_NOTICE(edev, "Link is up\n"); 2402 netif_tx_start_all_queues(edev->ndev); 2403 netif_carrier_on(edev->ndev); 2404 } else { 2405 DP_NOTICE(edev, "Link is down\n"); 2406 netif_tx_disable(edev->ndev); 2407 netif_carrier_off(edev->ndev); 2408 } 2409 } 2410 2411 static int qede_set_mac_addr(struct net_device *ndev, void *p) 2412 { 2413 struct qede_dev *edev = netdev_priv(ndev); 2414 struct sockaddr *addr = p; 2415 int rc; 2416 2417 ASSERT_RTNL(); /* @@@TBD To be removed */ 2418 2419 DP_INFO(edev, "Set_mac_addr called\n"); 2420 2421 if (!is_valid_ether_addr(addr->sa_data)) { 2422 DP_NOTICE(edev, "The MAC address is not valid\n"); 2423 return -EFAULT; 2424 } 2425 2426 ether_addr_copy(ndev->dev_addr, addr->sa_data); 2427 2428 if (!netif_running(ndev)) { 2429 DP_NOTICE(edev, "The device is currently down\n"); 2430 return 0; 2431 } 2432 2433 /* Remove the previous primary mac */ 2434 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 2435 edev->primary_mac); 2436 if (rc) 2437 return rc; 2438 2439 /* Add MAC filter according to the new unicast HW MAC address */ 2440 ether_addr_copy(edev->primary_mac, ndev->dev_addr); 2441 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 2442 edev->primary_mac); 2443 } 2444 2445 static int 2446 qede_configure_mcast_filtering(struct net_device *ndev, 2447 enum qed_filter_rx_mode_type *accept_flags) 2448 { 2449 struct qede_dev *edev = netdev_priv(ndev); 2450 unsigned char *mc_macs, *temp; 2451 struct netdev_hw_addr *ha; 2452 int rc = 0, mc_count; 2453 size_t size; 2454 2455 size = 64 * ETH_ALEN; 2456 2457 mc_macs = kzalloc(size, GFP_KERNEL); 2458 if (!mc_macs) { 2459 DP_NOTICE(edev, 2460 "Failed to allocate memory for multicast MACs\n"); 2461 rc = -ENOMEM; 2462 goto exit; 2463 } 2464 2465 temp = mc_macs; 2466 2467 /* Remove all previously configured MAC filters */ 2468 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 2469 mc_macs, 1); 2470 if (rc) 2471 goto exit; 2472 2473 netif_addr_lock_bh(ndev); 2474 2475 mc_count = netdev_mc_count(ndev); 2476 if (mc_count < 64) { 2477 netdev_for_each_mc_addr(ha, ndev) { 2478 ether_addr_copy(temp, ha->addr); 2479 temp += ETH_ALEN; 2480 } 2481 } 2482 2483 netif_addr_unlock_bh(ndev); 2484 2485 /* Check for all multicast @@@TBD resource allocation */ 2486 if ((ndev->flags & IFF_ALLMULTI) || 2487 (mc_count > 64)) { 2488 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR) 2489 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; 2490 } else { 2491 /* Add all multicast MAC filters */ 2492 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 2493 mc_macs, mc_count); 2494 } 2495 2496 exit: 2497 kfree(mc_macs); 2498 return rc; 2499 } 2500 2501 static void qede_set_rx_mode(struct net_device *ndev) 2502 { 2503 struct qede_dev *edev = netdev_priv(ndev); 2504 2505 DP_INFO(edev, "qede_set_rx_mode called\n"); 2506 2507 if (edev->state != QEDE_STATE_OPEN) { 2508 DP_INFO(edev, 2509 "qede_set_rx_mode called while interface is down\n"); 2510 } else { 2511 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags); 2512 schedule_delayed_work(&edev->sp_task, 0); 2513 } 2514 } 2515 2516 /* Must be called with qede_lock held */ 2517 static void qede_config_rx_mode(struct net_device *ndev) 2518 { 2519 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST; 2520 struct qede_dev *edev = netdev_priv(ndev); 2521 struct qed_filter_params rx_mode; 2522 unsigned char *uc_macs, *temp; 2523 struct netdev_hw_addr *ha; 2524 int rc, uc_count; 2525 size_t size; 2526 2527 netif_addr_lock_bh(ndev); 2528 2529 uc_count = netdev_uc_count(ndev); 2530 size = uc_count * ETH_ALEN; 2531 2532 uc_macs = kzalloc(size, GFP_ATOMIC); 2533 if (!uc_macs) { 2534 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n"); 2535 netif_addr_unlock_bh(ndev); 2536 return; 2537 } 2538 2539 temp = uc_macs; 2540 netdev_for_each_uc_addr(ha, ndev) { 2541 ether_addr_copy(temp, ha->addr); 2542 temp += ETH_ALEN; 2543 } 2544 2545 netif_addr_unlock_bh(ndev); 2546 2547 /* Configure the struct for the Rx mode */ 2548 memset(&rx_mode, 0, sizeof(struct qed_filter_params)); 2549 rx_mode.type = QED_FILTER_TYPE_RX_MODE; 2550 2551 /* Remove all previous unicast secondary macs and multicast macs 2552 * (configrue / leave the primary mac) 2553 */ 2554 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE, 2555 edev->primary_mac); 2556 if (rc) 2557 goto out; 2558 2559 /* Check for promiscuous */ 2560 if ((ndev->flags & IFF_PROMISC) || 2561 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */ 2562 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; 2563 } else { 2564 /* Add MAC filters according to the unicast secondary macs */ 2565 int i; 2566 2567 temp = uc_macs; 2568 for (i = 0; i < uc_count; i++) { 2569 rc = qede_set_ucast_rx_mac(edev, 2570 QED_FILTER_XCAST_TYPE_ADD, 2571 temp); 2572 if (rc) 2573 goto out; 2574 2575 temp += ETH_ALEN; 2576 } 2577 2578 rc = qede_configure_mcast_filtering(ndev, &accept_flags); 2579 if (rc) 2580 goto out; 2581 } 2582 2583 rx_mode.filter.accept_flags = accept_flags; 2584 edev->ops->filter_config(edev->cdev, &rx_mode); 2585 out: 2586 kfree(uc_macs); 2587 } 2588